				RECENT
PROGRAM				RECENT
		== (OCTOBER 1979)	CDC-7600	RECENT RECENT
				RECENT
) IMPROVED TREATMENT OF UNRESOLVED	
		(REGION TO COMPUTE ALL REACTIONS AT	
			THE SAME TIME.	RECENT
VERSION	81-1	(MARCH 1981)	IMPROVED BASED ON USER COMMENTS.	RECENT
ERSION	81-2	(AUGUST 1981)	ADDED MONITOR MODE. ADDED SPEED OPTION	RECENT
			TO BYPASS BACKWARDS THINNING IF FILE 3	RECENT
			ALLOWABLE ERROR = 0.0 (NOTE THIS OPTION	
			WILL RESULT IN ALL TABULATED POINTS	
			FROM THE EVALUATION BEING KEPT IN THE	
	00 1		•	RECENT
		•		RECENT RECENT
LESION	03-1		*PAGE SIZES INCREASED.	RECENT
			*ELIMINATED COMPUTER DEPENDENT CODING.	
			*NEW, MORE COMPATIBLE I/O UNIT NUMBERS	
			*ADDED OPTION TO KEEP ALL RECONSTRUCTED	
			AND BACKGROUND ENERGY POINTS.	RECENT
			*ADDED STANDARD ALLOWABLE ERROR OPTIONS	SRECENT
			(CURRENTLY 0.1 PER-CENT RECONSTRUCTION	NRECENT
				RECENT
				RECENT
		•	IMPROVED INTERVAL HALFING CONVERGENCE	
ERSION	85-1	(APRIL 1985)	*A BRAND NEW PROGRAM WHICH COMPLETELY	
			SUPERCEDES ALL PREVIOUS VERSIONS OF	
				RECENT
			*UPDATED FOR ENDF/B-6 FORMATS. *ADDED GENERAL REICH-MOORE FORMALISM	RECENT
			(WITH TWO FISSION CHANNELS).	RECENT
			*DECREASED RUNNING TIME.	RECENT
				RECENT
			ACCURACY OF ENERGY.	RECENT
		;	*DOUBLE PRECISION TREATMENT OF ENERGY	
			(REQUIRED FOR NARROW RESONANCES).	RECENT
			*FORTRAN-77/H VERSION	RECENT
				RECENT
ERSION	86-2	(JUNE 1986)		RECENT
			BACKGROUND IS PRESENT ADD RESONANCE	
		(0000000 100C)		RECENT
/ERSION	86-3	(OCTOBER 1986)	*MULTI-LEVEL OR REICH-MOORECORRECT POTENTIAL SCATTERING CROSS SECTION FO	
			MISSING AND/OR FICTICIOUS (L,J)	RECENT
			SEQUENCES.	RECENT
ERSION	87-1	(JANUARY 1987)	*IMPROVED COMBINING FILE 2+3	RECENT
			*CORRECTED ADLER-ADLER CALCULATIONS.	RECENT
			*UPDATED REICH-MOORE ENDF/B-6 FORMAT	
			TO BE THE SAME AS REICH-MOORE FORMAT	
			IN EARLIER VERSIONS OF ENDF/B FORMAT.	RECENT
			*CHECK FOR PRELIMINARY ENDF/B-6	RECENT
				RECENT
			AND TERMINATE EXECUTION IF DATA IS	RECENT
			IN THIS FORMAT.	RECENT
			*CALCULATE CHANNEL RADIUS OR SET IT	RECENT
			EQUAL TO THE SCATTERING RADIUS.	RECENT
			*IMPLEMENTED HYBRID R-FUNCTION WITH THI FOLLOWING RESTRICTIONS	
			- ONLY INELASTIC COMPETITION (NO	RECENT RECENT
			- ONLY INELASTIC COMPETITION (NO CHARGED PARTICLES)	RECENT
			- NO TABULATED FILE 2 BACKGROUND	RECENT
			- NO TABULATED OPTICAL MODEL PHASE	RECENT
			SHIFT	RECENT
			*PROGRAM EXIT IF GENERAL R-MATRIX IN	
			THE EVALUATION (THIS FORMALISM WILL	
				RECENT
			THE EVALUATION (THIS FORMALISM WILL	RECENT

```
IMPOSSIBLE TO ADEQUATELY TEST THAT
                                                                   RECENT
                            THE CODING FOR THIS FORMALISM IS
                                                                   RECENT
                            CORRECT) .
                                                                   RECENT
                            *INCREASED MAXIMUM NUMBER OF RESONANCESRECENT
                                                                    RECENT
                            FROM 1002 TO 4008.
                            *DOUBLE PRECISION RESONANCE REGION
                                                                    RECENT
                            LIMITS
                                                                    RECENT
                            *FILE 2 AND FILE 3 ENERGIES WHICH ARE
                                                                   RECENT
                            NEARLY EQUAL ARE TREATED AS EQUAL
                                                                   RECENT
                             (I.E., SAME TO ABOUT 9 DIGITS).
                                                                   RECENT
                            *CHECK FILE 3 BACKGROUND CROSS SECTIONSRECENT
                            IN EDIT MODE.
                                                                   RECENT
                            *OPTION...INTERNALLY DEFINE FILENAMES
                                                                   RECENT
                             (SEE SUBROUTINE FILEIO FOR DETAILS).
                                                                   RECENT
VERSION 89-1 (JANUARY 1989) * PSYCHOANALYZED BY PROGRAM FREUD TO
                                                                    RECENT
                            INSURE PROGRAM WILL NOT DO ANYTHING
                                                                   RECENT
                            CRAZY.
                                                                    RECENT
                            *UPDATED TO USE NEW PROGRAM CONVERT
                                                                    RECENT
                            KEYWORDS .
                                                                    RECENT
                            *CORRECTED MULTILEVEL, REICH-MOORE AND RECENT
                            HYBRID R-FUNCTION POTENTIAL SCATTER
                                                                   RECENT
                             TO ACCOUNT FOR REPEATED J-VALUES FOR
                                                                   RECENT
                            THE SAME TARGET SPIN AND L-VALUE.
                                                                   RECENT
                            *ADDED LIVERMORE CIVIC COMPILER
                                                                   RECENT
                            CONVENTIONS.
                                                                   RECENT
                            *UPDATED TO USE NEW ENDF/B-6
                                                                    RECENT
                            CONVENTION TO ALLOW UNRESOLVED
                                                                   RECENT
                            RESONANCE CONTRIBUTION TO ALREADY
                                                                   RECENT
                            BE INCLUDED IN THE FILE 3 CROSS
                                                                    RECENT
                            SECTIONS (INFINITELY DIULUTE
                                                                    RECENT
                            CONTRIBUTION) .
                                                                    RECENT
VERSION 90-1 (JUNE 1990)
                            *UPDATED BASED ON USER COMMENTS
                                                                   RECENT
                            *ADDED FORTRAN SAVE OPTION
                                                                    RECENT
                            *NEW MORE CONSISTENT ENERGY OUTPUT
                                                                    RECENT
                            ROUTTINE
                                                                   RECENT
VERSION 91-1 (JULY 1991)
                            *NEW UNIFORM TREATMENT OF ALL RESONANCERECENT
                            FORMALISMS (SEE, COMMENTS BELOW)
                                                                   RECENT
                            *NEW REICH-MOORE ALGORITHM
                                                                    RECENT
                            *MORE EXTENSIVE ERROR CHECKING AND
                                                                   RECENT
                            ERROR MESSAGE EXPLANATIONS
                                                                    RECENT
VERSION 92-1 (JANUARY 1992) * MAJOR RESTRUCTING TO IMPROVE ACCURACY RECENT
                            AND COMPUTER INDEPENDENCE.
                                                                    RECENT
                            *INCREASED ENERGY POINT PAGE SIZE FROM RECENT
                            1002 TO 4008.
                                                                   RECENT
                            *NO MORE THAN 2 ENERGY POINTS WHERE
                                                                    RECENT
                            CROSS SECTION IS ZERO AT BEGINNING
                                                                   RECENT
                            OF A SECTION FOR EACH REACTION, E.G.,
                                                                   RECENT
                                                                    RECENT
                            THRESHOLD FISSION.
                            *PROCESS ONLY A PORTION OF RESONANCE
                                                                   RECENT
                            REGION - SEE EXPLANATION BELOW
                                                                   RECENT
                            *ALL ENERGIES INTERNALLY ROUNDED PRIOR RECENT
                            TO CALCULATIONS.
                                                                   RECENT
                            *COMPLETELY CONSISTENT I/O AND ROUNDINGRECENT
                            ROUTINES - TO MINIMIZE COMPUTER
                                                                    RECENT
                            DEPENDENCE .
                                                                    RECENT
VERSION 93-1 (MARCH 1993)
                           *UPDATED REICH-MOORE TREATMENT TO USE
                                                                   RECENT
                            L DEPENDENT SCATTERING RADIUS (APL)
                                                                    RECENT
                            RATHER THAN SCATTERING RADIUS (AP)
                                                                    RECENT
                             (SEE, ENDF/B-6 FORMATS AND
                                                                    RECENT
                             PROCEDURES MANUAL, PAGE 2.6)
                                                                   RECENT
                            *INCREASED PAGE SIZE FROM 4008 TO
                                                                    RECENT
                            20040 DATA POINTS.
                                                                   RECENT
                            *INCREASED MAXIMUM NUMBER OF RESONANCESRECENT
                            FROM 4008 TO 20040.
                                                                   RECENT
VERSION 94-1 (JANUARY 1994) *VARIABLE ENDF/B DATA FILENAMES
                                                                   RECENT
                            TO ALLOW ACCESS TO FILE STRUCTURES
                                                                    RECENT
                             (WARNING - INPUT PARAMETER FORMAT
                                                                   RECENT
                            HAS BEEN CHANGED) .
                                                                    RECENT
                            *CLOSE ALL FILES BEFORE TERMINATING
                                                                    RECENT
                             (SEE, SUBROUTINE ENDIT)
                                                                   RECENT
VERSION 94-2 (AUGUST 1994) *CORRECTED ADDL FOR ENERGY DEPENDENT
                                                                   RECENT
```

		(TABULATED) SCATTERING RADIUS CASE.	RECENT
VERSION 96-1	(JANUARY 1996)	*COMPLETE RE-WRITE	RECENT
	(*IMPROVED COMPUTER INDEPENDENCE	RECENT
		*ALL DOUBLE PRECISION	RECENT
		*ON SCREEN OUTPUT	RECENT
		*UNIFORM TREATMENT OF ENDF/B I/O	RECENT
		*IMPROVED OUTPUT PRECISION	RECENT
		*ALWAYS INCLUDE THERMAL VALUE *DEFINED SCRATCH FILE NAMES	RECENT RECENT
VERSION 97-1	(APRIL 1997)	*OPTIONAL MAKE NEGATIVE CROSS	RECENT
1210201 97 2	(1111111 1997)		RECENT
	*		RECENT
		120000 DATA POINTS.	RECENT
	*	INCREASED MAXIMUM NUMBER OF RESONANCES	SRECENT
	(1000)		RECENT
VERSION 99-1	(MARCH 1999)		RECENT
		*UPDATED TEST FOR ENDF/B FORMAT	RECENT RECENT
		VERSION BASED ON RECENT FORMAT CHANGE	
			RECENT
		SUBCOMMITTEE RECOMMENDATIONS	RECENT
			RECENT
		USER FEEDBACK	RECENT
VERSION 99-2	(JUNE 1999)	*IMPLEMENTED NEW REICH-MOORE FORMALISM	
		TO ALLOW DEFINITION OF (L,J,S) FOR EACH SEQUENCE.	RECENT RECENT
		*ASSUME ENDF/B-VI, NOT V, IF MISSING	
		MF=1, MT-451.	RECENT
VERS. 2000-1	(FEBRUARY 2000)	*GENERAL IMPROVEMENTS BASED ON	RECENT
		USER FEEDBACK	RECENT
VERS. 2002-1	•	*OPTIONAL INPUT PARAMETERS	RECENT
		*OUTPUT RESONANCE WITH 9 DIGITS *TO BE C AND C++ COMPATIBLE OUTPUT	RECENT
VERS 2004-1		*ADDED INCLUDE 'recent.h'	RECENT RECENT
VIIII 2004 I	(01111. 2004)	*MADE ENDF/B-VII READY	RECENT
		PARAMETERS WITH COMPETITION	RECENT
		*ADDED COULOMB PENETRATION FACTORS FOR	RRECENT
		LRF=7 COMPETITIVE CHANNELS.	RECENT
		*EXTENDED DEFINITIONS OF PENETRATION	
		FACTOR, LEVEL SHIFT FACTOR, AND POTENTIAL SCATTERING PHASE SHIFT	RECENT RECENT
		ABOVE $L = 5$ TO INFINITY.	RECENT
			RECENT
		INPUT ALLOWABLE ERROR IS 1.0 OR MORE	RECENT
		(100 % OR MORE) THERE IS NO ITERATION	
		TO CONVERGENCE - CROSS SECTION ARE	RECENT
		QUICKLY CALCULATED ONLY AT A FIXED	
		SET OF ENERGY POINTS, BASED ON THE ENERGY AND WIDTH OF ALL RESONANCES.	RECENT RECENT
		THIS CAN BE USED TO QUICKLY "SEE"	RECENT
		NEW EVALUATIONS THAT MAY CONTAIN	RECENT
		ERRORS, THAT WOULD OTHERWISE CAUSE	RECENT
		THIS CODE TO RUN FOR AN EXCESSIVELY	RECENT
	(LONG TIME.	RECENT
VERS. 2005-1	(JUNE 2005)	*ADDED ENERGY DEPENDENT SCATTERING	RECENT
VERS. 2005-1	(JUNE 2005)	*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES	RECENT RECENT
VERS. 2005-1 VERS. 2007-1		*ADDED ENERGY DEPENDENT SCATTERING	RECENT RECENT
		*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED).	RECENT RECENT RECENT
		*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES.	RECENT RECENT RECENT RECENT RECENT RECENT
		*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO	RECENT RECENT RECENT RECENT RECENT RECENT
		<pre>*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS.</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
		<pre>*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS. *KEPT MAX. # OF RESONANCE AT 120,000.</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. 2007-1	(JAN. 2007)	<pre>*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS.</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
	(JAN. 2007)	<pre>*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS. *KEPT MAX. # OF RESONANCE AT 120,000. *CORRECTED ALL BACKGROUND = 0 CASE</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. 2007-1	(JAN. 2007)	*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS. *KEPT MAX. # OF RESONANCE AT 120,000. *CORRECTED ALL BACKGROUND = 0 CASE *NO MT=19 OUTPUT IF NO BACKGROUND,	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. 2007-1	(JAN. 2007) (OCT. 2007)	 *ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS. *KEPT MAX. # OF RESONANCE AT 120,000. *CORRECTED ALL BACKGROUND = 0 CASE *NO MT=19 OUTPUT IF NO BACKGROUND, REGARDLESS OF INPUT OPTION. *72 CHARACTER FILE NAMES. *CORRECTED NAPS ERROR - NOW DEFINE FOR 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. 2007-1 VERS. 2007-2	(JAN. 2007) (OCT. 2007)	<pre>*ADDED ENERGY DEPENDENT SCATTERING RADIUS FOR ALL RESONANCE TYPES (EARLIER ONLY BREIT-WIGNER ALLOWED). *CHECKED AGAINST ALL ENDF/B-VII. *DECOUPLED PAGE SIZE FROM MAX. # OF RESONANCES. *INCREASED PAGE SIZE FROM 120,000 TO 750,000 DATA POINTS. *KEPT MAX. # OF RESONANCE AT 120,000. *CORRECTED ALL BACKGROUND = 0 CASE *NO MT=19 OUTPUT IF NO BACKGROUND, REGARDLESS OF INPUT OPTION. *72 CHARACTER FILE NAMES.</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT

