

HOKKAIDO UNIVERSITY Graduate School of Biomedical Science and Engineering

Activation cross section measurements for ⁷Li-induced monitor reactions

December 4, 2024

AIKAWA Masayuki

Faculty of Science/ Graduate School of Biomedical Science and Engineering, Hokkaido University

Introduction

- Many radionuclides are used for diagnosis and therapy.
 - Diagnosis
 - positron emitters for PET
 - gamma emitters for SPECT
 - Therapy
 - beta, alpha, and Auger electron emitters

Figure 1. Color-coded periodic table with current or potential applications of each element in diagnostic and/or therapeutic radiopharmaceuticals.^{2–14} Periodic table reproduced by permission of International Union of Pure and Applied Chemistry. Copyright © 2018

Figure 3. Radiometal decay types and their corresponding applications in nuclear medicine. [†]Indicates that degree of rotation, number of detectors, and orbital path may vary depending on instrument.

T.I. Kostelnik et al., Chem. Rev. 119 (2019) 902

International Union of Pure and Applied Chemistry.

Medical application of Astatine-211

• Astatine-211 ($T_{1/2} = 7.22$ h) is an alpha emitter and attracts many researchers because of effectiveness in therapy.

アスタチン-211の実用的な標識法の開発, RIKEN https://www.riken.jp/press/2019/20190118_3/index.html

Production of ²¹¹At

- Cross sections for 211 At (T_{1/2} = 7.22 h) production via the 209 Bi(a,2n) 211 At reaction were measured by several groups.
- The incident energy should be less than 29 MeV to avoid production of ^{210}At (T $_{1/2}$ = 8.1 h, $\epsilon+\beta^+$: 99.825%, $\rightarrow^{210}\text{Po}$ (T $_{1/2}$ = 138 d)).

Alfarano et al., J. Phys.: Conf. Ser. 41 (2006) 115.

Production of ²¹¹Rn via the ²⁰⁹Bi+⁷Li reaction

- Unfortunately, the half-life of 211 At (T_{1/2} = 7.22 h) is too short to deliver.
- 211 Rn (T_{1/2} = 14.6 h) is expected to be a generator.
- One possible production reaction, the ²⁰⁹Bi(⁷Li,5n)²¹¹Rn reaction, was investigated.

Maeda et al., J. Radioanal. Nucl. Chem. 323 (2020) 921.

Production cross sections of ²¹¹Rn and ²¹⁰Rn

- Production cross sections of ²¹¹Rn and ²¹⁰Rn were determined.
- The measured cross sections are slightly deviated from those of previous studies.

Another alpha emitter: ¹⁴⁹Tb ($T_{1/2} = 4.1 \text{ h}$, $I_a = 16.7\%$)

• Is ¹⁴⁴Sm(⁷Li,2n)¹⁴⁹Tb reaction available for production?

E(level) (MeV)	Јп	Mass Excess (keV)	T _{1/2}	Decay Modes
0.0	1/2+	-71489 4	4.118 h 25	ε = 83.30% α = 16.70%
0.0358	11/2-	-71453 4	4.16 min 4	ε = 99.98% α = 0.02%

NuDat 3.0, https://www.nndc.bnl.gov/nudat3/

Monitor reactions

 Monitor reactions play an important role to determine projectile energy to produce required amounts of RI of interest under constraints to minimize impurities.

