Simultaneous evaluation of ²³²Th and ²³⁷Np fast neutron-induced fission cross sections up to 200 MeV using EXFOR library

Vidya Devi^a and Naohiko Otuka^b

^aPanjab University, Chandigarh, India

^b IAEA Nuclear Data Section

December 3-6, 2024, IAEA

Content

- Introduction
- Evaluation method
- Results for ²³²Th and ²³⁷Np
- Summary

Introduction:

- ²³²Th and ²³⁷Np fissions for reactor application
 - ²³²Th turns into a useful fuel (²³³U), potential alternative for producing nuclear energy.
 - ²³⁷Np in spent nuclear reactor fuel. Challenge for long-term waste management due to long half-life (~2 My).
 - ²³⁷Np fission as a dosimetry / reference reaction for MeV neutron (an alternative of ²³⁸U fission)
- New measurement at the CERN n_TOF, CSNS Back-n etc. compiled in EXFOR
- \rightarrow Reevaluation of ²³²Th and ²³⁷Np fission cross sections for fast neutrons up to 200 MeV.

Evaluation Method

- **Revisions** of EXFOR entries included adding missing information, removing duplicate datasets from the same measurements, and reformatting.
- Assignment of correlation properties for each partial uncertainty by estimating from partial uncertainties and deriving missing values with the quadrature sum rule.
- Conversion to SOK input format. The SOX code converts EXFOR data to SOK file.
- **SOK fitting** updates cross sections estimates using experimental data and Schmittroth's roof function.

Selections of Experimental Datasets

• data reported from 1970 to the present

Following datasets were discarded in general:

- Digitized data and compiled data without partial uncertainties.
- data from nuclear explosion

Formalism

The SOK code models the logarithm of the cross section as a linear combination of Schmittroth's roof functions $\phi_i(E)$ defined by introducing n energy nodes between E_1 and E_n . It is expressed as:

$$\ln \sigma_{exp}(E) = \sum_{j=1}^{n} \ln \sigma_{eva,j} \phi_j(E)$$
(1)

with $\phi_i(E)$ are the basis functions centered around each energy node E_i , defined by:

$$\phi_{j}(E) = \begin{cases} \frac{E - E_{j-1}}{E_{j} - E_{j-1}} & \text{if } E_{j-1} \leq E \leq E_{j} ,\\ \frac{E_{j+1} - E}{E_{j+1} - E_{j}} & \text{if } E_{j} \leq E \leq E_{j+1} ,\\ 0 & \text{otherwise.} \end{cases}$$
(2)

Data transfer from EXFOR entries to SOK input

EXFOR Input Files

Data list file (list of experimental datasets – subentry# +pointer)

%237Np(n,f)/239Pu(n,f):7.0E+04:2.5E+08:0.0:1.2:RT:0.0:1.2:RT 40507.002 20240617 1.0000E+00 1.0000E+00 4RUSFEI V.M.Kupriyanov+,1978 40507.004 20240617 1.0000E+00 1.0000E+00 4RUSFEI V.M.Kupriyanov+,1978

EXFOR (EXF) file

SUBENT	40507	004	2024061	L7		
BIB		7	1	L7		
REACTION	((93-NP-	237(N,	,F),,SIG	6)/(94-PU	239(N,F),,SI	G))
•••						
ERR-ANALYS	(ERR-T)	Root-n Energy	nean-squ / depend	uare sum d lence of t	of all uncerta the shape rat:	ainties from io
	(ERR-1)	Absolu	, ite rati	los for no	ormalization	(1.5%)
	(ERR-2)	Normal	lizatior	n procedur	re of shape	(0.25%)
•••						
ENDBIB		17		0		
COMMON		2		3		
ERR-1	ERR-2					
PER-CENT	PER-CENT					
1.5	0.25					
ENDCOMMON		3		0		
DATA		4	6	51		
EN	EN-ERR	DAT	ГА	ERR-T		
MEV	KEV	NO-	-DIM	PER-CEN	Г	
0.130	21.	0.	.015	4.8		
0.180	20.	0.	.022	4.3		
0.230	19.	0.	.025	4.1		
0.280	18.	0.	034	4.0		

Header (HED) file Correlation property etc.

