# X4Pro: introduction and overview

#### Viktor Zerkin

International Atomic Energy Agency, Nuclear Data Section



EXFOR Workshop on the Compilation of Experimental Nuclear Reaction Data 13-16 December 2022, IAEA Headquarters, Vienna, Austria

# Part I.

# EXFOR systems. EXFOR Relational database.

# **EXFOR today**

Format. EXFOR - <u>EX</u>change <u>FOR</u>mat for compiling and exchange experimental reaction data between members of Nuclear Reaction Data Centers network (NRDC, 1970-2022). Format is always under development; changes are fixed on annual NRDC meetings.

Library. EXFOR library includes EXFOR Master file (25,489 Entries, 1966-2022), EXFOR-CINDA Dictionaries (41), Manuals: EXFOR Basics, Formats and Lexfor.

The network strictly regulates data format, rules of compilation, distribution of work and data exchange between data centers according to a special Protocol.

Distribution of data is mainly the responsibility of nuclear data centers and is not directly regulated by the NRDC.

Database(s). Based on EXFOR library databases implemented in specific computer environment, starting from CODASYL-DBMS (VMS, NNDC/BNL, 80-90s) and later: MySQL/MS-Access/SQLite (IAEA-NDS, NNDC), H2 (NEA-DB) and others

Web system(s). Web interface to EXFOR database: several systems; IAEA-NDS EXFOR-ENDF Web system: <u>https://www-nds.iaea.org/exfor</u>

Off-line system(s) with GUI and command line interface. IAEA-NDS packages: "EXFOR for Applications", "EXFOR-CINDA for Windows", "X4Apps/SQLite"; NEA-DB: JANIS
 Computational plain file(s). IAEA-NDS: XC4 for Model codes and other Apps (since 2007)

# **EXFOR: tasks and problems**

International Network of Nuclear Reaction Data Centres (NRDC)

The primary goal of the Network is the dissemination of nuclear reaction data and associated documentation to users.

EXFOR format and library are constructed to have structure similar to original publications in order to:

- a) simplify compilation process, be human readable,
- b) reduce number of mistakes in compilation,
- c) simplify process of cross-checking done by other centers before official release.

Distributing centers

Users

NRDC

#### Distributing centers, users' community

#### Problem-1. EXFOR storage-search-reading/filtering/sorting

Storage of EXFOR data can be organized using database management systems, e.g. relational or NoSQL databases, or even under directory/file structures. Decisions in <u>system design</u> are driven <u>by</u> <u>understanding of tasks</u>, <u>strategic plans</u> and IT trends. Note: regular data updates are needed to be in sync with official EXFOR.

#### Problem-2. EXFOR parser-converter

Structure of EXFOR Entry follows the logic of original article – to be simple for compiling, but not necessarily simple for programming. After parsing, in order to be comparable, data should be converted into a universal form and into the same conditions (units, Lab-CM, etc.), which is not always trivial. So, writing a comprehensive parser-converter is <u>complicated task</u>. Additional problem - programming language. There are EXFOR parser-converters in Fortran, C/C++, Java, Python. <u>New language – new parser</u>, and all work from scratch.

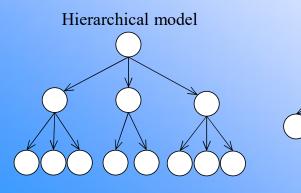
#### Problem-3. Delivering data

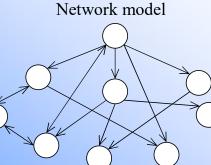
Depending on EXFOR system, data are usually stored in one specific way, but delivered to user and/or application in various ways (Web/offline/GUI/API/command line interface), formats (EXFOR original and interpreted, JSON, XML) with different options and <u>with different hierarchy</u>. Fixing output data structure/ hierarchy (e.g. sorting order in a dataset) can make some output formats very inconvenient for other data users and applications.

# **Database technologies**

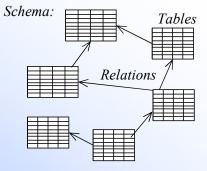
#### Database. /Wikipedia/

In computing, a <u>database</u> is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and <u>practical</u> <u>considerations</u>, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance.


A <u>database management system (DBMS</u>) is the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS software additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a <u>database system</u>. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database.


Computer scientists may classify database management systems according to the database models that they support. <u>Relational databases</u> became dominant in the 1980s. These model data as rows and columns in a <u>series of tables</u>, and the vast majority use <u>SQL</u> for writing and querying data. In the 2000s, non-relational databases became popular, collectively referred to as NoSQL, because they use different query languages.

The subsequent development of database technology can be divided into three eras based on data model or structure: <u>navigational</u>, SQL/<u>relational</u>, and <u>post-relational</u>.


The two main early navigational data models were the <u>hierarchical model</u> and the CODASYL model (<u>network model</u>). These were characterized by the use of pointers (often physical disk addresses) to follow relationships from one record to another.

The <u>relational model</u>, first proposed in 1970 by Edgar F. Codd, departed from this tradition by insisting that applications should search for data by content, rather than by following links. The relational model employs sets of ledger-style tables, each used for a different type of entity. Only in the <u>mid-1980s</u> did computing hardware become powerful enough to allow the wide deployment of relational systems. »





Relational model (SQL)



NoSQL

- Types:
- document databases
- key-value databases
- wide-column databases
- graph databases
   Features:
- Flexible schemas (no schema)
- Horizontal scaling
- Fast queries due to the data model (?)
- Ease of use for developers (?)

### **Relational databases**

SQL (Structured Query Language) is a declarative programming language used to create, modify and manage data in a relational database managed by a database management system. SQL consists of a collection of operators, statements and calculated functions.

| Types of SQL statements:                                                                 | create table ENTRY       | (                          |       |
|------------------------------------------------------------------------------------------|--------------------------|----------------------------|-------|
| • Data Definition Language (DDL):                                                        | EntryID                  | integer NOT                | NULL, |
|                                                                                          | Entry                    | char(5),                   |       |
| • CREATE creates a database object (database, table, view, user, and so on),             | origEntry                | char(5) null               | 1,    |
| • ALTER changes the object,                                                              | Area                     | char(1),                   |       |
| • DROP deletes the object;                                                               | expArea                  | char(1),                   |       |
|                                                                                          | CenterID                 | smallint                   | null, |
| Data Manipulation Language (DML):                                                        | DateDebut                | date,                      |       |
| <ul> <li><u>SELECT</u> selects data that meets the specified conditions</li> </ul>       | UpdateNo                 | smallint,                  |       |
| • INSERT adds new data.                                                                  | TransID                  | char(5)                    | null, |
| • UPDATE changes existing data,                                                          | TransDate                | char(8)                    | null, |
|                                                                                          | TransFile                | varchar(20)                | null, |
| • DELETE deletes data;                                                                   | nInstitutes              | smallint                   | null, |
| Data Control Language (DCL):                                                             | Institute1               | char(7)                    | null, |
| • GRANT grants the user (group) permissions for certain operations with the object,      | nAuthors                 | smallint                   | null, |
|                                                                                          | Author1Ini<br>Author1    | varchar(55)                | -     |
| • <i>REVOKE revokes previously issued permits</i> ,                                      | nReferences              | varchar(55)<br>smallint    | ,     |
| • DENY sets a ban that has priority over resolution;                                     | References<br>Reference1 |                            | null, |
| • Transaction Control Language (TCL):                                                    | Reference:<br>Ref1       | varchar(55)<br>varchar(32) | -     |
| • COMMIT applies the transaction,                                                        | YearRefl                 | smallint                   | null, |
|                                                                                          | Publication1             | varchar(55)                | ,     |
| • <i>ROLLBACK</i> rolls back all changes made in the context of the current transaction, | stdFileName              | varchar(40)                | ,     |
| • SAVEPOINT divides the transaction into smaller sections.                               | TypeRef1                 | char (1)                   | null, |
|                                                                                          | NsrKeyNo                 | varchar(8)                 | null, |
| alter table AUTHORS add column FullName varchar (80) null;                               | DOI                      | varchar(40)                |       |
| create index AUTHORS FullName on AUTHORS (FullName);                                     | CompilerID               | varchar(40)                | -     |
| update AUTHORS set FullName=trim(concat(trim(AuthorIni),' ',trim(Author)));              | PRIMARY KEY              | (EntryID)                  |       |
|                                                                                          | )                        |                            |       |
| SELECT * FROM ENTRY where Author1='Korzh';                                               |                          |                            |       |

SELECI wnere Autnori='Korzn

SELECT DISTINCT Reference1, nAuthors FROM ENTRY where Author1='Korzh' and YearRef1>=1977 order by nAuthors;

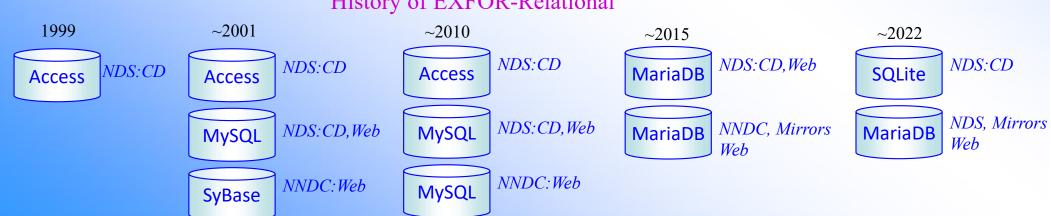
| select distinct SUBENT.Entry,SUBENT | I.DateCompil,ENTRY.Reference1,KEYWORD.FreeText as                                                                            | Title   |                                                                                                                             |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------|
| from SUBENT inner join ENTRY on EN  | NTRY.EntryID=SUBENT.EntryID                                                                                                  |         |                                                                                                                             |
|                                     | ryID=SUBENT.EntryID<br>nd ((SUBENT.Entry like '2%') or (SUBENT.Entry like<br>inary upper(KEYWORD.FreeText)<>KEYWORD.FreeText | ¥'0%')) | <i>MySQL.</i><br><i>Search Entries with UPPER case</i><br><i>Title from Area 2 compiled</i><br><i>between 1990 and 1999</i> |

### **Project "EXFOR Relational"**

#### 1. Planned features of the system (2000)

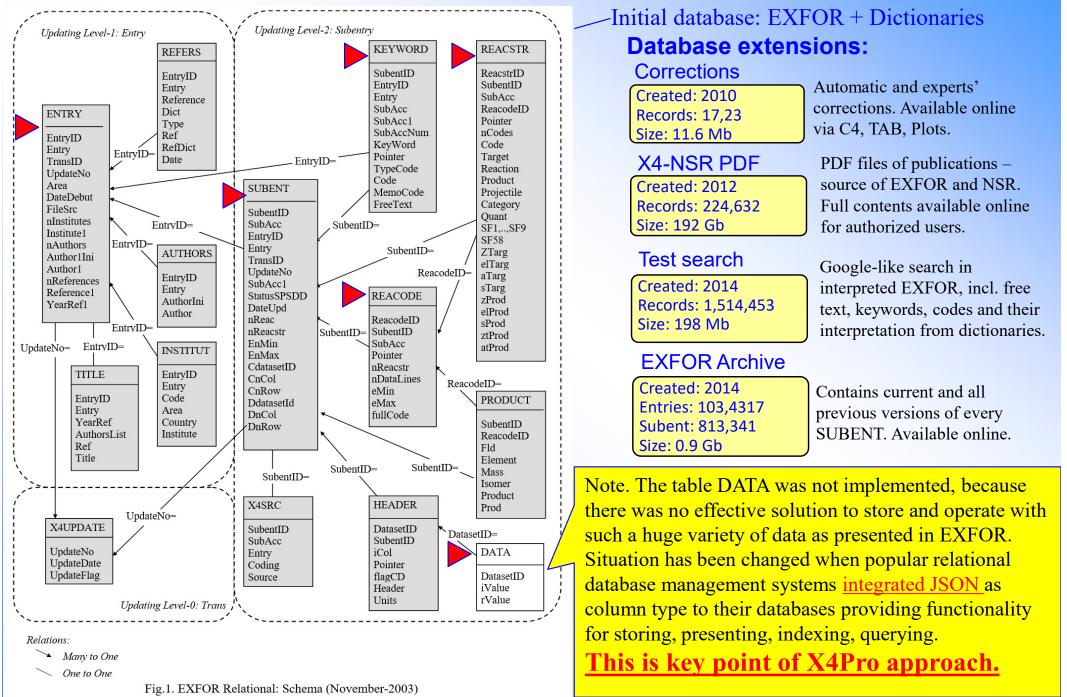
- 1. All information in EXFOR should be available for search in any order (direct access)
- 2. Execution time of typical request should be within 2-3 sec
- 3. The system should be really platform independent (simplest: no stored procedures, no foreign keys, etc.)
- 4. The system should guarantee integrity of original data
  - o usage of BLOBs to store SUBENT in their original form
  - o convincing other centers to switch to central database maintenance
- 5. Whole system (database and programs) should fit to CD-ROM=640Mb (storage of zipped BLOBs)
- 6. The database should be easy deployed to mirror-sites (MyISAM, MDB) without maintenance system
- 7. Extendable set of tables and columns in the tables
- 8. System should allow usage of programs on several languages (including legacy codes) and extensions
- 9. Modularity and robustness of software, re-use of modules
- 10. Interactive multiplatform plotting

#### 2. Allowed to achieve


- 1. Merging EXFOR libraries to common "EXFOR Master file" (2002-2005)
- 2. Global EXFOR maintenance system in the IAEA-NDS (since 2005): TRANS files and fixed Master file for every update
- 3. Optimising of efforts in NRDC
- 4. Common (robust) EXFOR Web retrieval system: IAEA-NDS, NNDC (USA), India, China, Russia
- 5. Integrating with EXFOR compilation control system

#### 3. Not foreseeing extensions (2007-2022)

- 1. EXFOR-NSR PDF database (with authorised Web access)
- 2. Connection and import from NSR
- 3. Export to R33 (IBANDL)
- 4. EXFOR data re-normalization/corection system
- 5. Construction covariance matrices using uncertainties
- 6. Uploading system for remote data checking and processing (for EXFOR compilers)
- 7. Web system without Internet
- 8. X4Lite (EXFOR-Relational on SQLite) and X4Pro

