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1 Uncertainty estimation for selected experimental PFNS data sets

1.1 Introduction

Here, we estimate uncertainties for experimental PFNS for selected data sets and isotopes which were identified as of high importance
for nuclear applications [1]. In this paper, an “uncertainty” measures the dispersion of possible and often (to some extent) unknown
errors pertinent to the measured values, see e.g. [2]. An “error” is the difference between the true value of an observable, here
the PFNS, and the actual measured value. These errors can be of statistical and systematic nature. Corresponding statistical
uncertainties quantify the possible dispersion of an uncorrelated random error for a specific data point which is independent of any
other data point, while systematic uncertainties correspond to the dispersion of correlated errors which might affect part or all of
one or even multiple data sets.

Here, we provide uncertainties and correlations between uncertainties of different data points in the form of covariances. A
covariance matrix element Cov(xi, xj) for variables xi and xj is formerly defined as,

Cov(xi, xj) = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉 , (1)

where 〈.〉 signifies an expectation value. It is the second moment of the probability distribution function of the variables xi and xj ,
while the mean value 〈xi〉 corresponds to the first moment. The diagonal of a covariance matrix,

Cov(xi, xi) =
〈

(xi − 〈xi〉)2
〉

= var(xi), (2)

corresponds to the variance var(xi) of the variable xi. The correlation matrix element Cor(xi, xj) associated with Cov(xi, xj) is
given by,

Cor(xi, xj) =
Cov(xi, xj)

var(xi)var(xj)
. (3)

The diagonal elements of Cor(xi, xj) must always be 1, while the off-diagonal elements can assume values between -1 and 1,
−1 ≤ Cor(xi, xj) ≤ 1 for i 6= j. The off-diagonal elements measure the linear dependence of xi and xj ; for independent variables, it
is zero, 1 for exact positive linear dependence. However, Cor(xi, xj) = 0 does not indicate that xi and xj are independent, because
Cor(xi, xj) and Cov(xi, xj) only measure the “linear” dependence and no higher-order dependences.

In recent years, the development of new reactor types of the Generation IV triggered a demand for evaluated covariances to
quantify their safety margins [3, 4]. Consequently, many modern evaluation techniques, see e.g. [5], provide evaluated covariances
based on experimental and model covariances. Thus a sound estimate of experimental covariance matrices is important and an
effort was made here to provide reasonable estimates for experimental covariances for selected PFNS data sets.

It should be pointed out that a covariance matrix is not a physical quantity. It is a measure of belief into the data set either
assigned by the experimentalists of the respective data sets themselves or at a later point by evaluators, and are consequently
subjective. In particular, systematic uncertainties are often obtained by expert judgment quantifying a possible error that cannot
be completely determined, and are thus only an estimate, not a distinct bound on that possible error. In addition, to this
“uncertainty on the known uncertainty”, there might be unknown errors affecting a data set. If the data set is well-documented
and the documentation is generally available and properly linked in a data base, such as EXFOR [6], these errors might be corrected
at a later time or additional uncertainties might be added by an evaluator.
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In the present work, covariance matrices are estimated from the uncertainties tabulated in EXFOR [6] as well as from additional
information found in the literature and in the EXFOR entry itself. Additional uncertainties may also be included to quantify sources
of errors in the experiments that might have been not accounted for at the time of the measurement. Of course, this is only possible
if detailed uncertainty information and a sufficient description of the experimental set-up are available. which is unfortunately not
often the case. In some cases the experimental description is too sketchy to provide covariance matrix estimates. Hence, we stress
again the long-standing demand [7, 8, 9] for detailed and easily accessible documentation of the experimental set-up as well as a
thorough uncertainty analysis providing partial uncertainties. It is also helpful if this information is stored in EXFOR [6] or similar
databases to use and access it more easily in the evaluation procedure. If detailed experimental and uncertainty information is
not available, the evaluator might choose to reject an experimental data set for the evaluation as unknown associated uncertainties
might lead to an improper weight of a specific data set and introduce a bias in the evaluated mean values as well as covariances.

