Prompt-neutron spectra from a general description of the fission process

Karl-Heinz Schmidt^a and Beatriz Jurado^b

Abstract: A new semi-empirical model of the fission process is described, which covers most of the properties of the fission fragments and the emitted neutrons and photons in a global and consistent way. The model is based on fragment shells that are deduced from measured fission-fragment mass distributions, assuming that the macroscopic contribution of the compound nucleus and the microscopic contributions of the nascent fragments in the potential-energy surface are separable. The distributions of the collective coordinates are attributed to the motion of the quantum oscillators in their respective potential pockets perpendicular to the fission path. Different contributions to the excitation energies of the final fragments and their division at scission are described with the help of statistical mechanics. Intrinsic excitation energies of the fragment at scission are consistently described together with the even-odd effect in fission-fragment Z distributions. Mass-dependent equilibrium deformations of the nascent fragments are adjusted to measured average prompt-neutron multiplicities. A unique set of parameters is found, which reproduces a large variety of measured data for all heavy fissioning systems with a good precision. In contrast to most available models, this approach is applicable to fissioning systems, for which no experimental data are available.

Introduction

Global parametrisations and very elaborate models have been developed for calculating the energy spectra of prompt fission neutrons and their multiplicity distributions. Most of them are based on measured mass-TKE distributions of the fission fragments. With the help of the Q values for specific nuclear-charge and mass splits and by considering the initial excitation energy, the total excitation energy TXE of the fragments can directly be deduced. With an assumption on the division of the TXE between the fragments, which needs to be consistent with the observed mass-dependent neutron multiplicities, the initial conditions of both fragments for a statistical de-excitation code of the Weisskopf or Hauser-Feshbach type are determined.

The task is appreciably more difficult when this experimental basis, the measured mass-TKE distribution, is not available. In this case, this information must be provided by a model calculation. The GEF code has been developed for this purpose. It is a semi-empirical model of the fission process, which covers most of the properties of the fission fragments and the emitted neutrons and photons in a global and consistent way. In addition to the mass-TKE distribution it also calculates the division of the TXE between the fragments and the angular momenta of the fragments. Moreover, the specific initial conditions of each individual fragment are given. This report gives an overview on the underlying physics ideas and the general technical features of the code and presents some results. More detailed information on the code can be found in the report JEF/DOC 1423 [¹]. The final aim of the present work is to provide predictions for the multiplicities and the energy spectra of the prompt neutrons.

a E-mail: schmidt-erzhausen@t-online.de, URL: http://www.khs-erzhausen.de

b E-mail: jurado@cenbg.in2p3.fr, CENBG, CNRS/IN2 P3, Chemin du Solarium B.P. 120, F-33175 Gradignan, France

Fission channels

Experimental systematics

Figure 1 gives an overview on the measured mass and nuclear-charge distributions of fission products from low-energy fission. Fission of target nuclei in the actinide region, mostly induced by neutrons, shows predominantly asymmetric mass splits. A transition to symmetric mass splits is seen around mass 258 in spontaneous fission of fusion residues. Electromagnetic-induced fission around mass 226 [²]. A pronounced fine structure close to symmetry appears in ²⁰¹Tl [³] and in ¹⁸⁰Hg [⁴]. It is difficult to observe low-energy fission in this mass range. Thus, ²⁰¹Tl could only be measured down to 7.3 MeV above the fission barrier due to its low fissility, which explains the filling of the minimum between the two peaks. Only ¹⁸⁰Hg was measured at energies close to the barrier after beta decay of ¹⁸⁰Tl. Considering the measured energy dependence of the structure for ²⁰¹Tl [3], the fission characteristics of these two nuclei are rather similar. Also other nuclei in this mass region show similar features, which have been attributed to the influence of fragment shells [⁵]. These shells are different from those governing the asymmetric fission of the actinides. They are not considered in the present model that concentrates on heavier nuclei with mass numbers A>200, which are more important for technical applications.

Figure 1. General view on the systems for which mass or nuclear-charge distributions have been measured. The distributions are shown for 12 selected systems. Blue circles (blue crosses): Mass (nuclear-charge) distributions, measured in conventional experiments [3, 4], and references given in [2]. Green crosses: Nuclear-charge distributions, measured in inverse kinematics [2].

Size of the heavy fragment in asymmetric fission

In the range where asymmetric fission prevails, e.g. from ²²⁷Ra to ²⁵⁶Fm, the light and the heavy fission-product components gradually approach each other, see figure 1. A quantitative analysis reveals that the mean mass of the heavy component stays approximately constant [⁶] at about A=140. This has been explained by the influence of a deformed ($\beta\approx 0.6$) fragment shell at N=88 and the spherical shell at N=82 [⁷], suggesting that the position of the heavy fragment is essentially constant in neutron number.

Figure 2. Mean neutron and proton number of the heavy component in asymmetric fission in the actinide region before the emission of prompt neutrons. The values were deduced from measured mass and nuclear-charge distributions using the semi-empirical GEF code [⁸] for the correction of charge polarization and prompt-neutron emission. Open symbols denote results from conventional experiments, full symbols refer to an experiment with relativistic projectile fragments of ^{238}U [2]. Data points for the same Z_{CN} are connected (See [8] for references of the underlying experimental data.)

New data on Z distributions over long isotopic chains [2], however, reveal very clearly that the position in neutron number varies systematically over more than 7 units, while the position in proton number is approximately constant at Z=54, see figure 2. The rather short isotopic sequences covered in former experiments did not show this feature clearly enough and gave the false impression of a constant position in mass.

This finding represents a severe puzzle to theory, since shell-model calculations do not show any shell stabilization near Z=54 at $\beta \approx 0.6$ [7,⁹].

Separability principle

The microscopic-macroscopic approach has proven to be very useful for calculating nuclear properties, in particular in applications to fission [10]. The early influence of fragment shells on the fission path, deduced from two-centre shell-model calculations [11], makes its application to fission even more powerful. It means that the microscopic properties of the fission observables are essentially determined by the shells of the fragments, and only the macroscopic properties are specific to the fissioning system [12].

This "separability principle" was exploited in the GEF code [8], which relies on an empirical description of the macroscopic stiffness parameters in the relevant normal modes and empirically deduced fragment shells, which are valid for all fissioning systems. Figure 3 demonstrates that the mass distributions over a large range of systems can be described very well with the same parameter set. For a more complete overview see ref. [1].

Dynamical effects

Statistical scission-point models, e.g. refs. [7,¹³], suffer from the neglect of dynamical effects. Stochastic calculations revealed that, depending on the nature of the collective degree of freedom, dynamical effects induce a kind of memory on the fission trajectory, which may be accounted for by an early freeze-out that depends on the influence of inertia. Mass-asymmetric distortions have a large inertia, and thus the mass distribution is already essentially determined slightly behind the outer fission saddle [¹⁴]. Charge polarization has a small inertia, and the distribution is determined close to scission [¹⁵].

Figure 3. Nuclear-charge and post-neutron mass distributions of fission fragments. (For ²⁵⁸Fm(sf) the "provisional mass" A_{prov} is shown, which is directly deduced from the ratio of the kinetic energies of the fragments and thus not corrected for neutron emission.) Experimental or evaluated data (black lines, respectively histogram) for electromagnetic-induced (e.m.), thermal-neutron-induced (n_{th} ,f) and spontaneous fission (sf) are compared with predictions of the GEF code [8] (red and green lines). The red symbols for ²³⁹Pu(n_{th} ,f) show the experimental data behind the evaluation. The contributions of different fission channels are shown. (See [8] for references of the data.)

Fluctuations

Most fission observables form bell-shaped distributions around a mean value. This suggests treating the corresponding collective degree of freedom as an harmonic quantum oscillator coupled to a heat bath of temperature *T*. Especially for the charge-polarization degree of freedom there is a long discussion about the importance of the zero-point motion [¹⁶, ¹⁷]. Nix estimated the level spacing in the oscillator corresponding to mass-asymmetric distortions at saddle with the liquid-drop model to 1-2 MeV in the actinide region [¹⁸]. According to the smaller widths of the corresponding components to the mass distribution, the level spacing for oscillations in the two asymmetric fission valleys (Standard 2 and Standard 1) is expected to be even larger. Also for oscillations in the charge-polarization degree of freedom, the level spacing is in the order of 10 MeV. This values are appreciably larger than the temperature values of actinides, which are about 0.5 MeV in the constant-temperature regime [¹⁹]. Thus, in a statistical approach the charge-polarization degrees of freedom is essentially not excited, and also the widths of the fission channels in mass asymmetry are expected to be strongly influenced by the zero-point motion in low-energy fission.

