LA-UR-13-28051

Approved for public release; distribution is unlimited.

Title:	Analyzing the low evaluated uncertainties and strong model dependence of the 239Pu PFNS ENDF/B-VII.1 evaluation.
Author(s):	Neudecker, Denise Capote, Roberto Talou, Patrick
Intended for:	Third Research Coordination Meeting on Prompt Fission Neutron Spectra of Actinides, IAEA, Vienna, Austria, 2013-10-21/2013-10-24 (Vienna, Austria)
Issued:	2013-10-17 (Draft)

Disclaimer:

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Analyzing the low evaluated uncertainties and strong model dependence of the ²³⁹Pu PFNS ENDF/B-VII.1 evaluation.

<u>Ongoing collaboration of:</u> D. Neudecker¹, R. Capote², D.L. Smith³, T. Burr¹ and P. Talou¹

¹ Los Alamos National Laboratory, Los Alamos, USA

² International Atomic Energy Agency, Vienna, AUSTRIA

³ Argonne National Laboratory, Argonne, USA

PFNS-CRP Meeting, IAEA Vienna, Austria, 10/21-24/2013

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

Analyzing the low evaluated uncertainties and strong model dependence of the ²³⁹Pu PFNS ENDF/B-VII.1 evaluation.

Ongoing collaboration of:

D. Neudecker¹, R. Capote², D.L. Smith³, T. Burr¹ and P. Talou¹

¹ Los Alamos National Laboratory, Los Alamos, USA

² International Atomic Energy Agency, Vienna, AUSTRIA

³ Argonne National Laboratory, Argonne, USA

PFNS-CRP Meeting, IAEA Vienna, Austria, 10/21-24/2013

Evaluated covariance information was included

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

1.4

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

Madland, J.R. Nix, NSE 81, 213 (1982). *Experiment:* Knitter, Staples, Bojcov,

0.5

 10^{1}

 10^{0}

10

 10^{-2}

10⁻³

10¹

⊐ ⊓

(MeV

Model: Los Alamos

model, D.G.

Open questions: unexpected low evaluated uncertainties and strong model impact.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

Figures taken from: P. Talou et al., NSE 166, No. 3, 254 (2010).

Only unc. of 4 model parameters →

parameter space enlarged in M. Rising et al., LANL Report LA-UR-12-21035 (2012).

Exp. cor. roughly estimated \rightarrow detailed unc. analysis in D.N. et al., LANL Report LA-UR-13-24743 (2013).

Open questions: unexpected low evaluated uncertainties and strong model impact.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

 $FIGURE \ 4. \quad \ Calculated \ standard \ deviations \ for \ the \ evaluated \ PFNS \ of \ n(0.5 \ MeV) + ^{239}Pu. \ See \ text \ for \ details.$

Figures taken from: P. Talou et al., NSE 166, No. 3, 254 (2010).

Exp. cor. roughly estimated

Low evaluated uncertainties?? (see also F.H. Froehner, NSE 106, No. 3, 345 (1990).)

Strong impact of model data on evaluation?? (issue raised by Kornilov)

Low evaluated uncertainties: what do we know from cross section space.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

- Missing correlations between the same and different experiments. (see e.g. described in A. Carlson, "Internat. Eval. of Neutron Cross-Section Standards", IAEA Report STI/PUB/1291 (2007), study of D.N. et al., NDS, ND2013 conference proceedings, accepted.)
- Lower model uncertainties than those of the majority of the experiments due to pathologically chosen parameter uncertainties to obtain model uncertainties or due to model deficiencies. (D.N., R.C. and H. Leeb, NIM A 723, 163 (2013)).
- Peelle's Pertinent Puzzle (described e.g. in A. Carlson, IAEA Report STI/PUB/1291 (2007).)
 - → One additional condition: normalization of spectrum

	The ENDF-6 format requires the PFNS to be normalized to unity and the rows of covariances to sum to zero.				
ENDF/B-VII.1 ²³⁹ Pu PFNS evaluation	In the ENDF-6 format, the energy spectrum of outgoing fission neutrons is parted in 2 quantities: the neutron-multiplicity and the PFNS which is a probability distribution. \rightarrow hence, normalization conditions apply.				
Impact of the normalization condition	$\Phi(E_{out}^i)$ Bin average values $\phi(E_{out}^i)$ Bin probability of PFNS ΔE_{out}^i Bin width				
Studying the evaluation: normalization and strong model cor.	$\begin{split} & \sum_{i} \varphi(E_{out}^{i}) \Delta E_{out}^{i} = \sum_{i} \Phi(E_{out}^{i}) = 1 \\ & \frac{\sum_{j} Cov \left(\varphi(E_{out}^{i}), \varphi(E_{out}^{j})\right)}{\varphi(E_{out}^{i})} < 10^{-5} \end{split}$				
LA-UR-13-	ENDF-6 formats manual, edited by A. Trkov M. Herman and D. Brown, BNL Report BNL-90365-2009 Rev. 2 (2012).				

Normalization does not change shape of PFNS. How about covariances??

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

If the PFNS and covariances are not-normalized quantities, the normalization transformation using linear error propagation reads:

 $\Omega(E_{out}^{i}) = \frac{\Phi(E_{out}^{i})}{G} \quad G = \sum_{i} \Phi(E_{out}^{i})$ Shape of PFNS remains the same.

$$Cov_{\Omega} = T Cov_{\Phi} T^{*} \quad T_{ij} = \frac{G \delta_{ij} - \Phi_{i}}{G^{2}}$$

COVARIANCES MIGHT BE CHANGED,
BUT HOW???

