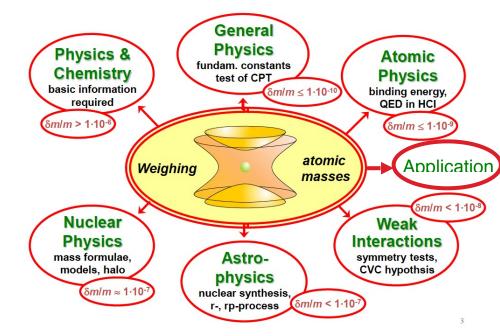


The Atomic Mass Evaluation & NUBASE

on behalf of the AME & NUBASE collaboration


Meng Wang (IMP), G. Audi (CSNSM), F.G. Kondev (ANL), W.J. Huang

(CSNSM), S. Naimi (RIKEN) and Xing Xu (IMP)

Atomic Mass Evaluation & NuBase

- Binding energies
 - √ mass models
 - √ shell structure
- Correlations
 - ✓ pairing
 - √ p-n
- Reaction & decay phase space
 - ✓ Q values
 - √ decay & reaction probabilities
- The limits of existence
 - √ drip lines
 - specific configurations and topologies

- combines the experimental results from mass and energy measurements produced in many nuclear physics laboratories using a procedure established by A.H. Wapstra in the early 1950's
 - recommended (best) values for the atomic masses and their uncertainties
 - extrapolation to the extremes using the smoothness of the mass surface

AME & NuBase - historical perspective

□ long & rich history Ame1955, Ame1961, Ame1964, Ame1971, Ame1977 Ame1983, Ame1993, Ame2003 -> A.H. Wapstra & G. Audi

citations: >1750

CPC(HEP & NP), 2012, 36(12): 1603-2014

Chinese Physics C

Vol. 36, No. 12, Dec., 2012

The AME2012 atomic mass evaluation *

(II). Tables, graphs and references

M. Wang^{1,2,3}, G. Audi^{2,§}, A.H. Wapstra^{4,†}, F.G. Kondev⁵, M. MacCormick⁶, X. Xu^{1,7}, and B. Pfeiffer^{8,‡}

Ame2012

collaborative effort led by G. Audi

AME2016

Chinese Physics C Vol. 41, No. 3 (2017) 030003

The Ame 2016 atomic mass evaluation

Meng Wang (王猛)^{1,2;1)} G. Audi (欧乔治)³ F.G. Kondev⁴ W.J. Huang(黄文嘉)³ S. Naimi⁵ Xing Xu(徐星)

✓ led by M. Wang (AME) and G. Audi (NuBase)

■ AME2016: continuing impact of direct mass spectrometry techniques using Penning Traps & Storage Rings spectrometers - high precision & far from stability ... also new data in the region of heavy elements ...

NUBASE2016

Chinese Physics C Vol. 41, No. 3 (2017) 030001

The NUBASE2016 evaluation of nuclear properties*

G. Audi (欧乔治)¹ F.G. Kondev² Meng Wang (王猛)^{3,4;1)} W.J. Huang(黄文嘉)¹ S. Naimi⁵

- □ basic nuclear level properties of relevance to AME: Ex, J^{π} , $T_{1/2}$, decay modes: B-n, B-2n, ECp, EC2p,...
- □ independently evaluated; based on ENSDF, but includes new data from the most recent references

	ground state		isomer (T _{1/2} >100 ns)	
	NUBASE12	NUBASE16	NUBASE12	NUBASE16
# of cases	3379	3436	1769	1839
stable	286	286	1	1
with Jπ	3043 (92%)	3138 (93%)	1647 (93%)	1724 (94%)
with firm Jπ	1816 (55%)	1866 (55%)	724 (41%)	747 (41%)
with T1/2	3288 (99%)	3371 (100%)		
with T1/2 (exp)	2892 (87%)	3027 (90%)	1664 (94%)	1734 (94%)
β-	1343	1376	205	220
β+	1236	1259	334	343
α	852	872	194	205
р	63	74	26	27
SF	192	203	40	45
ß-n	583	609	20	27
в+р	243	265	28	29

Dissemination

中国科学院近代物理研究所

http://amdc.impcas.ac.cn

Today is 2017/5/18, Thursday

About the AMDC

Introduction

NUBASE+AME2016

Evaluations

■ AME

■ NUBASE

Registration

Login Logout

The 2016 Atomic Mass Evaluation (AME2016)

The evaluation has been published in Chinese Physics C 41 (2017) 030002 (PDF), 030003 (PDF).

The four main ASCII files of AME2016 are

- mass16.txt atomic masses
- mass16round.txt atomic masses "Rounded" version
- rct1-16.txt reaction energies, table 1, S(2n), S(2p), Q(a), Q(2B-), Q(ep), Q(B-n)
- rct2-16.txt reaction energies, table 2, S(n), S(p), Q(4B-), Q(d,a), Q(p,a), Q(n,a)
- covariance.txt Variances and Covariances of primary nuclides
- known_deficiencies.txt list of corrections of the previous version

AMDC Atomic Mass Data Center

This page contains data provided by the **Atomic Mass Data Center**, located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP), Lanzhou, Chi Please refer to that web-site for further information about AME and NUBASE.

https://www-nds.iaea.org/amdc/

Atomic Mass Evaluation - AME2016

The evaluation has been published in Chinese Physics C 41 (2017) 030002 (PDF), 030003 (PDF).

The four main ASCII files of AME2016 are

- 1. mass16.txt atomic masses
- mass16round.txt atomic masses "rounded" version
- rct1-16.txt reaction energies, table 1
- 4. rct2-16.txt reaction energies, table 2

Q-value Calculator (QCalc)

QCalc calculates Q-values for nuclear reactions or decays. It uses mass values from the 2016 Atomic Mass Evaluation by M. Wang et al, http://www.nndc.bnl.gov/qcalc/

Target(s) 56fe, Fe56, 26056, cr50-fe56 use dash for range only	Uncertainties Standard style Nuclear Data Sheets style	
Projectile 4He, He-4, 2-he-4, a, alpha, 2004	E _{lab} (MeV)	
Ejectile g, n, n+p, 2n+a, 2a+12c (reaction) b-, ec, 2b-, b-n, ecp, 18O (decay)		
	Submit Reset	

- the end users are recommended to use the data in the rct1-16.txt and rct2-16.txt files
 - √ take into account correlations (explained in the 2nd AME paper)
 - ✓ uncertainties for the most precise values are listed as '0.00' the end users need to calculate them using the correlation matrix (2nd AME paper) and non-rounded mass data (mass16.txt)