VERS.	2008-2	(APRIL	2008)	*CORRECTED NRO/NAPS=1/1 - MUST	RECENT
				DEFINE RHOX2 AT EACH RESONANCE USING	RECENT
				SETRHO1 BEFORE ENERGY DEPENDENT	RECENT
				CALCULATION.	RECENT
				*ADDED PRECISION TO RESONANCE PROFILE	
				IN SUBROUTINE SUBINT	RECENT
VERS.	2009-1	(JULY	2009)	*NEW REICH-MOORE COMPETITIVE WIDTHS -	RECENT
				IF CHARGED PARTICLE REACTION (MT=103	RECENT
				THROUGH 107) WILL ADD RESONANCE	RECENT
				CONTRIBUTION TO COMPETITIVE MT AND II	
				PRESENT, THE GROUND LEVEL, $MT = 600$	
				THROUGH 800. IF COMPETITIVE CHANNEL	RECENT
				IS mt=4 (TOTAL N.N') IT WILL ALSO ADD	DRECENT
				COMPETITIVE RESONANCE CONTRIBUTION TO	ORECENT
				MT=50 (N,N' GROUND).	RECENT
				*NEW REICH-MOORE - SUM COMPETITIVE	
				WIDTHS IF ALL FOR THE SAME STATE (MT)	
VERS.	2009-2	(AUG.	2009)	*RE-WRITE TO USE 12, RATHER THAN 6,	RECENT
				PAAMETERS PER RESONANCE.	RECENT
				*MAJOR RE-WRITE TO ACCOMODATE GENERAL	RECENT
					RECENT
				*COMPLETE RE-WRITE FOR ADLER-ADLER	
				AND HRF (N O LONGER USED IN ENDF/B)	RECENT
				TO USE 12 PARAMETERS PER RESNANCE.	RECENT
VERS.	2010-1	(April	2010)	*ADDED SAMRML LOGIC TO HANDLE ALL	RECENT
		• -		LRF=7 CASES.	RECENT
				*EXTENDED SAMRML LOGIC TO PROCESS ALL	
				EVALUATIONS = RESOLVED + UNRESOLVED -	+RECENT
				TABULATED - SAMRML ONLY DOES ONE	RECENT
				SECTION OF RESOLVED LRF=7 DATA	RECENT
				WITHOUT TABULATED BACKGROUND.	RECENT
				*UPDATED ELASTIC POTENTIAL CALCULATION	
				FOR TOTAL (SLBW) AND CORRECTION FOR	
				MISSING SEQUENCES (MLBW, RM, HRF).	RECENT
				*ADDED HIDDEN (OPTIONAL) UNRESOLVED	RECENT
				COMPETITION LISTING (NOT ENDF/B).	RECENT
				*ADDED BOB MACFARLANE'S PROPOSAL - US	ERECENT
				*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE -	ERECENT RECENT
				*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0.	ERECENT RECENT RECENT
				*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS.	ERECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0.	ERECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS.	ERECENT RECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES.	ERECENT RECENT RECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USU LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USU LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS.	2012-1	(Nov.	2012)	 *ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore 	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT . RECENT
	2012-1 2012-2			<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USU LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT . RECENT
VERS.	2012-2	(Nov.	2012)	 *ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore 	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT . RECENT
VERS . VERS .	2012-2 2013-1	(Nov . (Nov .	2012) 2013)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS . VERS .	2012-2	(Nov . (Nov .	2012)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS . VERS .	2012-2 2013-1	(Nov . (Nov .	2012) 2013)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS . VERS .	2012-2 2013-1	(Nov . (Nov .	2012) 2013)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS . VERS .	2012-2 2013-1	(Nov . (Nov .	2012) 2013)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS . VERS .	2012-2 2013-1	(Nov . (Nov .	2012) 2013)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USI LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL 3 way IF Statements. *Replaced ALL SI WAY IF Statements. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment.</pre>	ERECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL 3 way IF Statements. *Replaced ALL SI WAY IF Statements. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computer.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1 2016-1	(Nov. (Nov. (Jan.	2012) 2013) 2015) 2016)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USU LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL JOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1	(Nov. (Nov. (Jan.	2012) 2013) 2015)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USU LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL JOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid. *Corrected ERROR in LRF=3 treatment.</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1 2016-1	(Nov. (Nov. (Jan.	2012) 2013) 2015) 2016)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL 10GICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid. *Corrected ERROR in LRF=3 treatment. This ERROR only existed in version</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1 2016-1	(Nov. (Nov. (Jan.	2012) 2013) 2015) 2016)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid. *Corrected ERROR in LRF=3 treatment. This ERROR only existed in version 2016-1, which was never released to</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1 2016-1	(Nov. (Nov. (Jan.	2012) 2013) 2015) 2016)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL 10GICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid. *Corrected ERROR in LRF=3 treatment. This ERROR only existed in version</pre>	ERECENT RECENT
VERS. VERS. VERS.	2012-2 2013-1 2015-1 2016-1	(Nov. (Nov. (Jan.	2012) 2013) 2015) 2016)	<pre>*ADDED BOB MACFARLANE'S PROPOSAL - USD LRX TO DEFINE COMPETITIVE L VALUE - COMPETITIVE L = LRX - 1, IF LRX > 0. *CHECKED FOR NEGATIVE WIDTHS. *ADDED ENERGY DEPENDENT STEP SIZE FOR STARTING GRID AROUND RESONANCES. *Added CODENAME *32 and 64 bit Compatible *Added ERROR stops *Check for no capture for Reich-Moore *Eliminated ERROR in NHIGH(0) index. *Extended OUT9. *Multiple LRF=7, General Reich-Moore Resonance Regions. *Added OUT10. *Replaced ALL 3 way IF Statements. *Replaced ALL LOGICAL by INTEGER. *Do not Change LSSF during the reconstruction - for compatibility with later URR treatment. *Insured that all ERROR stops print a message explaining why the code stopped. *Partial Energy Range Processing no longer allowed - today's computers are so fast that this option is now out-of-date and no longer allowed. *L-Value dependent fission = Earlier was done only by entire isotope. *Denser Starting Energy Grid. *Corrected ERROR in LRF=3 treatment. This ERROR only existed in version 2016-1, which was never released to</pre>	ERECENT RECENT

			users.	RECENT
			*All floating input parameters changed	
			to character input + IN9 conversion.	RECENT
			*Added points to starting energy grid	RECENT
			to approximate the shape of each	RECENT
			resonance = based on comparisons of 0.01% to 0.1% results.	RECENT RECENT
			*Increased max. points to 1,200,000.	RECENT
			*LRF=7 Shift option no longer allowed	
			Set = 0, print WARNING and continue.	
			*Corrected COMMON/NAPRHO/NRO,NAPS	RECENT
			/NAPRHO/ mispelled - Freud found.	RECENT
VERS. 2017-2	-		*Corrected Write statemnt at 5731.	RECENT
VERS. 2018-1	•	2018)	*Added output for ALL ENDERROR	RECENT
VERS. 2019-1	(June	2019)	*Terminate if MF/MT=1/451 Temperature is NOT = 0 = Incompaible with the	RECENT
			0 Kelvin data output to MF=3 by this	
			code.	RECENT
			*Terminate if MF=3 Point Count and	RECENT
			Interpolation Law do not agree.	RECENT
			*Terminate if MF=3 Background	RECENT
			Interpolation is NOT Linear.	RECENT
			*Ignor background if zero at all energies - previously merged.	RECENT RECENT
			*Output competitive data even if no	RECENT
			MF=3 background = previously skipped.	
			*Additional Interpolation Law Tests.	RECENT
			*Check Maximum Tabulated Energy to	RECENT
			insure it is the same for all MTs -	RECENT
			if not, print WARNING messages.	RECENT
			*Reduced Max. # of Resonance to 100,000 from 300,000, e.g., for	RECENT RECENT
			ENDF/B-VIII U235 and U238 have about	
			3,000 resonances each.	RECENT
VERS. 2020-1	(Dec.	2020)	*Major re-write.	RECENT
			*Much more detailed starting grid	RECENT
			*Updated minimum/maximum convergence	RECENT
			procedures.	RECENT
			*Added Target Isomer State *WARNING - print if resolved resonance	RECENT
			enegies do not extend to top of	RECENT
			resolved energy range.	RECENT
			*Stricter convergence for all except	RECENT
			total and elastic,e.g., narrower	RECENT
			capture resonances	RECENT
			*Increased minimum cross sections to handle RML Charged Particles	RECENT RECENT
VERS. 2021-1	(Mar.	2021)	*Valentin Sinitsa (GRUCON) supplied	RECENT
12100. 2021 1	(1141.	2022)	Solution for LRF=7, SHIFT=1 problems.	
			Search for Valentin to find changes.	
			*Updated for FORTRAN 2018	RECENT
			*Changed FUNCTION Xdot to	RECENT
			SUBROUTINE XdotQ with	RECENT
			arguments returned through COMMON. *Mimimum Cross Section is no longer	RECENT RECENT
			an input option - set to 1.0d-30.	RECENT
			*Insure ALL nodes are INCORE10 to	RECENT
			prevent repeated energies in ENDF	RECENT
			format output.	RECENT
			Corrected dummy arguments ,1) to ,)	
VEDC 0000 1	(Fob	20221	Thank Arjan	RECENT
VERS. 2023-1	(ren.	2023)	*Decreased page size from 1,200,000 to 120,000.	RECENT RECENT
				RECENT
OWNED, MAINTA	AINED A	ND DISTRI	BUTED BY	RECENT
				RECENT
THE NUCLEAR I				RECENT
INTERNATIONAL	L ATOMI	C ENERGY	AGENCY	RECENT
P.O. BOX 100 A-1400, VIEN1	יסדא אדסי	ייסדא		RECENT
A-1400, VIENI EUROPE	AL, AUS	IVIN		RECENT RECENT
LOROFE				I HIGEN I

	RECENT
	RECENT RECENT
	RECENT
	RECENT
PRESENT CONTACT INFORMATION	RECENT
	RECENT
	RECENT
-	RECENT
,	RECENT
	RECENT RECENT
	RECENT
	RECENT
	RECENT
Acknowledgement (Version 2021-1)	RECENT
	RECENT
	RECENT
	RECENT
	RECENT RECENT
	RECENT
_	RECENT
	RECENT
	RECENT
The author thanks Nancy Larson, ORNL, for providing her SAMRML	RECENT
code for comparison to RECENT output for Reich-Moore evaluations,	RECENT
in particular to verify results for the new LFR=7 evaluations. I	RECENT
1 , , , , , , , , , , , , , , , , , , ,	RECENT
-	RECENT
	RECENT
ACKNOWLEDGEMENT (VERSION 92-1)	RECENT
	RECENT
	RECENT
COMPUTER INDEPENDENCE OF THIS CODE - THANKS, SOL	RECENT
	RECENT
	RECENT
AUTHORS MESSAGE	RECENT RECENT
AUTHORS MESSAGE	RECENT RECENT RECENT
AUTHORS MESSAGE 	RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED	RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE	RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY	RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1),	RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1), ELASTIC (MT=2), CAPTURE (MT=102) AND FISSION (MT=18), ADDED	RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTION SOUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1), ELASTIC (MT=2), CAPTURE (MT=102) AND FISSION (MT=18), ADDED TO THE BACKGROUND (IF ANY) AND OUTPUT. IN ADDITION, IF THERE IS A FIRST CHANCE FISSION (MT=19) BACKGROUND PRESENT THE RESONANCE	RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1), ELASTIC (MT=2), CAPTURE (MT=102) AND FISSION (MT=18), ADDED TO THE BACKGROUND (IF ANY) AND OUTPUT. IN ADDITION, IF THERE IS A FIRST CHANCE FISSION (MT=19) BACKGROUND PRESENT THE RESONANCE CONTRIBUTION OF FISSION WILL BE ADDED TO THE BACKGROUND AND	RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE BACKGROUND CROSS SECTION AND OUTPUT THE RESULT IN THE ENDF/B FORMAT. THE CROSS SECTIONS OUTPUT BY THIS PROGRAM WILL BE LINEARLY INTERPOLABLE OVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1), ELASTIC (MT=2), CAPTURE (MT=102) AND FISSION (MT=18), ADDED TO THE BACKGROUND (IF ANY) AND OUTPUT. IN ADDITION, IF THERE IS A FIRST CHANCE FISSION WILL BE ADDED TO THE BACKGROUND AND OUTPUT. IF THERE IS NO FIRST CHANCE FISSION (MT=19) BACKGROUND	RECENT RECENT
AUTHORS MESSAGE THE REPORT DESCRIBED ABOVE IS THE LATEST PUBLISHED DOCUMENTATION FOR THIS PROGRAM. HOWEVER, THE COMMENTS BELOW SHOULD BE CONSIDERED THE LATEST DOCUMENTATION INCLUDING ALL RECENT IMPROVEMENTS. PLEASE READ ALL OF THESE COMMENTS BEFORE IMPLEMENTATION, PARTICULARLY THE COMMENTS CONCERNING MACHINE DEPENDENT CODING. AT THE PRESENT TIME WE ARE ATTEMPTING TO DEVELOP A SET OF COMPUTER INDEPENDENT PROGRAMS THAT CAN EASILY BE IMPLEMENTED ON ANY ONE OF A WIDE VARIETY OF COMPUTERS. IN ORDER TO ASSIST IN THIS PROJECT IT WOULD BE APPECIATED IF YOU WOULD NOTIFY THE AUTHOR OF ANY COMPILER DIAGNOSTICS, OPERATING PROBLEMS OR SUGGESTIONS ON HOW TO IMPROVE THIS PROGRAM. HOPEFULLY, IN THIS WAY FUTURE VERSIONS OF THIS PROGRAM WILL BE COMPLETELY COMPATIBLE FOR USE ON YOUR COMPUTER. PURPOSE THIS PROGRAM IS DESIGNED TO RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE CROSS SECTION IN LINEARLY INTERPOLABLE FORM, ADD IN ANY LINEARLY INTERPOLABLE DOVER THE ENTIRE ENERGY RANGE THE RESONANCE CONTRIBUTION IS CALCULATED FOR TOTAL (MT=1), ELASTIC (MT=2), CAPTURE (MT=102) AND FISSION (MT=18), ADDED TO THE BACKGROUND (IF ANY) AND OUTPUT. IN ADDITION, IF THERE IS A FIRST CHANCE FISSION WILL BE ADDED TO THE BACKGROUND PRESENT THE RESONANCE CONTRIBUTION OF FISSION WILL BE ADDED TO THE BACKGROUND AND OUTPUT. IF THERE IS NO FIRST CHANCE FISSION (MT=19) BACKGROUND AND COMPLENT IN THE RESONANCE CONTRIBUTION IS CALCULATED FOR THE RESONANCE CONTRIBUTION OF FISSION WILL BE ADDED TO THE BACKGROUND ADD DUTPUT. IN ADDITION, IF THERE IS A FIRST CHANCE FISSION (MT=19) BACKGROUND PRESENT THE RESONANCE CONTRIBUTION OF FISSION WILL NOT OUTPUT MT=19.	RECENT RECENT