Monitor Reactions 2017

A. Hermanne et al., Nucl. Data Sheets 148 (2018) 338-382

Protons	Deuterons
²⁷ Al(p,x) ²² Na	²⁷ Al(d,x) ²² Na
27 Al(p,x) 24 Na	$^{27}\text{Al}(d,x)^{24}\text{Na}$
nat Ti(p,x) 48 V	$^{nat}\mathrm{Ti}(d,x)^{48}\mathrm{V}$
$^{nat}Ti(p,x)^{46}Sc$	$^{nat}Ti(d,x)^{46}Sc$
^{nat} Ni(p,x) ⁵⁷ Ni	^{nat} Fe(d,x) ⁵⁶ Co
$^{nat}Cu(p,x)^{62}Zn$	^{nat} Ni(d,x) ⁶¹ Cu
$^{nat}Cu(p,x)^{63}Zn$	^{nat} Ni(d,x) ⁵⁶ Co
$^{nat}Cu(p,x)^{65}Zn$	^{nat} Ni(d,x) ⁵⁸ Co
^{nat} Cu(p,x) ⁵⁶ Co	$^{nat}Cu(d,x)^{62}Zn$
^{nat} Cu(p,x) ⁵⁸ Co	$^{nat}Cu(d,x)^{63}Zn$
^{at} Mo(p,x) ^{96m+g} Tc	$^{nat}Cu(d,x)^{65}Zn$

3 _{He-particles}
²⁷ Al(³ He,x) ²² Na
27 Al(3 He,x) 24 Na
$^{nat}\text{Ti}(^{3}\text{He,x})^{48}\text{V}$
^{nat} Cu(³ He,x) ⁶⁶ Ga
^{nat} Cu(³ He,x) ⁶³ Zn
^{nat} Cu(³ He,x) ⁶⁵ Zn

Alpha-particles $^{27}Al(\alpha,x)^{22}Na$ $^{27}Al(\alpha,x)^{24}Na$ $^{nat}Ti(\alpha,x)^{51}Cr$ $^{nat}Cu(\alpha,x)^{66}Ga$

Monitor Reactions 2017, https://www-nds.iaea.org/medical/monitor_reactions.html

Monitor reactions

 Cross section values recommended by IAEA are used to assess experimental parameters, such as beam intensity (amplitude), projectile energy (peak position) and target thicknesses (shape).

Purpose

- There are no monitor reactions for lithium-induced reactions.
- We performed cross section measurements of ⁷Li-induced reactions on ^{nat}Cu and ^{nat}Ti.

Monit	or reactions published by	IAEA
Proton	Deuteron	Alpha
²⁷ Al(p,x) ^{22,24} Na ^{nat} Ti(p,x) ⁴⁸ V, ⁴⁶ Sc ^{nat} Ni(p,x) ⁵⁷ Ni ^{nat} Cu(p,x) ^{62,63,65} Zn, ^{56,58} Co ^{nat} Mo(p,x) ^{96m+g} Tc	$^{27}Al(d,x)^{22,24}Na$ $^{nat}Ti(d,x)^{48}V,^{46}Sc$ $^{nat}Fe(d,x)^{56}Co$ $^{nat}Ni(d,x)^{61}Cu,^{56,58}Co$ $^{nat}Cu(d,x)^{62,63,65}Zn$	²⁷ Al(a,x) ^{22,24} Na ^{nat} Ti(a,x) ⁵¹ Cr ^{nat} Cu(a,x) ^{66,67} Ga, ⁶⁵ Zn

Method

- We performed cross section measurements using the following well-established methods at RIKEN.
 - Stacked-foil activation technique
 - γ-ray spectrometry

Experiments of Cu targets

- Experiments were conducted at the RIKEN AVF cyclotron
- Three stacked targets were irradiated with 71.6-MeV ⁷Li beams.

	#1 (σ)	#2 (σ)	#3 (TTY)
Energy		71.6 ± 0.4 MeV	
Intensity	314 ± 16 nA	321 ± 16 nA	309 ± 15 nA
Period	3600 s	3600 s	1800 s
Target	17 sets of Cu-Al-Ti-Al foils	17 sets of Ti-Al-Cu-Al foils	8 Cu foils
natCu	4.49 ± 0.04 mg/cm ²		$21.5 \pm 0.2 \text{ mg/cm}^2$
natTi	$2.34 \pm 0.02 \text{ mg/cm}^2$		
²⁷ Al	1.21 ± 0.01 mg/cm ²		

Activation cross sections

 Cross sections to form ^{69,68}Ge, ^{67,66}Ga, and ^{69m,65}Zn derived from the two experiments are consistent.

Result: Ge radioisotopes

• Production cross sections of ^{69,68}Ga were derived.

Result: Ga radioisotopes

• Production cross sections of ^{67,66}Ga were derived.

