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1. Source Datasets (Decay and Reaction)
  1.1.  Extraction of Data

1. In any experiment, the author's basic measured quantities should be quoted as given, except
as noted in Comment 2, or unless the data can be converted, by the application of  known
numerical factors, from the author’s units to units used by convention in ENSDF. Examples
of the latter are the conversion of mean-life to half-life, or BE2(sp) to BE2 .

2. Give what was actually measured in an experiment and not what the author quotes, in cases
where these are different. 

Example 1: A measurement of Iγ/ΣIβ might be quoted by an author as Iβ(gs), which,
for the author's decay scheme should be equivalent to the absolute Iγ determination,
but is not as fundamental a quantity. If the decay scheme were to change, the Iβ(gs)
could change, whereas the absolute Iγ measurement would still be valid. This
distinction is an important one, and failure to make it is a particularly common
source of confusion when normalization conditions are being stated. 
Example 2: A measurement of Iγ±/Iγ might be quoted by an author as Iβ+/Iγ. The ratio
should be expressed in terms of the annihilation radiation since Iβ+/Iγ implies that the
positron spectrum was measured.
Example 3: As discussed in the section on (γ,γ') below, the quantity usually
measured is gW(θ)Γ(γ0)2/Γ. An author may quote a deduced value of Γ [or Γ(γ0)]based on an assumption or a measurement of the branching ratio, Γ(γ0)/Γ. If possible,
the value of gW(θ)Γ(γ0)2/Γ that the author measured should be "reconstructed" and
given, since your adopted branching may differ from what the author used. Note that
the author may also have used a different value of Jf in the term g=(2Jf+1)/(2Ji+1). 
Example 4: From angular distribution and angular correlation experiments, the
resulting γ character can be determined only as dipole, quadrupole,
dipole+quadrupole (D, Q, D+Q), etc. Authors sometimes convert these to (M1), (E1),
etc., based just on their proposed level scheme. It is important to retain the D, Q etc.,
assignment in these source datasets. Note that for Jπ assignments, the argument
mult=D is strong, whereas mult=(M1) or (E1) is weak. Sometimes mult=D is
sufficient as part of an argument, and this is one reason why it is important to keep
track of what was actually experimentally determined. 
Note:  If the half-life of the parent level is known, and, for example, mult=M2 can
be excluded by RUL, then the assignment Q=E2 can be made in that dataset. Also,
a large value of δ for D+Q may allow M2 to be ruled out, so that the multipolarity
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can be assigned as M1+E2. In either case the justification should be stated.
3.  Document any and all changes made in data quoted from an author. When correcting an 

author's value for a quantity, for example a misprint in Eγ, give the corrected value in the
appropriate field and mention the uncorrected value in a comment. Do not give the
uncorrected value in the field and rely on the comment to explain what the correct
value is. 

4. When extracting data from an author's paper, note any assumptions, standards, or constants
that enter into derived values, and if possible, correct for more recent values of these
quantities. Such corrected values should be explained in such a way that the effect of changes
in any of the assumed values is made clear.

Example 1: An Iε/Iα branching ratio for a ground-state or metastable-state decay for
one nuclide might depend on the value assumed for the daughter nuclide; thus, a
comment such as "Iε/Iα=X if Iε/Iα(α daughter)=Y" would be appropriate.
Example 2: In a decay dataset, a conversion coefficient might be given relative to a
standard value. A comment such as "αK=A if αK(standard)=B" would be appropriate.

5.  Check the bibliography in each article against the NSR file. This is a valuable cross check
to help ensure that references have not been overlooked. Also, an author will sometimes
quote data received as a private communication. These data should be tracked down if
possible if they are important. Any new references obtained in this manner should be
communicated to the manager of the NSR file.

6. Do not rely on an author to extract older data correctly. Even if an author collects such data
in a table, the original articles should be checked. This is especially important in view of
point 3. above.

7. Be sure to distinguish between values measured by an author and those assumed by the
author based on data from other work.

Example 1: In a transfer reaction, an author might adopt L values for some levels
based on known Jπ values or on L values determined by other authors in order to
determine standard shapes for σ(θ) as a function of L so that L values for other levels
can be deduced. These "assumed" L values should be given in square brackets.
Example 2: In determining Eγ or Elevel, an author might adopt values from other
work as internal calibration standards. These standards should be checked and noted.
If newer values for the calibration standards are available, it might be possible to
correct the authors’ energies. The quality of the data will dictate whether or not that
is worth doing.
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1.2.  Manipulation and Presentation of Data
1.2.1.  Comments 
See the ENSDF manual for a complete discussion of the formats for Comments.
1. Comment types: There are several types of comment formats differing in where  they appear

within the headings and data listings. All require a "C ", "T ", or "D" in column 7. 
       a) No entry in column 8 or 9. These comments apply to the dataset as a whole and appear at

the head of a dataset immediately following the ID record.
       b) A record type (RTYPE) such as "L", "G", or "B" in column 8, with no data type

modifier (SYM) in column 10. These comments appear at the head of the respective level,
gamma, or beta listing.

       c) Same as b). but with a data type (SYM ) modifier in column 10, such as "E", "RI", or
"CC". These modifiers should be followed by the delimiter "$" to separate the modifier
from the comment text, thus "E$" etc. If entered at the head of a dataset, these comments
appears as footnotes on the respective column headings in the data listing defined by the
content of column 8. If entered within a data listing, the comment appears in the Comments
column on the same line as the quantity being commented on.

       d) Same as b). but with a flagged modifier in column 10, such as "E(A)", "RI(B)", 
"C(D)" or "E(E),RI(E)" and entered at the head of a dataset. As above, a delimiter is
needed. By using a "FLAG=A" continuation record on a specific data entry within the data
listing, a footnote symbol is attached to that entry and the corresponding comment appears
as a footnote. An alternative is to put the flag symbol in column 77 of the data entry.

Note: The use of the flagged comment format is recommended whenever the same
comment applies to many data entries, especially if the comment is long and
involved. This avoids having the Comments column filled with many appearances
of the same comment 

2. In all datasets there should be comments of type 1. a)  for each keynumber that contains data
or information used in that dataset. In cases where the same data are given in more than one
publication, avoid giving a separate entry for each such reference. Choose the most complete
reference, and on the same line, state something like "These data are also reported in xxxxx".
This policy tells the reader which references should be looked at and which can be neglected.

Note 1:  References listed as "Others:" do not need detailed information. 
Note 2.: In listing the keynumbers, for ease in readability, it is recommended that
each be given on a separate line rather than running them together across the page. 

3



       a)  For decay datasets, the comments for each keynumber should give the type of data 
measured, and there should also be a comment stating which references have contributed  to
the decay scheme being adopted. 

Note: Including what was deduced is optional. The deduced quantities are often
obvious by looking at what was measured, but there might be special cases where
such information is useful.

Example 1: 1992Ma42: Measured Eγ, Iγ, γγ, βγ(t). Also reported in 1993Ma42
1975Wi08: Measured Eγ, Iγ, Eβ-, Iβ-, γγ, βγ

Example 2a: For the case of a simple decay scheme the following is sufficient.
"The decay scheme is that proposed by 1975Ko02 based on extensive γγ data". 

Example 2b: In a more complicated case the following comment was written.
 "The decay scheme is that proposed by 1983Dz01 based on extensive coincidence
data using the Eγ and Iγ data of 1971Va26. The 1263 level was added by the evaluator
on the basis of the agreement in energy and branching of the 576 and 1263 γ’s with
those reported in (p,2nγ). The 1420 level is proposed by 1985Ra21 and is also
reported in (p,2nγ)"
Note: The decay scheme should be traceable to its source, so as much detail as is
needed to accomplish this should be included.

       b)  For reaction datasets, the comments for each keynumber should include the bombarding
energy and energy resolution. If the energy resolution is not given explicitly by an author, the
evaluator should attempt to estimate it from the authors’ spectrum.

Note 1: The resolution is an important consideration when comparing the results
from two or more experiments of the same type, or when making level associations
in Adopted Levels.
Note 2: Do not put the bombarding energy on the ID record unless needed to
distinguish otherwise identical dataset ID’s such as E=th and E=res for (n,γ). The
bombarding energy should be part of the information given in comments for each
keynumber.

Other information such as angular range for σ(θ) measurements might be included since, for
example, small angles are often needed to establish L=0 transfers and the angular range
studied might lead to a preference of one experiment over another in cases of discrepancies.
Except for even-even targets, Jπ(target)* should be given. 
*  For radioactive beam experiments, Jπ of the beam is the quantity needed.
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For grouped reactions, such as (HI,xnγ) in Example 3 below, the specific reaction should 
be given, and for Coulomb Excitation in Example 2 below, the distinction between particle
detection, (x,x') and gamma detection, (x,x'γ) should be made. For (γ,γ') datasets as in
Example 4 below, the source and the excitation Eγ are required.

Example 1: 207Pb(d,p),(pol d,p)
Jπ(target)=1/2-
2001Va04:  E(d), E(pol d)=22 MeV, FWHM=5-6 keV
2006He21:  E=22 MeV, FWHM=3 keV 
Others: 1968Do04, 1967Ba41, 1962Mu05

Example 2: Coulomb Excitation
1969Ba51:  (x,x')    x=α, E=17-19 MeV;  x=16O, E=69 MeV
1972Ha59:  (x,x'γ)  x=α,  E=15, 18 MeV
1959Bi10 :  (x,x'γ)  x=p,  E=2.8 MeV, pulsed beam
1971Di02:   (x,x'γ)  x=40Ar, E not given, recoil distance

 
Example 3: (HI,xnγ)

1983Ba70: 130Te(27Al,5nγ), E=154 MeV
1995Pe16: 146Nd(11B,5nγ), E=66 MeV

Example 4: (γ,γ')
1963Fl04:   source = 56Fe(n,γ), Eγ=7279
1973Sw01: source = Doppler-broadened 7117γ from 19F(p,αγ)
1977Co10: source = bremsstrahlung, E(max) = 6600, 9700

       c) Comments on γγ(θ ), γ(t), γ(θ), γ(θ,H,T) etc., in a given dataset should normally be given
with the listing for which the information is relevant. γ(t) and γ(θ,H,T) would normally
appear with the levels listing since the information usually derived from experiments of these
types, T½ and g-factors, respectively, are properties of the level. Comments on γγ(θ) and
γ(θ), including the distribution coefficients, A2, A4, or DCO ratios etc., from which the
multipolarity and δ might be derived, should be given with the transitions involved. If
information on J is also deduced, that J value should be given with the level listing, with a
cross reference to the γ listing, for example "J=3/2 from γγ(θ). See γ listing for details”.

       d) Other required comments
i) For the β intensities in the β listing there should be a comment or footnote stating

how the values were obtained. For example, something like "Unless noted otherwise,
the I(β’s) are from the requirement of an I(γ+ce) balance at each level" would be
appropriate.

ii) For the gamma listing, there should be a comment stating how the normalization was
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obtained, and a footnote stating what the entries are, that is "relative photon
intensity", "% branching from each level" etc.

iii) For the levels listing, there should be a comment on the Elevel heading giving the
source. The following is one example. "For levels with γ’s, the excitation energies
are from a least-squares fit to the adopted Eγ data. For other bound levels the
energies are weighted averages from all reactions. For proton resonances the
excitation energies have been calculated from E(p) using S(p)=xxxxx"
Note:  The E(level) heading comment could also include mention of levels that are
not adopted, for example broad peaks, or could include any other general points the
evaluator wishes to make. For example, "In addition to the levels listed, broad peaks
are reported in (d,n) at 2540 80, and 3720 120. Above about 2500, the association of
levels seen in the different reactions is uncertain. The evaluator has chosen to show
separate levels in such cases; however, it is possible that where the energies overlap
these reactions may be populating the same level". 

1.2.2.  Combining Datasets
It is sometimes convenient to combine two or more reactions in a single dataset. This approach is
useful when the reactions are similar in nature and where data in the reactions are sparse, or where
one reaction is very complete with little information in the others. The following are two situations
where this might be appropriate.
1. Inelastic scattering experiments, (p,p'), (d,d'), (α,α') etc., can sometimes be combined into a

single dataset as (x,x'). If this is done, then of course it is important to specify in which
reaction a property such as L or S was determined. The following example compresses 10
separate datasets into one . See the 2013 version of the A=152 mass chain for an example of
the data presentation. The following is an excerpt.

152Sm(x,x')
x=n:
1985Fe04:  E=2.47, 2.75 MeV, σ(θ); coupled channel analysis; levels 122, 366, 1086
x=e:
1988Ph01:  E=251, 500 MeV, σ(E,θ): levels 122, 366, 707
x=p, pol p:
1993Pe01:  E(pol p)=20.4 MeV, σ(θ), analyzing power; levels 0, 122, 366, 707, 963,         
                   1041, 1221 
1989Ob02:  E=24 MeV, FWHM=18 keV, σ(θ); levels 0, 122, 366, 707
etc.

Note: The notation for inelastic scattering, (x,x'), includes the case of elastic
scattering, so there is usually no need for a separate (x,x) dataset. One exception is
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resonance work, where information on resonances in the compound nucleus can be
obtained and may be of importance (see section 1.5. Resonances, page 22).
Information on nuclear shapes, charge densities, etc., deduced from elastic scattering
can be given, or referred to, in Adopted Levels without the need for an (x,x) source
data set.

2. In a similar fashion to inelastic scattering in 1., heavy ion in-beam reactions can sometimes
be combined into a single dataset as (HI,xnγ). Since Iγ data from different in-beam reactions
can be combined only via branching ratios, if there are several sets of fairly complete relative
intensities, it is best to create separate datasets for those reactions; however, note that the TI
column can be re-labeled as Iγ, allowing for the inclusion of two sets of relative Iγ values or
of branching ratios, or one of each, within a single dataset. 

1.2.3.  Sources of data 
The sources of data for all column headings, E(level), Iγ, δ, L,  etc., should be given in footnotes on
the corresponding heading, unless there is only one reference for that dataset. In this case, the
reference can be given with the ID record, and/or a comment can be given stating "All data are from
xxx". Keep in mind that all the data presented should be readily traceable to their source. When more
than one keynumber is included on an ID record or in the heading comments, it is important to state
from which keynumber the individual pieces of data are taken. If a reader wants to check an Eγ, an
Iγ, or a δ, for example, that reader should be able to go directly to the relevant reference, or
references. If the E(level) values come from a least-squares adjustment to the Eγ values, this should
be stated explicitly.
1.2.4.  Placement of gamma records 
For consistency in presenting drawings (and for convenience in reading data base listings) gammas
should be placed in order of increasing energy following each level. This same order should be
followed in listing the unplaced gammas. Note that Format check will warn you if gammas are out
of order.
1.2.5.  Significant digits 
When converting values from one set of units to another, for example, half-life to mean-life, or when
re-normalizing Iγ values, enough digits should be retained so that the inverse operation will
reproduce the original values. Note that in some cases this will result in more digits being quoted in
the converted value than in the original value. Another way of stating this principle is that the
fractional uncertainty in the original value should be preserved (to the same number of significant
digits) in the converted value. This procedure is especially important when dealing with quantities
determined with fairly high precision.

Example 1: From BE2=0.384 4 one should report T½=7.27 ps 8, not 7.3 ps 1, and
from τ=32 ps 1, one should report T½=22.2 ps 7, not 22 ps 1.
Example 2: Note that except for Adopted Gammas datasets it is not necessary to re-
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normalize data to Iγ=100 for the strongest transition. Some re-normalization may be
useful when averaging two or more sets of values, but in a case where there is just
one set of values and the authors do not assign Iγ =100 to any of the transitions, there
is no need to re-normalize the data. Consider a case where the author has assigned
the strongest transition as Iγ=90 3. A re-normalization to Iγ=100 gives 100.0 33, and
unless the large uncertainty is kept, this creates a problem with the roundoff for this
transition and probably for many of the others. If these data are then used in Adopted
Gammas, there will be an additional re-normalization involved in getting branching
ratios and a probable further change from the original fractional uncertainties. It is
recommended to keep re-normalizations to a minimum.
Note: As a special case of Example 2. if an author gives absolute intensities, these
should definitely not be re-normalized in a source dataset.

1.2.6.  Data roundoff
1. Our present suggested upper limit for rounding off uncertainties is "25". There are cases

where this cutoff should be increased.
Example 1: When two or more values are being averaged, and the uncertainties are
comparable, with some just below the cutoff of "25" and some just above, then it is
recommended to take the average before rounding off the values with uncertainties
>25. 
Example 2: When the fractional uncertainty is large, retaining uncertainties >25 may
be justified. A value of 5.8 27 for a quantity should be kept, rather than rounding off
to 6 3.
Example 3:  When the uncertainty on a value gives a lower limit close to zero, a
roundoff may be misleading. A value for some quantity of 3.2 26 does not overlap
zero, whereas a rounded-off value of 3 3 allows for the quantity to be zero.

2. Do not replace numerical values with large uncertainties by approximate values. 
Example: An "isomer" energy of 230 300 allows for the possibility that the isomer
may lie below the "ground state" by 70 keV. If the energy is replaced by 230, the
possibility of an isomer-ground state energy inversion will not be obvious to the
reader. 

1.2.7.  Multiplets 
1. In a reaction spectrum, unless a peak labeled as "complex" is resolved in a given experiment,

just one "level" entry should be made. In the case of a peak suspected on the basis of work
from other experiments of being made up of two levels, with known Jπ, say J =a and J =b,
respectively, if a value for Jπ for the single "level" entry is to be entered, it should be of the
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form "J =a and b", or "J=a & b". The inclusion in this data set of two levels would involve
making an explicit assumption that is not necessary. The probable level association can be
adequately explained in a comment. 

Note 1: The form “J=a and b” denotes a multiplet with two Jπ components. The form
“J=a, b” implies one level with two possible Jπ values.
Note 2: When stating that a peak is a multiplet, the basis for this claim should be
given. In this connection it is important to distinguish between experimental
arguments such as "peak is broad", and theoretical arguments such as "C2S is too
large for a single level on the basis of shell model expectations". 

2. In a gamma spectrum, a multiply placed transition seen as a single peak in the spectrum
should be treated as one transition with multiple placements. Do not "resolve" such peaks
by introducing additional transitions with energies taken from the level scheme. Of course
the intensity should be divided among the several placements if possible. If the intensity can
be divided, for example on the basis of γγ, or from branching ratios in other datasets, then
a "@" should be entered in column 77.  Comments such as "From γγ" or "From Iγ (γ1)/Iγ(γ2)in β- decay" should be given. If the intensity cannot be divided among the several placements,
then the full intensity, with uncertainty, should be given for each placement, along with a "&"
in column 77. The entries "&" and "@" will automatically generate footnotes explaining that
the transitions are multiply placed and that the intensities are not divided (for "&"), or are
suitably divided (for "@"). 

Note 1: Do not enter the intensities as limits in source data sets. The converse is true
in Adopted Gammas, where multiply-placed Iγ values should be entered as upper
limits. See section 3.3. Iγ, Comment 2, Note 2, page 43.
Note 2: When stating that a gamma transition is a multiplet, the basis for this claim
should be given. For example, the gamma peak might be broad, coincidence data
might suggest that a peak is a multiplet or a comparison of Iγ branching with other
transitions from the same level as determined in other datasets might suggest a
multiplet.

 
3. A multipolarity determined for a multiplet will not necessarily be correct for each, or perhaps

even any, member of the multiplet. For example, depending on the relative strengths of the
components, the Iγ and Icek for a doublet consisting of an El and Ml component could yield
mult=E2. The multipolarity deduced for the doublet should be given in a comment, but
should not be entered in the multipolarity field of the individual components unless
additional information is available that justifies the assignment. 

Note: In a case where Iγ but not the corresponding Icek (or vice-versa) is resolved, and
the multipolarity of one component of a doublet is known from other sources, it may
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be possible to deduce the multipolarity for the other component. 
Example: The authors report Eγ=1411.48 9 with Iγ=1.01 3 placed from levels A and
B, with Iγ divided between the two placements based on γγ. Mult=M1+E2 with
δ=+4.3 +9-13 for the component from level B is known from other work. From these
data and α(K)exp=0.00083 14 for the doublet, mult=E1 is deduced for the component
from level A.

1.2.8.  (γ,γ') experiments 
The most common type of measurement in these experiments is scattering, which, for the case of
photons scattered elastically from a thin target, yields the quantity gW(θ)Γ(γ0)2/Γ. This is what most
authors quote. Here, g=(2J+1)/(2J0+1), with J=γ-resonance level spin, J0=gs spin, and W is the usual
angular correlation function (See Note 1). In this type of experiment the quantity gWΓ(γ0)2/Γ, or just
Γ(γ0)2/Γ, if J and W are known, should be given. If the branching Γ(γ0)/Γ=Iγ(γ0)/ Iγ+ce is known, the
level width (or T½) should be deduced. For levels above particle decay separation energies, then the
total width should include the additional modes of decay. That is, is general, Γ=Γγ+Γp+Γα+...  The
branching used should be the adopted value.

Note 1: Measurements are usually done at 127° where W=1 for all dipole transitions,
independent of J0, J, or Ji (see Note 5). (P2(θ )=0 at this angle). For mixed transitions, W
depends on the mixing ratio and on the J's. 
Note 2: Occasionally, self-absorption experiments are performed. These can yield the
quantity gWΓ(γ0)/Γ. 
Note 3: The quantity gWΓ(γ0)2/Γ, with g and W taken out if known (at the evaluator’s
discretion), can be given in the "S" field on the level record, with the field suitably re-labeled.
This procedure is convenient since it eliminates considerable typing work at the input stage.
If given in units of milli-electron volts, be sure that the heading translates as "meV" and not
"MeV". 
Note 4: If the branching, Γ(γ0)/Γ, is measured, it can be given in the RI field for the relevant
γ or as a comment on branching given with the corresponding level.
Note 5: For inelastic scattering, the term (Γ0)2 in the numerator should be replaced by
Γ(γ0)Γ(γi), where (γi) refers to the deexciting transition to excited level "i". To extract the
level width (or T½), in addition to the gs branching, the ratio Iγ(γi)/Iγ(γ0), would be needed. 

1.2.9.  BEλ, BMλ, and βλ
In Coulomb excitation and (e,e'), two reactions where electromagnetic excitation probabilities can
be determined, the quantities BE2, BE3, etc., should be quoted on continuation level records. Data
quoted as matrix elements should be converted to BE2 etc. The fact that a matrix element had been
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determined should be added as a comment. Note that BEλ =(2J0+I)-1 |<MEλ >|2, where <MEλ > is
the Eλ matrix element and J0 is the target spin. 

Note 1: All BEλ and BMλ data should be given with the levels. If an author gives BEλ  data
with the gammas, these should be converted to BEλ and given with the corresponding level.
The appropriate place for BEλ or BMλ data is in Adopted Gammas where such values are
given in single-particle units calculated using adopted T½, δ, and branching, etc., data. 
Note 2: It is not necessary to give T½ deduced from BE2 in the source dataset, but if done,
then adopted values for Eγ, branching, etc., should be used. It is often more convenient to
collect all T½ values in Adopted Levels in which case one can state "From BE2=xxx in
Coulomb Excitation" for the value from that dataset.

In inelastic reactions other than those governed by the electromagnetic interaction, the appropriate
interaction strengths to quote are the deformation parameters, βλ or βλR, where R is the nuclear
radius, R0A1/3. Authors sometimes convert the deformation parameters to BEλ’s, but this is a
model-dependent procedure and unless the authors quote only BEλ’s, the deformation parameters
are what should be entered from these experiments. 
1.2.10.  Isomeric decay and delayed gammas
When a level with a measurable half-life has been produced and studied as a separate source, then
an isomeric decay dataset for that parent level should be created. When delayed gammas are seen
in an in-beam experiment, creating an isomeric decay dataset is sometimes a convenient way of
presenting the delayed data, as discussed in 2. below.
1.  When in-beam experiments give data on prompt transitions and also on delayed transitions

from, say level X, one way of presenting the data is to create two datasets, one labeled with
the modifier "prompt gammas" and the other with the modifier "delayed  gammas" where the
data for decay of level X can be presented. For cases where there is more than one level
whose delayed deexcitation has been observed, a separate "delayed gammas" dataset can be
prepared for each such level. See the following comment.

2. An alternate mode of presentation for delayed gammas is to create an isomeric decay dataset
for level X . This alternative is especially recommended if there is more than one reaction
yielding data. In this case a single IT data set which combines the results from all the relevant
reactions is preferable to creating several delayed-gammas data sets for the same level X in
each of the several reactions. 

Note: In cases where only a few pieces of data come from the delayed spectrum, such
as multipolarities, it may not be worthwhile creating a separate delayed or isomeric
decay dataset. In such cases, the multipolarity information can be included with the
prompt data with appropriate comments. For example. "Mult: From α=xxx from an
intensity balance in a delayed spectrum".
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1.2.11.  β-, ε+β+: energies, feedings and logft 
1. Measurements of Eβ or Eε should be given in comments rather than in the energy field. All

of our programs deduce these quantities from the Q value and the level energies. 
Note: If a new accurate measurement of Eβ or Eε appears in the literature and that value has
not yet been included in the latest mass adjustment, then it should be compared with the
input values in that adjustment. If it is of comparable accuracy, an attempt should be made
to see if it alters significantly the output value from the mass adjustment. If it does, an
updated Q value can be adopted. In this regard, correspondence with the atomic mass center
is advised.

The β- and ε+β+ feedings usually come from intensity balances at each level, and the logft’s are then
calculated based on these feedings. Some special cases should be noted.
2. For transitions that are expected to be non-negligible, such as those for allowed or first-

forbidden transitions, when the feedings are consistent with zero, the logft should be
expressed as a lower limit. 

Example 1: For a feeding of 3% 3, the logft should be calculated for a feeding of 6%
and expressed as a lower limit.
Example 2: For a feeding of -5% 7, the logft should be calculated for a feeding of
2% and expressed as a lower limit.

3. When ΔJ>2, one expects logft 13. For such transitions, any feeding that gives logft 13 
should be set to zero, with an appropriate comment, since such feedings imply an error in the
decay scheme. An exception to this policy of omitting "unphysical" branches occurs when
the initial or final J is in question and it is not clear whether it is the spin or the feeding that
is in error. In such a case, the feeding should be shown with a "?", and the problem pointed
out in a comment. 

4. The combined feeding to two or more levels connected by γ transitions whose TI’s are not
known, or known only as limits, can sometimes be determined even though the individual
feedings cannot. Such combined feedings should be given in a comment. 

Example: "Iβ- to the X and/or Y levels is 6.2% 2 giving logft=xxx". This could be
given as a flagged footnote for each level.

1.2.12.  Normalization 
The normalization condition giving NR, NT, should always be stated. If the decay scheme cannot
be normalized, this fact should be pointed out. Be sure to account for all relevant factors.