IN THE FOLLOWING FOR SIMPLICITY THE ENDF/B TERMINOLOGYENDF/B TAPEWILL BE USED. IN FACT THE ACTUAL MEDIUM MAY BE TAPE, CARDS, DISK OR ANY OTHER MEDIUM.	RECENT
PROCESSING DATA IN THE ENDF/B-6 FORMAT	RECENT RECENT
TIT HAS NOW BEEN CONFIRMED (PRIVATE COMMUNICATION, CHARLES DUNFORD, APRIL, 1991) THAT THE PROPER PROCEDURE TO FOLLOW WHEN THERE ARE MISSING OR DUPLICATE J VALUES IS TO IN ALL CASES ADD A SEQUENCE WITH NO RESONANCES TO ACCOUNT FOR THE CONTRIBUTION OF THE SEQUENCE TO THE POTENTIAL SCATTERING CROSS SECTION.	, RECENT RECENT RECENT
THIS IS THE PROCEDURE WHICH WAS FOLLOWED BY ALL VERSIONS OF RECENT SINCE 86-3 AND WILL CONTINUE TO BE THE PROCEDURE.	RECENT FRECENT RECENT
INPUT ENDF/B FORMAT AND CONVENTIONS	RECENT
ENDF/B FORMAT	RECENT
THIS PROGRAM ONLY USES THE ENDF/B BCD OR LINE IMAGE FORMAT (AS	RECENT
OPPOSED TO THE BINARY FORMAT) AND CAN HANDLE DATA IN ANY VERSION OF THE ENDF/B FORMAT (I.E., ENDF/B-1, 2, 3, 4, 5, 6 FORMAT).	RECENT RECENT RECENT
IT IS ASSUMED THAT THE DATA IS CORRECTLY CODED IN THE ENDF/B FORMAT AND NO ERROR CHECKING IS PERFORMED. IN PARTICULAR IT IS ASSUMED THAT THE MAT, MF AND MT ON EACH LINE IS CORRECT. SEQUENCE NUMBERS (COLUMNS 76-80) ARE IGNORED ON INPUT, BUT WILL BE CORRECTLY OUTPUT ON ALL CARDS. THE FORMAT OF SECTION MF=1, MT=451 AND ALL SECTIONS OF MF=2 AND 3 MUST BE CORRECT. THE PROGRAM COPIES ALL OTHER SECTION OF DATA AS HOLLERITH AND AS SUCH IS INSENSITIVE TO THE CORRECTNESS OR INCORRECTNESS OF ALL OTHER SECTIONS.	RECENT RECENT RECENT RECENT RECENT SRECENT
ENDF/B FORMAT VERSION	RECENT
THE FORMATS AND CONVENTIONS FOR READING AND INTERPRETING THE DATA VARIES FROM ONE VERSION OF ENDF/B TO THE NEXT. HOWEVER, IF THE HOLLERITH SECTION (MF=1, MT=451) IS PRESENT IT IS POSSIBLE FOR THIS PROGRAM TO DISTINGUISH BETWEEN DATA IN THE ENDF/B-4, 5 AND 6 FORMATS AND TO USE THE APPROPRIATE CONVENTIONS FOR EACH ENDF/B VERSION (SEE, SUBROUTINE FILE1 FOR A DESCRIPTION OF HOW THIS IS DONE). IF THE HOLLERITH SECTION IS NOT PRESENT THE PROGRAM WILL ASSUME THE DATA IS IN THE ENDF/B-6 FORMAT AND USE ALL CONVENTIONS APPROPRIATE TO ENDF/B-V. USERS ARE ENCOURAGED TO INSURE THAT THE HOLLERITH SECTION (MF=1, MT=451) IS PRESENT IN	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALL EVALUATIONS. INPUT OF ENERGIES	RECENT
ALL ENERGIES ARE READ IN DOUBLE PRECISION (BY SPECIAL FORTRAN I/O ROUTINES) AND ARE TREATED IN DOUBLE PRECISION IN ALL CALCULATIONS.	RECENT
OUTPUT ENDF/B FORMAT AND CONVENTIONS	RECENI RECENI
CONTENTS OF OUTPUT	RECENI
ENTIRE EVALUATIONS ARE OUTPUT, NOT JUST THE RECONSTRUCTED FILE 3 CROSS SECTIONS, E.G. ANGULAR AND ENERGY DISTRIBUTIONS ARE ALSO INCLUDED.	RECENI RECENI RECENI RECENI
DOCUMENTATION	RECENI RECENI
THE FACT THAT THIS PROGRAM HAS OPERATED ON THE DATA IS DOCUMENTED BY THE ADDITION OF COMMENT CARDS AT THE END OF EACH HOLLERITH SECTION IN THE FORM	RECENT RECENT RECENT RECENT
COMBINED DATA NOT THINNED (ALL RESONANCE + BACKGROUND DATA KEPT)	RECENI RECENI RECENI RECENI
THE ORDER OF ALL SIMILAR COMMENTS (FROM LINEAR, SIGMA1 AND GROUPY) REPRESENTS A COMPLETE HISTORY OF ALL OPERATIONS PERFORMED ON	RECENT RECENT

THE DATA, INCLUDING WHICH VERSION OF EACH PROGRAM WAS USED. RECENT RECENT THESE COMMENT CARDS ARE ONLY ADDED TO EXISTING HOLLERITH SECTIONS, RECENT I.E., THIS PROGRAM WILL NOT CREATE A HOLLERITH SECTION. THE FORMATRECENT OF THE HOLLERITH SECTION IN ENDF/B-5 DIFFERS FROM THE THAT OF RECENT EARLIER VERSIONS OF ENDF/B. BY READING AN EXISTING MF=1, MT=451 RECENT IT IS POSSIBLE FOR THIS PROGRAM TO DETERMINE WHICH VERSION OF RECENT THE ENDF/B FORMAT THE DATA IS IN. WITHOUT HAVING A SECTION OF RECENT MF=1, MT=451 PRESENT IT IS IMPOSSIBLE FOR THIS PROGRAM TO RECENT DETERMINE WHICH VERSION OF THE ENDF/B FORMAT THE DATA IS IN, AND RECENT AS SUCH IT IS IMPOSSIBLE FOR THE PROGRAM TO DETERMINE WHAT FORMAT RECENT SHOULD BE USED TO CREATE A HOLLERITH SECTION. RECENT RECENT REACTION INDEX RECENT RECENT THIS PROGRAM DOES NOT USE THE REACTION INDEX WHICH IS GIVEN IN RECENT SECTION MF=1, MT=451 OF EACH EVALUATION. RECENT RECENT THIS PROGRAM DOES NOT UPDATE THE REACTION INDEX IN MF=1, MT=451. RECENT THIS CONVENTION HAS BEEN ADOPTED BECAUSE MOST USERS DO NOT RECENT REQUIRE A CORRECT REACTION INDEX FOR THEIR APPLICATIONS AND IT WASRECENT NOT CONSIDERED WORTHWHILE TO INCLUDE THE OVERHEAD OF CONSTRUCTING RECENT A CORRECT REACTION INDEX IN THIS PROGRAM. HOWEVER, IF YOU REQUIRE RECENT A REACTION INDEX FOR YOUR APPLICATIONS, AFTER RUNNING THIS PROGRAMRECENT YOU MAY USE PROGRAM DICTIN TO CREATE A CORRECT REACTION INDEX. RECENT RECENT OUTPUT FORMAT OF ENERGIES RECENT RECENT _____ IN THIS VERSION OF RECENT ALL FILE 3 ENERGIES WILL BE OUTPUT IN RECENT F (INSTEAD OF E) FORMAT IN ORDER TO ALLOW ENERGIES TO BE WRITTEN RECENT WITH UP TO 9 DIGITS OF ACCURACY. IN PREVIOUS VERSIONS THIS WAS AN RECENT OUTPUT OPTION. HOWEVER USE OF THIS OPTION TO COMPARE THE RESULTS RECENT OF ENERGIES WRITTEN IN THE NORMAL ENDF/B CONVENTION OF 6 DIGITS RECENT TO THE 9 DIGIT OUTPUT FROM THIS PROGRAM DEMONSTRATED THAT FAILURE RECENT TO USE THE 9 DIGIT OUTPUT CAN LEAD TO LARGE ERRORS IN THE DATA RECENT JUST DUE TO TRANSLATION OF ENERGIES FROM THEIR INTERNAL (BINARY) RECENT REPRESENTATION TO THE ENDF/B FORMAT. RECENT RECENT ACCURACY OF ENERGY RECENT RECENT IN ORDER TO ALLOW ENERGIES TO BE ACCURATELY OUTPUT TO 9 DIGITS RECENT ON SHORT WORD LENGTH COMPUTERS (E.G. IBM) ALL ENERGIES AND RECENT ENERGY DEPENDENT TERMS ARE READ AND TREATED IN DOUBLE PRECISION. RECENT RECENT OUTPUT OF RESONANCE PARAMETERS RECENT RECENT A SPECIAL CONVENTION HAS BEEN INTRODUCED REGARDING RESONANCE RECENT PARAMETERS. IN ORDER TO ALLOW THE USER TO DOPPLER BROADEN AND/OR RECENT SELF-SHIELD CROSS SECTIONS THE RESONANCE PARAMETERS ARE ALSO RECENT INCLUDED IN THE OUTPUT WITH THE EVALUATION. IN ORDER TO AVOID THE RECENT POSSIBILITY OF ADDING THE RESONANCE CONTRIBUTION A SECOND TIME RECENT TWO CONVENTIONS HAVE BEEN ADOPTED TO INDICATE THAT THE RESONANCE RECENT CONTRIBUTION HAS ALREADY BEEN ADDED TO THE FILE 3 CROSS SECTIONS, RECENT RECENT (1) WHEN THE DATA IS PROCESSED BY THIS PROGRAM LRP (IN MF=1, RECENT MT=451) IS SET EQUAL TO 2. THIS IS A CONVENTION WHICH HAS BEEN RECENT ADOPTED AS A STANDARD CONVENTION IN ENDF/B-VI, BUT IS ONLY TO BE RECENT USED FOR PROCESSED DATA, AS OPPOSED TO THE ORIGINAL EVALUATIONS. RECENT IN EVALUATIONS WHICH CONTAIN MF=1, MT=451 LRP CAN BE USED TO RECENT DETERMINE IF THE MATERIAL HAS BEEN PROCESSED. RECENT RECENT (2) THE LRU FLAG IN EACH SECTION OF FILE 2 DATA IS CHANGED TO RECENT LRU=LRU+3. FOR EXAMPLE WHEN READING AN ENDF/B EVALUATION LRU=0 RECENT (NO RESONANCES), =1 (RESOLVED) OR =2 (UNRESOLVED) INDICATES THAT RECENT THE DATA IS IN THE ORIGINAL ENDF/B FORM. LRU=3 (NO RESONANCES), RECENT =4 (RESOLVED) OR =5 (UNRESOLVED) INDICATES THAT THE RESONANCE RECENT CONTRIBUTION HAS ALREADY BEEN ADDED TO THE FILE 3 DATA. THIS RECENT SECOND CONVENTION HAS BEEN ADOPTED AS INSURANCE THAT THE RESONANCERECENT CONTRIBUTION WILL NOT BE ADDED TWICE, EVEN FOR EVALUATIONS WHICH RECENT DO NOT CONTAIN MF=1, MT=451 (EVALUATIONS WHICH CONTAIN MF=1, RECENT MT=451 ARE COVERED BY CONVENTION (1), DESCRIBED ABOVE). RECENT

