Los Alamos

memorandum

The Applied Theoretical Physics Division XTM: Transport Methods Group To/MS: Distribution From/MS: A. A. Adams and S. C. Frankle / MS B226 Phone/FAX: 5-4925 / 5-5538 Email: amzie@xdiv.lanl.gov Symbol: XTM-RN(U)97-008 Date: March 7, 1997

SUBJECT: A Recommended Photon Production Spectrum for Thermal Neutron Capture in Chlorine

ABSTRACT

A prototype library that improved on the ENDF/B photon production data for thermal neutron capture was developed for the MSL Project and the ACTI CRADA. The data for the majority of the nuclides on this library were updated using a compilation of photon spectra from thermal neutron capture reactions by Orphan et al. Additionally, data for the Cr and Ni isotopes were updated using information contained in the Evaluated Nuclear Structure Data File (ENSDF). Both of these methods showed differences when compared with later compilations of thermal photon production data such as Lone et al. and with some experimental papers. The purpose of this research note is to compare photon production data for thermal neutron capture in Chlorine from a variety of sources (ENDF, Orphan, Lone, experimental measurements) and to generate a recommended photon production spectrum for use in future evaluations. This effort resulted in a recommended photon production spectrum containing 482 discrete gamma-rays, and pointed out serious deficiencies in the original ENDF evaluation and the two compilations by Orphan and Lone.

I. Introduction

The purpose of the Multispectral Logging Project¹⁻³ was to adapt nuclear well-logging techniques to map environmental contaminants along boreholes. It became apparent during this project that the neutron-induced photon-production data used by the transport codes were inadequate for this type of application. A preliminary library, containing revised photon-production data for incident thermal neutron energies, was provided by T-2 in the fall of 1994 for 21 nuclides; Cl, V, $^{50,52-54}$ Cr, $^{54,56-58}$ Fe, 55 Mn, 59 Co, $^{58,60-62,64}$ Ni, 63,65 Cu, Cd, and Hg. The individual data files in this library were prepared by using a compilation of photon spectra from thermal neutron capture reactions by Orphan et al.⁴ The spectrum for each nuclide from Orphan was substituted for the standard photon production spectrum for the (n, γ) reaction over all incident neutron energies for the oldest evaluations such as for Cl, or over a smaller incident neutron energy range for the newer evaluations such as 0.0-1.0 keV for the Cr isotopes. Additionally, adjustments in the Q-value for the (n,γ) reaction were also made to some of the standard evaluations. As Orphan gave the photon-production spectrum by element, the same spectrum was used for each isotope of an element, such as for the Cr isotopes.

In FY96 a closely related project was funded, the ACTI CRADA: Computer Simulation in Support of Nuclear-Well Logging.⁵ One of the major tasks of the ACTI CRADA is to improve the nuclear data used by the transport codes. Of particular interest to this community is the quality of neutron-induced photon production data in the transport libraries for all incident neutron energies. As a first step, a few errors in the preliminary library from the MSL project were corrected.⁶ Additionally, a new method for determining the photon production spectrum at thermal neutron energies was used for the Cr and Ni isotopes. This new method calculated the photon production spectrum from the information contained in the Evaluated Nuclear Structure Data File (ENSDF)⁷ for each individual isotope.

A comparison of the photon production spectra for natural Cr and Ni showed significant differences between the two methods, Orphan and ENSDF. Additionally, comparison of the photon production spectra from Orphan or ENSDF with a more recent compilation by Lone et al.⁸ indicated large differences as well. As a result of these discrepancies, it was decided that comparison to published experimental data for natural Cl and the Cr isotopes would be performed. The comparison of the photon production spectrum for natural Cl from Orphan and Lone to experimental data would give an indication of the validity of these two compilations. The comparison of the ENSDF data for the Cr isotopes to experimental measurements would give an indication of the validity of this new approach. Additionally, the calculated spectrum for natural Cr could be compared with Orphan and Lone as well for further information on these compilations. This research note documents the results of the comparison of thermal neutron photon production data for Cl. Photon production for higher energy Cl reactions is currently being addressed by T-2.

In the present work, nine sources of data were analyzed and compared to each other. Six of the sources represent the most recent experimental data that could be found. Three of the sources are older data compilations that are still currently being used. They were included to assess their value as continued sources of photon production data.

The nine data sets were compared in a two step approach. First, a simple assessment focused on 20 of the strongest gamma-rays to determine the level of agreement between each data set. This approach revealed good agreement between the majority of the sources, with the two oldest compilations in strong disagreement with the others. In the second step, the sources consistent with each other were evaluated carefully over the entire γ -ray energy range. Based on these comparisons, a recommended photon production spectrum at incident thermal energies was made for Cl. Throughout this research note, the phrases "photon production data" and "photon spectrum" will refer to the spectrum of gamma-rays produced by capture of thermal-energy neutrons. The terms "gamma-ray", "gamma line", or simply "line" will be used to refer to any single gamma-ray in a set of photon production data. Finally, the symbol "Cl" will always refer to *natural* Cl.

Section II of this research note discusses each source of photon production data. Section III explains how the data sets were compared and how the recommended spectrum was determined. Section IV presents the recommended spectrum itself, and Section V summarizes the results of this work.

II. Description of the Data

The first task in this analysis was to gather experimental data for Cl. First, an extensive search of the internet was performed, including use of LANL's SciSearch. The "Recent References" sections of all volumes of Nuclear Data Sheets from the present back to 1978 were then searched. The cumulative subject index of Atomic Data and Nuclear Data Tables was also searched, as was the bibliographic compilation CINDA95. Finally, the references in each paper found were searched for other appropriate papers.

It should be noted at this point that ³⁵Cl completely dominates the photon production spectrum of natural Cl at incident thermal neutron energies. Natural Cl contains 75.8% ³⁵Cl and 24.2% ³⁷Cl. The thermal neutron capture cross section (σ_c^{th}) of ³⁵Cl is about 43.6 barns, but only about 0.4 barns for ³⁷Cl.

The fractional contribution of the i^{th} isotope to the total photon spectrum of Cl can be calculated from the expression

$$fractional \ contribution = \frac{A_i(\sigma_c^{th})_i}{\sum_j A_j(\sigma_c^{th})_j}, \tag{1}$$

where A_i is the atom fraction of the i^{th} isotope, σ_c^{th} is the radiative capture (c) cross section at thermal (th) energies, and the sum in the denominator is over the number of stable isotopes of Cl.

Using Equation 1 one finds that ³⁵Cl produces 99.72% of the photon spectrum of Cl, while ³⁷Cl only produces 0.28% at thermal energies. Because of this fact, many ³⁵Cl(n,γ)³⁶Cl experiments simply use natural Cl targets and attribute all γ -rays to ³⁵Cl. The sum of the fractional contribution of each isotope times its Q-value also equals the Q-value of the natural Cl(n,γ) reaction.

Of the initial set of around twenty-five relevant papers found, seven contained enough useful information to be included in this analysis. The most recent useful paper on ³⁷Cl was published in 1973 by Spits et al.⁹ Since so much information on Cl and ³⁵Cl existed, it was decided not to include Cl or ³⁵Cl papers published before 1976. The exceptions to this rule are the two oldest sources mentioned in the introduction, Orphan⁴ and ENDF/B-VI¹⁰. Table 1 lists information for each source of data, including the authors of the paper or evaluation, the designation that will be used to refer to the data set, and the year the data were published. Also listed is the Q-value of the reaction (if given) that the authors measured and/or used to normalize the total gamma yield. Each of these sources will now be briefly discussed.

		Number of		Q-value	Target
Authors	Designation	$\gamma ext{-Rays}$	Year	(MeV)	Used
V. J. Orphan et al. ⁴	Orphan ^a	144	1970	8.5765^{b}	Cl
M. S. Allen and M. K. Drake ¹⁰	$ENDF/B-VI^{a}$	31	1967	7.9761°	Cl
M. A. Lone et al. ⁸	Lone ^a	449	1981		Cl
M. L. Stelts and R. E. Chrien ¹¹	Stelts	76	1978	8.57975^{d}	Cl
T. J. Kennett et al. ¹²	Kennett	234	1981	8.57982^{d}	Cl
A. M. J. Spits and J. Kopecky ¹³	Spits1	420	1976	8.57939^{d}	Cl
C. Coceva et al. ¹⁴	Coceva	24	1996		Cl
B. Krusche et al. ¹⁵	Krusche	400	1982	8.57968^{d}	Cle
A. M. J. Spits and J. A. Akkermans ⁹	Spits2	79	1973	6.1077^{f}	³⁷ Cl

Table 1: Listing of the data sources analyzed.

^aThese are compilations of experimental data. All others are experimental papers.

^bAbundance and cross-section weighted value for natural Cl (see Equation 1).

^cAbundance weighted value for natural Cl $(Q = \sum_{i} Q_i A_i)$.

^{*d*}Value is for 35 Cl (n, γ) ³⁶Cl.

^eContributions from ³⁷Cl were subtracted from the measured spectrum.

^fValue is for ${}^{37}Cl(n,\gamma){}^{38}Cl$.

Orphan: (1970)

The data set designated as Orphan⁴ was taken from a compendium of thermal neutron capture gamma-rays in 75 natural elements. Published in a 1970 Gulf General Atomic report, the data were taken at the MIT Thermal Capture Gamma-Ray Facility with a Ge(Li)-NaI spectrometer. The authors state that the spectral data were corrected for the spectrometer response, and that the gamma yields were normalized to ensure that the total radiated energy per capture equaled the abundance and cross-section weighted neutron separation energy (S_n) for Cl. This weighted S_n is just the sum of the neutron separation energies for ³⁵Cl and ³⁷Cl, each multiplied by its percent contribution to the Cl photon spectrum. Normalizing the total γ -yield to the neutron separation energy (the Q-value of the capture reaction) is a common practice to improve the accuracy of the measured γ -ray intensities. It is performed by setting the total radiated energy equal to the Q-value:

$$\sum_{i} E_i I_i = 100Q,\tag{2}$$

where E_i is the energy of the $i^{th} \gamma$ -ray, I_i is the number of photons per 100 captures of the $i^{th} \gamma$ -ray, and the sum is over all observed γ -rays. The factor required to balance Equation 2 is determined and the intensities of each γ -ray are normalized by that factor. If most transitions have been observed, this helps offset any systematic errors in the intensity measurements. Before this normalization the Orphan yield accounted for only 76.96% of the total Q-value of the $Cl(n,\gamma)$ reaction.