1.2 Common uncertainty sources of PFNS experiments and their correlations

For the uncertainty analyses of the experimental data sets, uncertainties are partitioned into different contributions according
to their respective sources, e.g., uncertainties due to the neutron detector efficiency determination, background subtraction, etc.
This partition allows to estimate the correlations between uncertainties more easily as they are assigned to the partial uncertainty
contributions. The correlations of some partial uncertainty contributions are well-known, for instance, statistical uncertainties
have zero off-diagonal correlations by definition, while it can be difficult to estimate realistic correlations for total uncertainties
including several sources. Certain uncertainty contributions can also be changed or replaced in a more transparent manner if they
are considered to be unrealistic. In addition, it also simplifies the estimation of correlations between uncertainties of different
experiments based on common uncertainty sources occurring in those experiments.

Below, partial uncertainty contributions typically encountered in PFNS experiments are listed based on information in [9, 10,
11, 12] including examples of underlying sources as well as a few general clues concerning the estimation of correlations.

• Counting statistics uncertainties with standard deviation ∆s stemming from the finite number of prompt fission neutron
counts are of statistical nature and their off-diagonal correlations Cors are zero.

• Background uncertainties with standard deviation ∆b quantify possible ambiguities in the correction of background events.
While the background events due to random coincidence, room return or scattering in air can be of random nature, the
uncertainties associated to their correction might not be; for instance, in [27], the background counts were measured by
placing a copper cone between the incident neutrons and the fissioning sample and assuming that the measured counts were
only background events. However, the copper cone was not a perfect absorber and hence a systematic uncertainty applies to
the background correction [38]. The uncertainties were estimated using MCNP simulations of the experimental set-up [38] and
observables therein (e.g., copper cross sections), which are subject to correlated uncertainties that propagate to the non-zero
off-diagonal correlations Corb associated to ∆b.

• Uncertainties related to the detector efficiency determination with standard deviation ∆d are of systematic nature and
their often non-zero off-diagonal correlations Cord need to be estimated according to the underlying sources for ∆d. Possible
underlying uncertainty sources are the uncertain reference neutron production cross sections (see e.g. [31]), uncertain cross
sections in a simulation program (see e.g. [29]), or extrapolations and interpolations (see e.g. [31, 27]), employed to obtain
the detector efficiency curve.

• If the PFNS is measured in ratio to the PFNS of a reference material, e.g. 252Cf, the final PFNS is obtained by multiplying
the ratio with an accepted numerical representation of the reference PFNS. Normally, standard deviations ∆r and correlations
Corr are provided for these numerical representations, see e.g. [35, 36].

• The standard deviation ∆t of the time resolution is often given in units of time and needs to be transformed into uncertainties
relative to the PFNS. In double-time-of-flight experiments, where a fission detector provides the start signal (called “t0”) and
the neutron detector the end signal, the time resolution can be partitioned into contributions with a standard deviation due
to the finite channel width ∆tw and one due to an uncertainty in the determination of t0, ∆t0. Usually ∆t applies equally to
the same measurement, however if several neutron or fission detectors are used in a measurement, the off-diagonal correlations
Cort might be smaller than 1 for the different detectors.

• An uncertainty in the time-of-flight length with standard deviation ∆l usually applies to the whole measurement. It is
often given in units of length and needs to be transformed into uncertainties relative to the PFNS.

• Corrections for multiple scattering in the sample and in the collimator as well as for attenuation in the sample are
undertaken in many PFNS experiments via computer simulations or analytical considerations. Due to simplifying assumptions
in these procedures and usage of uncertain observables, uncertainties with standard deviation ∆m and non-zero off-diagonal
correlations Corm apply to the PFNS spectrum.
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• The detector response function is not a delta-function in energy and thus the spectrum should be obtained through a
de-convolution process. This is a complex process and simplifying assumptions (e.g. assuming a delta-function) lead to a bias
of the spectrum at high outgoing energies with standard deviation ∆c and non-zero off-diagonal correlation Corc.

