
X4Pro: introduction
and overview

Viktor Zerkin
International Atomic Energy Agency, Nuclear Data Section

EXFOR Workshop on the Compilation of Experimental Nuclear Reaction Data
13-16 December 2022, IAEA Headquarters, Vienna, Austria

Part I.
EXFOR systems.

EXFOR Relational database.

Format. EXFOR - EXchange FORmat for compiling and exchange experimental reaction data between
members of Nuclear Reaction Data Centers network (NRDC, 1970-2022). Format is always
under development; changes are fixed on annual NRDC meetings.

Library. EXFOR library includes EXFOR Master file (25,489 Entries, 1966-2022),
EXFOR-CINDA Dictionaries (41), Manuals: EXFOR Basics, Formats and Lexfor.

The network strictly regulates data format, rules of compilation, distribution of work and
data exchange between data centers according to a special Protocol.

EXFOR today

U
se

rs

 |
 C

e
n

te
r

N
R

D
C

Distribution of data is mainly the responsibility of nuclear data centers and is not directly
regulated by the NRDC.

Database(s). Based on EXFOR library databases implemented in specific computer environment,
starting from CODASYL-DBMS (VMS, NNDC/BNL, 80-90s) and later: MySQL/MS-
Access/SQLite (IAEA-NDS, NNDC), H2 (NEA-DB) and others

Web system(s). Web interface to EXFOR database: several systems;
IAEA-NDS EXFOR-ENDF Web system: https://www-nds.iaea.org/exfor

Off-line system(s) with GUI and command line interface. IAEA-NDS packages: “EXFOR for
Applications”, “EXFOR-CINDA for Windows”, “X4Apps/SQLite”; NEA-DB: JANIS

Computational plain file(s). IAEA-NDS: XC4 for Model codes and other Apps (since 2007)

Distributing centers, users’ community
Problem-1. EXFOR storage-search-reading/filtering/sorting

Storage of EXFOR data can be organized using database management systems, e.g. relational or
NoSQL databases, or even under directory/file structures. Decisions in system design are driven by
understanding of tasks, strategic plans and IT trends. Note: regular data updates are needed to be
in sync with official EXFOR.

Problem-2. EXFOR parser-converter
Structure of EXFOR Entry follows the logic of original article – to be simple for compiling, but not necessarily
simple for programming. After parsing, in order to be comparable, data should be converted into a universal form
and into the same conditions (units, Lab-CM, etc.), which is not always trivial. So, writing a comprehensive
parser-converter is complicated task. Additional problem - programming language. There are EXFOR parser-
converters in Fortran, C/C++, Java, Python. New language – new parser, and all work from scratch.

Problem-3. Delivering data
Depending on EXFOR system, data are usually stored in one specific way, but delivered to user and/or
application in various ways (Web/offline/GUI/API/command line interface), formats (EXFOR original and
interpreted, JSON, XML) with different options and with different hierarchy. Fixing output data structure/
hierarchy (e.g. sorting order in a dataset) can make some output formats very inconvenient for other data
users and applications.

EXFOR: tasks and problems
International Network of Nuclear Reaction Data Centres (NRDC)

The primary goal of the Network is the dissemination of nuclear reaction data and associated documentation to users.

EXFOR format and library are constructed to have structure similar to original publications in order to:
a) simplify compilation process, be human readable,
b) reduce number of mistakes in compilation,
c) simplify process of cross-checking done by other centers before official release.

Distributing
centers

Users

NRDC

Database technologies
Database. /Wikipedia/
« In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system,
while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical
considerations, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and
distributed computing issues, including supporting concurrent access and fault tolerance.

A database management system (DBMS) is the software that interacts with end users, applications, and the database itself to capture and analyze
the data. The DBMS software additionally encompasses the core facilities provided to administer the database. The sum total of the database, the
DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the
DBMS, the database system or an application associated with the database.

Computer scientists may classify database management systems according to the database models that they support. Relational databases became
dominant in the 1980s. These model data as rows and columns in a series of tables, and the vast majority use SQL for writing and querying data.
In the 2000s, non-relational databases became popular, collectively referred to as NoSQL, because they use different query languages.

The subsequent development of database technology can be divided into three eras based on data model or structure: navigational, SQL/relational,
and post-relational.

The two main early navigational data models were the hierarchical model and the CODASYL model (network model). These were characterized
by the use of pointers (often physical disk addresses) to follow relationships from one record to another.