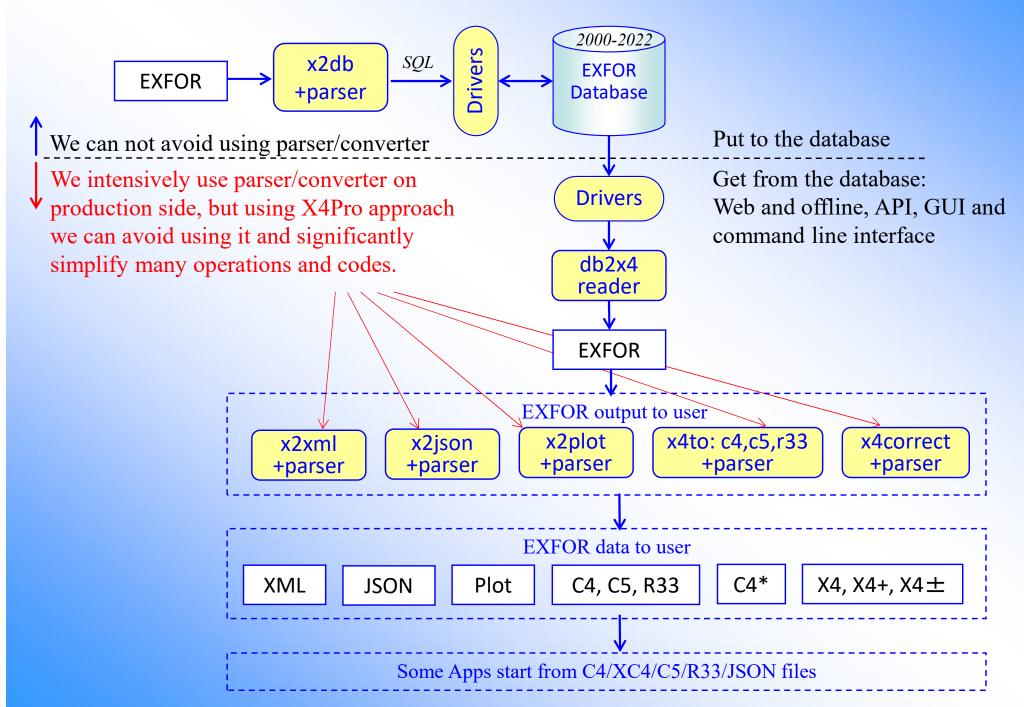

## **Current status of EXFOR-Relational**

- Relational EXFOR database: common between NDS-NNDC
  - schema based on "EXFOR-Access CD-ROM": discussed and initially agreed between NDS, a) NNDC, CNPD on NNDC-2000 Workshop "Nuclear database: migration to relational database and Java technology"
  - existing and maintained at NDS and NNDC from 2000 to 2021: *b*)
  - OS: Windows, Linux, MacOS c)
  - d)DBMS: MS-Access (2000), MySQL (2001), SyBase (2005), SQLite (2020)
  - Web: NDS, NNDC, 3 Mirrors (India, China, Russia) *e*)
  - *f*) deployed to Mirror-sites and on CD-ROM to individual users
- EXFOR-CINDA Web Retrieval system: 2. official NRDC Web retrieval system since 2008
- Current versions of EXFOR output to C4, C5, JSON, XML: 3.
  - easier to use in users' applications than EXFOR *a*)
  - *b*) have fixed format, require converter



#### History of EXFOR-Relational

### EXFOR relational database: structure and content (IAEA-NDS, NNDC, 2000-2022)




### EXFOR database schema as of 2004, SyBase

|                                |                             | May 2004                               |                           |                 |               |                          | R                  | EACSTR                     |                                 |
|--------------------------------|-----------------------------|----------------------------------------|---------------------------|-----------------|---------------|--------------------------|--------------------|----------------------------|---------------------------------|
| X4UPDATE                       | V.Zerkin                    | , IAEA-NDS                             |                           |                 | WORD          |                          | ReacstrID          | char(10)                   | colo                            |
| UpdateNo int <pk></pk>         |                             |                                        |                           |                 |               | <mark>∶pk&gt;</mark>     | SubentID           | int                        | <u><pk></pk></u><br><fk2></fk2> |
| UpdateDate datetime            |                             |                                        |                           | SubentID i      | nt <          | : <mark>fk&gt;</mark>    | SubAcc             |                            | <1KZ>                           |
| UpdateFlag char(1)             |                             |                                        |                           | EntryID i       | nt            |                          | ReacodelD          | char(8)                    | <fk1></fk1>                     |
|                                |                             |                                        |                           |                 | har(5)        |                          | Pointer            | char(9)                    |                                 |
|                                |                             |                                        |                           | SubAcc c        | har(8)        |                          |                    | char(1)                    |                                 |
| UpdateNo ≠ UpdateNo            | UpdateNo = UpdateNo         | SUDENT                                 |                           | SubAcc1 c       | har(8)        |                          | nCodes<br>Code     | int                        |                                 |
|                                |                             | SUBENT                                 |                           | SubAccNum i     | nt            |                          |                    | varchar(64)                |                                 |
| X4TRANS UpdateNo =             | UpdateNo                    | <u>SubentID</u> int                    | <pk></pk>                 | KeyWord v       | archar(12)    |                          | Target<br>Reaction | varchar(10)                |                                 |
| UpdateNo int <fk></fk>         |                             | SubAcc char(8)                         |                           |                 | har(1)        |                          | Product            | varchar(16)<br>varchar(16) |                                 |
| nEntries int                   |                             | EntryID int                            | <fk1></fk1>               |                 | nt            |                          | Projectile         | varchar(10)                |                                 |
| nSubentries int                |                             | Entry char(5)                          |                           |                 | archar(255)   |                          | Category           | varchar(10)                |                                 |
| nDatalines int                 | EntryID = EntryID           | SubAcc1 char(8)                        |                           |                 | archar(511)   |                          | Quant              | varchar(16)                |                                 |
| TransID char(5)                |                             | SPSDD char(1)                          |                           | FreeText v      | archar(511)   |                          | SF1                | varchar(16)                |                                 |
| TransDate char(8)              | ENTRY                       | DateUpd datetime                       |                           |                 |               |                          | SF2                | varchar(10)                |                                 |
| TransFile varchar(16)          | EntryID int <pk></pk>       | DateCompil datetime                    |                           |                 |               |                          | SF3                | varchar(12)                |                                 |
|                                | Entry char(5)               | UpdateNo int                           | <fk2>Suben</fk2>          | tID = SubentID  |               |                          | SF4                | varchar(12)                |                                 |
|                                | Area char(1)                | TransID char(5)                        |                           | Sub             | entID = Sube  | ntID                     | SF4<br>SF5         | varchar(20)                |                                 |
|                                | DateDebut datetime          | TransDate char(8)                      |                           |                 |               | ReacodeID = Reacod       |                    | varchar(12)                |                                 |
|                                | UpdateNo int <fk></fk>      | TransFile varchar(16)                  |                           |                 |               | Reacoueld - Reacou       | SF7                | varchar(24)                |                                 |
|                                | TransID char(5)             | nReac int<br>nReacstr int              |                           |                 |               |                          | SF8                | varchar(16)                |                                 |
|                                | TransDate char(8)           |                                        |                           |                 | DE            | ACODE                    | SF9                | varchar(8)                 |                                 |
|                                | TransFile varchar(16)       |                                        |                           |                 |               |                          | SF58               | varchar(30)                |                                 |
|                                | nInstitutes int             | EnMax varchar(12)<br>CDatasetID int    | <b>,</b>                  |                 |               | <u>char(9)</u> <pk></pk> | zIncident          | int                        |                                 |
|                                | Institute1 char(7)          | ChCol int                              |                           |                 |               | int <fk></fk>            | zTarg              | int                        |                                 |
|                                | nAuthors int                | CnRow int                              | Sube                      | ntID = SubentID |               | char(8)                  | elTarg             | varchar(9)                 |                                 |
| Reference1 varchar(32)         | Author1Ini varchar(12)      | DDatasetID int                         |                           |                 | Pointer       | char(1)                  | aTarg              | int                        |                                 |
| AuthorsList varchar(1023)      | Author1 varchar(30)         | DDatasettD int                         |                           |                 |               | int                      | sTarg              | varchar(2)                 |                                 |
| Title varchar(511)             | nReferences int             | DnRow int                              |                           |                 |               | int                      | ztTarg             | varchar(3)                 |                                 |
|                                | Reference1 varchar(32)      |                                        |                           |                 |               | real                     | atTarg             | varchar(3)                 |                                 |
|                                | Ref1 varchar(32)            |                                        |                           |                 |               | real                     | zProd              | int                        |                                 |
|                                | YearRef1 int                |                                        |                           | <               | U             | int                      | elProd             | varchar(10)                |                                 |
|                                |                             |                                        | $\backslash$              |                 | fullCode      | int                      | aProd              | int                        |                                 |
| INSTITUT                       |                             |                                        | $\langle \rangle$         |                 | luitcode      | varchar(255)             | sProd              | varchar(8)                 |                                 |
| ID numeric IDEntryID = EntryID | EntryID = EntryID           |                                        | ID = SubentID             |                 |               |                          | ztProd             | varchar(3)                 |                                 |
| EntryID int <fk></fk>          | Endyib                      | SubentID = SubentID                    |                           |                 |               |                          | atProd             | varchar(3)                 |                                 |
| Entry char(5)                  |                             |                                        |                           |                 |               | ReacodeID = Rea          | acodelD            |                            |                                 |
| Code char(7) EntryID =         |                             |                                        |                           | Sube            | entID = Suben | tID                      |                    |                            |                                 |
| Area char(1)                   | REFERS                      |                                        |                           |                 |               | $\backslash$             |                    |                            |                                 |
| Country varchar(3)             | ID <u>numeric <pk></pk></u> |                                        |                           | HEADER          |               | ∕ í                      | PR                 | ODUCT                      |                                 |
| Institute varchar(3)           | EntryID int <fk></fk>       |                                        | <u>ID</u>                 | numeric         | <pk></pk>     |                          |                    |                            |                                 |
|                                | Entry char(5)               | X4SRC                                  | Datase                    | etID int        |               |                          |                    |                            | <fk1></fk1>                     |
| AUTHORS                        | Reference varchar(40)       | <u>SubentID int <pk,< u=""></pk,<></u> | <mark>fk&gt;</mark> Suben | tID int         | <fk></fk>     |                          | ReacodeID<br>Fld   | · · ·                      | <fk2></fk2>                     |
| <u>ID numeric <pk></pk></u>    |                             | SubAcc char(8)                         | iCol                      | int             |               |                          |                    | char(1)                    |                                 |
| EntryID int <fk></fk>          |                             | Entry char(5)                          | Pointe                    | · · · ·         |               |                          |                    | int<br>int                 |                                 |
| Entry char(5)                  | Ref varchar(24)             | SubAccNum int                          | flagCD                    |                 |               |                          |                    | varchar(8)                 |                                 |
| AuthorIni varchar(16)          | RefDic varchar(24)          | Coding int                             | Heade                     |                 |               |                          |                    | varchar(0)                 |                                 |
| Author varchar(40)             | DateRef datetime            | Src image                              | Units                     | varchar(12)     |               |                          |                    | varchar(17)                |                                 |
|                                |                             |                                        |                           |                 |               |                          |                    |                            |                                 |

### **EXFOR relational system**

The system is functioning for public at the IAEA-NDS and NNDC since 2004



# Part II.

# X4Pro database: concept and implementation

### X4Pro concept

#### What is wrong now?

EXFOR relational database present EXFOR meta-data in tables accessible for SQL commands, but data points (numerical data) are stored only as part of original EXFOR SUBENT in BLOB. In order to be used, numerical data need to be extracted from BLOB to EXFOR file, parsed and converted to universal form. Thus, our current EXFOR relational database forces us always to work with original EXFOR and requires additional software on production stage: EXFOR reader, parser, converter.

Presenting EXFOR data in C4, C5, R33, JSON, XML forms usually works well for specific tasks and users' communities but has problems trying to present whole EXFOR library. For example, structure of C4/C5 work well for evaluators because use ENDF compatible designation (MF:MT) but have limited number of independent variables and finally cover from 60 to 80% of the entire library.

Another task is to provide needed information and recipe for automatic renormalization of EXFOR data using new cross section standards and decay data and for data corrections shared by experts.

#### Dream

It would be nice to store and directly access all data in standard relational form without intermediate storage and operations, but there are some problems with rational representation of EXFOR data in relational form associated with a large variety of the data and volume (now EXFOR has more than 500 types of data headers and 18 million data points).

#### **Solution**

Storage of all data points in modern relational database supporting JSON data type and providing direct SQL access could solve all these problems. It can also (a) solve problem of accessing the data from different programming languages, and (b) avoid problems with software distribution, installation, licences, etc.

# X4Pro concept

- 1. Continue relational model. *Traditional SQL database storing data in tables. Continues and extends "EXFOR-Relational" project, 2000-2022.*
- 2. Fully relational. All meta-data and numerical values presented in tables and accessible by SQL commands.
- 3. Multi-model. Table cells contain single values and also many values as semi-structured data in JSON. Note: "JSON" data type supported by modern relational DBMS via functions extending SQL commands (since ~2015).
- 4. Universal. Flexible SQL search, filtering, sorting allows to produce any data hierarchy on the fly; data in original and computational forms; includes <u>monitor and decay data to be used for automatic renormalization</u>, instructions for data modifications from experts. Implemented in MariaDB and SQLite, tested on Windows, Linux, MacOS. Can be used as starting point for other projects: from students with homework to professionals with advanced tasks.
- **5. Powerful.** *Oriented to programming users: they can do much more then using Web and GUI interfaces with fixed functionality.*
- 6. Rational. No need EXFOR parsers for new languages. Can be used by programs on any language supporting SQL: Python, Java, JavaScript, Fortran, Perl, etc.

