

From Paper to Data: GSYS and the Digital Transformation

لمراقم

اعيمه مر كال المحنسقين

M.Odsuren, National University of Mongolia Co-worker: N.Otsuka, L.Vrapcenjak, IAEA

> Vienna, Austria 5 December 2024

لمخننيتمر

The first significant step in preserving data from paper to digi format occurred in the mid-20th century with the development of early technologies designed to convert physical documents into digital form.

Ę 1.Scanning Technology (1930s-1950s): The use of lightbased systems to create digital images of paper documents. 2.Optical Character Recognition (1960s): OCR software was developed to convert scanned images into machine-readable text.

3.Microfilm and Microfiche (1970s): Analog methods for preserving documents in a compact, easy-to-store format. 4.Digital Libraries and Cloud Storage (1990s-Present): The rise of digital preservation via cloud computing and OCR software to archive and manage vast amounts of data. These steps were crucial in making data accessible and easier to store, preserve, and manage over time, laying the foundation for today's digital archival systems.

Nuclear Science and Technology

The International Nuclear Information System (INIS) is a specialized database established by the International Atomic Energy Agency (IAEA) in 1969. Its primary goal is to serve as a global information resource for nuclear science and technology. INIS collects, stores, and disseminates nuclear-related information from various scientific, academic, and governmental sources.

INIS, IAEA is a prime example of preserving data from paper-based documents to digital formats. It has transformed the way nuclear research, technical data, and regulatory documents are stored and accessed. By digitizing historical materials and continually updating with new content, INIS ensures that vital nuclear information is preserved for future generations, supporting research and policy development on a global scale.

Specialized Libraries, Databases

- INIS is unique in its specific focus on nuclear science and
- **technology**, there are several similar specialized libraries and digital repositories that focus on preserving and disseminating scientific and technical data in various fields, such as medicine, engineering, health, physics, and agriculture
- **1. PubMed (National Library of Medicine):** Biomedical and life sciences research.
- 2. IEEE Xplore: Electrical engineering, computer science, and electronics
- **3. World Health Organization (WHO) Global Health Library:** Global health information.
- 4. ScienceDirect (Elsevier): Scientific, technical, and medical research.
- **5. UNESCO's Digital Library:** Cultural heritage, education, and sustainable development.
- 6. ArXiv: Physics, mathematics, computer science, and other scientific fields.
- **7. CERN Document Server (CDS):** High-energy physics, CERN-related research.

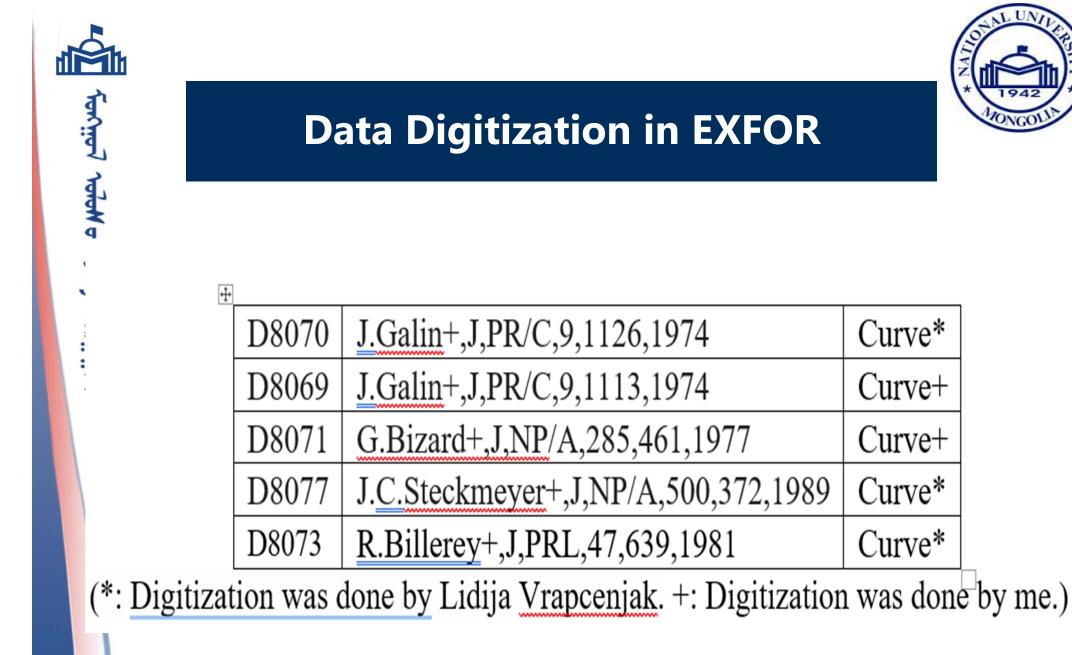
8. NASA Astrophysics Data System (ADS): Astronomy and astrophysics.
9. FAO Corporate Document Repository: Agriculture and food security.
10. AGRIS (International Information System for the Agricultural Sciences and Technology): Agricultural sciences and technology.