ENDF/B-VI: (1967)

The data set designated as ENDF/B-VI¹⁰ was taken from the sixth version of the ENDF/B data library. The actual data were obtained from the T-2 website at the URL "http://t2.lanl.gov/data/data/ENDF-VI/Cl/nat" (file 12, MT=102). This Evaluated Nuclear Data File dates back to 1967, and contains an apparent typographical error. One of the γ -rays listed has an energy of 79 keV and an intensity of 20.17 photons per 100 captures. No other source of data lists a γ -ray near that energy. Since the intensity of this line is close to the intensity resulting from the 786/788 keV doublet observed in most of the other data sources, this is most likely a typographical error.

Lone: (1981)

The data source designated as Lone⁸ was taken from a 1981 catalog of prompt γ -rays from thermal-neutron capture in natural elements. It is an evaluation based on experimental data published between 1968 and March 1980, and lists Orphan, Spits1, and Stelts as references for Cl. The authors state that the γ -ray energies are weighted averages of the references' energies, while the γ -ray intensities are unweighted averages of the references' intensities. Only γ -rays with relative intensities greater than 0.05% were included.

Stelts: (1978)

The paper designated as Stelts¹¹ measured the γ -ray spectrum of Cl following thermal neutron capture at the Brookhaven High Flux Beam Reactor. The neutrons were moderated by bismuth crystals, and NaCl-melamine and CCl₄ targets were used. Since the neutron source was a reactor, the incident neutrons had a Maxwellian energy distribution. The γ -ray spectrum was measured with a three-crystal Ge(Li)-NaI pair spectrometer, which was calibrated relative to the ¹⁴N(n, γ)¹⁵N spectrum measured by Greenwood and Helmer.¹⁶ The sum of the intensities of the 6111 keV, 6620 keV, 6628 keV, 7414 keV and 8679 keV lines were then normalized to the sum of the same line intensities measured by Spits1. The same normalization factor was used to normalize the remaining γ -ray intensities. Only γ -rays above 3.5 MeV were measured, and no attempt was made to determine a decay scheme. The authors only list "strong" γ -rays, but give no specific intensity cutoff.

Kennett: (1981)

The experiments by Kennett et al.¹² were performed at the tangential irradiation facility of the McMaster University Nuclear Reactor. A pair spectrometer was used to measure 234 lines from the ³⁵Cl(n,γ)³⁶Cl reaction. Only γ -rays with energies above 1.6 MeV were measured, and twelve of the transitions listed by Spits1 were not observed in this experiment. The detectors were calibrated relative to the ¹⁴N(n,γ)¹⁵N spectrum, which was measured previously by the same authors. Melamine (C₃H₆N₆) targets were used to measure the ¹⁵N spectrum, while NH₄Cl targets were used to measure the Cl spectrum. The decay scheme derived by the authors accounted for 98% of the total γ -ray intensity they observed, and from it they calculated the Q-value of the reaction. Finally, the γ -ray intensities were normalized to the Q-value (see Equation 2). Since γ -rays with energies below 1.6 MeV were not measured, lines below 1.6 MeV were taken from Spits1.

Spits1: (1976)

The experiments performed by Spits et al.¹³ (designated as Spits1) identified 420 γ -rays from Cl. The experiments were performed at the Petten high-flux reactor at the Reactor Centrum Nederland in Petten, the Netherlands. Polarized as well as unpolarized neutrons were used to aid in the determination of spin and parity assignments of ³⁶Cl energy levels. PbCl₂ targets in teflon tubes and a Ge(Li)-NaI pair spectrometer were used to measure the γ -ray spectra. Spectra of contaminants were taken and subtracted from the total measured spectrum, and strong γ -rays from the contaminants were used to calibrate the detectors. Of the 420 γ -rays observed, 236 were placed into a decay scheme which was used to calculate the Q-value of the reaction. The intensities of all γ -rays were then normalized to this Q-value.

Krusche: (1982)

The paper by Krusche et al.¹⁵ identified 400 γ -rays following thermal neutron capture in ³⁵Cl. The source of neutrons w

Spits2: (1973)

Finally, the earlier experiments of Spits et al.⁹ (designated as Spits2) measured γ -rays from both the ${}^{37}\text{Cl}(n,\gamma){}^{38}\text{Cl}$ and ${}^{35}\text{Cl}(n,\gamma){}^{36}\text{Cl}$ reactions. For both measurements a PbCl₂ target enriched to 96.05% ${}^{37}\text{Cl}$ was used. Despite the high content of ${}^{37}\text{Cl}$, capture in ${}^{35}\text{Cl}$ still contributed 59% of the total spectrum observed. The ${}^{35}\text{Cl}$ capture spectrum and measurements of contaminant spectra were subtracted to obtain the ${}^{37}\text{Cl}$ capture spectrum. Two Ge(Li) detectors identified 79 γ -ray transitions in ${}^{38}\text{Cl}$. A ${}^{38}\text{Cl}$ level scheme was determined and the Q-value of the reaction calculated. The measurements were performed at the High Flux Reactor located at the Reactor Centrum Nederland in Petten, the Netherlands. Lines from the ${}^{35}\text{Cl}(n,\gamma){}^{36}\text{Cl}$ reaction were used to calibrate the energies of the ${}^{37}\text{Cl}$ lines.

The 20 strongest lines from this experiment are listed in Table 4. Also listed are the intensity contributions each line would make to the spectrum of natural Cl. These were calculated by multiplying the intensity of each line by 0.0028, the fractional contribution to the Cl spectrum at incident thermal energies (see Equation 1).

III. Comparison Procedures

The first step in determining the recommended photon production spectrum for Cl focused on 20 of the strongest lines in each data set. The purpose of this first phase of analysis was to determine how well the data sets agreed with each other. To accomplish this, the 20 strongest γ -rays from Lone were identified. The corresponding lines in each of the other data sets (if measured) were then identified, and the data sets were compared on the basis of these matching lines.

Tables 2 and 3 list the matching lines for all of the sets containing data for Cl or ³⁵Cl. Note that some lines were not measured or listed by Orphan, Stelts, Kennett, and ENDF/B-VI. The 20 strongest lines following capture in ³⁷Cl, as well as their contribution to the photon production spectrum of natural Cl, are listed in Table 4. Note that the strongest line from ³⁷Cl contributes only 0.081 photons per 100 captures in Cl. In contrast, the weakest γ -ray from the other data sets is the 5575 keV line from ENDF/B-VI, which contributes ≈ 0.78 photons per 100 captures; nearly a factor of ten larger than the largest contribution from ³⁷Cl. Therefore, data from Spits2 were completely ignored in this first round of analysis.

Table 2: The strongest γ -ray lines for natural Cl and ³⁵Cl. I_{γ} is number of photons per 100 captures.

Orphan	(1970)	Lone (1	1981)	ENDF/	B-VI (1967)	Kennett	(1981)
E_{γ}	I_{γ}	E_{γ}	I_{γ}	E_{γ}	$\mathrm{I}_{oldsymbol{\gamma}}$	$\mathrm{E}_{oldsymbol{\gamma}}$	I_{γ}
(keV)		(keV)		(keV)		(keV)	
1951.3	27.77	1950.93	21.72			1951.07	20.39
6111.1	20.5	6110.88	20.00	6108.0	25.03	6111.0	20.96
1165.4	14.16	1164.72	19.93	1164.0	11.29	—	
518.3	14.29	516.73	18.5	520.0	24.53	—	
788.6	13.46	788.4	15.00			—	
1957.5	19.66	1959.13	14.62	1957.0	12.52	1959.2	13.41
7413.8	11.07	7413.8	10.42	7413.0	11.29	7414.17	10.69
		786.26	9.6			—	
7790.0	8.61	7790.16	8.55	7498.0	7.77	7790.4	8.69
6620.1	12.99	6619.53	8.01	6620.0	12.95	6619.79	8.31
2864.4	8.8	2863.94	6.93	2870.0	6.04	2863.93	6.63
5715.2	6.0	5715.26	5.5	5707.0	6.04	5715.3	5.68
		6627.64	4.54			6628.02	4.74
1600.6	5.63	1600.82	4.16	1598.0	2.59	1600.9	3.82
4980.0	4.96	4979.94	4.04	4971.0	4.32	4979.81	3.95
3062.2	4.85	3061.71	3.95			3061.8	4.01
8578.7	2.99	8578.36	2.91	8577.0	2.59	8578.7	2.84
2676.3	4.25	2675.96	2.58	2681.0	0.86	2676.18	2.06
6977.6	2.23	6977.66	2.26	6979.0	2.59	6978.09	2.4
5516.9	1.95	5517.34	1.73			5517.38	1.75

Table 3: The strongest γ -ray lines for natural Cl and ³⁵Cl continued. I_{γ} is number of photons per 100 captures.

Spits1 (1	1976)	Coceva	(1996)	Krusche (1982)	Stelts (1	.978)
E_{γ}	I_{γ}	E_{γ}	I_{γ}	E_{γ}	I_{γ}	E_{γ}	I_{γ}
(keV)		(keV)		(keV)		(keV)	
1950.99	18.7	1951.1	19.39	1951.145	20.2	—	
6111.39	19.7	6110.8	20.58	6110.848	20.2	6111.0	19.8
1164.74	25.7	1164.9	27.20	1164.874	27.7		
516.73	22.7	517.1	24.3	517.077	23.4		
788.41	15.0	788.4	16.32	788.432	16.9		
1959.19	12.1	1959.4	12.56	1959.358	12.9		
7414.5	10.0	7414.0	10.52	7413.953	10.4	7414.01	10.2
786.27	9.6	786.3	10.52	786.305	11.2		
7790.96	8.61	7790.3	8.31	7790.325	8.48	7790.4	8.43
6620.07	8.1	6619.6	7.83	6619.638	7.80	6619.76	7.92
2864.06	6.0	2863.8	5.77	2863.815	6.55		
5715.69	5.14	5715.2	5.31	5715.236	5.60	5715.4	5.35
6628.16	4.64	6627.8	4.69	6627.751	4.83	6627.95	4.43
1600.86	3.43	1601.1	3.484	1601.082	3.48	—	
4980.3	3.53	4979.7	3.616	4979.713	3.60	4979.95	3.62
3061.85	3.5	3061.9	3.521	3061.865	3.88	_	
8579.31	2.94	8578.6	2.739	8578.59	2.78	8578.65	2.79
2676.0	1.7	2676.3	1.572	2676.300	1.91		
6978.29	2.23	6977.8	2.29	6977.847	2.32	6977.85	2.33
5517.74	1.59	5517.2	1.689	5517.242	1.71	5517.46	1.64

E_{γ}	Measured	Contribution to Cl
(keV)	$\mathrm{I}\gamma$	$\mathrm{I} \gamma^b$
755.47	29.0	0.081
1692.15	21.1	0.059
4126.9	16.8	0.047
4490.6	15.1	0.042
4415.4	12.8	0.036
671.3 0	12.4	0.035
308.40	12.1	0.034
637.5	11.5	0.032
1980.93	9.9	0.028
3364.9	8.5	0.024
5352.3	7.6	0.021
862.4	6.7	0.019
1745.35	6.0	0.017
2214.55	5.8	0.016
1225.69	5.4	0.015
363.90	5.0	0.014
4362.1	4.7	0.013
1617.16	4.5	0.013
6108	3.3	0.009
2133.5	2.9	0.008

Table 4: The strongest γ -rays for ³⁷Cl.^{*a*} Intensities are number of photons per 100 captures.