		RECENT
NORMALIZ		RECENT
		RECENT
ALL OF T	HE RESONANCE FORMALISMS INCLUDE A FACTOR OF,	RECENT
		RECENT
PI*(FRAC	TIONAL ABUNDANCE)/(K**2)	RECENT
• -		RECENT
THIS FAC		RECENT
		RECENT
		RECENT
AFTER TH	•	
		RECENT
		RECENT
	ONS - IN ALL CASES THE ACTUAL CROSS SECTION IS A PRODUCT	
OF THE A	BOVE FACTOR TIMES THE RESULTS PRESENTED BELOW.	RECENT
		RECEN
SIMILARI	TIES	RECENT
	====	RECEN
OR THE	RESOLVED RESONANCE REGION, EXCEPT FOR SINGLE LEVEL BREIT	RECEN
	PARAMETERS ALL OF THE FORMALISMS DEFINE THE CROSS SECTIONS	
		RECEN
Qia nia ni.	· ·	
		RECENT
OTAL		RECENT
		RECENT
LASTIC	$= GJ^*(1 - U)^{*2}$	RECENT
	$= GJ^{*}((1 - 2^{*}REAL(U)) + (REAL(U)^{*}2 + IM(U)^{*}2))$	RECENT
	= 2*GJ*(1 - REAL(U)) - GJ*(1 - (REAL(U)**2 + IM(U)**2))	RECEN
		RECEN
TNCE TH		RECEN
	,	RECEN
DSORFII		
		RECEN
BSORPTI		RECEN
		RECEN'
N ALL C	ASES U IS DEFINED IN THE FORM,	RECEN
		RECEN'
r	= EXP(-I*2*PS)*((1-X) - I*Y)	RECEN
		RECEN
HERE (X) AND (Y) ARE RELATED TO THE SYMMETRIC AND ANTI-SYMMETRIC	
	TIONS OF THE RESONANCES, RESPECTIVELY. ONLY THE DEFINITION	
	•	
		DECENT
		RECENT
	WILL SHOW THAT WHAT MIGHT APPEAR TO BE A STRANGE CHOICE	RECEN
F DEFIN	ITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT	RECEN
OF DEFIN FOR BREI	ITION OF THE SIGN OF (X) AND(Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE	RECEN RECEN RECEN
OF DEFIN FOR BREI	ITION OF THE SIGN OF (X) AND(Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE	RECEN RECEN RECEN
OF DEFIN OR BREI	ITION OF THE SIGN OF (X) AND(Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES.	RECEN' RECEN' RECEN' RECEN'
OF DEFIN OR BREI SYMMETRI	ITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES.	RECEN RECEN RECEN RECEN RECEN
OF DEFIN OR BREI SYMMETRI	ITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)	RECEN RECEN RECEN RECEN RECEN RECEN
OF DEFIN FOR BREI SYMMETRI	<pre>ITIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS))</pre>	RECEN RECEN RECEN RECEN RECEN RECEN
OF DEFIN OR BREI SYMMETRI	<pre>ITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
OF DEFIN OR BREI SYMMETRI	<pre>ITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
OF DEFIN OR BREI SYMMETRI U REAL(U)	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
F DEFIN OR BREI YMMETRI EAL (U)	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
OF DEFIN OR BREI SYMMETRI WEAL (U) M(U)	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
PF DEFIN OR BREI YMMETRI YMMETRI EAL (U) M (U)	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS (2*PS) - I*SIN (2*PS))*((1-X) - I*Y) $= ((1-X)*COS (2*PS) - Y*SIN (2*PS))$ $=-I*((1-X)*SIN (2*PS) + Y*COS (2*PS))$ $= ((1-X)*COS (2*PS) - Y*SIN (2*PS))$ $=-((1-X)*SIN (2*PS) + Y*COS (2*PS))$	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
OF DEFIN OR BREI SYMMETRI WEAL (U) M(U)	<pre>ITIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))**2</pre>	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
F DEFIN OR BREI YMMETRI EAL(U) M(U)	<pre>IIIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-((1-X)*SIN(2*PS) + Y*COS(2*PS)) =((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2 -2*(1-X)*Y*COS(2*PS)*SIN(2*PS)</pre>	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
F DEFIN OR BREI YMMETRI EAL(U) M(U) (U)**2	<pre>IIIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-((1-X)*SIN(2*PS) + Y*COS(2*PS)) =((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2 -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) =((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))**2</pre>	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
F DEFIN OR BREI YMMETRI EAL(U) M(U) .(U)**2	<pre>IIIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-((1-X)*SIN(2*PS) + Y*COS(2*PS)) =((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))**2 -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) =((1-X)*SIN(2*PS))**2 + (Y*COS(2*PS))**2 +2*(1-X)*Y*COS(2*PS)*SIN(2*PS)</pre>	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
F DEFIN OR BREI YMMETRI EAL(U) M(U) (U)**2 (U)**2	<pre>IIIION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = (COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-I*((1-X)*SIN(2*PS) + Y*COS(2*PS)) = ((1-X)*COS(2*PS) - Y*SIN(2*PS)) =-((1-X)*SIN(2*PS) + Y*COS(2*PS)) =((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2 -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) =((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2 +2*(1-X)*Y*COS(2*PS)*SIN(2*PS)</pre>	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
F DEFIN OR BREI YMMETRI EAL(U) M(U) (U)**2 (U)**2 HE TERM	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) IS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
F DEFIN OR BREI YMMETRI EAL(U) M(U) .(U)**2 (U)**2 HE TERM	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) ES $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)*2 + SIN(2*PS)*2 = 1,	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
F DEFIN OR BREI YMMETRI EAL(U) M(U) (U)**2 (U)**2 HE TERM HE IDEN	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*COS(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS))*SIN(2*PS)$ = $(1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1,	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
PF DEFIN OR BREI YMMETRI EAL(U) M(U) (U) **2 (U) **2 HE TERM THE IDEN	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*COS(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS))*SIN(2*PS)$ = $(1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1,	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
OF DEFIN FOR BREI SYMMETRI U REAL(U) E(U) &(U) **2 E(U) **2 E(U) **2 E(U) **2 E(U) **2	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))$ = $((1-X)*SIN(2*PS))**2 + (Y*COS(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))**2 + (Y*COS(2*PS))**2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) AS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
OF DEFIN FOR BREI SYMMETRI U REAL(U) EM(U) EM(U) EX(U) **2 E(U) **2 EX(U) **	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*COS(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) IS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$	RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN' RECEN'
OF DEFIN FOR BREI SYMMETRI J REAL (U) KM (U) K (U) **2 C	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))**2 + (Y*SIN(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))**2 + (Y*COS(2*PS))**2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) IS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
OF DEFIN FOR BREI SYMMETRI J REAL(U) EM(U) EM(U) EM(U) EM(U) EM(U) EM(U) EM(U) EME EME THE TERM CHE TERM CHE TERM CHE TERM CHE TERM CHE TERM CHE TERM CHE TERM	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*COS(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) IS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)*2 + SIN(2*PS)*2 = 1, = $(1-X)*2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
DF DEFIN FOR BREI SYMMETRI J REAL(U) IM(U) R(U) **2 I(U) **2 IL(U) **2 IL(U) **2 INE TERM THE TERM THE IDEN SUM VE NOW H SECTIONS	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*COS(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) ES $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ ES $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)*2 + SIN(2*PS)*2 = 1, = $(1-X)**2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
PF DEFIN POR BREI SYMMETRI WEAL (U) M (U	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*SIN(2*PS))*2 + (Y*COS(2*PS))*2$ +2*(1-X)*Y*COS(2*PS)*SIN(2*PS) IS $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)*2 + SIN(2*PS)*2 = 1, = $(1-X)*2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T_{1}	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
PF DEFIN OR BREI SYMMETRI SYMMETRI CEAL (U) M (U) A (U) **2 C(U) **2	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*COS(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS))**2 + (Y*SIN(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T	RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN RECEN
DF DEFIN FOR BREI SYMMETRI U REAL(U) M(U) R(U) **2 C(U) *	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS))*2 + (Y*SIN(2*PS))*2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS))*1(2*PS)$ = $((1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$ EAVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T, =GJ*(1 - 2*REAL(U) + (REAL(U)**2 + IM(U)**2))	RECEN RECEN
DF DEFIN FOR BREI SYMMETRI U REAL(U) M(U) R(U) **2 C(U) *	TITION OF THE SIGN OF (X) AND (Y) HAS BEEN SELECTED SO THAT T-WIGNER PARAMETERS (X) AND (Y) CORRESPOND EXACTLY TO THE C AND ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. = $(COS(2*PS) - I*SIN(2*PS))*((1-X) - I*Y)$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $-I*((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*COS(2*PS) - Y*SIN(2*PS))$ = $((1-X)*COS(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS) + Y*COS(2*PS))$ = $((1-X)*SIN(2*PS))**2 + (Y*SIN(2*PS))**2$ -2*(1-X)*Y*COS(2*PS)*SIN(2*PS) = $((1-X)*Y*COS(2*PS)*SIN(2*PS)$ S $2*(1-X)*Y*COS(2*PS)*SIN(2*PS)$ CANCEL AND UPON USING TITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, = $(1-X)**2 + (Y)**2$ AVE ALL THE QUANTITIES THAT WE NEED TO DEFINE THE CROSS T	RECEN: RECEN:

THIS CAN BE WRITTEN AS A SUM OF 2 SQUARES,	RECENT
ELASTIC =GJ*(COS(2*PS) - (1-X))**2 + (SIN(2*PS) + Y)**2)	RECENT RECENT
	RECENT
=GJ*((COS(2*PS))**2 - 2*(1-X)*COS(2*PS) + (1-X)**2) + (2TN(2+PS))**2 +	RECENT
(SIN(2*PS))**2 + 2*Y*SIN(2*PS) + (Y)**2)	RECENT RECENT
AGAIN USING THE IDENTITY COS(2*PS)**2 + SIN(2*PS)**2 = 1, WE CAN	RECENT
SEE THAT THE DEFINITION AS THE SUM OF 2 SQUARES IS IDENTICAL TO	RECENT
THE PRECEDING DEFINITION OF THE ELASTIC.	RECENT
ELASTIC =GJ*(COS(2*PS) - (1-X))**2 + (SIN(2*PS) + Y)**2)	RECENT RECENT
$= GJ^{(COS(2*PS) - (1-X))^{*2} + (SIN(2*PS) + 1)^{*2}}$ $= GJ^{*}((COS(2*PS) - 1) + X)^{*2} + (SIN(2*PS) + Y)^{*2}$	RECENT
	RECENT
USING THE IDENTITY (1 - COS(2*PS))) = 2*SIN(PS)**2, WE OBTAIN	RECENT
THE FINAL FORM FOR THE ELASTIC,	RECENT
ELASTIC =GJ*(2*SIN(PS)**2 - X)**2 + (SIN(2*PS) + Y)**2)	RECENT RECENT
$EIRSIIC = GU^{(2^{+}SIN(PS)^{+}2^{-}-X)^{+}2^{-}+(SIN(2^{+}PS)^{+}1)^{+}2^{-})$	RECENT
ABSORPTION	RECENT
=======	RECENT
ABSORPTION = GJ*(1 - (REAL(U)**2 + IM(U)**2))	RECENT
= GJ*(1 - ((1-X)**2 + (Y)**2)) = GJ*(1 - (1 - 2*X + (X)**2 + (Y)**2)	RECENT RECENT
$= GJ^{(1)} - (1 - 2^{X} + (X)^{2} + (1)^{2})$ $= GJ^{(2*X)} - (X)^{**2} + (Y)^{**2}$	RECENT
	RECENT
SINCE PHYSICALLY THE ABSORPTION CANNOT BE NEGATIVE WE CAN SEE	RECENT
THAT (X) MUST BE POSITIVE AND 2*X MUST BE GREATER THAN	RECENT
(X)**2 + (Y)**2, FOR ALL OF THE FORMALISMS.	RECENT RECENT
TOTAL	RECENT
	RECENT
IN THIS PROGRAM THE TOTAL CROSS SECTION IS ALWAYS DEFINED TO BE	RECENT
THE SUM OF ITS PARTS - SO THE ABOVE DEFINITION IS NEVER EXPLICITL	
USED. HOWEVER, WE CAN LEARN SOMETHING BY EXAMINING THE DEFINITION	
	BECENT
TOTAL = 2 * GJ * REAL (1 - U)	RECENT RECENT
TOTAL = $2*GJ*REAL(1 - U)$ = $2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS)))$	
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS))	RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS)))	RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS))	RECENT RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS))	RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)*2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)*2 + 2*GJ*((X-1) - 2*X*SIN(PS)*2 + Y*SIN(2*PS))	RECENT RECENT RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)*2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)*2 + 2*GJ*((X-1) - 2*X*SIN(PS)*2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)*2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)*2 + 2*GJ*((X-1) - 2*X*SIN(PS)*2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)*2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)*2 + 2*GJ*((X-1) - 2*X*SIN(PS)*2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)*2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)*2 + 2*GJ*((X-1) - 2*X*SIN(PS)*2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS.</pre>	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION,</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION, ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2))</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION,</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION, ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2))</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*(1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS))</pre> THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION, ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2)) THE SINGLE LEVEL ABSORPTION IS, ABSORPTION =GJ*(2*X)	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*((1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 4*GJ*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS)) THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION, ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2)) THE SINGLE LEVEL ABSORPTION IS, ABSORPTION =GJ*(2*X) THE DIFFERENCE BETWEEN THE TWO IS -2*GJ*(X**2 + Y**2), SO THAT</pre>	RECENT RECENT
<pre>= 2*GJ*(1 - (((1-X)*COS(2*PS) - Y*SIN(2*PS))) = 2*GJ*(1 - COS(2*PS))*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2*(1-X) - (1-X) + Y*SIN(2*PS)) = 2*GJ*(2*SIN(PS)**2 + 2*GJ*((X-1) - 2*X*SIN(PS)**2 + Y*SIN(2*PS))</pre> THE IMPORTANT POINT TO NOTE IS THAT THE DEFINITION OF THE TOTAL DOES NOT EXPLICITLY CONTAIN ANY DEPENDENCE ON X**2 AND Y**2 - THE LEVEL-LEVEL INTERFERENCE TERMS. THIS IMPLIES THAT IF A GIVEN SET OF RESONANCE PARAMETERS ARE USED WITH THIS DEFINITION THEY WILL PRODUCE EXACTLY THE SAME TOTAL CROSS SECTION - WHETHER WE CLAIM THE PARAMETERS HAVE BEEN PRODUCED USING A SINGLE OR MULTI-LEVEL FIT. THIS RESULT COULD BE VERY MISLEADING, IF THIS RESULT FOR THE TOTAL IS IMPLIED TO MEAN THAT ONE INTERPRETATION OR THE OTHER WILL NOT HAVE ANY EFFECT ON THE INDIVIDUAL CROSS SECTIONS. STARTING FROM EXACTLY THE SAME RESONANCE PARAMETERS, RELATIVE TO THE RESULTS OBTAINED USING THE SINGLE LEVEL FORMULA, MULTI-LEVEL RESULTS WILL TEND TO ALWAYS DECREASE THE ABSORPTION AND INCREASE THE ELASTIC. THIS CAN BE IMMEDIATELY SEEN FROM OUR GENERAL MULTI-LEVEL DEFINITION OF ABSORPTION, ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2)) THE SINGLE LEVEL ABSORPTION IS, ABSORPTION =GJ*(2*X)	RECENT RECENT

SECTION IS THE SAME IN BOTH CASE, THIS MEANS THAT THE ELASTIC	RECENT
HAS BEEN INCREASED BY THIS AMOUNT.	RECENT
AGAIN, THESE RESULTS ARE BASED ON STARTING FROM EXACTLY THE SAME	RECENT RECENT
PARAMETERS - IN ANY ACTUAL CASE THE PARAMETERS BASED ON A SINGLE	RECENT
OR MULTI-LEVEL FIT WILL BE QUITE DIFFERENT - THE POINT THAT WE	RECENT
WANT TO STRESS HERE IS THAT YOU SHOULD NEVER USE PARAMETERS WHICH HAVE BEEN DEFINED BY A FIT USING ONE FORMALISM - IN THE	RECENT RECENT
EQUATIONS FOR A DIFFERENT FORMALISM - AND ASSUME THAT THE RESULTS	
WILL BE CONSISTENT - AND NEVER USE THE TOTAL CROSS SECTION TO	RECENT
SEE WHETHER OR NOT A SET OF SINGLE LEVEL PARAMETERS CAN BE USED	RECENT
WITH A MULTI-LEVEL FORMALISM.	RECENT
POTENTIAL CROSS SECTION	RECENT RECENT
	RECENT
FAR FROM RESONANCES (X) AND (Y) WILL BE SMALL AND THE ELASTIC	RECENT
CROSS SECTION REDUCES TO,	RECENT
ELASTIC =GJ*(2*SIN(PS)**2)**2 + (SIN(2*PS))**2	RECENT RECENT
$= GJ^{*4} * (SIN (PS)^{**4} + SIN (2*PS)^{**2}$	RECENT
	RECENT
USING THE IDENTITY $SIN(2*PS) = 2*SIN(PS)*COS(PS)$	RECENT
=4*GJ*(SIN(PS)**4 + (SIN(PS)*COS(PS))**2)	RECENT RECENT
=4*GJ*SIN(PS)**2*(SIN(PS)**2 + COS(PS)**2)	RECENT
=4*GJ*SIN(PS)**2	RECENT
WHICH IS THE POTENTIAL CROSS SECTION. NOTE THAT THIS RESULT IS	RECENT RECENT
INDEPENDENT OF THE FORMALISM USED, AS IT MUST PHYSICALLY BE,	RECENT
AND AS SUCH ALTHOUGH AS YET WE HAVE NOT DEFINED IT, WE CAN	RECENT
NOW SEE THAT IN ALL CASES (PS) MUST BE THE PHASE SHIFT AND FOR	RECENT
CONSISTENCY IT MUST BE DEFINED USING EXACTLY THE SAME DEFINITION IN ALL CASES.	RECENT RECENT
	RECENT
IN ADDITION SINCE PHYSICALLY FOR EACH L VALUE WE EXPECT TO OBTAIN	RECENT
A POTENTIAL CROSS SECTION,	RECENT
4*(2*L+1)*SIN(PS)**2	RECENT RECENT
	RECENT
OBVIOUSLY FOR CONSISTENCY WE MUST HAVE,	RECENT
(2*L+1) = (SUM OVER J) GJ	RECENT RECENT
	RECENT
ONLY IN THIS CASE WILL THE RESULTS BE CONSISTENT - THIS POINT WILL	
BE DISCUSSED IN DETAIL BELOW.	RECENT
WHAT ARE THIS TERMS (X) AND (Y)	RECENT
	RECENT
(X) AND (Y) CAN BE EASILY IDENTIFIED BY CONSIDERING THE SINGLE	RECENT
AND MULTI-LEVEL BREIT WIGNER FORMALISMS. IN THESE CASES WE WILL FIND THAT,	RECENT RECENT
	RECENT
X = GAM(N) * GAM(T) / 2 / DEN	RECENT
Y = GAM(N) * (E-ER) / DEN	RECENT
DEN = $((E-ER)**2 + (GAM(T)/2)**2)$	RECENT RECENT
EXTREME CARE HAS TO BE USED TO PROPERLY DEFINE (Y) SUCH THAT IT	RECENT
IS NEGATIVE FOR E LESS THAN ER AND POSITIVE FOR E GREATER THAN	RECENT
ER. I WILL MERELY MENTION THAT THE EQUATIONS FOR ALL FORMALISMS	RECENT
IN ENDF-102 DO NOT CONSISTENTLY USE (E - ER) - IN SOME CASES THIS IS WRITTEN AS (ER - E), WHICH CAN LEAD TO AN INCORRECT	RECENT RECENT
SIGN IN THE DEFINITION OF THE (Y) THAT WE REQUIRE.	RECENT
	RECENT
THE INTERFERENCE TERMS CAN BE WRITTEN IN TERMS OF, 1) LEVEL-SELF INTERFERENCE = THE CONTRIBUTION OF EACH LEVEL	RECENT RECENT
I) LEVEL-SELF INTERFERENCE = THE CONTRIBUTION OF EACH LEVEL INTERFERRING WITH ITSELF	RECENT
2) LEVEL-LEVEL INTERFERENCE = THE CONTRIBUTION OF EACH LEVEL	RECENT
INTERFERRING WITH ALL OTHER LEVELS	
WE WILL REFER TO THESE TWO AS (L-S) AND (L-L),	RECENT RECENT
	RECENT