Note 1: If the normalization condition involves a measured quantity for which no uncertainty
12



is quoted by the authors, for example, Iβ-(gs)=30%, then the resulting NR should be given
as approximate. If NR is given with no uncertainty, GTOL will generate level feedings, and
RadList will generate absolute intensities that reflect only the uncertainties in the relative
intensities. In the example given, if the evaluator chooses to assign an uncertainty, ΔIβ-, that
uncertainty can be explicitly added to the Iβ- in the listing, with an appropriate comment, or
simply referred to in the normalization statement, for example "NR: The evaluator has
assigned an uncertainty of x% to the intensity of the gs β- branch in order to get an overall
uncertainty for NR". The second approach is recommended since it preserves the accuracy
of the relative feedings. Note that when the gs branch has a small intensity, say a few percent,
then even a large assigned uncertainty can result in a rather precise NR as calculated from
TI(gs)=100-Iβ-(gs). See also section 1.4. Uncertainties, Comment 2, Note 1 page 19.
 Note 2: In a case where the Iγ’s in the RI field already include all the uncertainty appropriate
for absolute intensities, such as when an author determines and quotes absolute values
(including absolute uncertainties), then no additional uncertainties should be given with the
normalization factors. That is, NR, NT, and BR should be given on the "N" record with no
uncertainty. There is no requirement that the uncertainty in BR given in Adopted Levels be
carried over to the "N" record in a decay data set, although the value itself of course must be
the same. 

1.2.13.  Parent records 
In the parent record, the fields where data are known should be filled in, and the data should be the
same as in the adopted dataset for the parent, unless the evaluator is updating those data. Comments
on "P" record data, such as sources, are not needed unless the evaluator is modifying them. The
appropriate place for comments on any of the quantities appearing on the "P" record is in the adopted
data set for the parent nuclide. 
1.2.14.  α Decay
1. If the energies of the daughter levels being fed are not known, the Elevel=0+x style should be

used rather than listing the alphas as unplaced. With this procedure, relative level energies
can be presented in the daughter mass chain. Note that there is no such thing as an unplaced
alpha, except an alpha whose parent assignment is uncertain.

2. The calibration standards used by an author should be checked for possible newer values and
the Eα’s corrected accordingly. The evaluation by Rytz, 1991Ry01, is still a useful starting
point for checking calibration standards but recent mass chains should also be consulted for
possible newer precise values. In this regard, see the comments by D. Abriola, section 3.4
of the IAEA report Summary Report of a Specialised Workshop on Nuclear Structure and
Decay Data (NSDD) Evaluations, INDC(NDS)-0688, April, 2015. 

3. Hindrance factors should be given where possible. See Appendix A for a description of how
to get the radius parameters needed for the hindrance factor calculations.
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1.2.15.  Half-lives*
For decay datasets, the adopted T½ should be entered for all levels. Values measured in a source
dataset should be given in a comment along with the method and the keynumber. For reaction
datasets, measured values should be given in the T½ field.
* See also the footnote on T½, section 2.4, page 42.

Note: Footnotes on the T½ column can be used to cut down on repetition of the
method/keynumber requirement. For example, a footnote stating "T½ values given
as comments are from γγ(t) (keynumber) except where noted otherwise", or “From
adopted levels except where noted otherwise”, would be appropriate.

1.2.16.  Miscellaneous 
1. The symbol "/" should not be used when proportionality of more than two values is being

expressed. The expression K/L/M is mathematically equivalent to KM/L. Use ":" instead,
thus K:L:M. 

2. Try to resolve discrepancies. If they cannot be resolved, then at least state this fact. 
Example: If δ=+0.38 4 is adopted for a certain transition, based on solid evidence,
and a value δ=+1.2 3 has been determined in one of the source data sets, then, if the
reason for the difference cannot be determined, the evaluator should at least point out
the discrepancy. This can be done with a comment in the source data set, where it
could state that the value differs from the adopted value, or with a comment in
adopted γ's, where the discrepant value could be mentioned. If the discrepancy is not
pointed out, the reader might think that the discrepant value had been overlooked and
might thus question the adopted value.

3. Use the word "uncertainty" rather than "error" to refer to what we call the standard deviation
in a measured quantity. The word "error" should be reserved for mistakes, such as typos, or
inconsistencies in values for the same quantity within a paper.

4. Note that TI is translated in the ENSDF output as I(γ +ce), not I(ε+β+) even though the fields
have the same name. When I(ε+β+) is what is meant, it must be spelled out. 

5. A level designated as an isomer in one data set should be treated as an isomer in all data sets,
that is, columns 78 and/or 79 should be filled in. 

6. It is not necessary to comment on correction factors for a quantity when such factors are
negligible relative to the uncertainty quoted for the quantity. For example, μ=+3.8 5 does not
require a comment stating "The diamagnetic correction has not been applied". 

7. Do not use "CA" in the uncertainty field when a numeric uncertainty can be calculated. 
14



Example: If Iγ is calculated from Iγ +ce and α, the uncertainty in Iγ from the
uncertainties in TI and α, not the symbol "CA", should be put in the uncertainty field. 
A comment is of course needed to explain the source of the value.

8. When calculating or correcting quantities that depend on other properties, for example
calculating a conversion coefficient which depends on Eγ, multipolarity, and δ, or calculating
T½ from BE2 which depends on Eγ, branching, δ, and α, or calculating Γ from Γ(γ0)2/Γ
which depends on J and the gs γ branching ratio, adopted values should be used for all
relevant quantities. 

Note 1: When α values are given in any dataset, they should be adopted values, that
is, calculated using the adopted Eγ and δ values. A comment on the heading of the α
column should be given stating this fact. Alternately, this policy could be stated in
a general statement in the Comments dataset at the head of the mass chain. 
Note 2: In a dataset in which BE2 has been measured, if T½ is deduced from that
BE2 value it should be done using the adopted values for Eγ, γ branching, δ, and α.
Note, however, as mentioned in section 1.2.9. BEλ, BMλ, and βλ, Note 2, page 10,
that it is not always necessary to convert BE2 to T½. in the source dataset.

9. When working with data in any dataset, a comparison with data in other datasets should be
made.

Note 1: A γ might be multiply placed in dataset A but resolved in dataset B. The
branchings from B can sometimes be used to divide intensities in A. This should be
done whenever possible.
Note 2: It is recommended that Eγ and Elevel data in each dataset be checked against
values for the same quantity obtained in other datasets. This cross checking will
sometimes show that data in one dataset are shifted relative to those in other datasets.
In such a case a comment should be made pointing this out, and the shift should be
taken into account in making level associations in Adopted Levels, and in arriving
at adopted energies.

10. Measurements of Pkωk = IK x-ray should be given. They can be entered on a continuation "E"
record. These quantities are of direct interest to some researchers and of course they provide
a direct measurement of the K x-rays, either for branches to individual levels, or an average
for the whole decay scheme, depending on the case. When possible, the Pkωk should be
compared with IK x-ray as calculated by RadList. 

11. If numerical data are quoted in comments, the uncertainty should be included, unless the
value is being used only as a label, thus "T½: From BE2=0.240 6", or "μ : From g=1.62 3 in
(α,2nγ)". This is not to imply that the actual numerical value is needed in all cross references,
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but only that if quoted, the uncertainty should be included. 
12. When changing the sign of a mixing ratio which has an asymmetric uncertainty, note that δ

= A +a-b becomes δ = -A +b-a. 
13. The ground state should be included in all data sets of the type (X,X') or (X,X'γ). 
14. It is recommended that cross sections, analyzing-power values, and angular- distribution

coefficients be given explicitly. They can be of importance in justifying any conclusions
based on such data. The conclusions themselves, of course, should be given. 

Note: The angular-distribution coefficients should be given in the form A2, A4, not
A2/A0, A4/A0. That is, we define the angular distribution function as
W(θ)=1+A2P2(cosθ)+, not as A0+A2P2(cosθ)+. 

15. Separate data sets for experiments with no specific level data but with some useful general
information can be included at the evaluator's discretion. Such data sets would consist only
of comments. The following are examples: 

208Pb(e,F)
1976Dr01, 1977Ke11  E=28-44 MeV
1976Tu03  E=38-50 MeV
1976Dr01 and 1977Ke11 determine level density parameters and give a fission barrier of
27.6 MeV 5. 1976Tu03 determine the fission barrier to be 23.6 MeV 15

154Sm(α,6He) 1974BoZF,1974BoZN
E=50 MeV. Measured σ(E(6He),θ)

67Zn(n,α)
For studies of the 67Zn(n,α) reaction and the parameters of the the resonances in the
compound nuclide 68Zn, see 1978An01, 1984Em01, and 1985Gl04.

16. In some cases the information measured in a reaction could be included directly in Adopted
Levels without the need for a separate dataset, for example where T½ for a single excited
state was determined. Keep in mind, however, that unless a dataset is created for such a
reaction, there is no convenient way to search and retrieve that reaction and thus to indicate
to the reader that such a reaction was studied. If that reaction seems important then it should
have its own dataset. If a reaction was studied but no "useful" information is available, then
it can be simply listed under "Other reactions" as a comment in Adopted Levels. 
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  1.3.  Systematics
Use should be made of systematics whenever possible, the extent to which they can be applied in any
given case being determined by how reliable they are for the mass region under consideration. The
evaluator is usually in a better position to know how and when to apply systematics of a given
quantity than the typical reader who is generally looking at just one, or perhaps a few, nuclides at a
time. 

Note: The network evaluators already make extensive use of systematics. The strong
arguments for Jπ assignments which rely on logft's, the strong arguments for multipolarities
which rely on RUL, and extrapolations from the measured data in the mass adjustment
(which are in fact called systematics values) are perhaps the prime examples. 

1. The gross beta decay T½(β-) and T½(ε+β+) estimates from K. Takahashi, et al., Atomic Data
and Nuclear Data Tables 12, 101 (1973) (1973Ta30), can be used to estimate β- or ε+β+
branching fractions. These half-life estimates have been found to be reliable to better than
a factor of about 3 for nuclides not too far from stability; thus, while an estimate of % β- 50,
and thus branching for the alternate modes 50%, is perhaps of marginal usefulness, an
estimate of % β- 0.1 can be used to assign the alternate mode(s) as essentially 100% with
a high degree of confidence. Another source is P. Moller et al., Atomic Data and Nuclear
Data Tables 66, 131 (1997) (1997Mo25). 

Example: 106Te has been observed to decay by a single α group to the gs of 102Sn.
T½=70 us 17 for this α branch. Decay via an ε+β+ branch is also allowed but has not
been observed. From the graphs in 1973Ta30 one gets T½(ε+β+)>0.1 s which leads
to %(ε+β+)<0.09. It is thus reasonable to adopt %α=100.

2. Systematics of alpha-decay hindrance factors can be used to deduce a variety of quantities,
depending on what is known about the decay branch. These quantities include Jπ and
configurations, total alpha branching and branchings of individual groups, and the excitation
energy of the level fed in the daughter nucleus. Each evaluator (or center)  responsible for
a mass region in which alpha decay occurs is encouraged to build up such a set of
systematics. See M. R. Schmorak, Nuclear Data Sheets 31, 283 (1980), and M. R. Schmorak,
Alpha-Decay Hindrance Factors, in Appendix E for a further discussion of these and other
types of systematics. 

Example 1: For α-decay of an even-even parent, the gs branch is defined as having
a hindrance factor HF=1, Other hindrance factors are defined relative to this value.
As pointed out in Appendix E, in the mass region A>214, the HF's for 0+ even-even
parents to the 2+ first excited daughter states vary smoothly as a function of A from
0.9 to 4.0. For the case discussed in the Example in 1. above, given E(2+)=1472 for
102Sn, one gets %α<2x10-6 for a possible α branch to this state. It is thus safe to assign
I(α)=100% to the observed α group.
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Example 2: Prior to 2002, for 110Xe α decay, only Eα had been measured. From
systematics of r0 values, a partial T½ for α decay of 110Xe is estimated to be
T½(α)=0.06 s +10-3. From 1973Ta30 (see Comment 1. above) one estimates
T½(β+)=0.5 s +5-3. From these partial T½ values one gets %α=87 +10-32 and
%(ε+β+)=13 +32-10 and thus T½(110Xe)=54 ms +84-28 (see 1998Ak04). Measured
values for these quantities for 110Xe from 2002 reported in the 2012 version of the
Nuclear Data Sheets are T½=93 ms 3 and %α=64 35. These measurements indicate
the usefulness of the interim values adopted based on systematics.
Example 3: For 172Os, measured values for %α were, prior to 2004, 1.0 2 and 0.2
with no uncertainty. The smaller value gave a radius parameter r0 inconsistent with
the value expected from systematics and consequently the larger value was adopted.
In 2004 %α was re-measured as 1.4 3, confirming the interim choice adopted on the
basis of r0 systematics.

3. In cases where a certain shell-model state or Nilsson-model orbital, or a pair of such states
or orbitals gives rise to the appearance of isomeric states over a reasonably large mass range,
the reduced transition probabilities for the isomeric transitions usually fall within a narrow
range of values. Such values can be used to estimate properties for the "same" transition in
nuclides where one piece of information, such as T½, IT branching, or Eγ, is missing. 

Example: In the region around mass A=95 there are many cases of 1/2- to 9/2+
isomeric M4 transitions. In particular, for Nb, the BM4W values vary smoothly from
18.6 3 for 91Nb to 6.03 21 for 97Nb. The isomeric branch is not known for 99Nb, but
an extrapolation suggests a BM4W of 4.0 10. From this systematics value one
extracts %IT=0.32 8  In the A=99 mass chain evaluation %IT was adopted as <3.8%
based on the RUL limit of 30. The systematics of BM4W values in this region
suggest a smaller non-zero limit. 

4. In cases where a ground-state β- or ε branch is not known but the initial and final Jπ for the
branch are known, and there is no other way to determine the intensity normalization for the
γ’s, the systematic logft values can sometimes be invoked. Moreover, it might be possible
to build up local systematics of logft values for similar transitions, that is, transitions
involving the same configurations, that give a more restrictive range of logft values. 

Example: For the ε+β+ decay of 152Ho, the intensity of the gs transition has not been
measured. The transition is 2- to 0+, which from logf1ut>8.5 gives I(ε+β+)<15%, and
thus ΣIγ+ce>85%, or 92% 8 for calculational purposes; however, there are three
similar transitions in nearby nuclides with logf1ut values ranging from 8.8 to 9.9. If
one uses a lower limit of 8.8, one gets an expected gs branch of <7%. which gives a
normalization condition ΣI(γ+ce)>93%, or 96% 4. The representation of the limit as
a value with an uncertainty is done here just for the purpose of getting a value for the
normalization. A normalization given as a limit is of course essentially useless.
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  1.4.  Uncertainties
1. Experimental uncertainties should be included whenever given by an author.

Note: If an author gives a general statement, you should include this and then also
explain how you interpret that statement.
Example: An author might state that uncertainties in the Eγ values are 0.1 for the
strong transitions increasing to 0.5 for the weak ones. After looking at the range of
Iγ values listed, and perhaps the spectrum if given, a comment such as “The authors
state that the uncertainties in Eγ are 0.1 for strong transitions increasing to 0.5 for
weak transitions. The evaluator has assigned 0.1 to transitions with Iγ >10, 0.3 to
transitions with Iγ=5 to 10, and 0.5 to transitions with Iγ<5" would be appropriate.
Of course an evaluator could choose to make finer divisions if he/she wished. 

2. When experimental data are quoted without uncertainties, the evaluator should state
explicitly that no uncertainties are given by the authors. In general, the evaluator should not
take on the responsibility of adding them. Some exceptions are given in Notes 1 and 2 below.
An attempt should be made to contact the authors to see if uncertainties can be provided. If
a paper is relatively recent, authors will usually respond to such requests.
In the case of datasets with γ’s, keep in mind that GTOL assigns an uncertainty of 1 keV to
Eγ when no uncertainty is given on an Eγ entry, so even for an input dataset with no
uncertainties on Eγ, the GTOL output will contain uncertainties on the output Elevel values.
In such cases these uncertainties should be deleted, the energies should be rounded off
appropriately, and a footnote added that states something like “No uncertainties are available
for the Eγ input. The Elevel values are from a least-squares fit to the Eγ data with the
assumption that the uncertainties are the same for all the Eγ’s”. 

Note 1: The intensity normalization of a decay scheme may sometimes involve a
measurement quoted with no uncertainty. As pointed out in section 1.2.12, 
Normalization, Note 1, page 12, the normalization factor should be given as
approximate; however, if that measurement is a β or ε feeding, it might be possible
to invoke systematics to estimate a reasonable value for the quantity, as discussed
above in section 1.3, Systematics, Comment 4, page 17. 
Note 2: If there is only one paper in a dataset and no uncertainties are given, and the
author cannot be contacted or does not respond to a request, it may be possible to
estimate reasonable uncertainties by looking at earlier publications by the same group
from the same laboratory using the same general experimental setup where
uncertainties have been quoted. The decision as to whether or not this should or can
be done in an individual case is at the evaluators’ discretion. If done, the procedure
followed by the evaluator should be explained.

19



3. The weighted average program, and all other analysis programs that calculate uncertainties
when individual values with uncertainties are combined, such as GTOL, treat the individual
uncertainties as statistical in nature. When the uncertainties are known to have a significant
systematic component, say due to a calibration uncertainty, the output from the above
programs should be modified as necessary. In such cases the adopted uncertainty should be
no smaller than the smallest of the input uncertainties. 

Note 1: In cases where each of the sources from which values are being taken for a
weighted average give separately the statistical and systematic components of the
uncertainties, one can take the average of the various sets with just the statistical part
included. The smallest of the quoted systematic uncertainties can then be added in
quadrature to get the total uncertainty.
Note 2: No result obtained from a weighted or unweighted average program, or by
any other method, should be quoted with an uncertainty smaller than the
uncertainty(ies) in the calibration standard(s) used to determine the input values.

4. All uncertainties in extracted data should be accounted for, either explicitly or in comments.
In addition to the uncertainties quoted in tables, authors occasionally state in table footnotes
or in the text that additional uncertainties should be added to get absolute values. These
should be taken into consideration.

Note 1: In the case of energies, authors sometimes quote their values relative to some
standard, or a set of standards. In such cases the evaluator should check to see if
those standards have changed, and if so, and if possible, revise the authors’ values
to reflect the change in the standards.
Example: In 152Eu decay, an author measured a precise Eγ(411γ) relative to a 1986
value for a 192Ir standard. The result was Eγ=411.126 3 from their measurement of
ΔEγ=56.946 2 relative to Eγ=468.0715 12 for the Ir standard. The value for the Ir
standard as given in 2000He14 is 468.06885 26 which gives a revised value of
Eγ(411γ)=411.123 3.

In cases where the authors state that an addition x keV should be added in quadrature to the
uncertainties quoted in their table, it is recommended that this fact be included just as a
comment in the source dataset and not added explicitly to the values in the table; however,
if a value from this dataset is to be used in Adopted Levels, either by itself or as one value
in a weighted average, then the additional uncertainty should be included. This policy
preserves the more accurate level spacings in the source dataset, and gives the proper
absolute energies in Adopted Levels. In this connection see Comment 3, Note 1 above. 

Note 2: In the case of Iγ values, authors sometimes state that in addition to the
uncertainties quoted in their table, an additional x% should be added in quadrature
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to account for the uncertainty in the efficiency calibration. This type of correction,
which is independent of Eγ or Iγ, can best be incorporated in NR for decay datasets
or in a footnote for reaction datasets. Since transitions close in energy might be
expected to have a common correction factor, intensity ratios can sometimes be
deduced that are independent of x. The alternative approach to including x, namely
including the x% explicitly in each Iγ not only entails more work at the input stage,
but rules out the possibility of obtaining the more precise ratios, or at least requires
"un-correcting" the relevant Iγ values to do so. As for the Eγ case discussed in Note
1, if a value from this dataset is used in Adopted Gammas, the additional uncertainty
should be included. In this connection see Comment 3, Note 1 above.

5. Uncertainty in the internal conversion coefficients: For pure multipolarities, the output
from Bricc includes an uncertainty that combines the certainty assumed for the theory and
that due to the uncertainty in Eγ. For mixed multipolarities, Bricc will also include the
uncertainty in MR. The analysis programs do not add any additional uncertainty.

Note 1: When a multipolarity is determined by an experimental α value, that value
with its uncertainty is what should appear in the CC and DCC fields. Once the
multipolarity and MR are determined and Bricc is rerun, the output α value might be
slightly different due to roundoff. In such cases be sure to correct back to the input
value.
Note 2: When doing a calculation "by hand" that involves the internal conversion
coefficient, the uncertainty in α should be included.

6. When normalizing a decay scheme in which a single γ transition feeds the ground state, so
that Iγ(1+α)=100, the only uncertainty in the absolute intensity of Iγ will be from the
uncertainty in α.

7.  In the relation between T½ and BE2, for the case of low transition energies with large
conversion coefficients, the terms in the factor [Eγ5 x (1+α)]-1 should be treated as a
combined term since it may have a smaller uncertainty than the Eγ and α terms treated
separately. 

8. Uncertainties larger than 25 should, in general, be rounded off, and where feasible, data
should be quoted in units such that this convention can be applied. For example, a measured
value of T½=250 ps 50 could be given as 0.25 ns 5. 

Note 1: Quantities for which standard units are used in ENSDF should always be
quoted in those units. For example, Eγ, Eα, and Elevel are always quoted in keV, so
Elevel=2560 250 should not be expressed as 2.56 MeV 25, but rather as 2.56E+3 25.
Note that ENSDF does not have standard units for level widths, even though these
have units of energy. A convenient unit for giant resonance widths is often MeV, and
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for level widths from (γ,γ’) is often meV. In these cases the units must of course be
specified.
Note 2: In general, the "25" roundoff recommendation applies to final values. Larger
uncertainties should be kept for quantities appearing in intermediate steps in a
calculation to avoid possible roundoff errors. 
Note 3: In a weighted average it is advisable to keep larger uncertainties for the
individual input values and just round off the average value itself.

  1.5.  Resonances
The following is the revised policy statement for inclusion of resonance data adopted by the USNDP
at the US-DDP meeting in November, 2010.
1. Charged-particle resonances.
In the source dataset the following quantities should be given as determined in that dataset:

a)  Excitation energies in absolute values and not, for example, as S(p)+E(p)
b)  Measured resonance energies in a comment record or in a re-labeled field. The  coordinate
system, lab or center of mass, should be stated.
c)  J, π, L
d)  Total widths or T½
e)  Partial widths in comment records or in re-labeled fields
f)  Resonance strength in a comment record or in a re-labeled field
g)  Cross sections in comment records
h)  Reaction Q value in a comment record
i)  Eγ
j)  Iγ, relative intensities or branching ratios
k)  Gamma-ray multipolarities, mixing ratios, coefficients for angular distribution,  angular
correlation, polarization, etc.

2. Neutron resonances:
Average resonance neutron capture data should be given. Inclusion of other resonance data
is optional, but should be given if information on the bound levels can be extracted.

  1.6.  L Transfers
1. A brief comment on the method used for obtaining the L values should be given. It is

important to distinguish, for example, between L values deduced from a DWBA analysis,
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and L values based on a comparison of σ(θ) with shapes for levels with known Jπ.
2. Parentheses should be used to denote questionable or uncertain values. Square brackets can

be used to indicate an assumed value, such as a value adopted by an experimenter (or by an
evaluator) on the basis of known ΔJπ, or a value taken from other work. L values can also
be put in square brackets to denote assignments assumed for the purpose of extracting S, or
to denote values assumed in order to determine empirical angular distribution shapes for
known levels so that L values for other levels can be determined. 

Note: The L values should always be quoted as given by the author. The evaluator
can then use his/her judgement as to their reliability when incorporating them into Jπ
assignments. For example, an author's L=2 which in the evaluator's judgement should
be L=(2), should appear as L=2 in the source data set, but as L=(2) if used as a Jπ
argument. In such a case a comment is needed explaining that the evaluator feels that
the L assignment is tentative. A comment of this type is best given as a
footnote/comment in the source dataset rather than in Adopted Levels. 

  1.7.  Spectroscopic Factors
1. The exact label for the quantity given should be defined by using the "LABEL=name" format

described in the manual; thus, "LABEL=C2S". 
2. It is recommended that an explicit definition of S be given if there is any ambiguity about

what is meant; thus "S is defined by dσ /dΩ (exp)=NSdσ/dΩ (DWBA) with N=xxx" 
3. The method for obtaining the scale of S should be given. A comment such as "From

DWBA", or "Values are normalized to 3.0 for the 1430 level", should be given. 
4. The shell-model, or other orbital designation involved in the transfer should be specified if

needed for the extraction of S. 
Note: This can usually be done with a general comment such as "L= l, 2, and 3, are
assumed to be p3/2, d5/2, and f5/2 except where noted otherwise". An alternative method
is to fill in the J field for the relevant levels along with a comment on the J heading
such as "J : Value assumed by the authors for the extraction of S". The former
approach is preferred when practical. 

5. In cases where the J given by an author differs from the evaluator's adopted value, the
author’s value of S, which may thus be incorrect, should not be entered in the S field but
given only in a comment. The reason for recommending that the incorrect value be given at
all, is that a knowledgeable reader can perhaps estimate from the value calculated for the
incorrect orbital what the value for the correct orbital would be. 
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  1.8.  Jπ
1. For decay data sets and reaction datasets with γ’s. 

Jπ values from Adopted Levels should be given. The introductory section to the Nuclear Data
Sheets includes this explanation; however, it it is recommended that such a comment still be
given explicitly. The introductory material is not given in every issue of the Nuclear Data
Sheets, and on-line users may not notice this section. Exceptions to this procedure should be
noted. J and/or π values determined in such experiments should be given in comments along
with their justification. This is especially important if such values are used as part of the Jπ
argument in Adopted Levels

Example 1: Comments such as "γγ(θ) consistent with J=7/2, not consistent with
J=5/2, or 9/2", "J=1 from γ(θ)", and “Fed by primary γ from the J=1/2+ capturing
state" are appropriate. See also Comment 4. below
Example 2:  If quoting Jπ values given by the authors, some justification is needed.
For example, "From xxxxx based on γ(θ) and proposed band structure".

2.  For reaction data sets without γ or Jπ information.
It is recommended that Jπ values, whether from Adopted Levels or from some other dataset,
not be given, unless they are important in explaining some other aspect of the experiment.
Some examples are given below.

Example 1: In a dataset where J has not been determined but where the J values used
to extract C2S factors are needed, it might be convenient to give them in the J field
rather than in a comment. The source of the J values of course needs to be given. In
most cases it would be "From Adopted Levels". See section 1.7. Spectroscopic
Factors, Comment 4, Note, page 23.
Example 2: In a dataset such as (γ,γ') in cases where J has not been determined but
where the J values used to extract widths are needed, it might be convenient to give
those J values in the J field rather than in a comment. The source of the J values of
course needs to be given. In most cases it would be "From Adopted Levels".

3. For reaction datasets without γ data but with Jπ information.
The deduced Jπ values should be given in the J field along with a comment stating how they
were determined. 

Note 1: Jπ values that come directly from L values, such as J=L± ½ for
single-particle transfer on an even-even nucleus, or J=L in (p,t) on an even-even
target, are redundant, and should not be given. In such cases the L value is sufficient.