Result: Zn radioisotopes

• Production cross sections of ^{69m,65}Zn were derived.

Comparison of thick target yields

- Experimental physical thick target yields of ^{69,68}Ge, ^{67,66}Ga and ^{69m,65}Zn were determined and compared with the calculated ones using the measured cross sections.
- The consistencies could be found.

$$Y^{\text{calc}} = \frac{\lambda}{Ze} \int_0^{E_{\text{in}}} \frac{\sigma(E)}{S(E)} dE$$
(3)

where Z is the atomic number of the projectile, e is the elementary charge (C), E_{in} is the incident energy of the projectile (MeV), S(E) is the stopping power per areal number density of the target (MeV cm²).

Possible monitor reactions with Cu targets

- The three reactions, ^{nat}Cu(⁷Li,x)^{66,67}Ga, ⁶⁵Zn, may be appropriate for the monitor reactions.
- Another reaction, ^{nat}Cu(⁷Li,x)⁶⁹Ge, can be added.

Monitor I	Suggestion		
Proton	Deuteron	Alpha	⁷ Li
$^{27}Al(p,x)^{22,24}Na$ $^{nat}Ti(p,x)^{48}V,^{46}Sc$ $^{nat}Ni(p,x)^{57}Ni$ $^{nat}Cu(p,x)^{62,63,65}Zn,^{56,58}Co$ $^{nat}Mo(p,x)^{96m+g}Tc$	²⁷ Al(d,x) ^{22,24} Na ^{nat} Ti(d,x) ⁴⁸ V, ⁴⁶ Sc ^{nat} Fe(d,x) ⁵⁶ Co ^{nat} Ni(d,x) ⁶¹ Cu, ^{56,58} Co ^{nat} Cu(d,x) ^{62,63,65Zn}	²⁷ Al(ɑ,x) ^{22,24} Na ^{nat} Ti(ɑ,x) ⁵¹ Cr ^{nat} Cu(ɑ,x) ^{66,67} Ga,⁶⁵Zn	^{nat} Cu(⁷ Li,x) ^{66,67} Ga, ⁶⁵ Zn

Compilation to EXFOR E2785

Nuclear Instruments and Methods in Physics Research B 554 (2024) 165441

BEAM INTERACTION WITH MATERIALS AND ATOMS

Check for updates

Activation cross sections of ⁷Li-induced reactions on ^{rai}Cu were measured in order to investigate suitability of ⁷Li induced reaction on ^{uni}Cu some reactions for monitoring experimental parameters. Cross sections producing 64,68Ge, 57,65Ga and 63m,657 Monitor reaction were determined. Physical thick target yields were experimentally measured and compared with those calculated Production cross section of 69,68Ge, 67,66Ga, using the measured cross sections. The measured cross sections were verified by the agreements leaween the directly measured thick target yields and the thick target yields deduced from the measured cross sections ⁷Li-induced reactions on ¹⁸¹Cu for the production of ^{67,66}Ga and ⁶⁵Zn are suggested as monitor reactions. red cross sections. The Excitation function

measured cross sections.

2. Experimental details and data analysis

EXFOR library [8], only one experimental study was found below 10

MeV [9]. We performed experiments at the 72-MeV 7Li energy to me

sure activation cross sections of the reactions in which longer-lived reaction products are formed. The reaction cross sections for formation of 60,56 Ge, 67,56 Ga, and 60m,55 Zu on 10al Cu targets bombarded by 7 Li pro-

jectiles were determined. In order to verify the experimentally measured

cross sections physical thick target yields were also determined experi-

mentally and were compared with calculated ones based on the

We conducted three experiments; two experiments were dedicated

for measurements of excitation functions and one for determination of

thick target yields of selected reactions. Beams of ⁷Li particles at 72 MeV

were used for irradiation at the AVF cyclotron in RIKEN. The stacked-foil

activation technique was applied. In order to identify the radioactive

Targets #1 and #2 served for excitation function measurements and

Three separate targets were prepared for the three experiments.

products y-ray spectrometry was used in all experiments.