The relational model, first proposed in 1970 by Edgar F. Codd, departed from this tradition by insisting that applications should search for data by
content, rather than by following links. The relational model employs sets of ledger-style tables, each used for a different type of entity. Only in
the mid-1980s did computing hardware become powerful enough to allow the wide deployment of relational systems. »

Hierarchical model Network model Relational model (SQL)

Tables

Relations

Schema:

NoSQL
Types:
• document databases
• key-value databases
• wide-column databases
• graph databases
Features:
• Flexible schemas (no schema)
• Horizontal scaling
• Fast queries due to the data model (?)
• Ease of use for developers (?)

Relational databases
SQL (Structured Query Language) is a declarative programming language used to create, modify and manage data in a relational database
managed by a database management system. SQL consists of a collection of operators, statements and calculated functions.

Types of SQL statements:
• Data Definition Language (DDL):

• CREATE creates a database object (database, table, view, user, and so on),
• ALTER changes the object,
• DROP deletes the object;

• Data Manipulation Language (DML):
• SELECT selects data that meets the specified conditions
• INSERT adds new data,
• UPDATE changes existing data,
• DELETE deletes data;

• Data Control Language (DCL):
• GRANT grants the user (group) permissions for certain operations with the object,
• REVOKE revokes previously issued permits,
• DENY sets a ban that has priority over resolution;

• Transaction Control Language (TCL):
• COMMIT applies the transaction,
• ROLLBACK rolls back all changes made in the context of the current transaction,
• SAVEPOINT divides the transaction into smaller sections.

create table ENTRY (
EntryID integer NOT NULL,
Entry char(5),
origEntry char(5) null,
Area char(1),
expArea char(1),
CenterID smallint null,
DateDebut date,
UpdateNo smallint,
TransID char(5) null,
TransDate char(8) null,
TransFile varchar(20) null,
nInstitutes smallint null,
Institute1 char(7) null,
nAuthors smallint null,
Author1Ini varchar(55) null,
Author1 varchar(55) null,
nReferences smallint null,
Reference1 varchar(55) null,
Ref1 varchar(32) null,
YearRef1 smallint null,
Publication1 varchar(55) null,
stdFileName varchar(40) null,
TypeRef1 char (1) null,
NsrKeyNo varchar(8) null,
DOI varchar(40) null,
CompilerID varchar(40) null,
PRIMARY KEY (EntryID)

)

alter table AUTHORS add column FullName varchar (80) null;
create index AUTHORS_FullName on AUTHORS(FullName);
update AUTHORS set FullName=trim(concat(trim(AuthorIni),' ',trim(Author)));

SELECT * FROM ENTRY where Author1='Korzh’;
SELECT DISTINCT Reference1,nAuthors FROM ENTRY where Author1='Korzh' and YearRef1>=1977 order by nAuthors;

select distinct SUBENT.Entry,SUBENT.DateCompil,ENTRY.Reference1,KEYWORD.FreeText as Title
from SUBENT inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID
inner join KEYWORD on KEYWORD.EntryID=SUBENT.EntryID
where SUBENT.SubAcc like '%001' and ((SUBENT.Entry like '2%') or (SUBENT.Entry like 'O%'))
and KEYWORD.KeyWord='TITLE' and binary upper(KEYWORD.FreeText)<>KEYWORD.FreeText
order by SUBENT.Entry

MySQL.
Search Entries with UPPER case
Title from Area 2 compiled
between 1990 and 1999

SQLite. Remove binary

Project “EXFOR Relational”
1. Planned features of the system (2000)

1. All information in EXFOR should be available for search in any order (direct access)
2. Execution time of typical request should be within 2-3 sec
3. The system should be really platform independent (simplest: no stored procedures, no foreign keys, etc.)
4. The system should guarantee integrity of original data

o usage of BLOBs to store SUBENT in their original form
o convincing other centers to switch to central database maintenance

5. Whole system (database and programs) should fit to CD-ROM=640Mb (storage of zipped BLOBs)
6. The database should be easy deployed to mirror-sites (MyISAM, MDB) without maintenance system
7. Extendable set of tables and columns in the tables
8. System should allow usage of programs on several languages (including legacy codes) and extensions
9. Modularity and robustness of software, re-use of modules
10. Interactive multiplatform plotting

2. Allowed to achieve
1. Merging EXFOR libraries to common "EXFOR Master file” (2002-2005)
2. Global EXFOR maintenance system in the IAEA-NDS (since 2005): TRANS files and fixed Master file for every update
3. Optimising of efforts in NRDC
4. Common (robust) EXFOR Web retrieval system: IAEA-NDS, NNDC (USA), India, China, Russia
5. Integrating with EXFOR compilation control system