x**2 = (GAM(N) * (GAM(T)/2) * * 2/(DEN) * * 2RECENT + (L-L) = (GAM(N) * 2*((GAM(T)/2) * 2)/(DEN) * 2 + (L-L))RECENT V**2 = (GAM(N)) **2*((E-ER)) **2/(DEN) **2+ (L-L) RECENT RECENT X**2+Y**2= GAM(N) **2* DEN/(DEN) **2 = GAM(N) **2/ DEN + (L-L) RECENT RECENT TO SEE THE EFFECT OF INCLUDING MULTI-LEVEL INTERFERENCE WE CAN RECENT CONSIDER OUR GENERAL EXPRESSION FOR ABSORPTION, RECENT RECENT ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2)) RECENT RECENT AND NOTE THAT FOR BOTH SINGLE AND MULTI-LEVEL BREIT WIGNER THE RECENT ENDF-102 SAYS TO TREAT ABSORPTION IN A SINGLE LEVEL APPROXIMATION RECENT I.E., IGNORE LEVEL-LEVEL INTERFERENCE. IF ALL INTERFERENCE IS RECENT IGNORED THIS IS EQUIVALENT TO COMPLETELY IGNORING X**2 + Y**2 AND RECENT DEFINING, RECENT RECENT ABSORPTION =GJ*2*X RECENT =2*GJ*GAM(N)*GAM(T)/DEN RECENT RECENT WHICH IS INCORRECT - SINCE THIS SEEMS TO INDICATE EVERYTHING IS RECENT ABSORBED. IN ORDER TO OBTAIN THE CORRECT EXPRESSION WE CANNOT RECENT COMPLETELY IGNORE INTERFERENCE - WE CAN IGNORE LEVEL-LEVEL RECENT INTERFERENCE, BUT WE MUST INCLUDE LEVEL-SELF INTERFERENCE, RECENT RECENT X**2+Y**2= GAM(N)**2/DEN RECENT RECENT ABSORPTION =GJ*(2*X - ((X)**2 + (Y)**2)) RECENT =GJ*GAM(N)*(GAM(T)-GAM(N))/DENRECENT =GJ*GAM(N)*GAM(A)/DEN RECENT RECENT SUMMARY RECENT RECENT AN IMPORTANT POINT TO NOTE IS THE DEFINITION OF (X) AND (Y) RECENT WHICH IN ALL CASES WILL CORRESPOND TO THE SYMMETRIC AND RECENT ANTI-SYMMETRIC CONTRIBUTION OF THE RESONANCES. IN PARTICULAR RECENT DEFINING (U) IN TERMS OF (1-X) INSTEAD OF (X) IS EXTREMELY RECENT IMPORTANT. NOTE, THAT THE DEFINITION OF THE ELASTIC AND RECENT ABSORPTION ONLY INVOLVE (X), NOT (1-X). FAR FROM RESONANCES RECENT (X) CAN BE EXTREMELY SMALL, THEREFORE (1-X) WILL BE VERY CLOSE RECENT TO (1). IF THE CALCULATION PROCEEDS BY FIRST CALCULATING (1-X) RECENT AND THEN DEFINING (X) BY SUBTRACTING (1), EXTREME ROUND-OFF RECENT PROBLEMS CAN RESULT. THESE PROBLEMS CAN BE AVOIDED BY IN ALL RECENT CASES DEFINING (X) DIRECTLY, WITHOUT ANY DIFFERENCES. RECENT RECENT IN EACH FORMALISM THE DEFINITION OF (X) AND (Y) MAY BE DIFFERENT RECENT BUT ONCE WE HAVE DEFINED (X) AND (Y) WE CAN IMMEDIATELY WRITE RECENT THE CROSS SECTIONS USING A UNIFORM DEFINITION, RECENT RECENT ELASTIC =GJ*(2*SIN(PS)**2 - X)**2 + (SIN(2*PS) + Y)**2) RECENT RECENT ABSORPTION =-GJ*(2*X + (X)**2 + (Y)**2)RECENT RECENT AND DEFINE THE TOTAL AS THE SUM OF THESE 2 PARTS. RECENT RECENT RELATIONSHIP TO SINGLE LEVEL RECENT RECENT HOW DO THE SINGLE AND MULTI-LEVEL FORMALISMS COMPARE. TO SEE, RECENT STARTING FROM OUR GENERAL DEFINITION OF THE ELASTIC IN THE FORM, RECENT RECENT ELASTIC =GJ*(2*SIN(PS)**2 + X)**2 + (SIN(2*PS) + Y)**2) RECENT =GJ*(4*SIN(PS)**4 - 4*X*SIN(PS)**2 + X**2 RECENT + SIN(2*PS)**2 + 2*Y*SIN(2*PS) + Y**2) RECENT RECENT =4*GJ*SIN(PS)**2 + RECENT GJ* (X**2 + Y**2 RECENT -4*X*SIN(PS)**2 RECENT +2*Y*SIN(2*PS)) RECENT RECENT AND OUR SPECIFIC DEFINITIONS OF (X) AND (Y) FOR MULTI-LEVEL BREIT-RECENT WIGNER PARAMETERS, RECENT

	DECENT
X = GAM(N) * GAM(T) / 2 / DEN	RECENT RECENT
X = GAM(N) * GAM(T) / 2 / DEN Y = GAM(N) * (E-ER) / DEN	RECENT
DEN = ((E-ER)**2 + (GAM(T)/2)**2)	RECENT
	RECENT
X**2+Y**2= GAM(N)**2/DEN + (L-L)	RECENT
	RECENT
WE CAN RECOGNIZE X**2 AND Y**2 AS THE INTERFERENCE - (L-S) + (L-L)	RECENT
TERMS IN THE MULTI-LEVEL FORMALISM. IN ORDER TO OBTAIN THE SINGLE	RECENT
LEVEL EQUATION WE CAN ASSUME THAT EACH LEVEL DOES NOT INTERFERE	RECENT
WITH ANY OTHER LEVEL - THEREFORE THE (L-L) CONTRIBUTION IS ZERO.	RECENT
	RECENT
ELASTIC = $4*GJ*SIN(PS)**2 +$	RECENT RECENT
GJ*GAM(N)*(GAM(N) -2*GAM(T)*SIN(PS)**2	RECENT
+2*(E-ER)*SIN(2*PS))/DEN	RECENT
	RECENT
WHICH IS THE FORM THAT IT APPEARS IN ENDF-102, EXCEPT FOR TWO	RECENT
TYPOGRAPHICAL ERRORS IN THE SECOND TERM,	RECENT
	RECENT
-2*GAM(T)*SIN(PS)**2	RECENT
	RECENT
WHICH IN ENDF-102 IS WRITTEN,	RECENT
	RECENT
-2*(GAM(T)-GAM(N))*SIN(2*PS)**2	RECENT
PROGRAM CONVENTIONS	RECENT RECENT
	RECENT
MINIMUM INPUT DATA	RECENT
	RECENT
FOR EACH MATERIAL TO BE PROCESSED THE MINIMUM INPUT DATA ARE THE	RECENT
RESONANCE PARAMETERS IN FILE 2. IF THERE ARE NO FILE 2 PARAMETERS	RECENT
IN A GIVEN MATERIAL THE ENTIRE MATERIAL WILL SIMPLY BE COPIED.	RECENT
NEITHER THE HOLLERITH SECTION (MF=1, MT=451) NOR THE BACKGROUND	RECENT
CROSS SECTION (SECTIONS OF MF=3) NEED BE PRESENT FOR THIS PROGRAM	
TO EXECUTE PROPERLY. HOWEVER, SINCE THE CONVENTIONS USED IN	RECENT
INTERPRETING THE RESONANCE PARAMETERS DEPENDS ON ENDF/B VERSION	RECENT
USERS ARE STRONGLY RECOMMENDED TO INSURE THAT MF=1, MT=451 IS PRESENT IN EACH MATERIAL TO ALLOW THE PROGRAM TO DETERMINE THE	RECENT RECENT
ENDF/B FORMAT VERSION.	RECENT
INDI/B FORMAT VERSION.	RECENT
RESONANCE PARAMETERS	RECENT
	RECENT
RESONANCE PARAMETERS MAY BE REPRESENTED USING ANY COMBINATION	RECENT
OF THE REPRESENTATIONS ALLOWED IN ENDF/B,	RECENT
(1) RESOLVED DATA	RECENT
(A) SINGLE LEVEL BREIT-WIGNER	RECENT
(B) MULTI-LEVEL BREIT-WIGNER	RECENT
(C) ADLER-ADLER (D) REICH-MOORE	RECENT RECENT
(E) HYBRID R-FUNCTION	RECENT
(2) UNRESOLVED DATA	RECENT
(A) ALL PARAMETERS ENERGY INDEPENDENT	RECENT
(B) FISSION PARAMETERS ENERGY DEPENDENT	RECENT
(C) ALL PARAMETERS ENERGY DEPENDENT	RECENT
	RECENT
THE FOLLOWING RESOLVED DATA FORMALISMS ARE NOT TREATED BY THIS	RECENT
VERSION OF THE CODE AND WILL ONLY BE IMPLEMENTED AFTER EVALUATIONS	
USING THESE FORMALISMS ARE AVAILABLE TO THE AUTHOR OF THIS CODE	RECENT
FOR TESTING IN ORDER TO INSURE THAT THEY CAN BE HANDLED PROPERLY (A) GENERAL R-MATRIX	RECENT RECENT
(N) GENERAL A PRIMIA	RECENT
CALCULATED CROSS SECTIONS	RECENT
	RECENT
THIS PROGRAM WILL USE THE RESONANCE PARAMETERS TO CALCULATE THE	RECENT
	RECENT
COMPETITIVE WIDTH WILL BE USED IN THESE CALCULATIONS, BUT THE	RECENT
COMPETITIVE CROSS SECTION ITSELF WILL NOT BE CALCULATED. THE	RECENT
ENDF/B CONVENTION IS THAT ALTHOUGH A COMPETITIVE WIDTH MAY BE	RECENT
GIVEN, THE COMPETITIVE CROSS SECTION MUST BE SEPARATELY TABULATED	
AS A SECTION OF FILE 3 DATA.	RECENT