Also the angular-momentum distributions of the fragments have been explained by "orientation pumping" due to the uncertainty principle [²⁰]. Experimental indications for thermal excitations of spherical fragments [²¹] have also been explained by the compensation of the orbital angular momentum, which itself is induced by the zero-point motion [²²]. Here it is the operator of the orbital angular momentum which does not commute with the angle that characterizes the direction of particle motion. Thus, all fragment angular momenta measured in low-energy fission [²³] are explained by the quantum-mechanical uncertainty principle. There is no room for excitations of the angular-momentum-bearing modes [²⁴].

Due to the strong influence of quantum-mechanical effects it is mandatory to explicitly consider these effects, as it is e.g. done in the self-consistent microscopic approach of ref. [25]. Stochastic approaches with classical models [26] may miss certain aspects of the fission dynamics..

Comparison with previous ideas

Several descriptions of the fission observables with applications of the statistical model have been proposed in the past. The present approach is rather close to the outline of a scenario proposed by Jensen and Døssing [²⁷], although the present model covers a larger variety of observables. More importantly, it also tries to better exploit available empirical information.

Jensen and Døssing presented a statistical calculation of the mass distribution in fission with some ideas about the dynamics of the process. The most important modifications applied in the GEF code are: (i) The shell effects that were calculated from single-particle energy spectra in a Woods-Saxon potential with the Strutinsky method in ref. [²⁷] are replaced by global fragment shells, which are adjusted to the measured mass distributions. The separability principle simplifies this task considerably, since the fragment shells are assumed to depend only on the fragment, and, thus, they are the same for all fissioning systems. (ii) The nuclear level density that was calculated from the same single-particle spectrum including pairing correlations using the BCS approximation in ref. [²⁷] is replaced by an empirical constant-temperature formula [19], which seems to be in good agreement with recent experimental results [²⁸]. (iii) The influence of quantum-mechanics, in particular the zero-point motion, has been considered to model the distributions of collective coordinates. They are attributed to the motion of the quantum oscillators in their respective potential pockets perpendicular to the fission path. The parameters of these oscillators are deduced from experimental data. In addition, the shapes of the fragments at scission, the charge polarization, the angular momenta, and other properties of the fragments are calculated on the basis of similar ideas.

Prompt-neutron yields

Transformation of energy – the different contributions

In low-energy fission, the Q value of the reaction ends up either in the total kinetic energy (TKE) or the total excitation energy (TXE) of the fragments. The TKE is closely related to the distance of the centres of the two nascent fragments at scission, but, even if the pre-scission kinetic energy is neglected, it cannot give information on the shapes of the individual fragments. The TXE, however, can be attributed to the individual fragments by a kinematical measurement of the prompt-neutrons. Still, there is no direct experimental information available on the processes, which are responsible for the transformation of part of the Q value into the excitation energies of the separated fragments. The situation is schematically illustrated in figure 4. Before scission, dissipation leads to intrinsic excitations, collective modes perpendicular to the fission direction ("normal modes" [18]) may be excited, and, finally, some energy is stored in deformation of the nascent fragments that is induced by the Coulomb repulsion. The remaining part is found as pre-scission kinetic energy [²⁹]. After scission, collective excitations and deformation energy are transformed and add up to the intrinsic excitations of the separated fragments.

The situation at scission is important for the understanding of fission dynamics, e.g. the magnitude of dissipation and the coupling between the different collective degrees of freedom, but without additional information, the repartition of the different contributions between the fragments remains ambiguous.

Origin of the saw-tooth shape

There is widespread agreement that the saw-tooth shape of the prompt-neutron yields, see figure 5, is caused by the deformation energies of the nascent fragments at scission. The scission-point model of ref. [7] attributes it to the influence of fragment shells, the random-neck-rupture model [³⁰] links it to the location of the rupture, and also microscopic calculations predict large deformation energies of the fragments near scission [³¹]. Large even-odd effects in the fragment Z distributions indicate that the intrinsic excitation energy at scission is generally much too low to account for the variation of the prompt-neutron yield by several units over the different fragments.

Figure 4. Schematic drawing of the transformation of energy during the fission process of ²³⁶U with an initial excitation energy equal to the height of the fission barrier.

Figure 5. Measured prompt-neutron yield in ${}^{237}Np(n,f)$ as a function of pre-neutron mass at two different incident-neutron energies $[{}^{32}]$ (data points) in comparison with the result of the GEF code [8] (histograms).

Differential behaviour - energy sorting

Recent experimental results reveal that nuclei exhibit an essentially constant temperature, may be up to excitation energies of 20 MeV [33] with a temperature parameter that is grossly proportional to A^{-2/3} [19]. This behaviour is explained by the breaking of pairs in the so-called superfluid regime [34]. This leads to a considerable increase of the heat capacity [35] and consequently to a slow

variation of temperature as a function of excitation energy. Note that the BCS approximation severely underestimates the pairing condensation energy and consequently also the magnitude of the heat capacity in the so-called superfluid regime [³⁶]. Thus, the assumption of a constant nuclear temperature becomes a good approximation. This implies that the intrinsic excitation energy of the two nascent fragments at scission is subject to energy sorting [³⁷, ³⁸, ³⁹]: The hotter light fragment transfers essentially all its intrinsic excitation energy to the colder heavy fragment. This energy sorting manifests itself in the mass-dependent neutron yields. Fig. 5 shows data for neutron-induced fission of ²³⁷Np with $E_n = 0.8$ MeV and $E_n = 5.55$ MeV as an example. The additional initial energy leads to an increased neutron yield from the heavy fragments, only. The behaviour is well reproduced by the GEF code, which includes a model for the process of energy sorting.

Even-odd effect in Z yields

Experimental systematics

A systematic view on the local even-odd effect in fission-fragment Z distributions [⁴⁰] reveals a regular pattern and a general dependence on the fissioning system, see figure 6. The magnitude of the even-odd effect is small at symmetry, and it increases strongly with increasing asymmetry. At the same time, the even-odd effect generally decreases for heavier systems. The even-odd effect in the light fragment group of nearby even-Z and odd-Z systems is essentially identical, except at symmetry, where the even-odd effect in odd-Z systems is exactly zero. Electromagnetic excitations lead to slightly higher excitation energies, thus reducing the magnitude of the even-odd effect. The large number of systems investigated revealed that the appearance of a large even-odd effect at large asymmetry is a general phenomenon, also in odd-Z fissioning systems [⁴¹]. In any case, there is an enhancement of even-Z fragments in the light fragment group, indicating that it is the enhanced production of even-Z light fragments in their ground state, which is at the origin of the large even-odd effect at extreme asymmetry.

Figure 6. Measured (left) and calculated (right) local even-odd effect in fission-fragment Z distributions in (n_{th}, f) reactions. The fissioning nuclei are indicated. Data for fission of ²²⁹Th, induced by electromagnetic excitations are included. See ref. [40] for references of the data.

Final stage of energy sorting

It seems straightforward to attribute the enhanced production of even-Z light fragments to the energy-sorting mechanism [⁴²] that explained already the differential behaviour of the promptneutron yields. If the time until scission is sufficient for the energy sorting to be accomplished, the system can still gain an additional amount of entropy by predominantly producing even-even light fragments. Compared to the production of odd-odd light fragments, the excitation energy of the heavy fragment increases by two times the pairing gap, and its entropy increases due to the increasing number of available states in the heavy fragment. The right part of figure 6 shows a calculation with the GEF code, where this idea is included in a schematic way. The basic features are: (i) The excitation energy induced by dissipation grows with the Coulomb parameter $Z^2/A^{1/3}$, and the time needed for complete energy sorting is correspondingly increased. Also the energy gain from saddle to scission increases, and, thus the energy exceeds the constant-temperature domain. This explains the observed reduction of the even-odd effect for heavier systems. (ii) The temperature difference of the nascent fragments grows with increasing asymmetry, which enhances the energy-sorting process. This explains the strong increase of the even-odd effect at large asymmetry.