3. Not foreseeing extensions (2007-2022)
1. EXFOR-NSR PDF database (with authorised Web access)
2. Connection and import from NSR
3. Export to R33 (IBANDL)
4. EXFOR data re-normalization/corection system
5. Construction covariance matrices using uncertainties
6. Uploading system for remote data checking and processing (for EXFOR compilers)
7. Web system without Internet
8. X4Lite (EXFOR-Relational on SQLite) and X4Pro

1. Relational EXFOR database: common between NDS-NNDC
a) schema based on “EXFOR-Access CD-ROM”: discussed and initially agreed between NDS,

NNDC, CNPD on NNDC-2000 Workshop “Nuclear database: migration to relational
database and Java technology”

b) existing and maintained at NDS and NNDC from 2000 to 2021:
c) OS: Windows, Linux, MacOS
d) DBMS: MS-Access (2000), MySQL (2001), SyBase (2005), SQLite (2020)
e) Web: NDS, NNDC, 3 Mirrors (India, China, Russia)
f) deployed to Mirror-sites and on CD-ROM to individual users

2. EXFOR-CINDA Web Retrieval system:
official NRDC Web retrieval system since 2008

3. Current versions of EXFOR output to C4, C5, JSON, XML:
a) easier to use in users’ applications than EXFOR

b) have fixed format, require converter

Current status of EXFOR-Relational

MySQL

Access

SyBase

AccessNDS:CD NDS:CD

NDS:CD,Web

NNDC:Web

MySQL

MySQL

Access NDS:CD

NDS:CD,Web

NNDC:Web

MariaDB

MariaDB NDS:CD,Web

NNDC, Mirrors
Web

MariaDB

SQLite NDS:CD

NDS, Mirrors
Web

1999 ~2001 ~2010 ~2015 ~2022

History of EXFOR-Relational

EXFOR relational database: structure and content
(IAEA-NDS, NNDC, 2000-2022)

Initial database: EXFOR + Dictionaries
Database extensions:

Created: 2010
Records: 17,23
Size: 11.6 Mb

Corrections

X4-NSR PDF

Automatic and experts’
corrections. Available online
via C4, TAB, Plots.

Created: 2012
Records: 224,632
Size: 192 Gb

PDF files of publications –
source of EXFOR and NSR.
Full contents available online
for authorized users.

Created: 2014
Records: 1,514,453
Size: 198 Mb

Test search Google-like search in
interpreted EXFOR, incl. free
text, keywords, codes and their
interpretation from dictionaries.

Created: 2014
Entries: 103,4317
Subent: 813,341
Size: 0.9 Gb

EXFOR Archive
Contains current and all
previous versions of every
SUBENT. Available online.

Note. The table DATA was not implemented, because
there was no effective solution to store and operate with
such a huge variety of data as presented in EXFOR.
Situation has been changed when popular relational
database management systems integrated JSON as
column type to their databases providing functionality
for storing, presenting, indexing, querying.

This is key point of X4Pro approach.

EntryID = EntryID

UpdateNo = UpdateNo

SubentID = SubentIDEntryID = EntryID

SubentID = SubentID

SubentID = SubentID
ReacodeID = ReacodeID

SubentID = SubentID

ReacodeID = ReacodeID

SubentID = SubentID

EntryID = EntryID

EntryID = EntryID

UpdateNo = UpdateNo

EntryID = EntryID

SubentID = SubentID

UpdateNo = UpdateNo

AUTHORS

ID
EntryID
Entry
AuthorIni
Author

numeric
int
char(5)
varchar(16)
varchar(40)

<pk>
<fk>

ENTRY

EntryID
Entry
Area
DateDebut
UpdateNo
TransID
TransDate
TransFile
nInstitutes
Institute1
nAuthors
Author1Ini
Author1
nReferences
Reference1
Ref1
YearRef1

int
char(5)
char(1)
datetime
int
char(5)
char(8)
varchar(16)
int
char(7)
int
varchar(12)
varchar(30)
int
varchar(32)
varchar(32)
int

<pk>

<fk>

HEADER

ID
DatasetID
SubentID
iCol
Pointer
flagCD
Header
Units

numeric
int
int
int
char(1)
char(1)
varchar(12)
varchar(12)

<pk>

<fk>

INSTITUT

ID
EntryID
Entry
Code
Area
Country
Institute

numeric
int
char(5)
char(7)
char(1)
varchar(3)
varchar(3)

<pk>
<fk>

KEYWORD

ID
SubentID
EntryID
Entry
SubAcc
SubAcc1
SubAccNum
KeyWord
Pointer
TypeCode
Code
MemoCode
FreeText

numeric
int
int
char(5)
char(8)
char(8)
int
varchar(12)
char(1)
int
varchar(255)
varchar(511)
varchar(511)