	RECENT RECENT
	RECENT
	RECENT
CALCULATE COLD (0 KELVIN), LINEARLY INTERPOLABLE, ENERGY DEPENDENT	
CROSS SECTIONS.	RECENT
	RECENT
SCATTERING RADIUS	RECENT
	RECENT
	RECENT
	RECENT
· · · · · · · · · · · · · · · · · · ·	RECENT
	RECENT RECENT
	RECENT
	RECENT
	RECENT
	RECENT
200 - INTERPOLATION REGIONS	RECENT
500 - TABULATED VALUES	RECENT
IF THESE LIMITS ARE EXCEEDED THE PROGRAM WILL PRINT AN ERROR	RECENT
MESSAGE AND TERMINATE.	RECENT
	RECENT
	RECENT
·	RECENT
(1) INTERPOLATION REGIONS - INCREASE THE DIMENSION OF NBTRHO AND INTRHO IN COMMON/TABRHO/ THROUGHOUT THE PROGRAM AND CHANGE MAXSEC	RECENT
	RECENT
	RECENT
	RECENT
	RECENT
MAXRHO IN SUBROUTINE RDAP (MAXRHO = MAXIMUM NUMBER OF TABULATED	RECENT
VALUES).	RECENT
	RECENT
RESOLVED REICH-MOORE AND MULTI-LEVEL BREIT-WIGNER PARAMETERS	RECENT
	DECENT
	RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING	RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A	RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION	RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION	RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION	RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS	RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS,	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ========	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ====================================	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ======== AN EXAMPLE OF WHERE THIS OCCURS AND IS IMPORTANT TO CONSIDER IS U-238 IN ENDF/B-4 AND 5 LIBRARIES WHERE FOR L=1 THERE IS	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (HIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ======= AN EXAMPLE OF WHERE THIS OCCURS AND IS IMPORTANT TO CONSIDER IS U-238 IN ENDF/B-4 AND 5 LIBRARIES WHERE FOR L=1 THERE IS ONLY A J=1/2 SEQUENCE. NOT INCLUDING THE J=3/2 SEQUENCE LEADS	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CENTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ====================================	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CENTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ====================================	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION D.1 TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ====================================	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ====== AN EXAMPLE OF WHERE THIS OCCURS AND IS IMPORTANT TO CONSIDER IS U-238 IN ENDF/B-4 AND 5 LIBRARIES WHERE FOR L=1 THERE IS ONLY A J=1/2 SEQUENCE. NOT INCLUDING THE J=3/2 SEQUENCE LEADS TO UNDERESTIMATING THE POTENTIAL SCATTERING AND PRODUCES MINIMA IN THE ELASTIC CROSS SECTION WHICH ARE AN ORDER OF MAGNITUDE LOWER THAN THE CROSS SECTIONS OBTAINED BE INCLUDING THE J=3/2 SEQUENCE.	RECENT RECENT
CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF EMDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ======= AN EXAMPLE OF WHERE THIS OCCURS AND IS IMPORTANT TO CONSIDER IS U-238 IN ENDF/B-4 AND 5 LIBRARIES WHERE FOR L=1 THERE IS ONLY A J=1/2 SEQUENCE. NOT INCLUDING THE J=3/2 SEQUENCE LEADS TO UNDERESTIMATING THE POTENTIAL SCATTERING AND PRODUCES MINIMA IN THE ELASTIC CROSS SECTION WHICH ARE AN ORDER OF MAGNITUDE LOWER THAN THE CROSS SECTIONS OBTAINED BE INCLUDING THE J=3/2 SEQUENCE. (2) FOR A GIVEN TARGET SPIN AND L VALUE THERE MAY BE 2 POSSIBLE	RECENT RECENT
 CROSS SECTIONS FOR REICH-MOORE PARAMETERS ARE CALCULATED ACCORDING TO THE EQUATION (1) - (8) OF SECTION D.1.3 OF ENDF-102. IN ORDER TO CALCULATE CROSS SECTIONS FROM MULTI-LEVEL PARAMETERS IN A REASONABLE AMOUNT OF TIME THIS PROGRAM EXPRESSES THE CROSS SECTION IN TERMS OF A SINGLE SUM OVER RESONANCES (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7), RATHER THAN AS A DOUBLE SUM (SEE, ENDF-102 SECTION D.1.2, EQUATION 1-2). IN ORDER FOR THE ENDF-102 EQUATIONS, TO BE CORRECT THE PARAMETERS MUST MEET THE FOLLOWING CONDITIONS, (1) FOR EACH L STATE ALL PHYSICALLY POSSIBLE J SEQUENCES MUST BE PRESENT. ONLY IN THIS CASE WILL THE CONTRIBUTIONS OF THE INDIVIDUAL J SEQUENCES ADD UP TO PRODUCE THE CORRECT POTENTIAL SCATTERING CONTRIBUTION FOR THE L STATE (SEE, ENDF-102, SECTION D.1.2, EQUATIONS 6-7). IF ANY J SEQUENCE IS MISSING THE PROGRAM WILL PRINT A WARNING AND ADD THE J SEQUENCE WITH NO RESONANCE PARAMETERS IN ORDER TO ALLOW THE POTENTIAL SCATTERING TO BE CALCULATED CORRECTLY (THIS IS EQUIVALENT TO ASSUMING THAT THE EVALUATOR REALIZES THAT ALL J SEQUENCES MUST BE AND ARE PRESENT AND THAT THE EVALUATION STATES THAT THERE ARE NO RESONANCES WITH CERTAIN PHYSICALLY POSSIBLE J VALUES IN THIS CASE POTENTIAL CONTRIBUTION MUST STILL BE CONSIDERED). EXAMPLE ============= AN EXAMPLE OF WHERE THIS OCCURS AND IS IMPORTANT TO CONSIDER IS U-238 IN ENDF/B-4 AND 5 LIBRARIES WHERE FOR L=1 THERE IS ONLY A J=1/2 SEQUENCE. NOT INCLUDING THE J=3/2 SEQUENCE LEADS TO UNDERESTIMATING THE POTENTIAL SCATTERING AND PRODUCES MINIMA IN THE ELASTIC CROSS SECTION WHICH ARE AN ORDER OF MAGNITUDE LOWER THAN THE CROSS SECTIONS OBTAINED BE INCLUDING THE J=3/2 SEQUENCE. (2) FOR A GIVEN TARGET SPIN AND L VALUE THERE MAY BE 2 POSSIBLE MEANS OF OBTAINING THE SAME J VALUE. WHEN THIS OCCURS IN 	RECENT RECENT

SECTION IT IS IMPORTANT TO INCLUDE THE EFFECT OF BOTH RECENT POSSIBLE J SEQUENCES, EVEN THOUGH FROM THE ENDF/B DATA IT IS RECENT NOT POSSIBLE TO DETERMINE WHICH OF THE 2 POSSIBLE SEQUENCES RECENT ANY GIVEN RESONANCE BELONGS TO. IN THIS CASE THIS PROGRAM RECENT TREAT ALL RESONANCES WITH THE SAME J VALUE AS BELONGING TO RECENT THE SAME J SEQUENCE (TO ALLOW INTERFERENCE) AND WILL ADD AN RECENT ADDITIONAL J SEQUENCE WITH NO RESONANCES IN ORDER TO ALLOW RECENT THE POTENTIAL CROSS SECTION TO BE CALCULATED CORRECTLY. WHEN RECENT THIS OCCURS A WARNING MESSAGE IS PRINTED, BUT BASED ON THE RECENT ENDF/B DATA THERE IS NOTHING WRONG WITH THE DATA AND THERE IS RECENT NOTHING THAT THE USER CAN DO TO CORRECT OR IN ANY WAY MODIFY RECENT THE DATA TO ELIMINATE THE PROBLEM. RECENT RECENT

> RECENT RECENT

RECENT RECENT

RECENT

EXAMPLE

======

FOR A TARGET SPIN =1 AND L=1 THE 2 RANGES OF PHYSICALLY RECENT POSSIBLE J ARE 1/2, 3/2, 5/2 AND 1/2, 3/2. BY CHECKING THE RECENT ENDF/B DATA IT IS POSSIBLE TO INSURE THAT THE 3 POSSIBLE RECENT J VALUES (1/2, 3/2, 5/2) ARE PRESENT AND TO INCLUDE ALL 3 RECENT J SEQUENCES IN THE CALCULATIONS. HOWEVER, UNLESS ALL 5 RECENT POSSIBLE J SEQUENCES ARE INCLUDED THE STATISTICAL WEIGHTS RECENT OF THE J SEQUENCES WILL NOT SUM UP TO 2*L+1 AND THE RECENT POTENTIAL CROSS SECTION WILL BE UNDERESTIMATED. IN THIS RECENT EXAMPLE THE SUM OF THE 3 J SEQUENCES 1/2, 3/2, 5/2 IS 2, RECENT RATHER THAN 3 AS IT SHOULD BE FOR L=1, AND THE CONTRIBUTION RECENT OF THE L=1 RESONANCES TO THE POTENTIAL SCATTERING CROSS RECENT SECTION WILL ONLY BE 2/3 OF WHAT IT SHOULD BE, UNLESS THE RECENT OTHER 2 J SEQUENCES (WITH DUPLICATE J VALUES) ARE INCLUDED RECENT IN THE CALCULATION. RECENT RECENT

(3) EACH RESONANCE MUST HAVE AN ASSIGNED, PHYSICALLY POSSIBLE RECENT J VALUE. PHYSICALLY IMPOSSIBLE OR AVERAGE J VALUES CANNOT BE RECENT UNIQUELY INTERPRETED USING THE EQUATIONS IN ENDF-102 AND RECENT THEIR USE WILL USUALLY RESULT IN PHYSICALLY UNRELIABLE CROSS RECENT SECTIONS. THIS PROGRAM WILL CHECK ALL J VALUES AND IF ANY ARE RECENT ARE FOUND TO BE PHYSICALLY IMPOSSIBLE (BASED ON TARGET SPIN RECENT AND L VALUE) AN ERROR MESSAGE WILL BE PRINTED TO INDICATE THATRECENT THE RECONSTRUCTED CROSS SECTIONS WILL BE UNRELIABLE AND THE RECENT PROGRAM WILL CONTINUE. IN AN ATTEMPT TO CALCULATE THE CORRECT RECENT POTENTIAL SCATTERING CROSS SECTION THIS PROGRAM WILL SUBTRACT RECENT THE POTENTIAL SCATTERING CONTRIBUTION DUE TO ALL FICTICIOUS J RECENT SEQUENCES AND ADD THE CONTRIBUTION OF ALL PHYSICALLY POSSIBLE RECENT J SEQUENCES (AS DESCRIBED ABOVE). RECENT RECENT

WARNING (LET THE USER BEWARE)

UNRESOLVED RESONANCE REGION

- (A) IT CANNOT BE STRESSED ENOUGH THAT CROSS SECTIONS OBTAINED RECENT USING PHYSICALLY IMPOSSIBLE J VALUES FOR REICH-MOORE AND RECENT MULTI-LEVEL BREIT-WIGNER RESONANCE PARAMETERS WILL RESULT RECENT IN UNRELIABLE CROSS SECTIONS. THE DECISION TO HAVE THIS RECENT PROGRAM CONTINUE TO PROCESS WHEN THIS CONDITION IS FOUND RECENT IS BASED ON AN ATTEMPT TO ALLOW THE USER TO AT LEAST HAVE RECENT SOME RESULTS (HOWEVER BAD THEY MAY BE) IF THERE IS NO RECENT OTHER EVALUATED DATA AVAILABLE. RECENT
- (B) EVEN THOUGH THE REICH-MOORE AND MULTI-LEVEL EQUATIONS ARE RECENT DEFINED AS ABSOLUTE OR SQUARED CONTRIBUTIONS WHICH MUST RECENT ALL BE PHYSICALLY POSSIBLE, ATTEMPTING TO CORRECT THE RECENT POTENTIAL CROSS SECTION (AS DESCRIBED ABOVE) CAN LEAD TO RECENT NEGATIVE ELASTIC CROSS SECTIONS. THIS IS BECAUSE BASED ON RECENT THE INFORMATION AVAILABLE IN THE EVALUATION IT IS NOT RECENT NOT POSSIBLE TO CORRECTLY ACCOUNT FOR THE INTERFERENCE RECENT BETWEEN THE RESONANCE AND POTENTIAL CONTRIBUTIONS FOR EACHRECENT J SEOUENCE. RECENT RECENT

-------RECENTIN THE UNRESOLVED RESONANCE REGION THE UNRESOLVED PARAMETERSRECENTARE USED TO CALCULATE INFINITELY DILUTE AVERAGE CROSS SECTIONS.RECENTNOTE, IT IS IMPORTANT TO UNDERSTAND THAT FROM THE DEFINITION OFRECENTTHE UNRESOLVED PARAMETERS IT IS NOT POSSIBLE TO UNIQUELY CALCULATERECENTENERGY DEPENDENT CROSS SECTIONS. ONLY AVERAGES OR DISTRIBUTIONSRECENT

MAY BE CALCULATED.	RECENT
UNRESOLVED INTERPOLATION	RECENT
TN DUE INDECOINED DECONANCE DECION COOCO SECTIONS AN EACH ENERGY	RECENT
IN THE UNRESOLVED RESONANCE REGION CROSS SECTIONS AT EACH ENERGY ARE CALCULATED BY INTERPOLATING PARAMETERS. THIS IS THE CONVENTION	
USED IN ENDF/B-4 AND EARLIER VERSIONS OF ENDF/B. THE ENDF/B-5	
CONVENTION OF INTERPOLATING CROSS SECTIONS, NOT PARAMETERS, HAS	
BEEN ABANDONED AS IMPRACTICAL SINCE IT CAN LEAD TO THE SITUATION	
WHERE EXACTLY THE SAME PHYSICAL DATA CAN LEAD TO DIFFERENT RESULT:	
DEPENDING ON WHICH OF THE THREE ENDF/B UNRESOLVED PARAMTER FORMATS	
IS USED. FOR EXAMPLE, GIVEN A SET OF ENERGY INDEPENDENT UNRESOLVED	
PARAMETERS IT IS POSSIBLE TO CODE THESE PARAMETERS IN EACH OF THE	
THREE ENDF/B UNRESOLVED PARAMETER FORMATS. SINCE PHYSICALLY WE	RECENT
ONLY HAVE ONE SET OF PARAMETERS WE WOULD EXPECT THE RESULTS TO BE	
INDEPENDENT OF HOW THEY ARE REPRESENTED IN ENDF/B. UNFORTUNATELY	
USING THE ENDF/B-5 CONVENTION TO INTERPOLATE CROSS SECTIONS CAN	
LEAD TO THREE COMPLETELY DIFFERENT RESULTS. IN CONTRAST USING THE	
ENDF/B-4 AND EARLIER CONVENTION OF INTERPOLATING PARAMETERS LEADS	
TO COMPLETELY CONSISTENT RESULTS.	RECENT
	RECENT
INTERNAL REPRESENTATION OF UNRESOLVED PARAMETERS	RECENT
	RECENT
ANY OF THE THREE POSSIBLE REPRESENTATIONS OF UNRESOLVED PARAMETERS	
CAN BE UNIQUELY REPRESENTED IN THE ALL PARAMETERS ENERGY DEPENDENT	
REPRESENTATIONS WITH THE APPROPRIATE (ENDF/B VERSION DEPENDENT)	RECENT
INTERPOLATION LAW. THIS IS DONE BY THE PROGRAM WHILE READING THE	
	RECENT
CONSIDER THE ALL PARAMETERS ENERGY DEPENDENT REPRESENTATION.	RECENT
	RECENT
RESONANCE RECONSTRUCTION STARTING ENERGY GRID	RECENT
	RECENT
AS IN ANY ITERATIVE METHOD THE WAY TO SPEED CONVERGENCE IS TO TRY	RECENT
TO START CLOSE TO THE ANSWER. THIS PROGRAM ATTEMPTS TO DO THIS BY	RECENT
STARTING FROM AN ENERGY GRID WHICH IS A GOOD APPROXIMATION TO A	RECENT
SIMPLE BREIT-WIGNER LINE SHAPE,	RECENT
	RECENT
SIGMA(X) = 1.0/(1.0+X*X)	RECENT
	RECENT
WHERE X IS THE DISTANCE FROM THE PEAK IN HALF-WIDTHS	RECENT
	RECENT
SUBROUTINE SUBINT HAS A BUILT-IN TABLE OF NODES WHICH ARE THE	RECENT
HALF-WIDTH MULTIPLES TO APPROXIMATE THE SIMPLE BREIT-LINE SHAPE	RECENT
TO WITHIN 1 PER-CENT OVER THE ENTIRE INTERVAL 0 TO 500 HALF-WIDTHS	
	RECENT
BETWEEN ANY TWO RESOLVED RESONANCES THE STARTING GRID IS BASED ON	
THE HALF-WIDTHS OF THE TWO RESONANCES. FROM THE LOWER ENERGY	RECENT
•	RECENT
IS DEFINED HERE AS AN EQUAL NUMBER OF HALF-WIDTHS FROM EACH	DROTH
RESONANCE) THE HALF-WIDTH OF THE LOWER ENERGY RESONANCE IS USED.	RECENT
	RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF-	RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF-	RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED.	RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY	RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED	RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR	RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION).	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS THE PROGRAM WILL SEARCH FOR BACKGROUND CROSS SECTIONS FOR TOTAL (MT=1), ELASTIC (MT=2), FISSION (MT=18), FIRST CHANCE FISSION (MT=19) AND CAPTURE (MT=102).	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
FROM THE MID-POINT UP TO THE HIGHER ENERGY RESONANCE THE HALF- WIDTH OF THE UPPER ENERGY RESONANCE IS USED. WITH THIS ALOGORITHM CLOSELY SPACED RESONANCES WILL HAVE ONLY A FEW STARTING NODES PER RESONANCE (E.G. U-235). WIDELY SPACED RESONANCES WILL HAVE MORE NODES PER RESONANCE (E.G. U-238). FOR A MIX OF S, P, D ETC. RESONANCES THIS ALOGORITHM GUARANTEES AN ADEQUTE DESCRIPTION OF THE PROFILE OF EVEN EXTREMELY NARROW RESONANCES (WHICH MAY IMMEDIATELY CONVERGENCE TO THE ACCURACY REQUESTED, THUS MINIMIZING ITERATION). BACKGROUND CROSS SECTIONS 	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT

