DRAFT for IAEA CRP (Nucl.Data Sheets)– 11 March 2014

Description of the Point-by-Point model of prompt emission

Anabella Tudora


The primary result of the Point-by-Point (PbP) model consists in the so-called multi-parametric matrices of different quantities as a function of fragment mass and charge numbers A, Z and as a function of total kinetic energy TKE, generally labeled q(A,Z,TKE). These matrices are referring to both the fission fragments and the prompt neutron and γ-ray emission, e.g. the total excitation energy at full acceleration TXE(A,Z,TKE), the fragment level density parameter a(A,Z,TKE), the fragment average neutron separation energy <Sn>(A,Z,TKE), the prompt neutron multiplicity ν(A,Z,TKE) and spectrum N(A,Z,TKE, E), the prompt gamma-ray energy Eγ(A,Z,TKE). These matrices do not depend on the fragment distributions Y(A,Z,TKE). The calculation of the matrices q(A,Z,TKE) needs as input only data of recommended nuclear data libraries (e.g. mass excesses, deformation parameters, shell corrections, phenomenological optical parameterizations, usually taken from RIPL3)

1. The fragmentation range of the PbP treatment


In the PbP treatment the choice of fission fragments plays a crucial role. As it was already mentioned in previous papers (see for instance [1 – 4] and references therein) the range of fission fragments is constructed as following. For each mass pair {AL, AH}, covering a large A-range from symmetric fission up to a very asymmetric split with a step of one mass unit, up to four charge numbers Z are taken as the nearest integer values above and below the most probable charge Zp. This is taken as unchanged charge distribution (UCD) corrected with the charge deviation (polarization) ΔZ. As an observation, because the charge distribution for any fixed A is narrow [5], usually in the PbP treatment the consideration of 2 or 3 charge numbers Z for each A is enough [6]. Prompt emission calculations are done for each fragment (with Z and A obtained as mentioned above) at TKE values covering a convenient range (e.g. from a minimum TKE taken usually of about 110-140 MeV up to a maximum TKE, usually of about 200-225 MeV) with a step of 5 MeV. The fragments taken into account in the PbP treatment (meaning the charge numbers Z at each A) depends on the most probable charge considered as: 
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Charge deviations as a function of A fitted by Wahl [7] are used for fissioning systems with experimental ΔZ data (e.g. 233,235U(nth,f), 239Pu(nth,f) and 252Cf(SF)). For other fissioning systems without any ΔZ information, the consideration of a constant ΔZ = ±0.5 for all A (with + sign for the light fragments and minus sign for the heavy ones)) is a good approximation [6].


2. Partition of total excitation energy between complementary fully accelerated fragments


In the calculation of different prompt emission quantities q(A,Z,TKE) the excitation energies of complementary fully-accelerated fragments 
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are needed. In the PbP treatment the partition of 
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 is obtained from modeling at scission, as it was described in detail in Ref.[8] or by using parameterizations based on the systematic behaviour of the experimental ratio νH/(νL+ νH) as a function of AH as described in Ref.[9].


For each pair of fragments of the fragmentation range, TXE is taken as 
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 in which the energy release Er (Q-value) is calculated using mass excesses from nuclear data libraries (usually of Audi and Wapstra taken from RIPL3 [10]), En is the incident neutron energy and Bn the neutron binding energy of the fissioning nucleus. Obviously in the case of spontaneous fission both En and Bn are taken zero.


The modeling at scission starts from the energy conservation at scission for each pair of nascent fragments: 
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where Epre and ECoul are the pre-scission kinetic energy and the Coulomb repulsion energy between the two nascent fragments, respectively. 
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 is the available excitation energy at scission. At full acceleration 
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in which 
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 are the so called extra-deformation energies (or additional deformation energies) according to Refs. [8, 11]. These extra-deformation energies represent the differences between the fragment deformation energies at scission and at full acceleration and are determined (in the first calculation step) from the liquid drop model with shell corrections taken into account [8]. In the second calculation step 
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(obtained by subtracting the extra-deformation energies from TXE) is shared between complementary nascent fragments, assuming the statistical equilibrium at scission and a Fermi-gas description of fragment level densities, according to the ratio 
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in which 
[image: image12.wmf]H