4 Arguments used in the Jπ assignments in Adopted Levels must be documented in the source
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data sets. The following are just a few examples. 
     Jπ                    Argument used in Adopted Levels
 -----------------    ---------------------------------------------------------------

a)   3/2-      L(d,p)=l gives 1/2-, 3/2-. 392γ to 5/2- is Ml 
b)   1-   Av. Res. (n,γ ) gives 0-, 1-. γ to 0+ 
c)   3+  El γ to 2-. γγ(θ) consistent with J=3, not with J=1 or 2.
d)   (5/2)+    L=2, C2S in (d,p) 
In a), the (d,p) data set should contain the L value referred to, with any explanation deemed
necessary to justify or explain it. The Adopted Gammas data set should contain the
justification for the Ml assignment to the 392γ. 
In b), the Av. Res. (n,γ ) data set should contain the value deduced in that data set, given in
a comment.
In c), enough details on the γγ(θ) experiment should be given in the source data set to justify
the conclusion. Briefly, this section should mention the assumptions, that is, what J's for
other levels and what δ 's for relevant gammas in the cascade were adopted, and should
clearly state which values of J are allowed and which are ruled out. In the above example,
it is only necessary to state that γγ (θ) is consistent with J=3, and rules out J=l and 2. Unless
J=1 and 2 are specifically ruled out, consistency with J=3 by itself adds nothing to the
argument and one would be left with the assignment Jπ=1+,2+,3+ based just on the E1 γ.
In d), the (d,p) data set should contain the L and C2S values for the level in question, along
with a comment justifying the basis for the C2S argument. For example, "d3/2 strength
exhausted by known 3/2+ levels. C2S for the L=2, E=xxx level suggests d5/2 ". Note that if
C2S were sufficiently large, and the possibility of the level being a multiplet can be ruled out,
the argument for ruling out J=3/2 might be considered strong, giving Jπ=5/2+. 

  1.9.  Iγ, Iγ+ce

1. Iγ data should be given as relative values rather than as branching ratios whenever possible.
If both relative Iγ and independently determined branching ratios are available, both should
be given. The branching ratios can be given in a re-labeled TI field. 

Note: If the TI field is already being used, say for Iγ+ce data, then the branching ratios
can be put in comments.

2. For reaction γ's, the projectile energy and the angle at which the quoted intensities were
measured should be specified in footnotes on the column headings, unless such information
is obvious from the keywords given in general comments. 
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Note: Relative Iγ values measured under different experimental conditions, such as
at a different bombarding energy or angle, should not be combined in the RI field
except where an Iγ from level "X" can be deduced from its branching relative to other
transitions from level "X". 

3. Gamma intensities reported as upper limits are important data measurements and should be
included. A comment to the effect that the transition was looked for but not seen could be
included. An Iγ given by an author as "weak" should be so noted in a comment or flagged
footnote. The latter is preferable since a symbol will appear in the Iγ column and will be
more likely to be noticed. 

Note 1: It is important to distinguish between the cases where Iγ is not given because
it is weak and where it is not given because it is obscured by an impurity (and thus
could be strong). 
Note 2: A value quoted by an author as <A±ΔA should be entered in the RI field as
<A+ΔA along with a comment giving the authors’ value of <A±ΔA . Thus Iγ<3.2 5
should be entered as Iγ<3.7.

4. Unless being used as a re-labeled field, the TI field should be used only if Iγ+ce, rather than
Iγ, is the quantity measured or deduced. Two common cases where this occurs are where TI
is deduced from intensity-balance arguments, or where TI is deduced by summing measured
Ice, such as for an E0 transition or for a low-energy highly converted transition. 

Note 1: When both Iγ and Iγ+ce are known, then of course one should calculate α and
deduce the multipolarity. When TI is known but no Iγ is available, then if α is known,
the corresponding Iγ should be calculated and entered into the RI field. The
uncertainty given for this deduced Iγ should include that in both TI and α. A comment
should be given stating that the Iγ comes from TI and α. 
Note 2: An Iγ deduced from TI and α may be given in the RI field even when a direct
measurement of Iγ is available if the evaluator concludes that the deduced value is
more reliable and/or is of higher precision than the measured value. The measured
value, with reference, should be included in a comment.
Note 3: When TI, rather than Iγ, is the basic measured or deduced quantity, then the
K/T etc., format on the continuation record should be used. K/T, for example,
operates directly on TI to generate Icek (via RadList) and the resulting x ray
intensities. Note that Bricc outputs K/T etc., if the TI field has an entry, so this
caution applies only if the SG record is being generated "by hand". This format
avoids including some uncertainties twice, since Iγ, if calculated from TI and α, will
already have an uncertainty combined from these two quantities so that Icek, if
calculated from Iγ and αK would double count a portion of the uncertainty.
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5. Do not put TI values in the RI field, even if a comment is included to explain what is being
done, and even if all the entries are TI values. It is especially important to avoid mixing RI
and TI in the same field. 

6. The RI and/or TI field should be left blank for transitions that deexcite an isomeric state in
the daughter nucleus if the isomeric T½ value is such that the intensities are time-dependent.
A comment should be included giving the % feeding of the isomer, and a comment is also
needed to explain why the intensities are  missing. The intensities can be given in a separate
IT decay dataset.

7. Ix-ray and Iγ± data should be given as comments. It is recommended that they be given in the
form Ix-ray/Iγi, where i is the transition to which the Iγ's are normalized. This procedure avoids
the necessity of changing the comments if the Iγ’s are later re-normalized. It is recommended
that the program RadList be run to compare the measured x-ray and Iγ intensities with those
calculated on the basis of the adopted decay scheme. If the Ix-ray/Iγ or Iγ±/Iγ measurements are
needed to get the decay scheme normalization, note that RadList can be used in an iterative
fashion to deduce NR. 

8. Internal conversion intensities used to determine multipolarities should be given. Other
situations where they are needed are:
a) Ice ratios measured with a precision of better than about 3%, as well as values for
transitions within about 2 keV of the binding energy, can be very useful in checking the
validity of the Bricc code.
b)  Where no Iγ is given, or where the Ice are more precise, Ice values should be quoted. 
 c)  Ice are needed for E0 and anomalously converted transitions.

9. For transitions whose intensity is given as an upper limit, the intensity, I<A should be 
converted to I=½A ± ½A for the purpose of calculating quantities that require the intensity
of this transition, such as normalization factors, β- and ε+β+ feedings, or branchings.

Note 1: In a situation where Iβ-(gs) is determined to be <6%, the intensity should be
expressed as 3% 3 for the purpose of obtaining the gamma intensity normalization.
That is, one should set sum TI(gs)=97 3 and explain what is being done. This
procedure is preferable to any of the alternatives, namely setting TI(gs)=l00, or
TI(gs)>97. There is no justification for adopting the first alternative, and adopting the
second alternative leads to lower limits being given for all the intensities. See the
following note.
Note 2: The usefulness of the procedure described in Note 1 depends of course on
the value of the limit itself. If Iβ- is known only to be <70%, then perhaps it is not
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worthwhile normalizing the decay scheme. If no normalization is adopted in this
case, a comment could be given stating what the normalization factor would be for
the extreme cases, namely for Iβ-=0, and Iβ-=70. The intensity of the gs β- group
should still be given as a limit in the β- listing. 
Note 3: Iγ values given as limits should be converted to ½I ½Iγ for the purpose of
obtaining β- and/or ε feedings from intensity imbalances. GTOL treats limits in this
fashion. This procedure may lead to some feedings with large uncertainties, but that
correctly reflects the state of knowledge of the decay scheme.

10. For transitions whose placements are uncertain, that is, transitions with a "?" in column 80,
Iγ should be handled like transitions given as limits discussed above. That is, Iγ=A ΔA
should be taken as Iγ = ΔIγ = ½(A+ΔA). GTOL treats limits in this fashion. 

  1.10.  Multipolarities, mixing ratios, conversion coefficients
1.  For decay datasets, the multipolarity, δ, and α entries should be adopted values. The inclusion

of such data is mandatory, an exception being negligibly small values of α. See also
comment 9. below.

Note: The value of α should be for the adopted Eγ and not for the Eγ given in the
dataset of interest, in cases where these are different.

2. In reaction data sets, multipolarity, δ and α should be included only if needed or if measured
in that dataset. 

3. In any data set in which multipolarity, δ, or α are determined, the bases for such
determinations should be stated. The sources of data used by the evaluator to determine
multipolarities, such as γ(θ), αk(exp), should be specified. In the case of αk(exp), the
normalization used to put relative Iγ and Icek values on the same scale should be given.
Normalizations used by authors may need to be revised if newer values for the standards they
used become available. Multipolarity assignments from ce data should be those of the
evaluator based on the output from Bricc. Multipolarities deduced by the authors (or by the
evaluator) on the basis of γ(θ) to be "stretched" should be so noted. Comments such as "ΔJ=1
from γ(θ)", or "Stretched Q from γ(θ)" etc., are recommended. It is especially important that
such conclusions be mentioned if they are used in Adopted Levels, Gammas.

4. Angular correlation or angular distribution data determine only the L component of the 
gamma character, thus mult=D, D+Q, etc. Further assumptions are needed to establish Δπ.
These assumptions should be stated when D is converted to M1, or D+Q to M1+E2, etc., and
it is recommended that this step be taken only in Adopted Gammas and only if needed, say
for a Jπ assignment or for the calculation of BE2W, BM1W, etc. See Adopted Gammas
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Datasets for further discussion. If the polarization of a transition has been measured, then
of course Δπ can be determined and mult= M1, E1, etc., as determined by an author should
be given.

Note: If T½ is known, RUL can sometimes be invoked to eliminate one of the
multipolarity choices, for example Q=M2, or D+Q=E1+M2 when δ is known. This
should be done in the source datasets using adopted T½ and δ data.  

5. The entries in the multipolarity (M), mixing ratio (MR), and conversion coefficient (CC)
fields should be mutually consistent. In particular, the following guidelines should be
followed. 
a)  If a single multipolarity is adopted, the MR field should be blank. If only a limit on δ is
available, there are two options.

i)  Give the dominant component in the M field, with the corresponding CC, and 
give the MR limit in a comment.
ii) Give both components in the M field and give the δ limit in the MR field. In this
case, CC should be the value corresponding to ½ δ(max) with an uncertainty chosen
to overlap the δ=0 to δ=δ(max) range. 
Note: Option i) is recommended when, in the evaluator's judgement, the admixed
component is likely to be smaller than the experimental limit; thus, for E2+M3 with
an experimental limit of δ<0.5, since it is unlikely that an M3 component would
compete so strongly with an E2, the value of δ is likely to be much smaller. In this
case the multipolarity should probably be entered as E2, with a comment stating
"δ(M3/E2) < 0.5 from xxxx". Since E2 and M1 can compete strongly, MI+E2 with
δ <0.5 should probably be retained as a mixed multipolarity entry.

b)  Same as a) but with a lower limit on δ. In this case consistency with known Jπ values  in
the level scheme needs to be considered. Thus if mult=M1+E2 with δ>1.5 is deduced, but
placement in the level scheme requires ΔJ=2, option i) should be chosen.
c)  If two multipolarities are given but no δ is known, the corresponding α value should  be
the value calculated as in 9. a) below. 
d)  If the multipolarity field contains more than two multipolarities, for example, E1+M2+E3
or E0+MI+E2, the relevant mixing ratios should be given on continuation records. See the
following section on E0 transitions for the format for the second case. For the first case, the
format is MR(M2/E1)=... and MR(E3/M2)=.... Bricc will calculate α and enter it into the CC
field and if T½ is known, RULER will calculate BE1W, BM2W, and BE3W and enter them
on a continuation record.
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e)  If δ overlaps zero or infinity, the corresponding small multipolarity component should be
in parens. 

Example: For mult =M1+E2 with δ=0.3 4, the multipolarity should be entered as
M1(+E2). For δ>10, the multipolarity should be entered as E2(+M1), except as noted
in 5. b) above.

6. The mixing ratio notation, M1+x%E2 occasionally used by authors should be converted to
δ. In doing so be sure to use the constraint that the percentage of the two values must equal
100. Thus, M1 + 10±8% E2 gives δ2=10/90 with a maximum of 18/82 and a minimum of
2/98, or δ2=0.11 +11-9 and thus δ = 0.33 +14-19. See section 3.3. Iγ, Comment 3,
Example, page 43 for another case.

7. The notation mult=M1,E2 is not the same as mult=M1+E2. The notation M1,E2 describes
the case where the data are consistent with pure M1, pure E2, or a mixture. The notation
M1+E2 describes the case where the data rule out pure M1 and pure E2. The designation
M1(+E2) is an intermediate case where the experimental data overlap the M1 theory value
but not the E2 theory value.

8. If αk, etc., data or conclusions from such data are quoted, the bases for the values used
should be given. If from relative I(ce) and Iγ, the basis for the normalization of the relative
scales should be stated. Be sure that the multipolarity for any transition used in the
calibration is independently established. 

9. In cases where Iγ is known, and internal conversion is significant, but the multipolarity is not
known (apart from level scheme considerations), and TI is otherwise unobtainable and
needed, the following procedures can be invoked. 
a)  If ΔJ and Δπ are known, one can enter mult=[E1], [M1,E2], etc., in the multipolarity field
and choose α accordingly. For mult=[MI,E2], one should enter α=½[α(M1)+α(E2)] and
Δα=|α - (M1)| = |α - (E2)|. 
b)  If ΔJ and/or Δπ are not known, one can still follow the procedure described in a) and set,
for example, mult=[D,E2] (or mult=[E1,M1,E2]). Mult=M2 or higher are assumed here to
be less probable, but of course could be included. 
The usefulness of either a) or b) depends of course on the range of values for the quantity
1+α for the assumed multipolarities. 

Note 1: If ΔJ=0 or l, Δπ =no, excluding the transitions J=0 to J=1 or 1/2 to 1/2, then
mult=[MI,E2] rather than mult=[M1] or mult=[E2] should be adopted, unless there
are good arguments for believing that one of the two possible multipole components
dominates. α for mult= M1,E2 is always "correct", although it may have a large
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uncertainty, whereas [M1], for example, may lead to misleading conclusions. The
possible large uncertainty in α when δ is not known correctly reflects the state of
knowledge concerning the total intensities.
Note 2: The use of the mult=[ ] convention in source datasets should be restricted to
cases where the internal conversion is significant for the purpose at hand, such as
determining intensity balances for β- or ε+β+ feedings or for estimating total transition
intensities. Avoid filling up the multipolarity fields with square bracket
multipolarities that are not needed.

10. The experimental αk, etc., as well as ce ratios that are used to determine multipolarities
should be given. As mentioned above, values measured with a precision of better than about
3%, as well as values for transitions within about 2 keV of the binding energy, can be very
useful in checking the validity of the Bricc code.

11. Since the CC field cannot accommodate asymmetric α values, such values must be
symmetrized. In such cases the experimental asymmetric value should be given in a
comment.

12. As discussed in section 1.4, Uncertainties, Comment 5, Note 1, page 19, when a
multipolarity is determined from a measured α, that value of α is what should appear in the
CC field.

 
13. Note the distinction between ( ) and [ ] for multipolarities. These are discussed in the

introductory material to the Nuclear Data Sheets. Parentheses are used when there are  some
experimental data, but the data are not conclusive. The square brackets are used to denote a
value deduced solely from level scheme considerations.

Note: For the case where mult=D+Q is determined from angular correlation or
angular distribution data, and the level scheme is used to assign M1+E2 rather than
E1+M2, then the multipolarity should be in parentheses, that is, mult=(M1+E2), with
a comment stating something like "Mult: D+Q from γ(θ ) in xxx, Δπ =no from the
level scheme". Square brackets are not appropriate for this case, since the level
scheme argument forms only part of the assignment. Also, the fact that mult=D+Q
can be used as a strong argument for ΔJ<2, whereas mult=(M1+E2) is a weak
argument for such a conclusion.

14. Do not show α as a lower limit. This would result in TI=Iγ(l+α) appearing incorrectly as an
indefinite quantity. This situation can arise for transitions that have an E0 component. The
basic data are usually a measured Icek and an upper limit on Iγ, say <X, which lead to αk >Icek/X and α >Y. TI=Iγ(1+α) then becomes (<X)(1+ >Y). The recommended procedure for
obtaining TI will depend on the relative magnitude of I(ce) and the Iγ limit. For I(ce)>>X,
one should give TI=I(ce) + ½X with an uncertainty in X chosen as ½X. For X>>I(ce),

31



TI<[X+I(ce)] is an appropriate choice. For the intermediate case, the first alternative is
recommended

Note: For a transition adopted as pure E0, then of course TI=I(ce) and there will be
no entry in the RI field.

15. Angular correlation and angular distribution data usually give two solutions for δ. Unless one
of these solutions can be ruled out, both should be given in a comment and no entry should
be given in the MR field. 

Note: If neither solution overlaps zero or infinity, then the multipolarity can be
assigned as, say, D+Q; otherwise the multipolarity should be given as D,Q.

  1.11.  E0 transitions
RULER should be run to calculate the absolute monople strength, ρ2(E0), for E0 transitions. In order
to do this, the branching of the E0 component from a given level, along with the level half-life, must
be known. See Appendix D for relevant formulas.
In the general case of an E0+M1+E2 transition one needs the mixing ratio MR(E2/M1), given by δ,
and the ratio I(E0)/I(E2), given by the square of the mixing ratio denoted by MR2(E0/E2). This latter
ratio is usually denoted in the literature as q2(E0/E2) and it includes internal conversion electron and
electron-positron pair emission. Since the most common measurement of the relative E0 and E2
intensities is through K-shell internal conversion, and in order to keep the number of continuation
record quantities to a minimum, all the I(E0)/I(E2) ratios should be given in terms of K-shell internal
conversion, MR2K(E0/E2)=q2k(E0/E2)=IK(E0)/IK(E2). RULER will calculate the full intensity ratio
from this quantity. These quantities should be given on a continuation record using the format
"MR(E2/M1)=" and "MR2K(E0/E2)=". From these two quantities, RULER will calculate ρ2(E0),
BE2W, and BM1W and put them on continuation records, and Bricc will calculate the total
conversion coefficient, α, and enter it in the CC field on the gamma record.
The following material on Jπ=0+ to Jπ=0+ and Ji = Jf, J 0 transitions is taken from Ref [1] in
Appendix D where the situations likely to be encountered are discussed. In addition to the following
examples involving intensity ratios, as pointed out in the above reference, ρ2(E0) can also be
determined from the form factor in inelastic electron scattering. This method has been used for E0
transitions in some light nuclides.
1.  Jπ=0+ to Jπ=0+ with no intermediate level:

Nothing needs to done. The transition has a branching of 100%, so if T½ is known, RULER
will calculate ρ2(E0) from the expression 
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ln 2ρ ( 0) Ω(E0) x E T
and enter it on a continuation record. Ω(E0) is an electronic factor.

2.  Jπ=0+ to Jπ=0+ with an intermediate 2+ level:
The ratio of the E0 K-shell conversion intensity to that of the competing Jπ=0+ to Jπ=2+
transition, MR2K(E0/E2), must be known. From this ratio RULER will calculate the total
E0/E2 intensity ratio, including internal conversion electron and electron-positron pair
emission, and then calculate ρ2(E0) and BE2W.
Example 1:
Ik(E0) and Ik(E2), or their ratio, are known. This provides a direct determination of
MR2K(E0/E2). This value should be entered on a continuation record. RULER will calculate
ρ2(E0) and BE2W, and Bricc will calculate α.
Example 2:
Ik(E0) and Iγ(E2), or their ratio, are known, and MR2K(E0/E2) has been deduced using the
internal conversion coefficient αk(E2). As in Example 1, MR2K(E0/E2) should be entered
on a continuation record.
Example 3:
Iπ(E0) and Iπ(E2), or their ratio are known, where π refers to electron-positron pair emission.
In this case, one has

Ω ( 0)( 0) = I ( 0) x  for E0, andΩ ( 0)
αI  =  x  for all other cases. Thus we haveα

K
K

K
K

EI E E E
I



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

 ( 0) α ( 2)Ω ( 0)2 ( 0 / 2) =  x  x ( 2) Ω ( 0) α ( 2)
K

K

I E EEMR K E E I E E E
 
 

The electronic factors can be obtained from Bricc to deduce MR2K(E0/E2). A simple modification
of this expression can be used if one has measurements of Iπ(E0) and Ik(E2), or Ik(E0) and Iπ(E2). 

Example 4: IL(E0) and IL(E2), or their ratio are known. In this case one has
α ( 2) Ω ( 0)2 ( 0 / 2) 2 ( 0 / 2) x  x α ( 2) Ω ( 0)

L K
K L

E EMR K E E MR L E E E E
As in example 3, Bricc contains the Ω factors, and simple modifications of this expression
can be made for any combination of shells for the E0 and/or the E2 components.
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3.  Jπ=0+ to Jπ=0+ with two intermediate 2+ levels:
Example:
Ik(E0) and Ik(E2'), or their ratio, are known, where E2' denotes a transition other than 0+1 to2+1, and the relative intensities of the two E2 transitions are known.

γ
γ

( 2) α ( 2)( 2)    x  x  ( 2 ')( 2 ') α ( 2')
kk k
k

I E EI E I EI E E
The deduced MR2K(E0/E2) can then be given. Note that this approach can be extended to
cases where there are more than two intermediate 2+ levels, with the transition to the first
2+ level always being the reference.

4.  Jπ to Jπ, J 0:
Example:
Z=64, Eγ=586.27 7, Iγ=14.5 3, αk(exp)=0.0202 21, δ(E2/M1)=-3.05 14, αk(theory)=0.01439
21 (M1), 0.00764 11 (E2), and 0.00829 13 ( for δ=3.05 14).
These data give Icek(exp)=0.293 31 compared with Icek (from γ’s)=0.120 3 and thus an E0
component of Ik(E0)=0.173 31. The E2 contribution is Iγ x αk(E2) x δ2/(1+δ2)=(14.5 3) x
(0.00764 11) x (0.903 8)=0.100 3. One then gets MR2K(E0/E2)=1.73 31. The evaluator
would enter "MR(E2/M1)=3.05 14$ MR2K(E0/E2)=1.73 31 " on a continuation record.

Note: For the case where IK(exp) > IK(M1 or E2) but the lower uncertainty overlaps,
if the data are accurate and reliable one can give an upper limit on the E0 component,
and if MR(E2/M1) is known, then an upper limit on ρ2(E0) can be given.

  1.12.  g-factors, electric and magnetic moments 
1. Values of the magnetic dipole moment, μ, and electric quadrupole moment, Q, should be

taken from the evaluation 2011StZZ (or updates when available) and entered directly into
Adopted Levels. There is no need to repeat these values in source datasets. Values of μ or
Q that appear in the literature after the cutoff for values in 2011StZZ should be added. 

Note 1: If the method of determining μ depends on T½, and if the value adopted by
the evaluator differs from that used in 2011StZZ, then a correction should be made
if possible. If the value cannot be readily corrected, then a comment should be
included giving the T½ used in the 2011StZZ evaluation.
Note 2: For new data, if the values are of comparable precision to those listed in
2011StZZ, it is recommended that the evaluator contact the author of 2011StZZ to
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see if intermediate recommendations are available.
2. g-factor data should be given in the appropriate source data sets. These values should be

corrected, where necessary, for the adopted T½. When corrected, a comment such as "g: For
T½ =xxx The authors report g =xxx for T½ =xxx". A comment is also needed stating
whether or not the diamagnetic correction has been applied (if the data are accurate enough
to be affected by this correction).
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2.  Adopted Levels Datasets
2.1.  General

1. All distinct levels that are observed in any of the individual data sets, and that the evaluator
feels are firmly established, should be included in Adopted Levels. Uncertain levels, that is,
levels shown with a "?" in one or more of the individual data sets, can be included or not
included at the evaluators discretion. Neutron and proton separation energies should not be
included as levels. Isobaric analog states (resonances) should be included as should proton
and neutron resonances as discussed in section 1.5. Resonances, p. 22.

Note 1: To avoid the introduction of "extraneous" levels, the calibration and general
trend of energies compared with adopted values should be checked for each data set.
Systematic shifts of energies in one or more data sets should be corrected for when
the energies from such data sets are used in obtaining the adopted value. This
procedure will help avoid the incorrect association of a level in one reaction with a
level in another reaction based only on the energy difference and will help to ensure
that the energy adopted for a level seen in only one reaction requiring an energy shift
is as consistent as possible with other levels. 
Note 2: When levels from two (or more) reactions lie close in energy (that is, the
values agree within the uncertainties) and the evaluator chooses to adopt both (or all)
levels, the justification for assuming that the levels are distinct should be given,
unless obvious from XREF or from other adopted level properties. Consider the
following cases. 

a) E=5000 10, J =3/2+ and E=5010 10, J =5/2+ are known from particle reactions, and
E=5005.3 2 is known from a gamma experiment; however, it is not known to which
of the two reaction levels this level corresponds and there is no evidence to suggest
that it is a separate distinct level. The reaction levels should be adopted, with a
comment on each stating that the more accurate value of 5005.3 2  probably
corresponds to one of the two Adopted Levels. Note that there is no unambiguous
way to include the accurate energy as an adopted energy. The evaluator should not
adopt three levels, unless there is definite evidence that the gamma-deduced level is
distinct from the others.

b) E=596.7 5 with J =0+,1,2 and E=597.1 3 with J =l+,2,3 are known to be different
levels, and l(p,d)=2, leading to J =l-,2-,3- with E=598 2 is also known. Unless there
is evidence to suggest that the (p,d) level is distinct, only two levels should be
adopted, with a comment on each stating that J =l-,2-,3- from l(p,d)=2, for one (or
possibly both) of the levels. 
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2. Make use of the XREF entries to avoid unnecessary comments 
Example 1: A comment such as "seen only in (d,p)" is not needed since XREF
should already convey that information. An exception could arise, however, if the
evaluator wishes to emphasize some doubt about the level. 
Example 2:  XREF can convey the "one level corresponds to many levels" situation
so that comments that repeat only this information are not needed. Note, however,
that comments such as "L(d,p)=l for E=3450", given for two or more Adopted Levels
to which the (d,p) level could correspond, are still needed. 

3. Important comments on level properties which appear in source data sets should be repeated
in the Adopted Levels data sets. Comments such as "doublet", "possible contaminant", "not
resolved from X", if important in a source data set, are usually just as important in Adopted
Levels. 

4. If the evaluator adopts a Q value, say Q-, that is different from the value given in the most
recent mass adjustment, the mass adjustment value should be given in a comment for
comparison. If the mass links are not too complicated, it may be possible to adjust the other
entries on the Q record to reflect the change in the Q- value. If such is the case, and if the
change in Q- is significant, that is, considerably outside the limits given by the mass 
adjustment, then giving the adjusted S(n), S(p), and Q(α) values would be a valuable
contribution. Whether this is done or not, however, is left to the discretion of the evaluator. 

Note: In cases where it is not feasible to attempt a readjustment, a comparison
between the mass adjustment value and the adopted value at least allows the reader
to judge qualitatively what the effect on the other Q values may be. 

5. BE2 and T½ should not both be given as adopted properties of a level. These are equivalent
pieces of data (if all quantities needed to convert from one to the other are known), and our
policy is to give T½ (See Note 1: for an exception). The best BE2 value will then, by
definition, be that deduced from the adopted T½ value and the adopted γ properties. We do
not give this BE2 value explicitly.