Statistical unc. are hardly changed by the normalization transformation.

Scaling unc. reduce to zero in the normalization transformation.

Already 'normalized cor.' and rel. unc. are unchanged by normal. transfor.

Model and exp. data have intrinsically different uncertainty sources.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

	Model	Experiment
Statistical uncertainty source	NO	YES
Scaling uncertainty source	NO	POSSIBLE
Normalized uncertainty source	YES	POSSIBLE

Model uncertainty near mean energy is smaller than experimental uncertainties.

		Model	Experiment					
ENDF/B-VII.1 ²³⁹ Pu PFNS evaluation	Statistical uncertainty source	NO	YES					
Impact of the normalization condition	Scaling uncertainty source	NO	POSSIBLE					
Studying the evaluation: normalization	Normalized uncertainty source	YES	POSSIBLE	10000	Exp., Einc Exp., Eir Exp., Einc =2.!	=0.215MeV ic =0.5MeV 53e-08MeV Eval. Model	+ × *	· · · · · · · · · · · · · · · · · · ·
and strong model cor.	Model uncertainty of Los Alamos model is already normalized and has a minimum near the mean			100	*	* * * * ** * *************************		+++++++++++++++++++++++++++++++++++++++
LA-UR-13-	energy whic than experi	ch is disti mental ur	inctly smaller ncertainties.	0.1	0.01 Outgo	0.1	1 eray (MeV)	

Using experimental data only yields eval. unc. of 1-20% for E_{out} = 0.1-10 MeV.

An evaluation including model data leads to eval. unc. of a magnitude smaller.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

<u>Input data:</u>

Experiment: the same as used for the 2010 evaluation

Model: model parameters and uncertainties as from the 2010 paper.

Evaluated uncertainties distinctly smaller over whole energy range than what we expect from experiment only.

Increasing model uncertainties with a multiplicative factor doesn't help.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

<u>Input data:</u>

Experiment: the same as used for the 2010 evaluation

Model: model unc. multiplied with constant to be larger than exp. unc., **model correlations and normalization kept.**

Adding scaling unc. and thus breaking the cov. normalization condition, leads to more realistic unc. near mean energy.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

Eval. unc. near pivot point in better correspondence to evaluation with exp. data only but low unc. near tail because of strong model cor. <u>Input data:</u>

Experiment: the same as used for the 2010 evaluation

Model: scaling unc. added to model unc. such that larger than exp. unc., **normalization condition of cov. broken.**

... however enforcing the normalization condition after the evaluation leads again to low uncertainties.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

Input data:

Experiment: the same as used for the 2010 evaluation

Model: scaling unc. added to model unc. such that larger than exp. unc., normalization condition of cov. broken \rightarrow restored after evaluation.

If we normalize evaluated results → we end up with low eval. unc. again!

If we add a statistical unc. source to model unc., we obtain reasonable unc. despite the normalization condition.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

If we add statistical

uncertainties to the

model cov., we obtain

reasonable eval. unc.

Input data:

Experiment: the same as used for the 2010 evaluation

Model: statistical unc. added to model unc. such that larger than exp. unc., **normalization condition on model cov. enforced.**

The strong model correlations in combination with the normalization condition lead to low eval. unc.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

The strong model correlations in combination with the normalization condition on the model cov. lead to low evaluated uncertainties.

Part of this problem is that the Los Alamos model describes PFNS with only 4 contributing model parameters. Is that **physical?** \rightarrow If not, the low evaluated uncertainties might be an artifact. \rightarrow tests with MCHF planned (e.g. B. Becker et al., Phys. Rev. C 87, 014617 (2013).)

The eval. shape depends mostly on the model correlations and less if model data are a normalized quantity.

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

LA-UR-13-

The strong model correlations have a clear impact on the model shape.

Eval. with exp. only and model disagree to 5-10% around 1 MeV and above 5 MeV.

Again, we **might** question if it is physical that the Los Alamos model describes PFNS with only 4 contributing model parameters. \rightarrow tests with MCHF planned (e.g. B. Becker et al., Phys. Rev. C 87, 014617 (2013).)

Summary and conclusion

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

- Under the constraint of normalization, uncertainties are smaller than what we expect from e.g. integral cross section evaluations as scaling uncertainties drop out.
- The low evaluated uncertainties in the NSE (2010) evaluation are caused by the strong Los Alamos model correlations in combination with the normalization condition.
- The evaluated shape is strongly influenced by the rigid model correlations. If we evaluate with experimental data only 5-10% differences to an evaluation including model data is observed around 1 MeV and above 4 MeV.

Summary and conclusion

ENDF/B-VII.1 ²³⁹Pu PFNS evaluation

Impact of the normalization condition

Studying the evaluation: normalization and strong model cor.

- Under the constraint of normalization, uncertainties are smaller than what we expect from e.g. integral cross section evaluations as scaling uncertainties drop out.
- The low evaluated uncertainties in the NSE (2010) evaluation are caused by the strong Los Alamos model correlations in combination with the normalization condition.
- The evaluated shape is strongly influenced by the]rigid model correlations. If we evaluate with experimental data only 5-10% differences to an evaluation including model data is observed around 1 MeV and above 4 MeV.
- ➢ Remaining question: do the model parameters of the Los Alamos model describe all the physics? → tests with MCHF planned.