L

sc

a

,

 must be understood as effective level density parameters accounting for collective and intrinsic/single-particle excitations(for details see Ref.[8]). The values of excitation energy at scission 
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 and of level density parameters at scission 
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 are obtained simultaneously by an iterative procedure according to Eqs.(3, 4) and the level density parameters given by the super-fluid model of Ignatiuk [12]:


[image: image15.wmf]      

   

          

          

          

          

          

          

*)

)

(

exp(

1

(

*

)

,

(

1

)

(

~

*)

,

,

(

*

*

ï

î

ï

í

ì

<

³

÷

ø

ö

ç

è

æ

-

-

+

=

cr

cr

cr

U

U

a

U

U

U

A

U

A

Z

W

A

a

E

A

Z

a

g

d



 EMBED Equation.3  [image: image16.wmf]cond

E

E

U

-

=

*

*



(5)

in which the notation E* means the excitation energy at scission 
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. In Eq.(5) the condensation energy is 
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, where acr is the critical level density parameter, 
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 is the pairing correlation function and n = 0, 1 and 2 for even-even, odd-A and odd-odd nuclei, respectively. The critical temperature of the phase transition from super-fluid (super-conductive) to normal states is given by 
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 and the critical energy is 
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is the shell correction, 
[image: image23.wmf])

(

~

A

a

 is the asymptotic value of the level density parameter (obtained when all shell effects are damped) and γ(A) is the parameter of the function defining the damping of shell effects. Different shell corrections (such as those of Möller and Nix [13] or those calculated with the Myers and Swiatecki mass formula taken from RIPL3 [13]) and different parameterizations of the dumping and the asymptotic level density parameters can be used. In the majority of PbP calculations the parameterizations proposed by Ignatiuk [12] 
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 are used together with the shell corrections of Möller and Nix. Other 
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 and γ parameterizations (e.g. those given in Ref. [14]) can be used, too.


Finally the excitation energies of complementary fully accelerated fragments are obtained as a sum of extra-deformation and excitation energies at scission: 
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The shape of the ratio 
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 as a function of AH obtained from this modeling at scission is similar to the ratio 
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 obtained from experimental ν(A) data. This systematic behaviour for neutron induced fission (at low and moderate En) consists in the following aspects: the ratio is less than 0.5 for fragment pairs with AH < 140 with a minimum at AH around 130 (due to the magic or double magic heavy fragments with N=82 and/or Z=50). It is of about 0.5 for AH around 140 and it exhibits an almost linear increase for pairs with AH above 140 (details are given in Ref. [9]).


3. Prompt emission of individual fragments 


For a fully accelerated fragment a Weisskopf-Ewing prompt neutron evaporation spectrum in the center-of mass system (CMS) at a given residual temperature T (
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) is taken. The compound nucleus cross-sections of the inverse process of neutron evaporation σc(ε) of the nuclei forming the fragmentation range are obtained from optical model calculations (using the code SCAT2 [15]) with phenomenological potential parameterizations appropriate for nuclei appearing as fission fragments (usually of Becchetti-Greenless, Koning-Delaroche [16]). To account the excitation energy distribution, a residual temperature distribution P(T) is used, leading to the following prompt neutron spectrum in CMS for an individual fragment:
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(7.1)

with the normalization constant
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For each fragment the maximum temperature value Tm in eq.(7.1) is obtained from 
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 are the excitation energies at full acceleration given by eq.(6) and aL,H are their level density parameters given by the relation (5) in which, this time, E* is the excitation energy at full acceleration. For P(T) different functions can be used, e.g. the triangular form proposed by Madland and Nix [17-19], the form proposed in Ref.[20] (driven by the parameter s ≥ 1) or numerical functions resulted from a rigorous treatment of the sequential emission.


The most important emission of prompt neutrons takes place at the full acceleration of fragments. But neutron evaporation during the fragment acceleration can be also possible and these neutrons can lead to a non-isotropic neutron spectrum in CMS. Another possible source of non-isotropic neutrons can be the emission at the moment of scission (so-called scission neutrons). The assumption of an anisotropic neutron emission leads -in some cases- to a better agreement of the calculated prompt neutron spectrum with the experimental data. It was assumed (see Ref.[20] and references cited therein) that the anisotropy of neutron emission, if present, is symmetrical about 90o and the prompt neutron spectrum in CMS could be described as: 
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where 
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 is given by eq.(7.1) and b is the anisotropy parameter. 