^aMeasurements are from Spits2.

^bContribution to Cl spectrum calculated by multiplying I_{γ} by 0.0028.

A. Intensity Comparisons

The eight remaining data sets were first compared in pairs. For a given pair of data sets, the intensities of each matching line were examined. For each line, the ratio of the intensities from the two data sets was taken. If the intensities for that line agreed perfectly, the ratio of the two sets was 1.0. The degree of discrepancy between the two data sets for that particular line was defined to be the absolute value of their intensity ratio minus 1: $|\frac{I_1}{I_2} - 1|$. This quantity will be called the "intensity difference." The overall degree of discrepancy between the two sets was then defined to be the average "intensity difference" of the matching lines. The number of matching lines between data sets ranged from 20 (for example Lone vs. Coceva) down to 10 (for example Stelts vs. Kennett). The average intensity differences between all possible pairs of data sets are listed in Table 5. Note that smaller numbers indicate better agreement between sets.

Table 5 shows the degree to which each data set agrees with any other set. To get a better idea of how well any one data set agreed with *all the others*, the average of the numbers in

Data Sets	Average
Compared	Intensity Difference
Orphan / Lone	0.180
Orphan / Stelts	0.175
Orphan / Kennett	0.272
Orphan / Spits1	0.366
Orphan / Coceva	0.378
Orphan / Krusche	0.327
Orphan / ENDF/B-VI	0.541
ENDF/B-VI / Spits1	0.293
ENDF/B-VI / Kennett	0.254
ENDF/B-VI / Stelts	0.154
ENDF/B-VI / Lone	0.364
ENDF/B-VI / Krusche	0.220
ENDF/B-VI / Coceva	0.206
Coceva / Lone	0.125
Coceva / Spits1	0.045
Coceva / Kennett	0.078
Coveva / Krusche	0.039
Coceva / Stelts	0.022
Stelts / Lone	0.035
Stelts / Kennett	0.049
Stelts / Krusche	0.024
Stelts / Spits1	0.031
Spits1 / Lone	0.111
Spits1 / Krusche	0.061
Spits1 / Kennett	0.087
Kennett / Lone	0.054
Kennett / Krusche	0.040
Krusche / Lone	0.095

Table 5: Average intensity difference between pairs of data sets.

Table 5 was taken for each set. For example, the average of all values in Table 5 involving comparisons to Kennett was taken. The number obtained is a measure of how well the data from Kennett agrees with the data from all other sets. This quantity will be referred to as the "average intensity disagreement" of a particular data set. The average intensity disagreement for each set is listed in Table 6. Note once again that lower values represent better agreement with the other data sets.

Table 6 shows that data from ENDF/B-VI and Orphan disagree strongly with the majority of the data sets. The average intensity disagreement for most of the sets is between 0.115 and 0.142. The average ENDF/B-VI and Orphan disagreements are more than a factor of two larger. This does not truly show how poor the ENDF/B-VI data is, however. Note from Table 2 that the ENDF/B-VI evaluation does not include *six* of the 20 strongest lines from Lone, including *the strongest line*. Kennett and Stelts also do not include several of the 20 strongest lines from Lone, but that is simply because they did not measure γ -rays with energies below 1.6 MeV and 3.5 MeV, respectively.

The inferiority of ENDF/B-VI and Orphan can be emphasized by removing them from the comparisons. If we repeat the procedure used to generate Table 6, but exclude all ENDF/B-VI and Orphan comparisons, we obtain the values listed in Table 7. Also listed in Table 7 is the percent reduction in intensity disagreement when ENDF/B-VI and Orphan comparisons are removed. The percent reduction in intensity disagreement is defined as

percent reduction
$$\equiv |\frac{old - new}{old}| \cdot 100,$$
 (3)

where old is the intensity disagreement before removing the sets, and new is the disagreement after removal. Note that the average intensity disagreement between the remaining sets drops by roughly a factor of two. Clearly most of the intensity disagreement between sets resulted from the presence of Orphan and ENDF/B-VI.

Of the remaining data sets in Table 7, Lone disagrees the most. This is most likely due to the fact that Lone incorporated data from Orphan into its evaluation. Table 8 shows the effect of removing ENDF/B-VI, Orphan, and Lone from the comparisons. Note that the level of intensity disagreement drops for most data sets, but the drop is not nearly as strong as when the Orphan and ENDF/B-VI data are excluded. The level of intensity disagreement between the remaining sets is small and roughly constant for sets with all 20 lines.

B. Energy Comparisons

The energies of the matching γ -rays were also compared in a similar manner. Once again, the data sets were first compared in pairs. For each pair of data sets, the absolute value of the energy difference between matching γ -rays was computed: $\Delta E_{\gamma}^{i} = |E_{\gamma}^{1} - E_{\gamma}^{2}|$, where E_{γ}^{1} is the γ -ray energy from one data set, E_{γ}^{2} is from the other set, and *i* refers to the *i*th matching line. The average ΔE_{γ} was then calculated for each pair of data sets. These were in turn averaged to determine the "average energy disagreement" of each data set. For example, all comparisons to Kennett were averaged to determine how well Kennett's energies agreed with

	Average Intensity Disagreement
Data Set	With All Other Sets
Orphan	0.320
Spits1	0.142
Kennett	0.119
Lone	0.138
Stelts	0.070
Coceva	0.128
Krusche	0.115
ENDF/B-VI	0.290

Table 6: Average of values in Table 5.

Table 7: Average of values in Table 5, excluding ENDF/B-VI and Orphan.

	Average Intensity Disagreement	Percent Reduction
Data Set	With Remaining Sets	in Disagreement ^{b}
Spits1	0.067	53%
Kennett	0.062	48%
Lone	0.084	39%
Stelts	0.032	54%
Coceva	0.062	52%
Krusche	0.052	55%

 b Reduction in disagreement is with respect to the values in Table 6.

Table 8: Average of values in Table 5, excluding ENDF/B-VI, Orphan, and Lone.

	Average Intensity Disagreement	Percent Reduction
Data Set	With Remaining Sets	in $Disagreement^b$
Spits	0.056	17%
Kennett	0.064	-5%
Stelts	0.025	38%
Coceva	0.046	25%
Krusche	0.041	18%

^bNegative values indicate an *increase* in disagreement. Reduction is with respect to the values in Table 7.

the energies of the other sets. This "average energy disagreement" is exactly like the "average intensity disagreement" defined before, except that it measures how well the *energies* of matching lines in one set agree with the *energies* of matching lines in *all other sets*.

The average energy disagreement for each set is listed in Table 9. Since Coceva used the same energies measured by Krusche, comparisons with Coceva were eliminated since they would in effect be weighting the Krusche energy values twice. Note again that smaller values indicate better agreement with the other sets.

Once again we find extreme disagreement between ENDF/B-VI and all other sets of data. If we exclude the ENDF/B-VI data from the comparisons we obtain the average energy disagreements listed in Table 10. As before, the average energy disagreement drops dramatically when the ENDF/B-VI data is excluded. Of the remaining sets, Orphan and Spits1 disagree nearly twice as much as the other data sets. If they are excluded the level of disagreement again drops, and becomes very uniform, as shown in Table 11. It is interesting to note that, unlike in the intensity comparisons, Lone does not disagree much more than the other data sets. This is due to the fact that the energies quoted by Lone are *weighted averages* of the energies of Orphan, Spits1, and Stelts, whereas its intensities are unweighted averages.

C. Conclusions of Preliminary Analysis

Based on these simple comparisons the following conclusions have been drawn. First, the data in ENDF/B-VI and Orphan are unusable. The energies and intensities of their γ -rays disagree strongly with every other source of recent photon production data. Furthermore, they are both missing a great number of lines, with ENDF/B-VI missing some of the strongest lines but including other weaker ones. Second, while the compilation by Lone is much improved over Orphan, it probably should not be used as well. It includes data from Orphan, which is very low-quality, and also includes about 20 weak transitions not confirmed by recent experiments (Kennett and Krusche).

These conclusions eliminate the use of ENDF/B-VI, Orphan and Lone in determining a recommended photon production spectrum for Cl. Therefore, the six experimental papers Spits 1, Spits 2, Kennett, Stelts, Coceva, and Krusche have been analyzed line by line to generate a recommended photon production spectrum for Cl. Data from Spits 2 were simply weighted and inserted into the evaluation. Since ³⁷Cl contributes so little (< 0.3%) to the photon production of Cl, no older sources of ³⁷Cl(n, γ)³⁸Cl data were sought for evaluation. The other five papers contain photon production data for Cl or ³⁵Cl and were carefully compared in generating this evaluation.

D. Final Evaluation Procedure

In comparing the five remaining data sets, Krusche and Coceva were weighted heavily in deciding the energy and intensity of each line. This decision is based on several facts. First, Krusche (1982) and Coceva (1996) represent the latest experimental data that could be found. Second, the energy level uncertainties determined by Krusche are roughly a factor of

	Average Energy Disagreement
Data Set	With All Other Sets (keV)
Orphan	4.31
${ m Spits1}$	4.35
Kennett	4.79
Lone	4.22
\mathbf{Stelts}	6.77
Krusche	4.20
ENDF/B-VI	27.22

Table 9: Average energy disagreement of each set.

Table 10: Average energy disagreement of each set with ENDF/B-VI excluded.

	Average Energy Disagreement
Data Set	With Remaining Sets (keV)
Orphan	0.41
Spits1	0.38
Kennett	0.21
Lone	0.26
Stelts	0.21
Krusche	0.24

Table 11: Average energy disagreement of each set with ENDF/B-VI, Orphan, and Spits1 excluded.