• The geometry of some fission detectors can lead to an angular distortion of the spectrum. The correction might be subject
to an uncertainty with standard deviation ∆∠ and correlations Cor∠ that depend on the specific method used to estimate
the corrections.

• Sometimes, experimental uncertainties relative to the outgoing neutron energy with standard deviations ∆E are
provided by the experimentalists. These are for instance stemming from the uncertainty in energy calibration, time resolution
or time-of-flight length and the correlations CorE can be estimated according to their underlying sources. The uncertainties
relative to energy need to be transformed into uncertainties relative to the PFNS.

While it is of course desirable to have such detailed uncertainty information, it is often missing. In particular, correlation information
is often not available and has to be estimated by expert judgment. The underlying sources of the uncertainties can provide helpful
guidelines for estimating this correlation. Hence, detailed uncertainty and experimental set-up information is needed.

When it comes to correlations between uncertainties of different experiments, it is even more difficult to estimate them in a
reasonable manner. We recommend to compare the uncertainty sources of two experiments as well as their underlying sources
and infer their correlations. It should be pointed out that even if the same neutron detector type was used in two experiments,
it might not necessarily lead to correlations of the detector efficiency uncertainties; for instance, if the detector efficiency curve
was determined in one case with a computer program and in another case relative to neutron production cross sections, the
underlying sources of uncertainties are different and thus the correlations between those two are zero. However, if the same neutron
detectors with the same detector efficiency curve were used in two experiments, the associated uncertainties are correlated. This
case occurs for instance in measurement series of several isotopes in the same experimental set-up. A typical uncertainty source
leading to correlations between uncertainties of two experiments is the uncertainty related to a common reference isotope if for
both measurements the same numerical representation was chosen for the reference PFNS.

1.3 Estimation of covariances for total uncertainties based on partial uncertainty information

We describe the procedure to estimate covariances of total uncertainties from partial uncertainty information. The partial uncer-
tainties quantify the limited knowledge pertinent to certain “components” of the measurement, e.g., background reduction, detector
efficiency determination, etc. Typical partial uncertainty contributions of PFNS experiments are listed in Section 1.2.

Different uncertainty contributions can apply to an experimental data set depending on how the efficiency of the outgoing
neutron detector was determined. In general, three different cases are encountered [13, 14, 15]:

Case 1 The neutron detector efficiency is determined without one specific reference material, for instance relative to several neutron
production cross sections or via a computer program [31, 29].

Case 2 The PFNS measurement is undertaken in ratio to the PFNS of one well-known reference material/isotope, e.g. 252Cf. The
isotope in question as well as its reference are measured under the same conditions; i.e., using the same experimental set-up
and a reference as well as a target sample with the same geometry.

Case 3 The neutron detector is calibrated via a PFNS measurement of a reference isotope. Contrary to Case 2, the neutron detector
need not be calibrated in the same set-up as the isotope in question is measured.

Case 1 If the detector efficiency is determined directly without relying on one specific reference isotope, the covariance matrix
elements Cov (Ni, Nj) of the total uncertainties associated with the PFNS Ni and Nj are obtained by the sum of all partial
uncertainty contributions:

Cov (Ni, Nj) = ∆si∆sjδij + ∆bi∆bjCorb (Ni, Nj) + ∆di∆djCord (Ni, Nj) + Covt (Ni, Nj) + Covl (Ni, Nj)

+ ∆mi∆mjCorm (Ni, Nj) + ∆ci∆cjCorc (Ni, Nj) + ∆∠i∆∠jCor∠ (Ni, Nj) + CovE (Ni, Nj) . (4)

with the Kronecker delta δij = 1 for i = j and δij = 0 for i 6= j. The indexes i and j of a variable x indicate that x is given for
the outgoing neutron energies Ei and Ej . It is implicitly assumed that the correlations between different uncertainty contributions
are zero. It is straight forward to add other uncertainty contributions not explicitly named here. No PFNS of a reference isotope
is employed to obtain the PFNS in Case 1, hence no associated uncertainty ∆r needs to be considered.

