List Ceatech

BetaShape

A new code for improved calculations of beta spectra

The BetaShape program is available at http://www.nucleide.org/logiciels.htm

Xavier Mougeot

BetaShape vs LogFT

	LogFT	BetaShape
Range	β^- , β^+ and ε transitions	β^- , β^+ transitions. ε transitions not treated yet.
Calculated values	Mean energies, log ft , β^+/ε probabilities. No spectrum	Mean energies, log <i>ft</i> , β^-/β^+ and correlated $\overline{v_e}/v_e$ spectra, multiple transitions
Input	ENSDF files	ENSDF files, command line for individual transitions
Output	Report file, new ENSDF file. Uncertainties.	3 report files, new ENSDF file, ASCII files for single and total spectra. Uncertainties.
Structure	Fortran, 78 functions, 1 program	C++, 6 classes, 155 functions, 4 interfaced programs
Modelling	 Analytical model, tabulated values of electron wave functions Allowed and first- and second-forbidden unique transitions. Otherwise allowed. Approximate Fermi function and λ_k parameters Approximate finite nucleus size and screening 	 Dirac equation solved numerically Extended forbiddenness (allowed and every forbidden unique). Forbidden non-unique with xiapproximation (1st as allowed, 2nd as first forbidden unique, etc.) Exact Fermi function and λ_k parameters Inherent finite nucleus size and more precise screening Radiative corrections Database of experimental shape factors (130)

Electron capture transitions

An improved modelling has been developed and presented at the ICRM 2017 conference.

1) Dirac equation solved numerically; 2) extended forbiddenness (allowed and every forbidden unique); 3) realistic shell occupation; 4) more precise overlap and exchange corrections; 5) hole effect by means of first order perturbation theory; 6) shake-up and shake-off effects.

Improvements are on-going to speed-up the calculations before any implementation in BetaShape.

Atomic effects

High precision calculations of screening and exchange effects for allowed transitions were demonstrated to be of importance. Improvements are still necessary to speed-up the calculations before any implementation in BetaShape. These corrections have to be extended to forbidden unique transitions.

Nuclear structure

Inclusion of the nuclear structure for beta decays is in progress. This should allow the precise calculation of forbidden non-unique transitions.

About mean energies and log *ft* values

Experimental shape factors (database of 130 transitions)
 → if existing, used to determine recommended values

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

• Mean energy
$$\overline{E} = \int_0^{E_0} E \cdot N(E) dE / \int_0^{E_0} N(E) dE$$

$$\begin{array}{lll} \text{Log } \textit{ft} \text{ value } & \swarrow f_{\beta^-} = \int_1^{W_0} N(W) dW \\ & \swarrow f_{\varepsilon/\beta^+} = \textit{f}_{\varepsilon} + \textit{f}_{\beta^+} \end{array} \end{array} \end{array} \text{ Partial half-life: } t_i = T_{1/2}/I_{\beta} \longrightarrow \log ft \\ & \text{ provided that } f_{\beta^+} \neq 0 \\ & \text{ and } I_{\beta^+} \neq 0 \end{array} \longrightarrow \log ft = \log \left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2} \right) + \log \left(\frac{1 + f_{\varepsilon}/f_{\beta^+}}{1 + I_{\varepsilon}/I_{\beta^+}} \right) \end{array}$$

However

$$\frac{I_{\varepsilon}}{I_{\beta^+}} = \frac{\lambda_{\varepsilon}}{\lambda_{\beta^+}} = \frac{K_{\text{nuc}} \sum_{x} n_x C_x f_x}{K_{\text{nuc}} \int_1^{W_0} N(W) dW} \approx \frac{f_{\varepsilon}}{f_{\beta^+}}$$

 C_{x} : lepton dynamics

*K*_{nuc}: nuclear structure (allowed, forbidden unique)

 n_x : relative occupation number of the orbital, not accounted for in the LogFT program

For allowed and forbidden unique electron capture transitions, one has

universite

$$\rightarrow \log ft \approx \log \left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2} \right)$$

list

Ceatech

- Standard uncertainties from input parameters are propagated: Q-value, level energies, half-life, branching ratio. Calculations are performed at $E_{\text{max}} u(E_{\text{max}})$, E_{max} and $E_{\text{max}} + u(E_{\text{max}})$.
- Asymmetric uncertainties are symmetrized. Warnings are given in the output files.
- Otherwise, the code estimates a relative uncertainty of about 60% (i.e. the uncertainty associated with a flat distribution between zero and twice the value). Warnings are given in the output files.
- Uncertainties from experimental shape factors are not accounted for. Correlations between the parameters of a shape factor are not provided in the publications and must be considered.
- This treatment of uncertainties is opened to discussion and can be changed following different recommendations.