EXFOR Input Files: Correlation file

#22211.002 T.Iwasaki+,1990 19 1.000 0.410 1.000 0.340 0.370 1.000 0.340 0.350 0.280 1.000 0.340 0.260 0.250 0.260 1.000 A correlation file is created only when 0.410 0.320 0.300 0.310 0.370 1.000 correlation coefficients in EXFOR entries 0.430 0.360 0.320 0.330 0.360 0.430 1.000 are available under COVARIANCE. 0.430 0.310 0.300 0.320 0.400 0.480 0.470 1.000 0.500 0.480 0.400 0.400 0.400 0.480 0.500 0.500 1.000 0.440 0.320 0.310 0.330 0.410 0.480 0.480 0.540 0.520 1.000 0.450 0.330 0.320 0.330 0.410 0.490 0.480 0.540 0.530 0.550 1.000 0.410 0.270 0.280 0.300 0.400 0.470 0.460 0.530 0.480 0.540 0.550 1.000 0.490 0.550 0.420 0.400 0.350 0.430 0.470 0.430 0.590 0.440 0.460 0.400 1.000

SOX output (=Experimental Input of SOK)

fort.10 (experimental cross section: $E_1, \sigma_1, E_2, \sigma_2, ...$)

40507.004	V.M.Kupriyanov+,1978	61	
1.3000E+05	1.5000E-02 1.8000E+0	05 2.2000E-02 2.3000E+05	2.5000E-02
2.8000E+05	3.4000E-02 3.5000E+0	05 6.8000E-02 4.0000E+05	1.0700E-01
4.5000E+05	1.7400E-01 5.0000E+0	05 2.6500E-01 5.5000E+05	3.5600E-01
6.0000E+05	4.4100E-01 6.5000E+0	5 5.3900E-01 7.0000E+05	6.1300E-01

fort.11 (experimental total uncertainty: E_1 , $\Delta\sigma1$, E_2 , $\Delta\sigma2$, ...)

40507.004	V.M.Kupriya	anov+,1978		61	
1.3000E+05	4.8000E-02	1.8000E+05	4.3000E-02	2.3000E+05	4.1000E-02
2.8000E+05	4.0000E-02	3.5000E+05	3.5000E-02	4.0000E+05	2.9000E-02
4.5000E+05	2.7000E-02	5.0000E+05	2.6000E-02	5.5000E+05	2.4000E-02
6.0000E+05	2.3000E-02	6.5000E+05	2.6000E-02	7.0000E+05	2.3000E-02

fort.12 (experimental correlation coefficients)

40507.004	V.M.Kupriyanov+,1978 61	
1.000		
0.112 1.00	00	
0.118 0.13	31 1.000	
0.120 0.13	34 0.141 1.000	
0.138 0.15	54 0.161 0.165 1.000	
0.166 0.18	85 0.194 0.199 0.228 1.000	
0.178 0.19	99 0.209 0.214 0.245 0.295 1.000	
0.185 0.20	07 0.217 0.222 0.254 0.307 0.329 1.000	

Simultaneous fitting of ²³²Th with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section.

Simultaneous fitting of ²³²Th/²³⁵U with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section below 1 MeV.

Simultaneous fitting of ²³²Th/²³⁵U with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section above 1 MeV.

Difference in ²³²Th fission cross sections between evaluations

²⁵²Cf(sf) fission neutron spectrum average cross sections (SACS) relative to Grundl et al.

Preliminary result: Simultaneous fitting of ²³⁷Np with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section.

Preliminary result: Simultaneous fitting of ²³⁷Np /²³⁵U with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section.

Preliminary result: Simultaneous fitting of ²³⁷Np /²³⁵U with ^{233,235,238}U, ²³⁹⁻²⁴¹Pu fission cross section.

Summary

- **Revision of EXFOR entries** with other centres for direct use of EXFOR entries as inputs to least-squares analysis
- Simultaneous evaluation of ²³²Th(n,f), ^{233,235,238}U and ²³⁹⁻²⁴¹Pu till 200 MeV with SOK:
 - ²³²Th: Our cross sections systematically lower than JENDL-5. SACS from our cross sections is 11% lower than Grundl et al.'s and closer to other libraries than JENDL-5.
 - ²³⁷Np: Our cross sections are higher than JENDL-5 above 1 MeV but all datasets align better with JENDL-5 and the present evaluation below 1 MeV.

Work in progress

Future work will involve completing the study of simultaneous evaluation of ²³⁷Np(n,f), ^{233,235,238}U and ²³⁹⁻²⁴¹Pu and their validation against spectrum-averaged cross section measurements in the ²⁵²Cf spontaneous fission neutron field.

Acknowledgment

- Yonghao Chen (Institute of High Energy Physics, China),
- Diego Tarrío (Uppsala University, Sweden),
- Zhizhou Ren (University of Science and Technology of China, China),
- Veatriki Michalopoulou (National Technical University of Athens),
- Francesca Belloni (CEA Saclay).
- Jimin Wang (China Institute of Atomic Energy)
- Emmeric Dupont (CEA Saclay)

Additionally, we thank the NRDC members for maintaining and developing the EXFOR library.

THANK YOU