Note 1: BE2 should be given if T½ is not known and cannot be deduced from BE2,
for example if the γ branching is not known.
Note 2: If T½ and BE2 are both determined for a given level but the γ branching is
not known independently, then T½ and BE2 can be combined to deduce the
branching. T½ would be given and the deduced branchings would appear in Adopted
Gammas with a comment such as “Deduced from T½=xxx and BE2=yyy”.

6. When giving the source of an adopted quantity, include the name of the dataset. The data
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sources are much easier to locate with this information. The method and keynumber are
optional except for adopted T½ values where the method should be given.

Example: A T½ value extracted from BE2 should be stated as such, thus “T½: From
BE2 in Coul. Ex.”. 

  2.2.  Excitation energies
1. The source for excitation energies should be given. This source is usually best given as a

footnote on the E(level) heading. A statement such as "Unless noted otherwise, excitation
energies for levels connected by gamma transitions are taken from a least-squares fit to the
adopted gamma energies. Other excitation energies are based on best values from all
available reactions" is recommended. The introductory section to the Nuclear Data Sheets
includes this explanation; however, it is recommended that such a comment still be given
explicitly. The introductory material is not given in every issue of the Nuclear Data Sheets,
and on-line users may not notice this section. Exceptions to this procedure should be noted.

2. Uncertainties should be included where available. See section 1.4. Uncertainties, page 19.
3. In cases where the presumed gs and a long-lived isomer are nearly degenerate, the mass

adjustment should be consulted to see if it has information regarding the relative order of the
two states. Sometimes a plot of the energy separation of these states in adjacent nuclides can
suggest which is likely the gs. in the nuclide of interest. If the order cannot be established,
then the notation 0+x and 0+y should be used for the two states.

  2.3.  J,π
1. Assignments should be based on the fewest and best arguments. There are two main

advantages to this "fewest and best" approach. First, the Jπ arguments are easier to read and
to follow when redundancy is eliminated. Second, alternate unneeded arguments can  be used
to build up systematics.

Example: Consider the assignment of 1+ to a level based on the arguments "M1 γ to
0+. Logft=4.4 from 0+". Either argument by itself is sufficient. If the multipolarity
argument alone is used, the logft value is then "freed up" and can be added to the
base of values from which the logft arguments are derived, thus helping to build up
confidence in the application of such systematics to cases where other strong
arguments are not available.
Note: The above refers to strong arguments. For levels where only weak arguments
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are available, then the more arguments that can be given, the more confidant one
becomes in the assignment; however, no combination of weak arguments constitutes
a strong argument. 

2.  "Direct" measurements of J (atomic beam, etc.) should be referenced directly and the
method should be stated, thus "atomic beam", "NMR". In many cases the reference
1976Fu06* is still a useful source. Note that these methods give J only. A separate argument
is needed for π .
* Gladys H. Fuller, Journal of Physical and Chemical Reference Data 5, 835, (1976). 

3. Arguments should be detailed enough to convince the ENSDF user that the assignments are
reliable and also to allow the reader to judge what the consequences would be if new data
were to become available. See also 4. below.

Example 1: The argument "From (α,xn )" is not of much use. Statements such as
"Excit. in (α,xnγ)", and/or "γ(θ) in (α,xnγ)" are needed. See 5. below.
Example 2: Consider an argument for the assignment Jπ=2-,3- expressed as "L(d,p)=l
gives 0- to 3-. γ to 4-". If the γ transition were to be subsequently determined as M1,
it would follow that Jπ would be 3-. If the argument had been given only as a general
statement such as "From L value in (d,p) and γ feeding", the consequences of the new
piece of evidence would not be transparent. 

4. Gamma-property arguments should be specific; thus "Ml γ to 2+", "γ 's to 3/2+,5/2+", etc.  The
gamma energy is optional, thus "326γ to 2+ is Ml", etc., and is of most use in complex level
schemes where the level referred to as being fed may not be obvious. The vague statement
"Jπ is based on γ-decay modes" is not of much use to the reader. Note that Jπ values and
γ-ray multipolarities referred to in these comments should be adopted values; thus "Ml γ to
(3/2+)", "(E2) γ to (4)-" etc. 

Note: Include target/parent Jπ when the target is not even-even. For example,
"logft=5.4 from 1/2+", or "L(p,t)=2 from 9/2+". 

5. For arguments that are common to several levels, there are two approaches that avoid writing
the same full argument for each relevant level.
a) The argument can be written as a flagged footnote with the flag attached to the

assigned Jπ of the relevant levels. This approach improves readability. For example,
the footnote could state "From (α,xnγ) based on excit. and γ(θ)", or "Member of band
X based on energy fit and inertial parameter".
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b) The argument can be put as a footnote on the Jπ heading itself. For example, such a
footnote could state "Assignments from (α,nγ) are based on excit and γ(θ).
Assignments from (d,p) are based on L values and analyzing power". Then for the
relevant level one need state only "From (α,nγ)" or "From (d,p)". This option is
particularly useful in cases where the argument is long.

6. Jπ arguments for two or more levels can be linked if they are interconnected in such a way
that giving separate arguments for each level could be awkward, or could give the appearance
of circularity. 

Example:  Consider the β- decay of a parent level with known Jπ=7-  to a daughter
level A followed by a γ cascade with known multipolarities through levels B and C
to a level with known Jπ=2+, thus 7-(β-)A(Ml)B(El)C(E2)2+. The argument
"Logft=5.1 from 7- and the Ml-El-E2 γ cascade to 2+ uniquely establishes Jπ(A)=6-,
Jπ(B)=5-, and Jπ(C)=4+". This argument can be given for one of the levels, say C, and
then for the others, one can simply say "Jπ: See C level". 

7. An L=0 component in a particle transfer reaction in which S=0 can be assumed leads to 
ΔJ=0, Δπ =no even if other L components are present. The same is true of an E0 component
in a gamma transition.

8. Jπ arguments for the ground state of an even-even nucleus are not needed. A few nuclides
have been proven to have J=0 from the absence of alternating intensities in the spectrum of
homonuclear diatomic molecules. See 1976Fu06 for details (citation given in Comment 2.
above), but for ENSDF, Jπ=0+ for even-even ground states is accepted without an argument.
An argument such as L(α,α')=0 from 0+ merely shifts the burden of proof from the product
nuclide to the target nuclide. The argument “No hyperfine structure seen in optical
spectroscopy measurements” proves only that J=0 or that μ (or Q) is very small.

9. Maintain consistency between source data and conclusions. For example, L(p,t)=2 (S=0
assumed) from an even-even target gives J =2+, not (2)+ or 2(+). That is, if the L value is
considered to be a strong argument for J, then it is also a strong argument for π . Similarly,
if the argument is not considered strong for J, then it should not be considered strong for π;
thus, L(p,t)=(2) gives Jπ=(2+). 

Note: A reaction such as (α,d), with a measured L value, can of course be used as a
strong argument for π, namely, π=(-1)L, even though J is determined only as J=L-l,
L, or L+l. 

10. Expressions such as "preferred", or "consistent with" are not strong arguments. Avoid these
expressions since they leave open the question of whether other alternative J values have
been ruled out. These expressions are of course valid for weak arguments. 
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11. Configurations should be given, but note that "Conf=3/2[521]" is not a valid argument for
Jπ . All that this argument accomplishes is to shift the burden of proof from establishing
Jπ=3/2- to establishing conf=3/2[521]. The configuration is usually deduced from Jπ, not
vice-versa, although of course sometimes the reverse is true, and sometimes the same
argument for Jπ can be used to assign the configuration*.
*  A measurement of μ can sometimes determine both Jπ and the configuration.

Note 1: The determination of L and analyzing power in a transfer reaction might give
Jπ=1/2-, and depending on the mass region it might be reasonable to assign this level
as a pl/2 orbital, but the Jπ argument should be "From L and analyzing power in
(d,p)", not "From conf=pl/2". The configuration should normally be treated as a
separate data type from Jπ and put on a continuation record. Comments on "Conf"
should also normally be given separately from comments on Jπ. 
Note 2: In the deformed regions, the cross sections and cross section ratios, for
example in (d,p) and (d,t), can often determine directly the combination JπK[xxx],
rather than just Jπ, for example, 5/2-3/2[521] , rather than just Jπ =5/2- by itself. In
such cases, the configuration should be included in the Jπ argument. 

12. Do not use multiply placed transitions in Jπ arguments unless the connection with the level
in question is definite. 

Note: A multipolarity determined for a multiplet will not necessarily be the correct
multipolarity for each member of the multiplet. See section 1.2.7. Multiplets,
Comment 3, page 8. If a transition that is multiply placed is definitely established
as being connected with the level in question, then the Jπ of the daughter level can
be used in a Jπ argument in the usual way, that is "γ to 3/2+" for example. 

13. When the Jπ choices are limited to three or fewer, it is recommended that they be spelled out
rather than given as a range; thus Jπ=5/2-,7/2-,9/2- rather than Jπ=5/2- to 7/2-. There is less
chance of values being misinterpreted when they are written out completely. 

Note: In many cases, the extra space required (which is the only good argument for
quoting J values as a range) is not significant. 

14. RUL is an argument for multipolarity, not for Jπ. 
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  2.4.  T½*
1. All comparably precise T½ values should be summarized here along with the source datasets

from which they come. Details of the measurements are not needed since that information
should appear in the source datasets.

2. All values should be given at the 1σ level. Authors measuring half-lives sometimes quote
uncertainties as 2σ or 3σ. These uncertainties need to be divided by 2 and by 3, respectively,
before averaging with the other values.

*  A valuable resource on treating half-life data is the IAEA report INDC(NDS)-0635, Proposed
procedures/guidelines for ENSDF half-life evaluations (ground states and long-lived isomers), co-
authored by A.L. Nichols and B. Singh.  

  2.5.  Other Level Properties
1. When branching modes are given, for example "%IT=xxx", the bases for the values can be

given here or in the source data sets, with a cross reference to the location of the arguments.
There is no need to repeat the arguments, but they must appear in one place or the other.
Also, all possible modes of decay should be accounted for, unless the reason for omitting a
mode is obvious. 

Note: In a case, for example, where one has "%ε+% β+=99.0 1; %IT=1.0 1" but β- is
also energetically allowed, there should be a comment explaining why the β- branch
is considered negligible; thus, for example, "%β- is negligible since the only available
decay branch has ΔJ=2, Δπ =yes, for which, from logflut>8.5, one derives %
β-<1x10-4". An experimentally determined limit of this magnitude should, of course,
be included explicitly in the branching statement. For more obviously negligible
branches such as for a case where the only available branch has ΔJ=4, one can state
simply "ΔJ=4 for possible β- branch so % β- is negligible". 

2.  BEλ values should be included in Adopted Levels in cases where the T½ is not
independently known and cannot be calculated from the BEλ due to missing information,
such as a ground-state branching ratio.

3, Sources of data should be stated unless obvious, that is, unless there is only one keynumber
associated with the dataset. General comments are usually sufficient; thus, "From X unless
noted otherwise" or "Weighted average of values from A, B, and C". 
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3.  Adopted Gammas Datasets
  3.1.  General

1. For gamma records, all available first-card data should be included.
2.  Discrepant data should not be adopted. The data chosen for Adopted Levels should be self

consistent.
Example: If a gamma multipolarity disagrees with the adopted ΔJπ, and the Jπ are
considered well established, the discrepant multipolarity should not be adopted, and
the discrepancy should be pointed out in a comment. It is recommended that a
flagged comment be used so that a footnote symbol will appear in the multipolarity
field. 

  3.2.  Eγ
Sources for all data should be stated. This can usually be done with a general footnote on the column
heading.

Example 1: "Except where noted otherwise, the Eγ quoted to tenths of keV are from β-
decay. The Eγ quoted to the nearest keV are from reaction data". 
Example 2: "Except where noted otherwise, Eγ from levels below 6570 are weighted
averages of data from (α,xnγ) and (HI,xnγ). Eγ for higher levels are from (48Ca,xnγ)".

  3.3.  Iγ
1. Sources for all data should be stated. This can usually be done with a general footnote on the

column heading. See examples under Eγ above.
2. As stated in the introductory section to the Nuclear Data Sheets, the Iγ should be given as

relative photon branching from each level. Any deviation from this policy, such as quoting
branching ratios in %, should be stated. The strongest photon branch should be set to 100
except in the following cases.

a)  The strongest transition is an unresolved multiplet. 
b)  The strongest transition is given as an upper limit. 
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Note 1: An uncertainty should be included in the normalization value of 100 if there
is an uncertainty given for the original intensity, unless there is only one transition
deexciting the level, in which case the uncertainty has no meaning and should not be
given.
Note 2: Iγ for a multiply-placed transition where the intensity has not been divided
should be given as a limit in the RI field, thus Iγ, given by the authors as A±ΔA,
should be entered as Iγ<A+ΔA) for each placement, and the value Iγ=A±ΔA should
be given in a comment.
Note 3: For a level with a single deexciting transition, Iγ=100 should be entered in
the RI field. This has no meaning as a relative number, but some non-network
programs require a value even in this case.

3. When calculating averages to obtain the relative branchings, take note of cases where the
source intensities are given as % branchings, since the uncertainties in these data are
correlated. 

Example: Consider the case of two transitions, γ1 and γ2 and one wants to get a
weighted average of the intensity ratio. Some sources may provide relative
intensities, and others may quote % branchings, for example, Iγ1=42 3 and Iγ2=58 3.
Here the uncertainties are correlated by the constraint that the sum must be 100, thus
the ratio is 42/58 with a maximum of 45/55 and a minimum of 39/61 giving Iγ1/Iγ2=0.72 +10-8 rather than 0.72 7 if the uncertainties were uncorrelated. The correlated
uncertainties must be used when this result is averaged with other data. See section
1.10. Multipolarities, etc., Comment 6, page 28 for another example.
Note: For the case of two transitions, the most straightforward way to get the
branching is to average the ratio. Suppose one gets Iγ1/Iγ2=0.265 10 from several sets
of values. One then has the choice of setting Iγ1=26.5 10 and Iγ2=100, or assigning
an uncertainty to the stronger transition and subtracting that fractional uncertainty
from the other branch, thus, for example, Iγ1=26.5 6 and Iγ2=100 3. The second
approach could be used to reflect the accuracy with which the best relative value for
the stronger transition is known, if that is the evaluator’s preference.

4 For a transition that has no measured Iγ, or for which just a limit is known, TI should be
given, if available. The most common case would be for an E0 transition or for a low-energy
transition for which I(ce) but no Iγ or α is available. TI should be given in the same scale as
the Iγ values for other transitions in that dataset.
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  3.4.  Multipolarities, mixing ratios, conversion coefficients
1. Sources for all data should be stated and all assignments justified. 

Example: When a multipolarity is based on measurements that yield only D, Q, D+Q
etc., such as γ(θ) or γγ(θ), and M1+E2 rather than El+M2 is adopted, the basis for
this choice must be stated.

 
2.  See section 1.10. Multipolarities, etc., Comment 5, page 28 for requirements on

consistency among the multipolarity, δ, and α entries. α is not needed for transitions with
mixed multipolarity and unknown δ, even though such values may have been used in a
source data set. 

3. The relation between BE2 and T½ allows δ (and/or α) to be deduced in cases where BE2 and
T½ are independently known, and the ground-state branching is known. Conversely, the
ground-state branching can be deduced if all the other quantities are known. 

4. γ(θ) and γγ(θ) lead, in general, to two solutions for δ. Both should be accounted for. In
particular, if it is not known which is correct, then both should be put in a comment. Do not
put one value in the MR field and the alternate value in a comment. 

5. In addition to the use of square brackets as discussed in section 1.10. Multipolarities etc.,
Comment 9, page 28, this convention is also useful in cases where the multipolarity has not
been measured, but ΔJπ is known and you wish to show the multipolarity because you are
giving, for example, a reduced transition probability.

Note 1: Do not assign mult=[xxx] just because the multipolarity can be deduced from
the level scheme or simply because this convention may have been used in a source
dataset. 
Note 2: For the case ΔJ=2, assigning mult=[E2] is preferable to stating "BE2W=xxx
if mult=E2". since an entry in the multipolarity field will catch a reader’s attention.
Note 3: For the case ΔJ=0 or 1, assigning mult=[M1,E2] or [E1,M2], if allowed,  is
probably not worth doing since only upper limits can be deduced for the BEλW or
BMλW. 

6. When making the assumption that, for example, mult=D is probably E1, the E1 should be
put in parens. 

Note: This step should not be taken unless necessary. An assignment of mult=D is
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strong, whereas that of mult=(E1) is weak, and for a Jπ assignment the fact that a
transition is known to be dipole may be of more use than assuming it might be E1.
One case where assigning D as (E1) might be necessary would be where Iγ+ce isneeded and α is significant.

  3.5.  Reduced transition probabilities
1. Reduced transition probabilities should be given whenever possible. For mixed transitions,

values for each multipole component should be given. 
Note 1: When δ is consistent with zero or infinity, the reduced transition probability
for only the dominant component is required. The limit for the other component is
optional, but could be given in certain cases. Thus, BE2(W.u.)<1000 is not of much
interest, but an unusually small value, say BE2(W.u.)<l0-3, might be significant. 
Note 2: For transitions where the multipolarity has not been established but where
all other needed data are available, it is recommended that values also be given when
the probable γ character can be determined from the level scheme as ΔJ=l, Δπ =yes;
ΔJ=2, Δπ =no, or ΔJ 3, that is, cases where significant mixing is not expected. In
such cases the multipolarity can be entered as [E1], [E2] or [E3], [M3] etc.,
respectively.
Note 3: When one or more of the relevant pieces of information needed to calculate
reduced transition probabilities is missing, the calculation should be carried out if
reasonable assumptions can be made that will fill in the gaps. 
Example: If a level has one or more branches with small gamma fractions but
unknown multipolarity, and if any reasonable multipolarity, say D or E2 would lead
to the total branching also being relatively small, such branches should be estimated
so that reduced transition probabilities for the strong transitions can be calculated.

2. For a transition whose total intensity is known only as an upper limit, then provided that this
intensity limit is not the dominant branching mode for the level, it is recommended that the
branching for this transition be treated as ½Iγ+ce ± ½Iγ+ce for the purpose of calculating the
reduced transition probabilities for the other transitions. 

3. When T½ itself is available only as an upper limit, it is recommended that the resulting lower
limits on the reduced transition probabilities be given. When T½ is a lower limit, the
resulting upper limits on the reduced transition probabilities are usually not very interesting,
but see 1. Note 1: above. 
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4. When a level T½ has been adopted from a measured BE2, the BE2W for the corresponding
transition should be calculated directly from this measured BE2 rather than via the adopted
T½. This procedure avoids the double counting of uncertainties. This procedure can also be
followed in cases where BE2 is known but branchings and/or mixing ratios are not known
so that T½ for the corresponding level cannot be calculated, The formula is given in
Appendix C

5. In cases where Eγ is poorly known and α is significant, note that the factor Eγ2L+lx(l+α)
appearing in the denominator of the formula for the reduced transition probabilities may
exhibit a smaller range of values than the factors Eγ2L+l and (l+α) taken separately. The
correlation in Eγ and α should always be taken into account in calculating uncertainties for
the reduced transition probabilities.

6. Reduced transition probabilities are not needed for mixed multipolarities where δ is not
known; however, if an evaluator chooses to give them, they should be given as upper limits. 

  3.6.  Electric monopole strength
RULER should be run to generate the absolute electric monopole strength, ρ2(E0). This quantity will
appear in the output on a continuation record. See section 1.11. E0 transitions, page 32 for a
description of the input data needed for the ρ2(E0) calculation. A discussion, with formulae, is given
in Appendix D. 

Note: Since ρ2(E0) generally lies in the range 10-1 to 10-3, the output values from RULER are
by convention quoted in units of 103 x ρ2(E0). 

4.  Analysis and Utility Programs
4.1.  General

1.  Evaluators should make use of the analysis and utility programs in preparing their mass chains.
A list of all the programs is available at NNDC along with brief descriptions and is also given below
for convenience. If the programs are kept on your computer, be sure to update them whenever NNDC
issues a new version. As an alternative, the programs can be run via the NNDC website which
ensures that the newest versions are being used.

Note: Errors found in any of the analysis programs should be reported to NNDC.
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.2.  Be sure to check the output of all programs to be sure that the values produced are reasonable.
This is especially important in cases where limits are involved, or where input values to a program
overlap zero. 

Example 1:  In a β- decay dataset, Iβ- was entered as 6 ±9 and the logft program gave
logft=6.6 ±0.7. This is clearly wrong and the program will be modified; however, it is
recommended that in such a case the feeding should be entered as an upper limit. An input
β- intensity of <15 would have been correctly calculated by the logft program as logft > 6.2. 
Example 2: An M1+E2 transition was given with δ<0.1. For the particular case with given
Eγ and T½ the output from RULER gave BM1W>0.14. There should clearly be an upper
limit corresponding to δ=0 and for pure M1 one gets BM1W=0.15. The correct output should
thus have been BM1W=0.145 ±0.005. This problem along with several others will be fixed
in RULER, but at present this, and Example 1 are illustrations of why the output from the
programs should be looked at carefully.

3.  It is mandatory that FMTCK be run and that all fatal errors be corrected before submitting the
mass chain to NNDC. 
4.  For datasets with gammas, it is recommended that the excitation energies be obtained from the
least-squares adjustment program, GTOL. Keep in mind that if the input energies are given without
uncertainties, GTOL will add an uncertainty of 1 keV to each transition. See discussion in  section
1.4. Uncertainties, Comment 2, page 19. 

Analysis Programs
    ALPHAD - Calculates α's, HF's and theoretical T½(α)'s.
    Bricc - Interpolates Band-Raman internal conversion coefficients, internal electron-positron      
    pair formation coefficients, and E0 form factors.
    DELTA - Analyzes angular correlation data.
    GABS - Calculates absolute Iγ's and normalizations.
    GTOL - Determines level energies from a least-squares fit to Eγ's & calculates level feedings.
    HSICC - Interpolates Hager-Seltzer and Dragoun internal conversion coefficients.
    LOGFT - Calculates log ft, average beta energies, and capture fractions.
    PANDORA - Physics check of ENSDF data sets. Aids with Adopted Gammas & XREF.
    RadList - Calculates atomic & nuclear radiations. Checks energy balance.
    RULER - Calculates reduced transition probabilities.

Utility Programs
    ADDGAM - Adds gammas to adopted dataset.
    AveTools - The program AveTools combines three different statistical methods to calculate      
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     averages of experimental data with uncertainties.
    Visual Averaging Library - The program V.AvLib offers eight methods of averaging values   
     and testing for outliers.
    ENSDAT- Produces Nuclear Data Sheets style tables and drawings                    
    ComTrans - Converts the text comments of an ENSDF dataset to a "rich text format".
    FMTCK - ENSDF format checking.
    TREND - Tabular display of ENSDF data.
    XLS2ENS - Convert Datasets in Excel Spreadsheets to ENSDF Format
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Appendices
A.   Calculation of Radius Parameters for Alpha decay of

Odd-A and Odd-Odd Nuclides*
M. J. Martin

Oak Ridge National Laboratory, Oak Ridge, Tennessee
As discussed in 1998Ak04, the nuclear radius parameter, r0, for an even-even nuclide is determined
by defining the calculated transition probability for an alpha decay from the ground state of the
parent to the ground state of the daughter to be equal to the experimental transition rate, that is,
HF=1.0 for such a transition. The radius parameter calculated by our alpha hindrance factor program
is that of the daughter, that is, the effective radius for the alpha decay is given by R=r0A1/3, where A
is that of the daughter nuclide. The r0 parameters for the even-even nuclides are summarized in
1998Ak04. Note that in Table I of this reference, the first two columns give the Z and N of the alpha-
decaying parent, while the values of r0 correspond to the Z-2, N-2 daughter. 
Radius parameters for the odd-A and odd-odd nuclides, needed as input for the alpha hindrance
program, are obtained from the parameters for the adjacent even-even nuclides.
Figure 1 of 1998Ak04 shows r0 as a function of N for the even-Z nuclides. It is assumed that the
parameters for the odd-Z nuclides lie midway between those for the adjacent Z-1 and Z+1 nuclides.
Thus, for example, the r0 parameters for the Z=85 Astatine daughter nuclides trace out a curve
midway between the curves for the Z=84 Polonium and Z=86 Radon nuclides.
It is also assumed that for the even-Z, odd-N case, the parameters for the odd-N isotopes lie midway
between the values for the Z, N-1 and Z, N+1 even-even nuclides.
Note that in what follows, all averages are unweighted. A weighted average is not appropriate. Keep
in mind that one is not trying to get a best value for two measurements of the same quantity, but
rather a value midway between parameters for adjacent nuclides. 

1.    Odd-Z, Even-N Nuclides
The r0 parameter for an odd-Z, even-N nuclide is obtained as an unweighted average of the values
for the nuclides with Z-1, N and Z+1, N. The uncertainty is obtained as an unweighted average of
the upper (or lower) limits of these adjacent nuclide values.

* S. Singh and B Singh have developed the RadD program to deduce the r0 parameters. See
IAEA report INDC(NDS)-0665, September 2014. 
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2.    Even-Z, Odd-N Nuclides
The r0 parameter for an even-Z, odd-N nuclide is obtained as an unweighted average of the values
for the nuclides with Z, N-1 and Z, N+1. The uncertainty is obtained as an unweighted average of
the upper (or lower) limits of these adjacent nuclide values.

3.    Odd-Z, Odd-N Nuclides
For an odd-odd nuclide, Z, N one needs r0 parameters for the four nuclides with Z±1, N±1. In step
one, r0 values for Z, N-1 and for Z, N+1 are obtained as described in 1. above. The value for Z, N
is then obtained as an average of the two values from step one. Alternatively, one can average the
values for the Z-1, N and Z+1, N nuclides, each of which is obtained as described in 2. above. The
two approaches give the same value of r0.

Example
The following example illustrates the above procedures for the alpha decay of the odd-Z Francium
nuclides with Z=87 and N=118, 119, and 120, decaying to the daughter Astatine nuclides with Z=85
and N=116, 117, and 118, respectively. One needs the daughter radius parameters from the four
parent alpha decays with Z=86, 88 and N=118, 120. From 1998Ak04 these values are

204Rn (Z=86, N=118)  r0(200Po) = 1.504 3
206Rn(Z=86, N=120)  r0(202Po) = 1.492 7
206Ra(Z=88, N=118)  r0(202Rn) = 1.527 8

208Ra(Z=88, N=120)  r0(204Rn) = 1.495 14
These four points form the four corners of a grid, as given by the values in bold in the following
table. Z and N here correspond to the daughter.

N=116 N=117 N=118
Z=84 200Po  r0 =1.504 3 201Po  r0=1.498 5 202Po  r0=1.492 7
Z=85 201At  r0=1.5155 55 202At  r0=1.5045 80 203At  r0=1.4935 105 
Z=86 202Rn  r0=1. 527 8 203Rn  r0=1.511 11 204Rn  r0=1.495 14

The value for 201Po is obtained by taking an unweighted average of the parameters for 200Po and 202Po,
and that for 201At comes from an unweighted average of the values for 200Po and 202Rn, and so on. The
uncertainties come from an unweighted average of the corresponding maximum (or minimum)
values. Thus, for 201At, the average of 1.504 and 1.527 gives 1.5155, and the average of the upper
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limits, 1.507 and 1.535, gives 1.5210 which corresponds to an uncertainty of +55 on the value
1.5155. The lower limits of course give the same uncertainty.
The value for the odd-odd 202At can be obtained by averaging the values for 201Po and 203Rn, or the
values for 201At and 203At. The two approaches give the same value of 1.5045 80. 
The Astatine values should of course be rounded off for publication following our usual policy;
however, see the second paragraph in the following section.