# X4Pro offers

- 1. EXFOR data without EXFOR format.
  - All data points, data for corrections, meta-data are provided in the database.
  - No need in original EXFOR for end-users.
  - No need in new EXFOR parsers/converters for new programming languages.
  - No need in intermediate files and formats with fixed structure (C5, XML, JSON).

• Simple for programming on any language supporting SQL for data search, filtering, sorting, retrieval, renormalization.

2. Local EXFOR database for programmatic access.

Providing data for various tasks required automatization, "non-so-general" to be implemented under Web/GUI interface proposed by data centres; packages required access to all experimental data at once; evaluation software required data corrections

#### 3. Examples.

24 examples of Fortran and Python programs provided with source code (MIT licence) and "run-me" scripts retrieving and plotting data from local X4Pro and remote ENDF database via Web-API interface.

#### 4. X5-JSON.

Comprehensive EXFOR data presentation in JSON form. Can be used for creating another systems built on JSON objects (e.g. NoSQL databases). Example of building CouchDB is provided.

### **EXFOR Relational data formats overview**

#### **X4+** EXFOR-Interpreted; **X4+** Interactive Tree

- 1. Presents EXFOR as it is + extra lines with information from Dictionaries, NSR, etc.
- 2. Numbers in traditional style

EVEOD file

3. No limit on the number of values per line

#### XML

- 1. Repeats structure of EXFOR file using nested <elements>; includes information from EXFOR Dictionaries explaining codes
- 2. Numbers are presented in traditional style (no more E-less Fortran format for numbers)

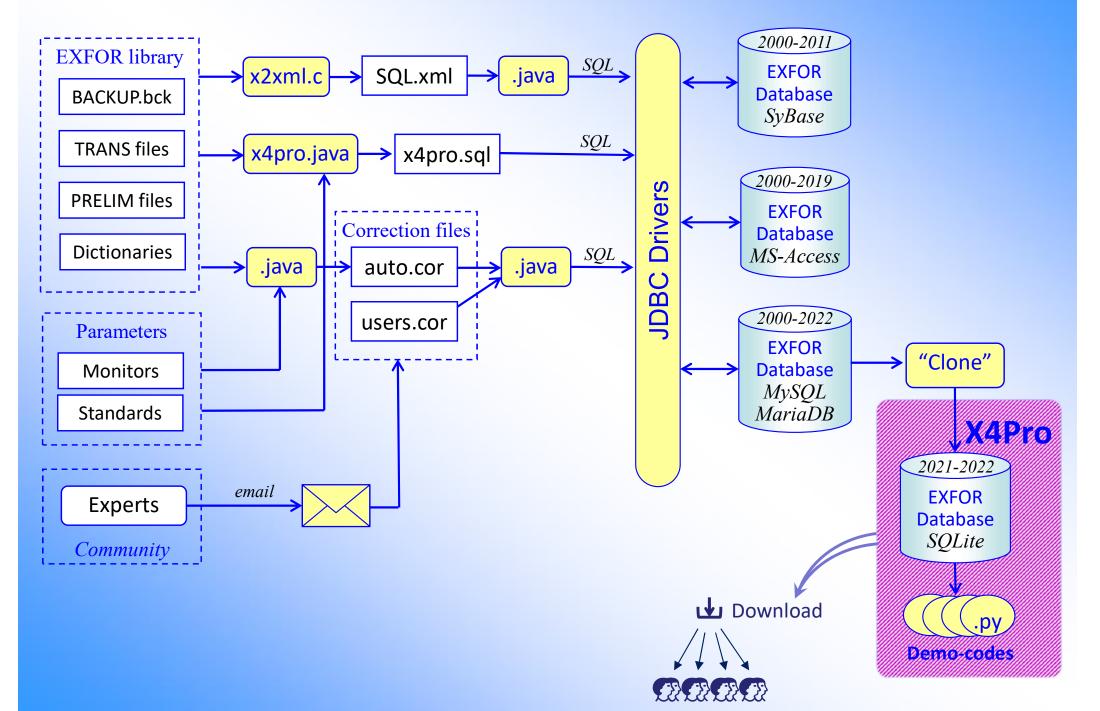
#### Concept of Dataset //C5, JSON, JSON\_FY, Std\_out, X5Z

C5 ISON Std V5

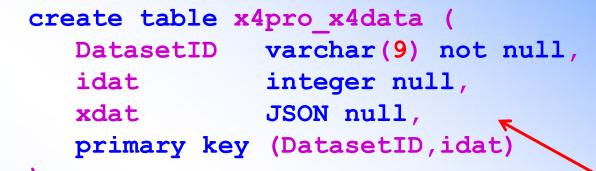
- 1. File contains Datasets; no text blocks for ENTRY, SUBENT, BIB; no Pointers
- 2. Dataset is identified by DatasetID:="SUBENT+Pointer"; includes all information related to one reaction: Reaction-code, selected/all Keywords from SUBENT-1 and current SUBENT, Data-section and Legend
- 3. Data-section: all data from DATA and COMMON from SUBENT-1 and current SUBENT
- 4. Data are presented as table function f(x1, x2, ..., par), where variables are sorted according to Dictionary-213 and Dict.24
- 5. Legend and Keywords contain EXFOR codes and their interpretation (e.g. basic-units and conversion factors)
- 6. C5, JSON\_FY and X5Z contain computational data values; StdOut, XML and JSON (as of now) only original values

| EAFOR file               | ,  | C   | <b>5</b> , <b>JSON</b> , <b>Sta</b> , <i>P</i> | 13         |                     |              |      |            |       |         |         |
|--------------------------|----|-----|------------------------------------------------|------------|---------------------|--------------|------|------------|-------|---------|---------|
| ENTRY<br>SUBENT 001      |    |     | DATASET {                                      |            |                     |              |      |            |       |         |         |
| BIB                      |    |     | → KEYWORDS                                     | Comparis   | son of formats: s   | ummary       |      |            |       |         |         |
| KEYWORDS -               | ΗГ |     | → REACTION                                     | Nucl. data | Numbers' format     | Sequence     | Meta | Interpret. | Orig. | Comput. | Renorm. |
| ENDBIB                   |    |     | $\rightarrow$ DATA<br>$\rightarrow$ LEGEND     | format     | /Language           | (main block) | data | from Dict. | data  | data    | data    |
| COMMON                   |    | -   | LEGEND                                         | EXFOR      | Fixed-len, E-less   | ENTRY        | yes  | no         | yes   | no      | no      |
| SUBENT                   |    |     | , DATASET { }                                  | C4         | Fixed-fmt lines     | SUBENT       | no   | no         | no    | yes     | no      |
| BIB                      |    |     | , DATASET { }                                  | C5         | Fixed-fmt lines     | Datasets     | yes  | yes        | no    | yes     | yes     |
| KEYWORDS -<br>REACTION - |    |     | ,2()                                           | X4+        | Flex. fields /HTML  | ENTRY        | yes  | yes        | yes   | no      | no      |
| ENDBIB                   |    |     |                                                | XML        | Flex. fields /XML   | ENTRY        | yes  | yes        | yes   | no      | no      |
| COMMON —                 |    | -   |                                                | JSON       | Flex. fields /JSON  | Datasets     | yes  | yes        | yes   | no      | no      |
| DATA                     |    | J . |                                                | JSON_FY    | Flex. fields / JSON | Datasets     | yes  | yes        | no    | yes     | no      |
| ENTRY                    |    |     |                                                | JSON_X4    | Flex. fields / JSON | Datasets     | yes  | yes        | yes   | yes     | no      |
|                          |    |     |                                                | X5Z.JSON   | Flex. fields / JSON | Datasets     | yes  | yes        | yes   | yes     | yes     |
| ENTRY                    |    |     |                                                |            |                     |              |      |            |       |         |         |

## **X4Pro implementation**


Translation from MariaDB to SQLite is done automatically by a bash script (Dec.2022) working ~4 hours and producing a single 8Gb file x4sqlite1.db with 10 new tables:

| 1. x  | x4pro_ds        | Datasets                                                                                             |
|-------|-----------------|------------------------------------------------------------------------------------------------------|
| 2. x  | x4pro_hdr       | Headers                                                                                              |
| 3. x  | x4pro_kw        | Keywords                                                                                             |
| 4. x  | x4pro_x4data    | EXFOR data points (json)                                                                             |
| 5. x  | x4pro_x4cdat    | EXFOR data points in basic units (json)                                                              |
| 6. x  | 4pro_c5dat      | Computational data points (real)<br>+ total sys/stat/partial errors<br>+ old and new monitor CS data |
| 7. x  | 4pro_autocorr   | Decay data for product and monitor                                                                   |
| 8. x  | 4pro_expertcorr | Experts' corrections (Python)                                                                        |
| 9. x  | x4pro_x4z       | Subentries in X4Z.JSON                                                                               |
| 10. x | 4pro_x5z        | Datasets in X5Z.JSON                                                                                 |


| Table Name 🔺     | Engine | Rows     | Data length | Index length | Update time         |
|------------------|--------|----------|-------------|--------------|---------------------|
| x4pro_autocorr   | MyISAM | 10163    | 6.1 MB      | 160 kB       | 2022-12-06 15:21:11 |
| x4pro_c5dat      | MyISAM | 11031754 | 736 MB      | 239.9 MB     | 2022-12-06 15:21:11 |
| x4pro_ds         | MyISAM | 114849   | 19.6 MB     | 1.7 MB       | 2022-12-06 15:21:11 |
| x4pro_expertcorr | MyISAM | 3        | 3.1 kB      | 2 kB         | 2022-12-06 14:20:35 |
| 🛄 x4pro_hdr      | MyISAM | 967685   | 81.5 MB     | 18.9 MB      | 2022-12-06 15:21:11 |
| x4pro_kw         | MyISAM | 736298   | 150.9 MB    | 13 MB        | 2022-12-06 15:21:11 |
| x4pro_x4cdat     | MyISAM | 11031754 | 1.1 GB      | 370.2 MB     | 2022-12-06 15:21:11 |
| x4pro_x4data     | MyISAM | 11031754 | 1.1 GB      | 370 MB       | 2022-12-06 15:21:11 |
| x4pro_x4z        | MyISAM | 131537   | 0.8 GB      | 1.8 MB       | 2022-12-06 16:45:52 |
| x4pro_x5z        | MyISAM | 114849   | 1.1 GB      | 2.8 MB       | 2022-12-06 16:45:52 |

### Maintenance of EXFOR relational. X4Pro production.

The system is functioning at the IAEA-NDS and NNDC since 2004







"semi-structured" data: type JSON

P Search

First

Last

#### Using MySQL Query Browser

|                  | vser - Cor<br>ery Scri | nection: / x4mysql5nds<br>pt <u>T</u> ools <u>W</u> indow <u>M</u> ySQL Enterprise <u>H</u> elp |                             |                           | >          |
|------------------|------------------------|-------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|------------|
| back Next Refree | wher                   | CT * FRON x4pro_x4data<br>e DatasetID='A1495003'                                                |                             | Execute + Stop            | E          |
| 🕈 🕖 Resultset 1  |                        |                                                                                                 |                             |                           |            |
| 📍 DatasetID      | 📍 idat                 | xdat                                                                                            |                             |                           |            |
| A1495003         | 0                      | {"DATA-CM":0.7892,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                           | 1":0.8989,"EN-ERR-DIG":0.00 | 4,"E-LVL":2.9,"ANG":150.0 | ۹. F       |
| A1495003         | 1                      | {"DATA-CM":0.9892,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                           | 1":0.9053,"EN-ERR-DIG":0.00 | 4,"E-LVL":2.9,"ANG":0.0e+ | B & R      |
| A1495003         | 2                      | {"DATA-CM":0.8881,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                           | 1":0.9216,"EN-ERR-DIG":0.00 | 4,"E-LVL":2.9,"ANG":150.0 | ۹ <b>۹</b> |
| A1495003         | 3                      | {"DATA-CM":1.139,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                            | ":0.9354,"EN-ERR-DIG":0.004 | "E-LVL":2.9,"ANG":0.0e+0  | RP (       |
| A1495003         | 4                      | {"DATA-CM":1.036,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                            | ":0.9518,"EN-ERR-DIG":0.004 | ,"E-LVL":2.9,"ANG":150.0} | 9.17       |
| A1495003         | 5                      | {"DATA-CM":1.135,"DATA-ERR":20.0,"ERR-DIG":0.012,"EN                                            | ":0.9554."EN-ERR-DIG":0.004 | "E-LVL":2.9."ANG":150.0}  | 9.17       |

191 rows fetched in 0.1126s (0.1065s)

## **Querying data from inside JSON**

| Nota States                                    | owser for SQLite<br><u>V</u> iew <u>T</u> ools                              | 1000 000 000 000 000 000 000 000 000 00               | 2                                           | (example: u                                                  | ising SQI   | Lite D                                | <b>B</b> Brow  | vser)                                                                                                                                                        | (1 <del></del> )/                                        |                                        |
|------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------|---------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|
| Rew D                                          | atabase 🕠                                                                   | 👌 Open Databas                                        | se 🗸 🕒 Write                                | Changes 🕼 Revert Char                                        | nges 🎯 Open | Project                               | 😭 Save Project | 😹 Attach Database                                                                                                                                            | 💢 Close Data                                             | ibase                                  |
| Databa                                         | se Structure                                                                | Browse Data                                           | Edit Pragmas                                | Execute SQL                                                  | 10          |                                       |                | Edit Database Cell                                                                                                                                           |                                                          | đ ×                                    |
| SQ                                             | 1 1 2                                                                       | ► M                                                   |                                             | £ <b>2</b> 2 ≣                                               |             |                                       |                | Mode: Text ~                                                                                                                                                 |                                                          | i 🖹 , »                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                | ,json_e<br>,json_e<br>from x4                                               | extract<br>extract<br>pro_x4<br>Datase                | (xdat,'\$.<br>(xdat,'\$.                    | at,'\$.EN') as<br>ANG') as Ang<br>DATA-CM') as (<br>495003') | data        | ot                                    |                | 1 0.8989<br>Type of data currently in ce<br>Numeric<br>6 characters                                                                                          | ll: Text /                                               | Apply                                  |
| 1                                              | 0.8989<br>0.9216                                                            | Ang<br>150.0<br>150.0<br>150.0                        | data<br>0.7892<br>0.8881<br>1.036           |                                                              | ¥           | Columns X<br>Row<br>En<br>Ang<br>data | Y1             |                                                                                                                                                              | is Type<br>Imeric<br>Imeric<br>Imeric<br>Imeric          |                                        |
| 4                                              | 0.9554                                                                      | 150.0                                                 | 1.135                                       |                                                              | -           | 5 -                                   | 4              |                                                                                                                                                              |                                                          | 00000 0000 000000000000000000000000000 |
| Result<br>At lin<br>select<br>,json_<br>from x | json_extract<br>extract(xdat<br>extract(xdat<br>4pro_x4data<br>(DatasetID = | turned in<br>t(xdat,'\$.<br>,'\$.ANG')<br>,'\$.DATA-C | 14ms<br>EN') as En<br>as Ang<br>M') as data |                                                              |             | 4<br>2<br>1<br>1<br>1                 | ÷ ÷ ÷ ż        | а <sub>са</sub> <sup>а</sup> ас <sup>дар</sup> ас <sup>6</sup> ас <sup>6</sup> ас <sup>6</sup> ас <sup>6</sup> ас <sup>6</sup> ас <sup>6</sup> ас<br>3<br>En | a <sub>ded</sub> e <sup>e e</sup> <sup>1</sup> 960 €<br> | <u> </u>                               |