Ę

لمعتنيتمين

Data Digitization in EXFOR

The EXFOR database was established in the 1960s by the Markov IAEA (International Atomic Energy Agency) and associated organizations.

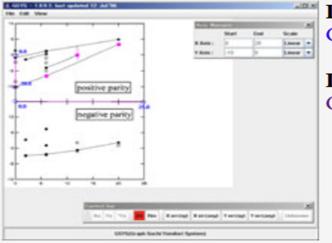

Digitization Methodology:

Digitization involves two primary tasks:

- converting experimental results into formats understandable to computers
- organizing the data for easy retrieval and analysis

For EXFOR, a specific format (the "EXFOR format") was developed to ensure consistency and reliability in data conversion.

The data are digitized into tables, categorizing each physical quantity separately.



·海道大学大学院理学研究院附属 原子核反応データ研究同発センター

Hokkaido University Nuclear Reaction Data Centre

| NRDF | EXFOR | CINDA | ENDF | English | Japanese | Internal 42

Hokkaido University Nuclear Reaction Data Centre (JCPRG) Graph Digitizing System (GSYS, SyGRD)

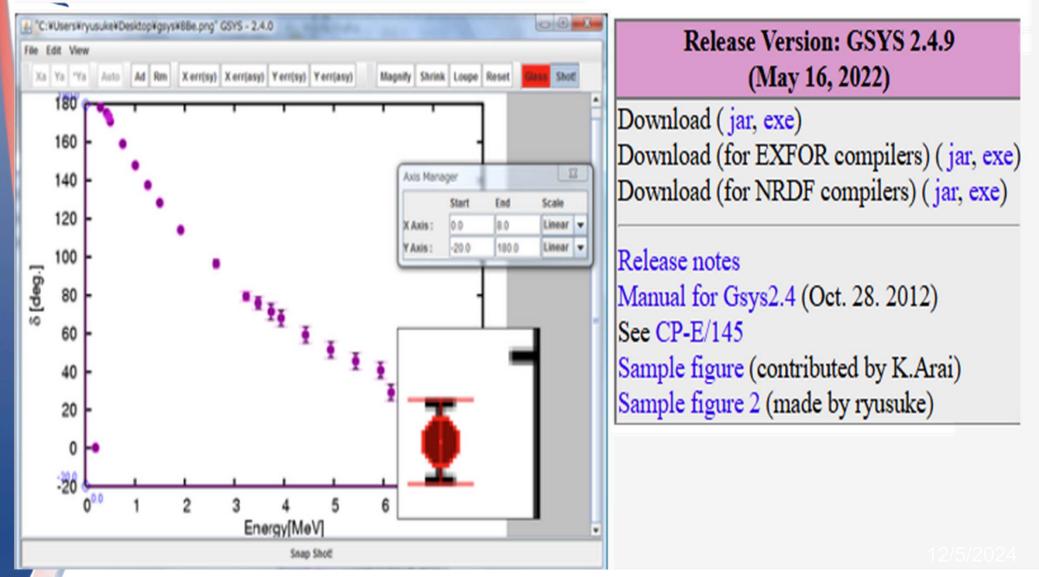
Latest version GSYS 2.4 (May 16, 2022)

Development version GSYS 2.5.27 (Oct. 7, 2022)

Choose a different version?

GSYS Ver. 2.2 (Dec. 31, 2006) GSYS Ver.2 (Aug. 02, 2006) GSYS Ver.1 (Feb. 02, 2005) SyGRD Ver.2 (Oct. 12, 2001)