	Average Energy Disagreement
Data Set	With Remaining Sets (keV)
Kennett	0.14
Lone	0.18
Stelts	0.13
Krusche	0.14

ten smaller than the uncertainties determined by all other authors. Coceva did not even try to improve on Krusche's energy measurements, and simply lists Krusche's energies in his paper. Third, the purpose of Coceva's paper was to establish an intensity standard based on transitions in Cl, and it seems that the efficiency and energy calibrations performed by Coceva were very accurate and precise. Coceva is also the only author to use compton-suppressed Ge detectors. For these reasons, the energies and intensities of the 24 lines listed by Coceva were used in the present evaluation.

To determine the energies and intensities of the remaining lines, a two-step procedure was used. First, γ -rays considered to match lines measured by Krusche were identified in each set. Lines from other data sets were considered a match if their energies and intensities agreed closely with Krusche. Since energy measurements are usually much more precise than intensity measurements, closely matching energies were considered a stronger indication of a match than closely matching intensities. For each matching line, the energies and intensities from each data set were then compared, and the values of E_{γ} and I_{γ} adopted were decided separately. The values from Krusche were used unless at least two other experimenters observed the γ -ray and the other experimenters' values agreed with each other, but disagreed substantially with Krusche. For the 12 such cases observed, a simple average of the other values was adopted for E_{γ} and/or I_{γ} . A simple average was used because all such cases included data from Kennett, for which energy and intensity uncertainties were not listed.

In the second step, lines not matching lines measured by Krusche were examined. Lines that only Krusche observed were included in the recommended spectrum. This decision is based on the assumed superiority of Krusche's measurements, as well as the fact that Krusche measured a much larger range of γ -ray energies than any other author. Lines observed by other experimenters but not Krusche were included if at least two other experimenters observed the line, and the experimenters' values were in decent agreement. In such cases a simple average of E_{γ} and/or I_{γ} was adopted for the line. Only 13 such lines were added.

IV. Recommended Photon Production Spectrum for Cl

Once the final spectrum was obtained, the total radiated energy per single neutron capture was calculated using Equation 2 and found to be 8.537299 MeV. Using the ${}^{35}\text{Cl}(n,\gamma){}^{36}\text{Cl}$ Q-value of Krusche and the ${}^{37}\text{Cl}(n,\gamma){}^{38}\text{Cl}$ Q-value of Spits2, the abundance and cross-section weighted Q-value for the $\text{Cl}(n,\gamma)$ reaction was determined to be 8.572759 MeV. Thus 99.6% of the total yield, based on these Q-values, is accounted for in the unnormalized spectrum.

The recommended photon production spectrum at incident thermal energies for Cl is listed in Table 12. The γ -ray intensities have been multiplied by 1.004153 to ensure that the total yield per capture equals 8.572759 MeV, the abundance and cross-section weighted Q-value. The source or combination of sources for each of the 482 γ -rays is also listed in Table 12.

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

$\mathrm{E}\gamma$	$I\gamma$	Source(s):	$\mathrm{E}\gamma$	$I\gamma$	Source(s):
keV		.,	keV	·	.,
85.743	0.0076	Krusche	441.000	0.0271	Krusche
89.838	0.0030	Krusche	444.490	0.0331	Krusche
90.028	0.0020	Krusche	447.848	0.0070	Krusche
108.740	0.0040	Krusche	455.670	0.0141	Krusche
111.546	0.0050	Krusche	455.968	0.0070	Krusche
115.424	0.0030	Krusche	459.570	0.0297	Krusche
133.558	0.0070	Krusche	462.253	0.0171	Krusche
137.195	0.0030	Krusche	463.699	0.0064	Krusche
151.159	0.0030	Krusche	465.270	0.0131	Krusche
204.373	0.0119	Krusche	466.060	0.0164	Krusche
212.726	0.0090	Krusche	466.625	0.0331	Krusche
225.526	0.0054	Krusche	468.359	0.0894	Krusche
225.871	0.0037	Krusche	468.765	0.0099	Krusche
236.710	0.0059	Krusche	478.690	0.0884	Krusche
241.334	0.0040	Krusche	485.868	0.0100	Krusche
272.760	0.0070	Krusche	495.891	0.0095	Krusche
279.435	0.0090	Krusche	502.309	0.0179	Krusche
288.600	0.0067	${ m Spits2}$	503.985	0.0158	Krusche
292.178	0.2641	Krusche	508.866	0.3515	Krusche
302.751	0.0068	Krusche	517.077	24.4009	Coceva
308.400	0.0340	${ m Spits2}$	532.906	0.1105	Krusche
308.722	0.0372	Krusche	537.667	0.0087	Krusche
337.617	0.0588	Krusche	539.600	0.0371	Krusche
340.270	0.0050	Krusche	554.000	0.0076	$_{ m Spits2}$
342.311	0.0176	Krusche	576.417	0.0042	Krusche
343.038	0.0080	Krusche	582.324	0.0102	Krusche
358.288	0.2209	Krusche	590.495	0.0040	Krusche
363.900	0.0141	${ m Spits2}$	595.840	0.0040	Krusche
369.281	0.0623	Krusche	602.839	0.0040	Krusche
371.562	0.0044	Krusche	616.152	0.0864	Krusche
376.425	0.0041	Krusche	619.040	0.0059	Krusche
422.060	0.0040	Krusche	622.940	0.0060	Krusche
427.534	0.0131	Krusche	628.941	0.0090	Krusche
427.855	0.0320	Krusche	630.556	0.0106	Krusche
428.239	0.0128	Krusche	632.438	0.3203	Krusche
435.969	0.1647	Krusche	637.500	0.0323	$\operatorname{Spits2}$
436.222	1.0544	Krusche	640.330	0.0157	Krusche

Table 12: Recommended photon production spectrum at incident thermal neutron energies
for natural Cl continued. Intensities are number of photons per 100 captures, and have been
normalized to give a total yield per capture of 8572.76 keV.

$E\gamma$	$I\gamma$	Source(s):	Eγ	$I\gamma$	Source(s):
keV	'		keV	/	
656.000	0.0068	Krusche	945.900	0.0022	Spits2
659.653	0.0131	Krusche	946.297	0.0241	Krusche
661.707	0.0211	Krusche	958.210	0.0056	$\operatorname{Spits2}$
663.429	0.0050	Krusche	958.559	0.0572	Krusche
665.636	0.0733	Krusche	968.173	0.0318	Krusche
671.300	0.0349	${ m Spits2}$	975.740	0.0173	Krusche
696.499	0.0142	Krusche	979.615	0.0338	Krusche
703.204	0.1145	Krusche	989.634	0.0412	Krusche
712.107	0.0050	Krusche	998.801	0.0335	Krusche
717.025	0.0171	Krusche	1020.497	0.0733	Krusche
723.105	0.0161	Krusche	1029.600	0.0062	$\operatorname{Spits2}$
723.200	0.0014	$_{ m Spits2}$	1034.261	0.3243	Krusche
727.999	0.0221	Krusche	1035.125	0.1235	Krusche
729.106	0.0064	Krusche	1035.892	0.0592	Krusche
735.578	0.0365	Krusche	1043.473	0.0994	Krusche
755.470	0.0815	${ m Spits2}$	1066.723	0.0884	Krusche
760.365	0.0239	Krusche	1068.720	0.0392	Krusche
780.660	0.0120	Krusche	1076.723	0.0318	Krusche
786.305	10.5637	Coceva	1086.662	0.0693	Krusche
788.432	16.3878	Coceva	1089.430	0.0332	Krusche
812.608	0.0683	Krusche	1095.720	0.0171	Krusche
832.080	0.1004	Krusche	1125.700	0.0031	$\operatorname{Spits2}$
841.901	0.0386	Krusche	1127.810	0.0382	Krusche
848.449	0.0301	Krusche	1131.247	1.9189	Coceva
859.420	0.1064	Krusche	1162.785	2.2995	Krusche
862.400	0.0188	${ m Spits2}$	1164.874	27.3130	Coceva
864.021	0.1225	Krusche	1170.922	0.5121	Krusche
865.395	0.0201	Krusche	1201.980	0.1165	Krusche
870.484	0.0157	Krusche	1225.700	0.0152	$\operatorname{Spits2}$
884.870	0.0191	Krusche	1230.846	0.1014	Krusche
886.795	0.0171	Krusche	1258.028	0.0602	Krusche
898.175	0.0191	Krusche	1264.600	0.0673	Krusche
904.508	0.0471	Krusche	1265.420	0.0833	Krusche
912.881	0.0964	Krusche	1273.100	0.0020	$\operatorname{Spits2}$
936.800	0.0048	$\operatorname{Spits2}$	1308.800	0.0028	$\operatorname{Spits2}$
936.921	0.5914	Krusche	1327.418	1.2753	Krusche
945.131	0.1396	Krusche	1372.855	0.3856	Krusche

$E\gamma$	$I\gamma$	Source(s):	$\mathrm{E}\gamma$	$I\gamma$	Source(s):
keV		()	keV		
1381.980	0.0415	Krusche	1869.600	0.0014	Spits2
1425.430	0.0713	Krusche	1912.300	0.0028	${ m Spits2}$
1434.010	0.0073	$\mathbf{Spits2}$	1936.961	0.4318	Krusche
1469.500	0.0014	$\mathbf{Spits2}$	1937.000	0.0022	${ m Spits2}$
1496.702	0.1717	Krusche	1941.700	0.0020	${ m Spits2}$
1510.750	0.1506	Krusche	1951.145	19.4705	Coceva
1515.626	0.0773	Krusche	1959.358	12.6122	Coceva
1517.056	0.0773	Krusche	1971.900	0.0008	${ m Spits2}$
1524.990	0.0803	Krusche	1975.610	0.6969	Krusche
1526.260	0.1336	Krusche	1980.930	0.0278	${ m Spits2}$
1528.610	0.1215	Krusche	1987.600	0.0020	${ m Spits2}$
1601.082	3.4985	\mathbf{Coceva}	1992.900	0.0045	${ m Spits2}$
1605.990	0.0613	Krusche	1996.330	0.2430	Krusche
1617.160	0.0127	$\mathbf{Spits2}$	2003.446	0.2038	Krusche
1623.320	0.1054	Krusche	2011.760	0.1165	Krusche
1626.985	0.2992	Krusche	2022.098	0.5202	Krusche
1640.116	0.4288	Krusche	2030.100	0.0014	${ m Spits2}$
1648.305	0.5262	Krusche	2034.600	0.0028	${ m Spits2}$
1654.320	0.0045	${ m Spits2}$	2034.634	0.7511	Krusche
1657.254	0.2370	Krusche	2041.150	0.5121	Spits1, Kennett
1679.761	0.2018	Krusche	2075.547	0.7933	Spits1, Kennett
1683.808	0.2259	Krusche	2091.819	0.2069	Krusche
1692.150	0.0593	${ m Spits2}$	2092.300	0.0011	${ m Spits2}$
1701.000	0.0014	${ m Spits2}$	2096.300	0.0051	${ m Spits2}$
1709.830	0.2099	Krusche	2110.247	0.2028	Krusche
1729.935	0.3454	Krusche	2133.220	0.0593	Krusche
1731.155	0.2199	Krusche	2133.500	0.0082	${ m Spits2}$
1743.148	0.2500	Krusche	2156.213	0.6818	Krusche
1745.350	0.0169	${ m Spits2}$	2179.529	0.2671	Krusche
1786.180	0.2179	Krusche	2200.118	0.3926	Krusche
1788.059	0.3756	Krusche	2201.100	0.0011	${ m Spits2}$
1806.421	0.1597	Krusche	2205.200	0.0034	${ m Spits2}$
1818.700	0.0006	${ m Spits2}$	2214.550	0.0163	${ m Spits2}$
1820.800	0.0025	${ m Spits2}$	2224.684	0.1657	Krusche
1828.501	0.3695	Krusche	2229.966	0.0618	Krusche
1847.575	0.1707	Spits1, Kennett	2231.312	0.3494	Krusche
1858.089	0.2902	Krusche	2235.363	0.1908	Krusche