Charge polarization

Experimental information

Most experimental information on charge polarization at scission is indirect, because only the fragment masses after the emission of prompt neutrons can be measured with good resolution. Thus, the influence of prompt-neutron emission has to be corrected. This correction introduces some uncertainties, because most data on mass-dependent prompt-neutron multiplicities are not very precise, and for many systems such data are not available.

Figure 7 shows the measured deviation of the mean nuclear charge from the UCD (unchanged charge distribution) value for a fixed post-neutron mass and the standard deviation of the corresponding nuclear-charge distribution for the thermal-neutron-induced fission of ²³⁵U [⁴³]. The influence of the even-odd staggering of the Z yields is clearly visible in both quantities.

Figure 7. Indirect information on the charge polarization in ${}^{235}U(n_{th_1}f)$. Left part:Deviation of the mean nuclear charge from the UCD (unchanged charge distribution) value for a fixed post-neutron mass A_{post} . Experimental data [43] (full points) are compared with the result of the GEF code [8] (open points). Right part: Standard deviation of the nuclear-charge distribution for a fixed post-neutron mass A_{post} . Experimental data [43] (full points) are compared with the result of the GEF code [8] copen points).

Simulation

The simulation of the nuclear-charge distributions for fixed post-neutron mass starts from the calculated pre-neutron nuclide distribution and the excitation energy of each individual fragment. The emission of prompt neutrons must be considered, which is constrained by measured mass-dependent prompt-neutron multiplicity distributions. The good agreement with post-neutron fragment distributions shown in figure 7 was obtained by minimizing the potential energy of the scission configuration, approximated by quadrupole-deformed fragments with a tip distance of 1 fm with respect to their N/Z ratios. However, for the asymmetric fission channels, the value of $< Z > -Z_{UCD}$ had to be increased (decreased) by 0.3 units in the light (heavy) fragment. This additional charge polarization may be attributed to the influence of the shell effects. The mean deformation of

the fragments at scission is linked to the mean prompt-neutron multiplicity, considering the amount of intrinsic excitation energy at scission, which is consistent with the description of the even-odd effect in the Z distributions.

Fragment kinetic energies

In the GEF code, the total kinetic energy of the fission fragments is given by subtracting the total excitation energy of the separated fragments from the sum of the initial excitation energy of the fissioning nucleus and the Q value of the fission process. The resulting distribution for 235 U(n_{th},f) is shown in figure 8. The overall behaviour is in agreement with expectations from systematics. In the model, the shape of the energy distribution for a fixed mass is mainly defined by the distribution of fragment deformations at scission, which is taken as a Gaussian distribution with a maximum in the respective potential minimum. These shapes are assumed to be decisive for the amount of deformation energy of the separated fragments with respect to their respective ground state, which finally adds up to their intrinsic excitation energy. This explains the skewness of the distributions, which seem to be slightly larger than found in experiment.

Figure 8. Two-dimensional distribution of kinetic energies and fission-fragment masses before emission of prompt neutrons for $^{235}U(n_{th}f)$. The colour scale refers to the counts of the Monte-Carlo calculation with the GEF code.

Neutron multiplicities

Besides the mass-dependent mean prompt-neutron yields, see figure 5, there exist two other experimental results, which have been determined with high accuracy: The mass-integrated neutron-multiplicity distribution and the mean number of prompt fission neutrons.

The measured mean number of prompt-fission neutron yields is compared in table 1 with the values given by the GEF code for some selected systems. The same parameter set was used for all systems.

System	E _n	Exp.	GEF
²³⁵ U(n,f)	thermal	2.41 [44]	2.39
²³⁵ U(n,f)	0.5 MeV	2.46 [45]	2.51
²³⁵ U(n,f)	5.55 MeV	3.19 [45]	3.29
²³⁷ Np(n,f)	0.8 MeV	2.73 [32]	2.57
²³⁷ Np(n,f)	5.55 MeV	3.46 [32]	3.33
²³⁹ Pu(n,f)	thermal	2.88 [44]	3.02
²⁵² Cf(sf)		3.77 [46]	3.66

Table 1. Selected values of mean prompt-neutron multiplicities. The measured values are compared with the result of the GEF code.

Figure 9 demonstrates the good agreement of the calculated neutron-multiplicity distributions for $^{235}U(n_{th},f)$ and $^{239}Pu(n_{th},f)$ with the experimental data. Like in the case of the fragment kinetic energies, the width is mostly caused by the distribution of fragment deformations at scission. The shape of the distribution is well reproduced for all three systems.

Figure 9. Measured prompt-neutron multiplicity distributions [44,46] for $^{235}U(nth,f)$ (left part), $^{239}Pu(nth,f)$ (middle part) and $^{252}Cf(sf)$ (right part) are compared to the results of the GEF code (open symbols).

Prompt-neutron spectrum

The experimental prompt-fission-neutron spectra for the systems ${}^{235}U(n_{th},f)$ [47] and ${}^{252}Cf(sf)$ [48] are compared with results of the GEF code in figure 10. In order to better visualize the deviations, the lower panels show a reduced presentation with the spectra normalized to a Maxwellian distribution with the parameter T = 1.32 MeV.

In this calculation, the de-excitation of the separated fragments has been obtained within the statistical model. It is assumed that both the emission of neutrons and the emission of E1 gammas does not change the angular momentum on the average, which seems to be a good approximation in the relevant angular-momentum range [⁴⁹]. When the yrast line is reached, the angular momentum is carried away by a cascade of E2 gammas. A constant inverse neutron absorption cross section has been assumed. Gamma competition at energies above the neutron separation energy was considered. The gamma strength of the giant dipole resonance (GDR) following the description proposed in ref. [⁵⁰] was applied. The nuclear level density was modelled by the constant-temperature description of v. Egidy and Bucurescu [⁵¹] at low energies. The level density was

smoothly joined at higher energies with the modified Fermi-gas description of Ignatyuk et al. [⁵², ⁵³] for the nuclear-state density:

Figure 10. Experimental prompt-fission-neutron spectra (black lines and error bars) for $^{235}U(n_{th}f)$ [47] (left panels) and $^{252}Cf(sf)$ [48] (right panels) in comparison with the result of the GEF code (red lines) in logarithmic scale. In the lowest panels, all spectra have been normalized to a Maxwellian with T = 1.32 MeV.

$$\omega \propto \frac{\sqrt{\pi}}{12\,\tilde{a}^{1/4}U^{5/4}}\exp(2\sqrt{\tilde{a}\,U})$$

with $U = E + E_{cond} + \delta U(1 - \exp(-\gamma E))$, $\gamma = 0.055$ and the asymptotic level-density parameter $\tilde{a} = 0.078 A + 0.115 A^{2/3}$. The shift parameter E_{cond} represents the pairing-condensation energy given by $E_{cond} = -2 MeV - n\Delta_0$, $\Delta_0 = \frac{12}{\sqrt{A}}$ with n = 0,1,2 for odd-odd, odd-A and even-even nuclei, respectively, as proposed in ref. [⁵⁴]. δU is the ground-state shell correction. A constant spin-cutoff parameter was used. The matching energy is determined from the matching condition (continuous level-density values and derivatives of the constant-temperature and the Fermi-gas part). Values slightly below 10 MeV are obtained. The matching condition also determines a scaling factor for the Fermi-gas part. It is related with the collective enhancement of the level density. The corresponding results are shown by the red full lines. The transformation of the neutron-energies into the laboratory frame was performed considering the acceleration phase [⁵⁵, ⁵⁶] after scission by a numerical trajectory calculation.

The rather good reproduction of the measured neutron spectra, especially in the whole lower-energy part, does not give indication for neutron emission at scission [⁵⁷, ⁵⁸, ⁵⁹, ⁶⁰] although it is difficult to draw a definite conclusion due to the uncertainties in the level densities.

