Progress Report of Precision Electron Conversion Coefficient Measurements with transitions in: ^{127m}Te, ^{125m}Te, ^{103m}Rh

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Internal Conversion Coefficients (ICC):

- Big impact on quality of nuclear science
- Central for USNDP and other nuclear data programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard
- Is the series of measurements complete?
- Are there other critical cases to measure?

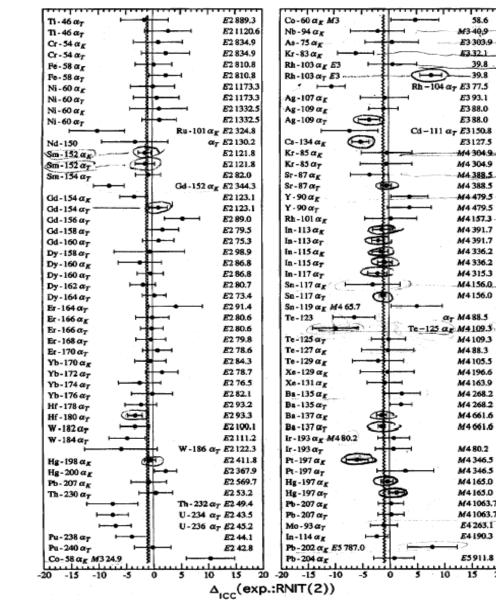
2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!


Conclusions, Δ(exp:theory)%:No hole:+0.19(26)% BEST!(bound and continuum states - SCF of neutral atom)Hole-SCF:-0.94(24)%(continuum - SCF of ion + hole (full relaxation of ion orbitals))Hole-FO:-1.18(24)%(continuum - ion field from bound wave functions ofneutral atom

orbitals))

PHYSICAL ARGUMENTK-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} s \gg \sim 10^{-18} s$

2002Ra45: 100 $\alpha_{\rm K}(\exp)$ cases compared with **'hole FO' calculations**

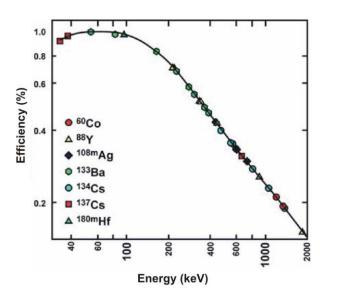
58.6

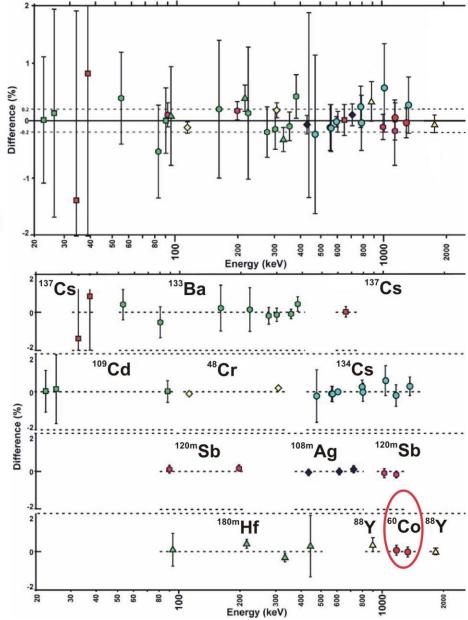
Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from only one K-shell converted transition • ω_K from 1999SCZX (compilation and fit)


- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 1%, 10-50 keV (KX rays domain)


DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

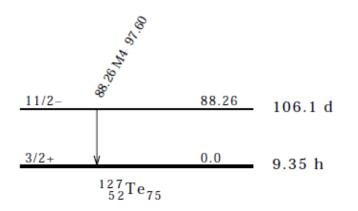
KX to γ rays ratio method

- \circ Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x
 - High spectrum purity
 - Minimize activation time (0.5 h)
- **o Impurity analysis** *essentially based on ENSDF*
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region