exp. built from experimental shape factor *calc.* full calculation (theoretical shape factor)

BetaShape

LogFT

RN	E _{mean} (keV)	log ft	E _{mean} (keV)	log ft	Nature	Comments
¹⁴ C (β ⁻)	48.2323 (13)	9.0954 (22)	40.47	9.0400 (30)	allowed	exp.
	49.4506 (14)	9.0474 (22)	49.47			calc.
63NI: (0-)	17.1777 (14)	6.942 (6)	47 405 (6)	6.7	allowed	exp.
^{ο3} ΝΙ (β ⁻)	17.4817 (14)	6.680 (6)	17.425 (6)			calc.
²¹⁰ Βi (β ⁻)	317.56 (21)	7.7118 (10)	200.00 (40)	8	1 st f.nu.	exp.
	389.88 (31)	8.1384 (12)	389.00 (40)			calc.
241 Dec. (0-)	5.096 (33)	3.284 (8)		5.8	1 st f.nu.	exp.
241 Pu (β ⁻)	5.209 (33)	5.925 (8)	5.23 (5)			calc.
	193.6 (5)	9.390 (6)			Act	exp.
⁹⁰ Sr (β⁻)	195.5 (5)	9.424 (6)	195.8 (8)	9.400 (10)	1 st I.U.	calc.
²⁰⁴ ΤΙ (β ⁻)	235.82 (6)	10.2152 (15)			1 st f.u.	exp.
	239.98 (6)	10.1933 (15)	244.05 (6)	10.0980 (15)		calc.

exp. built from experimental shape factor *calc.* full calculation (theoretical shape factor)

BetaShape

LogFT

RN	E _{mean} (keV)	log ft	E _{mean} (keV)	log ft	Nature	Comments
³⁶ Cl (β ⁻)	314.102 (29)	13.3454 (28) 13.6716 (28)	251.33	13.3210 (30)	2 nd f.nu.	exp.
		13.07 10 (20)				
$90\mathbf{T}_{-}$	95.19 (44)	11.929 (10)	94 G (E)	10 205 (10)	2nd f pu	exp.
³³ IC _{gs} (β ⁻)	101.39 (49)	12.087 (10)	04.0 (3)	12.325 (12)	∠ [™] I.NU.	calc.
	252.33 (26)	13.867 (18)		40.007 (40)		exp.
¹⁰ Be (β ⁻)	252.02 (26)	13.872 (18)	202.56 (25)	13.397 (18)	2 nd f.U.	calc.
	56.46 (19)	16.206 (14)		17.499 (10)	3 rd f.nu.	exp.
°' KD (β ⁻)	115.14 (43)	17.062 (13)	81.67 (36)			calc.
4014 (0)	583.982 (48)	20.5788 (14)				exp.
⁴⁰ Κ (β ⁻)	583.283 (48)	20.6006 (14)	560.18 (5)	20.75	3 rd f.u.	calc.
¹¹³ Cd _{gs} (β ⁻)	139.83 (35)	22.931 (11)		00.407.(44)	4+b ¢	exp.
	140.42 (40)	22.795 (11)	92.6 (10)	23.127 (14)	4 ^{.n} f.nu.	calc.

ENSDF database analysis

- + 21 768 β^{\pm} transitions read in ENSDF database
- 19 602 β^{\pm} transitions with $I_{\beta} \ge 0$ and $E_{\max} \ge 0$ keV
- 4 529 transitions calculated as allowed due to lack of spins and parities

Study of the consistency of the results from LogFT and BetaShape at 1σ , 2σ , 3σ (68.3%, 95.4%, 99.7% C.L.)

→ Validation of BetaShape

universite

list

Ceatech

BetaShape vs LogFT

For allowed and forbidden unique β^+/ε transitions

$$\log ft \approx \log \left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2} \right)$$
 ?

