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Abstract  

 

 

 

Displacement cross-sections for an advanced assessment of radiation damage rates 

were obtained for a number of structural materials irradiated with protons at energies 

from threshold up to 10 GeV.  

 The proposed calculation method utilises an athermal recombination-corrected 

dpa model with corrections obtained from simulations using the binary collision 

approximation model. Justification of the method was performed using available 

measured and systematics data. 
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1. Introduction 

 

A reliable estimate of the radiation damage rate of materials irradiated with nucleons 

is a challenging task relating to accelerator facilities, spallation neutron sources and 

accelerator driven units [1,2]. Such estimate takes on special significance for the next 

generation of medium- and high- energy accelerators [3]. 

 The NRT model [4] is traditionally used for the calculation of radiation damage 

rates in structural materials. Its relative simplicity and implementation in popular 

codes (NJOY, MCNPX) makes possible to perform the evaluation of the number of 

defects produced under the irradiation without much hassle. At the same time, 

available experimental data [5-7] and more rigorous calculations show the difference 

with NRT estimations. It makes essential the calculation of displacement cross-

sections for structural materials using advanced models, which predictions are close 

to available measurements.  

 The recently proposed alternative to the NRT model the athermal 

recombination-corrected dpa (arc-dpa) model [8,9] and the method of derivation of 

model parameters [10] makes possible the use of results of molecular dynamics 

simulations (MD) and available measured data for improved calculation of atomic 

displacement cross-sections and radiation damage rates in materials. Taking into 

account the potential value and prospects of application of the arc-dpa approach, the 

calculation of displacement cross sections using the method [8] is of great interest. 

The relative simplicity of the method and the availability of parameters for different 

materials [10] distinguish the use of the model [8] from the direct application of the 

results of MD modeling, as was done in the works [11-13]. 

 The aim of the present work is the calculation of displacement cross-sections 

for a number of structural materials of special importance [1,2] using the arc-dpa 

model [8] and the discussion of the possible improvement of the model for a 

successful evaluation of displacement cross sections in a wide energy range of 

incident particles. 

 The method of calculation is briefly discussed in Section 2. Section 3 presents 

results of calculations.  
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2. Method of calculation 

 

2.1 Number of stable displacements  

 

According to the arc-dpa concept the number of stable defects produced under 

irradiation can be parameterized in the following form [8,9] 
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0.8

︵T ︶T when 2E / 0.8 T
2E

 
  
   
 
   
 

, (1) 

where Tdam is the “damage energy” [6], i.e. the energy available to produce atom 

displacement by elastic collision [4] calculated using the Robinson formula [14], Ed is 

the displacement energy averaged over all lattice directions [7]. The defect 

generation efficiency arcdpa in Eq.(1) is approximated as following [8,9] 
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where barcdpa and carcdpa are parameters. 

 The Ed values were taken for Al equal to 27 eV [6], for Fe 40 eV [6], for Cu 33 

eV [8], and for W 70 eV [8]. The following barcdpa, and carcdpa values were adopted for 

calculations, correspondingly, for Al: −0.82, 0.443 [10,16], for Fe: −0.568, 0.286 [8], 

for Cu: −0.68, 0.16 [8], and for W: −0.564, 0.119 [8,15].  

 Eq.(1) and (2) were applied to correct simulations performed using the binary 

collision approximation model (BCA) by analogy with combined BCA-MD calculations 

described in Refs.[11-13]. The idea of such simulation is to "cut off" the BCA 

modelling at certain energy of the moving ion Tcrit and calculate the number of 

defects formed at energies below Tcrit using the results of MD simulation or arc-dpa 

model. In the present work the Tcrit value was assumed equal to the kinetic energy of 

the ion corresponding to the Tdam of 40 keV, as well as in the BCA-MD calculations 

[11-13]. 

 The BCA calculations were performed using the IOTA code [17], developed in 

KIT, Karlsruhe, and for comparison using the SRIM code [18]. In both cases the 

estimation of the number of stable displacements below Tcrit was performed using 

Eq.(1) and (2). Calculations using the IOTA code were performed with default input 
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variables using the Lindhard et al approach (LNS) [19] with parameters from Ref.[20]. 