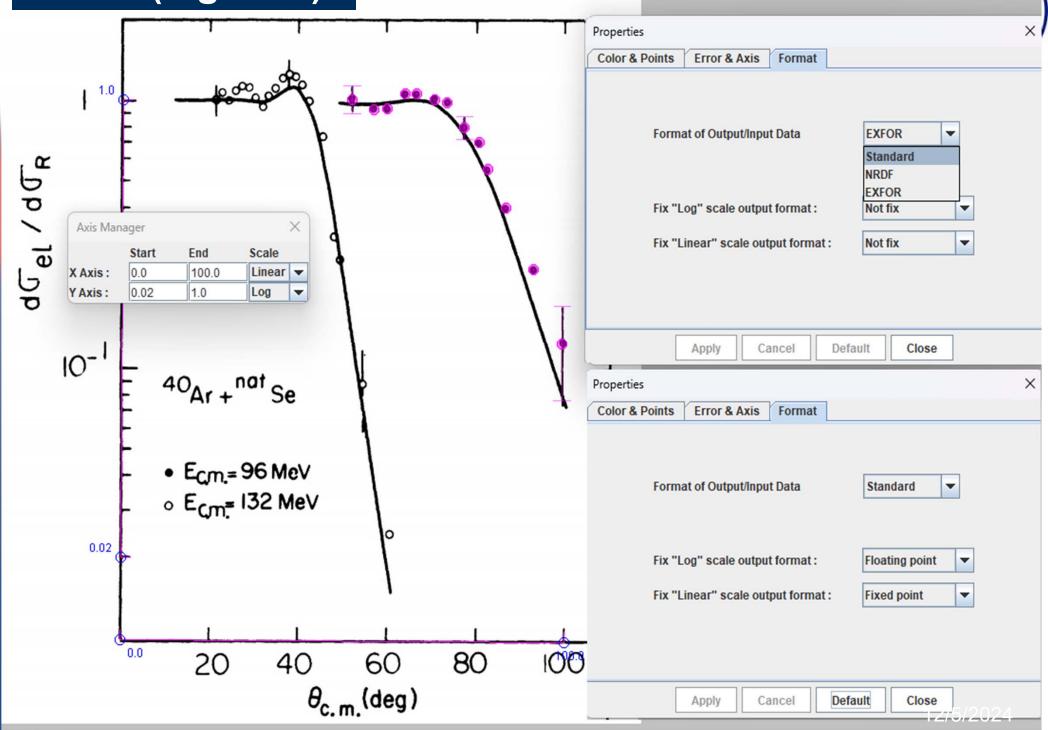
Please use following address, if you have any questions or request. gsys@jcprg.org

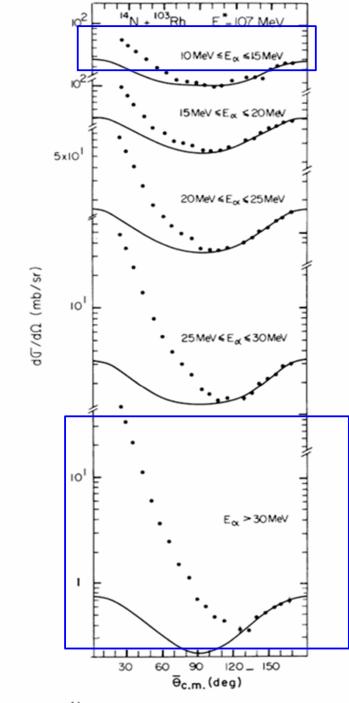

Feel free to inquire anything (web service, contribution to databases etc.): Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University 060-0810 Sapporo, Japan TEL +81(JPN)-11-706-3723 / FAX +81(JPN)-11-706-3724

Japan Charged-Particle Nuclear Reaction Data Group (JCPRG) Graph Suchi Yomitori System (GSYS2.4)

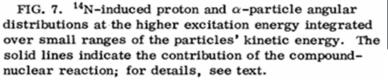
GSYS2.4

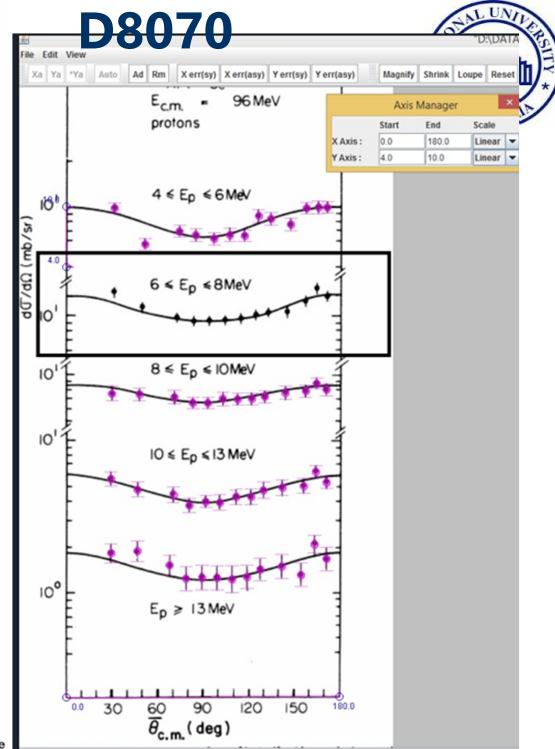
GSYS is a software to digitize data points on the figure in a form of graphical image (printed matter, image file,...).


This software is also useful to confirm whether the numerical value is correct or not.