# **Simplify SQL commands using Views**

select x4data cdat.DatasetID,REACODE.fullCode **Using Views** , ENTRY.YearRefl, ENTRY.AuthorlIni, ENTRY.Authorl ,x4data cdat.idat as iPoint ,x4data cdat.y as Sig Using Tables only select \* from dae1 ,x4data cdat.dy as dSig where Target like 'F-19' ,x4data cdat.x1 as En and Reaction like 'n,x' ,x4data cdat.dx1 as dEn and outParticles like '[n]' ,x4data cdat.x2 as Eout and  $(An \geq 25)$  and  $(An \leq 45)$ ,x4data cdat.dx2 as dEout order by fullCode, ,x4data cdat.x3 YearRef1 desc, DatasetID, as An En, An, Eout, iPoint ,x4data cdat.dx3 as dAn from x4data cdat inner join REACODE on REACODE.ReacodeID=x4data cdat.DatasetID inner join REACSTR on REACSTR.ReacodeID=REACODE.ReacodeID Example: SIG inner join SUBENT on REACODE.SubentID=SUBENT.SubentID inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID where (REACSTR.Target like 'F-19') select \* from sig1 and (REACSTR.Reaction like 'n,x') and (REACSTR.Quant like 'DAE') where Target='Mn-55' and (REACODE.outParticles like '[n]') and MT=107and (REACSTR.SF8='') and ((REACSTR.SF9='') or (REACSTR.SF9='EXP')) and (REACODE.nReacstr=1) and  $(An \geq 25)$  and  $(An \leq 45)$ select \* from sig1 order by REACODE.fullCode, where Target='Mn-55' ENTRY.YearRef1 desc,x4data cdat.DatasetID and Reaction like 'n,a' , En, An, Eout, x4data cdat.idat

# View "sig1"

CREATE VIEW sig1 AS select x4pro c5dat.DatasetID ,x4pro c5dat.idat as iPoint ,REACODE.fullCode ,REACODE.Pointer,ENTRY.Entry,REACODE.SubAcc as Subent , ENTRY.YearRefl, ENTRY.nAuthors, ENTRY.AuthorlIni, ENTRY.Authorl ,REACSTR.Target, REACSTR.Reaction ,lower(REACSTR.Projectile) as Projectile , REACSTR.sProd, REACSTR.sTarg ,REACODE.zaTarget1,REACODE.zaIncident1 , REACODE.outParticles, REACODE.MF, REACODE.MT ,x4pro c5dat.x1 as En ,x4pro c5dat.dx1 as dEn ,x4pro c5dat.y as Sig ,x4pro c5dat.dy as dSig from x4pro c5dat inner join REACODE on REACODE.ReacodeID=x4pro c5dat.DatasetID inner join REACSTR ON REACSTR.ReacodeID=REACODE.ReacodeID inner join SUBENT on REACODE.SubentID=SUBENT.SubentID inner join ENTRY on ENTRY.EntryID=SUBENT.EntryID where (REACSTR.SF58 like ',SIG') and (REACSTR.SF8='') and ((REACSTR.SF9='') or (REACSTR.SF9='EXP')) and (REACODE.nReacstr=1) order by REACODE.fullCode,ENTRY.YearRef1 desc,x4pro c5dat.DatasetID ,En,x4pro c5dat.idat

### Automatic renormalization of EXFOR data (part of EXFOR data correction system, 2010-2022)

#### 1. Renormalization using old and new monitor cross sections

- m0, dm0: "old monitor" monitor-reaction cross sections used by authors Source of data:
  - 1) DATA, COMMON sections: MONIT, MONIN-ERR (EN, EN-NRM)
  - 2) MONIT-REF pointing to another EXFOR data
  - 3) MONIT-REF pointing to ENDF library (e.g., ENDF/B-5 Standards sub-library)
  - 4) MONIT-REF pointing to "a publication" //--> Archive of old Monitors
- m1, dm1: "new monitor" monitor-reaction cross sections "recommended" now

Source of data:

- 1) IAEA Standards-2017
- 2) IRDFF-II (2019)

#### 2. Renormalization of EXFOR data using newer Decay data

- 1) "AR" 511 keV annihilation decay data (intensity)
- 2) "DR" gamma line intensity
- EXFOR keywords: DECAY-DATA and DECAY-MON
- Data renormalized to the current ENSDF data thanks to M.Verpelli (IAEA-NDS)
- 3. Data types available for automatic renormalization

"SIG", "DA", "DE", "DAE", "FY".

Total number of Datasets where auto-renormalization: 17,395 (~10% of whole EXFOR)

# Table x4pro\_c5dat

| DatasetID     | varchar(9) not null                              |       |
|---------------|--------------------------------------------------|-------|
| ,idat         | integer null                                     |       |
| , Y           | real null measured data measured                 |       |
| ,dy           | real null data                                   |       |
| ,x1           | real null ind. variable 1                        |       |
| ,dx1          | real null                                        |       |
| , x2          | real null ind. variable 2                        |       |
| ,dx2          | real null                                        |       |
| , x3          | real null ind. variable 3 independent            |       |
| ,dx3          | real null (variables                             |       |
| , x4          | real null ind. variable 4                        |       |
| ,dx4          | real null                                        |       |
| ,x5           | real null ind. variable 5                        |       |
| ,dx5          | real null                                        |       |
| ,dyerr        | real null given data error generalized           |       |
| ,dysys        | real null total systematic error > partial       |       |
| ,dystat       | real null total uncorrelated error uncertainties |       |
| ,dyprt        | real null total part.corr.error                  |       |
| ,EmO          | real null energy of monitor point                |       |
| ,mO           | real null old monitor CS                         |       |
| , dm0         | data for                                         |       |
| , m1          | real null new monitor CS (renormalization        | ation |
| , dml         | real null                                        |       |
| ,Fcm0         | real null correction factor                      | 0     |
| , cdat        | json null additional: ilevel, product,} extra i  | nto   |
| , PRIMARY KEY | (DatasetID, idat)                                |       |

### Now on **EXFOR-Web**:

| #[0]#Monito                                                                                           |                                                                                                                       |                                                                                                        | 0.7.0                                            |                                                         |                                                |                   |                                   |                                            |                              |      |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------|-----------------------------------|--------------------------------------------|------------------------------|------|
| #[0]#Reaction:                                                                                        |                                                                                                                       |                                                                                                        |                                                  |                                                         |                                                |                   |                                   |                                            |                              |      |
| #[0]#Monitor:                                                                                         |                                                                                                                       |                                                                                                        |                                                  |                                                         |                                                |                   |                                   |                                            |                              |      |
| <pre>#m0: {20377002 m0: exfor\$2037 m1: recom\$fe56 dy=dy/y; y=y/m0*m1; dy=(dy**2-dm0* dy=dy*y;</pre> | 7002_fe56np;<br>np;                                                                                                   | #[0]#<br>#[0]#<br>#[0]#<br>#[0]#<br>0.5; #[0]#                                                         | old monit<br>new monit<br>to rel. u<br>renormali | tor(ener<br>tor(ener<br>uncertai<br>izing CS<br>monitor | rgy) in EX<br>rgy)<br>Inties<br>S<br>uncertain | LFOR              | Curre<br>1.<br>2.<br>3.           | EXFOR Par<br>Interpreter (<br>Archive of 1 | (C)                          |      |
| MySQL Query Browser - C                                                                               | Connection: / x4r                                                                                                     | nysql5nds                                                                                              |                                                  |                                                         | 4pro                                           | _c5d              | at                                |                                            | - 0                          | ×    |
| <u>E</u> dit View Query S                                                                             | Connection: / x4r<br>cript <u>T</u> ools <u>W</u>                                                                     | nysql5nds<br>indow <u>M</u> ySQ                                                                        | L Enterprise                                     | <u>H</u> elp                                            | _                                              | _c5d              | at                                |                                            | - 0                          | ×    |
| Edit View Query S                                                                                     | Connection: /x4r<br>cript <u>T</u> ools <u>W</u><br>LECT Datase<br>10,m0,dm0,m1<br>CON x4pro_c5                       | nysql5n ds<br>in dow <u>M</u> ySQ<br>tID,idat,y<br>dm 1,Fcm 0<br>dat                                   | L Enterprise<br>, dy, x1, d:                     | <u>H</u> elp                                            | _                                              | _c5d              | at                                | Exe                                        | - D                          | ×    |
| Edit View Query S                                                                                     | Connection:/x4r<br>cript <u>T</u> ools <u>W</u><br>LECT Datase<br>10,m0,dm0,m1                                        | nysql5n ds<br>in dow <u>M</u> ySQ<br>tID,idat,y<br>dm 1,Fcm 0<br>dat                                   | L Enterprise<br>, dy, x1, d:                     | <u>H</u> elp                                            | _                                              | New               | r: data for                       | renormalization for the                    | ation are                    | ×    |
| Edit View Query S                                                                                     | Connection: /x4r<br>cript <u>T</u> ools <u>W</u><br>LECT Datase<br>10,m0,dm0,m1<br>CON x4pro_c5                       | nysql5n ds<br>in dow <u>M</u> ySQ<br>tID,idat,y<br>dm 1,Fcm 0<br>dat                                   | L Enterprise<br>, dy, x1, d:                     | <u>H</u> elp                                            | _                                              | New               | r: data for                       | renormaliz                                 | ation are                    | E.   |
| Edit View Query S<br>Edit View Query S<br>Em<br>Refresh FR<br>wh<br>Refresh I<br>DatasetID idat       | Connection: /x4r<br>cript <u>T</u> ools <u>W</u><br>LECT Datase<br>n0,m0,dm0,m1<br>ON x4pro_c5<br>ere Dataset         | nysql5n ds<br>in dow <u>M</u> ySQ<br>tID, idat, y<br>dm1, Fcm0<br>dat<br>ID= <u>'305810</u>            | L Enterprise<br>, dy, x1, d:<br>04'              | <u>H</u> elp<br>x1,dyer                                 | C.,                                            | New<br>com        | r: data for<br>ing togethe        | renormaliz<br>er with the                  | ation are<br>database        | ×    |
| Edit View Query S<br>Edit View Query S<br>Em<br>Refresh FR<br>wh<br>PatasetID f idat<br>0581004 0     | Connection: /x4r<br>cript <u>T</u> ools <u>W</u><br>LECT Datase<br>10,m0,dm0,m1<br>ON x4pro_c5<br>ere Dataset<br>y dy | nysql5nds<br>in dow <u>M</u> ySQ<br>tID, idat, y<br>dm1, Fcm0<br>dat<br>ID= <mark>'305810</mark><br>x1 | L Enterprise<br>, dy, x1, d:<br>04'<br>dx1       | <u>H</u> elp<br>x1,dyern<br>dyenr                       | r,<br>EmO                                      | New<br>comi<br>m0 | r: data for<br>ing togethe<br>dm0 | renormalizer with the<br>m1                | ation are<br>database<br>dm1 | FcmC |

| rows fetched in 0.0072                  | 2s (0.1019 | is)    |        |          |        |        | 🖋 Edit   | 🗸 Apply Charg | pes 🗙 Discard | Changes 🖂 | First N Last | P Search |
|-----------------------------------------|------------|--------|--------|----------|--------|--------|----------|---------------|---------------|-----------|--------------|----------|
| 30581004                                | 9          | 0.0181 | 0.0024 | 17800000 | 50000  | 0.0024 | 17800000 | 0.0592387     | 0.00359677    | 0.0632639 | 0.00125757   | 1.06795  |
| 30581004                                | 8          | 0.0213 | 0.0026 | 17400000 | 100000 | 0.0026 | 17400000 | 0.0634344     | 0.00397812    | 0.0678528 | 0.00126376   | 1.06965  |
| 30581004                                | 7          | 0.0239 | 0.0026 | 16600000 | 50000  | 0.0026 | 16600000 | 0.0723261     | 0.00406087    | 0.0784956 | 0.00127819   | 1.0853   |
| 30581004                                | 6          | 0.0237 | 0.0022 | 15900000 | 100000 | 0.0022 | 15900000 | 0.0813719     | 0.00494375    | 0.0891203 | 0.00130266   | 1.09522  |
| 30581004                                | 5          | 0.0249 | 0.0018 | 15500000 | 100000 | 0.0018 | 15500000 | 0.0876595     | 0.00541351    | 0.0954231 | 0.00130102   | 1.08857  |
| 30581004                                | 4          | 0.0292 | 0.0019 | 15100000 | 100000 | 0.0019 | 15100000 | 0.0902632     | 0.00566842    | 0.101554  | 0.00126434   | 1.12509  |
| 30581004                                | 3          | 0.0277 | 0.0016 | 14500000 | 100000 | 0.0016 | 14500000 | 0.0990947     | 0.00602105    | 0.109563  | 0.00118709   | 1.10564  |
| 30581004                                | 2          | 0.0241 | 0.0015 | 13900000 | 100000 | 0.0015 | 13900000 | 0.106857      | 0.007         | 0.114767  | 0.00125861   | 1.07402  |
| 30581004                                | 1          | 0.0218 | 0.0014 | 13300000 | 50000  | 0.0014 | 13300000 | 0.112909      | 0.007         | 0.115855  | 0.00152817   | 1.02609  |
| *************************************** |            |        |        |          |        |        |          |               |               |           |              |          |