<pk>
<fk>

PRODUCT

SubentID
ReacodeID
Fld
Element
Mass
Isomer
Product
Prod

int
char(9)
char(1)
int
int
varchar(8)
varchar(17)
varchar(14)

<fk1>
<fk2>

REACODE

ReacodeID
SubentID
SubAcc
Pointer
nReacstr
nDataLines
eMin
eMax
zaTarget1
zaIncident1
fullCode

char(9)
int
char(8)
char(1)
int
int
real
real
int
int
varchar(255)

<pk>
<fk>

REACSTR

ReacstrID
SubentID
SubAcc
ReacodeID
Pointer
nCodes
Code
Target
Reaction
Product
Projectile
Category
Quant
SF1
SF2
SF3
SF4
SF5
SF6
SF7
SF8
SF9
SF58
zIncident
zTarg
elTarg
aTarg
sTarg
ztTarg
atTarg
zProd
elProd
aProd
sProd
ztProd
atProd

char(10)
int
char(8)
char(9)
char(1)
int
varchar(64)
varchar(10)
varchar(16)
varchar(16)
varchar(10)
varchar(16)
varchar(16)
varchar(16)
varchar(12)
varchar(12)
varchar(20)
varchar(12)
varchar(16)
varchar(24)
varchar(16)
varchar(8)
varchar(30)
int
int
varchar(9)
int
varchar(2)
varchar(3)
varchar(3)
int
varchar(10)
int
varchar(8)
varchar(3)
varchar(3)

<pk>
<fk2>

<fk1>

REFERS

ID
EntryID
Entry
Reference
Dict
Type
Ref
RefDic
DateRef

numeric
int
char(5)
varchar(40)
char(1)
char(1)
varchar(24)
varchar(24)
datetime

<pk>
<fk>

SUBENT

SubentID
SubAcc
EntryID
Entry
SubAcc1
SPSDD
DateUpd
DateCompil
UpdateNo
TransID
TransDate
TransFile
nReac
nReacstr
EnMin
EnMax
CDatasetID
CnCol
CnRow
DDatasetID
DnCol
DnRow

int
char(8)
int
char(5)
char(8)
char(1)
datetime
datetime
int
char(5)
char(8)
varchar(16)
int
int
varchar(12)
varchar(12)
int
int
int
int
int
int

<pk>

<fk1>

<fk2>

TITLE

EntryID
Entry
YearRef1
Reference1
AuthorsList
Title

int
char(5)
int
varchar(32)
varchar(1023)
varchar(511)

<pk,fk>

X4SRC

SubentID
SubAcc
Entry
SubAccNum
Coding
Src

int
char(8)
char(5)
int
int
image

<pk,fk>

X4TRANS

UpdateNo
nEntries
nSubentries
nDatalines
TransID
TransDate
TransFile

int
int
int
int
char(5)
char(8)
varchar(16)

<fk>

X4UPDATE

UpdateNo
UpdateDate
UpdateFlag

int
datetime
char(1)

<pk>

EXFOR, May 2004
V.Zerkin, IAEA-NDS

EXFOR database schema as of 2004, SyBase

EXFOR relational system

EXFOR output to user
D

riv
er

s

EXFOR
Database

2000-2022

The system is functioning for public at the IAEA-NDS and NNDC since 2004

SQL
EXFOR

x2db
+parser

Drivers

x2xml
+parser

db2x4
reader

EXFOR

x2json
+parser

x2plot
+parser

x4to: c4,c5,r33
+parser

x4correct
+parser

EXFOR data to user

XML JSON Plot C4, C5, R33 C4* X4, X4+, X4±

Put to the database

Get from the database:
Web and offline, API, GUI and
command line interface

Some Apps start from C4/XC4/C5/R33/JSON files

We can not avoid using parser/converter

We intensively use parser/converter on
production side, but using X4Pro approach
we can avoid using it and significantly
simplify many operations and codes.

Part II.
X4Pro database:

concept and implementation

X4Pro concept
What is wrong now?

EXFOR relational database present EXFOR meta-data in tables accessible for SQL commands, but data
points (numerical data) are stored only as part of original EXFOR SUBENT in BLOB. In order to be used,
numerical data need to be extracted from BLOB to EXFOR file, parsed and converted to universal form.
Thus, our current EXFOR relational database forces us always to work with original EXFOR and requires
additional software on production stage: EXFOR reader, parser, converter.

Presenting EXFOR data in C4, C5, R33, JSON, XML forms usually works well for specific tasks and users’
communities but has problems trying to present whole EXFOR library. For example, structure of C4/C5
work well for evaluators because use ENDF compatible designation (MF:MT) but have limited number of
independent variables and finally cover from 60 to 80% of the entire library.