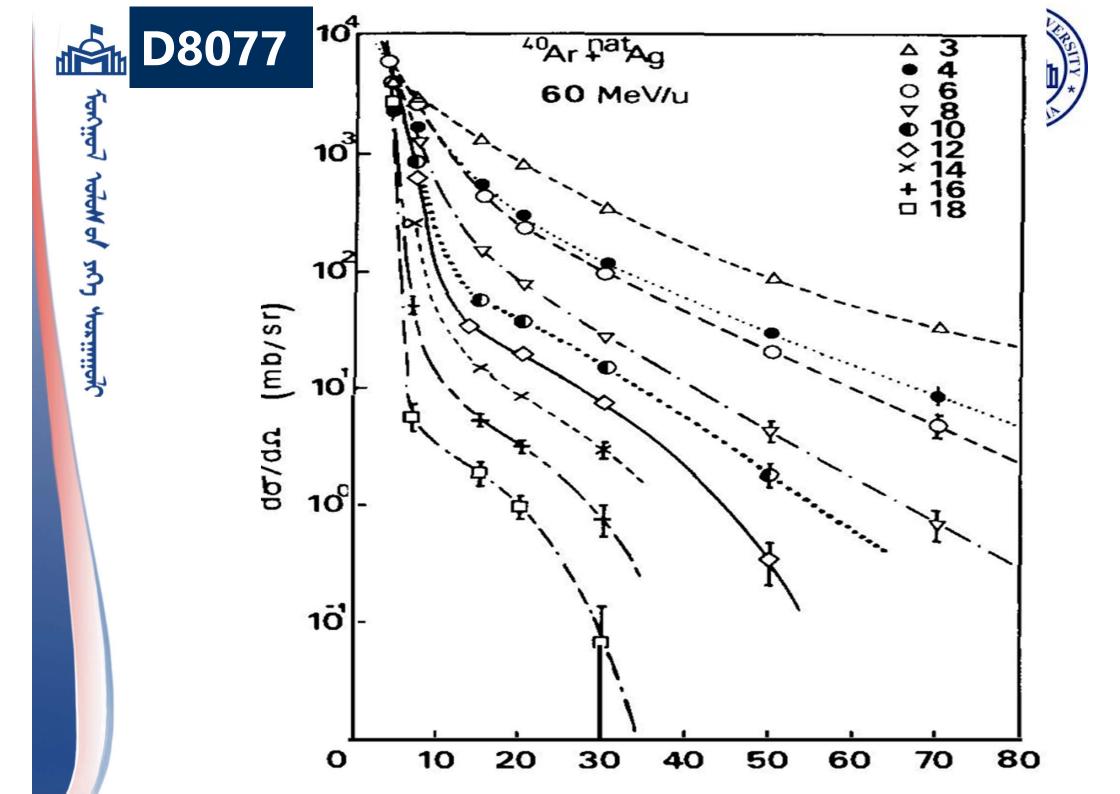

D8070		70		JAL UNIVA	
			D8070 20241001	D807000000001	5
Ш		SUBENT	D8070001 20241001	D807000100001	FY .
	Ţ	BIB	9 16	D807000100002	/
	:7	TITLE	Study of charged particles emitted from 117Te compound	D807000100003	
	5		nuclei. II.Comparison between 40Ar+77Se and 14N+103Rh	D807000100004	
	d ,		reactions and determination of critical angular	D807000100005	
	Ŧ		momenta	D807000100006	
	9	AUTHOR	(J.Galin, B.Gatty, D.Guerreau, C.Rousset,	D807000100007	
	1		U.C.Schlotthauer-Voos, X.Tarrago)	D807000100008	
	Ł	INSTITU	JTE (2FR PAR)	D807000100009	
	đ	REFEREN	NCE (J,PR/C,9,1126,1974)	D807000100010	
	لمعننينمر	SAMPLE	- Chemical-form of target is element.	D807000100011	
	ï		- Physical-form of target is solid.	D807000100012	
	ゔ		- Target-thickness is 1.64 mg/cm2.	D807000100013	
			- Target is self supported.	D807000100014	
		FACILIT		D807000100015	
		DETECTO		D807000100016	
		REL-REF		D807000100017	
		HISTORY	Y (20240924C) M.Odsuren, L.Vrapcenjak	D807000100018	
		ENDBIB	16 0	D807000100019	
		NOCOMMO	ON 0 0	D807000100020	
		ENDSUBE	ENT 19 0	D807000199999	
		SUBENT	D8070002 20241001	D807000200001	
		BIB	3 3	D807000200002	
		REACTIC	DN (45-RH-103(7-N-14,EL)45-RH-103,,DA,,RTH)	D807000200003	
		ANG-SEC		D807000200004	
		STATUS	(TABLE,,J.Galin+,J,PR/C,9,1126,1974) Figure 1	D807000200005	