• Voigt-shape (Lorentzian) correction for X-rays

Done by simulation spectra, analyzed as the real spectra

• Coincidence summing correction

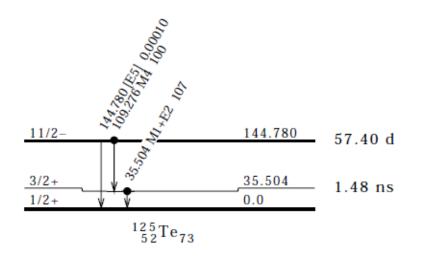

I. ^{127m}Te 88.2 keV, M4 transition

- α(K)exp = 484 23 (1977So06), %unc=4.8
- $\alpha(K)_{hole_FO} = 486.4 \ 17, \ \alpha(K)_{no_hole} = 468.6 \ 17$

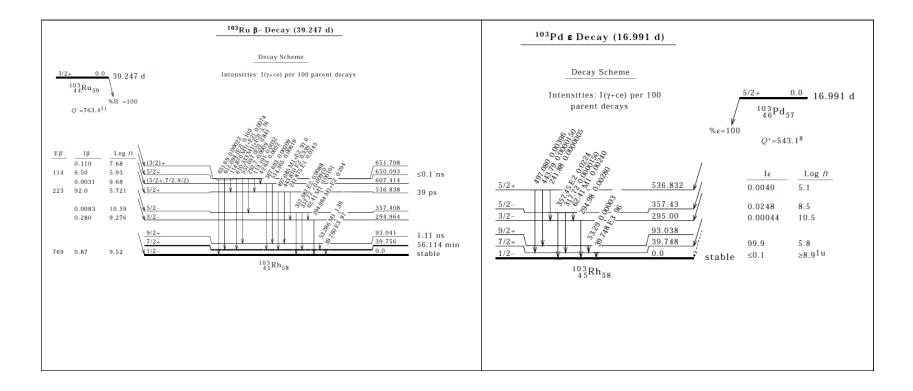
¹²⁷Te IT Decay (106.1 d) 1970Ap02

Decay Scheme

Intensity: I(γ+ce) per 100 parent decays %IT=97.6 2


II. ^{125m}Te 109.3 keV, M4 transition

- α(K)exp = 166 9 (1998Sa26), %unc=4.8
- $\alpha(K)_{hole_FO} = 185.2(1), \alpha(K)_{no_hole} = 179.5(1)$


¹²⁵Te IT Decay 1976Wa13

Decay Scheme

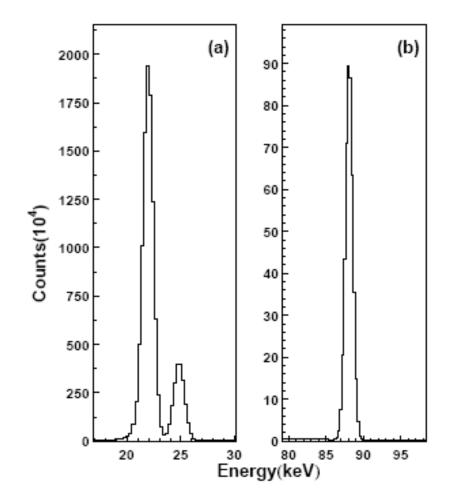
Intensities: I(γ+ce) per 100 parent decays %IT=100

III. ^{103m}Rh 39.748 keV, E3 transition α(K)exp = 138 5 (1970NiZV), %unc=3.6 α(K)exp = 127 6 (1975Cz03), %unc=4.7 α(K)_{hole FO} = 185.2(19), α(K)_{no_hole} = 127.4(18)