Details can be found in Refs.[12,21]. The brief explanation of the SRIM simulations 

using results of MD modelling or arc-dpa calculation is given in Ref.[17]. 

 Figure 1 and 2 show the efficiency of defect generation [6] calculated for Fe+Fe 

and O+Fe irradiation. The systematics data (Fig.1) and experimental points (Fig.2) 

were obtained using results of measurements in Ref.[5]. 

 The data in Fig.1 and 2 shows the agreement between arc-dpa-BCA 

calculations performed using IOTA and SRIM, measured data and systematics. An 

essential difference from pure arc-dpa predictions is observed at ion energies above 

200-400 keV. The influence of these energies on calculated displacement cross-

sections is discussed in Section 3. In order to simplify the use of the obtained results 

(Fig.1), the efficiency calculated using the arc-dpa-BCA method for Fe-Fe irradiation 

can be approximated as following: 
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where T is the kinetic energy of Fe-ion in MeV, Ed= 40 eV,  barcdpa= -0.568, carcdpa= 

0.286 [8], Tcrit = 0.075 MeV, and the fitting parameters αi are as follows: α1=7.0410-4, 

α2 = -0.0195, α3 =0.442 

 The expression Eq.(3) repeats Eq.(2) below the critical kinetical energy of ion 

Tcrit and at higher energies approximates the increasing value of arcdpa (Fig.1) 

predicted by the IOTA calculations. 

 

2.2 Displacement cross-section  

 

The displacement cross-section is calculated using the following expression [22]  

max
i

d

T
p T T i i i

d p d T T i i i i
i iE

d (E ,Z ,A ,Z ,A ,T)
(E ) N (Z ,A ,Z ,A ,T)dT

dT


    (4) 

where Ep is the incident particle energy; dσ/dTi is the kinetic energy distribution of i-th 

primary knock-on atom (PKA), where i refers to elastic scattering or nuclear reaction ; 

Z and A are the atomic and the mass numbers, “T” and “i” relates to the target and 

the recoil atom, correspondingly, for the elastic scattering Zi = ZT, Ai = AT; Nd is the 
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number of stable displacements; max
iT  is the maximal kinetic energy of the PKA 

produced in i-th reaction; the summation is over all recoil atoms produced by the 

irradiation. 

 The calculation of elastic component of d is discussed in Refs.[11-13]. The 

energy distribution of recoils produced in proton elastic scattering contains 

contributions of screened Coulomb scattering, the nuclear scattering and their 

interference. The LNS formula [19,21] with parameters obtained by Winterbon et al 

Ref.[20] was applied for dσ/dT calculation at proton incident energies below several 

MeV. At higher energies, calculations were performed using the optical model with 

parameters of Koning and Delaroche [23] and Madland [24]. Above 500 MeV dσ/dT 

was calculated using the relativistic formula [25,26]. Fig.3 shows a typical example of 

the elastic component of d calculated using different approaches. Various 

calculations “pass one into another”, just in the area of their joint applicability [11], 

which simplifies the evaluation of the elastic part of the displacement cross-section. 

 The contribution of nonelastic nuclear processes to d was calculated using the 

CEM03 code [27]. Due to a special combination of models implemented in the code, 

CEM03 can be used to simulate nuclear processes in the energy range from several 

MeV to several GeV. 

 Fig.4 shows a typical contribution of elastic and nonelastic processes to the 

displacement cross-section. The contribution of elastic scattering dominates at 

relatively low proton energies below 20 MeV, with increasing energy it is inferior to 

nonelastic processes, which become dominant at energies above 100 MeV. 

 

3. Results and discussion 

 

Displacement cross-sections were calculated using different approaches for the 

evaluation of the number of stable displacements Nd: i) Eqs.(1),(2) were applied for 

all energies of recoil atoms produced under irradiation, ii) the combined arc-dpa-BCA 

simulation applying the IOTA code was used to get Nd values, as discussed in 

Section 2.1, iii) Nd was calculated using the standard NRT model with the threshold 

energies Ed described above.  