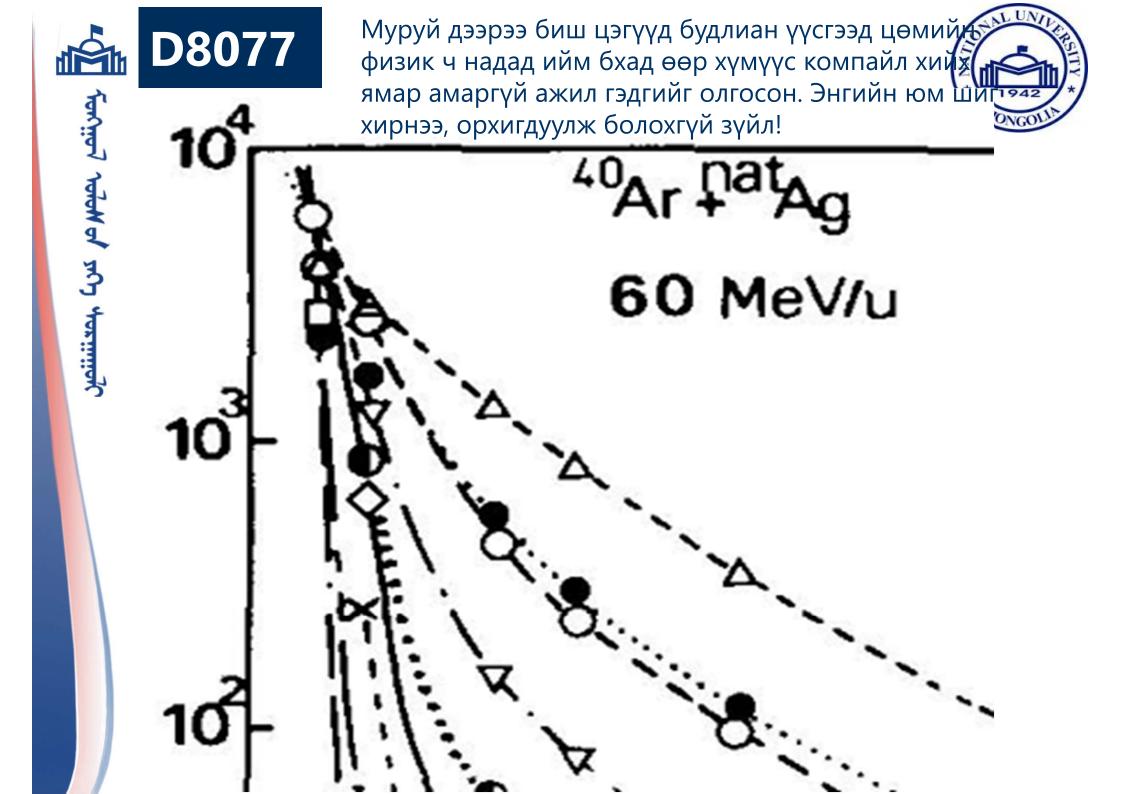
D8070 (Figure 3)