The outgoing neutron energy covariances CovE (Ni, Nj) are already transformed into covariances for the PFNS Ni and Nj . To
obtain those from ∆Ei and CorE in outgoing neutron energy space, we use linear error propagation,

CovE (Ni, Nj) =
∂N

∂E
|Ei

∆EiCorE(Ei, Ej)∆Ej
∂N

∂E
|Ej

. (5)
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We use a Maxwellian distribution with a normalization constant C and temperature T ,

Ni = C
√
Ei exp (−Ei/T ), (6)

to estimate the partial derivative ∂N/∂E |Ei with

∂N

∂E
|Ei

=
Ni

Ei

(
1

2
− Ei

T

)
. (7)

For Ni the actual experimental data can be used. Of course, this approach suffers from (a) the shortcomings of a Maxwellian to
describe actual experimental data and (b) neglecting higher-order terms of uncertainties.

The covariances Covt(Ni, Nj) in terms of the PFNS associated with the finite time resolution ∆t are obtained in a two-step
process. First, time resolution uncertainties ∆t given relative to the time-of-flight are transformed into uncertainties relative to the
outgoing neutron energy by using linear error propagation and a non-relativistic approximation of the energy-time relationship,

Covt(Ei, Ej) = 4
∆t2

titj
EiEj . (8)

We implicitly assume that the time resolution uncertainty ∆t is constant for all times-of-flight ti and is thus a fully correlated
uncertainty component. In a second step, Covt(Ei, Ej) are transformed into covariances associated to the PFNS using again linear
error propagation (see Eq. (5)):

Covt (Ni, Nj) = 4

√
EiEj

ml2
NiNj

(
1

2
− Ei

T

)(
1

2
− Ej

T

)
(∆t)2. (9)

Analogously, a time-of-flight length uncertainty ∆l is transformed into covariances associated to the outgoing neutron energy
by:

Covl(Ei, Ej) = 4
(∆l)2

l2
EiEj , (10)

and then in covariances relative to the PFNS by:

Covl (Ni, Nj) =
4

l2
NiNj

(
1

2
− Ei

T

)(
1

2
− Ej

T

)
(∆l)2. (11)

Of course, Eq. (4) can be generalized to estimate covariances between two different experiments that need not be for the same
isotope. Statistical uncertainties will not appear in covariances between two experiments k and h, hence the covariances between
experiments read:

Cov
(
Nk

i , N
h
j

)
= ∆bki ∆bhj Corb

(
Nk

i , N
h
j

)
+ ∆dki ∆dhj Cord

(
Nk

i , N
h
j

)
+ Covt

(
Nk

i , N
h
j

)
+ Covl

(
Nk

i , N
h
j

)
(12)

+ ∆mk
i ∆mh

j Corm
(
Nk

i , N
h
j

)
+ ∆cki ∆chj Corc

(
Nk

i , N
h
j

)
+ ∆∠k

i ∆∠h
j Cor∠

(
Nk

i , N
h
j

)
+ CovE

(
Nk

i , N
h
j

)
.

While it is straight forward to combine the partial uncertainty contributions to give total uncertainties and associated covariances,
it is often difficult to assess correlations, especially between different experiments.