Simplified calculations show the importance of the emission during the acceleration phase. The

latter effect is stronger for the system ²⁵²Cf(sf), since higher excitation energies and, thus, shorter emission times are involved in this system. Neutron emission during fragment acceleration reduces especially the laboratory energies of the first neutrons emitted at short times from the most highly excited fragments in ²⁵²Cf(sf) and allows for a decently consistent description of the two systems with the GEF code, using the same parameter set.

Experimental prompt-fission neutron spectra of the systems 239 Pu(n_{th},f) and 240 Pu(sf) are compared with the result of the GEF code in figures 11 and 12, again using the same model parameters. Obviously, the data are very well reproduced.

Figure 11. Experimental prompt-fission-neutron spectrum for the system ²³⁹Pu(n_{th} ,f) from ref. [⁶¹] (black open symbols) and from ref. [⁶²] (blue full symbols) in comparison with the result of the GEF code (red thick full line). The calculated spectrum was normalized to the measured total neutron multiplicity (\bar{v} =2.88 [44]) by a factor of 1.025. The measured spectra are slightly scaled for minimizing the overall deviations from the calculated spectrum in order to better compare the spectral shapes.

Figure 12. Experimental prompt-fission-neutron spectrum for the system ²⁴⁰Pu(sf) from ref. [⁶³] (black symbols) in comparison with the result of the GEF code (red line). The measured data were scaled to the height of the calculated spectrum. Since the experiment covers especially well the lower-energy range, a double-logarithmic presentation was chosen.

In general, the GEF code reproduces the available experimental fission-prompt-neutron spectra rather well. This qualifies the GEF code for estimating prompt-neutron spectra in cases where experimental data do not exist. The results of the GEF code for thermal-neutron-induced fission of several target nuclei are listed in the appendix. More data can be generated by downloading the code [8] and by performing the calculations with the appropriate system. The code also seems to be a suitable tool for improving evaluations.

Conclusion

The semi-empirical fission model, implemented in the GEF code, reproduces a large variety of observables with a good precision in a consistent way without further adjustment to specific fissioning systems with a unique parameter set. With this global approach one is able to predict several characteristic quantities of the fission process, e.g. the energy and multiplicity distribution of prompt-fission neutrons, without the need for specific experimental information of the respective system, e.g. measured mass-TKE distributions. All properties of the fission fragments that are considered in the code (e.g. nuclear charge, mass, excitation energy, angular momentum) are sampled in the corresponding multi-dimensional parameter space by a Monte-Carlo technique. Thus, all respective correlations are preserved. Moreover, correlations between all observables considered in the code are provided on an event-by-event basis.

Part of this work has been supported by the NEA of the OECD (<u>http://www.oecd-nea.org/</u>) and by the EFNUDAT (http://www.efnudat.eu/) and by the ERINDA (http://www.erinda.org/) projects of the European Union.

Appendix 1: Table of prompt-neutron energy spectra for selected target nuclei in thermal-neutron-induced fission from a GEF calculation with 10⁶ events. (ZT, AT: Z and A of target nucleus, nu: mean prompt-neutron multiplicity.)

ZT AT nu	90 227 1.921	90 228 1.753	90 230 1.815	90 229 1.876	90 232 1.793	90 231 1.960	91 229 1.899	91 230 2.180	91 231 1.972	91 232 2.189	91 233 2.045	91 234 2.215	92 232 2.191	92 233 2.440	92 234 2.185	92 235 2.391
E/MeV 0.1	45567	44136	48409	48419	54471	52245	43303	48995	46177	51161	49410	53950	47498	52123	48635	53473
0.2	62034	59264	64742	64501	69053	69432	58581	67178	62214	69492	66507	72799	64816	72232	66151	73268
0.4 0.5	66187 68603	62692 65463	67552 69339	68719 71104	72114 72645	75453	62113 64869	75138	66007 68770	74138 77117	70627 73697	77145 80211	69160 71984	76943 80616	70572	77461 81184
0.6	70176 70191	66017 66446	70446 70309	72031 71852	72794 72078	76500 76144	66386 67231	76982 77871	70359 70832	78533 78928	74762 74639	81958 81623	73617 74815	82706 83365	74993 75944	83272 83672
0.8	70692	65592	69785	70815	69782	75187	66781	77298	70986	79039	74134	81545	75190	83557	75563	83119
0.9	69169 67631	63987 62395	67719 66039	69440 67874	68304 65302	73540 71285	65891 65065	76333 75375	69350 68506	78367 76486	73053 71816	80128 78652	73983	82763 81529	74784 73786	83022 81282
1.1	66102 64576	60971 58438	63307 61562	65561 63348	62803 60529	69295 66821	63117 61626	73619	66720 64452	74109	69520 67554	76096	71095	80424	72299	79716 78037
1.3	62187	56543	58719	60908	57893	64179	59904	70298	62645	70546	65693	71544	68428	76472	68423	75874
1.4	59672 57344	54605	54008	58245 55842	54815 52334	58793	57435	67301 64991	58358	68269 65796	62819 60841	66162	64426	73943	64272	70415
1.6 1.7	55731 52418	50138 47384	51420 49007	53396 50812	49659 47027	55941 53142	53953 51778	62781 60183	55718 53587	62710 59758	58189 55618	63389 60520	61521 59367	69162 66330	61813 59593	67778 65256
1.8	50027	45112	46319	48652	44542	50119	49530	57216	51386	57498	53050	57088	57056	63317	56835	62433
2	45570	40155	41655	43634	39637	45115	44966	52003	46543	52199	48061	51617	52457	58309	51934	56735
2.1 2.2	43104 41149	38386 36212	38914 36995	41086 38729	37285 34860	42308 39928	43016 40456	501/3 47112	44393 41703	49176 46766	45689 43422	49211 46549	49812 47462	55742 53069	49187 47056	53865 51076