STAL UNITER

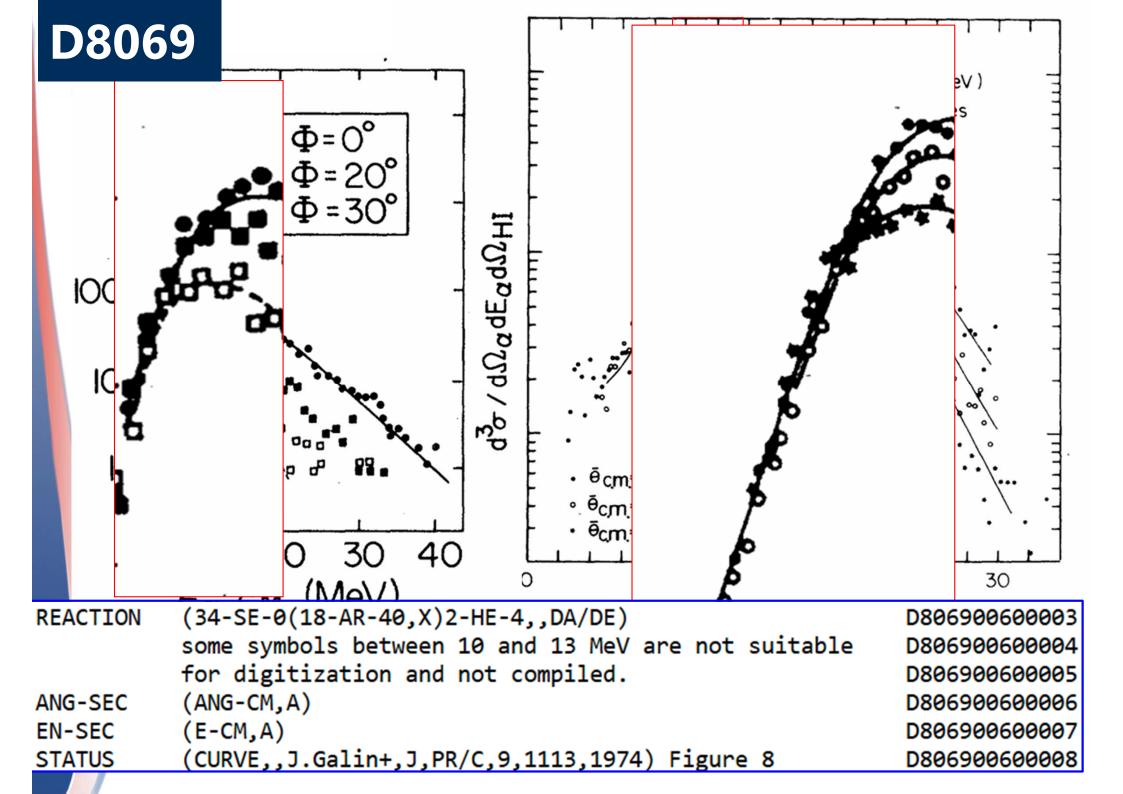


			Properties
	D8070 (Figure 3)		Color & Points Error & Axis Format
at .			Format of Output/Input Data NRDF
a a			Fix "Log" scale output format : Floating point
<u>ع</u>			Fix "Linear" scale output format : Fixed point
et •	Formatting is important!	-> ?	Apply Cancel Default Close
۹ ۹	# x y dy	# x	y +-dy
Ę	51.64 1.02E+00 1.21E-01	51.6	4 1.02E+00 +-1.21E-01
, st	56.49 9.34E-01 0.00E+00	56.4	9 9.34E-01 +-NEGLIGIBLE
، معتندنتمي	59.54 9.42E-01 0.00E+00	59.5	4 9.42E-01 +-NEGLIGIBLE
2	63.52 1.07E+00 0.00E+00	63.5	2 1.07E+00 +-NEGLIGIBLE
	66.09 1.07E+00 0.00E+00	66.0	9 1.07E+00 +-NEGLIGIBLE
	70.16 1.02E+00 0.00E+00	70.1	6 1.02E+00 +-NEGLIGIBLE
	72.98 1.00E+00 0.00E+00	72.9	8 1.00E+00 +-NEGLIGIBLE
	76.93 8.05E-01 7.87E-02	76.9	3 8.05E-01 +-7.87E-02
	80.23 7.11E-01 0.00E+00	80.2	3 7.11E-01 +-NEGLIGIBLE
	82.30 5.65E-01 0.00E+00	82.3	0 5.65E-01 +-NEGLIGIBLE
	86.27 4.05E-01 0.00E+00	86.2	7 4.05E-01 +-NEGLIGIBLE
	92.61 2.40E-01 0.00E+00	92.6	1 2.40E-01 +-NEGLIGIBLE
	99.23 1.27E-01 4.84E-02	99.2	.3 1.27E-01 +-4.84E-02

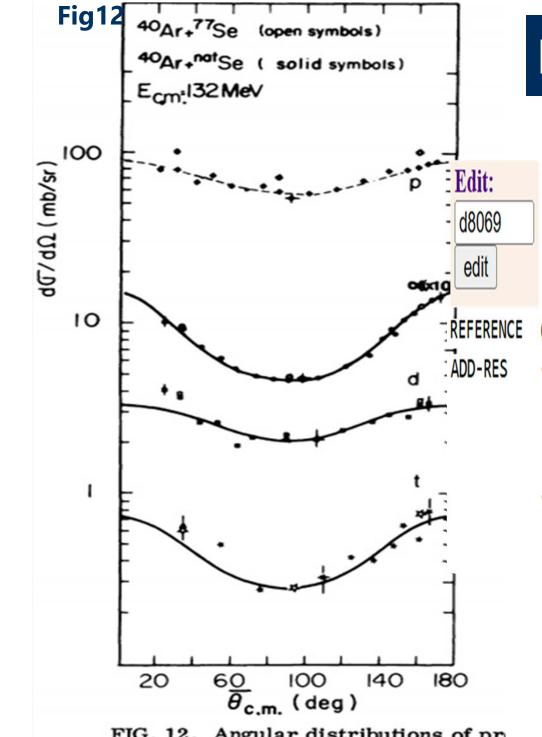
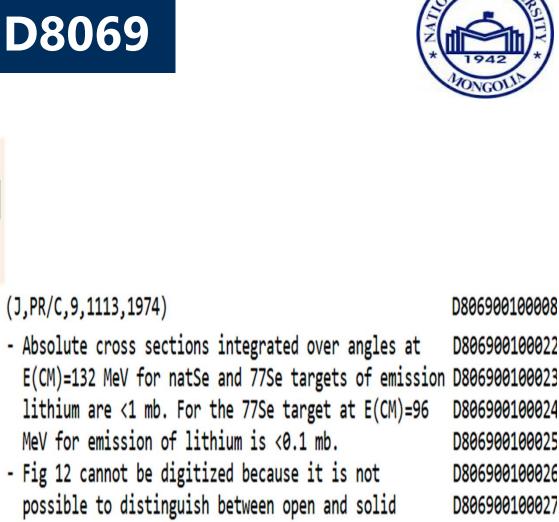


