

NUCLEAR DATA SERVICES

DOCUMENTATION SERIES OF THE IAEA NUCLEAR DATA SECTION

IAEA-NDS-0023 Rev.3 1974

ENDF/B-4

GENERAL PURPOSE FILE

1974

Summary of Contents and Documentation

Abstract

This document summarizes contents and documentation of the 1974 version of the General Purpose File of the ENDF/B Library maintained by the National Nuclear Data Centre (NNDC) at the Brookhaven National Laboratory. USA. The Library contains numerical neutron reaction data for 90 isotopes or elements. The entire Library or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section.

0. Schwerer

March 1980 Revised April 1980 Revised May 1983 Revised December 1989

The file was revised to conform with ENDF/B format standards. The merged file was corrected for format errors to ensure, as far as possible, format compatibility.

Nuclear Data Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna Austria e-mail: services@iaeand.iaea.org fax: (43-1) 26007 cable: INATOM VIENNA telex: 1-12645 telephone: (43-1) 2600-21710 Web: http://www-nds.iaea.org

Note:

The IAEA-NDS-reports should not be considered as formal publications. When a nuclear data library is sent out by the IAEA Nuclear Data Section, it will be accompanied by an IAEA-NDS-report which should give the data user all necessary documentation on contents, format and origin of the data library.

IAEA-NDS-reports are updated whenever there is additional information of relevance to the users of the data library .

For citations care should be taken that credit is given to the author of the data library and/or to the data center which issued the data library .The editor of the IAEA-NDS-report is usually not the author of the data library .

Neither the originator of the data libraries nor the IAEA assume any liability for their correctness or for any damages resulting from their use.

96/11

Citation guideline:

ENDF/B-4

General Purpose File

This is the 1974 version of the ENDF/B Library. For 90 materials all relevant cross sections and differential data (angular and energy distributions) of all relevant neutron-induced reactions are given in the energy range 10-5 eY to 20 KeY.

The entire library has 216885 records. it can be sent out on a single magnetic tape.

Using a density of 1600 bpi

Note that for the following ENDF/B files the more recent ENDF/B-5 version (1979) is available from IAEA-NDS:

ENDF/B-5 Standards File (¹H, ³He, ⁶Li, ¹⁰B, ¹²c, ¹⁹⁷Au, ²³⁵U), see IAEA-NDS-15

ENDF/B-5 Dosimetry File (dosimetry reactions), see IAEA-NDS-24

ENDF/B-5 Fission Product File. see IAEA-NDS-25

ENDF/B-5 Actinides File, see IAEA-NDS-13

In Table 3 (page 5) the materials included in the ENDF/B-4 General Purpose File, their accession numbers (=MAT) and authors are listed.

<u>Note:</u> The ENDF/B-4 version distributed by the IAEA Nuclear Data Section before 1982 contained some mistakes that were corrected in the beginning of 1983.

The ENDF/B-4 Library is now available in two versions. The normal version contains data in the form of resonance parameters. In the version "ENDF/B-4-R" the resonance parameters have been converted by the code 'RECENT' to cross-sections as functions of energy assuming a temperature of O°K.

This version has a size of 1.053.950 records requiring four magnetic tapes using a density of 1600 bpi and a blocking factor of 60.

Table 1 lists the tape lengths for the 4 parts of the "reconstructed file" for various combinations of density and blocking factor. Because of the large extent of the reconstructed version of the library requestors are encouraged to request specifically the material(s) needed and not necessarily the whole file.

TABLE 1

ENDF/8-IV GENERAL PURPOSE LIBRARY RECONST) FILE

TABLE SHOWING LENGTH OF TAPE REQUIRED (IN FEET) FOR SPECIFIED DENSITIES AND BLOCKING FACTORS.

				IN YORK MADE AND AND ANY LODG AND LARS AND AND	
DENSITY (BFI) 	BLOCKING FACTOR	PART 1 (MAT RANGE) 1027-1139) 227830 RECORDS	PART 2 (MAT RANGE) 1141-1196) 259278 RECORDS	FART 3 (MAT RANGE 1197-1275) 316204 RECORDS	PART 4 (MAT RANGE) 1276-1297) 250638 RECORDS
6250	20	812	925	1128	894
1	40	527	601	733 .	581
	60	433	493	600	476
1 1600	20	1 1518	1728	2108	1671
	1 40	1 1234	1404	1713	1358
	60	1 1139	1296	1581	1253
800	20	1 2468 *	2808 *	3425 *	2715 * 1
1.46	. 40	2183	2485 *	3130 *	2402 *
1	60	1 2088	2376	2899 *	2279

* STANDARD LARGE TAPE HAS 2400 FEET.