The CMS prompt neutron spectrum is transformed into the laboratory frame LS (using the well-known relation 
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 from which cosθcm is extracted and replaced in eq.(8)) leading to the following general expression of the prompt neutron spectrum of an individual fragment A, Z at a given TKE:
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in which 
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is given by eqs.(7) and Ef is the average kinetic energy per nucleon obtained from momentum conservation for a given pair of fragments: 
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where A0 is the mass number of the fissioning nucleus. The PbP computer code is working with the general formula (9) allowing different P(T) expressions and to take or not into account the anisotropy (controlled by the input value of the b parameter). The prompt neutron spectrum in LS corresponding to a pair of fragments at a given TKE is:
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where NL,H(E) are calculated according to eq.(9) and r is the ratio of neutrons emitted by complementary fragments 
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. The prompt neutron multiplicity of a fragment pair 
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 is obtained from energy conservation:
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where <ε> is the average prompt neutron energy in CMS (first order momentum of prompt neutron spectra of complementary fragments given by eqs.(7)), <Eγ> is the average prompt γ-ray energy and <Sn> is the average neutron separation energy of complementary fission fragments. 


The average neutron separation energy of each fragment is calculated by an iterative procedure accounting for sequential emission. If the excitation energy of a fully accelerated fragment E*(A,Z,TKE) received from the TXE partition (meaning 
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 of eq.(6)) exceeds the neutron separation energy Sn(A,Z) of the respective fragment then a neutron can be evaporated (in competition with γ-ray emission). If the excitation energy of the residual fragment exceeds it neutron separation energy Sn(A–1,Z) a second neutron can be evaporated and so on. A number of k neutrons can be emitted when the excitation energy of the (k-1)-th residual nucleus becomes less than Sn(A–k,Z). The average neutron separation energy when k neutrons can be emitted is taken as:
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in which Sn(A–i,Z) are obtained using the mass excess of nuclear data libraries (usually of Audi and Wapstra [10]).


In the PbP model the linear correlation between the average prompt γ-ray energy and prompt neutron multiplicity of complementary fragments is taken into account. The slope of this correlation expresses the competition between the prompt neutron and γ-ray emission at excitation energies above the neutron separation energy and the intercept expresses the γ-ray decay at excitation energies below the neutron separation energy. The global parameterization of the slope and intercept was deduced in 2000 [21-23] by fitting the results of the (n,n’) and (n,γ) competition obtained from nuclear reaction calculations: direct interaction mechanism treated with spherical optical model and compound nucleus mechanism by statistical Hauser-Feshbach model with HRTW fluctuation corrections (code STATIS). This competition was studied for a limited number of nuclei appearing as fission fragments (given by the “7 point” approximation) in the thermal neutron induced fission of main actinides and the spontaneous fission of 252Cf and 236-244Pu.


4. Fission fragment distributions and average quantities


To obtain different average quantities as a function of A, as a function of Z, as a function of TKE and total average quantities (needed in the comparison with the available experimental data for validation and also for evaluation purposes) the matrices q(A,Z,TKE) are averaged over the fragment distributions in different manners as following:
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The PbP results of q(A,Z,TKE) can be averaged over any experimental or theoretical Y(A,Z,TKE) distribution. The use of experimental Y(A,TKE) distributions is preferred. Usually these are provided as single distributions Y(A), TKE(A) and σTKE(A). The charge distribution for any fixed mass is taken as Gaussian [5], the Y(A,Z,TKE) distributions being obtained as:
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in which Zp(A) is given by Eq.(1) and 
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 when root-mean-square data are available [7].


The PbP treatment can be used also in the frame of the multi-modal fission. In this case the primary matrices of different quantities q(A,Z,TKE) are averaged over the multi-modal distributions Ym(A,Z,TKE) (“m” meaning the fission mode) according to eqs.(14). Total average modal quantities (referring to both, fission fragments and prompt neutron emission, e.g. <Er>m, <TXE>m, <a>m, prompt neutron multiplicity <ν>m and spectra Nm(E)) were reported in Refs. [20, 24-26]. 


The total average values of fragment quantities <Er>, <TKE>, <Sn> and <a> obtained by averaging the corresponding PbP matrices over the Y(A,Z,TKE) distributions according to eq.(14.4) can be used as input parameters of the Los Alamos model of Madland and Nix [17] (working with only one fragmentation, the so-called most-probable fragmentation). The systematic of Los Alamos model parameters reported in Ref.[27] is based on the PbP treatment.