THE RESULT WILL BE OUTPUT.	RECENT
(3) IF FOR A GIVEN REACTION THE BACKGROUND IS NOT PRESENT THE	RECENT
PROGRAM WILL,	RECENT
(A) IF THE INPUT TO THE PROGRAM SPECIFIES NO OUTPUT FOR	RECENT
	RECENT
(B) IF THE INPUT TO THE PROGRAM SPECIFIES OUTPUT FOR REACTIONS	
,	RECENT
	RECENT
	RECENT
	RECENT
• •	RECENT
	RECENT
THE RESONANCE AND BACKGROUND CONTRIBUTIONS WILL BE ADDED TOGETHER	RECENT
	RECENT
ONCE THE RESONANCE AND BACKGROUND CONTRIBUTIONS HAVE BEEN MADE	RECENT
COMPATIBLE THEY CAN BE ADDED TOGETHER (E.G., USE PROGRAM MIXER).	RECENT
	RECENT
THE RECONSTRUCTION OF THE RESONANCE CONTRIBUTION TO THE CROSS	RECENT
SECTION CAN BE QUITE EXPENSIVE (IN TERMS OF COMPUTER TIME). SINCE	RECENT
THE RECONSTRUCTION IS PERFORMED BEFORE THE BACKGROUND CROSS	RECENT
SECTIONS ARE READ, THE ABOVE CONVENTIONS HAVE BEEN ADOPTED IN	RECENT
ORDER TO AVOID LOSE OF COMPUTER TIME INVOLVED IN RECONSTRUCTING	RECENT
THE RESONANCE CONTRIBUTION.	RECENT
	RECENT
COMMON ENERGY GRID	RECENT
	RECENT
THIS PROGRAM WILL RECONSTRUCT THE RESONANCE CONTRIBUTION TO THE	RECENT
	RECENT
	RECENT
	RECENT
,	RECENT
	RECENT
,	RECENT
	RECENT RECENT
SINCE THIS PROGRAM USES A LOGICAL PAGING SYSTEM THERE IS NO LIMIT	
	RECENT
THE PROGRAM SELECTS MATERIALS TO BE PROCESSED BASED EITHER ON	RECENT
	RECENT RECENT

ZA RANGES TO BE SPECIFIED. THE PROGRAM WILL ASSUME THAT THE RECENT ENDF/B TAPE IS IN EITHER MAT OR ZA ORDER, WHICHEVER CRITERIA IS RECENT USED TO SELECT MATERIALS, AND WILL TERMINATE WHEN A MAT OR ZA RECENT IS FOUND THAT IS ABOVE THE RANGE OF ALL REQUESTS. RECENT RECENT ALLOWABLE ERROR RECENT RECENT THE RECONSTRUCTION OF LINEARLY INTERPOLABLE CROSS SECTIONS FROM RECENT RESONANCE PARAMETERS CANNOT BE PERFORMED EXACTLY. HOWEVER IT CAN RECENT BE PERFORMED TO VIRTUALLY ANY REQUIRED ACCURACY AND MOST RECENT IMPORTANTLY CAN BE PERFORMED TO A TOLERANCE THAT IS SMALL COMPAREDRECENT TO THE UNCERTAINTY IN THE CROSS SECTIONS THEMSELVES. AS SUCH THE RECENT CONVERSION OF CROSS SECTIONS TO LINEARLY INTERPOLABLE FORM CAN BE RECENT PERFORMED WITH ESSENTIALLY NO LOSS OF INFORMATION. RECENT RECENT THE ALLOWABLE ERROR MAY BE ENERGY INDEPENDENT (CONSTANT) OR ENERGYRECENT DEPENDENT. THE ALLOWABLE ERROR IS DESCRIBED BY A TABULATED RECENT FUNCTION OF UP TO 20 (ENERGY, ERROR) PAIRS AND LINEAR INTERPOLATIONRECENT BETWEEN TABULATED POINTS. IF ONLY ONE TABULATED POINT IS GIVEN THERECENT ERROR WILL BE CONSIDERED CONSTANT OVER THE ENTIRE ENERGY RANGE. RECENT WITH THIS ENERGY DEPENDENT ERROR ONE MAY OPTIMIZE THE OUTPUT FOR RECENT ANY GIVEN APPLICATION BY USING A SMALL ERROR IN THE ENERGY RANGE RECENT OF INTEREST AND A LESS STRINGENT ERROR IN OTHER ENERGY RANGES. RECENT E.G., 0.1 PER-CENT FROM 0 UP TO THE LOW EV RANGE AND A LESS RECENT STRINGENT TOLERANCE AT HIGHER ENERGIES. RECENT RECENT DEFAULT ALLOWABLE ERROR RECENT RECENT _____ IN ORDER TO INSURE CONVERENCE OF THE RESONANCE RECONSTRUCTION THE RECENT ALLOWABLE ERROR MUST BE POSITIVE. IF THE USER INPUTS AN ERROR FOR RECENT RESONANCE RECONSTRUCTION THAT IS NOT POSITIVE IT WILL BE SET TO RECENT THE DEFAULT VALUE (CURRENTLY 0.1 PER-CENT) AND INDICATED AS SUCH RECENT IN THE OUTPUT LISTING. RECENT RECENT INTERVAL HALVING ALGORITHM RECENT RECENT THIS PROGRAM WILL START BY CALCULATING THE CROSS SECTIONS AT THE RECENT ENERGIES CORRESPONDING TO THE PEAK OF EACH RESONANCE, AS WELL AS RECENT A FIXED NUMBER OF HALF-WIDTHS ON EACH SIDE OF EACH RESONANCE. RECENT STARTING FROM THIS BASIC GRID OF POINTS THE PROGRAM WILL CONTINUE RECENT TO HALF EACH INTERVAL UNTIL THE CROSS SECTIONS FOR ALL REACTIONS RECENT AT THE CENTER OF THE INTERVAL CAN BE DEFINED BY LINEAR RECENT INTERPOLATION FROM THE ENDS OF THE INTERVAL TO WITHIN THE USER RECENT SPECIFIED ACCURACY CRITERIA. RECENT RECENT DISTANT RESONANCE TREATMENT RECENT RECENT -----THE OPTION TO TREAT DISTANT RESONANCES, WHICH WAS AVAILABLE IN RECENT EARLIER VERSIONS OF THIS PROGRAM, IS NO LONGER AVAILABLE, BECAUSE RECENT IT WAS FOUND TO PRODUCE UNRELIABLE RESULTS. IN THIS VERSION OF RECENT THE PROGRAM ALL RESONANCES ARE TREATED EXACTLY. RECENT RECENT PROGRAM OPERATION RECENT RECENT EDIT MODE RECENT _____ RECENT IT IS SUGGESTED THAT BEFORE RUNNING THIS PROGRAM TO RECONSTRUCT RECENT CROSS SECTIONS FROM RESONANCE PARAMETERS (WHICH CAN BE QUITE RECENT EXPENSIVE) THE USER FIRST RUN THE PROGRAM IN THE EDIT MODE (SEE, RECENT DESCRIPTION OF INPUT PARAMETERS BELOW). IN THE EDIT MODE THE RECENT PROGRAM WILL READ, LIST AND EXTENSIVELY CHECK THE CONSISTENCY OF RECENT ALL RESONANCE PARAMETERS AND ENDF/B DEFINED RESONANCE FLAGS. THIS RECENT IS A VERY INEXPENSIVE MEANS OF CHECKING ALL DATA BEFORE INVESTING RECENT A LARGE AMOUNT OF MONEY IN RECONSTRUCTING CROSS SECTIONS. ANY AND RECENT ALL DIGNOSTICS RECEIVED FROM THE EDIT WILL SUGGEST HOW TO CORRECT RECENT THE EVALUATED DATA TO MAKE IT CONSISTENT BEFORE RECONSTRUCTING RECENT CROSS SECTIONS. IN ORDER TO OBTAIN MEANINGFUL RESULTS FROM THE RECENT RECONSTRUCTION ALL SUGGESTED CHANGES TO THE EVALUATION SHOULD BE RECENT PERFORMED BEFORE TRYING RECONSTRUCTION (OTHERWISE THE RESULT OF RECENT RECONSTRUCTION WILL NOT BE RELIABLE). RECENT RECENT

RECONSTRUCTION MODE	RECENT
	RECENT
FOR EACH REQUESTED MATERIAL	RECENT
	RECENT
IF SECTION MF=1, MT=451 IS PRESENT COMMENTS WILL BE ADD TO	RECENT
DOCUMENT THAT THE MATERIAL HAS BEEN PROCESSED. MF=1, MT=451 WILL	RECENT
ALSO BE USED TO DETERMINE THE VERSION OF THE ENDF/B FORMAT WHICH	RECENT
WILL ALLOW THE PROGRAM TO USE THE APPROPRIATE CONVENTIONS.	RECENT
	RECENT
ALL OF THE FILE 2 RESONANCE PARAMETERS ARE FIRST READ AND THE	RECENT
LINEARLY INTERPOLABLE CONTRIBUTION OF THE RESONANCE PARAMETERS	RECENT
TO THE TOTAL, ELASTIC, CAPTURE AND FISSION CROSS SECTIONS IS	RECENT
CALCULATED SIMULTANEOUSLY USING A COMMON ENERGY GRID FOR ALL	RECENT
FOUR REACTIONS.	RECENT
	RECENT
AFTER THE RESONANCE CONTRIBUTION HAS BEEN RECONSTRUCTED EACH OF	RECENT
THE FIVE REACTIONS (MT=1, 2, 18, 19, 102) IS CONSIDERED SEPARATELY	RECENT
FOR COMBINATION WILL THE BACKGROUND CROSS SECTION, IF ANY, AS	RECENT
DESCRIBED ABOVE.	RECENT
	RECENT
OUTPUT WILL INCLUDE THE ENTIRE EVALUATION, INCLUDING RESONANCES	RECENT
	RECENT
THAT THE RESONANCE CONTRIBUTION HAS ALREADY BEEN ADDED TO THE	RECENT
FILE 3 CROSS SECTIONS.	RECENT
	RECENT
THE CYCLE OF RECONSTRUCTING THE RESONANCE CONTRIBUTION AND ADDING	
THE BACKGROUND WILL BE REPEATED FOR EACH MATERIAL REQUESTED.	RECENT
2016/2/10 mile entire is as lesses allowed today's computered	RECENT
	RECENT
are so mjuch faster that this option is no longer	RECENT
	RECENT
PROCESS ONLY A PORTION OF RESONANCE REGION	RECENT
MODERN EVALUATIONS MAY BE EXTREMELY LARGE AND IT MAY NOT BE	RECENT
POSSIBLE TO PROCESS AN ENTIRE EVALUATION (I.E., ADD THE RESONANCE	
	RECENT
	DECENT
CONTRIBUTION) DORING A SINGLE COMPUTER RON.	RECENT
	RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS	RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE	RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS	RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE	RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV.	RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF	RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING.	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS,	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G.,	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3	RECENT RECENT
ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC.	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC. 2) FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC. FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (WHERE TO START) AND THE UPPER ENERGY LIMIT MUST 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3, ETC. FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (WHERE TO START) AND THE UPPER ENERGY LIMIT MUST BE ZERO (NO LIMIT) 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC. 2) FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (WHERE TO START) AND THE UPPER ENERGY LIMIT MUST BE ZERO (NO LIMIT) 80.0+3 TO 0.0 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, 1) YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC. 2) FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (WHERE TO START) AND THE UPPER ENERGY LIMIT MUST BE ZERO (NO LIMIT) 80.0+3 TO 0.0 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+3, ETC. FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (WHERE TO START) AND THE UPPER ENERGY LIMIT MUST BE ZERO (NO LIMIT) 80.0+3 TO 0.0 	RECENT RECENT
 ALSO IN THE CASE WHERE YOU ARE ONLY INTERESTED IN THE CROSS SECTIONS OVER A SMALL ENERGY RANGE, YOU MAY NOT WANT TO PROCESS AN ENTIRE EVALUATION, E.G., IF YOU ONLY WANT TO KNOW WHAT THE CROSS SECTIONS ARE NEAR THERMAL ENERGY, 0.0253 EV. IN ORDER TO ALLOW AN EVALUATION TO BE PROCESSED USING A NUMBER OF SHORTER COMPUTER RUNS AN OPTION HAS BEEN ADDED TO THIS PROGRAM TO ALLOW THE USER TO SPECIFY THE ENERGY RANGE TO BE PROCESSED. USING THIS OPTION YOU MAY START AT THE LOWEST ENERGY (ZERO UP TO SOME ENERGY) AND USE THE RESULTS OF THIS RUN AS INPUT TO THE NEXT RUN, WHERE YOU CAN SPECIFY THE NEXT ENERGY RANGE. THIS CYCLE CAN BE REPEATED UNTIL YOU HAVE PROCESSED THE ENTIRE EVALUATION. WARNING - THIS OPTION SHOULD BE USED WITH EXTREME CARE - THIS OPTION HAS BEEN RELUCTANTLY ADDED - RELUCTANTLY BECAUSE IT CAN BE EXTREMELY DANGEROUS TO USE THIS OPTION UNLESS YOU CAREFULLY CHECKED WHAT YOU ARE DOING. THE OPTION SHOULD ONLY BE USED AS FOLLOWS, YOU MUST PROCESS USING ENERGY RANGES STARTING AT LOW ENERGY AND WORKING YOUR WAY TOWARD HIGH ENERGY, E.G., 0.0 TO 3.0+3 3.0+3 TO 10.0+3 10.0+3 TO 80.0+4, ETC. FOR THE LAST ENERGY RANGE THE LOWER ENERGY LIMIT MUST BE NON-ZERO (NU LIMIT) 80.0+3 TO 0.0 IF YOU ARE ONLY INTERESTED IN THE CROSS SECTION OVER A NARROW ENERGY INTERVAL AND DO NOT INTENT TO MAKE ANY OTHER USE OF THE 	RECENT RECENT