Another task is to provide needed information and recipe for automatic renormalization of EXFOR data
using new cross section standards and decay data and for data corrections shared by experts.

Dream

It would be nice to store and directly access all data in standard relational form without intermediate
storage and operations, but there are some problems with rational representation of EXFOR data in
relational form associated with a large variety of the data and volume (now EXFOR has more than 500
types of data headers and 18 million data points).

Solution

Storage of all data points in modern relational database supporting JSON data type and providing direct
SQL access could solve all these problems. It can also (a) solve problem of accessing the data from different
programming languages, and (b) avoid problems with software distribution, installation, licences, etc.

1. Continue relational model. Traditional SQL database storing data in tables.
Continues and extends “EXFOR-Relational” project, 2000-2022.

2. Fully relational. All meta-data and numerical values presented in tables and
accessible by SQL commands.

3. Multi-model. Table cells contain single values and also many values as
semi-structured data in JSON. Note: “JSON” data type supported by modern
relational DBMS via functions extending SQL commands (since ~2015).

4. Universal. Flexible SQL search, filtering, sorting allows to produce any data
hierarchy on the fly; data in original and computational forms; includes monitor and
decay data to be used for automatic renormalization, instructions for data
modifications from experts. Implemented in MariaDB and SQLite, tested on Windows,
Linux, MacOS. Can be used as starting point for other projects: from students with
homework to professionals with advanced tasks.

5. Powerful. Oriented to programming users: they can do much more then using Web
and GUI interfaces with fixed functionality.

6. Rational. No need EXFOR parsers for new languages. Can be used by programs on
any language supporting SQL: Python, Java, JavaScript, Fortran, Perl, etc.

X4Pro concept

1. EXFOR data without EXFOR format.
• All data points, data for corrections, meta-data are provided in the database.
• No need in original EXFOR for end-users.
• No need in new EXFOR parsers/converters for new programming languages.
• No need in intermediate files and formats with fixed structure (C5, XML, JSON).
• Simple for programming on any language supporting SQL for data search, filtering,
sorting, retrieval, renormalization.

2. Local EXFOR database for programmatic access.
Providing data for various tasks required automatization, “non-so-general” to be
implemented under Web/GUI interface proposed by data centres; packages required
access to all experimental data at once; evaluation software required data corrections

3. Examples.
24 examples of Fortran and Python programs provided with source code (MIT licence)
and “run-me” scripts retrieving and plotting data from local X4Pro and remote ENDF
database via Web-API interface.

4. X5-JSON.
Comprehensive EXFOR data presentation in JSON form.
Can be used for creating another systems built on JSON objects (e.g. NoSQL databases).
Example of building CouchDB is provided.

X4Pro offers

ENTRY
SUBENT 001
BIB
KEYWORDS

ENDBIB
COMMON

SUBENT
BIB
KEYWORDS
REACTION

ENDBIB
COMMON
DATA

ENTRY
...
ENTRY

DATASET {
KEYWORDS
REACTION
DATA
LEGEND

}
,DATASET{}
,DATASET{}

EXFOR file C5, JSON, Std, X5

Concept of Dataset //C5, JSON, JSON_FY, Std_out, X5Z
1. File contains Datasets; no text blocks for ENTRY, SUBENT, BIB; no Pointers
2. Dataset is identified by DatasetID:=“SUBENT+Pointer”; includes all information related to one reaction:

Reaction-code, selected/all Keywords from SUBENT-1 and current SUBENT, Data-section and Legend
3. Data-section: all data from DATA and COMMON from SUBENT-1 and current SUBENT
4. Data are presented as table function f(x1,x2,…,par), where variables are sorted according to Dictionary-213 and Dict.24
5. Legend and Keywords contain EXFOR codes and their interpretation (e.g. basic-units and conversion factors)
6. C5, JSON_FY and X5Z contain computational data values; StdOut, XML and JSON (as of now) – only original values

XML
1. Repeats structure of EXFOR file using nested <elements>;

includes information from EXFOR Dictionaries explaining codes
2. Numbers are presented in traditional style

(no more E-less Fortran format for numbers)

Nucl. data
format

Numbers’ format
/Language

Sequence
(main block)

Meta
data

Interpret.
from Dict.