2.3	38287 36618	34348 32400	34667 32491	36375	32776 30917	38005	38769 36503	44726 42130	39984 37529	44055 41547	40916 38269	43660 41873	44921 42869	50793 48276	44625 42125	48915 45762
2.5	34505	30415	30408	32456	28964	33469	34978	39775	35236	39446	35966	39143	40954	45312	40103	43657
2.6	32056 30313	28541 26786	28810 27108	30501 28448	27160 25529	31062 29311	32858 30642	37635 35542	33350 31624	37103 35169	34058 32333	36885 34945	38562 36710	42940 40935	37859 35988	41433 39023
2.8	28560 27074	25253 23834	25353 23800	26671 24683	23927 22307	27514 25647	29059 27590	33611 31271	30109 28059	33205 30933	30504 28625	32595 30746	34556 32539	38094 36267	33817 31986	36935 34853
3	25359	22044	22570	23564	21106	24481	25863	29847	26378	29124	27072	28849	30819	34188	30529	32858
3.2	22117	19456	19682	20841	19452	22395	23079	26134	23338	25777	23258	25679	29000	30272	26745	29086
3.3 3.4	20820 19628	18377 17098	18227 17046	19072 17829	17150 16135	19575 18316	21680 20294	24624 22971	21856 20717	24088 22765	22349 20527	23881 22135	25709 24229	28738 27033	25293 23687	27489 25839
3.5	18224	16127	16096	16853	14670	17191	18961	21372	19382	21410	19740	20748	22825	25349	22572	24033
3.7	15768	13989	14006	14639	12972	14958	16821	19937	17077	18580	17105	18342	20046	22462	19899	21139
3.8 3.9	15025 14031	12924 12335	13164 12084	13668 13021	12359 11464	14112 12888	15647 14757	17837 16424	15832 14893	17400 16144	15912 14960	17155 16152	18756 17848	21010 19877	18321 17407	19963 18661
4	13102	11664 10699	11253 10657	11841 11218	10562	11960 11186	13751	15431 14673	14106 13110	15201 14195	14073 13047	15004 13820	16680 15818	18420 17260	16135 15127	17571
4.2	11534	10016	10033	10436	9108	10519	11953	13664	12077	13447	12153	13028	14594	16036	14114	15511
4.3	9766	9212 8771	9325 8686	8977	8053	9731 9165	10454	12736	10744	12385	10616	11958	12998	14214	12398	14314 13449
4.5 4.6	9055 8572	7963 7340	8080 7496	8431 7722	7463 6792	8591 7850	9647 9171	10885 10345	10051 9381	10624 9987	9736 9190	10430 9615	12201 11184	13100 12429	11819 10865	12577 11632
4.7	8040	7054	7037	7278	6385	7390	8666	9581	8675	9294	8528	9136	10678	11470	10097	10759
4.8	6972	6185	6024	6216	5650	6502	7463	8470	7440	8188	7476	7884	9274	10009	8950	9463
5 5.1	6349 5892	5746 5256	5676 5336	5904 5462	5283 4956	5801 5567	6885 6574	7701 7110	7004 6566	7456 7098	6947 6519	7340 6814	8458 7854	9425 8769	8171 7869	9015 8295
5.2	5600 5301	4951	4949	5137 4752	4509	5110	6038	6556	6103 5628	6384 5004	6051 5651	6215 5875	7420	8216 7510	6993 6774	7730
5.4	4986	4322	4325	4453	3840	4420	5244	5773	5275	5663	5280	5491	6575	7201	6364	6627
5.5	4432 4077	4090 3779	3864 3627	3994 3717	3606 3344	4193 3795	4919 4557	5297 4771	4806 4522	5091 4880	4760 4588	5099 4609	6050 5567	6482 6175	5827 5413	6208 5852
5.7 5.8	3923 3630	3545 3277	3396 3164	3553 3341	3142 2839	3446 3320	4174 4071	4363 4294	4257 3950	4452 4232	4126 3875	4421 4020	5092 4889	5750 5324	5093 4754	5455 5105
5.9	3285	2994	2839	3058	2680	2955	3603	3859	3625	3836	3737	3825	4634	5015	4379	4703
6.1	2811	2585	2524	2641	2309	2653	3197	3424	3150	3263	3183	3307	3914	4399	3764	3990
6.2 6.3	2615 2460	2506 2232	2313 2075	2440 2262	2142 1951	2456 2313	3011 2709	3156 2933	2942 2793	3006 2868	2924 2746	3021 2847	3566 3297	4006 3771	3583 3269	3774 3421
6.4	2302 2211	2034	2037	2029	1931 1692	1972 1936	2575	2788	2531	2614	2531	2630	3165	3396 3195	3064	3237 3123
6.6	1983	1794	1747	1763	1579	1803	2179	2373	2126	2275	2192	2224	2659	3072	2671	2725
6.8	1854 1659	1545	1688	1617	1297	1529	1922	1969	1838	2062	2004 1966	1928	23529	2627	2445	2598
6.9 7	1535 1462	1390 1391	1358 1228	1359 1270	1234 1089	1487 1318	1703 1567	1845 1699	1767 1702	1773 1645	1807 1536	1810 1599	2230 2046	2395 2138	2111 1959	2153 2183
7.1	1330	1214	1144	1235	1036	1143 1160	1462	1557	1457	1585	1488	1537	1929 1733	2117	1892	1911
7.3	1127	1036	1070	1085	884	1017	1290	1365	1325	1390	1355	1315	1643	1848	1622	1624
7.4	1043 958	968 851	940 839	990 906	864 768	935 850	1198	1325 1183	1144 1131	1256	1179 1044	1197	1515 1391	1660 1592	1510 1438	1623
7.6 7.7	905 909	846 771	719 703	802 731	678 674	859 766	1047 970	1130 1007	1030 999	1004 970	1006 1009	1036 1013	1298 1189	1379 1323	1278 1182	1336 1240
7.8	816	738	691	724	566	711	889	950	919	889	915	915	1093	1177	1131	1091
8	682	621	597	569	521	607	750	755	728	762	783	703	1049	1099	959	1016
8.1 8.2	606 603	563 539	526 535	532 472	480 475	551 561	752 643	705 669	725 659	/13 672	/10 691	730 631	920 822	1018 926	901 778	989 797
8.3	526 504	438 441	421 396	471 442	428 382	446 402	657 566	638 540	597 565	608 601	601 563	587 546	763 680	830 747	692 721	867 782
8.5	444	440	371	444	354	405	490	523	553	510	500	515	710	728	703	653
8.7	402 423	383 375	384 311	371	351 290	342 340	451 468	516 483	504 455	484 456	451 466	474 447	606	638	640 583	656 554
8.8 8.9	324 301	323 307	323 290	348 307	252 251	334 285	403 366	412 396	410 400	417 398	404 351	384 347	509 487	576 512	544 480	518 504
9	296	266	277	274	216	286	327	392	376	390	353	391	474	489	443	489
9.2	251	217	207	203	208	227	298	304	316	316	289	310	389	449	425	434
9.3 9.4	233 219	194 216	194 188	208 218	201 153	213 197	267 298	273 261	280 266	291 275	262 267	292 263	374 334	470 373	345 317	375 383
9.5 9.6	188 184	208 187	156 162	179 149	147 131	170 167	257 244	247 237	251 210	237 221	240 229	247 224	334 318	377 300	297 323	335 290
9.7	183	168	154	143	125	144	204	213	201	223	197	201	274	275	301	264
9.9	169	130	129	143	130	136	203	190	194	157	200	185	210	278	220	248
10	120	125	105	118	83	126	1/4	143	1/0	160	147	187	21/	260	227	244