1. Introduction

Sm.6CZn

Charged-particle-induced reactions are used for radionuclide production for different applications, such as imaging and therapy in nuclear medicine. One attractive radionuclide for nuclear medicine is ²¹¹At, which has a half-life of 7.214 h and is promising radionuclide for targeted g-particle therapy [1-3]. Its longer-lived parent nucleus ²¹¹Bn $(T_{1/2} = 14.6 \text{ h})$ can be employed in the ²¹¹Rn/²¹¹At generator [4,5]. One potential production route of the ²¹¹Rn radionuclicle is through ⁶Li- and ⁷Li-induced reactions on a ²⁰⁹Bi target. In order to maximize the production of ²¹¹Rn under the constraint to minimize the unnecessary byproducts, monitor reactions play an important role to determine and monitor the optimal beam parameters. As there are no established monitor reactions for both stable lithium isotones ⁶Li and ⁷Li as projectiles, we started a systematic study to select target materials for possible monitor reactions.

Copper is a target material of monitor reactions for proton-, deuteron-, ³He- and α-particle-induced reactions [6,7]. As a ²Li beam is more frequently used than the beam of ⁵Li we focused on ⁷Li-induced reactions on ^{nat}Cu. In the literature survey based on the latest version of

* Corresponding author at: Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

E-mail address: aikawa@sci hokudai ac.jp (M- Aikawa)

https://doi.org/10.1016/j.nimb.2024.16544

Received 12 March 2024; Received in revised form 4 June 2024; Accepted 12 June 2024 0168-583X/3 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies

ENTRY	E2785 20240722	E278500000001
SUBENT	E2785001 20240722	E278500100001
BIB	12 25	E278500100002
TITLE	Activation cross sections of 7Li-induced reactions on	E278500100003
	natCu for monitor reactions	E278500100004
AUTHOR	(M.Aikawa, S.Goto, D.Gantumur, D.Ichinkhorloo, N.Ukon,	E278500100005
	N.Otuka, S.Takacs, H.Haba)	E278500100006
INSTITUTE	(2JPNHOK, 3MGLNUM, 2JPNFMU, 3ZZZIAE, 3HUNDEB, 2JPNIPC)	E278500100007
REFERENCE	(J,NIM/B,554,165441,2024)	E278500100008
INC-SOURCE	Beam intensity: 314 and 321 nA for cross sections and	E278500100009
	309 nA for thick target yields	E278500100010
SAMPLE	- Chemical-form of target is element.	E278500100011
	- Physical-form of target is solid.	E278500100012
	- Target-thickness: 4.49 mg/cm2 for cross sections and	E278500100013
	21.5 mg/cm2 for thick target yields	E278500100014
METHOD	(ACTIV) Irradiated for 60 min for cross sections and	E278500100015
	30 min for thick target yields	E278500100016
	(GSPEC)	E278500100017
FACILITY	(ISOCY, 2JPNIPC)	E278500100018
DETECTOR	(HPGE)	E278500100019
ERR-ANALYS	(ERR-1) beam intensity	E278500100020
	(ERR-2,0.1,11.) gamma ray intensity (0.1-11%)	E278500100021
	(ERR-3) detector efficiency	E278500100022
	(ERR-4) target thickness	E278500100023
	(ERR-S,0.5,37.) counting statistics (0.5-37%)	E278500100024
FLAG	(1.) Result using stacked target no. 1	E278500100025
	(2.) Result using stacked target no. 2	E278500100026
HISTORY	(20240623C) MA	E278500100027
ENDBIB	25 0	E278500100028
COMMON	3 3	E278500100029
ERR-1	ERR-3 ERR-4	E278500100030
PER-CENT	PER-CENT PER-CENT	E278500100031
5.	5. 1.	E278500100032
ENDCOMMON	3 0	E278500100033
ENDSUBENT	32 0	E278500199999

Experiments of Ti targets

- Experiments were conducted at the RIKEN AVF cyclotron
- Three stacked targets were irradiated with 71.6-MeV ⁷Li beams.