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl continued. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

$\mathrm{E}\gamma$	$I\gamma$	Source(s):	$\mathrm{E}\gamma$	$I\gamma$	Source(s):
keV	·	. ,	keV		ζ,
2239.713	0.2430	Krusche	2588.415	0.1456	Spits1, Kennett
2245.200	0.0034	${ m Spits2}$	2592.465	0.1757	Spits1, Kennett
2246.213	0.1948	Krusche	2622.880	0.6356	Krusche
2248.900	0.0003	${ m Spits2}$	2639.057	0.1556	Krusche
2254.258	0.2380	Krusche	2647.600	0.2792	Krusche
2265.790	0.0627	Krusche	2653.490	0.0723	Krusche
2276.400	0.0014	${ m Spits2}$	2662.910	0.1115	Krusche
2282.861	0.1406	Krusche	2676.300	1.5785	\mathbf{Coceva}
2285.700	0.0065	${ m Spits2}$	2682.398	0.1587	Krusche
2289.887	0.3213	Spits1, Kennett	2698.620	0.0569	Krusche
2290.000	0.0014	${ m Spits2}$	2705.400	0.0039	${ m Spits2}$
2311.406	1.0945	Krusche	2711.618	0.1205	Spits1, Kennett
2326.025	0.2350	Krusche	2727.887	0.1356	Krusche
2342.270	0.0419	Krusche	2733.600	0.0003	${ m Spits2}$
2351.500	0.0031	${ m Spits2}$	2740.620	0.1275	Krusche
2355.890	0.1175	Krusche	2743.200	0.0042	${ m Spits2}$
2364.650	0.0587	Krusche	2753.010	0.1115	Krusche
2382.710	0.1496	Krusche	2797.986	0.2952	Krusche
2394.636	0.1566	Krusche	2800.846	0.6025	Spits1, Kennett
2407.284	0.1958	Krusche	2811.011	0.4840	Krusche
2418.553	0.5533	Krusche	2813.600	0.0025	${ m Spits2}$
2422.900	0.0053	${ m Spits2}$	2831.000	0.0006	${ m Spits2}$
2429.540	0.1667	Krusche	2845.498	1.2753	Krusche
2467.720	0.2882	Krusche	2863.815	5.7940	Coceva
2469.879	0.7340	Krusche	2867.160	0.6176	Krusche
2489.850	0.4569	Krusche	2871.407	0.3123	Krusche
2494.831	0.2079	Krusche	2876.640	0.5653	Krusche
2495.945	0.2310	Spits1, Kennett	2896.232	0.5553	Krusche
2524.670	0.1105	Krusche	2941.331	0.1295	Krusche
2527.944	0.2470	Krusche	2953.230	0.0638	Krusche
2537.255	0.4388	Krusche	2855.000	0.0037	${ m Spits2}$
2544.400	0.0011	${ m Spits2}$	2895.200	0.0048	${ m Spits2}$
2549.810	0.2922	Krusche	2955.120	0.0720	Krusche
2556.585	0.1205	Spits1, Kennett	2975.235	1.0503	Coceva
2567.462	0.1727	Krusche	2994.707	0.9138	Krusche
2569.000	0.0011	${ m Spits2}$	3001.067	0.6999	Krusche
2569.880	0.0703	Krusche	3015.985	1.1357	Krusche

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl continued. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

$\mathrm{E}\gamma$	$\mathrm{I}\gamma$	Source(s):	$\mathrm{E}\gamma$	$I\gamma$	Source(s):
keV			keV		
3025.240	0.0596	Krusche	3504.166	0.1998	Krusche
3040.230	0.0444	Krusche	3512.210	0.0775	Krusche
3051.000	0.0022	${ m Spits2}$	3526.850	0.0751	Krusche
3061.865	3.5356	Coceva	3538.400	0.0042	$\operatorname{Spits2}$
3067.840	0.1767	Krusche	3558.230	0.1727	Krusche
3086.280	0.0884	Krusche	3561.258	0.6959	Krusche
3105.760	0.1697	Krusche	3566.400	0.0025	$\operatorname{Spits2}$
3116.216	0.9981	Krusche	3566.611	0.3113	Krusche
3135.330	0.1163	Krusche	3581.900	0.1336	Krusche
3138.000	0.0065	${ m Spits2}$	3589.234	0.6075	Krusche
3151.790	0.0585	Krusche	3599.251	0.5412	Krusche
3159.680	0.0703	Spits1, Kennett	3604.112	0.4027	Krusche
3197.590	0.0904	Spits1, Kennett	3612.620	0.1095	Krusche
3202.100	0.0014	${ m Spits2}$	3621.670	0.1175	Krusche
3203.790	0.0753	Krusche	3627.270	0.1275	Krusche
3210.590	0.0586	Krusche	3634.480	0.2979	Spits1, Kennett, Stelts
3213.100	0.0028	${ m Spits2}$	3635.300	0.0045	$\operatorname{Spits}2$
3244.360	0.0992	Krusche	3645.580	0.0406	Krusche
3250.357	0.2561	Krusche	3660.230	0.2099	Krusche
3255.700	0.0372	Krusche	3683.900	0.0059	$\operatorname{Spits}2$
3271.480	0.1009	Krusche	3707.824	0.1828	Krusche
3291.880	0.0944	Krusche	3728.000	0.0440	Krusche
3295.850	0.0924	Krusche	3736.541	0.1978	Krusche
3311.710	0.0437	Krusche	3743.770	0.0962	Krusche
3316.363	0.2581	Krusche	3749.905	0.3103	Krusche
3333.090	0.8304	Krusche	3774.857	0.2644	Spits1, Kennett, Stelts
3349.747	0.2390	Krusche	3809.630	0.0510	Krusche
3364.900	0.0239	${ m Spits2}$	3821.581	1.0995	Krusche
3374.895	0.6025	Krusche	3825.530	0.8455	Krusche
3385.530	0.0423	Krusche	3860.180	0.1074	Krusche
3428.863	0.8987	Krusche	3893.000	0.00 3 9	$\operatorname{Spits} 2$
3435.890	0.1346	Krusche	3916.370	0.0688	Krusche
3457.440	0.0514	Krusche	3962.600	0.4084	Spits1, Kennett, Stelts
3458.400	0.0329	Krusche	3974.700	0.0056	$\operatorname{Spits} 2$
3470.060	0.1007	Krusche	3977.240	0.1265	Krusche
3489.730	0.0118	Krusche	3981.064	1.0323	Krusche
3500.378	0.3314	Krusche	3997.140	0.0690	Krusche

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl continued. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

Ē	$\mathrm{E}\gamma$	$I\gamma$	Source(s):	$\mathrm{E}\gamma$	$I\gamma$	Source(s):
	keV			keV		
	4003.265	0.0904	Spits1, Kennett	4547.473	0.4549	Krusche
	4028.054	0.1938	Krusche	4551.410	0.1315	Krusche
	4041.080	0.0849	Krusche	4558.080	0.0151	Krusche
	4054.226	0.6286	Krusche	4583.815	0.0703	Spits1, Kennett
	4061.048	0.2430	Krusche	4586.602	0.2731	Krusche
	4082.664	0.7883	Krusche	4591.850	0.0482	Krusche
	4086.620	0.0633	Krusche	4597.500	0.0485	Krusche
	4091.500	0.0303	Krusche	4616.436	0.6848	Krusche
	4097.900	0.0286	Krusche	4637.590	0.0140	Krusche
	4111.760	0.1007	Krusche	4652.900	0.0298	Krusche
	4126.900	0.0472	${ m Spits2}$	4683.510	0.0582	Krusche
	4138.456	0.3046	Spits1, Kennett, Stelts	4728.966	0.7049	Krusche
	4148.600	0.0110	Krusche	4735.100	0.0025	$\operatorname{Spits2}$
	4164.170	0.0770	Krusche	4747.140	0.0361	Krusche
	4165.500	0.0028	${ m Spits2}$	4753.310	0.1240	Krusche
	4169.200	0.0578	Krusche	4757.480	0.1371	Krusche
	4173.790	0.0206	Krusche	4791.440	0.0281	Krusche
	4192.300	0.0271	Krusche	4815.297		Krusche
	4205.140	0.1237	Krusche	4817.415	0.0653	Spits1, Kennett
	4264.010	0.0308	Krusche	4829.064	0.1948	Krusche
	4294.580	0.0426	Krusche	4884.850	0.0932	Krusche
	4298.384	0.3906	Krusche	4944.335	1.1116	Krusche
	4308.280	0.0429	Krusche	4945.195	0.6376	Krusche
	4355.000	0.1465	Krusche	4950.850	0.1597	Krusche
	4362.100	0.0132	$\operatorname{Spits2}$	4979.713	3.6310	Coceva
	4405.400	0.0028	$\operatorname{Spits2}$	4989.960	0.3103	Krusche
	4413.590	0.1757	Krusche	5000.550	0.0461	Krusche
	4415.400	0.0360	Spits2	5017.726		Krusche
	4416.110	0.1225	Krusche	5078.818	0.1526	Krusche
	4420.600	0.0365	Krusche	5088.050	0.0379	Krusche
	4422.700	0.0062	${ m Spits2}$	5109.250	0.0870	Krusche
	4440.399	1.0513	Coceva	5122.820	0.0347	Krusche
	4458.200	0.1062	Krusche	5142.120	0.1004	Spits1, Kennett
	4473.330	0.0271	Krusche	5150.195	0.2028	Krusche
	4490.600	0.0425	Spits2	5204.230	0.2059	Krusche
	4518.120	0.1556	Krusche	5246.189	0.2711	Krusche
	4524.866	0.4609	Krusche	5246.909	0.2711	Krusche

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl continued. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

Table 12: Recommended photon production spectrum at incident thermal neutron energies for natural Cl continued. Intensities are number of photons per 100 captures, and have been normalized to give a total yield per capture of 8572.76 keV.