 \rightarrow 21 of 8 506 β^+ transitions with inconsistent log *ft* at 1σ (experimental shape factors, no uncertainty on intensities, disagreement \leq 2.5%)

This approximation leads to consistent results with LogFT for β^+/ε transitions at the precision level of current nuclear data.

list

Ceatech

Example of outputs

BetaShape | X. Mougeot | 12

Output file

376

28

1.84802e-006

4.40036e-009

1.78842e-006

Transition parameters and options for calculation

Experimental shape factor

Mean energies, log *ft* values, analysis parameters

 β and ν spectra

1									
2									
3	BetaShape								
4	Analytical	version: 1.0 (2	4/06/2016)						
5	Author: A. Mougeot (Xavier.Mougeotecea.ir) /FR IIST Ishorstaire Astional Henri Becguarel (INHB) Gif.sur-Yvette E-01101 France								
7	CLA, LISI,	Laboratoire Nat	Numical Periov C	01 055504. Errati	m Phys. Pey. C 92, 01	50002 (2015)			
8	Flease Cite	e: A. Mougeot, P	Mysical Review C	91, 055504; Errau	um Phys. Rev. C 92, 0	59902 (2015)	he		
9							.03		
10							single transition		
11	Parent nuc	leus: 39-Y-90 [2	-] g.s> Dau	ghter nucleus: 40-	-Zr-90 [0+] g.s.		Single hanshor		
12	Calculation	n of the 1st for	bidden unique tra	nsition from the b	oeta - decay of Y-90				
13									
14	Bühring's :	screening correc	tion is considere	d.					
15	Ford marine .		(1.C) hell Energy		T	-			
17	End-point (energy: 22/0./ (16) Kev Energ	y step: / kev	Incensicy: 0.99965 (7)			
18	An experime	ental shape fact	or has been found	: (1 - 0.0114*W) *	* (g^2 + 1 2*p^2)				
19	Energy rand	ge of the measur	ement: 60 - 2230	keV					
20	From [1975]	- FL07] D. Flothma	nn, H. J. Gils, W	. Wiesner, R. Löhl	cen, Z. Physik A 272,	219 (1975)			
21							J		
22	Input mean	energy: 926.7 ((8) keV						
23	Mean energy	y from the calcu	lated spectrum: 9	29.2 (7) keV					
24	Mean energy	y from the exper	imental shape fac	tor: 924.9 (7) ke	7				
25	Input log	ft walnes 9 05							
20	Log ft valu	ue from the calc	ulated enectrum.	log ft 9 2530 (18)	with components.	log f 3 8901	(18) and log partial $T1/2 = 36284$ (21)		
28	Log ft valu	ue from the expe	rimental shape fa	ctor: log ft 9.229	3 (18) with compone	ent: log f 3	.8664 (18)		
29	-								
30	Agreement o	of the experimen	tal and calculate	d spectra in [60,2	2230] keV: 99.96 %				
31	Correspond:	ing disagreement	: 3.74e-002 %						
32	Variation o	of the mean ener	gies: 4.69e-001 %						
33	F (Ino.17)	dN/dE colo	118.0	dN/dE own					
35	L(Kev)	3 36918e-004	4 58510e-007	3 44512e-004	4 63582e=007				
36	7	3.41551e-004	4.62475e-007	3.48727e-004	4.66815e-007				
37	14	3.46078e-004	4.66214e-007	3.53096e-004	4.70191e-007				
38	21	3.50499e-004	4.69728e-007	3.57618e-004	4.73710e-007				
39	28	3.55063e-004	4.73366e-007	3.62345e-004	4.77437e-007				
40	35	3.59826e-004	4.77202e-007	3.67258e-004	4.81342e-007				
			:		:				
359	2268	2.66793e-007	8.46140e-008	2.68018e-007	8.46841e-008				
360	2275	3.19957e-008	3.35393e-008	3.23681e-008	3.37721e-008				
361	2278.7	0.00000e+000	0.00000e+000	0.00000e+000	0.00000e+000				
362									
363									
364									
365	Antineutri	no spectrum							
366									
67	Maan		land an	949 9 (14)					
369	Mean energy	y from the calcu	iiated spectrum: 1	1340.3 (14) KeV	keV				
370	nean energ	y rrom one exper	imentar snape fac	.001. 1000.0 (14)	AC 7				
371	E (keV)	dN/dE calc.	unc.	dN/dE exp.	unc.				
372	0	0.00000e+000	0.00000e+000	0.00000e+000	0.00000e+000				
373	7	1.19068e-007	2.85693e-010	1.15165e-007	2.79463e-010				
374	14	4.71474e-007	1.12839e-009	4.56103e-007	1.10402e-009				