	#1 (σ)	#2 (σ)	#3 (TTY)
Energy			
Intensity	314 ± 16 nA	321 ± 16 nA	309 ± 15 nA
Period	3600 s	3600 s	1800 s
Target	17 sets of Cu-Al-Ti-Al foils	17 sets of Ti-Al-Cu-Al foils	7 Ti foils
^{nat} Ti	$2.34 \pm 0.02 \text{ mg/cm}^2$		$22.7 \pm 0.2 \text{ mg/cm}^2$
natCu	$4.49 \pm 0.04 \text{ mg/cm}^2$		
²⁷ Al	1.21 ± 0.01 mg/cm ²		

Activation cross sections

Cross sections to form ^{54,52g}Mn, ^{51,49,48}Cr, ⁴⁸V, and ^{48,47,46}Sc derived from the two experiment are consistent.

Result: Mn radioisotopes

• Production cross sections of ^{54,52g}Mn were derived.

HOKKAIDO UNIVERSITY

Result: Cr radioisotopes

• Production cross sections of ^{51,49,48}Cr were derived.

Problems $^{49}\text{Cr:}$ Low σ and short T $_{1/2}$ (42.3 min) $^{48}\text{Cr:}$ Low σ

NuDat 3.0

Result: V radioisotopes

• Production cross sections of ⁴⁸V were derived.

HOKKAIDO UNIVERSITY Graduate School of Biomedical Science and Engineering Problems

⁴⁸V: Unknown effect of secondary particles at low energy region

NuDat 3.0

Comparison of thick target yields

- Experimental physical thick target yields of ^{54,52g}Mn, ⁵¹Cr, ⁴⁸V, and ^{48,47,46}Sc were determined and compared with the calculated ones using the measured cross sections.
- The consistencies could be found.

Possible monitor reactions with Ti targets

• The three reaction, ^{nat}Ti(⁷Li,x)^{54,52g}Mn, ⁵¹Cr, may be appropriate for the monitor reactions.

Monitor	Suggestion		
Proton	Deuteron	Alpha	⁷ Li
²⁷ AI(p,x) ^{22,24} Na ^{nat} Ti(p,x) ⁴⁸ V, ⁴⁶ Sc ^{nat} Ni(p,x) ⁵⁷ Ni ^{nat} Cu(p,x) ^{62,63,65Zn,^{56,58}Co ^{nat}Mo(p,x)^{96m+g}Tc}	²⁷ Al(d,x) ^{22,24} Na ^{nat} Ti(d,x) ⁴⁸ V, ⁴⁶ Sc ^{nat} Fe(d,x) ⁵⁶ Co ^{nat} Ni(d,x) ⁶¹ Cu, ^{56,58} Co ^{nat} Cu(d,x) ^{62,63,65Zn}	²⁷ Al(ɑ,x) ^{22,24} Na ^{nat} Ti(ɑ,x) ⁵¹ Cr ^{nat} Cu(ɑ,x) ^{66,67} Ga, ⁶⁵ Zn	^{nat} Ti(⁷ Li,x) ^{54,52g} Mn, ⁵¹ Cr ^{nat} Cu(⁷ Li,x) ^{66,67} Ga, ⁶⁵ Zn

Compilation to EXFOR E2798 (Prelim.E151)

BEAM INTERACTIONS WITH MATERIALS AND ATOMS

expected to serve as a target for ⁷Li-induced monitor reactions. A literature survey using the EXFOR library [10] revealed no experimental

studies on the cross sections of these reactions. Therefore, we conducted experiments using ⁷Li beams. The production cross sections of ^{8-1,24}9Mn, ⁵¹,4³,4⁶Cr, ⁴⁸V, and ^{48,47,46}Sc and the physical thick target yields of ^{54,52}9Mn, ⁵¹Cr, ⁴⁸V, and ^{48,47,46}Sc were measured. The experimental

yields were compared with values calculated from the cross sections to

validate the obtained results. The reactions are discussed from the

perspective of their suitability for monitoring ⁷Li beam parameters. They

should have sufficiently large cross sections in a wide energy range and

the excitation functions should be smooth with a few clear maxima

These characteristics are essential for comparison with measured data

We conducted three experiments: two to determine excitation

functions and one to determine thick target yields of ⁷Li-induced re-

actions. The experiments were implemented using 72-MeV ⁷Li beams

and for fine-tuning parameters.