$\mathrm{E}\gamma$	$I\gamma$	Source(s):
keV	I	()
5262.760	0.0989	Krusche
5352.300	0.0214	$\operatorname{Spits2}$
5372.350	0.0496	Krusche
5473.340	0.0861	Krusche
5517.202	1.6960	Coceva
5584.617	0.5382	Krusche
5603.867	0.3595	Krusche
5634.380	0.0572	Krusche
5702.630	0.4328	Krusche
5715.187	5.3321	Coceva
5733.480	0.5121	Krusche
5756.520	0.0803	Spits1, Kennett
5777.450	0.1677	Spits1, Kennett, Stelts
5902.700	1.1086	Coceva
5956.294	0.1918	Krusche
6051.160	0.0422	Krusche
6086.744	0.8475	Krusche
6108.000	0.0093	$\operatorname{Spits2}$
6110.848	20.6655	Coceva
6185.190	0.1235	Spits1, Kennett, Stelts
6252.990	0.0751	Krusche
6267.810	0.4428	Krusche
6339.720	0.0729	Krusche
6343.880	0.0599	Krusche
6378.945	0.1998	Krusche
6422.845	0.2792	Krusche
6487.040	0.1379	Krusche
6544.112	0.1541	Krusche
6619.638	7.8625	Coceva
6627.751	4.7095	Coceva
6641.980	0.1868	Krusche
6951.807	0.1585	Krusche
6977.847	2.2995	\mathbf{Coceva}
7377.380	0.0311	Krusche
7413.953	10.5637	Coceva
7558.210	0.0231	Krusche
7790.325	8.3445	Coceva
8578.590	2.7504	Coceva

V. Summary

This research note presents a recommended photon production spectrum at incident thermal energies for natural Cl. The recommended spectrum was generated by analyzing nine sets of photon production data. Six of the nine data sets represent the most recent experimental data that could be found, with the other three being compilations still in use. The analysis revealed that the two older compilations, ENDF/B-VI¹⁰ and Orphan⁴, are of extremely low-quality. Data from Lone⁸, the only other compilation, are of much higher-quality but still not adequate for some applications. The remaining six sets (all recent experimental papers) are of extremely high quality, and are in excellent agreement.

The recommended spectrum for Cl was based on these six experimental papers. The γ -ray energies and intensities from the most recent measurements (Coceva¹⁴ and Krusche¹⁵) were adopted most frequently. Coceva's 24 measured γ -rays were in excellent agreement with all other authors, and were adopted since they represented the most recent experimental data. The remaining lines in the recommended spectrum were taken from Krusche unless there were serious disagreements with other authors. For example, measurements from other authors were adopted if they agreed with each other, but disagreed substantially with Krusche. In such cases a simple average of the other authors' E_{γ} and/or I_{γ} was taken. Lines observed by Krusche but not other authors were included since Krusche's measurements covered the broadest γ -ray energy range, and appeared to be of higher quality. Lines observed by other authors but not by Krusche were included if at least two other experimenters observed the line, and were in decent agreement. In such cases a simple average of the other authors' E_{γ} and/or I_{γ} was taken. The intensities of γ -rays produced by thermal-neutron capture in an isotope of Cl were multiplied by the isotopes' fractional contribution to the total Cl photon spectrum (see Equation 1).

The resulting recommended γ -ray spectrum is listed in Table 12. The intensities have been normalized to give a total energy yield per neutron capture of 8572.76 keV. This is the abundance and cross-section weighted Q-value of the $Cl(n,\gamma)$ reaction as measured by Krusche and Spits2.⁹ Before normalization, the total yield was 99.6% of this Q-value.

The next task associated with ACTI is to assess the quality of photon production data for natural Chromium. As we have seen in the assessment of photon production data for Cl, experimental papers may be far superior to commonly used compilations. Therefore, the assessment of photon production data for Cr will involve comparisons of ENDF, the most recent work based on ENSDF data, and experimental data.

Acknowledgments

Many thanks must be given to Robert E. Seamon for helping find experimental papers and for providing useful discussions and answers to questions. Thanks also go to Robert C. Little for advice on how to perform the data comparisons, and for helping edit this document.

References

1 J. G. Conaway and S. C. Frankle (1993), "Summary Report for Fiscal Year 1993: Multispectral Nuclear Logging," Los Alamos National Laboratory Release, LA-UR-93-4538.

J. G. Conaway and J. Duray, ed. (1994), "Contaminant Detection Thresholds for the Multispectral Neutron Borehole Logging Method: Preliminary Report," Department of Energy report DOE/ID/12534-188 and Los Alamos National Laboratory Release LA-CP-94-183.

3 S. C. Frankle and J. G. Conaway, "MCNPTM Simulations for Identifying Environmental Contaminants Using Prompt Gamma-rays from Thermal Neutron Capture Reactions," submitted to the proceedings for the Third Topical Meeting on Industrial Radiation and Radioisotopes Measurements and Applications, LA-UR-97-692 (1996).

4 V. J. Orphan et al., Gulf General Atomic Incorporated, Report DASA 2570, GA-10248 (1970).

5 Joint Work Statement No. LA95J10236-A001, CRADA No. LA95C10236-A001, Computer Simulation in Support of Nuclear Well-Logging.

6 S. C. Frankle, "Problems with the Modified Photon Production Files," Los Alamos National Laboratory internal memorandum, XTM:SCF-96-61 (1996).

7 J. K. Tuli, "The Evaluated Nuclear Structure Data File, A Manual for Preparation of ap:SMPhrepF.

13 A. M. J. Spits and J. Kopecky, "The Reaction ${}^{35}Cl(n,\gamma){}^{36}Cl$ Studied with Non-Polarized and Polarized Thermal Neutrons," Nuclear Physics A264, 63, (1976).

14 C. Coceva et al., "Gamma Intensity Standard from Thermal Neutron Capture in ³⁵Cl," Nuclear Instruments and Methods in Physics Research A **378**, 511, (1996).

15 B. Krusche and K. P. Lieb, "Gamma Ray Energies and ³⁶Cl Level Scheme from the Reaction ³⁵Cl(n,γ)," Nuclear Physics A386, 245, (1982).

16 R. C. Greenwood and R. G. Helmer, Nucl. Instr. and Meth. 121 (1974) 385.

17 E. G. Kessler, Jr. R. D. Deslattes, A. Henins and W. C. Sauder, Phys. Rev. Lett. 40 (1978) 171; E. G. Kessler, Jr. R. D. Deslattes and A. Henins, Phys. Rev. A19 (1979) 215; R. D. Deslattes, E. G. Kessler, Jr. W. Sander and A. Henins, Ann. of Phys. 129 (1980) 378.

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.

Table 1: Photon-Production Spectrum for ³⁵CI

Thermal-neutron capture spectrum for 35 Cl based on a number of experimental papers. Total yield normalized to Q = 8.57968 MeV.

Number of gamma-rays 403

Egamma	Igamma	441.0	0.0272
(keV)	# per 100 Captures	444.5	0.0272
85.7	0.0076	447.8	0.0070
89.8	0.0030	455.7	0.0070
90.0	0.0020	456.0	0.0070
108.7	0.0040	459.6	0.0298
111.5	0.0050	462.3	0.0200
115.4	0.0030	463.7	0.0064
133.6	0.0070	465.3	0.0131
137.2	0.0030	466.1	0.0164
151.2	0.0030	466.6	0.0332
204.4	0.0119	468.4	0.0897
212.7	0.0090	468.8	0.0099
225.5	0.0054	478.7	0.0886
225.9	0.0037	485.9	0.0100
236.7	0.0059	495.9	0.0095
241.3	0.0040	502.3	0.0180
272.8	0.0070	504.0	0.0158
279.4	0.0090	508.9	0.3525
292.2	0.2648	517.1	24.4694
302.8	0.0068	532.9	0.1108
308.7	0.0373	537.7	0.0087
337.6	0.0590	539.6	0.0372
340.3	0.0050	576.4	0.0042
342.3	0.0176	582.3	0.0102
343.0	0.0080	590.5	0.0040
358.3	0.2215	595.8	0.0040
369.3	0.0625	602.8	0.0040
371.6	0.0044	616.2	0.0866
376.4	0.0041	619.0	0.0059
422.1	0.0040	622.9	0.0060
427.5	0.0131	628.9	0.0090
427.9	0.0321	630.6	0.0106
428.2	0.0128	632.4	0.3212
436.0	0.1652	640.3	0.0157
436.2	1.0574	656.0	0.0068

659.7	0.0131	1170.9	0.5135
661.7	0.0212	1202.0	0.1168
663.4	0.0050	1230.8	0.1017
665.6	0.0735	1258.0	0.0604
696.5	0.0142	1264.6	0.0675
703.2	0.1148	1265.4	0.0835
712.1	0.0050	1327.4	1.2789
717.0	0.0171	1372.9	0.3867
723.1	0.0161	1382.0	0.0416
728.0	0.0222	1425.4	0.0715
729.1	0.0064	1496.7	0.1722
735.6	0.0366	1510.8	0.1510
760.4	0.0240	1515.6	0.0775
780.7	0.0120	1517.1	0.0775
786.3	10.5934	1525.0	0.0805
788.4	16.4338	1526.3	0.1340
812.6	0.0685	1528.6	0.1218
832.1	0.1007	1601.1	3.5083
841.9	0.0387	1606.0	0.0615
848.4	0.0302	1623.3	0.1057
859.4	0.1067	1627.0	0.3000
864.0	0.1228	1640.1	0.4300
865.4	0.0202	1648.3	0.5277
870.5	0.0157	1657.3	0.2377
884.9	0.0192	1679.8	0.2024
886.8	0.0171	1683.8	0.2265
898.2	0.0192	1709.8	0.2105
904.5	0.0472	1729.9	0.3464
912.9	0.0967	1731.2	0.2205
936.9	0.5931	1743.1	0.2507
945.1	0.1400	1786.2	0.2185
946.3	0.0242	1788.1	0.3767
958.6	0.0574	1806.4	0.1601
968.2	0.0319	1828.5	0.3705
975.7	0.0173	1847.6	0.1712
979.6	0.0339	1858.1	0.2910
989.6	0.0413	1937.0	0.4330
998.8	0.0336	1951.1	19.5252
1020.5	0.0735	1959.4	12.6476
1034.3	0.3252	1975.6	0.6989
1035.1	0.1238	1996.3	0.2437
1035.9	0.0594	2003.4	0.2044
1043.5	0.0997	2011.8	0.1168
1066.7	0.0886	2022.1	0.5217
1068.7	0.0393	2034.6	0.7532
1076.7	0.0319	2041.2	0.5135
1086.7	0.0695	2075.5	0.7955
1089.4	0.0333	2091.8	0.2075
1095.7	0.0171	2110.2	0.2034
1127.8	0.0383	2133.2	0.0595
1131.2	1.9243	2156.2	0.6837
1162.8	2.3060	2179.5	0.2679
1164.9	27.3897	2200.1	0.3937