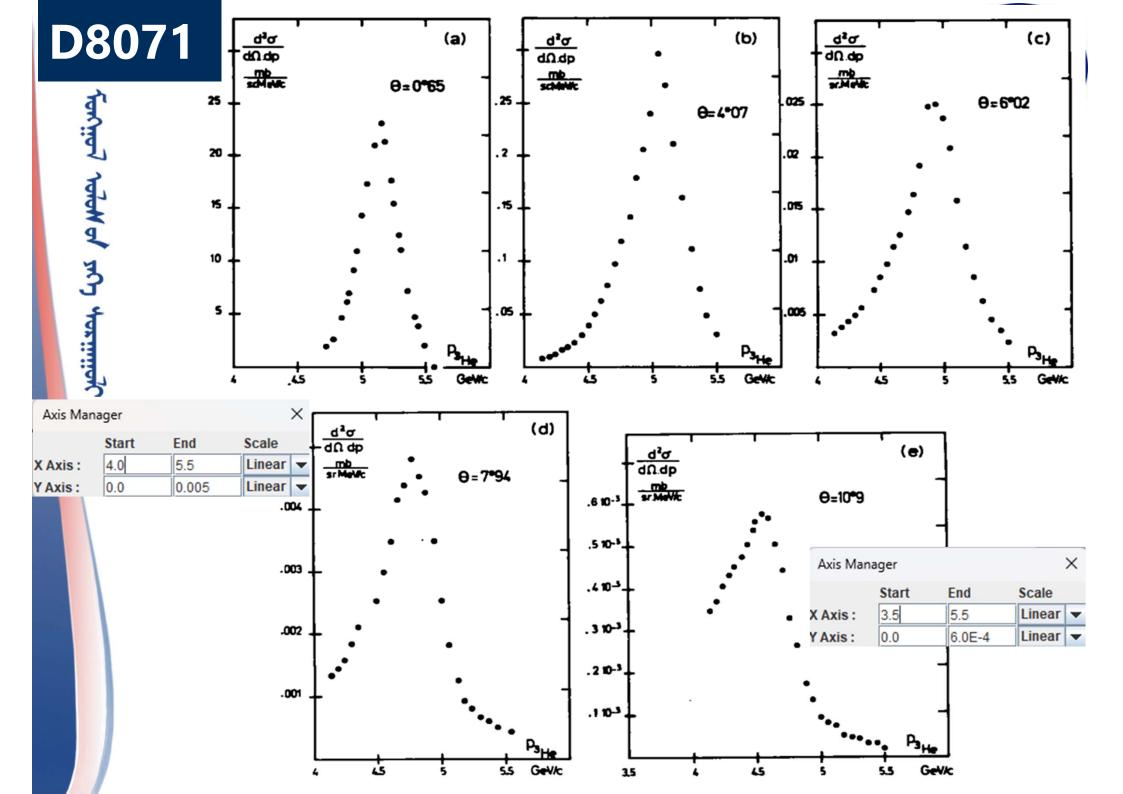

ميمهرمر عربا لمعتنتنمين

D8	077					E THUNKER
Edit:	ENTRY	D8077	20241025	5		D807700000001
d8077	SUBENT	D8077001	20241025	5		D807700100001
edit	BIB	11	18	3		D807700100002
	TITLE			d sequential de	•	D807700100003
Composite		• •	-	ents in the 60M	eV/nucleon	D807700100004
Convert:		40Ar+NatAg, 1				D807700100005
d8077	AUTHOR			zard, R.Brou, P		D807700100006
conv				owitz, J.P.Patr	• • •	D807700100007
		• •		•	J.Peter, E.Rosato,	
		-	-	, G.Rudolf, F.S	cheibling,	D807700100009
NRDF			·	n, F.Hanappe)		D807700100010
w/o data	INSTITUTE		•	STR,2FR NTE,2BL	GBRU)	D807700100011
CHEN	REFERENCE	(J,NP/A,500,3				D807700100012
	SAMPLE			get is element	•	D807700100013
EXFOR			orm of tar	rget is solid.		D807700100014
<u>w/o data</u>	METHOD	(EDE)				D807700100015
<u>CHEX</u>	FACILITY	(ACCEL,2FR GA				D807700100016
JANIS	DETECTOR	(TELES, SOLST)				D807700100017
EXFOR+	ERR-ANALYS				of uncertainties	D807700100018
Graph	STATUS		•		2,1989) Figure 3	D807700100019
<u>Oraph</u>	HISTORY			, L.Vrapcenjak		D807700100020
D'1	ENDBIB	18		9		D807700100021
<u>Bib</u>	COMMON	1		3		D807700100022
<u>Data 0A</u>	EN					D807700100023
Data 0B	MEV/A					D807700100024
Data 0X	60.	•				D807700100025
Data 1	ENDCOMMON	3		9		D807700100026
Data I	ENDSUBENT	25	(9		D807786199999