It should also be noted that in the reconstructed file, the usual limit of 5000 points per reaction type introduced in many processing programs, is far exceeded in many cases. Table 2 lists the number of points for the most important reaction types.

TABLE 2

ENDF/B-IV GENERAL PURPOSE LIBRARY RECONSTRUCTED FILE

decision and and and	SUMMARY	OF FOINT	COUNTS		
MATERIAL	MAT	TOTAL	ELASTIC	FISSION	CAPTURE
					2750
62-SM-149	1027	7283	8590	0	4700
64-GD- 0	1030	5/2/	3267	0	0/77
66-DY-164	1031	673	24.3	0	4451
71-LU-175	1032	3771	3202		5336
71-LU-176	1033	4/01	DALA	41	8040
92-0 -234	1043	7156	8404	5170	5000
94-PU-238	1050	3868	1027	20043	3344
95-AM-241	1056	3338	1117	207-13	2054
95-AM-243	1057	2473	1117	1	8124
75-KE-182	1083	5300	7470	0	65:29
10-KE-187	11004	JEIV	5452	ő	271
1-H - 2	1120	44400	72174	ő	74086
45-KH-103	1120	99907	1202	0	2596
7.3-1A-162	1120	10774	24400	ő	22727
74w -182	1120	17524	10405	0	14571
74-W -183	1129	13028	12075		14211
74-W -184	1130	1107/	14000	0	14711
74-W -186	1131	11936	10772	0	4557
43-10- 99	1137	2984	4040	0	14700
47-AG-107	1138	9412	0042	0	19377
47-AG-109	11.39	1.1.3.51	8377	0	17700
55-CS-133	5 1141	29564	23052	0	48709
2-HE- 3	5 1146	301	1500	0	454
17-CL- (1.149	1084	1062	0	906
19-K - C	1150	1476	1412	0	2074
11-NA- 2.	5 1156	2924	2430	0	1.410
5-B - 11	- 1160	000	308	00	0710
94-FU-24	1161		12040	15000	14018
96-CM-244	116	11.636	12067	1.0876	12707
92-0 -236	5 1163	6008	7310	42	12501
1-H	5 1167	070		0	1.4.71
. 54-XE-124	4 1170	877	100	0	1004
54-XE-126	5 1.171	432	184	0	7050
54-XE-128		2074	14050		21274
54-XE-12	1173	15043	14007	0	21210
54-XE-130) 1174	2240	2300	0	17747
54-XE-13		9210	1010		1724
54-XE-13	2 1170	70%	1017	0	004
54-XE-13	4 117	308	32ª		417
54-XE-130	5 1178	5 37	00		825
36-68- 7	8 118.	0.00	701		1244
36-KR- 8	0 118.	2 852	700		P244
36-KK- 8.	2 118.	070	277		1285
36-KK- 8	3 1184	+ B/7	1107		1440
36-KK- 8	4 118;	905	1177		7 741
36-KK- B	6 1180	428	2240		EAA17
41-NB- 9	3 118	27/6/	20230		15110
28-NI-	0 1190	10307	7317		10510
24-CR-	0 119	1 12040	11025		19009
26-FE-	0 1193	6616	5424		0020
13-AL- 2	7 119	3 1800	1800		272
14-51-	0 119	4 1326	1233		1000
20-CA-	0 119	1910	1841		7 1775
23-0 -	0 119	5 2401	2303	, (133

TABLE 2 (continued)