2224.7	0.1662	2876.6	0.5669
2230.0	0.0620	2896.2	0.5569
2231.3	0.3504	2941.3	0.1299
2235.4	0.1913	2953.2	0.0640
2239.7	0.2437	2955.1	0.0722
2246.2	0.1953	2975.2	1.0532
2254.3	0.2387	2994.7	0.9164
2265.8	0.0629	3001.1	0.7019
2282.9	0.1410	3016.0	1.1389
2289.9	0.3222	3025.2	0.0598
2311.4	1.0976	3040.2	0.0445
2326.0	0.2357	3061.9	3.5455
2342.3	0.0420	3067.8	0.1772
2355.9	0.1178	3086.3	0.0886
2364.7	0.0589	3105.8	0.1702
2382.7	0.1500	3116.2	1.0009
2394.6	0.1570	3135.3	0.1166
2407.3	0.1963	3151.8	0.0587
2418.6	0.5549	3159.7	0.0705
2429.5	0.1672	3197.6	0.0907
2467.7	0.2890	3203.8	0.0755
2469.9	0.7361	3210.6	0.0588
2489.9	0.4582	3244.4	0.0995
2494.8	0.2085	3250.4	0.2568
2495.9	0.2316	3255.7	0.0373
2524.7	0.1108	3271.5	0.1012
2527.9	0.2477	3291.9	0.0947
2537.3	0.4400	3295.9	0.0927
2549.8	0.2930	3311.7	0.0438
2556.6	0.1208	3316.4	0.2588
2567.5	0.1732	3333.1	0.8327
2569.9	0.0705	3349.7	0.2397
2588.4	0.1460	3374.9	0.6042
2592.5	0.1762	3385.5	0.0424
2622.9	0.6374	3428.9	0.9012
2639.1	0.1560	3435.9	0.1350
2647.6	0.2800	3457.4	0.0515
2653.5	0.0725	3458.4	0.0330
2662.9	0.1118	3470.1	0.1010
2676.3	1.5829	3489.7	0.0118
2682.4	0.1591	3500.4	0.3323
2698.6	0.0571	3504.2	0.2004
2711.6	0.1208	3512.2	0.0777
2727.9	0.1360	3526.9	0.0753
2740.6	0.1279	3558.2	0.1732
2753.0	0.1118	3561.3	0.6979
2798.0	0.2960	3566.6	0.3122
2800.8	0.6042	3581.9	0.1340
2811.0	0.4854	3589.2	0.6092
2845.5	1.2789	3599.3	0.5427
2863.8	5.8103	3604.1	0.4038
2867.2	0.6193	3612.6	0.1098
2871.4	0.3132	3621.7	0.1178

3627.3	0.1279	4586.6	0.2739
3634.5	0.2987	4591.9	0.0483
3645.6	0.0407	4597.5	0.0486
3660.2	0.2105	4616.4	0.6867
3707.8	0.1833	4637.6	0.0140
3728.0	0.0441	4652.9	0.0299
3736.5	0.1984	4683.5	0.0584
3743.8	0.0965	4729.0	0.7069
3749.9	0.3112	4747.1	0.0362
3774.9	0.2651	4753.3	0.1243
3809.6	0.0511	4757.5	0.1375
3821.6	1.1026	4791.4	0.0282
3825.5	0.8479	4815.3	0.1552
3860.2	0.1077	4817.4	0.0655
3916.4	0.0690	4829.1	0.1953
3962.6	0.4095	4884.9	0.0935
3977.2	0.1269	4944.3	1.1147
3981.1	1.0352	4945.2	0.6394
3997.1	0.0692	4950.9	0.1601
4003.3	0.0907	4979.7	3.6412
4028.1	0.1943	4990.0	0.3112
4020.1	0.0851	5000.6	0.0462
4054.2	0.6304	5000.0	0.4682
4054.2	0.2437	5078.8	0.4082
4081.0	0.7905	5078.8	0.0380
4082.7 4086.6		5109.3	0.0380
4088.8	0.0635 0.0304	5122.8	
4091.5	0.0304	5122.8	0.0348
4097.9	0.1010	5142.1	0.1007 0.2034
4111.0	0.3055	5150.2 5204.2	0.2034
4148.6	0.0110	5246.2	0.2719
4164.2	0.0772	5246.9	0.2719
4169.2	0.0580	5262.8	0.0992
4173.8	0.0207	5372.4	0.0497
4192.3	0.0272	5473.3	0.0863
4205.1	0.1240	5517.2	1.7008
4264.0	0.0309	5584.6	0.5397
4294.6	0.0427	5603.9	0.3605
4298.4	0.3917	5634.4	0.0574
4308.3	0.0430	5702.6	0.4340
4355.0	0.1469	5715.2	5.3471
4413.6	0.1762	5733.5	0.5135
4416.1	0.1228	5756.5	0.0805
4420.6	0.0366	5777.5	0.1682
4440.4	1.0543	5902.7	1.1117
4458.2	0.1065	5956.3	0.1923
4473.3	0.0272	6051.2	0.0423
4518.1	0.1560	6086.7	0.8499
4524.9	0.4622	6110.8	20.7235
4547.5	0.4562	6185.2	0.1238
4551.4	0.1319	6253.0	0.0753
4558.1	0.0151	6267.8	0.4440
4583.8	0.0705	6339.7	0.0731

6343.9	0.0601	6951.8	0.1589
6378.9	0.2004	6977.8	2.3060
6422.8	0.2800	7377.4	0.0312
6487.0	0.1383	7414.0	10.5934
6544.1	0.1545	7558.2	0.0232
6619.6	7.8846	7790.3	8.3679
6627.8	4.7227	8578.6	2.7581
6642.0	0.1873		

Table 2: Photon-Production Spectrum for ³⁷CI

Thermal-neutron capture spectrum for 37 Cl based on a number of experimental papers. Total yield normalized to Q = 6.10783 MeV.

Number of gamma-rays 79

Egamma	Igamma	2201.1	0.4019
(keV)	# per 100 Captures	2205.2	1.2058
288.6	2.4117	2214.6	5.8282
308.4	12.1589	2245.2	1.2058
363.9	5.0243	2248.9	0.1005
554.0	2.7131	2276.4	0.5024
637.5	11.5560	2285.7	2.3112
671.3	12.4604	2290.0	0.5024
723.2	0.5024	2351.5	1.1054
755.5	29.1412	2422.9	1.9092
862.4	6.7326	2544.4	0.4019
936.8	1.7083	2569.0	0.4019
945.9	0.8039	2705.4	1.4068
958.2	2.0097	2733.6	0.1005
1029.6	2.2107	2743.2	1.5073
1125.7	1.0049	2813.6	0.9044
1225.7	5.4263	2831.0	0.2010
1273.1	0.7175	2855.0	1.3063
1308.8	1.0049	2895.2	1.7083
1434.0	2.6127	3051.0	0.8039
1469.5	0.5024	3138.0	2.3112
1617.2	4.5219	3202.1	0.5024
1654.3	1.6078	3213.1	1.0049
1692.2	21.2027	3364.9	8.5414
1701.0	0.5024	3538.4	1.5073
1745.4	6.0292	3566.4	0.9044
1818.7	0.2010	3635.3	1.6078
1820.8	0.9044	3683.9	2.1102
1869.6	0.5024	3893.0	1.4068
1912.3	1.0049	3974.7	2.0097
1937.0	0.8039	4126.9	16.8818
1941.7	0.7034	4165.5	1.0049
1971.9	0.3015	4362.1	4.7229
1980.9	9.9482	4405.4	1.0049
1987.6	0.7034	4415.4	12.8623
1992.9	1.6078	4422.7	2.2107
2030.1	0.5024	4490.6	15.1735
2034.6	1.0049	4735.1	0.9044
2092.3	0.4019	5352.3	7.6370
2096.3	1.8088	6108.0	3.3161
2133.5	2.9141		

Table 3: Photon-Production Spectrum for Natural CI

Thermal-neutron capture spectrum for natural Chlorine based on a number of experimental papers, documented in XTM-RN(U)97-008. The data from XTM-RN(U)97-008 have been slightly revised. The data are normalized to a cross-section and atom-fraction weighted Q-value of 8.57194 MeV.