 Figs.5-8 show calculated displacement cross-sections and data from Refs.[28-

30]. Results of measurements for tungsten [29] were renormalized using the Frenkel 

pair resistivity (FP) equal to 27  m [6,12]. Data shown in figures as “Jung (83)” 
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were obtained from the analysis of integral experiments in Ref.[28] and normalized 

using the following FP values: Al: 3.7 [6], Fe: 24.6 [6], Cu: 2.0 [29,30], and W: 27  

m [6].  

 Figures show the good agreement between the arc-dpa Eq.(1),(2) and arc-dpa- 

BCA calculations for Al at all proton incident energies, and for Fe, Cu, and W at 

proton energies below 20-50 MeV. At higher energies, the results of arc-dpa-BCA 

calculations are in better agreement with experimental data for Cu and W (Fig.7,8). 

The cross sections calculated using the NRT model exceed the results of both 

calculations at almost all proton energies. 

 At energies below 20 MeV, the d values calculated using the arc-dpa model 

are in good agreement with the data [28] for all materials except copper (Fig. 7). One 

possible explanation is the likely inconsistency of data [28] for copper, since the NRT 

calculations are close to the data [28] (Fig.7), and on the other hand, the work [28] 

applies the value of effective threshold energy for copper equal to 100 eV [28], which 

should result to about three times smaller displacement cross-sections comparing 

with NRT-calculations. See details in Ref.[6]. 

 At relatively low proton energies, below 20 MeV, and for Al for all energies, the 

use of Eq.(1),(2) without BCA correction is quite reasonable.  

 The agreement of the arc-dpa-BCA calculations with the experimental data for 

copper and tungsten [29,30] are arguments in favour of using this calculation method 

to obtain the number of stable defects. Such agreement with measurements at 

proton energies above 100 MeV is observed apparently only for calculations with 

taking into account the increase of defect generation efficiency in consistence with 

systematics and measured data [5] (Fig.1,2). 

 Displacement cross sections obtained using arc-dpa model combined with BCA 

calculations as described in Section 2.1 were recorded in ENDF-6 format and 

processed using the NJOY code [31]. The data can be downloaded on Ref.[32]. 

 

4. Conclusion  

 

Displacement cross-sections were calculated for proton irradiation of aluminium, iron, 

copper, and tungsten at proton incident energies from threshold up to 10 GeV. The 

number of stable defects was estimated using the arc-dpa model with corrections 

obtained using BCA calculations.  
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 Data obtained [32] can be used for an advanced evaluation of radiation damage 

rates for examined materials.  

 The proposed calculation method can be used to obtain displacement cross 

sections for other materials from beryllium to uranium, for which model parameters 

are available [10]. 
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Fig.1 The ratio of the number of stable defects calculated with the IOTA code and 
the SRIM code using arc-dpa formulas Eq.(1),(2), and estimated using the 
systematics [5] to the number of defects predicted by the NRT model for 
Fe+Fe irradiation, and approximate curve Eq(3). See explanations in the text.  
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Fig.2 The same as in Fig.1 for O+Fe irradiation. Experimental values are derived 
from Ref.[5] with Ed values equal to 40 eV.  
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Fig.3 Displacement cross-section for elastic proton scattering on Fe calculated using 
the LNS formula with parameters from Ref.[19], the optical model with 
parameters from Ref.[23] (“Koning”) and Ref.[24] (“Madland”), and relativistic 
formula [25,26] and the final estimated data. See explanations in the text.  

 
 

 

Fig.4 The contribution of elastic scattering and nonelastic nuclear processes to the 
total displacement cross-section for p+Fe irradiation.  

 
 



Nucl. Instr. Meth. B431 (2018), pp.55-58 

14 

 

 

 

Fig.5 Displacement cross-section for Al irradiated with protons calculated using the 
arc-dpa model, Eq(1),(2), combined arc-dpa – BCA approach, and the NRT 
model. Points are obtained from analysis of integral experiments in Ref.[28]. 
See details in the text. 

 
 

 

Fig.6 The same as in Fig.5 for p+Fe irradiation.  
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Fig.7 The same as in Fig.5 for p+Cu irradiation. Measured data are from 
Refs.[29,30]. 

 
 
 
 

 

Fig.8 The same as in Fig.5 for p+W irradiation. Measured data are from Ref.[29]. 
 
 