4.30718e-009

List Ceatech	Output file	1 2 3 4 5 6 7 8 9 10 11	<pre>BetaShape Analytical version: 1.0 (24/06/2016) Author: X. Mougeot (xavier.mougeot@cea.fr) CEA, LIST, Laboratoire National Henri Becquerel (LNHB), Gif-sur-Yvette F-91191, France Please cite: X. Mougeot, Physical Review C 91, 055504; Erratum Phys. Rev. C 92, 059902 (2015) </pre>	<mark>.bs</mark> single transition
		12 13	Calculation of the 1st forbidden unique transition from the beta - decay of Y-90	
		14 15	Bühring's screening correction is considered.	
Experimental shape factor		16 17	End-point energy: 2278.7 (16) keV Energy step: 7 keV Intensity: 0.99983 (7)	
		18 19	An experimental shape factor has been found: $(1 - 0.0114*W) * (q^2 + 1_2*p^2)$ Energy range of the measurement: 60 - 2230 keV	
		20 21	From [1975FL07] D. Flothmann, H. J. Gils, W. Wiesner, R. Löhken, Z. Physik A 272, 219 (1975)	
		22	Input mean energy: 926.7 (8) keV Mean energy from the calculated spectrum: 929.2 (7) keV	
		24	Mean energy from the experimental shape factor: 924.9 (7) keV	

An experimental shape factor has been found: (1 - 0.0114*W) * (q^2 + 1_2*p^2) Energy range of the measurement: 60 - 2230 keV From [1975FL07] D. Flothmann, H. J. Gils, W. Wiesner, R. Löhken, Z. Physik A 272, 219 (1975)

34	E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.
35	0	3.36918e-004	4.58510e-007	3.44512e-004	4.63582e-007
36	7	3.41551e-004	4.62475e-007	3.48727e-004	4.66815e-007
37	14	3.46078e-004	4.66214e-007	3.53096e-004	4.70191e-007
38	21	3.50499e-004	4.69728e-007	3.57618e-004	4.73710e-007
39	28	3.55063e-004	4.73366e-007	3.62345e-004	4.77437e-007
40	35	3.59826e-004	4.77202e-007	3.67258e-004	4.81342e-007
			:		:
			1.000 ILC 007		1.000.00 00.
359	2268	2.66793e-007	8.46140e-008	2.68018e-007	8.46841e-008
360	2275	3.19957e-008	3.35393e-008	3.23681e-008	3.37721e-008
361	2278.7	0.00000e+000	0.00000e+000	0.00000e+000	0.00000e+000
362					
363					
364					
365	Antineutrino	spectrum			
366					
367					
368	Mean energy	from the calcul	ated spectrum: 13	348.3 (14) keV	
369	Mean energy	from the experi	mental shape fact	or: 1355.0 (14) k	ceV
370					
371	E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.
372	0	0.00000e+000	0.00000e+000	0.00000e+000	0.00000e+000
373	7	1.19068e-007	2.85693e-010	1.15165e-007	2.79463e-010
374	14	4.71474e-007	1.12839e-009	4.56103e-007	1.10402e-009
375	21	1.05012e-006	2.50687e-009	1.01606e-006	2.45326e-009
376	28	1.84802e-006	4.40036e-009	1.78842e-006	4.30718e-009

List CERTECH Output file	<pre>BetaShape Analytical version: 1.0 (24/06/2016) Author: X. Mougeot (xavier.mougeot@cea.fr) CEA, LIST, Laboratoire National Henri Becquerel (LNHB), Gif-sur-Yvette F-91191, France Please cite: X. Mougeot, Physical Review C 91, 055504; Erratum Phys. Rev. C 92, 059902 (2015) 9</pre>	.bs
	Parent nucleus: 39-Y-90 [2-] g.s> Daughter nucleus: 40-Zr-90 [0+] g.s. Calculation of the 1st forbidden unique transition from the beta - decay of Y-90	single transition
	13 14 Bühring's screening correction is considered. 15	
	16 End-point energy: 2278.7 (16) keV Energy step: 7 keV Intensity: 0.99983 (7) 17 Intensity: 0.99983 (7)	
	18 An experimental snape factor has been found: (1 - 0.0114*W) * (q ⁻² + 1_2*p ⁻²) 19 Energy range of the measurement: 60 - 2230 keV	
	20 From [1975FL07] D. Flothmann, H. J. Gils, W. Wiesner, R. Löhken, Z. Physik A 272, 219 (1975) 21	
	22 Input mean energy: 926.7 (8) keV	
	23 Mean energy from the calculated spectrum: 929.2 (7) keV 24 Mean energy from the experimental shape factor: 924.9 (7) keV	
Mean energies log ft	25	
inicali chorgico, log it	26 Input log ft value: 8.05	
values, analysis	27 Log ft value from the calculated spectrum: log ft 9.2530 (18) with components: log f 3.8901 (1	8) and log partial T1/2 5.36284 (21)
noromotoro	Log It value from the experimental snape factor: log it 9.2293 (18) with component: log i 3.86	64 (18)
parameters	Agreement of the experimental and calculated spectra in [60,2230] keV: 99.96 %	
	31 Corresponding disagreement: 3.74e-002 %	
	32 Variation of the mean energies: 4.69e-001 %	
	33 34 E(keV) dN/dE calc. unc. dN/dE exp. unc.	
Input mean energy: 926.7 (8) keV		
Mean energy from the calculated spectru	a: 929.2 (7) keV	
Mean energy from the experimental shape	factor: 924.9 (7) keV	
the children one children out on apertanenout on ape		
Input log ft value: 8.05		