Case 2 In a PFNS measurement of an isotope A in ratio to a reference PFNS B,

Ri = NA
i /N

B
i , (13)

using the same neutron detectors, the neutron detector efficiency drops out and thus the associated uncertainties ∆d. In addition,
some part of the background counts cancel each other, for instance the random coincidences, part of the room-return background,
etc. However, not all of the background contributions drop out and thus a non-zero background uncertainty ∆b′ might apply;
for instance, if 235U is measured relative to 252Cf, often 252Cf is measured with incident neutron beam off while it is on for 235U.
Hence, a background due to neutrons from the incident neutron beam applies to the 235U counts but not to the 252Cf counts. If
the two samples as well as the fission chamber have the same geometry, the uncertainty due to an angular distortion ∆∠ should
cancel out to a large extent. However, statistical uncertainties ∆s, multiple scattering and deconvolution uncertainties, ∆m and ∆c
respectively, apply to the ratio Ri. Outgoing neutron energy uncertainties ∆E, uncertainties due to the finite time resolution ∆t
and time-of-flight length ∆l uncertainties reduce due to the ratio measurement. This reduction can be observed, when representing
the PFNS NA and NB by Maxwellian distributions for the ratio R,

Ri =
CA

CB
exp

{
Ei

(
1

TB
− 1

TA

)}
= CR exp

{
Ei

(
1

TB
− 1

TA

)}
, (14)
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with Maxwellian temperatures TA and TB . The first partial derivative of R respective to E thus reads:

∂R

∂E
|Ei

= CR exp

{
Ei

(
1

TB
− 1

TA

)}(
1

TB
− 1

TA

)
= Ri

(
1

TB
− 1

TA

)
, (15)

where one can use again the actually measured value Ri. Consequently, CovE(Ri, Rj), Covt(Ri, Rj) and Covl(Ri, Rj) read:

CovE(Ri, Rj) = RiRj

(
1

TB
− 1

TA

)2

∆Ei∆EjCorE(Ei, Ej), (16)

Covt(Ri, Rj) = 4RiRj

(
1

TB
− 1

TA

)2
(∆t)2

ml2
(EiEj)

3/2, (17)

Covl(Ri, Rj) = 4RiRj

(
1

TB
− 1

TA

)2

EiEj
(∆l)2

l2
. (18)

The covariance matrix elements for the total uncertainties of the ratio data are thus given by

Cov (Ri, Rj) = ∆si∆sjδij + ∆b′i∆b
′
jCorb′ (Ri, Rj) + Covt′ (Ri, Rj) + Covl′ (Ri, Rj)

+ ∆mi∆mjCorm (Ni, Nj) + ∆ci∆cjCorc (Ni, Nj) + CovE′ (Ni, Nj) ,

where the prime, “′”, indicates that the uncertainties partly cancel out in the ratio measurement compared to Case 1.
The experimental PFNS are obtained by multiplication of the measured ratio data Ri with a numerical representation N (B,n)

of the reference isotope B,

NA
i = RiN

(B,n)
i . (19)

The covariances Cov
(
NA

i , N
A
j

)
associated to the values NA

i are derived in linear error propagation,

Cov
(
NA

i , N
A
j

)
= N

(B,n)
i N

(B,n)
j Cov (Ri, Rj) +RiRj∆ri∆rjCorr(N

(B,n)
i , N

(B,n)
j ), (20)

using the standard deviations ∆r and correlation matrix Corr associated with the numerical representation N (B,n) of the reference
PFNS.

Case 3 Here, we treat the case in which the detector efficiency ε is calibrated by the PFNS measurement with values CB of a
reference isotope B and using a known numerical representation N (B,n) of the reference PFNS, i.e.

εi =
CB

i

N
(B,n)
i

. (21)

The experimental PFNS of the isotope in question A can then be derived by

NA
i =

CA
i

CB
i

N
(B,n)
i . (22)

The covariances of the total uncertainties,

Cov(Ni, Nj) = NA
i N

A
j

[
Cov

(
CA

i , C
A
j

)
CA

i C
A
j

+
Cov

(
CB

i , C
B
j

)
CB

i C
B
j

+
∆ri∆rjCorr(N

(B,n)
i , N

(B,n)
j )

N
(B,n)
i , N

(B,n)
j

]
, (23)

comprise covariances CovA, CovB and ∆ri∆rjCorr(N
(B,n)
i , N

(B,n)
j ) of the actual measured values CA

i , CB
i and the numerical

representation N
(B,n)
i of the reference PFNS.