Orig.
data

Comput.
data

Renorm.
data

EXFOR Fixed-len, E-less ENTRY yes no yes no no
C4 Fixed-fmt lines SUBENT no no no yes no
C5 Fixed-fmt lines Datasets yes yes no yes yes
X4+ Flex. fields /HTML ENTRY yes yes yes no no
XML Flex. fields /XML ENTRY yes yes yes no no
JSON Flex. fields /JSON Datasets yes yes yes no no
JSON_FY Flex. fields / JSON Datasets yes yes no yes no
JSON_X4 Flex. fields / JSON Datasets yes yes yes yes no
X5Z.JSON Flex. fields / JSON Datasets yes yes yes yes yes

EXFOR Relational data formats overview
X4+ EXFOR-Interpreted; X4± Interactive Tree
1. Presents EXFOR as it is + extra lines with

information from Dictionaries, NSR, etc.
2. Numbers in traditional style
3. No limit on the number of values per line

Comparison of formats: summary

Translation from MariaDB to SQLite is done automatically by a bash script (Dec.2022)
working ~4 hours and producing a single 8Gb file x4sqlite1.db with 10 new tables:

1. x4pro_ds Datasets
2. x4pro_hdr Headers
3. x4pro_kw Keywords
4. x4pro_x4data EXFOR data points (json)
5. x4pro_x4cdat EXFOR data points in basic units (json)
6. x4pro_c5dat Computational data points (real)

+ total sys/stat/partial errors
+ old and new monitor CS data

7. x4pro_autocorr Decay data for product and monitor
8. x4pro_expertcorr Experts’ corrections (Python)
9. x4pro_x4z Subentries in X4Z.JSON
10. x4pro_x5z Datasets in X5Z.JSON

X4Pro implementation

SQL

SQL
Correction files

Maintenance of EXFOR relational. X4Pro production.

EXFOR library

TRANS files

BACKUP.bck

PRELIM files

Dictionaries

SQL.xml .java

auto.cor .java

users.cor

Experts
email

EXFOR
Database
MySQL

MariaDB

JD
B

C
 D

ri
ve

rs

Monitors

Standards

Parameters

EXFOR
Database

MS-Access

2000-2019

2000-2022

“Clone”

EXFOR
Database
SQLite

SQL
x4pro.sql

2021-2022

X4Pro

.py
Demo-codes

x2xml.c

x4pro.java

The system is functioning at the IAEA-NDS and NNDC since 2004

EXFOR
Database
SyBase

2000-2011

Community

.java

Download

EEEE

“semi-structured”
data: type JSON

create table x4pro_x4data (
DatasetID varchar(9) not null,
idat integer null,
xdat JSON null,
primary key (DatasetID,idat)

)

Table x4pro_x4data

Using MySQL Query Browser

Querying data from inside JSON
(example: using SQLite DB Browser)

select x4data_cdat.DatasetID,REACODE.fullCode
,ENTRY.YearRef1,ENTRY.Author1Ini,ENTRY.Author1
,x4data_cdat.idat as iPoint
,x4data_cdat.y as Sig
,x4data_cdat.dy as dSig
,x4data_cdat.x1 as En
,x4data_cdat.dx1 as dEn
,x4data_cdat.x2 as Eout
,x4data_cdat.dx2 as dEout
,x4data_cdat.x3 as An
,x4data_cdat.dx3 as dAn
from x4data_cdat
inner join REACODE on
REACODE.ReacodeID=x4data_cdat.DatasetID
inner join REACSTR on
REACSTR.ReacodeID=REACODE.ReacodeID
inner join SUBENT on REACODE.SubentID=SUBENT.SubentID
inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID
where (REACSTR.Target like 'F-19')
and (REACSTR.Reaction like 'n,x')
and (REACSTR.Quant like 'DAE')
and (REACODE.outParticles like '[n]')
and (REACSTR.SF8='')
and ((REACSTR.SF9='') or (REACSTR.SF9='EXP'))
and (REACODE.nReacstr=1)
and (An>=25) and (An<=45)

order by REACODE.fullCode,
ENTRY.YearRef1 desc,x4data_cdat.DatasetID
,En,An,Eout,x4data_cdat.idat

Simplify SQL commands using Views

Using Tables only select * from dae1
where Target like 'F-19’
and Reaction like 'n,x’
and outParticles like '[n]’
and (An>=25) and (An<=45)
order by fullCode,
YearRef1 desc,DatasetID,
 En,An,Eout,iPoint

Using Views

select * from sig1
where Target='Mn-55’
and MT=107

select * from sig1
where Target='Mn-55’
and Reaction like 'n,a'