2. Experimental details and data analysis

Nuclear Instruments and Methods in Physics Research B 559 (2025) 165579

Contents lists available at ScienceDirect Nuclear Inst. and Methods in Physics Research, B

iournal homepage: www.elsevier.com/locate/nimb

Activation cross sections of ⁷Li-induced reactions on ^{nat}Ti: Implications for monitor reactions

Masayuki Aikawa ^{a,b,c,*}, Aika Goto^c, Damdinsuren Gantumur^c, Dagyadori Ichinkhorloo^d, Naoyuki Ukon^e, Naohiko Otuka[†], Sándor Takács⁸, Hiromitsu Haba

8 Faculty of Science, Hokkaido University, Samoro 060 0820, Janan ^b Glabal Conter for Biomedical Science and Ingineering, Yazulty of Mellcine, Hokkaida University, Sapporo 060 8648, Japan ^c Graduate School of Biomedical Science and Ingineering, Hokkaida University, Sapporo 060 8648, Japan ⁴ Nuclear Research Center, National University of Mongolia, Ulaanbaatar 13330, Mongolia ⁶ Advanced Chinical Research Center, Fukushima Medical University, Fukushima 960-1295, Japan ⁶ Advanced Chinical Research Center, Fukushima Medical University, Fukushima 960-1295, Japan ⁶ Nuclear Data Section, International Atomic Energy Agency, A : 1400 Wiet, Austria ⁸ HUN-REN Institute for Nuclear Research, ATOMKI, Debrecen 4026, Hangary ^b Nishina Center for Accelerator Based Science, RIKEN, Woko 351-0198, Japan

ABSTRACT

ARTICLEINFO

Activation cross sections for 7Li-induced reactions on 788 Ti were measured to discuss the suitability of selected ⁷Li induced reaction on ^{sat}Ti Protection cross because of a manage free free for 0^{-1} in these measures to the data of the matrix degrees reactions as monitor ones. The errors sections for the production of $e^{2\pi i M_{\rm H}} n_{\rm eff}^{-2\pi i M_{\rm H}} n_{\rm eff}^{-2\pi i M_{\rm H}} n_{\rm eff}^{-2\pi i M_{\rm H}}$ where determined for the first time. Additionally, the thick target yields of $e^{2\pi i M_{\rm H}} n_{\rm eff}^{-2\pi i M_{\rm H}}$ and $e^{4\pi i M_{\rm eff}^{-2\pi i M_{\rm H}}}$ and $e^{4\pi i M_{\rm eff}^{-2\pi i M_{\rm H}}}$. Monitor reaction Production cross section of 54, 528Mn 10V and 1817,16Sc agreement between the experimental and calculated thick target yields validates the reliability of the experi-mental data measured in this work. The ⁷Li-induced reactions on ¹⁴⁶Ti for the production of ^{54,52}8Mn, and ⁵¹Cr Excitation function are recommended as monitor reactions.

1. Introduction

Keywords:

.45,48Cr

Radionuclides produced in charged-particle-induced reactions are useful for different applications, such as imaging and therapy in nuclear medicine, radio-tracing, thin layer activation and so on. One possible projectile is ⁷Li, which can generate a medically important radioisotope $^{211}Rn (T_{1/2} - 14.6 h) [1–3]$ for the $^{211}Rn / ^{211}At$ generator via the ^{200}Bi (7L1,5n)211Rn reaction [4,5]. The production of 211Rn for practical use needs to be maximized, while minimizing the generation of unnecessary by-products. To determine and optimize the target thickness and the beam parameters, monitor reactions are essential. However, no suitable monitor reactions have been identified yet for ⁷Li-induced reactions. We have initiated a systematic study to identify potential monitor reactions induced by the ⁷Li projectiles. Among possible target materials, we investigated ^{nat}Cu and identified several reactions that may serve as potential monitor ones [6]. In this paper, we focus on ^{ast}Ti as a target material.