In CovA as well as CovB , statistical uncertainties ∆s, background uncertainties ∆b, the finite time resolution ∆t, the uncertainty
in the time-of-flight length ∆l, multiple scattering ∆m, angular distortion correction uncertainties ∆∠ and energy-dependent ones
∆E enter for each measurement separately, while detector efficiency and deconvolution uncertainties drop out. This entails a
detailed uncertainty analysis of measurements A and B. Another way to represent this is to consider the uncertainties CovB and

∆ri∆rjCorr(N
(B,n)
i , N

(B,n)
j ) in the covariances associated with the detector efficiency determination ∆di∆djCor(NA

i , N
A
j ) and to

use Eq. (4) instead. This is formerly correct, however it might be less transparent than a detailed analysis of measurement B.
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1.4 Uncertainty estimation for selected 239Pu experimental PFNS

In this section, we illustrate the concepts and procedures discussed above in the case of 239Pu measurements. No experimental
covariance matrices were estimated for the data sets of [16, 19, 21, 17] as insufficient uncertainty and/ or experimental information
was available for these data sets to provide reasonable estimates. The data set reported in [20] was not considered since the
measured spectrum comprises prompt and delayed neutron counts.

Experimental covariances were estimated [22] for the data sets of [23, 24, 25, 26, 27, 29, 31] based on information provided
in EXFOR [6], the respective literature as well as by preliminary MCNP studies [37, 38] indicating missing corrections to data
of [27, 29, 31]. The data sets of [23, 29, 31] correspond to a measurement of the type of Case 1 of Section 1.3, i.e., the detector
efficiency was computed or measured relative to several neutron production cross sections. The measurements of [24, 25, 26]
were undertaken in ratio to 252Cf(sf) PFNS (Case 2 of Section 1.3), while the neutron detector efficiency of the measurement
of [27] was calibrated with the 252Cf(sf) PFNS (Case 3 of Section 1.3). Table 1 indicates where the partial uncertainty sources
for [23, 24, 25, 26, 27, 29, 32] were extracted from.

Table 1: The uncertainty sources (unc. source) explicitly provided in the EXFOR [6] entry, described in the literature or added
by the authors are listed here for experimental data sets where an experimental covariance matrix was estimated as part of this
collaboration. Further literature apart from the main reference is also provided

Experiment Literature used Unc. source in EXFOR Unc. source in literature Corrected unc. source
Nefedov, 1983 [23, 26] ∆s, ∆b, ∆d ∆t, ∆l ∆c
Boytsov, 1983 [24, 26] ∆s, ∆b, ∆t all from [26] ∆s, ∆t, ∆b, ∆r ∆b, ∆r, ∆l

Starostov, 1983 [25, 26] ∆s, ∆b ∆l, ∆t both of of [26] ∆r
Starostov, 1985 [26] ∆s, ∆b, ∆d ∆s, ∆b, ∆t, ∆l ∆b, ∆r, ∆l, ∆c

Lajtai, 1985 [27, 28] ∆s, ∆b, ∆d ∆d, ∆c, ∆∠, ∆t ∆b, ∆r
Staples, 1995 [29, 30] ∆s, ∆b, ∆d, ∆E ∆s, ∆b, ∆d, ∆m, ∆E ∆d, ∆m, ∆c
Knitter, 1975 [31, 32, 33, 34] ∆s, ∆b, ∆E ∆s, ∆b, ∆d, ∆t ∆d, ∆m, ∆c
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Figure 1: The experimental 239Pu PFNS of [31, 29, 25, 26, 23, 24, 27] are shown (Preliminary).