### X4Pro: data renormalization with SQL SELECT

(example: using SQLite DB Browser)

|             | OB Browser for S                      | SQLite - x4sq   | lite1.db              |            |                   |         |              |               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 <u>1</u> 1 |                                        |         |                   |     |
|-------------|---------------------------------------|-----------------|-----------------------|------------|-------------------|---------|--------------|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|---------|-------------------|-----|
| <u>File</u> | <u>E</u> dit <u>V</u> iew <u>T</u> oo | ls <u>H</u> elp |                       |            |                   |         |              |               | 1+                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| BN          | ew Database                           | 🗟 Open Data     | base 🖕 🕼              | Write Chan | ges 🛛 🔅 Revert Ch | anges   | Open Project | 😭 Save Projec | ct 🛛                                  | Attach Databa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ise          | **                                     |         |                   |     |
| Dat         | abase Structure                       | Browse Dat      | ta Edit Pr            | agmas I    | Execute SQL       |         |              |               | Edit Data                             | oase Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | ā ×                                    |         |                   |     |
| -0          |                                       | D DI            |                       | <b>a</b> 4 | 2 <b>E</b>        |         |              | Plot          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| 67)         | SQL 1 🗵                               |                 |                       |            |                   |         |              | 1             | ×                                     | in the second se | - and        | 22 Xo 2444                             |         |                   | -   |
| 1           | select                                | x1,dx1          | ,y,dy,                |            |                   |         |              | Columns X     | (                                     | Y1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y2           | Axis Ty                                |         |                   |     |
| 2           |                                       |                 | _                     | ew, (dy*   | Fcm0) as d        | ynew    |              | Row           | /                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Numeric<br>Numeric                     |         |                   |     |
| .3          |                                       | 4pro_c5         |                       |            |                   |         |              | dx1           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Numeric                                |         |                   |     |
| 4           | wnere                                 | Dataset:        | ID=-305               | 81004.     |                   |         |              | y dy          | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Numeric<br>Numeric                     |         |                   |     |
|             | x1                                    | dx1             | У                     | dy         | Fcm0 y            | new     | dynew        | Fcm0          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Numeric                                |         |                   |     |
| 1           | 13000000.0                            | 50000.0         | 0.0219                | 0.0021     | 1.01635 0.022     | 2258065 | 0.002134335  | ynew          |                                       | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Numeric                                | 8       |                   | Y   |
| 2           | 13300000.0                            | 50000.0         | 0.0218                | 0.0014     | 1.02609 0.022     | 2368762 | 0.001436526  | 0.0325        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : <b>.</b>   |                                        |         |                   |     |
| 3           | 13900000.0                            | 100000.0        | 0.0241                | 0.0015     | 1.07402 0.025     | 5883882 | 0.00161103   | -             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| 4           | 14500000.0                            | 100000.0        | 0.0277                | 0.0016     | 1.10564 0.030     | 0626228 | 0.001769024  | 0.03          | a<br>6                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6            |                                        |         |                   |     |
| 5           | 15100000.0                            | 100000.0        | 0.0292                | 0.0019     | 1.12509 0.032     | 2852628 | 0.002137671  | 0.05          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8            |                                        |         |                   |     |
| 6           | 15500000.0                            | 100000.0        | 0.0249                | 0.0018     | 1.08857 0.027     | 7105393 | 0.001959426  | -             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| 7           | 15900000.0                            | 100000.0        | 0.0237                | 0.0022     | 1.09522 0.025     | 5956714 | 0.002409484  | 0.0275 -      | • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 0                                      |         |                   |     |
| 8           | 16600000.0                            | 50000.0         | 0.0239                | 0.0026     | 1.0853 0.02       | 2593867 | 0.00282178   | Mau Ala       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0                                      | 8       |                   |     |
| 9           | 17400000.0                            | 100000.0        | 0.02 <mark>1</mark> 3 | 0.0026     | 1.06965 0.022     | 2783545 | 0.00278109   | k 0.025       | -<br>-<br>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| 10          | 17800000.0                            | 50000.0         | 0.0181                | 0.0024     | 1.06795 0.019     | 9329895 | 0.00256308   |               |                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 0                                      | 8       |                   |     |
| Fv          | cution fini                           | shed with       | out erro              | re         |                   |         |              | 0.0225        | 0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| Re          | sult: 10 rov                          |                 |                       |            |                   |         |              |               | 8                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         | 0                 |     |
| se          |                                       |                 |                       | ) as yne   | w,(dy*Fcm0) as    | s dynew | from x4pro_c | 0.02          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   |     |
| whe         | ere Dataset]                          | D='305810       | 04'                   |            |                   |         |              | 0.02          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |         |                   | ٤   |
|             |                                       |                 |                       |            |                   |         |              | 1 2.1         | 107                                   | 1 4:107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1 6 1 07                               | <u></u> | 7:107             |     |
|             |                                       |                 |                       |            |                   |         |              | 1.3.1         | 10,                                   | 1.4 <sup>.</sup> 10 <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5 10'      | 1.6 <sup>.</sup> 10 <sup>7</sup><br>x1 | 1.      | 7·10 <sup>7</sup> |     |
|             |                                       |                 |                       |            |                   |         |              | 11-1-1        |                                       | D L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                        | 1       |                   | 6   |
|             |                                       |                 |                       |            |                   |         |              | Line type: No | one                                   | Point si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nape: Cross  | circie ~                               |         |                   | 100 |

#### X4Pro: data renormalization with SQL SELECT (example: using SQLite DB Browser)

|                                                                                                                                                                                                                                   |                                                                                                                      |                                                    |                                  |                      |                      |                                          | DB Bro   | wser for SQLite                                                                  | /x4s   | qlite 1.db     |                        |           |                         | – 🗆 ×                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------|----------------------|------------------------------------------|----------|----------------------------------------------------------------------------------|--------|----------------|------------------------|-----------|-------------------------|---------------------------------|
| <u>F</u> ile                                                                                                                                                                                                                      | <u>E</u> dit <u>V</u> iew                                                                                            | Tools                                              | 6 <u>H</u> elp                   |                      |                      |                                          |          |                                                                                  |        |                |                        |           |                         |                                 |
| 0                                                                                                                                                                                                                                 | New Database                                                                                                         |                                                    | Open D                           | ataba                | se 📜 🗟 Wri           | te Change                                | s Rev    | rt Changes                                                                       | () Ope | en Project     | Gave Pro               | ject      | Attach Database         | 3                               |
| Da                                                                                                                                                                                                                                | tabase Structur                                                                                                      | re                                                 | Browse                           | Data                 | Edit Pragm           | nas Exe                                  | cute SQL | Edit Database                                                                    | e Cell |                |                        |           |                         | 0                               |
| -                                                                                                                                                                                                                                 | 6 <b>6</b> 6                                                                                                         |                                                    | N                                | 3                    | ē •                  |                                          |          | Mode: Text                                                                       | ×      |                |                        |           |                         |                                 |
| 0                                                                                                                                                                                                                                 | SQL 1 🔇                                                                                                              |                                                    |                                  |                      |                      |                                          |          | 1 30.626                                                                         | 228    |                |                        |           |                         |                                 |
| <pre>1 select (x1/1e6) as `Energy(MeV)`,(dx1/1e6) as dEn 2 ,(y*1e3) as `CS.orig`,(dy*1e3) as dCS 3 ,(y*Fcm0*1e3) as `CS.new(mb)`,(dy*Fcm0*1e3) as dCSnew,Fcm0 4 from x4pro_c5dat 5 where DatasetID='30581004' 6 order by x1</pre> |                                                                                                                      |                                                    |                                  |                      |                      |                                          |          | Type of data<br>9 character(s<br>Plot                                            | Apply  |                |                        |           |                         |                                 |
|                                                                                                                                                                                                                                   |                                                                                                                      |                                                    |                                  |                      |                      |                                          | 1        | Columns                                                                          | x      |                | Y1                     | Y2        | Axis Type               | -                               |
| 4                                                                                                                                                                                                                                 | Eperav(MeV)                                                                                                          | Energy(MeV) dEn CS.orig dCS CS.new(mb) dCSnew Fcm0 |                                  |                      |                      |                                          |          | dEn                                                                              |        |                |                        |           | Numeric                 |                                 |
| 1                                                                                                                                                                                                                                 | 13.0                                                                                                                 |                                                    | 21.9                             |                      |                      |                                          |          | CS.orig<br>dCS                                                                   |        |                |                        |           | Numeric<br>Numeric      |                                 |
| 2                                                                                                                                                                                                                                 | 13.3                                                                                                                 | 0.05                                               | 21.8                             | 132340.2             | 22.368762            | 11.848.4553.675,553                      |          | CS.new(n<br>dCSnew                                                               | nb)    |                |                        |           | Numeric<br>Numeric      |                                 |
| 3                                                                                                                                                                                                                                 | 13.9                                                                                                                 | 0.1                                                | 24.1                             | 1.5                  | 25.883882            | 1.61103                                  | 1.07402  | Fcm0                                                                             |        |                |                        | V         | Numeric                 | -                               |
| 4                                                                                                                                                                                                                                 | 14.5                                                                                                                 | 0.1                                                | 27.7                             | 1.6                  | 30.626228            | 1.769024                                 | 1.10564  | ⇒ 32,5 ⊧                                                                         |        |                |                        |           |                         | 1,12                            |
| 5                                                                                                                                                                                                                                 | 15.1                                                                                                                 | 0.1                                                | 29.2                             | 1.9                  | 32.852628            | 2.137671                                 | 1.12509  | (qu) 30                                                                          |        |                | A                      | X         |                         | 1,12                            |
| 6                                                                                                                                                                                                                                 | 15.5                                                                                                                 | 0.1                                                |                                  | 1.8                  |                      | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. |          | ≥ 27,5                                                                           |        |                | 0                      | 1 k       |                         | Whater and a second             |
| Re<br>At<br>se<br>,(                                                                                                                                                                                                              | ecution finish<br>sult: 10 rows<br>line 1:<br>lect (x1/1e6) a<br>y*1e3) as `CS.o<br>y*Fcm0*1e3) as<br>om x4pro c5dat | returi<br>as `Ei<br>orig`<br>`CS.i                 | ned in 1<br>nergy(Me<br>,(dy*1e3 | lms<br>V)`,(<br>) as | dx1/le6) as d<br>dCS | dEn                                      |          | (q. 32,5<br>30<br>27,5<br>25<br>22,5<br>20<br>30<br>22,5<br>20<br>30<br>20<br>31 |        | <u> </u>       | <br>15<br>Ene          | ergy(MeV) | 0<br>0<br>1<br>16<br>17 | 1,08 Fm<br>1,06<br>1,04<br>1,02 |
| wh                                                                                                                                                                                                                                | ere DatasetID=<br>der by x1                                                                                          |                                                    | 1004'                            |                      |                      |                                          |          | Line type: L                                                                     |        | ▼<br>DB Schema | Point shape:<br>Remote | Circle    |                         |                                 |

# Part III.

### Illustrating usage of X4Pro database

Demo codes:Python, Fortran, JavaScriptVisualization:Python/Plotly+Matplotlib<br/>JavaScript/PlotlyPlatforms:Windows, Linux, MacOS

### Tests, demo-codes, platforms and technologies

- I. Retrieve experimental data from local X4Pro with evaluated data from Web ENDF retrieval system: Python3 with Plotly or Matplotlib
  - 1. Cross sections (MF3 + uncertainties from MF33)
  - 2. Angular distributions (MF4)
  - 3. Emission spectra (MF5)
  - 4. Double differential cross sections (MF6)
  - 5. Fission yield (MF1)
  - 6. Hidden EXFOR data: Mass×TKE distribution, EXFOR data correlations

#### II. Retrieve data from local X4Pro using GFortran and GCC

- 1. Cross sections (MF3), output C4 file
- 2. Double differential cross sections (MF6)
- 3. Retrieve LEG/RS and SIG from different Subent and generate  $DA \rightarrow C4$

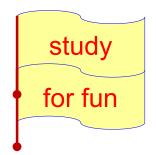
#### III. Data renormalization/modification on Python + Plotly or Matplotlib

- 1. Automatic renormalization
- 2. User's modifications
- 3. Experts' modifications (taken from database)
- 4. Ratios to cross sections recalculations
- 5. *Retrieve Legendre coefficient L[0] and calculate cross sections*
- 6. Retrieve LEG/RS and SIG from different Subent and generate DA
- 7. Retrieve LEG generate DA output draft of R33 (for IBANDL)

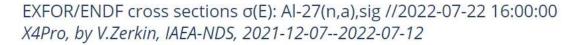
#### IV. Populating CouchDB database using X5-JSON in Python