			er 141 mer mer wer ant war v		
CAFTURE	FISSION	ELASTIC	TOTAL	MAT	MATERIAL
2634	0	4385	4491	1197	DE-MN- EE
14506	Ő	10184	10452	1100	27-00- 50
4302	3483	1094	3077	1240	02-11 -277
12396	11235	3847	10018	1260	02-11 -235
139599	1973	69416	90984	1242	92-11 -238
30050	28203	10757	23775	1247	07-NE-277
21551	16594	11817	16500	1260	94-FU-2%9
71103	49143	80143	63111	1245	94-PU-240
4208	3575	1473	3371	1266	94-F11-241
311	0	74	107	1269	1-1 - 1
0	0	81	81	1270	2-HF- 4
284	0	99	331	1271	3-11- 6
268	0	100	182	1272	3-11- 7
0	0	132	354	1273	5 - B - 10
207	0	308	262	1274	6-0 - 12
310	0	852	942	1275	7-N - 14
321	0	1035	983	1276	8-0 - 16
1815	0	318	209	1277	9-F - 19
466	0	796	800	1280	12-MG- 0
8721	0	2826	4130	1281	48-CD- 0
4812	0	2258	2819	1282	48-CD-113
32987	0	21.084	22708	1283	79-AU-197
17941	0	8917	9655	1284	IRCALLOY-2
20781	0	12249	16143	1285	73-TA-181
389	0	898	1042	1286	22-TI- 0
11312	0	3213	5316	1287	42-M0- 0
5165	0	485	534	1288	82-FB- 0
157	0	51	68	1289	4-BE- 9
14252	0	8592	13228	1290	63-EU-151
12067	0	6267	10729	1291	63-EU-153
11244	0	6847	10662	1292	63-EU-152
9573	0	5015	8820	1293	63-EU-154
498	0	303	394	1294	54-XE-135
5917	0	5306	5457	1295	29-CU- 0
85670	108	70110	64941	1:296	90-1H-232
6766	98	2206	5640	1297	91-FA-233

Sym	Mat	Lab	Author	Reviewer
н	1269	LASL	Stewart	Howerton
2 ₁ H	1120	BNW	Leonard	
3 ₁ H	1169 °	LASL	Stewart	
3 2 ^{He}	1146 °	LASL	Stewart	
4 2 ^{He}	1270 °	LASL	Nisley	
⁶ 3Li	1271	LASL	Labauve	Leonard
7 3 ^{Li}	1272 °	LASL	Labauve	Howerton
9 4 ^{Be}	1289	LLL	Howerton	Weisbin
10 5 ^B	1273	LASL	Hale	Leonard
11 5 ^B	1160 °	GE, BNL	Cowan	D.T.S.
12 6 ^C	1274	ORNL	Perey	Labauve
14 7 ^N	1275	LASL	Young	Labauve
16 8 ⁰	1276	LASL	Young	Labauve
19 9 ^F	1277	ORNL	Perey	Grimesy
23 _{Na}	1156	WARD	Paik	D.T.S.
12 ^{Mg}	1280	SAI	Drake	Fu
27 13 ^{A1}	1193	LASL	Young	Roussin
14 ^{Si}	1194	ORNL	Perey	Bhat
17 ^{C1}	1149 °	GGA	Allen	D.T.S.
19 ^K	1150 °	GGA	Drake	D.T.S.

Sym	Mat	Lab	Author	Reviewer	
22 ^{Ti}	1286	LLL	Howerton	Roussin	
23 ^V	1196	ORNL	Penny	Young	
24 ^{Cr}	1191	BNL	Prince	Maerker	
55 25 ^{Mn}	1197	BNL	Takahashi	Roussin	
26 ^{Fe}	1192	ORNL	Perey	Stewart	
59 27 ^{Co}	1199	BNL	Krieger	Cobb	
28 ^{Ni}	1190	BNL	Bhat	Maerker	
29 ^{Cu}	1295	SAI	Drake	Perey	
78 36 ^{Kr}	1181	BNL	Prince	Livolsi	
80 36 ^{Kr}	1182	BNL	Prince	Livolsi	
82 36 ^{Kr}	1183	BNL	Prince	Livolsi	
83 36 ^{Kr}	1184	BNL	Prince	Livolsi	
84 36 ^{Kr}	1185	BNL	Prince	Livolsi	
86 36 ^{Kr}	1186	BNL	Prince	Livolsi	
Zirc-2 *	1284	BNW	Leonard	Cobb	
93 41 ^{Nb}	1189 °	ANL	Smith	Muir	
42 ^{Mo}	1287	LLL	Howerton	Roussin	
99 43 ^{TC}	1137	B+W	Livolsi	D.T.S.	
103 45 ^{Rh}	1125	B+W	Livolsi	D.T.S.	
107 47 ^{Ag}	1138	BNL	Bhat	D.T.S.	
109 47 ^{Ag}	1139	BNL	Bhat	D.T.S.	
48 ^{Cd}	1281 °	UK, BNL	Pearlstein	Wheeler	
113 48 ^{Cd}	1282	UK, BNL	Pearlstein	Wheeler	