Example: SIG

CREATE VIEW sig1 AS
select x4pro_c5dat.DatasetID
,x4pro_c5dat.idat as iPoint
,REACODE.fullCode
,REACODE.Pointer,ENTRY.Entry,REACODE.SubAcc as Subent
,ENTRY.YearRef1,ENTRY.nAuthors,ENTRY.Author1Ini,ENTRY.Author1
,REACSTR.Target, REACSTR.Reaction
,lower(REACSTR.Projectile) as Projectile
,REACSTR.sProd,REACSTR.sTarg
,REACODE.zaTarget1,REACODE.zaIncident1
,REACODE.outParticles,REACODE.MF,REACODE.MT
,x4pro_c5dat.x1 as En
,x4pro_c5dat.dx1 as dEn
,x4pro_c5dat.y as Sig
,x4pro_c5dat.dy as dSig
from x4pro_c5dat
inner join REACODE on REACODE.ReacodeID=x4pro_c5dat.DatasetID
inner join REACSTR ON REACSTR.ReacodeID=REACODE.ReacodeID
inner join SUBENT on REACODE.SubentID=SUBENT.SubentID
inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID
where

(REACSTR.SF58 like ',SIG')
and (REACSTR.SF8='')
and ((REACSTR.SF9='') or (REACSTR.SF9='EXP'))
and (REACODE.nReacstr=1)

order by
REACODE.fullCode,ENTRY.YearRef1 desc,x4pro_c5dat.DatasetID
,En,x4pro_c5dat.idat

View “sig1”

1. Renormalization using old and new monitor cross sections
m0, dm0: “old monitor” – monitor-reaction cross sections used by authors

Source of data:
1) DATA, COMMON sections: MONIT, MONIN-ERR (EN, EN-NRM)
2) MONIT-REF pointing to another EXFOR data
3) MONIT-REF pointing to ENDF library (e.g., ENDF/B-5 Standards sub-library)
4) MONIT-REF pointing to “a publication” //--> Archive of old Monitors

m1, dm1: “new monitor” – monitor-reaction cross sections “recommended” now

Source of data:
1) IAEA Standards-2017
2) IRDFF-II (2019)

2. Renormalization of EXFOR data using newer Decay data
1) “AR” 511 keV annihilation decay data (intensity)

2) “DR” gamma line intensity

• EXFOR keywords: DECAY-DATA and DECAY-MON

• Data renormalized to the current ENSDF data - thanks to M.Verpelli (IAEA-NDS)

3. Data types available for automatic renormalization
“SIG”, “DA”, “DE”, “DAE”, “FY”.
Total number of Datasets where auto-renormalization: 17,395 (~10% of whole EXFOR)

Automatic renormalization of EXFOR data
(part of EXFOR data correction system, 2010-2022)

Table x4pro_c5dat

independent
variables

generalized
partial
uncertainties

measured
data

data for
renormalization

extra info

New: data for renormalization are
coming together with the database

30581004 x4u:20090506 #1980,Zupranska #Pts:10
#[0]#---Monitor xs-data
#[0]#Reaction: 25-MN-55(N,A)23-V-52,,SIG
#[0]#Monitor: 26-FE-56(N,P)25-MN-56,,SIG
#m0: {20377002,H.LISKIEN+,J,JNE/AB,19,73,196502} $ fe56np;#[0]#old monit-ref
m0: exfor$20377002_fe56np; #[0]#old monitor(energy) in EXFOR
m1: recom$fe56np; #[0]#new monitor(energy)
dy=dy/y; #[0]#to rel. uncertainties----
y=y/m0*m1; #[0]#renormalizing CS
dy=(dy**2-dm0**2+dm1**2)**0.5; #[0]#replace monitor uncertainties
dy=dy*y; #[0]#to abs. uncertainties

Currently implemented using:
1. EXFOR Parser (C)
2. Interpreter (C)
3. Archive of monitors
4. Database of new standards

Now on EXFOR-Web:

X4Pro: table x4pro_c5dat

X4Pro: data renormalization with SQL SELECT
(example: using SQLite DB Browser)

X4Pro: data renormalization with SQL SELECT
(example: using SQLite DB Browser)

Part III.
Illustrating usage of X4Pro database

Demo codes: Python, Fortran, JavaScript

Visualization:Python/Plotly+Matplotlib
JavaScript/Plotly

Platforms: Windows, Linux, MacOS

Tests, demo-codes, platforms and technologies
I. Retrieve experimental data from local X4Pro with evaluated data

from Web ENDF retrieval system: Python3 with Plotly or Matplotlib
1. Cross sections (MF3 + uncertainties from MF33)
2. Angular distributions (MF4)
3. Emission spectra (MF5)
4. Double differential cross sections (MF6)
5. Fission yield (MF1)
6. Hidden EXFOR data: Mass×TKE distribution, EXFOR data correlations

II. Retrieve data from local X4Pro using GFortran and GCC
1. Cross sections (MF3), output C4 file
2. Double differential cross sections (MF6)
3. Retrieve LEG/RS and SIG from different Subent and generate DA → C4