ZT AT NU	92 236 2,288	92 237 2,472	92 238 2.411	92 239 2,559	93 234 2.661	93 235 2,411	93 236 2.692	93 237 2,469	93 238 2.771	93 239 2,572	94 236 2.718	94 237 2.965	94 238 2.755	94 239 3.024	94 240 2,819	94 241 3.112
E/MeV	52002	FC 420	56462	50000	F 4070	50201	FF011	52160	F0710	FF004	E 430E	50062	FF070	60667	57040	(2220
0.1	52092 63613	56430 68922	56462 68020	73023	54079 67054	61504	69372	64279	72714	55884 68154	54305 67088	58862 73405	55878 68784	75459	57948 71015	78299
0.3	70683	76826	76210	81279	74725	68473	77899	71827	80913	76041	75028	81653	76650	85145	79623	87480
0.4	78323	84262	84019	89964	84639	76334	87498	79393	90336	84406	84039	92185	85621	94507	84652 88506	94059 98194
0.6	80023	86478	85029	91455	86555	78906	89669	81447	93415	86059	86104	95323	87940	97529	91060	101824
0.7 0.8	80397 80472	87508	85858	91891 91936	87858	79179	91241 91146	827734	94045 94375	87565	87826	96759 97621	88518 89892	99375 99694	92047 92161	102552
0.9	78953	86035	84644	90211	88586	79373	90667	81881	93683	86528	88273	96950	89061	99893	92655	102592
1.1	78001 75597	84424 82636	83332 80636	88619 86604	8/364 86387	/8/85 77176	89772 88477	81285 79954	92/12 90521	85689 84591	86853 85676	9/12/ 94163	88534 87936	98820 96662	90346 89422	101109 99547
1.2	73837	80634	78950	84472	84728	75782	86126	77912	88990	81605	84302	93024	85681	95032	88408	97638
1.3	71831	78211	76490	81535 78318	82360 80713	73362	84276 81540	76361	86627 84853	80254	82206 80085	90340 88687	83771 81727	93720 90900	86319 83125	95060 93280
1.5	67345	72939	70747	75885	78541	69569	79593	71413	81646	74777	78072	86449	79493	87789	81654	90532
1.6	64510 61825	70498 67343	68612 65248	72552	74913 72511	67484 65035	76307	68900 66628	78312	72697 68939	75739	83289 80848	76365 74064	85002 81860	78945	87216 84313
1.8	59469	63865	62255	66232	69753	62299	70427	63926	72745	66546	70664	77702	71822	79252	73122	80748
1.9	56936	61505 58010	60328 57063	63092	66821	60111 57285	68040	60898 58736	69326	63856	67604 64735	74010	68512	75532	70332	77698
2.1	51318	55885	53928	57230	61226	55389	61652	55951	63319	58206	62602	68643	62851	70104	64189	71777
2.2	49174	52506	51321	54333	58625	52431	58902	53507	60146	55664	60175	65244	60398	66537	61599	67899
2.4	44163	47586	46001	48812	53861	47613	53044	48333	54720	49999	54610	59804	54911	60090	56008	61624
2.5	41372	44931	43642	45841	50604	45211	50142	46016	51583	47729	51688	56331	52389	57466	53115	59242
2.7	37455	40044	38582	40781	45343	43399	45371	41305	46164	42673	46675	51072	47339	51717	48078	53207
2.8	35204	37995	36645	38394	43135	38742	42942	39363	43859	40332	44684	48592	44847	48970	45952	50761
2.9	31174	33493	32487	34176	38389	35009	38030	35148	39148	36261	42255	43794	42505	48717	43008	47895
3.1	29523	31707	30689	32259	36623	33043	36239	33226	36670	33964	37865	40910	38141	41595	38764	42434
3.2	27800 25781	29983	28736	28012	34334 31949	29301	34126	29643	32705	32226	35882	368496	36129	36973	36743	40250 37706
3.4	24423	26220	25321	26899	30112	27449	30358	27766	30682	28257	32050	34818	32459	34949	32357	35987
3.5	23239	24609	24040	25130 23583	28885	26018 24762	28200	26532	29023	26834	30130 28404	32293	30451 28607	32651 31237	30665	33876 31528
3.7	20281	21984	20832	21824	25114	23327	24748	23354	25529	23906	27206	28914	26601	29113	27586	29873
3.8 3.9	19003	20605	19409	20747	23888	21953 20456	23524	21950 20852	24043	22346	25033	27076	25227	27207	25738	28062
4	16737	17760	16910	18020	20956	19234	20599	19348	20928	19719	22088	24199	22532	24251	22853	24797
4.1	15477	16/19 15466	15962 14955	16//3 15787	19604 18624	181/9 16716	19369 18226	18498 16951	19612 18692	18468 17232	20947	22566	21038 19794	22/80	21185	23268 21837
4.3	13681	14625	14118	14870	17222	15895	16997	15888	17333	16170	18426	19807	18608	19859	18640	20522
4.4	13205	13744	13158	13665	15891 14979	14589 13954	15956 14778	14997	16096	15339 14334	17428	18331	17164	18638 17592	17826 16370	19317 18031
4.6	11193	12063	11447	12073	14107	12975	13837	13023	14335	13369	15003	16452	15520	16244	15428	16751
4.7	10497 9762	11102	10627 9821	11130	13162 12468	12049 11489	13011	12293 11532	13434 12411	12551	14224	15061 14178	14148 13476	15249 14318	14442 13460	15878 14547
4.9	8942	9783	9255	9730	11590	10807	11348	10628	11681	10881	12357	13231	12645	13327	12675	13886
5 5 1	8595	9032	8706	8956 8201	10800	10151	10670	10006	10619	10103	11681	12478	11766	12203	11750	12951
5.2	7352	7944	7343	7962	9448	8784	9222	8711	9261	8768	10178	10778	10318	10968	10303	11292
5.3	6699	7364	6993	7201	8742	8059	8664	8078	8877	8218	9579	10010	9513	10176	9700	10493
5.5	5994	6399	6056	6279	7676	7174	7413	7103	7533	7126	8374	8669	8333	8967	8321	9167
5.6	5648	5965	5560	5728	7052	6653	6852	6657	7087	6821	7900	8252	7845	8320	7746	8608
5.8	4783	5009	4966	5047	6176	5707	5971	5858	6204	5868	6877	7029	6775	7247	7005	7499
5.9	4459	4673	4560	4680	5598	5523	5465	5396	5725	5530	6329	6670	6383	6721	6518	6985
6.1	3870	4073	3890	4189	4997	4761	4817	4736	4973	4766	5732	5781	5562	5948	5588	5945
6.2	3585	3802	3614	3812	4537	4444	4640	4362	4571	4431	5105	5354	5119	5484	5192	5583
6.4	3107	3329	3122	3259	3868	3855	3821	3794	3917	3881	4461	4680	4520	4720	4524	4939
6.5	2820	3094	2954	3012	3682	3695	3586	3612	3705	3518	4277	4374	4207	4456	4263	4529
6.7	2534	2681	2459	2559	3231	3103	3085	3077	3176	32294	3636	3793	3678	3807	3574	3976
6.8	2269	2453	2370	2458	3027	2924	2885	2948	2971	2909	3410	3572	3481	3525	3358	3635
0.9 7	2033	2095	2021	2155	2610	2444	2510	2085	2572	2523	2879	3036	2962	3083	2882	3139
7.1	1940	2028	1842	2015	2349	2376	2301	2398	2366	2329	2821	2739	2785	2845	2749	3080
7.3	1577	1748	1675	1742	2063	1916	1934	2019	2231	1934	2398	2425	2345	2547	2390	2477
7.4	1450	1705	1516	1519	1843	1801	1910	1861	1882	1873	2184	2179	2279	2293	2216	2412
7.6	1258	1387	1273	1305	1589	1582	1576	1635	1705	1668	1859	1948	1863	1954	2003	2134
7.7	1214	1225	1211	1273	1555	1493	1525	1502	1473	1480	1690	1754	1814	1868	1808	1818
7.8	1046	1212	1055	1214	1412	1406	1382	1421	1432	1408	1540	1628	1753	1603	1754	1648
8	915	978	946	967	1247	1213	1179	1228	1216	1221	1540	1540	1512	1450	1432	1585
8.1	949 899	932 895	818	890	1154	1024	1016	1064	1074	995	1231	1264	1255	1402	1275	1473
8.3	741	840	745	779	992	969	959	966	953	914	1206	1165	1202	1231	1218	1139
8.4 8.5	725 643	743 707	/2/ 670	790 655	938 883	904 807	843 810	917 833	961 911	909 834	1078 1002	1038 1061	1098 996	1058 1022	1077 1041	1233 1086
8.6	601	665	645	630	750	742	780	788	838	800	945	969	955	942	915	994
8.7 8.8	579 577	658 545	586 552	627 558	/04 657	/28 705	694 636	694 656	/23 659	/15 668	863 819	911 802	912 853	886 839	904 823	978 936
8.9	511	526	484	532	669	623	594	663	647	640	810	696	790	757	794	822
9 9.1	442 437	486 469	451 435	508 422	588 547	563 550	622 538	589 549	599 544	571 563	720 679	699 639	751 688	709 673	658 652	788 674
9.2	374	379	408	420	471	507	470	554	544	495	604	590	604	635	653	658
9.3	370 329	391 356	368 354	361 360	483 442	488 443	475 401	455 456	484 497	461 457	529 490	604 537	545 526	599 536	591 530	566 558
9.5	310	334	314	341	401	370	401	369	425	409	485	453	522	512	501	555
9.6	328	318	293	296	381	395	378	379	420	398 349	483	488	472	486 437	475 427	499 457
9.8	262	272	276	270	325	333	274	343	342	331	399	401	430	420	414	449
9.9 10	210 218	245 231	234 246	244 245	315 270	254 268	316 273	272 276	296 255	301 286	347 344	366 333	387 331	396 364	416 369	415 366