Titanium is widely used as target material for monitor reactions induced by protons, deuterons, ³He, and a particles [7-9]. It is also

* Corresponding author. E-mail address; aikawa@sci hokudai ac.jp (M-Aikawa)

https://doi.org/10.1016/j.nimb.2024.16557

Received 19 September 2024; Received in revised form 26 October 2024; Accepted 10 November 2024 0168-583X/\$ 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

	ENTRY	E2798 20241125	E279800000001
	SUBENT	E2798001 20241125	E279800100001
	BIB	12 22	E279800100002
	TITLE	Activation cross sections of 7Li-induced reactions on	E279800100003
		natTi: Implications for monitor reactions	E279800100004
	AUTHOR	(M.Aikawa, S.Goto, D.Gantumur, D.Ichinkhorloo, N.Ukon,	E279800100005
		N.Otuka, S.Takacs, H.Haba)	E279800100006
	INSTITUTE	(2JPNHOK, 3MGLNUM, 2JPNFMU, 3ZZZIAE, 3HUNDEB, 2JPNIPC)	E279800100007
	REFERENCE	(J,NIM/B,559,165579,2025)	E279800100008
	INC-SOURCE	Beam intensity: 314, 321, and 309 nA, respectively.	E279800100009
	SAMPLE	- Chemical-form of target is element.	E279800100010
		- Physical-form of target is solid.	E279800100011
		- Target-thickness is 2.34 mg/cm2.	E279800100012
	METHOD	(ACTIV) Irradiated for 60, 60, and 30 min.,	E279800100013
		respectively.	E279800100014
		(GSPEC)	E279800100015
	FACILITY	(ISOCY,2JPNIPC) AVF cyclotron	E279800100016
	DETECTOR	(HPGE)	E279800100017
	ERR-ANALYS	(ERR-1) target thickness	E279800100018
)		(ERR-2) detector efficiency	E279800100019
1		(ERR-3) current integration by Faraday cups	E279800100020
		(ERR-4,,3.6) gamma-ray intensity (<3.6%)	E279800100021
	FLAG	(1.) Result using stacked target no. 1	E279800100022
		(2.) Result using stacked target no. 2	E279800100023
	HISTORY	(20241124C) MA	E279800100024
	ENDBIB	22 0	E279800100025
	COMMON	3 3	E279800100026
	ERR-1	ERR-2 ERR-3	E279800100027
	PER-CENT	PER-CENT PER-CENT	E279800100028
	1.	5. 5.	E279800100029
	ENDCOMMON	3 0	E279800100030
	ENDSUBENT	29 0	E279800199999
	SUBENT	E2798002 20241125	E279800200001
	BIB	4 4	E279800200002
	REACTION	(22-TI-0(3-LI-7,X)25-MN-54,,SIG)	E279800200003
	DECAY-DATA	(25-MN-54,312.20D,DG,834.8,0.999760)	E279800200004
	ERR-ANALYS	(ERR-T) Total uncertainty	E279800200005
	STATUS	(TABLE,,M.Aikawa+,J,NIM/B,559,165579,2025) Tables 4-5	E279800200006

Summary

- There are no monitor reactions for lithium-induced reactions.
- We performed to measure cross sections of ⁷Li-induced reactions on ^{nat}Cu and ^{nat}Ti to discuss possible monitor reactions.
- We found several possible reactions,
 - ^{nat}Ti(7Li,x)^{54,52g}Mn,⁵¹Cr
 - ^{nat}Cu(7Li,x)^{66,67}Ga,⁶⁵Zn
- We will accumulate their data and study other possible targets, e.g., ²⁷Al, ^{nat}Ni, and ^{nat}Fe.

Collaborators

- Saki Goto (Hokkaido U.)
- Damdinsuren Gantumur (Hokkaido U.)
- Dagvadorj Ichinkhorloo (NUM)
- Naoyuki Ukon (FMU)
- Naohiko Otuka (IAEA)
- Sándor Takács (ATOMKI)
- Hiromitsu Haba (RIKEN)