Regional r0 Systematics
It is strongly recommended to evaluators working in mass regions with alpha decay that they plot
the r0 parameters for the nuclides in and around their mass regions. These plots can be of use in
estimating parameters when critical even-even data are missing. For example, suppose that in the
above example the r0 parameter for 202Po was not known experimentally. It might still be possible
to obtain a reasonable estimate of the value by extrapolation from the known lower-N Po values.
Similarly, one might be able to estimate a value for 202At or 203At by extrapolation from values for
lower-N At nuclides. Even an approximate value might be sufficient to establish a particular alpha
branch as being favored. Of course such extrapolations are worth doing only if the r0 plots are fairly
regular, and the regularity, or lack thereof, is something that is useful to know in one’s mass region.
In keeping these r0 systematics, it is recommended that more digits be retained than would
correspond to our usual policy. This will avoid possible cumulative roundoff problems. In the above
example, r0(202At) could be retained in an evaluator’s internal file of parameters as 1.5045 80, with
the roundoff to 1.504 8 being done at the mass chain stage.
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B.   Sign Conventions for Mixing Ratios from Angular
Correlations and Angular Distributions in Electromagnetic

Transitions
M. J. Martin

Oak Ridge National Laboratory, Oak Ridge, Tennessee
August, 1987

Revised with minor changes in the text, and a correction to the LHS of the present equation (8),
original equation (13).

September, 2016
Since the multipole components in a gamma transition of mixed character mix coherently, an angular
distribution or angular correlation measurement can determine the phases, that is, the relative signs
of these components. The following discussion is restricted to the case where two components with
multipole orders L and L' =L+1 compete. Since the relative phase of these two components is
invariant with respect to any arbitrary phase convention for the wave functions or the transition
operators, it is a physically significant quantity.
The two most widely used phase conventions are those proposed by Steffen [1] and by Rose and
Brink [2] but there are many more that have appeared in the literature. Table I gives a summary of
the relation between the phase conventions used by these authors relative to that of Steffen, whose
convention is adopted in the following material.

General Formalism
Consider the following two-gamma cascade connecting levels with spins J1, J2, and J3 with each
transition consisting of just two multipoles, L and L' = L+1.
  

J1

γ1 L1, L1'
J2

γ2     L2,L2'
J3

Expressions for the directional correlation of γ1 and γ2 can be reduced to the form
      (1)1 2( ) Σ (γ ) (γ ) (cos )k k kW B A P 

with the sum including only even k.
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where the Bk are orientation parameters and the Ak are directional distribution coefficients. The
parameters Bk are characteristic of the (axially symmetric) orientation of the intermediate state, J2in our example, while the coefficients Ak characterize the directional distribution of γ2 with respect
to the orientation axis of J2. The following discussion describes the case where the intermediate state
is oriented by the observation of the incoming radiation γ1 from the state J1.

Note: It is pointed out in reference [20] that the restriction to even k in (1) holds in cases
where the states involved have pure parity and the radiations are parity conserving, e.g.
electromagnetic radiation, conversion electrons, and alpha particles. Ak = 0 for odd k for such
cases. If the circular polarization of the gammas is observed, if the nuclear states have parity
admixtures, if β’s are observed, then, if the intermediate state is polarized and not just
aligned, odd-k terms can contribute.

 For a given transition, γ, we denote the relative amplitude of the multipole orders L' + 1 and L by
δ(γ) as defined in (4) and (5) below. The sign of δ is dependent on several factors:

a)  The form in which eq. (1) is expanded
b)  The choice of matrix elements, emission or absorption
c)  The form of the Wigner-Eckhart theorem used to define the reduced matrix elements
d)  The form of the electromagnetic multipole transition operators

For the extraction of δ from the analysis of an angular correlation or angular distribution experiment
only a) is relevant. The Bk and Ak can be expanded in terms of tabulated constants which depend
only on the L’s and J’s and that expansion fixes the sign of δ. If, however, an attempt is made to
calculate the mixing ratios on the basis of some model and to compare them with values deduced
from experiment, then b), c), and d) must be taken into account.
Following the work of Steffen [1], for the case of an unpolarized, unaligned initial state J1, the Bkand Ak can be expressed as

 (2)  
1

' 2
1 1 1 2 1 1 1 1 2 1 1 1 1 2

2
1

( )
( ) 2 ( )( 1) ( ' ) ( ) ( ' ' )

1 ( )
k

L L k
k k k

B
F L L J J F L L J J F L L J J


   

 
 


  



(3)  
2

2
2 2 3 2 2 2 2 3 2 2 2 2 3 2

2
2

( )
( ) 2 ( ) ( ' ) ( ) ( ' ' )

1 ( )
k

k k k

A
F L L J J F L L J J F L L J J


   

 


 


where
(4)  ' '

1 2 1 1 1 2 1 1 1( ) /J L J J L J      
                 (5)' '

2 3 2 2 2 3 2 2 2( ) /J L J J L J      
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The coefficients Fk are defined and tabulated by Frauenfelder and Steffen [3]. They are also tabulated
in references [4, 5, 6]. Steffen uses emission matrix elements and the initial state always appears on
the right. Equations (1), (2), and (3) define a unique sign for the mixing ratios. Note that the
coefficients Fk are defined such that 

0 2 3 '( ' ) LLF LL J J 
where  is the Kronecker delta, and thus'LL
                                                          0 0( ) ( ) 1B A  
As an example, for the cascade J1=4, J2=2, J3=0, the tables in reference [3] give

2 2(2242) 0.1707, (2202) 0.5976F F   
The definition of operators and reduced matrix elements used by Rose and Brink [2] are such that 

'( 1)L L
Rose Brink Steffen   

Note that Rose and Brink use absorption matrix elements and the initial state always appears on the
left. As a consequence, in the work of these authors the coefficients Fk are replaced by coefficients
Rk, tabulated in [2] and defined so that 

'( ' ) ( 1) ( ' )L L k
k i f k f iR LL J J F LL J J  

but otherwise the forms of equations (2) and (3) remain unchanged. Both Rose - Brink and Steffen
give a thorough discussion of the factors a) through d) mentioned above, so that calculations of δ can
be carried through consistently in either formalism.
Another phase convention that one still encounters occasionally, although mainly in older papers,
is that of Biedenharn and Rose [4]. These authors adopt the convention of always writing the
intermediated state, J2 in our example, on the right. This convention leads to an additional phase
factor of (-1)L-L'+k in the second term of equation (2), thus

1 1( ) ( )Biedenharn Rose Steffen     
Note that in the Biedenharn and Rose formalism, the sign of the mixing ratio depends on whether
a given transition appears first or second in a cascade.
Table I gives a summary of the phase conventions one might find in the literature. They are all given
here relative to the convention of Steffen, where the sign of the mixing ratio for both the first and
second transition is arbitrarily set to be "+". Note that in the formalism of references [9], [10], and
[16] the sign depends on whether or not the transition involves a parity change.
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Special Cases
 Some special cases the evaluators might come across are described in the following sections.
1. Intermediate Unobserved Radiation
Consider the cascade J1 (γ1) J2 (γ2) J3 (γ3) J4 where the directional distribution of γ3 is measured
relative to the direction of γ1 and radiation γ2 is unobserved. 

J1

γ1 L1, L1'
J2

γ2     L2,L2'
J3

γ3 L3, L3'
J4

This case can be treated using equation (1) with the addition of a multiplicative de-orientation factor
Uk(LJ2J3) defined by

(6)  2 3 2 2

2 2 3

'1/2 22 2 2 22 3 2
3 3 2 3 3 2

2
2

( )
( 1) [(2 1)(2 1)] ( 1) ( 1) ( ) '

1 ( )

k

J J L L

U L J J
J J k J J kJ J J J L J J L 

 



                 

2
2 2 3 2 2 2 3

2
2

( ) ( ) ( ' )
1 ( )

k kU L J J U L J J 
 

 
where

2 222 2
2

1 ( ' ')( ) ( )1 ( )
L
L

     
 

α(L') and α(L) being the total conversion coefficients for the L2+1 and L2 components, respectively
of γ2, and δ(γ2) is defined by equation (5). The { } are 6-J symbols.
The Uk(LJJ') are called de-orientation coefficients since they take account of the decrease in
alignment resulting from the unobserved transition. They are tabulated in [2], [16], and [17].
Equation (6) is from Anicin et al. [21]. Explicit expressions given in all other sources with which
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I am familiar are incorrect in that they contain δ2 in place of Δ2. It should be noted that Δ is parity
dependent through the factor (1 + α(L2'π')) / (1 + α(L2π)). For α’s  1 this factor reduces to unity, and
Δ  δ, but for large α’s, this factor can distinguish, for example, M1+E2 from E1+M2.
Note that equation (6) contains no interference term since the radiation it represents is not observed.
Note also that 0 ( ) 1U JJ 
The angular distribution for the general case of n radiations with the correlation between the first and
last transition being measured is given, by extension, by

(7)1 2 1( ) ( ) ( )... ( ) ( ) (cos )k k k n k n k
k even

W B U U A P     
 

2. Correlations involving Internal Conversion electrons
If internal conversion electrons, rather than gammas, are observed for either of the transitions in the
cascade described by equation (1), then the factors Fk appearing in equations (2) and (3) should be
replaced by the factors bk(ceiΛΛ')Fk, where the bk(ceiΛΛ') are particle parameters for conversion in
the i shell for Λ, Λ' = M1, E2, or E1, M2, etc., tabulated in [22], and the mixing ratio δ should be
replaced by 

1/2( ' ')( ) ( )( )
ii

i

Lce L
    
    

For a (γ)(cei)(θ) experiment where the second transition is M1+E2, for example, equation (3)
becomes

     (8)
2

3 2 3 2
2

3 2

( )[1 ( )]
(11 ) ( 1, 1) 2 ( ) (12 ) ( 1, 2)

( ) (22 ) ( 2, 2)

k i i
k K i i k k i

i k k i

A ce ce
F J J b ce M M ce F J J b ce M E

ce F J J b ce E E





 

 

where the 1+δ2 term has been transposed to the LHS.
3. Resonance Fluorescence
The angular distribution in a (γ,γ') experiment, where the exciting and deexciting transitions are the
same, follows from equations (1), (2), and (3) with the further observation that the reduced matrix
elements defined in equations (4) and (5) have, for this case, the property that 

1 2( ) ( )    
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For the sequence J3(L2L2+1)J2(L2L2+1)J3 one then has
(9) 2

2( ) ( ) (cos )k k
k even

W A P  


 
with Ak(γ2) given by equation (3) and δ(γ2) given by equation (5). The more general case of (γ,γ') is
treated like γγ(θ) with the ground state as the initial state, J1.
4. Coulomb Excitation
The angular distribution of gammas in a Coulomb excitation experiment takes the form of equation
(1) with 

    (10)1 1 2( ) (§) (22 )k k kB b F J J 
where J1 is the target spin, J2 the spin of the Coulomb-excited state, J3 is the spin of the final level
following the gamma emission, and bk(§) is a particle parameter which depends on the excitation
process through the parameter §. These particle parameters are tabulated in [5].
5. Alpha Decay 
The form for the αγ(θ) correlation is similar to that described above for ceγ(θ). The factors Fk in the
expression for Bk are multiplied by the particle parameters for alpha decay, bk, defined by

     (11)  
1/2

''
2[ ( 1) ''( '' 1)]( '') ( '' ) cos( ) ( 1) ''( '' 1) ( 1)k k L L

L L L Lb LL b L L L L L L k k          
                                 
where L'' = L+2, L+4 etc., and δ(γ) is replaced by 

2 '' 1 2 1( ) ( ) / ( )L LJ H J J H J      
For alpha decay in which a single L value dominates, Bk takes the same form as equation (10),
namely 

1 2( ) ( ) ( )k k kB b LL F LLJ J 
For mixed-L transitions, since L+L'' = even, the phase factor in the second term of equation (2) 
becomes +1, and equations (2) and (3) have exactly the same form. The phase angle appearing in
equation (11) contains the Coulomb phase shifts and depends on the target nuclide and the alpha
particle energy. It enters only in the mixed L, L'' term of equations (2). See references [3] and [23]*
for a definition of this phase term.

*  Note that in equation (123) of [23], the cross term should be multiplied by a factor of 2.
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The difference in phase angles for L and L'' are usually small (see reference [24] and references
contained therein) so that the cos term is close to +1 or -1. We adopt cos(ηL - ηL'') = +1 which, along
with the forms of equations (12) and (13) below, defines the phase of δ(α).
For the case where only the two lowest L values contribute significantly, equation (2) becomes

 (12)
2

2
1 2 1 2 1 2

( )[1 ( )]
( ) ( ) 2 ( ) ( '') ( '' ) ( " '') ( " '' )

k

k k k k k k

B
b LL F LLJ J b LL F LL J J b L L F L L J J

  
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 
 

where the (1+δ2) term has been transposed to the LHS of the equation. For the case of L=0, the
particle parameter cannot be defined in terms of the functions Fk for the gammas. For L=0+2, using
equation (7.10) of Steffen [1b], or equation (107) of [1c], equation (12) for k=2 becomes 

(13) 1 2

1 2

2
2 0 2 2 2 1

2 2
2 ( ) cos( ) ( ) (22) (22 )( ) ( )

J J
J J

b F J JB          
  

where is the Kronecker delta. For a pure L=0 alpha transition, the angular distribution is1 2J J
isotropic.
6. Other Cases
When the intermediate state, J2 in Fig. 1, is oriented by low-temperature techniques or by nuclear
reactions etc., the angular distribution can be described by equation (7), with the Bk now treated as
alignment parameters which may be determined experimentally, estimated empirically, or calculated
on the basis of a specific model [17]. See for example references [1], [2], and the tabulations and
references quoted in references [17] and [18].
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Table I
Sign of δ normalized to convention of Steffen Reference

γ1 γ2
+ (nomalization) + (normalization) Steffen [1], [14], [15]

 +  + Frauenfelder-Steffen [3]
 +  + Poletti-Start [13]
 +  + Taylor et al. [8]
 +  + Yamazaki [17]
 +  + Ferguson [19]
 -  + Biedenharn-Rose [4]
 -  + Ferguson-Rutledge (1957) [7]

Pure E2 assumed  + Alder et al. [5]
+ (Δπ=yes)                          + (Δπ=yes)
- (Δπ=no)                            - (Δπ=no)

Litherland-Ferguson [10]
Poletti-Warburton [16]
Ferguson-Rutledge (1962) [9]

 - - Rose-Brink [2]
 -  - Smith [11]
 -  - Harris et al. [12]
 -  - Watson-Harris [18]
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C.   Reduced Gamma-Ray Matrix Elements, Transition
Probabilities, and Weisskopf Single-Particle Estimates

M. J. Martin
Oak Ridge National Laboratory, Oak Ridge, Tennessee

September, 1982
Revised with minor changes in the text, and with some δ factors included explicitly. Some

additional expressions have been added
September, 2016

The formulas given below for Weisskopf estimates BλW are the basis for the calculations in the
program RULER.
For an electromagnetic transition of energy Eγ, the relationships among the reduced matrix elements,

, and the partial gamma-ray half-lives, , are( )B L 1/2T 
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The Weisskopf single-particle estimates for the  are ( )B L
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The relationship between a measured to a level with spin and half-life from( )B L  fJ 1/2 ( )fT J
a level with spin connected by a transition with mixing ratio is given by Eq. (1) or (2) with iJ k k

         (7)    
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1( ) ( ) ( ) ( ) ( )1 1k kkf k k

k k
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where is the fraction of the decays of level that proceed by the observed mode and is( )k  fJ k
defined by ( )( ) (1 ) (1 )

k kk
i i k
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In the above equations,  and  and  are in units24 210 ,b cm 1/3 13

0 10 ,R R A x cm ( )B EL ( )B ML
of and , respectively.2 Le b 2 1L

Nb 

Explicit expressions for the above equations are given below for L=1 to 5.  is in keV, is inE 1/2T
seconds, is in eV, and stands for Weisskopf units. The mixing ratio factors are included ( . .)W u
explicitly for L=1, 2, and 3. It is unlikely that they would be needed for higher multipoles but they
could be taken into account if necessary. 
The Weisskopf estimates for E1 and M1 transitions are expressed in terms of both and width,1/2T
and for E2 transitions in terms of both and See the Guidelines for details as to when1/2T ( 2).B E
and why the alternate expressions should be used.
The constants adopted are as follows:
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E1 Transitions
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E3 Transitions
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E5 Transitions
33

1/2 11

12 10/3 2 120 10
44

1/2 11 10/3

44
11 10/3

1/2
33

1/2 11

2.006 10( 5) ( 5)
( . .)( 5) 6.929 10 ( 10 )

2.895 10( . .)( 5)
2.895 10( 5)( . .) (1 )

2 12.006 10( ) ( 5) (1 ) 2 1
f

f
i

xT E xB E E
B s p E x A e x cm

xT s p E E A
x BRB E W u E A T

Jx BRT J xB E E J













 





 
  

 
Expressions for ML transitions can be expressed in terms of the EL formulae as follows:
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Explicit expressions are given below.
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M1 Transitions
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M3 Transitions
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M5 Transitions
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Miscellaneous Relations
Recoil correction for gamma transitions

7 25.3677 10 ( )( )( ) x E keVE recoil keV A



Relationship between half-life and total width

15
1/2 0.45623 x 10xT eV s  
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D.   Monopole Transition Strength    
Excerpted by M. J. Martin from Ref [1]

September, 2016
T h e  e l e c t r i c  m o n o p o l e  ( E 0 )  t r a n s i t i o n  p r o b a b i l i t y  i s  d e f i n e d  b y

π
1/2

ln 2( 0) ( 0) + ( 0)T ( 0) icW E W E W EE 
where T½(E0) is the partial half-life of the initial state for E0 decay and Wic and Wπ are the transition
probabilities for internal-conversion electron and electron-positron pair emission, respectively. They
are defined by  2

π( 0) + W ( 0) = ρ ( 0) x Ω (E0) + Ω ( 0)ic icW E E E E
where Ωic and Ωπ are electronic factors independent of nuclear properties. The nuclear structure
information is contained in the quantity ρ(E0), defined by

2
( 0)ρ( 0) f M E iE eR

where R is the nuclear radius and M(E0) is the monopole matrix element, . Since there is2Σk k ke r
often an ambiguity in determining the sign of ρ(E0), it is customary to use the square, ρ2(E0).
The reduced E0 transition probability, B(E0), is given by the square of the E0 matrix element,

2 2 4( 0) = ρ ( 0)B E E e R
where e is the electric charge.
In Ref [2], in a discussion of E0 transitions between 2+ states, the quantity

2 ( 0)( 0) = ( 2)
KK
K

I Eq E I E
where Ik(E0) and Ik(E2) are the K-shell intensities of the E0 and E2 components, respectively, of the
2+ to 2+ transition.
A dimensionless ratio of the E0 and E2 transition probabilities was defined in Ref [3] as

2 2 4( 0) ρ ( 0)( 0 / 2) =  = ( 2) ( 2)
B E E e RX E E B E B E

As given in Ref [1], X(E0/E2) can be determined experimentally from the relation
6 2 5

γ
α ( 2)( 0 / 2) = 2.54 x 10  x ( 0 / 2) x  x Ω ( 0)

KK
K

EX E E q E E EE


where Eγ is the E2 γ-ray energy in keV.
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The experimental monopole strength can be obtained directly if the partial half-life of the E0
transition, T½(E0), is known.

2 1
1

1/2

ln 2ρ ( 0) = [Ω ( 0) Ω ( 0) ... Ω ( 0)]( 0) K LE E E ET E    
or alternatively from

2 2
γ

α ( 2)ρ ( 0) ( 0 / 2) x  x ( 2)Ω ( 0)
KK
K

EE q E E W EE
if the E2 transition rate, Wγ(E2), is known.
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E.   Alpha-Decay Hindrance Factors
M. R. Schmorak

Oak Ridge National Laboratory, Oak Ridge, Tennessee 
(June 1987)

1. The Concept of a Hindrance Factor
The probability for α decay depends primarily on two factors: 

(a) the difference in the nuclear structure configurations between the parent and the daughter
nuclear states 
b) the energy of the α particle. 
Note: The dependence on energy is very strong. For example, for ground-state to ground-state
decays of even-even isotopes, changing the energy from Eα = 4 MeV to Eα = 8 MeV reduces
the partial α half-life, by 20 orders of magnitude. 

Our main interest in the Nuclear Data Network is in the effects of nuclear structure on α decay (Jπ and
configuration assignments); therefore, it is useful to define the concept of αHF which is related to the
experimental α intensity Iα, but with the energy dependence (as well as the weaker Z and A
dependence) removed. This is quite similar to the procedures adopted for β decay (the use of log ft's)
and γ decay (the use of Weisskopf units for reduced transition probabilities).
In even-even nuclei, the strongest α transitions are the g.s. to g.s. transitions (0+ to 0+). They range
from 65% to over 99% of total α decay. By definition, HF = 1 for these α branches. All other α HF's
are calculated relative to the 0+ to 0+ HF's. For example, in the mass region A>214, the HF's for 0+
even-even parents to the 2+ first excited daughter states vary smoothly as a function of A from 0.9 to
4.0. See Ref [3].
In odd-A and odd-odd nuclei, the HF is defined relative to the HF's for g.s. to g.s. transitions in the
neighboring even-even nuclei (see section 3).
2. The Use of αHF in Nuclear Data Evaluations
The α HF's exhibit remarkable regularities [2,3]. These systematic features are the basis for their
usefulness in evaluations (again in close analogy to the use of log ft's and reduced transition
probabilities as well as of spectroscopic factors). The main uses are for

(a) Jπ and configuration assignments  
(b) estimation of unknown α-decay branches

    a)  Jπ assignments. The Summary of Bases for Spin and Parity Assignments in NDS contains
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two strong rules, #33 and #34, based on α decay for Jπ assignments; however, more
arguments could be suggested based on the systematic trends discussed in Refs [2,3] 
It is clear from Ref [2] that in the deformed actinide region, all rotational bands have very
characteristic αHF’s. For favored bands i.e., the same configuration in parent and daughter
levels (It is assumed that the band are not strongly mixed.), the αHF's may be calculated easily
using the rotational model. The agreement with experiments is usually within a factor of 3 (for
L = 2 transitions the agreement is usually better than 50%). Considering the 4 orders of
magnitude spread in measured αHF's, this agreement as well as the systematic trends in
non-favored transitions (effects of L-transfer, spin flip, Nilsson configuration changes,
Coriolis coupling) are very useful for Jπ and configuration assignments. Clearly, our Jπ rules
#31 and #32 for rotational bands should be updated since αHF's are no less useful than level
energies in establishing assignment of a level to a rotational band.
The systematic trends in the closed-shell lead region are no less impressive. Ref [3] . For
example, αHF’s from parent 3p1/2 to daughters 3p1/2, 3p3/2 and 2f5/2 are the same to within 20%
for Po, Rn, and Ra isotopes. Similar agreement is apparent: in the 2f5/2parents decays to
201,203,205Po; in the2g9/2 parents decays to 209Pb, 209Po, 211Rn, 213Ra; and in the 1h9/2 parents
decays to 207,209Tl, 207,209,211,213Bi, and 215At.
The consistency is not as good, but still impressive in the odd-odd nuclei: the decay of
(π1h9/2)(v2g/2)1- and (π1h9/2)(v2g9/2)9- parents. Clearly, our Jπ assignment weak argument #4
can be strengthened when supporting αHF information is available.

    b) Estimation of unknown α decay branches. The same systematic trends of α decay that were
pointed out in Refs [2,3] can also be used to estimate unknown α branches. One type of
application is to estimate an intensity of a single α branch which was not measured but may
be of importance to the mass chain evaluation. For example, we estimated the 209Po α branch
to the 5/2- g.s. of 205Pb at 20%. Experimentally it was not possible yet to resolve this branch
from the favored 80% α to the 1/2- state. This estimate is relevant to the calculation of Qα of
209 Po as well as to the degree of usefulness of 209 Po as an α energy standard. Another example
is the estimate of Iα to 2+ states in a number of heavy elements based on interpolation of the
very smooth variation of αHF's in this region. This estimate is essential for the correct
calculation of the radius parameter used to calculate αHF's for the whole region (see section
3).
The second type of application is the estimate of %α, i.e., the total α decay branching of
ground states or isomers in cases where this branching is not known experimentally. The key
to these estimates is the systematics of favored α transitions, which are usually by far the most
intense and determine to a large extent the total α-decay branching. (The exceptions are cases
where the favored level in the daughter is very high in energy.)
In the case of even-even ground-state α decays, the smooth systematic trends of the radius
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parameter (section 3) determine the intensity of the main 0+ to 0+ α branch. The second
strongest transition usually is the 0+ to first-excited 2+ state; this branch can be estimated quite
reliably from the systematic trend of 2+ HF's. Often the above 2 branches account for over
99% of the total a decay.
For odd-A and odd-odd nuclei, the estimates of %α can be quite reliable provided that the
level energy of the favored configuration in the daughter is known. In odd-A nuclei, such
estimates may be reliable to ±20% when Qα is well known. In odd-odd nuclei (where less
good data are available), the reliability may be ±50%. For example, in the mass region A =
191 through 213 for all 50 cases of odd-A favored α's, HF's vary from 1.1 to 1.6 for J 1/2 and
from 1.4 to 2.2 for J=1/2. For odd-odd nuclides the favored αHF's vary from 1.5 to 2.5 (except
for 5+ states which are probably of mixed configuration). In transition regions (where the
deformation changes rapidly), there are significant differences between the parent and the
"favored" daughter configurations; as a result, the "favored" αHF's are larger.
Uncertainties in Qα of 200-400 key correspond to an order of magnitude uncertainty in a
calculated T½(α). Even in cases of such large uncertainties, the estimate of %α may still be
useful. For example, the estimate %α << 1 syst may indicate that %ε 100; thus, log ft's could
be calculated. Table 5 of Ref [3] lists the %α and Qα values for 186 < A < 223; "syst"
indicates the values derived from systematics of αHF and of Qα, respectively. For a graphical
representation of Qα values see, for example, Ref [4]. In a few cases, T½ could be estimated
for ground states and isomers. Table 6 of Ref [3] lists the individual αHF values, including the
ones derived from the systematic trends, and the Iα values deduced from the αHF values. In
cases of strong configuration mixing, the estimates are less reliable; however, for strong α
branches, the sensitivity of αHF (and therefore of Iα) to configuration mixing is much smaller
than the corresponding sensitivity of log ft values, of reduced transition probabilities, and in
many cases of magnetic moments.