		- 7 -			
Sym	Mat	Lab	Author	Reviewer	
 124 54 ^{Xe}	1170	BNL	Bhat	Schenter	
126 54 ^{Xe}	1171	BNL	Bhat	Schenter	
128 54 ^{Xe}	1172	BNL	Bhat	Schenter	
129 54 ^{Xe}	1173	BNL	Bhat	Schenter	
130 54 ^{Xe}	1174	BNL	Bhat	Schenter	
131 54 ^{Xe}	1175	BNL	Bhat	Schenter	
132 54 ^{Xe}	1176	BNL	Bhat	Schenter	
134 54 ^{Xe}	1177	BNL	Bhat	Schenter	
135 54 ^{Xe}	1294	BNW	Leonard	D.T.S.	
136 54 ^{Xe}	1178	BNL	Bhat	Schenter	
133 55 ^{Cs}	1141	BNL	Bhat	D.T.S.	
149 62 Sm	1027	BNW	Leonard	D.T.S.	
151 63 ^{Eu}	1290	BNL	Takahashi	Schenter	
152 63 ^{Eu}	1292	BNL	Takahashi	Schenter	
153 63 ^{Eu}	1291	BNL	Takahashi	Schenter	
154 63 ^{Eu}	1293	BNL	Takahashi	Schenter	
64 ^{Gd}	1030	ANL	Pennington	D.T.S.	
164 66 ^{Dy}	1031 °	BNW	Leonard		
175 71 ^{Lu}	1032 °	BNW	Leonard		
176 71 ^{Lu}	1033 °	BNW	Leonard		
181 73 ^{Ta}	1285 °	LLL	Howerton	Young	

Sym	Mat	Lab	Author	Reviewer
 182 73 ^{Ta}	1127 °	AI	Otter	
182 _W	1128 °	AI,LASL	Alter	
183 74 ^W	1129 °	AI, LASL	Alter	
184 74 ^W	1130 °	AI,LASL	Alter	
186 74 ^W	1131 °	AI, LASL	Alter	
185 75 ^{Re}	1083 °	GE	Henderson	D.T.S.
187 75 ^{Re}	1084 °	GE	Henderson	D.T.S.
197 79 ^{Au}	1283	BNL	Goldberg	Leonard
82 ^{Pb}	1288	ORNL	Perey	Livolso
232 90 Th	1296	B+W	Wittkopf	Mathews
233 91 ^{Pa}	1297	BAPL	Young	D.T.S.
233 92 ⁰	1260	BAPL	Weston	
234 92 ^U	1043	GGA	Drake	D.T.S.
235 92 ^U	1261	TASK F.	Stewart	Hutchins
236 92 ^U	1163	SRL	Mccrosson	D.T.S.
238 _U 92 ^U	1262	TASK F.	Paik	Stewart
237 93 ^{Np}	1263	ANC, LASL	Smith	Carlson
238 94 ^{Pu}	1050	AI	Alter	D.T.S.
239 94 ^{Pu}	1264	TASK F.	Hutchins	Paik
240 94 ^{Pu}	1265	TASK F.	Hummel	Mccrosson
241 94 ^{Pu}	1266	TASK F.	Hummel	Hunter

Sym	Mat	Lab	Author	Reviewer	
 242 94 ^{Pu}	1161	AI, ANC	Alter	D.T.S.	
241 95 ^{Am}	1056	ANC	Smith	D.T.S.	
243 95 ^{Am}	1057	ANC	Smith	D.T.S.	
244 96 ^{Cm}	1162	AI, ANC	Alter	D.T.S.	

Zirc-2 = Zircalloy

 $^{\circ}$ = These evaluations were included in ENDF/B-V (1979) unchanged or with minor modifications only; they are listed in the Summary Documentation of ENDF/B-V with evaluation dates of 1974 or earlier.

Documentation:

D. Garber, ENDF/B Summary Documentation, Report BNL-17541 (= ENDF-201, 2nd edition), October 1975.

Summaries are contained also in the file itself at the beginning of each material.

For a number of materials there are more detailed documentaions available in separate reports (for these references see BNL-17541 and CINDA).

Data tabulations, graphical plots and characteristic cross-section values (thermal, l/E, Watt-spectrum) see also H.Ch. Rieffe, H.J. Nolthenius, report RCN-75-157, Petten, Dec. 1975.

ENDF/B-IV format:

A complete description of the ENDF/B-IV format, including all physical definitions required for the processing of more complicated data types (e.g. differential data) is given in the report BNL-NCS- 50496 (ENDF-102), October 1975.

For quick reference of the ENDF/B format (File Numbers and Reaction Type Numbers of the most important data types) see the document IAEA-NDS-I0.

Note: Listings of all ENDF/B format data can also be requested in "edited format". Such listings provide all necessary quantity headings, units, etc. and are self-explanatory.