III. Data renormalization/modification on Python + Plotly or Matplotlib
1. Automatic renormalization
2. User’s modifications
3. Experts’ modifications (taken from database)
4. Ratios to cross sections recalculations
5. Retrieve Legendre coefficient L[0] and calculate cross sections
6. Retrieve LEG/RS and SIG from different Subent and generate DA
7. Retrieve LEG generate DA output draft of R33 (for IBANDL)

IV. Populating CouchDB database using X5-JSON in Python
1. Retrieve X4Z.JSON from table x4pro_x4z store in local CouchDB

V. Data retrievals from local X4Pro using javascript (+ENDF +Plotly)
1. Cross sections (MF3) with GUI/Html5
2. Retrievals from javascript under Node.js

Note. Trial distribution: database file ~8Gb, python codes are built on modules
containing ~100 lines each; fortran codes 100-200 lines; item V is not included

for evaluators+

for fun

for old

for young

study

Cross sections: EXFOR + ENDF.MF3/MF33
Demo code: python3 + requests + plotly

Angular distributions (DA+MF4.MF34)
Demo-code: python3 + requests + plotly or matplotlib

Emission spectra (DE+MF5)

Fission-product yield from EXFOR (FY)
92-U-238(N,F)MASS,CHN,FY : Total chain yield of fission products

Double differential cross sections (MF6)

Angular distribution (partial: DAP)

Example of “Native” EXFOR plotting (Mass-TKE)

X: MASS(NO-DIM):Atomic mass of nuclide
Y: E(MEV):Energy of outgoing particle, lab. system
Z: MISC(NO-DIM):Number of events detected

X4pro → Matplotlib:

EXFOR: #21095008: 92-U-235(N,F)MASS,PR/FRG,NU/TKE
Mass-Energy distribution for both fission fragments

X4pro → Plotly:

Original publication:

Covariance data coded in EXFOR

SQL command:
select jFreeData
from x4pro_kw
where DatasetID='23114002’
and Keyword like 'covariance'

Demo code:
python3 +
matplotlib

Covariance data coded in EXFOR

Double differential cross sections in Fortran

SQL command

Automatic renormalization in Python

User’s modifications of EXFOR data

Experts’ data corrections in Python

Ratios to cross sections in Python

Cross section DATA from [,SIG] together with
search/filter/calc.: 4π∙L(0) from [,DA,,LEG]

Retrieve LEG/RS and SIG from the same
ENTRY to form L(0..n) and calculate DA

Other exp. data with Ei≈1.5 MeV exist
and can be used to check
our calculations

No other exp. data with Ei≈0.253 MeV exist.
We can use our calculations to verify
evaluated data.

(1) Retrieve LEG(0..n), calculate DA-CM and output to R33,
(2) upload to IBANDL, (3) convert to DA-Lab/R33

#cm2lab: SigFactor=0.607908 0.8800943
#cm2lab: Theta_CM=165.0 Theta_Lab=163.98

2

3

1

Part IV. X4-JSON, CouchDB
X5-JSON presents meta and numerical data:
1. from EXFOR and Dictionaries structured as they are in EXFOR - to be useful by compilers
2. computational data by Datasets (~C5) including data for automatic correction

by new monitor and decay data
Available on Web-EXFOR as X4Z and X5Z

X4Pro
database
SQLite

zv-exfor-001
database
CouchDB

Example in
X4Pro:

export2cdb.py
(~150 lines)

Part V. Retrieval on JavaScript with GUI/html5

Build your own Web interface
to X4Pro working on local PC

1. What is X4Pro?
Extended EXFOR relational database without EXFOR format.
EXFOR relational database extended with EXFOR data points in original and computational form,
data for renormalizing EXFOR data (monitor and decay data) and instructions for data
corrections; implemented in MariaDB and SQLite; can be used on server side and on user’s PC
with Windows, Linux, MacOS.

2. Download X4Pro-trial/SQLite:
https://www-nds.iaea.org/cdroms/#x4pro1trial

3. Advantages of X4Pro:
a) universal, flexible, platform-independent, efficient, robust

b) no need in original EXFOR: all info and data can be taken from the database

c) no need in EXFOR parsers/converter on user’s side

d) no need for intermediate (C4/C5/JSON) files with fixed structure:
application create needed objects on the fly

e) simple for programming on any programming language supporting SQL
for data search, filtering, sorting, retrieval and even renormalization

4. X4Pro status and plans-2022/23:
a) started public distribution of trial version
b) presented on NRDC-2022, ND-2022, proposed for testing and feedback
c) …to take part in EXFOR workshop IAEA-2022 (practicing, feedback)…
d) to continue development
e) to coordinate distribution with NRDC-2023

Concluding remarks

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author