3. Calculation of αHF*
The calculation of αHF’s in NDS is based on the spin-independent equations of Preston, Ref [5], and
is essentially the same as the calculations done for the sixth, seventh and eighth editions of the Table
of Isotopes, Ref [6] (1967, 1978, and 1996).
    a) For even-even nuclei, the αHF's of excited states are inversely proportional to Iα and are

normalized to the value HF = 1 for the 0+ to 0+ g.s. to g.s. transition. The computer program
removes the energy dependence (which is calculated from the input Qα and Elevel in the
daughter). The uncertainties in the parent T½, α branching, and Qα cancel out, because of the
method of normalization. If the level energies are accurate (say, ΔE 5 keV), the uncertainty
in HF will be the same as the fractional uncertainty in Iα.
* See Appendix A for details on obtaining the r0 parameters   
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In addition to αHF, the computer program calculates the parameter, ro, (roughly equivalent to
the nuclear radius) from Qα, T½(α), and Iα to the g.s. (Z and A also enter in). It is useful for
evaluators to keep track of the r0 systematics in the region of their responsibility. In my
experience (in the lead and actinide regions) the ro values for each element lie on fairly
smooth curves, the exception being sharp breaks at the closed shells N = 126 and N = 152.

    b) For odd-A and odd-odd nuclei, the αHF's are also inversely proportional to Iα, but the
normalization is to the neighboring nuclei. The ro parameter has to be included in the input
to the computer program. Usually for odd-A isotopes, the ro will be the average of the two
nearest even-even neighbors, and for odd-odd isotopes the average of the four nearest
even-even neighbors. See Appendix A. If the r0 's for some (or all) of the neighbors are not
known, then interpolation or extrapolation is needed. Our experience at Oak Ridge is that
human interpolations (or extrapolations) are preferable to computer algorithms for this
purpose. The uncertainties in αHF are usually much larger than in the case of even-even nuclei
for the following reasons: There is the additional uncertainty in the r0 parameter; the
uncertainties in Qα and T½ (parent) as well as in the α-branching of the parent, do not cancel
out. Typical uncertainties are, for example, 3 keV in Qα of 5 MeV resulting in 4%
uncertainty in αHF, Δr0 of 0.01 resulting in 20% uncertainty in αHF, and of course linear
dependence on uncertainties in Iα and T½(α).
In contrast to most calculations of log ft's, we do not have to worry here about unplaced
transitions. In fact, αHF's can be calculated from Eα, Iα and Z without any knowledge of the
decay scheme. However, the interpretation of the results of αHF calculations demands
considerable experience and detailed knowledge of nuclear structure.
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F.   Jπ and Multipolarity Assignments in (HI,xnypzαγ)
Reactions

B. Singh and J. C. Waddington 
Department of Physics and Astronomy

McMaster University, Hamilton, Ontario, L8S 4M1 Canada
(June 4, 2001)

In heavy-ion compound nuclear experiments (HI,xnypzαγ), the multipolarities of the γ transitions and
the relative spins and parities of the levels are generally determined through the measurement of
angular distributions, angular correlations, linear polarizations, and through measurements of internal
conversion coefficients.

Angular distributions
1. The angular distributions of γ-rays, W(θ), is a measurement of the intensity as a function of

the angle θ with respect to the beam direction or to the nuclear spin axis.
W(θ)=  Ak Pk (cos θ)

                                                                                 k=even
2. The values of the coefficients Ak depend on ΔJ, the mixing ratio δ(L+1)/L, and the degree of

alignment. In most cases only A2 and A4 need to be considered. For high-spin states the
distributions are largely independent of spin.

3 The degree of alignment, σ/J, is usually determined through a measurement of W(θ) for a
number of known ΔJ =2 transitions. In actual practice many authors use σ/J = 0.3 for the
degree of alignment. Here σ is the half-width of the Gaussian describing the magnetic
sub-state population. The attenuation caused by the degree of alignment affects only the
magnitudes of A2 and A4. Level lifetimes are assumed to be small so that alignment is
maintained.

4.  Angular distribution measurements alone may be used to deduce ΔJ and/or the multipole
order (L) (multipolarity), but not Δπ.

5. Typical values of A2 and A4 are given in the table below (σ/J = 0.3 assumed). The angle θ is
measured relative to the beam direction. If θ were with respect to the spin axis, then the sign
of A2 is generally reversed.
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Table of Angular Distributions

ΔJ Multipole Order Sign of Ak* Typical Values
A2 A4 A2 A4

2 Quadrupole + - +0.3 -0.1
1 Dipole - -0.2 0.0
1 Quadrupole - + -0.1 +0.2
1 Dipole + Quadrupole + or - + +0.5 to -0.8 0.0 to +0.2
0 Dipole + +0.35 0.0
0 Quadrupole - - -0.25 -0.25
0 Dipole + Quadrupole + or - - +0.35 to -0.25 0.0 to -0.25

* Note that A4 is positive for all δ values for ΔJ=1, Dipole +Quadrupole, and negative for    
ΔJ=0, Dipole + Quadrupole.

 
Angular Correlations, e.g. DCO, Directional Correlations of γ-rays 

from Oriented States of Nuclei 
6. DCO measurements involve the determination of the coincidence intensities for two γ-rays,

γK of known multipole order (L) and γU of unknown multipole order. The γ-rays are detected
at two angles, θ1 and θ2, with respect to the beam direction. The coincidence intensities are
determined as two dimensional areas, I(θ1 θ2 γK γU) and I(θ1 θ2 γU γK), where in the former case
γK is detected at angle θ1 and γU at angle θ2.
The DCO ratios are then defined as

R=I(θ1θ2γkγu)/I(θ1θ2γuγk)
7. As with angular distributions, these ratios are insensitive to spin for high spin states but are

sensitive to relative spins and γ multipole orders.
8. The angles θ1 and θ2 are generally determined by the geometry of the array. The values of R

given below are typical for an array with detectors at 37° and 79°. An alignment of σ/J=0.3
has been assumed.
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Table of Typical DCO Ratios
, Multipole ordergate

γΔJ γΔJ Multipole order Typical R(DCO)
2, Quadrupole 2 Quadrupole 1.0
2, Quadrupole 1 Dipole 0.56

(θ1=37°, θ2=79°)
2, Quadrupole 1 Dipole + Quadrupole 0.2 to 1.3

(θ1=37°, θ2=79°)
2, Quadrupole 0 Dipole 1.0
2, Quadrupole 0 Dipole + Quadrupole 0.6 to 1.0

(θ1=37°, θ2=79°)
1, Dipole 2 Quadrupole 1/0.56

(θ1=37°, θ2=79°)
1, Dipole 1 Dipole 1.0
1, Dipole 0 Dipole 1/0.56

Linear polarization of γ-rays
9. A Compton polarimeter apparatus allows the measurement of relative intensities of radiation

scattered in planes perpendicular to and parallel to the reaction plane (plane defined by the
beam direction and incident gamma ray).

10. Determination of γ-ray polarization may differentiate between electric and magnetic radiations
and thus, when combined with correlation data, allow determination of Δπ. See Kim et al. [7]

Internal conversion coefficient data 
11. Internal conversion coefficients or subshell ratios may be obtained from electron spectra or

from γ-ray intensity balances.
12. The interpretation of internal conversion coefficient data is as given in NDS under rules for

spin and parity assignments. Note that electron data usually give K-, L-, etc., conversion
coefficients or sub-shell ratios whereas intensity balance arguments give total conversion
coefficients
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Other considerations
13. If T½ (level) is known or a limit can be assumed (based on coincidence resolving time, for

example), RUL (recommended upper limits for Weisskopf estimates) may serve to eliminate
the M2 option for a ΔJ = 2 quadrupole transition.

14. Generally for the states populated in high-spin reactions, spins increase with increasing
excitation energy. This is a result of the fact that these reactions tend to populate yrast or near
yrast states.

15. For a well-deformed nucleus, when a regular sequence of ΔJ=2 (stretched quadrupole)
transitions is observed at high spins as a cascade, then the sequence may be assigned to a
common band with E2 multipolarity for all the transitions in the cascade. A similar but
somewhat weaker argument holds for less deformed nuclei where a common structure of
levels is connected by a regular sequence of ΔJ=2 (stretched transitions) as a cascade. For
interband transitions, ΔJ = 1 or 0 transitions with significant admixtures are considered to be
of MI + E2 type. If the transition is pure dipole (δ(Q/D)=0), it is quite often El. The small
deformation magnetic rotational (M1) bands present exceptions to this rule. 

16. The presence of strongly coupled (deformation alignment) bands allows assignment of relative
spins and parities of the band members. The presence of a measurable quadrupole admixture
in the ΔJ = 1 cascading transitions is required to prove that all the states have the same parity.
This is because nuclei with octupole deformation may have two rotational ΔJ = 2 sequences
of opposite parity connected by cascading El transitions.

17. For near-spherical nuclei, when a regular sequence of ΔJ = 1 (stretched dipole) transitions is
observed at high spins as a cascade, then the sequence may be assigned to a common band
with M1 multipolarity for all the transitions in the cascade. (Cascades of ΔJ = 1, El transitions
occur in rare cases of nuclides which show alternating-parity bands or reflection asymmetry.)

18. In the absence of angular distribution/correlation data, a regular sequence of transitions in a
cascade may be assigned to a common structure or a band if:

1)  The low-lying levels of this structure have well established spin parity       
assignments. 
2)  There is good evidence that, at higher energies and spins, the band has not       
changed in its internal structure due to band crossings or other perturbations.

19. In strongly coupled bands, (deformation aligned) a comparison of an experimentally deduced
value of gK (from mixing ratio δ(E2/M1) and assumed gR and Q0) with that calculated on the
basis of a proposed quasi-particle configuration may lead to the assignment of parity to a
band.

20. A comparison of experimental and calculated Routhians and particle alignments (from
cranked shell-model calculations) for suggested quasi-particle configurations may give
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information about the parity of a rotational band.
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G.  Single-Nucleon Transfer Reactions 
P. M. Endt

Fysisch Laboratorium, Rijksuniversiteit, Utrecht, The Netherlands
 (June 1987)

The following remarks on single-nucleon transfer reactions are hopefully useful to A-chain
evaluators. For some more details see the introduction of the paper: P. M. Endt "Spectroscopic factors
for single-nucleon transfer in the A=21-44 region", Atomic Data and Nucl. Data Tables 19 (1977)
23.
For the time being it does not seem advisable to list S-factors from two or more-nucleon transfer
reactions in the NDS. For such reactions it is not possible to factorize the cross section into a nuclear
structure part and a part relating to the reaction mechanism. Spectroscopic information from
single-nucleon transfer reactions in which the in- and outgoing particles are heavier than the α-particle
should also be excluded, because as yet the reaction mechanism for such reactions is far from being
established. 
Finally, S-factors from work performed at either too low or too high a bombarding energy, or with
poor resolution should not be listed. At low bombarding energy (E 5 MeV) the compound-nucleus
contribution is relatively large. Especially for rather light nuclei the Hauser-Feshbach theory is not
considered good enough to predict the magnitude or the angular distribution of this contribution with
confidence. At high bombarding energy (E 50 MeV) the incoming particle penetrates deep into the
nucleus, which entails changes in the optical potentials on which, at present, too little systematic
information is available. Poor resolution (FWHM 100 - 200 keV) not only reduces the number of
resolved particle groups but, perhaps worse, makes it more difficult to recognize contaminant groups
and to subtract their contribution. Contaminant groups are characterized by their energy changes as
a function of angle and/or bombarding energy; for adequately accurate energy measurements, good
resolution evidently is a necessity. In this respect, work performed with magnetic spectrometers is
generally superior to that with semi-conductor detector telescopes. 
The following notation has proved practical for the spectroscopic factors relevant to the four different
types of single-nucleon transfer reactions:  

   neutron stripping (d,p),(t,d),(α, τ); nS 

   proton stripping (d,n),(τ, d),(α, t);pS 

    neutron pick-up (p,d),(d,t),(τ, α); nS 

    proton pick-up (d, τ),(t, α).   pS 

Poor resolution generally excludes work with the (n,d) reaction. The distorted-wave Born
approximation (DWBA) theory for the analysis of differential cross sections for direct single-nucleon
transfer reactions has certainly been very successful. A vast number of l-determinations have greatly
furthered our knowledge of Jπ values. It is also true, however, that   the theory is not as perfect as, say,
that for γ- γ angular correlations. Contributions from multistep processes (calculated with the

81



coupled-channel formalism) and from compound-nucleus formation exist and are often evaluated
quantitatively, but the reliability of such calculated corrections is not yet fully known. Uncertainty
also exists in the values of the optical-model  parameters to be used, in the parameters determining
the bound-state radial wavefunctions of the transferred particle, and in finite-range and nonlocality
corrections. One may apply a least-squares analysis to measured angular distributions, but χ2-values
close to unity are still, at least for good statistics, a dream of the future. The correctness of l-values
is still judged by eye, and consequently only very few l-assignments are unambiguous, in the sense
that other l-possibilities can be excluded at the 0.1% probability limit.  
The difficulties mentioned above are even more important for the spectroscopic factors extracted from
a DWBA analysis. Few authors assign errors to spectroscopic factors because in most cases these
would be of a systematic rather than of a statistical nature. It is thus difficult to compare the results
of two measurements (the definition of good or bad agreement depends on the errors) or to compare
measured and theoretical values.   
The measured differential cross section σ(θ)exp and the theoretical differential cross section σ(θ)DWBAprovided by a DWBA program are related as follows: 

     (1)2
exp( ) ( )  for pickup,DWBANC S   

 and  
   (2)2

exp  
(2 1)( ) ( ) for stripping(2 1)

f
DWBA

i

JNC SJ    
This is true, for example, for JULIE, but we note that the output of DWUCK, the most widely used
program, is slightly different:   

( ) (2 1) ( ) ,DWUCK JULIE
DWBA DWBAj    

where j is the total angular momentum of the transferred nucleon. In these expressions C2 denotes the
(squared) isospin Clebsch-Gordan coefficient for single-nucleon transfer

1/ 2 1/ 2 | ,i zi f zfC TT T T  
where (Ti,Tzi) relates to the initial (target) nucleus and (Tf,Tzf) to the final state. The C2 values can
be evaluated with the help of Table 1. It shows, for example, that one has C2 = 1 for neutron stripping.
It should be remarked that in many papers published before about 1970 the S-values have to be
interpreted as C2S.  
The normalizing factor N is proportional to the square of the overlap integral between (for stripping)
the wavefunctions of the outgoing particle coupled to the transferred nucleon and that of the incoming
particle. For pick-up the words "ingoing" and "outgoing" in the preceding sentence have to be
interchanged. 
One can consider N as the spectroscopic factor for the light particles participating in the reaction.
Whereas, in a transfer reaction A(a,b)B, the spectroscopic factor measures the wavefunction overlap
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between A and B and the transferred nucleon, the factor N has the same function for a and b and the
transferred nucleon. Numerical values of N for some reactions are given in Table 2.  
Spectroscopic factors can be subjected to several tests. First one can check that reactions of one type,
such as (d,n) and (3He,d) (proton stripping), or (p,d), (d,t) and (3He, α) (neutron pick-up), produce the
same spectroscopic factors. The same should hold for pairs of reactions, such as (d,p) and (3He,d),
or (p,d) and (d,3He), exciting mirror states, or, more generally, components of the same isospin
multiplet. Finally, one can check the equality of spectroscopic factors for pairs of inverse reactions,
for example, (d ,p) and (p ,d), connecting ground states of stable nuclei. Because the ratios of
spectroscopic factors found for the pairs of reactions mentioned above are reasonably close to unity
, one may conclude that the set of normalization constants used is internally consistent.
The experimentally observed deviations from these consistency rules provide some ideas as to the
experimental errors in S-factors. For absolute measurements the error may be taken as 25% . Relative
measurements are presumably more accurate, in particular for groups of S-factors relating to the same
l-value.  
The credibility of published l-values depends not only on statistics and on the number of points in the
angular distributions, but also on the l-value itself . In the sd shell, values l>3 have proven to be quite
unreliable, and the same presumably holds for l >4 in the fp shell. Generally, high l-values (like l=4)
should be mistrusted if the author does not show explicitly that the DWBA curves for l=3 and l =5
are sufficiently different from that for l=4 . A reaction like (τ,α) yields relatively unstructured angular
distributions and thus leads to unreliable l-values. 
Spectroscopic factors cannot be arbitrarily large because they are subject to sum rules. The sum rules
useful for the derivation of upper limits are the following:   

(3) 2
2 1

f
p

f

T S pT
  

and
   (4)12 1

2 1
f

n
i

J S nJ
   

where   is the number of protons and  the number of neutron holes in a subshell (n,p  1n 
l, j), both in the target nucleus. The summation has to be extended over all final states (whatever the
spin) which can be reached by transfer of a particle in the subshell (n, l, j). For the proton pick-up and
neutron stripping considered here one can only reach final states with isospin  Equation.f iT T 
(3) also holds for neutron pick-up and Eq. (4) for neutron stripping (both right-hand members
unchanged) if the summation is extended over  states only; in these cases the reactionf iT T 
can proceed to both  and   final states (if at   least Ti > 0).  f iT T  f iT T 
We shall use here Eqs. (3) and (4) only for even-even target nuclei, corresponding to Ji = 0, Jf = j.
From the fact that neither  nor  can exceed 2j + 1, one then obtains for this case thep  1n 
upper limits for any single transition

83



      (5)2 1(2 1)f
p

f

TS jT
  

and  
       (6)1.nS  

The more complicated rules for proton stripping and for neutron pick-up reactions leading to
 states are not mentioned here because their applicability is very limited.  f iT T 

Table 1   
Isospin Clebsch-Gordan coefficients (C) for use in single-nucleon transfer reactions†

Stripping
2(2 1)iJ C

Pick-up
2(2 1)fJ C

p n p n
f iT T  2 iT 0 0 2 1fT 
f iT T  1 2 1iT  2 fT 1

†   and  denote the isospins of the target nucleus and the final state, respectively.i fT T

Table 2
Normalizing factors (N) for single-nucleon transfer reactions #

Reaction N Reaction N
(d,p), (d,n) 1.53 (p,d) 2.29

(τ,d) 4.42 (d,τ) 2.95
(α,τ) 46       (τ,α) 23       

(d,t) 3.33

# These N-values fulfill the relation for inverse reactions  where2 1( , ) ( , ) ,2 1
a
b

sN b a N a b s
 

are the spins of the particles concerned. and a bs s
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H.    Nuclear Structure and Decay Data Evaluation
Procedures and Guidelines for Strongly Deformed Nuclei

C.W. Reich
Idaho National Engineering Laboratory. EG&G Idaho, Inc.

Idaho Falls, Idaho 83415 U. S. A.
(June, 1987)

I  Introduction 
To assist the evaluator of Nuclear Structure and Decay Data for the Nuclear Data Sheets, as well as
to help provide some degree of uniformity and consistency in the resulting evaluations, numerous
guidelines have been established over the years. Many of these are categorized as being either
"strong" arguments or "weak" arguments for making Jπ assignments to energy levels in nuclei. For
those levels that are members of rotational bands in strongly deformed nuclei, however, the
establishment of "strong" or "weak" rules for making Jπ assignments is at one and the same time a
trivial task and a complex one. On the one hand, implicit in even considering that a level might
belong to a rotational band is that a model-based judgement is being made, taking into account other
information in addition to that which is explicitly being evaluated. Such "external" information
includes, for example, the observation that a relatively simple relationship exists between the energy
and Jπ value of the particular level and those of certain other levels in the same nucleus and that
similar patterns, presumably analogous to the case at hand, are observed in other, near-lying, nuclides.
On the other hand, as regards Jπ values, members of rotational bands are not really different from
levels in nuclides that are not strongly deformed, in that the usual means of assigning such values
(γ-decay and feeding properties, α and β-feeding probabilities, γ-γ directional correlations, etc.) still
apply. It was, in fact, only after definitive Jπ values had been assigned to certain groups of levels (and
strongly enhanced connecting E2 transitions observed) that the occurrence of the hypothesized
rotational bands could be established in the first place.
It should be recognized that reliable Jπ assignments to levels in the strongly deformed nuclei can
frequently be made primarily by using nuclear model-based considerations. For example, the
existence of rotational bands in many nuclides is extremely well established; and the models of the
intrinsic (i.e., nonrotational) states upon which they are built are relatively simple and, also, quite well
understood (at least as regards Jπ values). In addition, the angular-momentum coupling scheme
underlying this picture is simple and can usually be applied to actual nuclear level schemes without
the use of complex, computer-based nuclear structure calculations. These considerations, together
with the existence of an extensive "systematics" of level properties of the strongly deformed nuclei
make it possible in many cases for the experienced nuclear physicist to construct a level scheme for
a previously unstudied strongly deformed nuclide in which the Jπ assignments can be regarded as
reliable, even though the available data are sufficiently meager that, in other mass regions, they would
yield almost no insight into the Jπ values. 
It should further be noted that these judgments are frequently based on qualitative considerations
rather than quantitative ones (such as, for example, the magnitude of a log ft value or the lifetime
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of a γ-ray transition). Consequently, these inferred Jπ values cannot be regarded as being based on
"strong" arguments, as this term is employed in Nuclear Data Sheets evaluations, even though they
are reliable as far as the underlying nuclear theory is concerned. Thus, for the strongly deformed
nuclei, the traditional distinction between "strong" and "weak" arguments for Jπ assignments becomes
blurred. In these cases, then, the assignment of Jπ values ultimately comes down, as it always should,
to the judgment of the individual evaluator.
In the discussion below, we lay out some considerations to help guide the evaluator in his or her
evaluation of nuclear-structure data to provide Jπ assignments for levels in the strongly deformed
nuclides. The topics treated involve only those aspects of the data that are specific (or unique) to the
angular-momentum coupling schemes appropriate to these nuclides. Our thinking here is guided by
those features of the strongly deformed nuclei that are commonly encountered in the "rare-earth"
region (say, 150<A<190) and the actinide region (say, A>220). However, the concepts should be
broadly relevant to those other regions of the Nuclide Chart where, as indicated by an increasing body
of experimental data, strongly deformed nuclei also occur. It is assumed that the reader is familiar
with those considerations for making Jπ assignments (such as γ-ray multipolarities) that are
independent of the features of any specific nuclear coupling scheme; and, although implicit use is
made of these, no explicit elaboration of them is given.
In Section II, we give several considerations to be kept in mind in treating data on the strongly
deformed nuclides. In Section III, to further elucidate some of these ideas, we provide a summary of
the analysis of a specific case, namely the strongly deformed, presumably reflection-asymmetric,
nuclide 225Ra [1]. Finally, in an Appendix we give a concise summary of the ideas presented in these
three Sections.
For further reading on nuclear-model considerations as applied to the analysis of the level structure
of strongly deformed nuclides, the following references are recommended. Quite instructive, although
somewhat old, reviews are those of Mottelson and Nilsson [2] and Gallagher and Soloviev [3].
Comprehensive evaluations of the then-available data on the odd-mass nuclides in the rare-earth and
the actinide regions, respectively, are given in Refs. [4] and [5]. The level schemes of the even-A
nuclides in the rare-earth region are interpreted, and the underlying nuclear theory presented, in Ref.
[6].

II  Selected Properties of Rotational Bands
A.  Level Energies 

1. Low Rotational Frequencies and Weak Band Mixing 
The rotational spectra of strongly deformed nuclei at low frequencies of rotation are customarily
analyzed using the well known expression (see, e.g., Refs. [4, 7, 8,])

                                        K     
                    E(J,K) = EK + AX + BX2 + CX3 + etc. + (-1)J+K  (J + i)(A2K  +  B2KX  + etc.)           (1) 
                                   i = 1-Kwhere X represents either J(J+1) or J(J+1)-K2.
In the present discussion, we choose the latter expression for X. K denotes the projection of the total
angular momentum of the intrinsic state on which the band is built onto the nuclear symmetry axis.
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In applying eq. (1) to the analysis of level energies within a given rotational band, one typically works
with level-energy differences only, and thus the parameter EK (which serves to locate the energy of
the band head) can be neglected. For bands with K = 0, the terms in eq.(1) with alternating signs
vanish, while, for bands with K = 1/2 and 1, one has explicitly

EJ = EK + AX + BX2 + etc.
+(-1)J+½(J+½)(A1 + B1X + etc.)  for K=½                                      (2,a)
+(-1)J+1J(J+1)(A2 + B2X + etc.) for K=1    (2,b)

Corresponding expressions can be derived from eq. (1) for bands having larger values of K. With the
identification A1 = Aa, where a denotes the decoupling parameter, eq. (2,a) can readily be expressed
in the usual form for K = 1/2 bands, viz.

               E(J,½)=E½ + A[J(J+1) - ¼ + (-1)J+½(J+½) a]                   (3)
In the derivation of the relationship expressed in eq. (1), it is assumed that K is, at least
approximately, a good quantum number. This implies that the coupling (mixing) of the band under
consideration to (with) other bands in the same nucleus is not too strong and that the rotational
frequencies of the states are not too high. In such cases, the coefficients B and C are expected to be
small (e.g., B/A 10-3 and C/B 10-3) and a reasonably good description of the energies of the band
can usually be provided using only a few parameters (e.g., A, B and, for K=½ bands, a).
Although explicit expressions can be derived [8, 9, 10] relating several of the parameters in eq.(1) to
the matrix elements assumed to couple the band in question to the other bands in the nucleus, such
computations usually lie beyond the scope of the typical A-chain evaluation. Rather, the usefulness
of giving values for these parameters in an A-chain evaluation lies in providing the interested reader
with a rapid and convenient means of gaining information about the band. For example, for K =½
bands, the decoupling parameter provides almost unique information about the nature and extent of
the single-particle (or one-quasiparticle) content of the band. Similarly, the rotational constant A (=

2/2 ) gives information about the effective moment of inertia ( ) of the band; and an extensive
systematics of the A-values for bands in the strongly deformed nuclei exists (see, e.g.,Refs.[4, 5]).
The other parameters also play an important role in helping the reader "understand" the band. The
values of the parameters A2K (and B2K) give a measure of the "staggering"†(signature splitting) within
the band and hence can be informative. The magnitudes of these parameters are expected to decrease
rapidly with increasing K-value and, hence, their effects should be most readily apparent in those
bands having the smaller values of K. Unfortunately, in most of the evaluations of the level schemes
of the strongly deformed nuclei such terms have not been considered. We would encourage evaluators
to include them, where appropriate, in their future work.
The analysis of the level energies of a given rotational band to deduce realistic values for the band

† For even-A nuclides, a relative displacement of the odd-spin band members with respect to
those of even spin. For odd-A nuclides, a relative displacement of the band members for which
J+½ = even with respect to those for which J+½ = odd.
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parameters is not always a trivial task or an obvious procedure. In doing this, the following points
should be kept in mind.