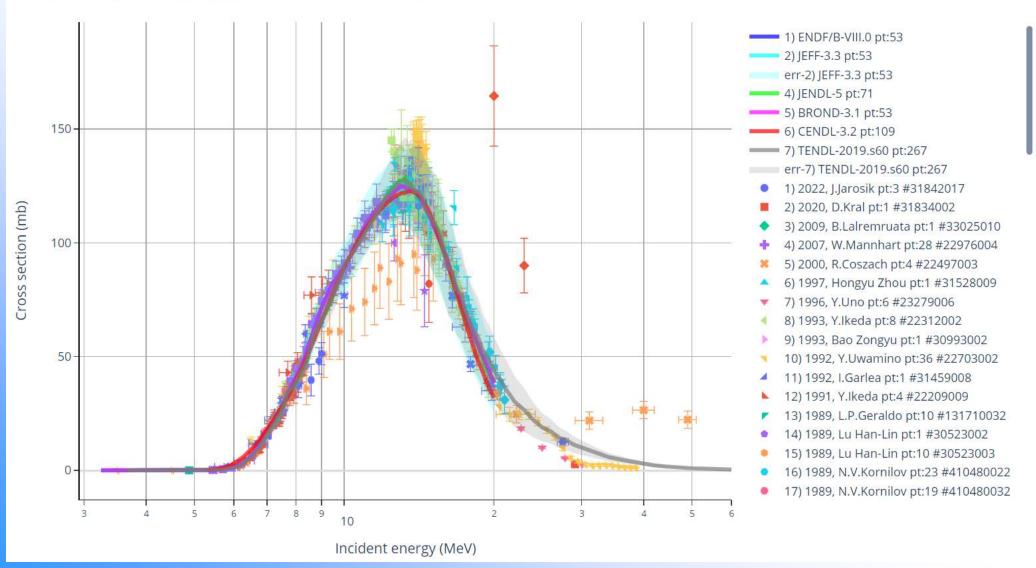
1. *Retrieve X4Z.JSON from table x4pro\_x4z store in local CouchDB* 

#### V. Data retrievals from local X4Pro using javascript (+ENDF +Plotly)


- 1. Cross sections (MF3) with GUI/Html5
- 2. Retrievals from javascript under Node.js

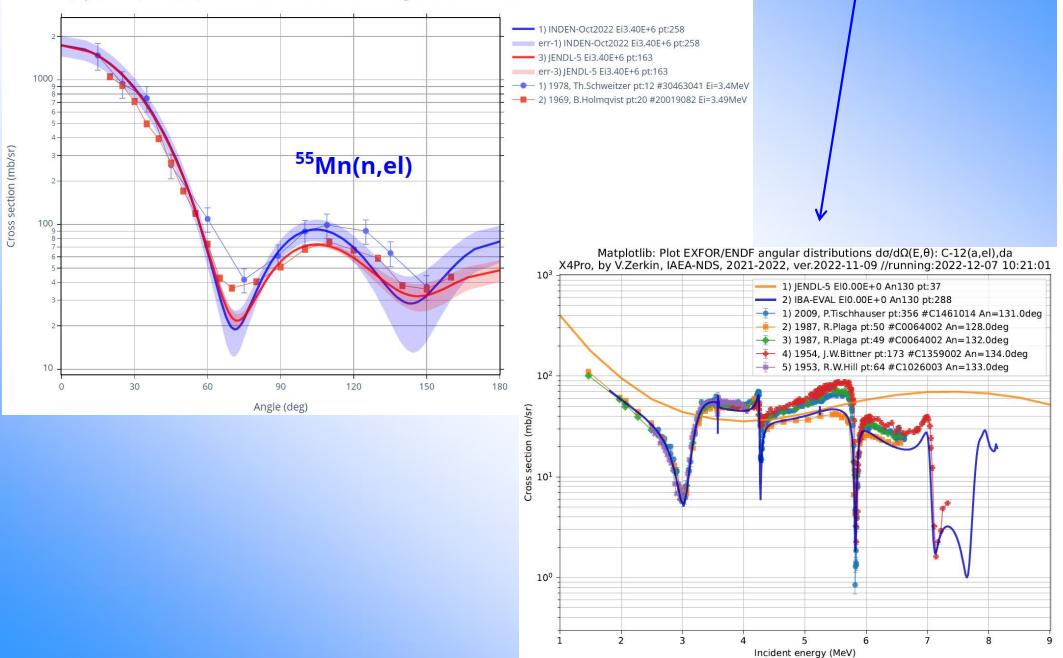
Note. Trial distribution: database file ~8Gb, python codes are built on modules containing ~100 lines each; fortran codes 100-200 lines; item V is not included





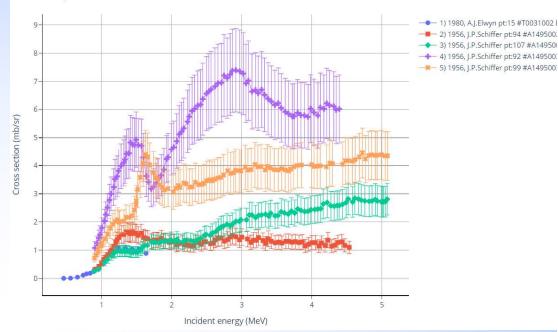




### Cross sections: EXFOR + ENDF.MF3/MF33 Demo code: python3 + requests + plotly

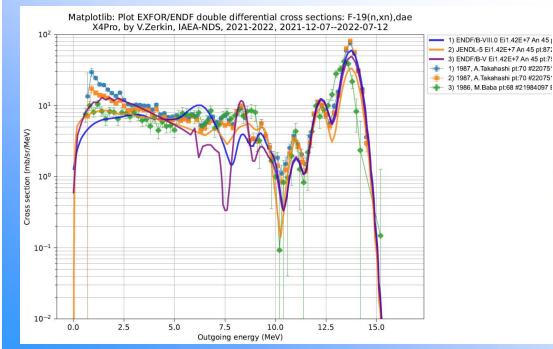




### Angular distributions (DA+MF4.MF34) Demo-code: python3 + requests + plotly or matplotlib

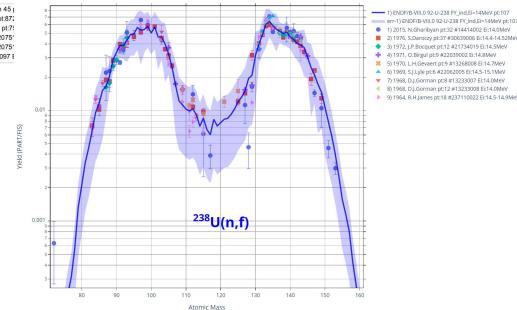

Plot EXFOR/ENDF angular distributions dσ/dΩ(E,θ): Mn-55(n,el),da X4Pro, by V.Zerkin, IAEA-NDS, 2021-2022, ver.2022-11-16 //running:2022-12-02 15:33:40






#### Angular distribution (partial: DAP)

Plot EXFOR angular distributions do/dΩ(E,θ): Li-6(he3,p)par,da X4Pro, by V.Zerkin, IAEA-NDS, 2021-2022, 2022-03-24--2022-04-14




#### Double differential cross sections (MF6) Fission-product yield from EXFOR (FY)



92-U-238(N,F)MASS,CHN,FY : Total chain yield of fission products EXFOR fission yield FY(A,Ei): 92-U-238(N,F)MASS,CHN,FY

X4Pro, by V.Zerkin, IAEA-NDS, 2021-2022, ver.2022-11-09 //running:2022-12-07 18:15:33



### Example of "Native" EXFOR plotting (Mass-TKE)

240

220

MeV)

10/

5 160

ш 140 ¥

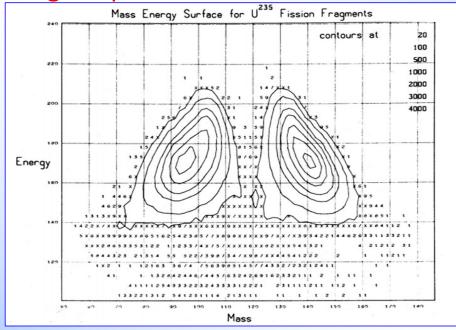
120

80

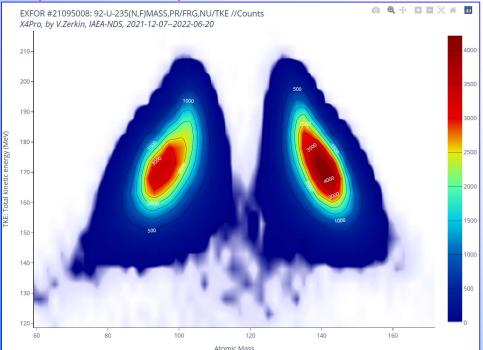
100

120

Atomic Mass


140

160

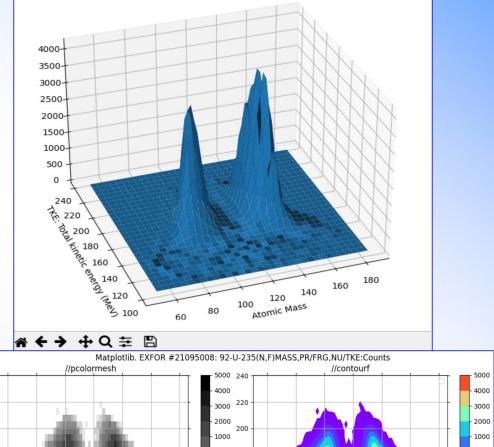

180

gy

#### **Original publication:**



#### X4pro $\rightarrow$ Plotly:




#### EXFOR: #21095008: 92-U-235(N,F)MASS,PR/FRG,NU/TKE Mass-Energy distribution for both fission fragments

- X: MASS(NO-DIM):Atomic mass of nuclide
- Y: E(MEV): Energy of outgoing particle, lab. system
- Z: MISC(NO-DIM):Number of events detected