5. Examples of PbP results 


Examples of different prompt emission quantities q(A,TKE), q(A), <q>(TKE) and total average ones <q> in comparison with available experimental data are given in Figs.1-5.

Primary matrices of ν(A,TKE) and Eγ(A,TKE) are exemplified in Figs.1a-b for the case of 252Cf(SF). They are in good agreement with the existing experimental data [28, 29]. Other matrix results can be found in Refs.[4, 30, 31] 


Examples of average prompt emission quantities as a function of A are given in Figs. 2 and 3. The 
[image: image54.wmf]n

(A) results of 252Cf(SF) (Fig.2a) and of 235U(n,f) at En=0.5MeV and 5.5 MeV (Fig.2b) describe well the experimental data taken from EXFOR [32] including the multiplicity increase with En for heavy fragments only (see the red circles and blue stars in Fig.2b). The 
[image: image55.wmf]E

γ(A) results of 233U(nth,f) and 239Pu(nth,f) (red circles) describe very well the experimental data of Pleasonton [33] (open squares) as it can be seen in Fig.3a,b. Other PbP results of prompt emission quantities as a function of A can be found for instance in Refs.[2-4, 8, 9, 34].


Examples of average prompt emission quantities as a function of TKE are given in Figs.4a-b for <ν>(TKE) and <Eγ>(TKE) of 252Cf(SF) As it can be seen they describe well the existing experimental data [29, 32]. Other examples of <ν>(TKE) are given in Ref.[1]. 


Results of prompt neutron multiplicity distribution P(ν) in good agreement with experimental data are exemplified for 239Pu(nth,f) and 252Cf(SF) in Fig.5. P(ν) of 239Pu(nth,f) (red circles) gives an excellent description of the experimental data (open squares). Other P(ν) results for spontaneous and neutron induced fission of actinides were reported in Ref. [30].

Results of total average prompt emission quantities (neutron multiplicity, γ-ray energy and prompt neutron spectra) were reported in the last 10 years (see for instance recent results for  232Th(n,f), 234, 238U(n,f) in Refs. [2, 3, 35]). Here we give as example only prompt neutron spectrum results for 233U(nth,f) and 232Th(n,f) plotted in Figs.6a,b (as ratios to a Maxwellian spectrum) in comparison with the experimental data (different symbols).


Average prompt emission quantities as a function of Z can be also calculated, according to eq.(2.3), but experimental data for comparison are missing. An example of a such result is given in Fig.7 for 
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(Z) of 235U(nth,f) and 239Pu(nth,f). Proton and neutron even-odd effects are reflected in the behaviour of 
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(Z). The staggering in 
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(Z) is visible for asymmetric fragmentations and it is more pronounced for heavy fragments. 
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Fig.1: Examples of multi-parametric matrices of 252Cf(SF): a) Average prompt neutron multiplicity and b) average prompt γ-ray energy as a function of TKE for fragments pairs with AH indicated in figures, PbP results with full red circles and experimental data with different open symbols.
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Fig.2: Examples of ν(A) results for a) 252Cf(SF) (red circles) and b) 235U(n,f) at En = 0.5 MeV (red circles) and En = 5.55 MeV (blue stars) in comparison with experimental data (different black and gray symbols).
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Fig.3: Examples of Eγ(A) results (red circles) for a) 233U(nth,f) and b) 239Pu(nth,f) in comparison with experimental data of Pleasonton (open squares).
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Fig.4: Examples of average quantities as a function of TKE for 252Cf(SF): a) <ν>(TKE) and b) <Eγ>(TKE) PbP results with full red circles in comparison with experimental data (different open symbols).
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Fig.5: Examples of P(ν) for a) 239Pu(nth,f) and b) 252Cf(SF): PbP results with full red circles in comparison with experimental data (different open symbols).
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Fig.6: Examples of PFNS results (red line) a) 233U(nth,f) and b) 232Th(n,f) at En = 2 MeV and 2.9 MeV in comparison with experimental data (different open and full symbols) plotted as ratio to a Maxwellian spectrum.
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Fig.7: Examples of ν(Z) results for a) 235U(nth,f) and b) 239Pu(nth,f).
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