Edit:	ENTRY	D8069 20240919	D806900000001
d8069	SUBENT	D8069001 20240919	D806900100001
edit	BIB	12 27	D806900100002
euit	TITLE	Study of charged particles emitted from 117Te compound	D806900100003
		nuclei. I. Argon-induced reactions	D806900100004
Convert:	AUTHOR	(J.Galin, B.Gatty, D.Guerreau, C.Rousset,	D806900100005
d8069		U.C.Schlotthauer-Voos, X.Tarrago)	D806900100006
conv	INSTITUTE	(2FR PAR)	D806900100007
CONV	REFERENCE	(J,PR/C,9,1113,1974)	D806900100008
	INC-SOURCE	Beam intensity is 20 nA.	D806900100009
NRDF	SAMPLE	- Chemical-form of target is element.	D806900100010
w/o data		 Physical-form of target is solid. 	D806900100011
		- Target-thickness: Au (300 ug/cm2) - Se (1 mg/cm2) -	D806900100012
CHEN		Au (800 ug/cm2). Au-Se-Au sandwich target.	D806900100013
<u>EXFOR</u>		- Backing is gold.	D806900100014
<u>w/o data</u>		- Backing-thickness: 800 ug/cm2	D806900100015
CHEX	METHOD	(EDE)	D806900100016
JANIS	FACILITY		D806900100017
EXFOR+	DETECTOR	(TELES, SIBAR, SILI)	D806900100018
	ERR-ANALYS	(ERR-1,10.,15.) Absolute cross section uncertainty of	D806900100019
<u>Graph</u>		10% (higher energy) and 15% (lower	D806900100020
		energy). (10-15%)	D806900100021
<u>Bib</u>	ADD-RES	- Absolute cross sections integrated over angles at	D806900100022
Data 0A		E(CM)=132 MeV for natSe and 77Se targets of emission	
Data 0B		lithium are <1 mb. For the 77Se target at E(CM)=96	D806900100024
Data 0X		MeV for emission of lithium is <0.1 mb.	D806900100025
		- Fig 12 cannot be digitized because it is not	D806900100026
Data 1		possible to distinguish between open and solid	D806900100027
Data 2		symbols.	D806900100028
Data 3	HISTORY	(20240815C) M.Odsuren, N.Otsuka	D806960106629


FIG. 12. Angular distributions of pr les integrated over the total spectra a

symbols.

D806900100022 D806900100024 D806900100025 D806900100026 D806900100027 D806900100028

Edit:		0071	D8071 20240917	D807100000001
d8071	D	8071	D8071001 20240917	D807100100001
edit			11 17	D807100100002
euit		TITLE	3He production in 4He fragmentation on protons at 6.85	D807100100003
			GeV/c	D807100100004
Convert:		AUTHOR	(G.Bizard, C.Le Brun, J.Berger, J.Duflo, L.Goldzahl,	D807100100005
d8071			F.Plouin, J.Oostens, M.Van Den Bossche, L.Vu Hai,	D807100100006
conv			F.L.Fabbri, P.Picozza, L.Satta)	D807100100007
COITV		INSTITUTE	(2FR CAE,2FR SAT,2ITYFRA)	D807100100008
		REFERENCE	(J,NP/A,285,461,1977)	D807100100009
NRDF		MONITOR	(6-C-12(A,X)6-C-11,,SIG)	D807100100010
		INC-SOURCE	Beam intensity is 2.0E+10 PPS.	D807100100011
<u>w/o data</u>		SAMPLE	- Chemical-form of target is element.	D807100100012
<u>CHEN</u>			 Physical-form of target is solid. 	D807100100013
<u>EXFOR</u>			- Target-thickness: 5.9 cm long liquid hydrogen.	D807100100014
<u>w/o data</u>		METHOD	(TOF)	D807100100015
CHEX		FACILITY	(SYNCH, 2FR SAT)	D807100100016
JANIS		DETECTOR	(MAGSP,SCIN)	D807100100017
			(IOCH)	D807100100018
EXFOR+		HISTORY	(20240811C) M.Odsuren, N.Otsuka	D807100100019
<u>Graph</u>		ENDBIB	17 0	D807100100020
		COMMON	1 3	D807100100021
<u>Bib</u>		MOM		D807100100022
Data 0A		GEV/C		D807100100023
Data 0B		6.85		D807100100024
		ENDCOMMON	3 0	D807100100025
Data 0X		ENDSUBENT	24 0	D807100199999
Data 1		SUBENT	D8071002 20240917	D807100200001
<u>Data 2</u>		BIB	3 3	D807100200002
Data 3		REACTION	(1-H-1(A,X)2-HE-3,,DA/DP)	D807100200003
Data 4		ANG-SEC	(ANG,2-HE-3)	D807100200004
		STATUS	(CURVE,,G.Bizard+,J,NP/A,285,461,1977) Figure 2 (a-e)	D807190200005

رصريتم يعيمهم عراعت المعتنينمين

Automation and the GSYS System: Digitizing this kind of information is labor-intensive, requiring skilled personnel to ensure accuracy.

The GSYS system was developed to streamline and automate this process for EXFOR, allowing older articles and experimental results to be digitized efficiently and accurately.

GSYS minimizes errors and speeds up the data conversion process, making it easier to capture and organize historical data.

Future Directions:

With the increasing demand for accessible data, the EXFOR community is exploring the application of AI to improve data processing, analysis, and usability.

Thank you for your attention!