#### X4pro $\rightarrow$ Matplotlib:

Matplotlib. EXFOR #21095008: 92-U-235(N,F)MASS,PR/FRG,NU/TKE:Counts



500

100

20 10

- 2

. 1

180

160

140

120

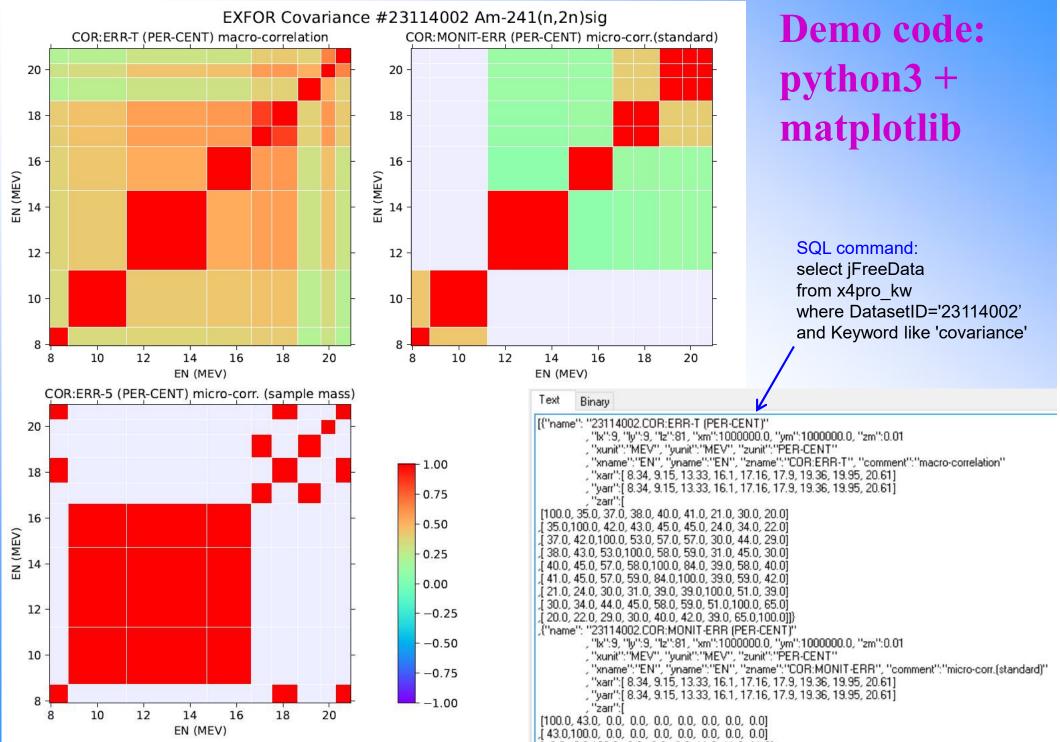
80

100

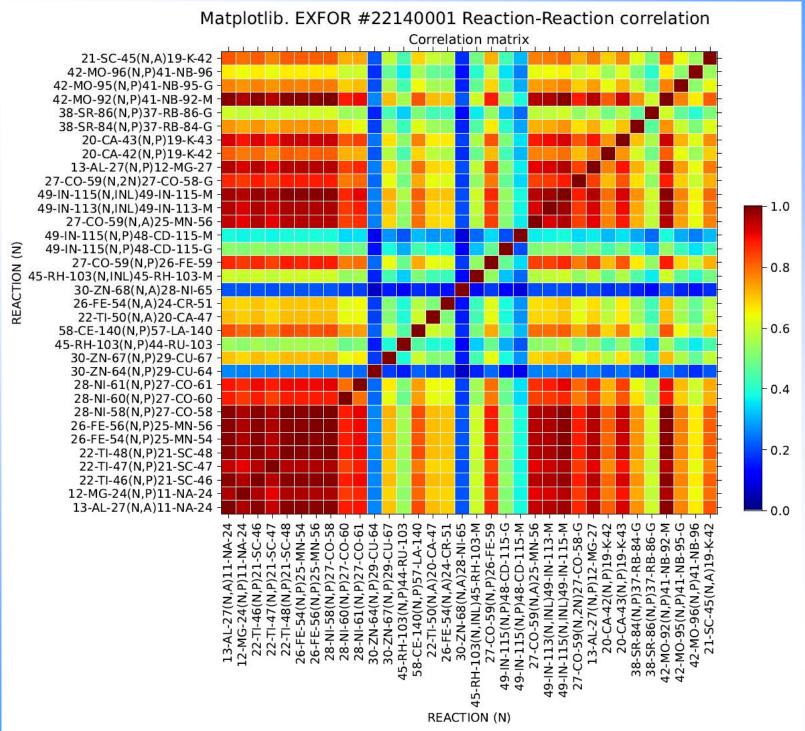
120

Atomic Mass

140


160

500


100

20

### **Covariance data coded in EXFOR**

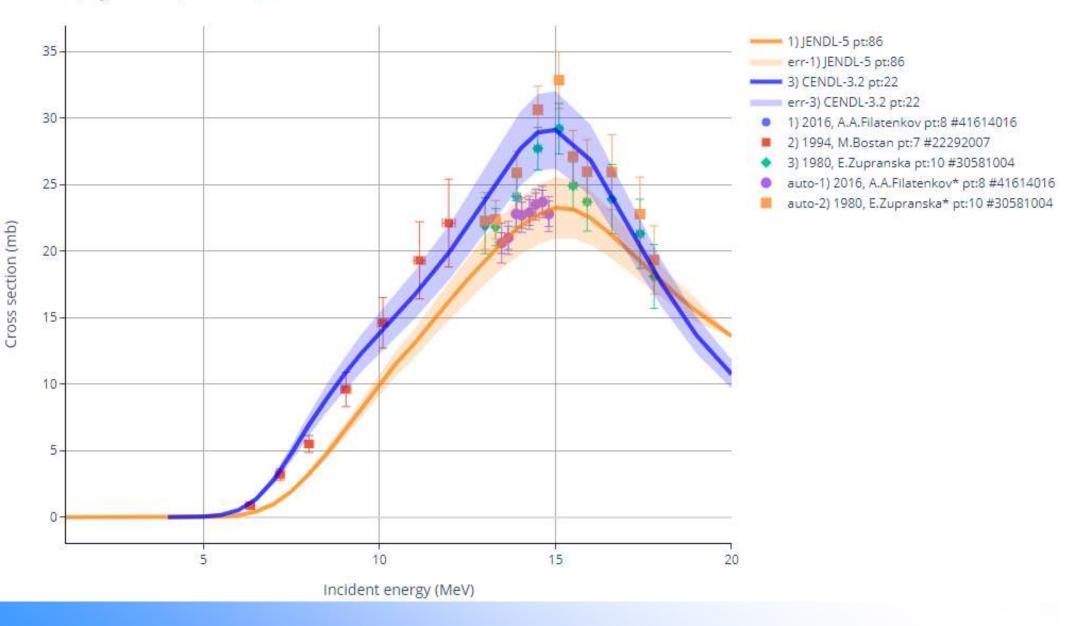


### **Covariance data coded in EXFOR**



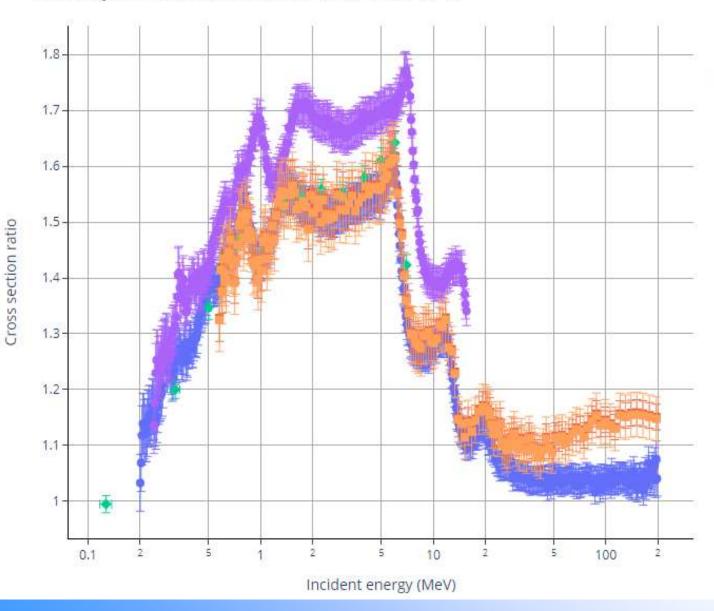
### **Double differential cross sections in Fortran**

Program: dae1e2.f (ver.2022-04-26) by V.Zerkin, IAEA-NDS, 2021-2022 Running: 2022-05-04,22:46:00


Open database: ../../x4sqlite1.db ierr=

0

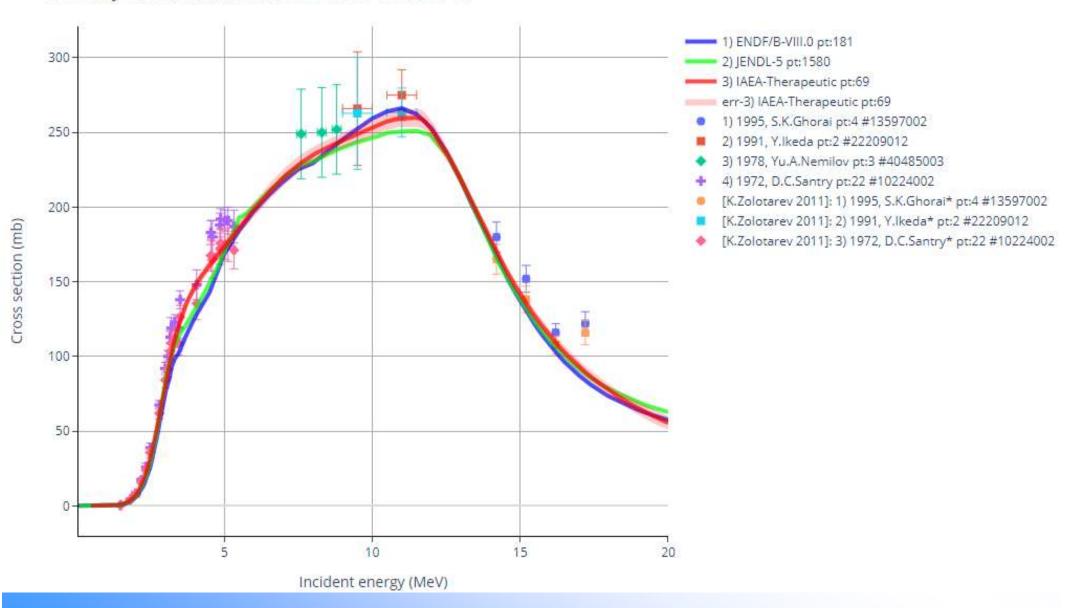
| SQL command:                    |                                           |                |                    |  |  |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------|----------------|--------------------|--|--|--|--|--|--|--|--|--|
| select * from dae1 SQL command  |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| where (Target like 'F-19')      |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| and (Reaction like 'n,x')       |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| and (outParticles like '%[n]%') |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| order by fullCode,              |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| YearRef1 desc,Data              |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| En,An,Eout,iPoint               |                                           |                |                    |  |  |  |  |  |  |  |  |  |
| Operation done succ             | cessfully: 3285 points                    |                |                    |  |  |  |  |  |  |  |  |  |
| operation done such             | cessiuity. 5265 points                    |                |                    |  |  |  |  |  |  |  |  |  |
| Read data:                      | 3285 points                               |                |                    |  |  |  |  |  |  |  |  |  |
| new trace 220                   | 0751131 Ei= 14100000.0 Ar                 | 1= 15.0000000  | 1987,Takahashi     |  |  |  |  |  |  |  |  |  |
| 1                               | 71 220751131 1987,Takahashi               | Eo= 1100000.00 | XS= 2.99000007E-08 |  |  |  |  |  |  |  |  |  |
| 2                               | 70 220751131 1987,Takahashi               | Eo= 1300000.00 | XS= 2.8900006E-08  |  |  |  |  |  |  |  |  |  |
| 3                               | 69 220751131 1987,Takahashi               | Eo= 1500000.00 | XS= 3.0399990E-08  |  |  |  |  |  |  |  |  |  |
| 4                               | 68 220751131 1987,Takahashi               | Eo= 1700000.00 | XS= 2.64000004E-08 |  |  |  |  |  |  |  |  |  |
| 5                               | 67 220751131 1987,Takahashi               | Eo= 1900000.00 | XS= 2.03999999E-08 |  |  |  |  |  |  |  |  |  |
| 6                               | 66 220751131 1987,Takahashi               | Eo= 2100000.00 | XS= 1.43000003E-08 |  |  |  |  |  |  |  |  |  |
| 7                               | 65 220751131 1987,Takahash <mark>i</mark> | Eo= 2300000.00 | XS= 1.4000003E-08  |  |  |  |  |  |  |  |  |  |
| 8                               | 64 220751131 1987,Takahashi               | Eo= 2500000.00 | XS= 1.22000001E-08 |  |  |  |  |  |  |  |  |  |
| 9                               | 63 220751131 1987,Takahashi               | Eo= 2700000.00 | XS= 1.12000000E-08 |  |  |  |  |  |  |  |  |  |
| 10                              | 62 220751131 1987,Takahashi               | Eo= 2900000.00 | XS= 1.11000000E-08 |  |  |  |  |  |  |  |  |  |
| 11                              | 61 220751131 1987,Takahashi               | Eo= 3100000.00 | XS= 1.58999995E-08 |  |  |  |  |  |  |  |  |  |
| 12                              | 60 220751131 1987,Takahashi               | Eo= 3300000.00 | XS= 1.17000001E-08 |  |  |  |  |  |  |  |  |  |
| 13                              | 59 220751131 1987,Takahashi               | Eo= 3500000.00 | XS= 6.4900009E-09  |  |  |  |  |  |  |  |  |  |
| 14                              | 58 220751131 1987.Takahashi               | Eo= 3700000.00 | XS= 6.11000006E-09 |  |  |  |  |  |  |  |  |  |


# **Automatic renormalization in Python**

Automatic correction of EXFOR cross sections: Mn-55(n,a),sig X4Pro, by V.Zerkin, IAEA-NDS, 2021/12/07-2022/03/24

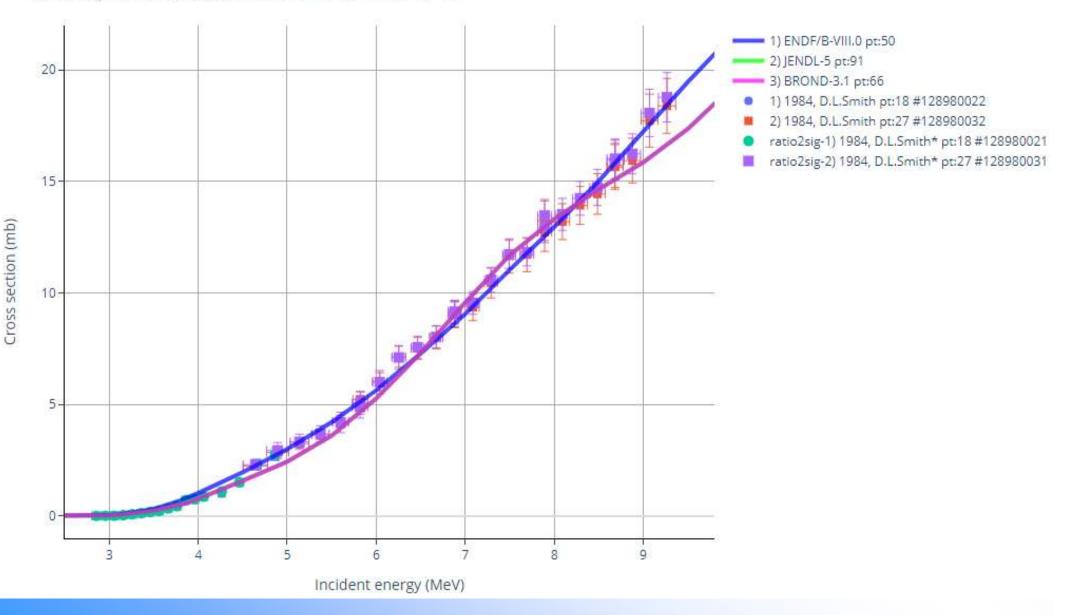


# **User's modifications of EXFOR data**

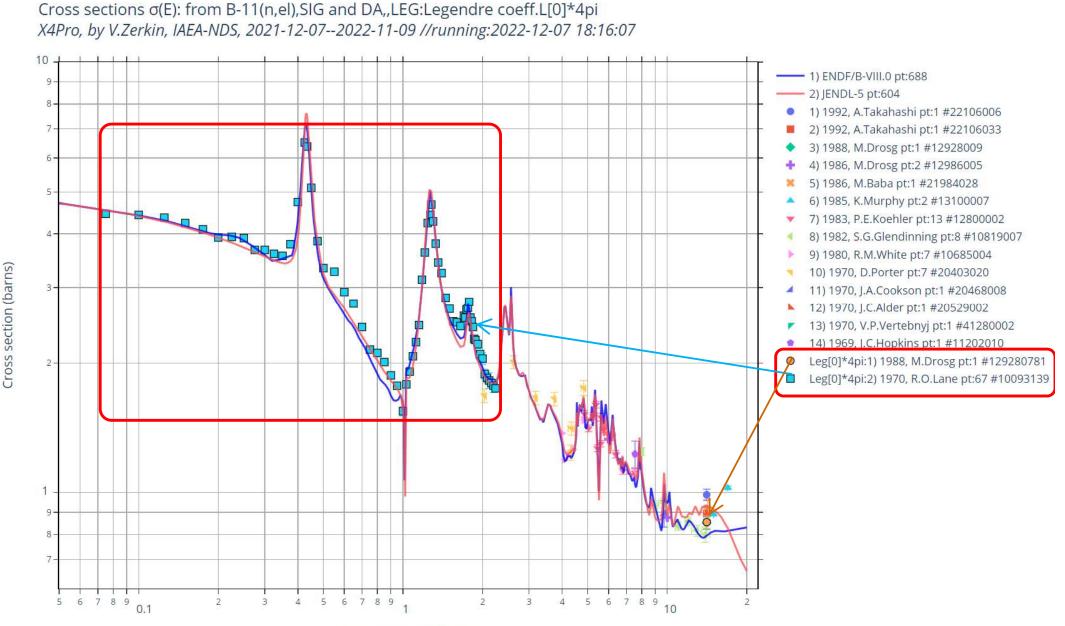

Local user's corrections of EXFOR cross sections ratios: Pu-239/U-235(n,f)CS X4Pro, by V.Zerkin, IAEA-NDS, 2021-12-07--2022-04-14



- 1) 2010, F.Tovesson pt:600 #142710031
- 2) 2002, O.Shcherbakov pt:166 #41455005
- 3) 1977, B.I.Fursov pt:13 #40824002
- mycorr-1) 2010, F.Tovesson\* pt:363 #142710031
- mycorr-2) 2002, O.Shcherbakov\* pt:166 #41455005