Most of the data points of [23, 24, 25] were incorporated in [26] and form a major part of it. In the uncertainty analysis, we used
the original data sets [23, 24, 25] an the new part of [26] as more uncertainty information was available for [23, 25] compared to
[26]. As [24, 25] and part of [26] were measured in ratio to the 252Cf(sf) PFNS, all data were rebinned to the lattice of the 252Cf(sf)
PFNS standard [35, 36]. The ratio data and associated covariances were transformed into PFNS space according to Eqs. (19)
and (20) employing reference uncertainties with standard deviation ∆r and correlations Corr provided by [35, 36]. In Figs. 1 and
2, the combined and rebinned data sets as well as their relative uncertainties are shown and are called for simplicity ’Starostov,
1985’. For [24] and part of [26], no time-of-flight length uncertainties ∆l and background uncertainties ∆b were provided; they were
added in the present uncertainty analysis based on the corresponding information for the data sets of [23, 25]. Not all uncertainty
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Figure 2: The total relative uncertainties estimated for 239Pu PFNS of [31, 29, 25, 26, 23, 24, 27] are shown (Preliminary).

sources could be verified for this combined data set due to missing experimental information; especially, background and multiple
scattering corrections cannot be tested, although their contribution should be small in this specific experimental set-up.

The data set of [27] was measured using the 252Cf(sf) PFNS for the neutron detector calibration. We chose the data set
of [35, 36] for the numerical representation of the 252Cf(sf) PFNS and considered ∆r and Corr provided by [35, 36] in the
experimental covariance matrix for [27]. In addition, a background correction uncertainty ∆b was added as preliminary MCNP
studies [38] showed that they were over-corrected in [27, 28].

For the data of [29], MCNP calculations [37] uncovered that the multiple scattering and attenuation in the sample were much
larger (10-15%) than the 1% of the PFNS estimated in [29]. Hence, an additional multiple scattering and attenuation uncertainty
∆m was added to the experimental covariance matrix. Also, the detector efficiency uncertainties were increased at higher outgoing
neutron energies to account for the uncertain cross sections used in the computations. A one-to-one correspondence was assumed
between time-of-flight and outgoing neutron energy in [29] which can lead to distortions of the PFNS [37] at higher outgoing neutron
energies. Hence, and uncertainty ∆c was added to account for this possible bias.

MCNP studies for multiple scattering in the sample and the collimator [37] were undertaken as well for the data set of [31].
They showed that their contribution to the low outgoing neutron energy part to the spectrum are substantial contrary to the “small
effect” mentioned in [31, 32]. Due to missing experimental set-up information, this effect cannot be corrected and an uncertainty
∆m was assigned. No deconvolution correction is mentioned in the literature for this data set and hence an uncertainty ∆c was
considered in the experimental covariances.

The data set including data of [23, 24, 25, 26] has the smallest uncertainties in the present analysis, see Fig. 2. Concerns were
raised if the uncertainties of [23, 24, 25, 26] might be under-estimated as we cannot test the validity of their multiple scattering and
background corrections. Given the experimental set-up and our present understanding of the measurement, those contributions
should be small however.

Ongoing experiments [11] should be able to probe the low outgoing neutron energy range (<0.5 MeV) to a sufficient accuracy
to identify possible problems with the data of [23, 24, 25, 26]. This new experiment is especially important, as the PFNS mean
values of [24] and [27] are discrepant up to 200 keV, see Fig. 1 ; however their one-sigma error bars overlap and more accurate
measurements are needed to test this region. At outgoing neutron energies above 8 MeV, Fig. 1, discrepancies between the mean
values of [29, 23, 24, 25, 26] and [31] can also be observed. However, the large one-sigma error bars have a substantial overlap as
well.

The uncertainties of [27] and [23, 24, 25, 26] are correlated as in both their covariances the uncertainties associated with the
252Cf(sf) PFNS of [35, 36] were considered. A non-zero correlation between the multiple scattering and deconvolution uncertainty
contributions of [31, 29] arises as those were estimated based on similar or the same simulations. [Covariance figures will be supplied
later].
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2 Table summarizing experimental PFNS data sets
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