(i)  Eq.(1) is useful in describing rotational bands only when the number of parameters needed
to describe the level spacings is small. Since it is in reality an expansion in powers of
J(J+1)-K2, rather than a closed expression, it is possible to fit "exactly" the energies of an
arbitrarily large number of band members simply by including a correspondingly large number
of terms. However, such a procedure would not produce physically meaningful results beyond
those obtained from fitting a few terms, and would most likely have rather little predictive
power (i.e., ability to predict the energies of the next levels).
(ii)  Consequently, one should generally try to use the smallest number of parameters
consistent with achieving a reasonable overall fit to the level energies. These parameter values
should be determined from the smallest possible number of the lowest-spin members of the
band (recognizing that the energies predicted for the higher-spin band members may then
differ somewhat from the observed values). In particular, in most cases it is probably not
meaningful to carry out a least-squares analysis of the energies of a rotational band in order
to obtain a set of "best" values for the band parameters.
(iii)  Careful attention needs to be given to the choice of which parameters are chosen to give
the "best" description of the band. The parameter A, of course, (and, for K=1/2 bands, a)
should always be included but, beyond this, the choice is not always clear. If only a small
number of band members are known, and the customary choice of A and B to describe the
band leads to unreasonable results (e.g., the contribution of the "B term" to the level energies
is comparable to that of the "A term"), the deduced parameters are not meaningful and thus
should not be quoted. In these situations, one should repeat the fit using A2K instead of B and
compare the quality of the results from the two fits. If this latter fit appears to provide a
"reasonable" description of the level energies, those deduced parameters can be given;
otherwise it is perhaps better to list no parameter values (and to point out this fact).
(iv)  In some cases, the differences among the sets of parameter values derived from the use
of different combinations of level energies are large. These can occur, for example, where the
coupling to other bands is strong (and the assumptions on which eq.(1) is based are thus not
valid) or where the band parameters being used to describe the band are not the best ones. In
these latter cases, it is again important to consider choosing different parameters keeping A
(and, where K = ½ bands are involved, a) in an attempt to get a better description of the band.
2. Low Rotational Frequencies and Strong Band Mixing 

There are a number of situations in which application of eq.(1) to determine rotational parameters for
a band yields "unreasonable" values. These include those in which the bands are strongly Coriolis
mixed with other bands. These strongly coupled bands are associated with the low K-value orbitals
originating from the "unique-parity" spherical shell-model states, namely the i13/2 neutron state and
the h11/2 proton state in the rare-earth region and the j15/2 neutron state in the actinide region. Also
included among such bands are some of the K=0 and 1 octupole vibrations in the rare-earth region
(the two-quasiparticle makeup of these excitations contains significant contributions from these
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unique-parity orbitals).
In these cases, the use of eq.(1) to describe the rotational properties of the band is not justified. To
treat them correctly requires the carrying out of a detailed analysis of the Coriolis mixing. While such
analyses have proven quite successful in describing even rather unrecognizably distorted rotational
band structures (see, for example, [11-13]), they are usually quite time-consuming and lie outside the
customary scope of a mass-chain evaluation. Here, though, the evaluator can use the existence of the
strong distortion of the band structure as evidence for the presence of strong Coriolis mixing and
hence of the intrinsic configurations involved. This knowledge alone can frequently serve as a guide
in the choosing of reliable Jπ assignments for the levels.

3. High Rotational Frequencies 
The focus of the discussion thus far has been on situations where K is, at least approximately, a good
quantum number and eq.(1) applies, i.e., the rotational band structure at low energies, the energy
region historically explored by radioactive-decay studies and nuclear reactions initiated by relatively
low-energy projectiles. Here the basic nuclear model involves individual particle (or, quasiparticle)
or collective motion in a slowly rotating, deformed nuclear potential well.
With the availability of high-energy beams of heavy ions it has become possible to produce and study
nuclear systems possessing very large amounts of angular momentum. This has led, over the past
decade or so, to the production of an extensive body of information on the properties of rotational
bands up to quite high spins. An excellent review of this subject is given in Ref.[14].
In many cases it has been possible to connect the high-spin band structures with their lower-spin
portions, previously established using the more conventional techniques. In some instances, one
observes already at relatively low spins sizeable departures from a simple J(J+1) spectrum and the
splitting up of the band into two distinct bands, one having J+½ = odd and the other having J+½ =
even. However, in other instances, a much more normal band structure (i.e., approximately J(J+1)
with a relatively small amount of such "staggering") is found to persist up to rather large spin values.
There is a tendency for the evaluator to apply to these higher-spin states the same nuclear-model
considerations that are customarily applied to those band members that are located near the band
head. However, such an approach is neither correct nor meaningful and, if applied strictly, can lead
to unphysical conclusions. Among the reasons for this is the fact that, as the rotational frequency
increases, K ceases to be a good quantum number. The Coriolis effects, which can be either neglected
or incorporated as "small" corrections to the rotational motion at low frequencies, now become
dominant. These significantly affect the band structure in a number of ways, for example, through the
occurrence of backbending. Further, the identification of the higher-spin states with a specific Nilsson
orbital is not especially meaningful, since these states are in general expected to contain comparable
contributions from a number of such orbitals.
For a description of these states, the appropriate symmetry operation is rotation of the nuclear system
through 1800 about an axis (x-axis) perpendicular to the nuclear symmetry axis (z-axis) [14]. The
associated quantum number is denoted as the "signature", r, which, together with the parity, provides
a means of classifying the nucleonic states in a rotating nuclear potential. More commonly used for
this purpose, instead of r, is a quantity α†, where α is defined through the relation r = e-iπα.
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The following relations exist between α and the total angular momentum, J:
α=0 (r = +1), J=0, 2, 4, etc.
α=1 (r = -1), J=1, 3, 5, etc.
α=+½   (r = -i), J=1/2, 5/2, 9/2, etc.
α=-½ (r = +i), J=3/2, 7/2, 11/2, etc.

How, then, should the evaluator proceed in dealing with these situations? As regards the experimental
situation, since essentially all the data currently available on these states come from in-beam γ-ray
(and, occasionally, conversion-electron) spectroscopy, there are several things that remain unchanged.
First, the arrangement of the observed energy levels into rotational bands can still be carried out with
considerable confidence, based on their γ-decay patterns, when these γ-ray placements are supported
by coincidence data. Second, where γ-ray angular distribution data exist and cover a sufficient number
of angles that the distribution function can be considered to be well determined, there exists a
reasonable basis for assigning Jπ values. The angular distribution functions for "stretched" quadrupole
transitions (i.e., ΔJ = 2) and "stretched" dipole transitions (ΔJ = 1) are distinctive and when these are
observed the appropriate spin differences (2 and 1, respectively) can be regarded as being well
established. [However, the angular distribution for a dipole transition with no spin change (ΔJ = 0)
has the same form as that of a stretched quadrupole and one must thus be careful to consider this
possibility.] Where the experimental situation is such that the high-spin band structure cannot be
reliably tied in with its lower-spin counterpart (where, for example, the connecting transitions are low
in energy and unobserved or where there is uncertainty in the placement of these γ rays), then only
the relative energies and Jπ values can be established. Their absolute values are not established, and
the whole high-spin band structure must be left "floating" in the level scheme. On the other hand,
where these connections to the (presumably) well established lower-spin band members are firmly
established, then the energies and Jπ values for all the band members can be determined.
From the theoretical point of view, however, the fact that the nuclear-structure considerations are
different at high spins than they are at the lower spins means that the evaluator must cope with a
certain degree of ambiguity. While it is possible, and useful, to quote in the customary fashion values
for the band parameters and to make nucleonic-configuration assignments to describe the band head
and the low-frequency portion of the band, these are generally inappropriate for discussing the
higher-spin states. Furthermore, the transition from the regime of spins (or, perhaps better, rotational
frequencies) where one coupling scheme is useful to that where the other is more appropriate is not
a sharp one. It seems best, therefore, to adopt the following approach in cases where enough of the
band structure is established that both low-spin (at and/or near the band head) and high-spin members
of a rotational band are observed. The nucleonic configuration (e.g., Nilsson orbital, two-quasiparticle
configuration, vibrational excitation) that is believed by the evaluator to best describe the band head
should be given, together with the appropriate set of rotational-band parameters. These latter should
be those believed to be the most appropriate for description of the energy relationships among the
low-lying members of the band and should, of course, be derived from the energies of a small number
of these states. Those states used to determine these parameter values should be indicated. In addition,
the values of the signature parameter, α, and the parity appropriate for each band member should be
given. This could conveniently be done by providing two separate band-(or configuration-)
assignment footnotes for each such band. These would list not only the intrinsic configuration
assigned to the band but also which of the two possible signature values was appropriate for the
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various states.
B.  Strongly Deformed Nuclides with Reflection-Asymmetric Shapes 
In the discussion thus far, it has been assumed that the strongly deformed nuclei under consideration
possess equilibrium shapes that are symmetric under reflection in a plane (xy) perpendicular to the
nuclear symmetry axis (z). This shape is thus described by deformations of even multipole order
(quadrupole, hexadecapole, etc); and it is well established that this assumption is correct for the vast
majority of the strongly deformed nuclides. Recently, however, evidence has confirmed the theoretical
expectation that nuclei having reflection asymmetric ("octupole") shapes do occur. A significant
number of nuclides among the light isotopes of the elements Ra-Pa are now believed to be
characterized by sizeable octupole deformations, in addition to those of even multipole order. (We
refer the reader to Ref. [1], where several of the relevant references are given.) Among the more
prominent features associated with octupole deformation are the existence of "parity-doublet" bands
in the level schemes of odd-mass nuclides and, among the higher-spin yrast states in a number of the
doubly even Ra and Th nuclei, a band of states of alternating parity connected by strongly enhanced
El transitions.
As regards the evaluation of nuclear-structure data for these nuclides, most of the considerations
mentioned above regarding the analysis of rotational-band structure still apply. The presence of the
static quadrupole deformation leads to well developed rotational-band structures, which can still be
analyzed in terms of the usual approaches. There are also a number of new considerations to be kept
in mind. These include:

(i)  The presence of parity-doublet bands in the low-energy spectrum of an odd-mass nuclide
means that for each band of a given K-value there will be "nearby" another band with the
same value of K, but of opposite parity. Since these bands represent projections into the
laboratory frame from a single "intrinsic" state of mixed parity, a number of their properties
are expected to be closely related. This knowledge may help the evaluator as he/she considers
various possibilities for assigning Jπ values and grouping levels into rotational bands.
(ii)  The presence of octupole deformation can significantly rearrange the expected ordering
and energies of the one-quasiparticle states. Consequently, the spectrum of "Nilsson" states
encountered in an odd-mass octupole-deformed nucleus (independent of the parity doubling)
may be considerably different from that expected in the absence of octupole deformation.
(iii)  It is difficult to associate a given one-quasiparticle state in these nuclides with a specific
Nilsson orbital. This situation is rendered even more difficult by the fact that the quadrupole
deformations of those nuclides thus far identified as being "octupole deformed" are generally
smaller than for the rare-earth nuclides, so that the asymptotic quantum number labeling is
even less "good" here than for the rare-earth nuclides. Thus, while the evaluators should feel
free to derive and quote band parameters and K values as customary for bands in these nuclei,
associating a specific Nilsson orbital (with the usual asymptotic quantum number labeling)
with a given rotational band is more difficult to justify and, in the absence of compelling
evidence to the contrary, should be avoided.
(iv)  In the presence of reflection-asymmetric shapes, the "signature" symmetry is no longer
valid. The only valid symmetry now is reflection in the nuclear yz-plane; and the associated
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quantum number is referred to [15] as the simplex, s. The Jπ values that occur in rotational
bands characterized by the different values of the simplex are:

 
for s = +1,  Jπ = 0+, 1-, 2+, 3-, etc.
for s = -1,  Jπ = 0-, 1+, 2-, 3+, etc
for s = +i,  Jπ = 1/2+, 3/2-, 5/2+, 7/2-, etc.
for s = -i,   Jπ = 1/2-, 3/2+, 5/2-, 7/2+, etc.

Thus, for example, for the "octupole-deformed" doubly even isotopes of Ra and Th, the yrast
(ground-state) bands above a certain J value contain alternating even-spin and odd-spin
members, with even and odd parity, respectively. They would be assigned a value of the
simplex, s, of +1. The simplex occupies the same position for the reflection-asymmetric
nuclides as the signature does for the reflection-symmetric nuclides; and it is suggested that
it be incorporated into nuclear-data evaluations in the same way as has been suggested above
for the signature.
The nuclide 225Ra, which is discussed in some detail in Sect. III below, is believed to be a
good example of an "octupole-deformed" nucleus. Its level structure is significantly
influenced by the octupole shape, although the evaluation considerations presented there are
quite broad in their applicability and do not rely specifically for their validity on the existence
of a stable octupole deformation. Octupole deformation is expected [16] to occur in other
mass regions in addition to the light isotopes of Ra-Pa and, if such phenomena are indeed
found there, then these ideas will have a much broader applicability than simply to this rather
small portion of the Nuclide Chart.

C. Additional Considerations 
In addition to the relative simplicity of the energy relationships among the members of a rotational
band, the strongly deformed nuclei possess a number of other features that can significantly assist the
evaluator of nuclear-structure data in making reliable Jπ assignments. Among these, we mention the
following.

1. Occupation and relative alignment of Nilsson orbitals. 
In contrast with the situation in the "spherical" nuclei, in strongly deformed nuclei each single-particle
(or one-quasiparticle) "Nilsson" state can contain at most two (quasi)particles. In most situations of
concern to the evaluator, the Jπ value of the band head of a given rotational band will be equal to the
Kπ value of the intrinsic configuration upon which the band is built.
In considering the possible bands that can be formed from the coupling of two (or more) particles in
a strongly deformed nucleus, it should be noted that the projections of the intrinsic spins (=1/2) of the
particles on the nuclear symmetry axis can be either +1/2 or -1/2. Consequently the K values (and,
hence, the band-head J value) for the states consisting of two particles in Nilsson orbitals having K
values of K1 and K2 can have only the two possibilities K1+K2 and |K1-K2|. Further, as discussed by
Gallagher and Moszkowski [17], of the two possible relative orientations of the single-particle
orbitals occupied by the two odd particles in a doubly odd nucleus, the configuration resulting from
the parallel coupling (  = 1 + 2 = 1) of the intrinsic spins of the odd particles should lie lower than
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that resulting from their antiparallel (  = 0) coupling. The only presently known exception to this rule
in the doubly odd strongly deformed nuclei is 166Ho, where the Kπ = 0- coupling of the two states
7/2-[523]p and 7/2+[633]n lies below their Kπ = 7- (  = 1) coupling. Even here, though, the energy
separation of these two band heads is only 6 keV, and a detailed treatment of the contribution of
additional residual interactions can account for this shift.
Consequently, the evaluator can frequently rather severely restrict the number of Jπ values to be
considered for levels in deformed odd-odd nuclides using this "rule". While Jπ assignments based
solely on these considerations should probably not be regarded as being based on "strong" arguments,
the evaluator can have confidence in adopting values based on such considerations, especially if
additional evidence is available which helps support them.
For the two-quasiparticle states in the doubly even nuclei, it is expected that the band with the =0
coupling of the two particle states will lie lower than that having  = 1 (see, e.g.,Ref. [3].) Although
this appears to be correct in a number of well studied cases, the situation is less clear than in the
odd-odd nuclides. This is due in large measure to the fact that these bands occur relatively high up
(above the pairing gap, or 1-1.5 MeV), where the density of states is rather high and it is often
difficult to establish configurations for the bands and to identify both the Σ=0 and Σ=1 couplings of
the two orbitals. A further complication in these cases is the occurrence of vibrational and other
collective degrees of freedom in the general vicinity of these two-quasiparticle states; and this can
significantly alter the energies of those bands whose Kπ values are the same as those of these
collective states.
For doubly odd nuclides, the residual neutron-proton interaction can give rise to an "odd-even" shift
of the levels of K=0 bands, as discussed by Newby [18]. Special care should be exercised in dealing
with such bands, especially in attempting to quote realistic values of the band parameters for them.

2. Allowed-Unhindered (au) Beta Transitions
Where present in a decay scheme, allowed-unhindered (au) β transitions† can be one of the most
powerful tools available to an evaluator in deciding upon Jπ and nucleonic-configuration assignments
for nuclear states. The term "allowed-unhindered" denotes an allowed (i.e., ΔJ = 0, ±1 with no change
in parity) β transition for which there is also no change in the asymptotic quantum numbers (i.e., N,
nz, Λ) between the initial and final states of the transforming nucleon. Two such orbital pairs are of
importance in the rare-earth region, namely 7/2-[523]p and 5/2-[523]n in the lower-mass portion of
this region and 9/2-[514]p and 7/2-[514]n in the upper-mass portion. No such orbital pairs are as yet
observed to play a similar role among the strongly deformed actinide nuclides and, thus, au β decay
is not yet an important process for the evaluator of these data.
The identifying characteristic of an au β transition is its small log ft value. It is not possible to
establish a limit which uniquely separates all allowed-unhindered transitions from transitions that are
not au. Certainly, all transitions having log ft values 5.0 can be considered to be au. In addition, a
number of au transitions have log ft values as large as 5.2 or 5.3. However, there are also some
instances where transitions that are not au have log ft values as small as 5.2. Thus, some care is

†  Unless otherwise specified, the symbol β is used to denote both the β- and the ε+β+ decay
process.
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required in establishing whether or not β transitions whose log ft values are >5.0 but 5.5 are in fact
au.
Once, however, it is established that a given β transition is indeed au, one is justified in concluding
that one or the other of these orbital pairs is involved. This usually enables one to make quite well
founded Jπ and configuration assignments for the initial and final states. With these established, it
is frequently possible from them to establish Jπ assignments for other states as well.
Perhaps more interesting, however, is the situation in which one of the states involved in the β-decay
process has a more complicated structure. Here, the observation of an au β transition makes it possible
to convincingly establish the presence of such a structure. For example, in the β-decay of 163Tb (Jπ
= 3/2+, with a 3/2+[411] Nilsson-orbital assignment), a state at 884 keV in 163Dy is observed to be
populated via a β- transition having log ft = 5.0. This transition is clearly au and thus must take place
between 5/2-[523]n and 7/2-[523]p. As discussed in, e.g., Ref. [4], the only possibility for this is that
the final state has Kπ = 1/2+, with (at least a sizeable component of) the three-quasiparticle
configuration 3/2+[411]p + 5/2-[523]n - 7/2-[523]p. This three-quasiparticle configuration can be
regarded as the two proton-quasiparticle configuration 3/2+[411]p - 7/2-[523]p coupled to the neutron
state 5/2-[523]. Since this two-proton configuration is predicted [19] to be the dominant component
of the Kπ = 2- octupole phonon in this region of the deformed nuclei, this Kπ = 1/2+ state can be
interpreted [4] as being a Kπ = 2- octupole vibration built on the 163Dy ground state, 5/2-[523]n. Since
the 2- octupole-vibrational band is found to occur at relatively low energies in the doubly even
nuclides in this mass region (at 1.148 MeV in 162Dy [20], for example), the low value (884 keV) for
the energy of such an excitation in 163Dy is reasonable.
Note that, while the available data on this final state are certainly consistent with J,Kπ = ½,½+, it,
together with the configuration assignment, could have been made solely on the basis of the existence
of the au β- transition (and, of course, the 163Tb ground-state Jπ value). Again, the question of whether
such an assignment can be regarded as being based on a "strong" or on a "weak" argument can be
debated. We feel, however, that an evaluator would be well justified in considering it to be
"definitely" established.

3. Alpha Transitions†

The so-called "favored" α transitions (those for which the hindrance factor lies between 1 and, 4 cf.
Ref. [5]) take place between nuclear states having essentially identical configurations. Thus they make
it possible to establish both Jπ values and nucleonic configuration assignments for a given final
(initial) state if those of the initial (final) state are known. In the doubly even actinides, the favored
transition is the ground state to ground state transition, and the transitions to the members of the
ground-state rotational band are characterized by monotonically increasing, yet still relatively small,
values of the hindrance factor.
In the odd-mass nuclei, the band head fed by the favored α transition need not be, and in most cases
is not, the ground state. Again, however, the members of this band (the favored band) will be fed by
α transitions having relatively small α hindrance factors, simplifying their identification. If the Jπ
value of the parent-nuclide ground state is known, then those of the favored band are established as

†  Editor’s note: See also Appendix E Alpha-Decay Hindrance Factors
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well. Such a group of states in the daughter nucleus having "well established" Jπ values usually makes
it possible to firmly establish Jπ values for many of the other observed states as well.
Other instances in which states may have rather low values of the α hindrance factor include
β-vibrational (Kπ = 0+) states built on the favored band and, for "octupole-deformed" nuclei, the
parity-doublet band associated with the favored band [21]. It should also be kept in mind that Coriolis
mixing (See II.C.5. below) with members of the favored band may cause some states to have
α-hindrance factors that are much smaller than would otherwise have been expected (for the unmixed
state).

4. Intensity Relationships 
An interesting aspect of the states in the strongly deformed nuclides is the existence of simple
"geometrical" (Clebsch-Gordan-coefficient) relationships among the intensities of β and γ transitions
between states that are members of rotational bands. While these so-called Alaga rules [22] are of
considerable interest for nuclear-structure physics, these relationships are often obscured or modified
by other effects to such an extent that their simple predictions are frequently not realized in actual
nuclei. Since these confounding influences must be explicitly taken into account and since this is
frequently a rather complicated and time-consuming task, the Alaga-rule relationships are not usually
of much help to an evaluator. The β transitions, for example, frequently involve more than one
angular-momentum value. Further, Coriolis mixing of a given band with one which is populated by
an au β transition introduces an admixture which, through its inherently large β-decay matrix element,
can significantly distort the predicted pattern of β feeding.
For γ-ray transitions, the relative intensities of the El transitions from a given one-quasiparticle state
to various members of the rotational band built on another such state are known [4] to deviate
significantly from the simple Alaga-rule predictions. On the other hand, collective El transitions
appear to obey them quite well. Here, however, such transitions most commonly take place between
octupole vibrational bands and their associated ground-state bands; and the strong Coriolis mixing
between octupole-vibrational bands introduces strong changes in the observed γ-ray intensities which
must be explicitly taken into account (see, e.g., Refs.[13] and [23]) before the simple underlying
intensity patterns can be recovered.
Relative M1 transition probabilities from a given initial state to various members of a rotational band
can frequently be well accounted for, but the contribution to the observed γ-ray intensities from the
possible E2 admixtures need to be taken into account in interpreting such data.
Relative interband E2 transition probabilities are strongly dependent on Coriolis (or other) mixing,
which may introduce the very large matrix elements associated with the rotational E2 transitions. The
E2 transitions within a rotational band are generally well described by the Alaga rules. They can thus
be used to calculate M1 admixtures in mixed intraband Ml+E2 transitions. While this information is
of considerable interest for nuclear structure its use as a means of providing Jπ assignments is
generally not great, since it is usually necessary to establish these quantities before carrying out this
analysis.
The role of Alaga-rule considerations in making Jπ assignments thus seems to be rather limited. The
evaluator should definitely exercise careful judgment in applying them to specific situations.
Carefully applied, they can occasionally, perhaps frequently, provide corroboration of assignments
arrived at from other considerations.
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5. Rotation-Particle (Coriolis) Mixing 
The influence of rotation-particle (Coriolis) coupling in the low-energy level structure of strongly
deformed nuclides is frequently important in arriving at meaningful Jπ and rotational-band
assignments(see e.g.,[4]). While, in principle, a detailed Coriolis-mixing analysis should be carried
out for any level scheme for which Jπ assignments are being proposed, such a procedure is not
practical for the mass-chain evaluator (and for most other nuclear physicists as well!). However, there
are some simple qualitative considerations that frequently can be useful to the evaluator in
interpreting level-scheme information.
The Coriolis interaction couples states having the same values of Jπ and K-values that differ by 1 unit.
The matrix element for this interaction can be written [4]

HK,K+1(J)=HK+1,K(J)=
(- 2/2 )PK,K+1AK,K+1[(J - K)(J + K + 1)]½    for K ½                            (4,a)
(- 2/2 )P½,½’A½,½’(-1)J-½(J + ½)         for K=½                (4,b)

(For interactions involving a K=0 band, an additional factor [1+δK,0] ½ = 2 needs to be included in
eq. (4,a).)
Here, 2/2  serves as a sort of rotational constant, giving an overall scale for the interaction, and is
generally given a value equal, or close, to the rotational constant, A, of the rotating core. PK,K+1 is a
pairing factor, which is frequently not too different from unity. The strength of the Coriolis mixing
is seen to be strongly J-dependent (as might be expected).
The dependence of the interaction strength on the nature of the nuclear states involved enters through
the term AK,K+1. Numerical tabulations of these matrix elements appropriate for different types of
nuclear states have been published [4,5,24]; and these make it possible to carry out quantitative
estimates of the effects of Coriolis mixing in many simple situations. However, there are a number
of features of the Coriolis interaction that are frequently helpful in providing useful qualitative
insights. First, the interaction strength depends strongly on the j-value of the spherical shell-model
state (i13/2, h11/2, etc.) from which the Nilsson orbitals originate. Within a given j-shell, the AK,K+1 varies
approximately as [(j-K)(j+K+1)] 1/2. Consequently, within the so-called "unique-parity" states (i13/2neutrons and h11/2 protons in the rare-earth region and j15/2 neutrons in the actinide region) the
Coriolis-mixing effects are expected, and observed, to be quite large, especially among the orbitals
with the smaller K values, In terms of the asymptotic quantum numbers of these orbitals, the
following selection rules indicate those bands for which this coupling is "unhindered":

ΔN = 0;   ΔK = ±1;  Δnz = -ΔΛ = 1.
Among the "non-unique-parity" states, these rules are still quite useful, in that the largest intrinsic
Coriolis matrix elements tend to occur between Nilsson states originating from the same spherical
shell model state. However, in these cases, there is generally a considerable amount of
deformation-dependent j-mixing, which diminishes this selectivity to some extent.
In the doubly even nuclides, the octupole-vibrational bands all contain sizeable components of the
unique-parity orbitals in their two-quasiparticle makeup. Hence, they are expected [24], and indeed
found, to possess large values of AK,K+1.
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In addition to the pronounced effects on the energy-level structure of rotational bands when the
Coriolis-mixing matrix elements are large, such mixing, even when rather weak, can significantly
affect certain level properties when the admixture carries with it a large matrix element for that
process. Some examples of this are the following. In interpreting the intensities of β transitions
feeding members of a given rotational band, it is tempting to ignore the possibility of small
admixtures of other configurations; and this is justified if the transition probability to the admixed
configuration is comparable in magnitude to that of the principal configuration. However, if one of
the possible admixed configurations is connected to the β-decaying state via an allowed-unhindered
matrix element, then it may have a pronounced effect on the β intensities and thus needs to be
considered in order to understand the data.
Similarly, in analyzing α-transition intensities, Coriolis mixing of various states, especially if
expected to be weak, can usually be neglected. However, if the mixing can introduce even small
amounts of the "favored" band into the states under consideration, then it is important to take such
mixing into account. In fact, the observation of "unexpectedly" small values of the alpha hindrance
factors in bands where only large values are expected is frequently strong evidence for the presence
of such mixing; and this may provide the evaluator with helpful information when considering Jπ and
configuration assignments (as illustrated for 225Ra in the following section).
Interband E2 transition probabilities, especially, can be greatly influenced by Coriolis mixing. When
two bands are mixed by the Coriolis interaction the admixtures in each state give rise to the very large
E2 matrix elements associated with the nuclear rotational motion. Since the intrinsic "single-particle"
interband E2 transition probabilities are usually small, the observed E2 transition probabilities may
be dominated by the contributions from the Coriolis-mixed configurations. (Since the intraband M1
transition probabilities do not show such a collective enhancement, Coriolis mixing, especially when
weak, usually does not significantly affect them.)
 