^{127m}Te 88.3 keV, M4 transition

- ¹²⁶Te 98%+ enriched metal powder grinded at micron size
- Samples: 1.3 mg, disk of 1 cm diameter x 2.7-µm thick covered with 1 mil-thick mylar foils
- Neutron activation at Triga reactor @ TAMU,
 - $\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm}^2 \text{s})$
 - $\alpha_{th} = 0.135(23)$ b
 - Sample activated 24 h, then cooled down for 2 months
 - Measured for 3 weeks
- Measured with HPGe detector at 151 mm distance for three weeks

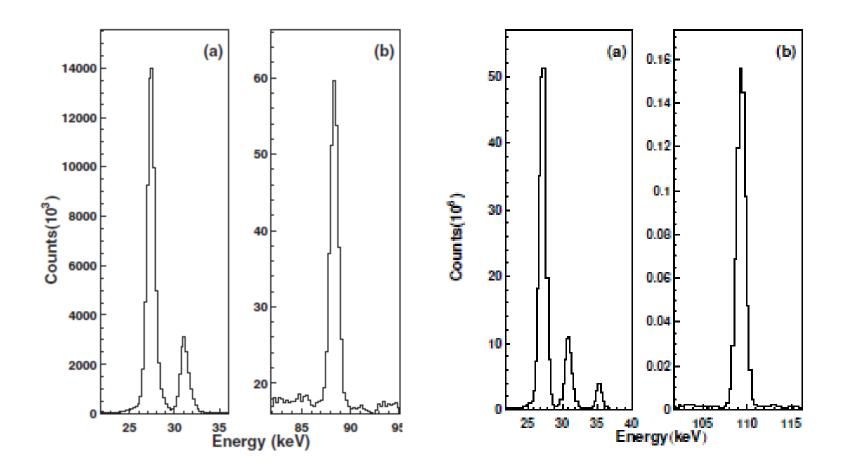
^{125m}Te 109.3 keV, M4 transition


- ¹²⁴Te 99.32%+ enriched metal powder
- 0.49(2) μm thick, 17 mm diameter TeO₃ disk electroplated on 10 μm 99.999%-pure Al backing
- Activated
 - $\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm^2s)}$
 - $\alpha_{th} = 0.040(25) b$
 - Sample activated 24 h, then cooled down for 3 weeks
 - Measured for 112 h

^{103m}Rh 39.748 keV, E3 transition

- 25 mm \times 25 mm \times 4 μm ^{nat}Pd foil
 - $-\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm^2s)}$
 - $\alpha_{th} = 3.4(3) b$
 - Sample activated 10 h, then cooled down for 15 days
 - Measured for several weeks

¹⁰⁹Cd Efficiency Calibration


22.6-keV AgKx & 88.0-keV E3 y regions

Regions of interest

127m**Te**

125m**Te**

Results

^{127m}Te 88.2 keV, M4 transition (2017Ni03)

Model	α_K	Δ (%)
Experiment	484(6)	
Theory		
No vacancy	468.6(17)	+3.3(13)
Vacancy, frozen orbitals	486.4(17)	-0.5(13)
Vacancy, SCF of ion	483.1(17)	+0.2(13)

^{125m}Te 109.3 keV, M4 transition

Model	α_K	$\Delta(\%)$	α_T	$\Delta(\%)$
Experiment	185.0(40)		350.0(38)	
Theory:				
No vacancy	179.5(1)	+3.0(22)	348.7(3)	+0.4(11)
Vacancy, FO	185.2(1)	-0.1(22)	355.6(3)	-1.6(11)
Vacancy, SCF	184.2(1)	+0.4(22)	354.2(3)	-1.2(11)

Results (continued)

^{103m}Rh 39.748 keV, E3 transition, ^{103m}Pd ε decay
Using α_K=131.3(39) (average "hole" and "no hole"
calculations) one gets
(a) Experimental:

 $\alpha_T = 1438(44)$ (very preliminary)

(b) Theory

- *No Vacancy:* $\alpha_T = 1404(20)$
- *Vacancy FO:* $\alpha_T = 1389(20)$

To be done: ^{103m}Ru β⁻ decay