ZT AT nu F/MeV	94 242 2.943	94 243 3.241	95 239 3.027	95 240 3.244	95 241 3.052	95 242 3.344	95 243 3.159	95 244 3.465	96 242 3.370	96 243 3.594	96 244 3.402	96 245 3.701	96 246 3.494	96 247 3.805	96 248 3.579	96 249 3.909
0.1	61005 75171	67397 82789	58774 72628	62525 77933	60568 74228	65190 81346	63507 77857	68752 86102	64631 79772	68250 84687	65725 81222	71466 88534	69084 84812	74742 92418	72263 88472	78028 96891
0.3	83691 88996	92815 98998	80807 86764	86793 93886	82987 88560	90732 98120	86723 92810	96376 103663	89055 95019	95829 101819	90743 97113	98788 106507	95269 101242	104471	98436 105736	107998 115998
0.5	93058	103240	91165	98360	93216	102857	97485	108696	99398	107289	102202	112283	105827	117324	110312	121733
0.6 0.7	95674 96813	106786 108609	93198 95727	101476 103131	95716 96741	105465 107506	100255 102018	112481 113435	102533 104799	111077 112693	104628 106565	115476 117563	109322 110368	121299 122731	112692 114547	125210 126488
0.8	97003	108060	95943	104528	97736	107851	101635	115134	106225	113524	107753	118697	111045	123284	115442	128508
1	95956 95511	107807	96154	104157	96934	108216	101394	113577	105772	113218	106322	118270	110199	123024	113707	126477
1.1	94115 92638	105146 102645	93717 92945	102222	95154 93417	105572 103927	99097 97851	112234 109808	103989 101957	112994 110821	105179 103850	117143 114956	109028 107480	120522 119731	112371	124246 122964
1.3	90108	100487	90674	98373	92106	101620	95157	107441	100416	108378	101378	112118	104617	116322	107972	120008
1.4	85045	94822	86253	93551	87417	96500	90233	104020	96231	103946	99759	109515	99942	109733	102740	112949
1.6 1.7	82727 79453	92101 88360	84029 81048	90779 87444	84161 81638	93535 90413	88056 84923	98180 94415	92927 89717	100729 97053	93764 91515	103512 99938	97224 93794	106882 102828	99392 96105	109572 106433
1.8	76129	85139	77949	85025	78597	87892	81970	90818	86979	94005	87714	96428	90549	99074	92250	102409
2	70067	77670	72486	78364	73327	80778	75259	83607	80598	86613	81487	88972	83061	91814	85298	93697
2.1	67104 65143	74530 70485	69708 66659	74770 71729	69754 67023	76364 74038	73002 69095	80041 76294	77945	83134 79691	78616 74563	85548 81497	79702 77293	88066 83618	82287 78639	90572 86514
2.3	60997	67306	63683	68722	64143	71070	66491	73096	71274	75899	71464	78556	73710	80046	74852	81908
2.4	55363	60807	58224	62115	58629	63819	60212	66150	64724	69004	65532	71437	66479	73259	67849	74197
2.6	52641 49718	57850 55199	55044 52914	59576 56670	55482 52699	60622 57513	57137 54384	62657 59365	62157 59541	66307 62953	62526 58980	67649 64518	63904 60854	69176 65962	65100 61152	70794 67156
2.8	47426	52166	50335	53809	49934	54920	51777	56126	56138	60161	56737	60788	57645	62771	58795	63867
2.9	44749	49568 46444	47908	48338	47800 45335	49426	48578 46489	50588	53485 50638	56796 54179	53875	54764	54820 51889	55865	53096	57271
3.1	39730 38054	43222 41319	42673 40633	45423 43433	42582 40454	46978 44127	43896 41293	47099 45178	47945 45691	51028 48155	48327 46076	51956 49617	49011 46186	53311 50017	49903 46795	54211 51217
3.3	35720	38722	38541	40639	38310	41814	39461	42157	42824	45738	43333	46294	43943	47057	44824	48238
3.4 3.5	33897 31928	36508 34675	36473 34219	38363 36358	36265 34376	39588 37283	37639 35070	39926 37661	40848 38646	43234 40603	40966 38525	43921 41380	41/15 38988	44483 42098	42190 39661	45163 42936
3.6	30083	32446	32117	34303 32230	32606	35108	33042	35364	36445	38785	36790	39039 36883	37100	39738 37546	37413	40757
3.8	26156	28762	28826	30795	28491	31051	29381	31242	32314	33931	32427	34638	33033	34944	33228	35815
3.9 4	25081 23329	27095 25507	27133 25509	28455 27123	27178 25566	28982 27790	27762 26054	29414 27673	30797 28828	32156 30119	30474 28665	32710 30761	30969 29271	32744 30656	31432 29279	33401 31300
4.1	22106	23876	24234	25153	23862	25876	24509	25993	27310	28861	27035	28909	27523	28870	27619	29455
4.2	19266	20958	21322	22146	22398	22760	21729	22653	23993	25087	23536	25550	24342	25644	24388	25820
4.4	18165 17120	19582 18112	20317	20808 19857	19751 18788	21491 19744	20321	21150 19760	22388 20997	23662 22184	22628 21047	23923 22412	22728	24136 22358	22834 21453	24336 22635
4.6	15957	16811	17402	18465	17657	18755	17878	18591	19725	20675	19721	20983	19958	20974	20018	21501
4.7	14813 14043	15853	16493 15479	17205	16616 15396	17431 16416	16633 15844	17401 16254	18813 17640	19291 17955	18551 17574	19672 18638	18810 17581	19677 18188	18939 17744	19892 18691
4.9	12943 12128	13889 12990	14741 13566	15060 14094	14436	15122	14408 13500	15065	16656 15376	16994 16175	16274	17176	16534 15617	17377	16616 15703	17423
5.1	11483	12302	12757	13280	12642	13342	12928	13220	14098	14924	14457	14976	14467	15065	14341	15144
5.2	10816	11294 10527	11/8/ 11084	12329 11543	11593 11167	12430 11695	12050	12349	13229 12749	14059 13018	13382	14331 13412	13570 12786	14084 13031	13524 12715	14339 13427
5.4	9064	9973	10404	10594	10407	10904	10515	10704	11716	12139	11698	12466	11782	12280	11773	12458
5.6	8188	8538	9162	9434	9008	9569	8997	9243	10463	10594	10331	10977	10205	10757	10436	10685
5.7 5.8	7668 7022	8054 7426	8639 7969	8765 8208	8564 7757	8942 8273	8551 7940	8666 8025	9876 9062	9970 9313	9570 9027	9925 9381	9829 9045	10037 9410	9631 8852	10208 9499
5.9	6704 6126	6918 6570	7470 7025	7701	7548	7710 7270	7621	7499 6980	8525 8002	8864 8182	8361 7944	8618 8213	8503 7926	8815 8071	8521 7826	8714 8241
6.1	5820	6065	6554	6606	6400	6766	6509	6639	7446	7652	7412	7735	7598	7610	7302	7827
6.2 6.3	5330 5000	5577 5242	6152 5716	6207 5893	6098 5533	6290 5880	6073 5660	6083 5764	6892 6484	7105 6712	6870 6473	7230 6642	6825 6596	7158 6561	6815 6484	7012 6605
6.4	4614 4372	4925 4608	5381 4841	5289 5028	5323 4887	5513 4944	5326 4984	5472 4927	5980 5663	6158 5694	6036 5503	6186 5797	6020 5593	6193 5656	5952 5680	6130 5897
6.6	4058	4285	4637	4710	4636	4755	4535	4668	5202	5421	5087	5497	5436	5389	5480	5424
6.7 6.8	3814 3520	3999 3625	4159 4037	4282 4098	4225 3989	4506 4040	4406 4055	4291 3982	4960 4704	4968 4628	4827 4653	5101 4669	4854 4604	4927 4732	4971 4519	4997 4626
6.9	3364	3486	3673	3885	3719	3848	3830	3584	4249	4192	4333	4417	4291	4437	4316	4348
7.1	3014	3008	3296	3235	3229	3309	3215	3307	3687	3878	3631	3770	3653	3779	3765	3727
7.2 7.3	2653 2408	2721 2523	2953 2788	3002 2852	2943 2801	3127 2925	2979 2884	2979 2844	3502 3261	3606 3155	3524 3278	3600 3250	3434 3221	3478 3220	3488 3202	3571 3337
7.4	2246	2296 2200	2604	2797	2628	2530 2536	2661	2610	2992	3067 2829	3095 2774	3110 2869	3108 2833	3033 2837	3022 2794	3059 2881
7.6	2049	1984	2312	2207	2214	2337	2293	2341	2625	2686	2604	2733	2675	2673	2610	2676
7.7 7.8	1763 1664	1941 1799	2111 2004	2123 1946	2090 1958	21/1 2059	2155 2038	2162 2047	2446 2209	2503 2291	2499 2288	2537 2318	2465 2295	2476 2412	2461 2281	2507 2351
7.9	1573 1481	1741	1915 1777	1932 1699	1806 1704	1960 1780	1886 1696	1875 1684	2110	2175	2131	2157	2141	2153 1934	2133 2022	2176
8.1	1380	1425	1609	1524	1570	1706	1618	1561	1859	1911	1863	1855	1851	1801	1845	1906
8.2 8.3	1291 1189	1339 1280	1476 1409	1443 1380	1435 1454	1486 1388	1506 1351	1496 1345	1/22 1650	1803 1549	1/15 1574	1/68 1629	1708 1592	1697 1604	1/28 1626	1/90 1613
8.4	1168	1127	1264	1315	1335	1318	1323	1237	1539	1510	1506	1482	1494	1550	1565	1559
8.6	980	1005	1070	1065	1099	1117	1124	1120	1317	1281	1342	1288	1266	1281	1330	1248
8.7 8.8	909 836	960 875	1052 956	1029 982	1042 968	1030 979	1108 987	1057 961	1279 1167	1275 1172	1214 1089	1235 1055	1240 1060	1259 1110	1274 1192	1257 1133
8.9	835	777	968	886	955	945	954	938	991	1079	1096	1107	1027	1039	1019	1087
9.1	740 746	711	848	838 766	854 854	806 806	849 801	808	949 959	975 914	935	962 963	927 927	991 864	905	903
9.2 9.3	631 587	636 621	758 686	741 715	723 669	716 741	763 744	707 643	855 832	883 803	876 794	902 830	872 758	843 770	865 776	851 736
9.4	558	574	651	651	625	620	615	598	766	726	748	766	784	795	724	745
9.5 9.6	514 461	542 504	618	625 571	557	631 596	590 534	566	649 650	682	670	687	685 649	569	651	692
9.7 9.8	444 407	477 467	519 437	539 499	530 514	520 496	515 526	493 486	606 573	581 567	624 587	640 557	619 560	636 564	579 579	578 576
9.9	390	422	456	453	429	452	486	418	523	482	503	566	555	487	524	524
10	313	351	449	383	425	451	428	395	507	488	466	469	491	497	494	477