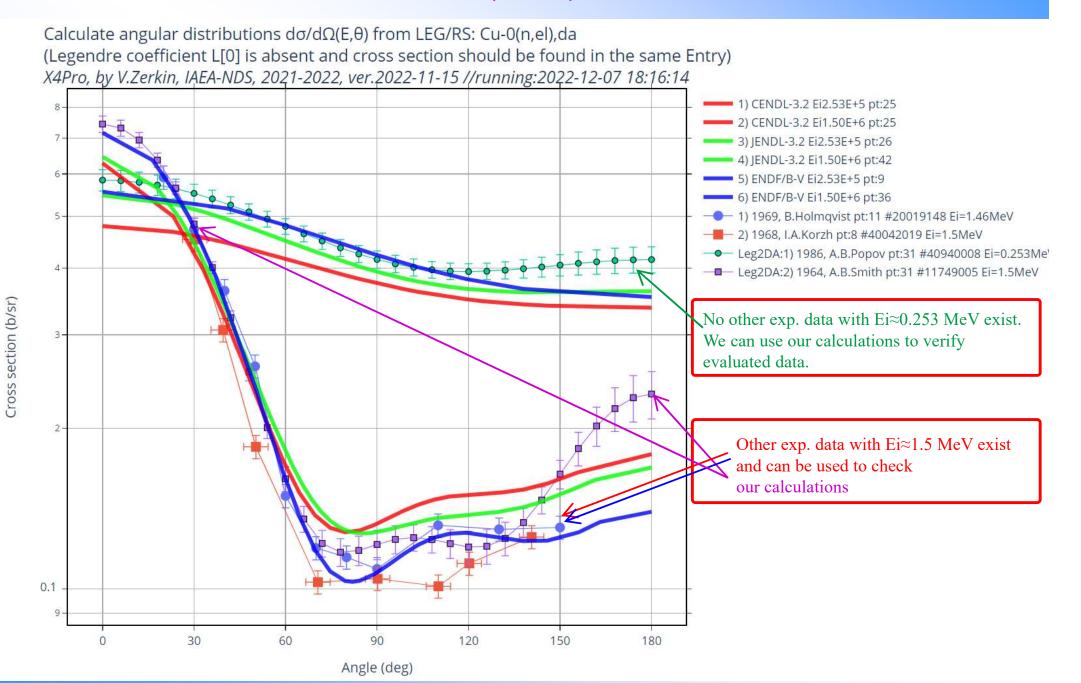

# **Experts' data corrections in Python**

Apply experts corrections from database to EXFOR data: Zn-64(n,p),sig X4Pro, by V.Zerkin, IAEA-NDS, 2021-12-07--2022-04-14



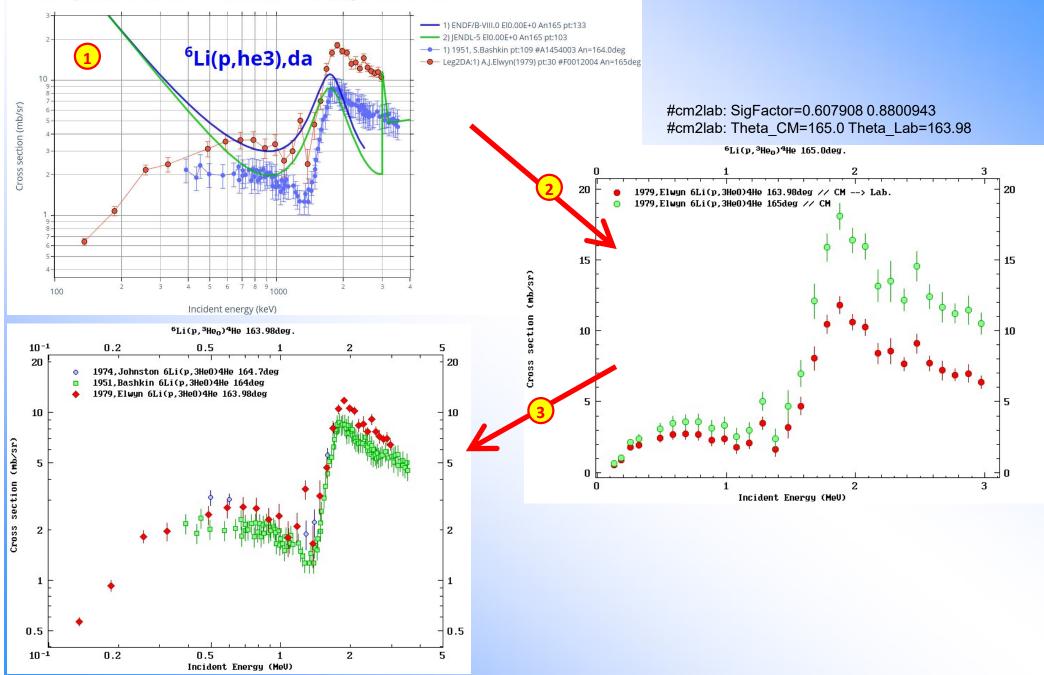

## Ratios to cross sections in Python

Ratio to cross section of EXFOR cross sections: V-51(n,p)CS X4Pro, by V.Zerkin, IAEA-NDS, 2021-12-07--2022-04-14




### **Cross section DATA from [,SIG] together with** search/filter/calc.: 4π·L(0) from [,DA,,LEG]




Incident energy (MeV)

### **Retrieve LEG/RS and SIG from the same ENTRY to form L(0..n) and calculate DA**

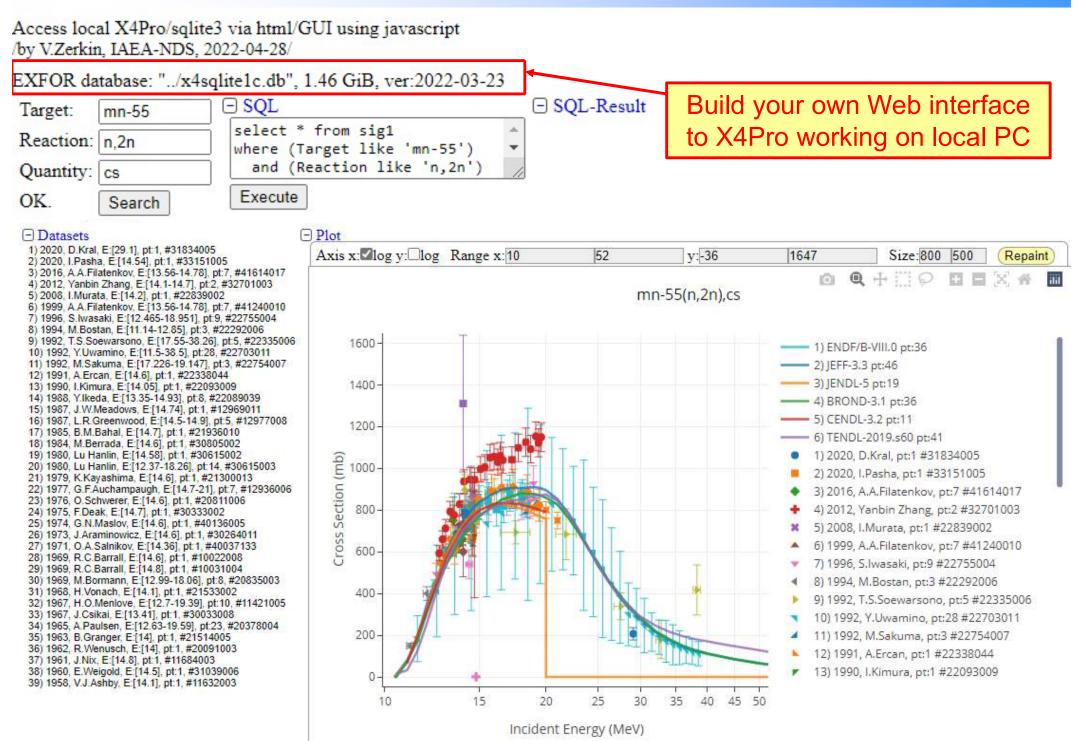


# (1) Retrieve LEG(0..n), calculate DA-CM and output to R33, (2) upload to IBANDL, (3) convert to DA-Lab/R33

Plot EXFOR/ENDF angular distributions dσ/dΩ(E,θ): Li-6(p,he3),da X4Pro, by V.Zerkin, IAEA-NDS, 2021-2022, ver.2022-12-07 //running:2022-12-07:18:16:18



## Part IV. X4-JSON, CouchDB


X5-JSON presents meta and numerical data:

- 1. from EXFOR and Dictionaries structured as they are in EXFOR to be useful by compilers
- 2. computational data by Datasets (~C5) including data for automatic correction

*by new monitor and decay data Available on Web-EXFOR as X4Z and X5Z* 

|                   |                                                                        | Project Fauxton - database/zv-ex 🗙 🕂  |            |          |              |                      |                                |                                                 |                          |             | -             | - 0         | × |  |
|-------------------|------------------------------------------------------------------------|---------------------------------------|------------|----------|--------------|----------------------|--------------------------------|-------------------------------------------------|--------------------------|-------------|---------------|-------------|---|--|
| Example in        | $\leftarrow$                                                           | $\rightarrow$ C $$ i localhost:5984/_ | utils/#/da | tabase/2 | v-exf        | or-001/_all_o        | locs                           | A" to                                           | æ                        | G           | £⊨ €          | 9           |   |  |
| X4Pro:            | 🕒 Bing 🗅 OASIS 🕘 Search Retiring in 🕘 Home Mr - Praxisplan 🗁 WPEC-SG50 |                                       |            |          |              |                      |                                |                                                 |                          |             |               |             |   |  |
| A4P10.            | ↔                                                                      | ✓ zv-exfor-001                        | :          |          |              |                      |                                | Document ID                                     | •                        | <b>Q</b> _0 | {}            | E ·         |   |  |
|                   |                                                                        | All Documents                         | 0          |          |              | III Ta               | ble Metada                     | ata {} JSON                                     |                          |             | Create        | e Document  | Î |  |
| X4Pro<br>database | بر                                                                     | Run A Query with Mango                |            |          |              |                      |                                |                                                 |                          |             | - Circlene    | 5 Boodinoin |   |  |
| SQLite            |                                                                        | Permissions                           |            |          |              | id                   |                                | key                                             | value                    | r           |               |             | _ |  |
|                   |                                                                        | Changes                               |            |          | 6            | 100 <mark>0</mark> 1 |                                | 10001                                           | { "rev'                  | ": "11-1d7  | 4b37701.      |             |   |  |
|                   | \$                                                                     | Design Documents                      | 0          |          | <b>10004</b> |                      |                                | 10004                                           | { "rev": "11-158ce5d0f8e |             |               |             |   |  |
| export2cdb.py     | 4D<br>Db                                                               | ► 🗋 mydocs1                           | 0          |          | ß            | 10005                |                                | Save Changes Cancel                             |                          |             |               |             |   |  |
| (~150 lines)      |                                                                        |                                       |            |          | 6            | 10006                | ٦ م                            | £                                               |                          |             |               |             |   |  |
|                   |                                                                        |                                       |            |          | 6            | 10008                | 2                              | "_id": "10010",<br>"_rev": "11-eecc006c54e1     |                          |             | ia5" <b>,</b> |             |   |  |
|                   |                                                                        |                                       |            |          | 6            | 10009                |                                | "x4entry": "10010",<br>"compiled": "2005-07-07" |                          |             |               |             |   |  |
|                   |                                                                        |                                       |            |          | 6            | 10010                |                                | "x4dbVersion": "2022-08-                        |                          |             |               |             |   |  |
| zv-exfor-001      | 8                                                                      |                                       |            |          | 6            | 10011                | <b>4</b> ···□ 7 -<br>□···▶ 8 - | "x4bib": {<br>"INSTITUTE": [                    |                          |             |               |             |   |  |
| database          |                                                                        |                                       |            |          | •            | 10013                | 9 -<br>10                      | {<br>"x4pointer": " ",                          |                          |             |               |             |   |  |
| CouchDB           |                                                                        |                                       |            |          | R            | 10016                | 11 -                           | "x4code": [<br>{                                |                          |             |               |             |   |  |
|                   |                                                                        |                                       |            |          |              | 10019                | 13                             | "code": "1USAA<br>"dict": "INSTI                |                          |             |               |             |   |  |
|                   | Fauxton on<br>Apache<br>CouchDB                                        |                                       |            |          |              |                      | 15                             | "idict": 3,                                     |                          |             |               |             |   |  |
|                   | v. 3.2.2                                                               |                                       |            |          | •            | 10020                | 8 <sup>16</sup>                | "hlp": "Argonn<br>},                            |                          |             | ory, Argo     |             |   |  |
|                   | Log Out                                                                |                                       |            |          |              |                      | 18 -                           |                                                 |                          |             |               |             |   |  |

### Part V. Retrieval on JavaScript with GUI/html5



# **Concluding remarks**

#### 1. What is X4Pro?

Extended EXFOR relational database without EXFOR format. EXFOR relational database extended with EXFOR data points in original and computational form, data for renormalizing EXFOR data (monitor and decay data) and instructions for data corrections; implemented in MariaDB and SQLite; can be used on server side and on user's PC with Windows, Linux, MacOS.

2. Download X4Pro-trial/SQLite:

https://www-nds.iaea.org/cdroms/#x4pro1trial

#### 3. Advantages of X4Pro:

- a) universal, flexible, platform-independent, efficient, robust
- *b) no need in original EXFOR: all info and data can be taken from the database*
- c) no need in EXFOR parsers/converter on user's side
- *d) no need for intermediate (C4/C5/JSON) files with fixed structure: application create needed objects on the fly*
- *e) simple for programming on any programming language supporting SQL for data search, filtering, sorting, retrieval and even renormalization*

#### 4. X4Pro status and plans-2022/23:

- *a)* started public distribution of trial version
- *b)* presented on NRDC-2022, ND-2022, proposed for testing and feedback
- c) ...to take part in EXFOR workshop IAEA-2022 (practicing, feedback)...
- *d)* to continue development
- e) to coordinate distribution with NRDC-2023

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author