Consequently, when analyzing nuclear-structure data on the strongly deformed nuclei, it is important
to consider the effects of Coriolis mixing.
                                            
III  An Example: Rotational Bands in 225Ra 
As an example of how some of the considerations presented in Sects. I and II can be applied to the
analysis of a "real-life" case, we discuss some of the features of the rotational-band structure of 225Ra.
A portion of the low-energy level scheme of this nuclide is shown in Fig. 1. These data are taken from
a recent study [1] of the α-decay of 229Th.
A. The Kπ = 3/2+ Band at 149.8 keV. 
The Jπ = 3/2+ and 5/2+ assignments for the 149.8- and 179.7- keV levels, respectively, appear well
established [1]. From the spacing of these two levels we compute the value A = 5.97 keV, using the
expression EJ = AJ(J+1). Then, we calculate 221.5 keV as the expected position of the Jπ = 7/2+
member of this band. This is quite close to the position of a level at 220.5 keV (although it also is not
too far from a level at 226.9 keV), and it is thus tempting to assign this level as the expected 7/2+
state (as has tentatively been done in Ref.[25]). From these two energy-level spacings, we use eq.(1)
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to obtain the following values for the parameters A and B: A = 6.16 keV and B = -23.9 eV. From
these, we calculate the position of the 9/2+ member of this band to be 267.2 keV, quite close to the
energy of an observed level at 267.97 keV. Thus, from this analysis, it appears that we are dealing
with a rather "well behaved" Kπ = 3/2+ band whose band members up to 9/2+ are identified and
whose level energies are well fit using a simple two-parameter formula with parameter values of A
= 6.16 keV and B = -23.9 eV.
However, there are problems associated with this simple picture; and for reasons they present, the
authors of Ref.[1] have proposed a quite different set of Jπ assignments. Briefly, due to Coriolis
mixing with the near-lying "favored" Kπ = 5/2+ band, the α hindrance factor to the 7/2+ member of
this band should be rather small, in contrast to the observed value of 270 to the 220-keV level. Also
the γ-decay pattern of the nearby 226.9-keV state is not what one would expect for a J,Kπ = 7/2, 3/2+
state.
The nearest candidate for the 7/2+ band member (which, because of its expected small α hindrance
factor, should be populated) is a level at 243.50 keV, which has an α hindrance factor of 14 and a
γ-decay pattern that is quite consistent with Jπ = 7/2+. Such an assignment implies a quite different
band structure than the "simple" one presented above. To see to what extent it is reasonable, the
rotational-parameter analysis proceeds as follows. From the 5/2+ - 3/2+ and 7/2+ - 5/2+ level
spacings, values of 5.97 keV and 9.11 key, respectively, are computed for the parameter A. This large
difference indicates a rather distorted band.
In view of these quite different A values, it is not reasonable to "fit" the level energies by including
a B term in the analysis. Rather, it appears more reasonable to try the terms A and A3 in eq.(1). Doing
this, we obtain A = 7.02 keV and A3 = -174 eV. Using these, we calculate the energy of the 9/2+ band
member to be 275.4 keV, not too far from an established level at 272.27 keV, whose γ-decay
properties are not inconsistent with Jπ = 9/2+ (cf. Fig.1). Assuming that this latter state is the Jπ =
9/2+ member of the band, we can compute values for 3 parameters. Including a B term, we compute
A = 7.13 keV, A3 = -180 eV and B = -9.08 eV. Although we have no extensive "systematics" to help
judge whether or not this value of A3 is reasonable, we note that, since the Kπ = 3/2+ band can be
directly Coriolis coupled to Kπ = 1/2+ bands and since these usually have nonzero decoupling
parameters, it may be relatively large. The value inferred for B is now rather small and, thus, not
unreasonable. [An objection to assigning the 272-keV state as the 9/2+ member of this band is the
rather large value ( 200) of the hindrance factor of the α transition feeding this state. Since the J,Kπ
= 9/2, 3/2+ state should be Coriolis mixed with the 9/2+ member of the "favored" Kπ = 5/2+ band,
whose bandhead lies at 236.7 keV, a considerably smaller value of this α hindrance factor is
expected.]
The evaluator would be justified, in our opinion, in assigning the 243.50-keV level as the 7/2+
member of this Kπ = 3/2+ band and tentatively assigning the 272.27-keV state as the Jπ = 9/2+ band
member. The band parameters given for the band should be A and A3, with respective values of 7.02
keV and -174 eV (or -0.174 keV), with a comment that they were computed from the energies of the
first three band members. Since the 9/2+ assignment can be regarded as only tentative, it would
probably not be appropriate to list a value for B (although, since it is small, the evaluator can have
some confidence that the listed band parameters are not unreasonable).
The foregoing analysis serves to illustrate a number of important points. First, the use of the most
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obvious, and simple, rotational-band energy-spacing considerations, without other information on the
level properties, led to a picture of the structure of the 3/2+ band that appeared quite plausible, with
"reasonable" values for the parameters A and B. Second, however, the consideration of additional
information that was available led to a quite different picture of the structure of this rotational band.
Had these additional data not been available, the evaluator could have quite reasonably been led to
make "incorrect" Jπ and band assignments that would have been considered to have been based on
"reasonable" considerations. Third, it should be emphasized that the question of which, if indeed
either, of these two pictures of the rotational band structure of this 3/2+ band is correct is open at this
time (although the "A,A3 - approach" is definitely favored by the authors of Ref. [1]). As such, this
situation serves again to illustrate the quandry which the evaluator faces when he or she attempts to
resolve apparently discrepant data in order to arrive at the "correct" conclusion. However, here, as is
so frequently the case in the strongly deformed nuclei, the relative simplicity of the angular
momentum coupling scheme permits these questions to be considered at a deeper level of
sophistication than would be possible in nuclides where these simplifying features did not occur.

B. The Kπ=1/2+ Ground-State Band 
We now consider the ground-state band, which has Kπ = 1/2+. The spins of the states up through 9/2+
(see Fig.1) appear well established at this time [1]. The band structure departs markedly from a simple
J(J+1) energy-level spacing pattern, indicating in this case a large, and positive, value for the
decoupling parameter. For this distorted band structure, the following questions naturally arise: (1)
what are the band parameters; and (2) are higher-spin members of this band excited in the 229Th α
decay and, if so, what are their energies?
Starting with the customary two-parameter expression for K=1/2 bands [cf. eq.(3)]

E(J,½) - E(½,½) = A[J(J+1) + (-1)J+½ (J+½) a]-A(¾ - a),                                      (5)
and using the energies of the Jπ = 3/2+ and 5/2+ band members (namely, 42.75 and 25.41 keV), one
computes 5.39 keV and +1.65, respectively, for A and a. From these, the energies of the Jπ = 7/2+
and 9/2+ members of the band are calculated to be 125.5 keV and 93.8 keV, respectively. The
agreement between these calculated values and the observed level energies of 111.57 and 100.5 keV,
respectively, is not very good, particularly in view of the fact that the difference in the calculated 7/2+
and 9/2+ level energies is 32 keV, while the observed separation is only 11 keV. If, instead, one
uses the observed 1/2+,7/2+ and 9/2+ level energies to determine values for A and a, one obtains A
= 5.28 keV and a = +1.23. With these parameter values, the energies of the 3/2+ and 5/2+ levels are
calculated to be 35.3 keV and 29.2 keV, respectively, which is not very good agreement. (This is
reflected, of course, in the significantly different value of the decoupling parameter from this
calculation.)
It might be argued that the absolute differences between the calculated and observed level energies
of the 3/2+ and 5/2+ states are really not all that large (only 7.4 and 3.8 keV, respectively) and
consequently one should not worry about them. However, the spacing between these two states (a
reflection of the contribution from the rotational energy) is poorly predicted (6 keV calculated vs. 17
keV observed), especially considering the low energies involved.
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The use of the term BX2 (the one customarily assumed to be next in importance in a K = 1/2 band)
does not help the situation. For example, if one uses the energies of the 1/2+ through 7/2+ states to
determine the parameters A, B and a, one obtains the following values:

States used in the fit Deduced parameter values States not included in the fit
Jπ Jπ Energy (keV)

A(keV) a B(eV) Calculated Observed
1/2+, 3/2+, 5/2+, 7/2+ 6.17 +1.38 -97.1 9/2+ 55.9 100.5
1/2+, 3/2+, 5/2+, 9/2+ 5.26 +1.70 +17.9 7/2+ 127.7 111.6

On the other hand, if one uses the 1/2+, 3/2+, 5/2+ and 9/2+ states to determine the parameter values,
a quite different set of values is obtained, as shown above. Not only are these sets "unacceptably"
different but also, rather than obtaining a better fit, the fit is considerably worsened. Furthermore, it
can be shown that including a CX3 term in the analysis does not really "solve" the problem. In this
case, the four parameters can fit the four energy spacings exactly, but the resulting parameters, namely
B = +280 eV and C = -8 eV, are so large that they can be regarded as being physically unreasonable.
It is interesting to note that the magnitude of the 7/2+ - 9/2+ level spacing is smaller than that of the
3/2+ and 5/2+ states. This situation cannot be reproduced, for any choice of parameters in the simple
two-parameter formula (eq.(5)). If one wants to account for this fact, phenomenologically at least,
another term must be considered which, like the decoupling parameter, has an alternating dependence
on level spin. The B1 term, viz.

(-1)J+½(J+½)B1X,
is the logical choice for consideration. If one includes it and excludes the BX2 term (that is, one uses
A, a and B1, one finds a good fit to the 1/2+ to 9/2+ level energies. Using, for example, the 1/2+ to
7/2+ level energies to determine the three parameters and then computing the energy of the 9/2+ state,
one finds that the predicted 9/2+ energy is 104.8 keV, vs. the 100.5 keV observed. With the
recognition of the importance of a "B1 term" in the analysis, we can proceed to use the energies of the
1/2+ to 9/2+ states to determine values for the four parameters A, a, B, and B1. The values obtained
are as follows:

A = 5.11 keV; a = +1.89; B = -8.5 eV and B1 = -178 eV.
Note that, now, the deduced value of B is much smaller (and more reasonable) than before and also
that the decoupling parameter is different. Of course, the energies of the 1/2+ through 9/2+ states are
now fit exactly. The resulting four-parameter rotational energy-level formula predicts the energies of
some of the higher-spin members of this band to be 11/2+, 197.6 keV; 13/2+, 227.7 keV; and 15/2+,
283.8 keV. While the calculation of the higher levels with these parameter values may not be
justified, it might be hoped that this prediction is good enough to be useful. There is as yet no
evidence for a state near 197.6 keV that can be identified as 11/2+; and, although there is a state at
284.4 keV (not shown in Fig.1), near the expected position of the 15/2+ state, its decay properties [1]

100



clearly indicate that it does not have Jπ=15/2+. There is, however, a state at 226.9 keV which is an
excellent candidate for the Jπ = 13/2+ band member. Its γ-decay pattern (only one de-exciting γ ray,
to the 9/2+ state) is just what one would expect for a 13/2+ state. Consequently, we feel justified in
making a Jπ assignment of 13/2+ to the 226.93 keV state. Whether this Jπ = 13/2+ assignment should
be regarded as being based on "strong", or on "weak", considerations is, perhaps, a matter of taste but,
in the view of the authors of Ref. [1], a prudent evaluator would be well justified in making it. Note,
in particular, that in regions of the Nuclide Chart where strongly deformed nuclear shapes do not
occur, and eq.(1) is thus not applicable, there would have been essentially no real basis for concluding
that the 226.9-keV state had Jπ = 13/2+.
C The Kπ = 1/2- Band 
The negative-parity states below 130 keV in 225Ra (cf. Fig.1) can be interpreted quite readily as
members of a Kπ = 1/2- band, built on the Jπ = 1/2- state at 55.13 keV. Here, in contrast with the 1/2+
band, values deduced for the various parameters in the rotational energy-level expression are much
less dependent on which levels are chosen to determine them. A "B1 term" is found to be necessary
here also. With the energies of the 1/2- to 7/2- levels used to determine values for the parameters A,
a and B1, the calculated energy for the 9/2- member of the band is 220.8 keV. This is quite close to
the energy of an observed level at 220.5 keV. The γ-decay properties of this state agree quite well
with those expected for a Jπ = 9/2- state. [As discussed in Sect. III. A. above, this level had been
tentatively assigned in some studies as the 7/2+ member of a Kπ = 3/2+ band, but such an assignment
is most likely incorrect.]
With the 220.51-keV level thus identified as the Jπ = 9/2- member of this Kπ = 1/2- band, one can
use these four energy-level spacings to determine values for the four band parameters A, a, B and B1.The values thus obtained are

A = 5.11 keV, a = -2.56, B = -3.8 eV and B1 = +64.3 eV.
From these, the following energies are calculated for the Jπ=11/2- to 15/2- states: 11/2-, 151.1; 13/2-,
348.2; and 15/2-, 276.3. Although no evidence for any of these states is (not unexpectedly) reported
in the γ-decay study of Ref.[1], it is proposed from a recent (τ,α)-reaction study [26], that the 15/2-
state occurs at 274 keV, in excellent agreement (especially in light of the experimental uncertainties)
with the calculated value of 276 keV. This lends some support to the results of the rotational-band
analysis. It also, perhaps, strengthens the evaluator's confidence in assigning Jπ = 9/2- to the
220.5-keV level. In our opinion, an evaluator would be well justified in making such an assignment
to the 220.5-keV level and in listing as parameters for the Kπ = ½ band the four values given above.
D. The Kπ = 5/2+, "Favored" Band 
The Kπ = 5/2+ band at 236.7 keV is the "favored" band in the α decay of 229Th and, as such, is
probably the most firmly established band in 225Ra. Because of the small values of the hindrance
factors of the α transitions feeding the 236.7- and 267.9-keV levels, we feel that the Jπ assignments
of 5/2+† and 7/2+, respectively, are "certain" and that the 9/2+ and 11/2+ assignments, respectively,

†  The ground state of 229Th has Jπ = 5/2+, with the most probable Nilsson-orbital assignment
being 5/2+[633].
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to the 321.8- and the 390.3-keV levels are well established.
 
The determination of realistic values of the rotational band parameters for this band, however,
presents difficulties. There is a considerable amount of "staggering" within this band, as evidenced
by the fact that the 7/2+ - 5/2+ and 9/2+ - 7/2+ energy differences give rise to predicted values for A
of 4.47 keV and 5.98 keV, respectively. If one, recognizing this, uses a two-parameter form of eq.(1),
including the parameters A and A5, to describe the band, one obtains from the energies of the 5/2+ -
9/2+ states the values A = 4.85 keV and A5 = -3.14 eV. Although these cannot be regarded as being
unreasonable (note, in particular, that the magnitude of A5 is considerably smaller than that deduced
for A3 in III. A above), they predict a value of 346.1 keV for the energy of the 11/2+ member of the
band, whereas the observed energy of this state is 390.3 keV. If one ignores for the moment the need
for an A5 term (or some term with an alternating dependence on J) and uses only A and B parameters
to describe this band, the energies of the 5/2+ - 9/2+ states yield values of 3.34 keV and +94.1 eV,
respectively, for A and B. This value of B is regarded as being unreasonably large, on the grounds that
the resulting value of the term BX2 is not very much smaller than that of AX. For example, for E7/2 -E5/2, it is roughly one-third the size of AX and, for E9/2 - E5/2, it is 60% as large. For the use of eq.(1)
(with only a small number of parameters) to be justified, the contribution of the B (and successively
higher order) terms must be much smaller than that of the A term.
One can, of course, use all three of these parameters and fit the energies of the 5/2+ through the 11/2+
band members exactly. This yields the following values: A = 3.78 keV, B = +66.9 eV and A5 = -0.91
eV. Again, the value of B appears unreasonably large, and, of course, with these three values the
ability of eq.(1) to predict the energies of higher-spin members of this band is highly questionable.
Thus, while the Jπ assignments of the first four members of this band appear quite well established,
the energy relationship among the band members cannot be described using reasonable values of the
rotational parameters. This may reflect the presence of strong Coriolis mixing of this bands with other
positive-parity bands in 225Ra. To explore this possibility in detail, however, lies outside the usual
scope of an A-chain evaluation. Consequently, it is recommended that the evaluator simply point this
out and not attempt to "adopt" any rotational-parameter values for this band.
E. Concluding Remarks 
In the preceding discussion in this Section, we have illustrated some of the strengths and potential
pitfalls in using eq.(1) to analyze the energy-level structure of rotational bands (at low rotational
frequencies) in the strongly deformed nuclei. This approach has led [1] to a proposed picture of the
low-energy rotational band structure of 225Ra that differs considerably from that available previously.
It has not led to any new proposals regarding the Kπ = 5/2+ band, but it has served to point out that
a more detailed analysis of this band and its couplings to other bands is needed before any conclusions
can be drawn regarding the origin of the problems encountered in trying to obtain reasonable values
of its band parameters.
It should be noted, in passing, that the evaluation procedure described in this Section has not
explicitly relied for its validity on the correctness of the assumption that 225Ra is an
"octupole-deformed" nucleus. However, the experimental evidence thus far available on 225Ra is
consistent with this hypothesis. The fact that the ground-state band has Kπ = 1/2+, for example, is
strongly suggestive of a stable octupole deformation, since, otherwise, the lowest 1/2+ band in 225Ra
is expected to occur rather high up in the level scheme ( 0.8 MeV). Similarly, the low energy of the
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Kπ = 1/2- band finds a natural explanation as the parity-doublet partner of the 1/2+ band. The values
of the decoupling parameters of these two bands are, as expected for a parity doublet, comparable in
magnitude but opposite in sign. Further, they are quite different from the values that would be
expected for any of the reflection-symmetric K = 1/2 bands. In this regard, the use of a "B1-term" in
the analysis has led to "better" estimates of these two decoupling-parameter values, especially for the
1/2+ band, than would have been obtained by neglecting it; and these two values are considerably
closer together than the earlier estimates. However, the octupole-deformed coupling scheme has
explicitly affected the conclusions drawn from the analysis, in that no "Nilsson" orbital assignments
have been proposed for any of the bands.
In any event, it is hoped that this discussion will be helpful to the mass-chain evaluator in using these
ideas as one potentially powerful tool for choosing among alternative Jπ values in the evaluation of
complicated energy-level schemes in the strongly deformed nuclides.
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Appendix
Summary

The level schemes of strongly deformed nuclei possess a number of features that can materially assist
the evaluator in making Jπ and nucleonic-configuration assignments. The existence of well developed
rotational bands, with their inherently simple relationship between level energy and spin, the
extensive systematics and relatively simple make-up of the intrinsic states upon which these bands
are built, and a number of simplifying features of the angular-momentum coupling scheme that occur
because of the existence of the deformation all combine to permit the knowledgeable evaluator to
deduce quite reliable Jπ assignments from data sufficiently meager that one could draw almost no
conclusions from them if the nuclide for which they were available was not deformed.
It is difficult to frame a compact set of rules for Jπ assignments that can be applied without exception
in these situations. However, it is possible to lay out general considerations to assist the evaluator in
the task of arriving at reliable Jπ assignments for levels in the strongly deformed nuclides. Below, we
summarize some of these. Those features of the nuclear structure of the strongly deformed nuclei
upon which they are based are discussed in the earlier sections of this document.
A.  Level Energies and Quantum Numbers 
The following expression is recommended for use in describing the level energies within a rotational
band at low rotational frequencies:
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E(J,K)=EK + AX + BX2 + etc.
+(-1)J+½ (J+1/2)(A1 + B1X + etc.) for K = 1/2
+(-1)J+1 J(J+1)(A2 + B2X + etc.) for K = 1
+(-1)J+3/2 (J-1/2)(J+1/2)(J+3/2)(A3 + B3X + etc.) for K = 3/2
+(-1)J (J - 1)J(J +1)(J + 2)(A4 + B4X + etc.) for K = 2

where X=J(J+1)-K2

For K = 1/2 bands, the decoupling parameter, a, is related to the parameter A1 through the expression
A1 = Aa.
For "well-behaved" rotational bands, the coefficients B and C are expected to be small, of the order
of magnitude B/A  10-3 and C/B  10-3. Typical values for the rotational constant A, are 12 keV in
the rare-earth region and 6 keV in the actinide region, although sizeable departures from these are
observed. Other than that they are of the order of magnitude of unity, no general statement can be
made regarding "typical" values of the decoupling parameter. They depend strongly on the
configuration of the K = 1/2 band under consideration; and, in fact, knowledge of the decoupling
parameter gives a good insight into the configuration assignment of the band. The parameters A2K are
expected to decrease rapidly with increasing K-value, but no extensive systematics of such values is
available at present. Evaluators should be encouraged to give more attention in their analyses of
rotational-band structure to the influence of A2K-type terms, especially for those bands having smaller
values of K (say, 5/2 or less), where the influence of such terms is more pronounced.
In the analysis of "high-spin" states (those generally accessible only to in-beam spectroscopy or
heavy-ion-induced Coulomb excitation), use of the rotational energy-level formula above to deduce
band parameters is generally not justified and can lead to "unphysical" conclusions. At the high
rotational frequencies associated with such states, the appropriate quantum number is no longer K but
rather the "signature", α (together with the parity). The following relations exist between α and the
total angular momentum, J:

α = 0,         J = 0, 2, 4, etc.,
α = 1,         J = 1, 3, 5, etc.,
α = +1/2,   J = 1/2, 5/2, 9/2, etc.,
α = -1/2,    J = 3/2, 7/2, 11/2 etc.,

For nuclides that are believed to have reflection-asymmetric ("octupole-deformed") shapes, the
quantum number associated with the appropriate nuclear symmetry is, instead of the signature, the
"simplex", s. The Jπ values that occur in rotational bands characterized by the different values of the
simplex are:

s = 0,  Jπ = 0+, 1-, 2+, 3-, etc,
s = 1,  Jπ = 0-, 1+, 2-, 3+, etc.
s = +i, Jπ = 1/2+, 3/2-, 5/2+, 7/2-, etc.,
s = -i,  Jπ = 1/2-, 3/2+, 5/2-, 7/2+, etc.
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B.  Gallagher-Moszkowski Rules 
In predicting the relative ordering of the two configurations resulting from the parallel (  = 1) and
antiparallel (  = 0) coupling of the intrinsic-spin projections of the two odd (quasi)particles in doubly
odd deformed nuclides, the Gallagher-Moszkowski rules indicate that the  = 1 coupling should lie
lower. In doubly even nuclides, the opposite should be the case. In the doubly odd nuclides, only one
exception to these "rules" is presently known. Consequently, in analyzing the level structure of these
nuclides, the evaluator can, with some degree of confidence assume, in the absence of other
information, that the  = 1 coupling will lie lower. There are, however, a number of complicating
factors in the level structure of doubly even nuclei which, in the absence of other information, make
these considerations of relatively limited use in the evaluation of data on these nuclides.
C. Allowed-Unhindered Beta Transitions 
Allowed-unhindered (au) p transitions are ones in which the asymptotic quantum numbers of the
initial-and final-state orbitals of the transforming nucleon are the same. Their systematic occurrence
thus far appears confined to the "rare-earth" region and uniquely establishes the presence of either the
orbital pair 7/2-[523]p, 5/2-[523]n or 9/2-[514]p, 7/2-[514]n. With this knowledge, and the relatively
simple angular-momentum coupling rules that apply, it is usually possible not only to make definitive
Jπ assignments but also to provide entirely reliable configuration assignments to the states involved.
Beta transitions in this region having log ft values of 5.0 or less can be confidently assigned as being
au. In addition, many au transitions are observed which have log ft values as large as 5.5. However,
as regards Jπ and configuration assignments, some caution must be exercised in classifying as au
newly encountered β transitions whose log ft values lie between 5.0 and 5.5, since a few cases are
known were β transitions with log ft values as low as 5.2 do not take place between one or the other
of these two orbital pairs.
D Favored Alpha Transitions 
"Favored" α transitions involve no change in nucleonic configuration between the initial and final
states. In the doubly even nuclides such transitions take place between the ground states of the parent
and daughter nucleus, while in the odd-A and doubly odd nuclides the final state is generally an
excited state. The characteristic feature of favored α transitions in these latter two categories of nuclei
is an α hindrance factor in the range from unity to 4. The observation of a favored α transition is thus
a strong basis for making both Jπ and nucleonic-configuration assignments. Further, the members of
the so-called "favored" band (the band built on the state fed by the favored transition) are fed by α
transitions whose hindrance factors, although increasing monotonically with final-state spin, are
nonetheless still relatively small and hence usually readily identifiable. In analyzing α-
hindrance-factor information to provide Jπ and nucleonic-configuration assignments, however, it
needs to be kept in mind that other phenomena can also give rise to small hindrance factors. These
include Coriolis mixing with the favored band, the presence of octupole deformation and β vibrational
excitations built on the favored band.
E.  Alaga-Rule Considerations 
The Alaga rules, which relate the relative values of the reduced transition probabilities of various
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decay processes from an initial state to various final states that are members of the same rotational
band, are usually of little use to the evaluator in arriving at Jπ assignments. This results primarily
because the essential simplicity of the ideas underlying them is frequently masked by other effects
which are difficult to take explicit account of. Consequently, their usefulness usually lies in providing
corroboration to assignments proposed from other considerations. The intraband E2 transitions
represent one exception to this statement. It is found that the reduced transition probabilities of these
transitions are well described by the Alaga-rule predictions; and the evaluator can use this observation
to infer E2/M1 mixing ratios for intraband cascade transitions (for which ΔJ = 1) when both the
cascade γ ray and its corresponding crossover (ΔJ = 2) γ ray are observed. Another potential exception
may be the El transition probabilities when collective effects (e.g., octupole vibrations, reflection
asymmetry) are important. Careful attention should be given to the analysis of such situations, but an
emerging body of evidence suggests that one can use the Alaga rules to draw correct conclusions in
such situations. 
F. Rotation-Particle (Coriolis) Coupling 
In evaluating nuclear structure data for strongly deformed nuclei, it is important to keep in mind that
rotation-particle (Coriolis) coupling may have a significant effect on certain level properties.
Although a proper analysis of such effects requires calculations utilizing large computer-based codes,
there are simple qualitative considerations which can frequently provide sufficient insight to permit
the evaluator to draw meaningful conclusions from the data without the necessity of such calculations.
The Coriolis interaction mixes states having the same Jπ values and K values that differ by one unit,
and this mixing increases with decreasing separation of the states. It is strongest among states that
originate from the same spherical shell-model state, and increases with increasing j value (and for a
given j, decreasing K value). It is thus especially strong among the so-called "unique-parity" states
(i.e., i13/2 neutrons and h11/2 protons in the rare-earth region and j15/2 neutrons in the actinides). In these
cases the selection rules in the asymptotic quantum numbers for "unhindered" Coriolis coupling are
ΔN = 0, Anz = -ΔΛ = ±1. In addition to the large distortions that are produced in the level structure
of rotational bands through strong Coriolis mixing, even weak mixing can produce pronounced
effects on various nuclear properties when the mixing brings in a large matrix element for the
associated process. Examples of these include α-hindrance factors, β-decay log ft values and B(E2)
values when the mixing introduces the unusually large matrix elements associated with favored α
decay, au β transitions and intraband E2 transitions, respectively.
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