Log ft value from the calculated spectrum: log ft 9.2530 (18) with components: log f 3.8901 (18) and log partial T1/2 5.36284 (21) Log ft value from the experimental shape factor: log ft 9.2293 (18) with component: log f 3.8664 (18)

Agreement of the experimental and calculated spectra in [60,2230] keV: 99.96 % Corresponding disagreement: 3.74e-002 % Variation of the mean energies: 4.69e-001 %

> 368 Mean energy from the calculated spectrum: 1348.3 (14) keV 369 Mean energy from the experimental shape factor: 1355.0 (14) keV 371 E(keV) dN/dE calc. unc. dN/dE exp. unc. 372 0 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 373 7 1.19068e-007 2.85693e-010 1.15165e-007 2.79463e-010 374 14 4.71474e-007 1.12839e-009 4.56103e-007 1.10402e-009 21 1.05012e-006 2.50687e-009 1.01606e-006 2.45326e-009 375 376 28 1.84802e-006 4.40036e-009 1.78842e-006 4.30718e-009

list ceatech	utput file	<pre>1 2 3 BetaShape 4 Analytical version: 1.0 5 Author: X. Mougeot (xavi 6 CEA, LIST, Laboratoire N 7 Please cite: X. Mougeot, 8 9 10 11 Parent nucleus: 39-Y-90 12 Calculation of the 1st f 13 14 Bühring's screening corr</pre>	<pre>(24/06/2016) er.mougeot@cea.fr) Mational Henri Becquerel (LNHB), Physical Review C 91, 055504;) [2-] g.s> Daughter nucleu forbidden unique transition from rection is considered.</pre>	Gif-sur-Yvette F-91191, France Erratum Phys. Rev. C 92, 059902 (20 s: 40-Zr-90 [0+] g.s. the beta - decay of Y-90	⁰¹⁵⁾ .bs single transition
	E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.
	0	3.36918e-004	4.58510e-007	3.44512e-004	4.63582e-007
	7	3.41551e-004	4.62475e-007	3.48727e-004	4.66815e-007
	14	3.46078e-004	4.66214e-007	3.53096e-004	4.70191e-007
	21	3.50499e-004	4.69728e-007	3.57618e-004	4.73710e-007
	28	3.55063e-004	4.73366e-007	3.62345e-004	4.77437e-007
	35	3 59826e-004	4 77202e-007	3 67258e-004	4,81342e-007
		30 Agreement of the experim	ental and calculated spectra in	[60,2230] keV: 99.96 %	
	Antineutrin	o spectrum			
	Mean energy Mean energy	from the calcul from the experi	ated spectrum: 13 mental shape fact	348.3 (14) keV cor: 1355.0 (14) ke	v
	E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.
β and ν spectra	0	0.00000e+000	0.00000e+000	0.00000e+000	0.00000e+000
	7	1.19068e-007	2.85693e-010	1.15165e-007	2.79463e-010
	14	4.71474e-007	1.12839e-009	4.56103e-007	1.10402e-009
	21	1.05012e-006	2.50687e-009	1.01606e-006	2.45326e-009
	28	1.84802e-006	4.40036e-009	1.78842e-006	4.30718e-009
		373 7 1.19068e-007 374 14 4.71474e-007 375 21 1.05012e-006 376 28 1.84802e-006	7 2.85693e-010 1.15165e 7 1.12839e-009 4.56103e 5 2.50687e-009 1.01606e 5 4.40036e-009 1.78842e	-007 2.79463e-010 -007 1.10402e-009 -006 2.45326e-009 -006 4.30718e-009	

Examples of improved spectra

Precision of the common $\lambda_k = 1$ approximation

list

universite

Examples of improved calculations

These two transitions are calculated as allowed by the LogFT program.

list

Ceatech