- 1 K.-H. Schmidt, B. Jurado, JEF/DOC 1423, NEA of OECD, Paris, 2011, available from [8]
- 2 K.-H. Schmidt et al., Nucl. Phys. A 665 (2000) 221
- 3 M. G. Itkis et al., Sov. J. Nucl. Phys. 52 (1990) 601
- 4 A. N. Andreyev et al., Phys. Rev. Lett. 105 (2010) 252502
- 5 S. I. Mulgin, K.-H. Schmidt, A. Grewe, S. V. Zhdanov, Nucl. Phys. A 640 (1998) 375
- 6 J. P. Unik et al., Proc. Symp. Phys. Chem. Fission, Rochester 1973, IAEA Vienna (1974), vol. 2, p. 19
- 7 B. D. Wilkins, E. P. Steinberg, R. R. Chasman, Phys. Rev. C 14 (1976) 1832
- 8 http://www.cenbg.in2p3.fr/GEF, http://www.khs-erzhausen.de
- 9 I. Ragnarsson, R. K. Sheline, Phys. Scr. 29 (1984) 385
- 10 M. Brack et al., Rev. Mod. Phys. 44 (1972) 320
- 11 U. Mosel, H. Schmitt, Phys. Rev. C 4 (1971) 2185
- 12 K.-H. Schmidt, A. Kelic, M. V. Ricciardi, Europh. Lett. 83 (2008) 32001
- 13 S. Panebianco, J.-L. Sida, H. Goutte, J.-F. Lemaître, N. Dubray, S.Phys. Rev. C 86 (2012) 064601
- 14 A. V. Karpov, P. N. Nadtochy, D. V. Vanin, G. D. Adeev, Phys. Rev. C 63 (2001) 054610
- 15 A. V. Karpov, G. D. Adeev, Eur. Phys. J. A 14 (2002) 169
- 16 H. Nifenecker, J. Physique Lett. 41 (1980) 47
- 17 B. Bouzid et al., J. Phys. G: Nucl. Part. Phys. 24 (1998) 1029
- 18 J. R. Nix, Ann. Phys. 41 (1967) 52
- 19 D. Bucurescu, T. von Egidy, Phys. Rev. C 72 (2005) 06730
- 20 L. Bonneau, P. Quentin, I. N. Mikhailov, Phys. Rev. C 75 (2007) 064313
- 21 F. Gönnenwein, I. Tsekhanovich, V. Rubchenya, Intern. J. Mod. Phys. E 16 (2007) 410
- 22 S. G. Kadmensky, Phys. Atom. Nuclei 71 (2008) 1193
- 23 H. Naik, S. P. Dange, R. J. Singh, A. V. R. Reddy , Eur. Phys. J. A 31 (2007) 195
- 24 L. G. Moretto, G. F. Peaslee, G. J. Wozniak, Nucl. Phys. A 502 (1989) 453c
- 25 H. Goutte, J. F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71 (2005) 024316
- 26 J. Randrup, P. Möller, A. J. Sierk, Phys. Rev. C 84 (2011) 034613
- 27 A. S. Jensen, T. Døssing, Proc. Symp. Phys. Chem. Fission, Rochester 1973, IAEA Vienna (1974), vol. 1, p. 40
- 28 A. V. Voinov et al., Phys. Rev. C 79 (2009) 031301
- 29 V. M. Kolomietz, S. Åberg, S. V. Radionov, Phys. Rev. C 77 (2008) 014305
- 30 U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197 (1990) 167
- 31 N. Dubray, H. Goutte, J.-P. Delaroche, Phys. Rev. C 77 (2008) 014310
- 32 A. A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34 (1986) 21
- 33 A. V. Voinov et al., Phys. Rev. C 79 (2009) 031301
- 34 M. Guttormsen et al., Phys. Rev. C 68 (2003) 034311
- 35 Y. Alhassid, G. F. Bertsch, L. Fang, Phys. Rev. C 68 (2003) 044322
- 36 G. G. Dussel, S. Pittel, J. Dukelsky, P. Sarriguren , Phys. Rev. C 76 (2007) 011302
- 37 K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104 (2010) 21250
- 38 K.-H. Schmidt, B. Jurado, Phys. Rev. C 82 (2011) 014607
- 39 K.-H. Schmidt, B. Jurado, Phys. Rev. C 83 (2011) 061601
- 40 M. Caamaño, F. Rejmund, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 38 (2011) 035101
- 41 S. Steinhäuser et al., Nucl. Phys. A 634 (1998) 89
- 42 K.-H. Schmidt. B. Jurado, arXiv:1007.0741v1[nucl-th] (2010)
- 43 W. Lang et al., Nucl. Phys. A 345 (1980) 34
- 44 M. S. Zucker, N. E. Holden, Report BNL-38491 (1986)
- 45 R. Müller, A. A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29 (1984) 885
- 46 E. J. Axton, Nucl. Stand. Ref. Data (1985) 214.
- 47 N. V. Kornilov et al., Nucl. Science Engin. 165 (2010) 117.
- 48 W. Mannhart, INDC(NDS)-220/L (1989) 305, IAEA, Vienna.
- 49 J. R. Huizenga, R. Vandenbosch, Phys. Rev. 120 (1960) 130.
- 50 A. R. Junghans et al., Phys. Lett. B 670 (2008) 200.
- 51 T. von Egidy, D. Bucurescu, Phys. Rev. C 78 (2008) 05130.
- 52 A. V. Ignatyuk, G. N. Smirenkin, A. S. Tishin, Sov. J. Nucl. Phys. 21 (1975) 255.
- 53 A. V. Ignatyuk, Hadrons Nuclei Appl. 3 (2001) 287.
- 54 K.-H. Schmidt, B. Jurado, Phys. Rev. C 86 (2012) 044322
- 55 V. P. Eismont, Atomn. Ener. 19 (1965) 113.
- 56 V. M. Maslov et al., Eur. Phys. J. A 18 (2003) 93.
- 57 N. V. Kornilov et al., Nucl. Phys. A 686 (2001) 187.
- 58 G. V. Danilyan et al., Phys. Atom. Nucl. 71 (2008) 200.
- 59 G. A. Petrov et al., Phys. Atom. Nucl. 71 (2008) 1137.
- 60 N. Carjan. M. Rizea, Phys. Rev. C 82 (2010) 01461.
- 61 A. A.Bojcov et al., 6th All Union Conf. Kiev (1983) Vol. 2, p. 294.
- 62 A. Lajtai et al., Nucl. Data Conf., Santa Fe (1985) Vol. 1, p. 613.
- 63 L. V. Drapchinsky et al., communicated by N. Capote, 2012.