Number of gamma-rays 482

Egamma	Igamma		
keV	# per 100 captures		
85.7	0.0076	455.7	0.0141
89.8	0.0030	456.0	0.0070
90.0	0.0020	459.6	0.0297
108.7	0.0040	462.3	0.0170
111.5	0.0050	463.7	0.0064
115.4	0.0030	465.3	0.0131
133.6	0.0070	466.1	0.0163
137.2	0.0030	466.6	0.0331
151.2	0.0030	468.4	0.0894
204.4	0.0119	468.8	0.0099
212.7	0.0090	478.7	0.0883
225.5	0.0054	485.9	0.0100
225.9	0.0037	495.9	0.0095
236.7	0.0059	502.3	0.0179
241.3	0.0040	504.0	0.0158
272.8	0.0070	508.9	0.3514
279.4	0.0090	517.1	24.3927
288.6	0.0076	532.9	0.1105
292.2	0.2640	537.7	0.0087
302.8	0.0068	539.6	0.0371
308.4	0.0382	554.0	0.0085
308.7	0.0372	576.4	0.0042
337.6	0.0588	582.3	0.0102
340.3	0.0050	590.5	0.0040
342.3	0.0175	595.8	0.0040
343.0	0.0080	602.8	0.0040
358.3	0.2208	616.2	0.0863
363.9	0.0158	619.0	0.0059
369.3	0.0623	622.9	0.0060
371.6	0.0044	628.9	0.0090
376.4	0.0041	630.6	0.0106
422.1	0.0040	632.4	0.3202
427.5	0.0131	637.5	0.0363
427.9	0.0320	640.3	0.0157
428.2	0.0128	656.0	0.0068
436.0	0.1647	659.7	0.0131
436.2	1.0541	661.7	0.0211
441.0	0.0271	663.4	0.0050
444.5	0.0331	665.6	0.0733
447.8	0.0070	671.3	0.0392

696.5	0.0142	1127.8	0.0382
703.2	0.1144	1131.2	1.9183
712.1	0.0050	1162.8	2.2988
717.0	0.0170	1164.9	27.3039
723.1	0.0160	1170.9	0.5119
723.2	0.0016	1202.0	0.1164
728.0	0.0221	1202.0	0.0171
729.1	0.0064	1230.8	0.1014
735.6	0.0365	1258.0	0.0602
755.5	0.0916	1264.6	0.0673
760.4	0.0239	1265.4	0.0832
780.7	0.0120	1273.1	0.0023
786.3	10.5602	1308.8	0.0032
788.4	16.3823	1327.4	1.2749
812.6	0.0683	1372.9	0.3855
832.1	0.1004	1382.0	0.0415
841.9	0.0386	1425.4	0.0713
848.4	0.0301	1434.0	0.0082
859.4	0.1064	1469.5	0.0016
862.4	0.0212	1496.7	0.1717
864.0	0.1224	1510.8	0.1505
865.4	0.0201	1515.6	0.0773
870.5	0.0157	1517.1	0.0773
884.9	0.0191	1525.0	0.0802
886.8	0.0170	1526.3	0.1336
898.2	0.0191	1528.6	0.1214
904.5	0.0471	1601.1	3.4973
912.9	0.0964	1606.0	0.0613
936.8	0.0054	1617.2	0.0142
936.9	0.5912	1623.3	0.1054
945.1	0.1396	1627.0	0.2991
945.9	0.0025	1640.1	0.4287
946.3	0.0241	1648.3	0.5260
958.2	0.0063	1654.3	0.0051
958.6	0.0572	1657.3	0.2370
968.2	0.0318	1679.8	0.2018
	0.0172	1683.8	0.2018
975.7 070 c			
979.6	0.0338	1692.2	0.0667
989.6	0.0412	1701.0	0.0016
998.8	0.0335	1709.8	0.2098
1020.5	0.0733	1729.9	0.3453
1029.6	0.0070	1731.2	0.2198
1034.3	0.3242	1743.1	0.2499
1035.1	0.1234	1745.4	0.0190
1035.9	0.0592	1786.2	0.2178
1043.5	0.0994	1788.1	0.3755
1066.7	0.0883	1806.4	0.1596
1068.7	0.0392	1818.7	0.0006
1076.7	0.0318	1820.8	0.0028
1086.7	0.0693	1828.5	0.3693
1089.4	0.0332	1847.6	0.1707
1095.7	0.0170	1858.1	0.2901
1125.7	0.0032	1869.6	0.0016

1912.3	0.0032	2382.7	0.1495
1937.0	0.4316	2394.6	0.1565
1937.0	0.0025	2407.3	0.1957
1941.7	0.0022	2418.6	0.5532
1951.1	19.4640	2422.9	0.0060
1959.4	12.6080	2429.5	0.1667
1971.9	0.0009	2467.7	0.2881
1975.6	0.6967	2469.9	0.7338
1980.9	0.0313	2489.9	0.4568
1987.6	0.0022	2494.8	0.2078
1992.9	0.0051	2495.9	0.2309
1996.3	0.2429	2524.7	0.1105
2003.4	0.2038	2527.9	0.2469
2011.8	0.1164	2537.3	0.4386
2022.1	0.5201	2544.4	0.0013
2030.1	0.0016	2549.8	0.2921
2034.6	0.0032	2556.6	0.1204
2034.6	0.7508	2567.5	0.1727
2041.2	0.5119	2569.0	0.0013
2075.5	0.7930	2569.9	0.0703
2091.8	0.2068	2588.4	0.1455
2092.3	0.0013	2592.5	0.1756
2096.3	0.0057	2622.9	0.6354
2110.2	0.2028	2639.1	0.1555
2133.2	0.0593	2647.6	0.2791
2133.5	0.0092	2653.5	0.0723
2156.2	0.6816	2662.9	0.1114
2179.5	0.2671	2676.3	1.5779
2200.1	0.3925	2682.4	0.1586
2201.1	0.0013	2698.6	0.0569
2205.2	0.0038	2705.4	0.0044
2214.6	0.0183	2711.6	0.1204
2224.7	0.1657	2727.9	0.1356
2230.0	0.0618	2733.6	0.0003
2231.3	0.3493	2740.6	0.1275
2235.4	0.1907	2743.2	0.0047
2239.7	0.2429	2753.0	0.1114
2245.2	0.0038	2798.0	0.2951
2246.2	0.1947	2800.8	0.6023
2248.9	0.0003	2811.0	0.4839
2254.3	0.2380	2813.6	0.0028
2265.8	0.0627	2831.0	0.0006
2276.4	0.0016	2845.5	1.2749
2282.9	0.1406	2855.0	0.0041
2285.7	0.0073	2863.8	5.7921
2289.9	0.3212	2867.2	0.6174
2290.0	0.0016	2871.4	0.3122
2311.4	1.0942	2876.6	0.5651
2326.0	0.2350	2895.2	0.0054
2320.0	0.0419	2896.2	0.5552
2351.5	0.0035	2941.3	0.1295
2355.9	0.1174	2953.2	0.0638
2364.7	0.0587	2955.1	0.0720

2975.2	1.0499	3612.6	0.1095
2994.7	0.9135	3621.7	0.1174
3001.1	0.6997	3627.3	0.1275
3016.0		3634.5	0.2978
	1.1353		
3025.2	0.0596	3635.3	0.0051
3040.2	0.0444	3645.6	0.0406
3051.0	0.0025	3660.2	0.2098
3061.9	3.5344	3683.9	0.0066
3067.8	0.1766	3707.8	0.1827
3086.3	0.0883	3728.0	0.0440
3105.8	0.1697	3736.5	0.1978
3116.2	0.9978	3743.8	0.0962
3135.3	0.1162	3749.9	0.3102
3138.0	0.0073	3774.9	0.2643
3151.8	0.0585	3809.6	0.0509
3159.7	0.0703	3821.6	1.0991
3197.6	0.0904	3825.5	0.8452
3202.1	0.0016	3860.2	0.1074
3203.8	0.0753	3893.0	0.0044
3210.6	0.0586	3916.4	0.0688
3213.1	0.0032	3962.6	0.4082
3244.4	0.0992	3974.7	0.0063
3250.4	0.2560	3977.2	0.1265
3255.7	0.0372	3981.1	1.0320
3271.5	0.1009	3997.1	0.0690
3291.9	0.0944	4003.3	0.0904
3295.9	0.0924	4028.1	0.1937
3311.7	0.0437	4020.1	0.0848
3316.4	0.2580	4054.2	0.6284
3333.1	0.8301	4061.0	0.2429
3349.7	0.2389	4082.7	0.7880
3364.9	0.0269	4086.6	0.0633
3374.9	0.6023	4091.5	0.0303
3385.5	0.0423	4097.9	0.0286
3428.9	0.8984	4111.8	0.1007
3435.9	0.1346	4126.9	0.0531
3457.4	0.0513	4138.5	0.3045
3458.4	0.0329	4148.6	0.0110
3470.1	0.1007	4164.2	0.0770
3489.7	0.0118	4165.5	0.0032
3500.4	0.3313	4169.2	0.0578
3504.2	0.1998	4173.8	0.0206
3512.2	0.0775	4192.3	0.0271
3526.9	0.0751	4205.1	0.1236
3538.4	0.0047	4264.0	0.0308
3558.2	0.1727	4294.6	0.0426
3561.3	0.6957	4298.4	0.3905
3566.4	0.0028	4308.3	0.0429
3566.6	0.3112	4355.0	0.1464
3581.9	0.1336	4362.1	0.0148
3589.2	0.6073	4405.4	0.0032
3599.3	0.5410	4413.6	0.1756
3604.1	0.4025	4415.4	0.0404
000-1.1	0.7020	T-101 T	0.0404

4416.1	0.1224	5204.2	0.2059
4420.6	0.0365	5246.2	0.2710
4422.7	0.0070	5246.9	0.2710
4440.4	1.0510	5262.8	0.0989
4458.2	0.1062	5352.3	0.0240
4473.3	0.0271	5372.4	0.0495
4490.6	0.0477	5473.3	0.0860
4518.1	0.1555	5517.2	1.6955
4524.9	0.4608	5584.6	0.5380
4547.5	0.4548	5603.9	0.3594
4551.4	0.1315	5634.4	0.0572
4558.1	0.0151	5702.6	0.4326
4583.8	0.0703	5715.2	5.3303
4586.6	0.2730	5733.5	0.5119
4591.9	0.0481	5756.5	0.0802
4597.5	0.0484	5777.5	0.1677
4616.4	0.6845	5902.7	1.1082
4637.6	0.0140	5956.3	0.1917
4652.9	0.0298	6051.2	0.0422
4683.5	0.0582	6086.7	0.8472
4729.0	0.7047	6108.0	0.0104
4735.1	0.0028	6110.8	20.6586
4747.1	0.0361	6185.2	0.1234
4753.3	0.1239	6253.0	0.0751
4757.5	0.1371	6267.8	0.4426
4791.4	0.0281	6339.7	0.0729
4815.3	0.1547	6343.9	0.0599
4817.4	0.0653	6378.9	0.1998
4829.1	0.1947	6422.8	0.2791
4884.9	0.0932	6487.0	0.1379
4944.3	1.1112	6544.1	0.1540
4945.2	0.6374	6619.6	7.8599
4950.9	0.1596	6627.8	4.7079
4979.7	3.6298	6642.0	0.1867
4990.0	0.3102	6951.8	0.1584
5000.6	0.0461	6977.8	2.2988
5017.7	0.4667	7377.4	0.0311
5078.8	0.1525	7414.0	10.5602
5088.1	0.0379	7558.2	0.0231
5109.3	0.0869	7790.3	8.3417
5122.8	0.0347	8578.6	2.7495
5142.1	0.1004		
5150.2	0.2028		