

Horizontal Evaluations

Addendum to Atlas of Nuclear Isomers Table of MR and AMR bands Alphad and radius parameters

A K Jain and Sukhjeet Singh

With inputs from Swati, Bhoomika, Balraj

Atlas of Nuclear Isomers

ATLAS OF NUCLEAR ISOMERS

Ashok Kumar Jain¹, Bhoomika Maheshwari¹, Swati Garg¹, Monika Patial¹, and Balraj Singh²

¹Department of Physics, Indian Institute of Technology, Roorkee, India ²Department of Physics and Astronomy, McMaster University, Hamilton, Canada

Nuclear Data Sheets, 128 (2015) 1-130

Downloaded more than 460 times from ScienceDirect

Cited 16 times only!!!

An Update is under progress – almost done.

Addendum to "Atlas Of Nuclear Isomers-2015"

- We have found 31 new isomers reported since 15 Aug. 2015
- Data of about 40 known isomers has been updated or, corrected.
- A complete search of literature is underway.
- A comparison with NUBASE is yet to be made.
- Most of the new isomers seen lie in heavy mass region reflecting a huge interest in heavier nuclei.
- With more and more short-lived isomers being found, should we lower the limit of 10 ns set by us?

Addendum to Atlas of Isomers-2015

NUCLEAR DATA SHEETS

TABLE I									
Z	Ν	AX	E(keV)	\mathbf{J}^{π}	T _{1/2}	Eγ(keV)	λ	Decay mode	Key No.
12	19	³¹ Mg	50.1 (2)	3/2+	11.9(6) ns	50.2(2)	M1	%IT = 100	1993KL02
									2005MA96
									2017NI02
13	21	³⁴ A1	46.6	1+	26(1) ms			%β−≈100	2012RO25
									2017LI03
21	21	⁴² Sc	616.762 (46)	7+	61.7(4) s			$\%\epsilon + \%\beta + = 100$	2016CH23
									2017ER01
27	25	⁵² Co	387 (13)	2+	102(6) ms			%ε +% β+≈ 100	2016OR08
								•	2016XU10
25	33	⁵⁸ Mn	71.77 (5)	4+	65.4(5) s	71.78(5)	M3	%β−≈90	2010NE01
								%IT ≈ 10	2015HE28
25	35	⁶⁰ Mn	271.80 (10)	4+	1.77(2) s	271.9(1)	M3	$\%\beta - = 88.5(8)$	1985RU05
								%IT = 11.5(8)	1988BO06
									2006LI15
			-						2015HE28
25	37	⁶² Mn	346 (8)	4(+)	671(5) ms			$\%\beta - = 100$	1999HA05
									2010CH51
									2015HE28
									2015GA38
30	37	⁶⁷ Zn	93.312 (5)	1/2-	9.142(24) μs	93.311(5)	E2	%IT = 100	2005HU18
									2014DI03
		70 ÷		(a -)					2015CH57
27	45	⁷² Co [†]	0+X	(6-,7-)	51.5(3) ms			$\%\beta - = 100$	2005MA95
								$\beta -n \ge 4$	2014XU07
								$\beta - 2n > 0.0$	2014RA20
			0.137	(0.1.1.)	47.0(5)			$p = n \ge 6(2)$	2016MO07
			0+Y	(0+,1+)	47.8(5) ms			Decay modes as above	2016MO07
								are common to both	2005101A95
1	1	1	1	1	1	1	1	1	I

Summary of Newly appeared MR Bands 31 nuclides having 41 new MR bands with 215 levels

S.No.	Nuclide	Number of Bands	Number of levels	NSR Keynumber
1	⁵⁸ Fe	02	Band 1: 05	2012ST06
			Band 2: 08	
2	⁶⁰ Ni	04	Band 1:07	2008TO15
			Band 2: 05	
			Band 3: 07	
			Band 4: 06	
3	⁶¹ Co	01	08	2015AY02
4	⁸⁵ Sr	01	06	2017KU04
				2014Ku19
5	⁸⁶ Sr	01	08	2017KU04
				2015Zh18
6	⁸⁶ Y	01	06	2013Li33
7	¹⁰⁵ Ag	02	Band 1:08	2006De15
			Band 2: 10	
8	¹⁰⁶ Ag	01	10	2010HE05
				2006De15
9	¹⁰⁷ Ag	02	Band 1:09	2014Ya02
			Band 2: 07	
10	¹⁰⁷ Cd	01	11	2015Ch05
11	¹⁰⁷ In	01	10	2010NE05
12	¹⁰⁹ In	01	07	2012Ne03
13	¹¹⁴ In	01	06	2012Li38
14	¹³⁵ Ba	02	Band 1: 04	2010KU15
			Band 2: 08	
15	¹³³ La	01	09	2016PE21

ol D

_ _ _ ___

NUN
No stellio Breat

רבר

S.No.	Nuclide	Number of Bands	Number of levels	NSR Keynumber
16	¹³⁴ La	01	11	2007KU13
17	¹³⁵ La	02	Band 1:06	2013GA11
			Band 2: 07	
18	¹³⁸ Ce	01	08	2009Bh04
19	¹³⁹ Ce	01	07	2015Ka06
20	¹³⁵ Pr	02	09	2015Ga39
			08	2015Ma13
21	¹⁴¹ Sm	01	06	2016Ra33
22	¹⁴² Sm	01	07	2014Ra03
23	¹⁴³ Eu	02	Band 1:06	2014Ra18
			Band 2: 07	
24	¹⁴⁴ Tb	01	10	2014Ch22
25	¹⁴⁴ Dy	01	09	2009Su09
				2010Pr04
26	¹⁶⁶ Re	01	10	2016Li13
27	¹⁹⁴ T1	01	06	2012Pa16
28	¹⁸⁹ Pb	01	07	2015Ho14
				2009Dr03
29	²⁰¹ At	01	08	2015Au01
30	²⁰⁴ At	01	08	2008Ha39
31	²⁰⁶ Fr	01	10	2008Ha39

• Regular updation of table of MR bands

• Table of AMR Bands and its regular updation

Updation of even-even radius parameter

• Updates presented /will be presented by Dr. B. Singh

FUTURE PLANS

- Regular Updates of even-even radius parameters
- A comprehensive evaluation of alpha hindrance factors of eveneven, odd-A and odd-odd nuclides.

The calculated alpha hindrance factors is a crucial parameter for deciding J^{π} and nucleonic configuration assignments to the states involved in favored alpha transitions. Thus, this horizontal evaluation will be very **useful for fixing spin, parity and configuration assignments.**

• This evaluation of hindrance factors will also reflect the validity of alpha hindrance factors rules proposed 45 years ago [Y.A.Ellis and M. R. Schmorak, Nuclear Data Sheets B 8 (1972) 345]

• Updates of revised ALPHAD, RadD presented/will be presented by Dr. B. Singh

FUTURE PLAN

Deduction of B(M1)/B(E2) ratios from experimental data

Development of a program based on rotational model formulae for deduction of B(M1)/B(E2), which will be useful particularly for the data sets where I_g and E_g are given and B(M1)/B(E2) values are not given in literature but could be deduced using these I_g and E_g . These deduced B(M1)/B(E2) ratios will be automatically written in ENSDF file at appropriate place . A preliminary algorithm for this code has been developed and being tested for 2qp and 3qp states.