LINEC	DRMED.	RE
		RE
NORMA	LLY WHEN THIS PROGRAM PROCESSES AN EVALUATION IT WILL SET	RE
	IN THE EVALUATION TO PREVENT THE SAME RESONANCE	RE
	RIBUTION FROM BEING ADDED TO THE CROSS SECTION MORE THAN	RE
	SHOULD YOU USE THE OUTPUT FROM THIS PROGRAM AS INPUT TO	RE
	PROGRAM.	RE
		RE
WHEN	PROCESSING ONLY PORTIONS OF THE RESONANCE REGION THIS	RE
PROGP	AM CANNOT SET THESE FLAGS TO PROTECT AGAINST ADDING THE	RE
RESON	ANCE CONTRIBUTION MORE THAN ONCE - WHICH MAKES USE OF	RE
THIS	OPTION EXTREMELY DANGEROUS.	RE
		RE
ONLY	YOU CAN CHECK TO MAKE SURE THAT YOU HAVE CORRECTLY	RE
INCLU	IDED EACH ENERGY RANGE ONLY ONCE - SEE THE COMMENT LINES	RE
AT TH	E END OF SECTION, MF=1, MT=451, FOR A COMPLETE RECORD	RE
	CH RUN USING THIS PROGRAM. THIS SECTION WILL CONTAIN	RE
LINES	G OF THE FORM	RE
		RE
	**************************************	RE
	PROCESS 0.00000+ 0 TO 3.00000+ 3 EV	RE
	**************************************	RE
	PROCESS 3.00000+ 3 TO 1.00000+ 4 EV	RE
	************** PROGRAM RECENT (VERSION 2023-1) ************************************	RE
	**************************************	RE RE
	PROCESS 8.00000+ 4 TO 2.00000+ 7 EV	RE
21111	1.00200 0.000001 4 10 2.000001 / EV	RE
YOUS	HOULD CHECK TO INSURE THAT THERE ARE NO OVERLAPPING ENERGY	RE
	S OR MISSING ENERGY RANGES.	RE
		RE
WHEN	YOU INDICATE BY INPUT THAT YOU ARE ABOUT TO PROCESS THE	RE
LAST	ENERGY RANGE (SEE ABOVE, LOWER ENERGY LIMIT = NON-ZERO,	RE
UPPER	R ENERGY LIMIT = ZERO), THIS PROGRAM WILL ASSUME THAT	
	••• ••• ••• •••	RF
	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL	
YOU H		RE
YOU H IT SE CONTR	NAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON	RE RE
YOU H IT SE CONTR YOU C	NAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH	RE RE RE
YOU H IT SE CONTR YOU C ENERG	NAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH Y AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW	RE RE RE RE
YOU H IT SE CONTR YOU C ENERG ENERG	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH Y AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW Y AND WORK TOWARD HIGH ENERGY.	RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG ENERG	NAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH Y AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW	RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG ENERG 2016/	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. (3/10 - This option is no longer allowed - today's computers	RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG ENERG	TAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL ST FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. (3/10 - This option is no longer allowed - today's computers TILES	RE RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F	TAVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL ST FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. (3/10 - This option is no longer allowed - today's computers TILES	RE RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE IBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES	RE RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES TILES	RE RE RE RE RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TLES DESCRIPTION 	RE RE RE RE RE RE RE RE RE RE
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT UNIT 2	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES TILES DESCRIPTION 	RI RI RI RI RI RI RI RI RI RI RI RI RI R
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TLES DESCRIPTION 	RE RE RE RE RE RE RE RE RE RE RE RE RE R
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT UNIT 2 10	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES TILES FILES INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD)	RE RE RE RE RE RE RE RE RE RE RE RE RE R
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 2 10 OUTPU	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL ST FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES TILES FILES INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES	RE RE RE RE RE RE RE RE RE RE RE RE RE R
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 10 OUTPU 	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL ST FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers "ILES """"""""""""""""""""""""""""""""""""	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT 10 OUTPU UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL ST FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW SY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES 	RE R
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 10 OUTPU UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TLES TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION 	RE R
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 10 OUTPU UNIT 3	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH Y AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TLES TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 10 OUTPU UNIT 3	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE RIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TLES TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION 	
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT UNIT 2 10 OUTPU 3 11	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES TILES FILES INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) TT FILES OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD)	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT 2 10 OUTPU 3 11 SCRAT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES TILES FILES FILES FILES DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CH FILES	
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 2 10 OUTPU 3 11 SCRAT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES TILES DESCRIPTION 	
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 10 OUTPU 10 OUTPU 3 11 SCRAT UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH SY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES 	
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 10 OUTPU UNIT 3 11 SCRAT UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES 	
YOU H IT SE CONTR YOU C ENERG 2016/ I/O F ===== INPUT 10 OUTPU UNIT 3 11 SCRAT UNIT	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 3 11 SCRAT 12	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) TT FILES OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES DESCRIPTION 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 3 11 SCRAT 12	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH YY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW YY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES DESCRIPTION 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT UNIT 3 11 SCRAT 12	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON CANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) TT FILES OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES DESCRIPTION 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT 2 10 OUTPU 3 11 SCRAT 12 14	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HIBUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON SANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH BY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW BY AND WORK TOWARD HIGH ENERGY. 3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES DESCRIPTION 	
YOU H IT SE CONTE YOU C ENERG 2016/ I/O F ===== INPUT 2 10 OUTPU 3 11 SCRAT 12 14	AVE NOW COMPLETED ALL PROCESSING - AND ONLY THEN WILL T FLAGS IN THE EVALUATION TO PREVENT THE RESONANCE HEUTION FROM BEING ADDED MORE THAN ONCE. FOR THIS REASON ANNOT PROCESS STARTING WITH ENERGY INTERVALS AT HIGH YY AND WORKING TOWARD LOW ENERGY - YOU MUST START AT LOW YY AND WORK TOWARD HIGH ENERGY. '3/10 - This option is no longer allowed - today's computers TILES DESCRIPTION INPUT LINE (BCD - 80 CHARACTERS/RECORD) ORIGINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) T FILES DESCRIPTION OUTPUT REPORT (BCD - 120 CHARACTERS/RECORD) FINAL ENDF/B DATA (BCD - 80 CHARACTERS/RECORD) CCH FILES DESCRIPTION 	

				RECENT
2	DECENT	TND		RECENT
	RECENT			
	RECENT			RECENI
10	ENDFB.	IN		RECENI
11	ENDFB.	OUT		RECENT
12	(SCRAT	CH)		RECENT
	(SCRAT			RECENT
	(,		RECENT
TNIDIIM	CARDO			
	CARDS			RECENT
=====				
LINE	COLS.	FORMAT	DESCRIPTION	RECENT
				RECENT
1	1-11	I11	RETRIEVAL CRITERIA (0=MAT, 1=ZA)	RECENT
			THIS OPTION DEFINED WHETHER COLUMNS 1-22 OF	RECENT
			SUBSEQUENT INPUT CARDS SHOULD BE INTERPRETED	
			-	
				RECENI
	12-22	E11.4		RECENI
			(IF 1.0E-10 OR LESS IS INPUT THE PROGRAM	RECENT
			WILL USE 1.0E-10)	RECENT
	23-33	I11	TREATMENT OF REACTIONS FOR WHICH BACKGROUND	RECENT
				RECENT
			= 0 - IGNOR (I.E. NO OUTPUT)	RECENT
			= 1 - OUTPUT RESONANCE CONTRIBUTION.	RECENI
			THIS OPTION IS USEFUL WITH PARTIAL EVALUATION	NRECENI
			(E.G. ENDF/B-5 DOSIMETRY LIBRARY) WHERE ONLY	RECENT
			ONE OR MORE OF THE REACTIONS ARE OF ACTUAL	RECENT
			INTEREST.	RECENT
				RECENT
			CHANGED. THIS FIELD WAS PREVIOUSLY USED TO	
			DEFINE THE PRECISION OF THE CALCULATION AND	RECENT
			OUTPUT. THE FORMER DEFINITION OF THIS FIELD	RECENT
			WAS	RECENT
			MINIMUM ENERGY SPACING FLAG	RECENT
				RECENT
				RECENT
				RECENI
			STANDARD 6 DIGIT E11.4 OUTPUT.	RECENI
				RECENT
			VARIABLE 9 DIGIT F FORMAT OUTPUT.	RECENT
				RECENT
			FAILURE TO SET THIS OPTION TO 2 CAN RESULT	
			IN LARGE ERRORS IN THE FINAL DATA. THEREFORE	
				RECENI
	34-44	I11	OPERATING MODE	RECENI
			= 0 - CACULATE. MINIMUM OUTPUT LISTING	RECENT
			= 1 - CACULATE. LIST ALL RESONANCE PARAMETERS	SRECENT
			= 2 - EDIT MODE. NO CALCULATION. LIST ALL	RECENT
				RECENT
			NOTE, THE EDIT MODE (=2) IS THE SUGGESTED	
				RECENT
			EVALUATED DATA, BEFORE RECONSTRUCTING CROSS	RECENT
			SECTIONS (SEE, COMMENTS ABOVE).	RECENT
	45-55	I11	NEGATIVE CROSS SECTIOIN TREATMENT	RECENT
			= 0 - 0.K NO CHANGE	RECENT
			= 1 - SET = 0	RECENT
	F C C C	-11		
	56-66	I11	MONITOR MODE SELECTOR	RECENI
			= 0 - NORMAL OPERATION	RECENT
			= 1 - MONITOR PROGRESS OF RECONSTRUCTION OF	RECENT
			FILE 2 DATA AND COMBINING FILE 2 AND	RECENT
			FILE 3 DATA. EACH TIME A PAGE OF DATA	RECENT
				RECENT
				RECENT
			ON SCRATCH AND THE LOWER AND UPPER	RECENT
			ENERGY LIMITS OF THE PAGE (THIS OPTION	
			MAY BE USED IN ORDER TO MONITOR THE	RECENT
			EXECUTION SPEED OF LONG RUNNING JOBS).	RECENT
2	1-72	A72	ENDF/B INPUT DATA FILENAME	RECENT
_	· · -		(STANDARD OPTION = ENDFB.IN)	RECENT
3	1-70	A72		
2	1-72	A/Z	ENDF/B OUTPUT DATA FILENAME	RECENT
	_		(STANDARD OPTION = ENDFB.OUT)	RECENI
4-N	1-11	I11	MINIMUM MAT OR ZA (SEE COLS. 1-11, LINE 1)	RECENT

 12-22 I11 MAXIMUM MAT OR ZA (SEE COLS. 1-11, LINE 1 UP TO 100 MAT OR ZA RANGES MAY BE SPECIFI ONE RANGE PER LINE. THE LIST IS TERMINATE BY A BLANK LINE. IF THE THE UPPER LIMIT O ANY REQUEST IS LESS THAN THE LOWER LIMIT UPPER LIMIT WILL BE SET EQUAL TO THE LOWE LIMIT. IF THE FIRST REQUEST LINE IS BLANF WILL TERMINATE THE REQUEST LIST AND CAUSE DATA TO BE RETRIEVED (SEE EXAMPLE INPUT). 2016/3/10 - Partial Processing no longer allowed. If these fields are not blank the code will STOP with a WARNING that this is no longer allowed. 23-33 E11.4 LOWER ENERGY LIMIT FOR PROCESSING. *THE LOWER AND UPPER ENERGY LIMITS MUST BE ZERO, OR BLANK, UNLESS YOU WISH TO ONLY PROCESS A PORTION OF RESONANCE REGIONS. *THESE ENERGY LIMITS ARE ONLY READ FROM TH FIRST MAT/ZA REQUEST LINE *IF BOTH ARE ZERO (OR BLANK) THE ENTIRE RESONANCE REGION FOR EACH MATERIAL WILL E PROCESSED 	ED, RECENT ED, RECENT THE RECENT THE RECENT C IT RECENT C IT RECENT C ALLRECENT RECENT RECENT RECENT RECENT IE RECENT
LIES BETWEEN THESE LIMITS WILL BE PROCESS *SEE INSTRUCTIONS ABOVE BEFORE USING THIS OPTION. 2016/3/10 - Partial Processing no longer allowed. VARY 1-11 E11.4 ENERGY FOR FILE 2 ERROR LAW (SEE 12-22 E11.4 ERROR FOR FILE 2 ERROR LAW (COMMENTS	SED RECENT RECENT RECENT RECENT) RECENT
(BELOW NOTE, THIS VERSION OF THE PROGRAM DOES NOT THIN THE COMBINED F FILE 2 + 3 DATA. AS SUCH THE ERROR LAW FOR COMBINING FILE 2 + WHICH WAS REQUIRED IN EARLIER VERSIONS OF THIS CODE ARE NO LON REQUIRED.	RECENT FILE RECENT 3 RECENT NGER RECENT RECENT
THE FILE 2 ERROR LAW MAY BE ENERGY INDEPENDENT (DEFINED BY A SINGLE ERROR) OR ENERGY DEPENDENT (DEFINED BY UP TO 20 ENERGY, ERROR PAIRS). FOR THE ENERGY DEPENDENT CASE LINEAR INTERPOLAT WILL BE USED TO DEFINE THE ERROR AT ENERGIES BETWEEN THOSE AT WHICH THE ERROR IS TABULATED. THE ERROR LAW IS TERMINATED BY A BLANK LINE. IF ONLY ONE ENERGY, ERROR PAIR IS GIVEN THE LAW WI BE CONSIDERED TO BE ENERGY INDEPENDENT. IF MORE THAN ONE PAIR IS GIVEN IT BE CONSIDERED TO BE ENERGY DEPENDENT (NOTE, THAT FOR A CONSTANT ERROR THE ENERGY INDEPENDENT FORM WILL RUN FAST HOWEVER, FOR SPECIFIC APPLICATIONS AN ENERGY DEPENDENT ERROR M BY USED TO MAKE THE PROGRAM RUN CONSIDERABLE FASTER).	ION RECENT RECENT RECENT ILL RECENT RECENT RECENT TER. RECENT
ALL ENERGIES MUST BE IN ASCENDING ENERGY ORDER. FOR CONVERGENC OF THE FILE 2 RECONSTRUCTION ALGORITHM ALL THE ERRORS MUST BE POSITIVE. IF ERROR IS NOT POSITIVE IT WILL BE SET EQUAL TO THE STANDARD OPTION (CURRENTLY 0.001, CORRRESPONDING TO 0.1 PER-CE IF THE FIRST LINE OF THE ERROR LAW IS BLANK IT WILL TERMINATE ERROR LAW AND THE ERROR WILL BE TREATED AS ENERGY INDEPENDENT, EQUAL TO THE STANDARD OPTION (CURRENTLY, 0.1 PER-CENT). SEE, EXAMPLE INPUT 4.	CE RECENT RECENT E RECENT ENT).RECENT THE RECENT
EXAMPLE INPUT NO. 1	RECENT
CONSIDER ALL URANIUM ISOTOPES AND TH-232. CONSIDER CROSS SECTION WHICH ARE LARGER THAN 1.0E-8 BARNS IN ABSOLUTE VALUE. ONLY OUT REACTIONS FOR WHICH A BACKGROUND IS GIVEN. LIST ALL PARAMETERS CALCULATE CROSS SECTIONS. MONITOR THE EXECUTION PROGRESS OF TH PROGRAM. BETWEEN 0 AND 100 EV USE 0.1 PER-CENT ACCURACY. BETWEE 100 EV AND 1 KEV VARY THE ACCURACY FROM 0.1 TO 1 PER-CENT. ABO 1 KEV USE 1 PER-CENT ACCURACY.	PUT RECENT ANDRECENT IE RECENT EEN RECENT OVE RECENT RECENT
EXPLICITLY SPECIFY THE STANDARD FILENAMES. THE FOLLOWING 11 INPUT CARDS ARE REQUIRED.	RECENT RECENT RECENT RECENT

	-	1 00000 00	•		0		RECENT
ENDFE		1.00000-08	0	1	0	1	RECENT RECENT
ENDFE							RECENT
	92000	92999					RECENT
	90232		•		ICALLY SET T	0 90232)	
0 000	00+ 0	1.00000-03	(END REQUES	T LIST)			RECENT RECENT
		1.00000-03					RECENT
		1.00000-02					RECENT
1.000	00+09	1.00000-02					RECENT
			(END FILE 2	ERROR LAW	7)		RECENT
म	XAMPLE	INPUT NO. 2					RECENT RECENT
							RECENT
c	CONSIDE	R ALL URANIUM IS	SOTOPES AND T	H-232. COM	ISIDER CROSS	SECTIONS	RECENT
		RE LARGER THAN 1					
		ONS FOR WHICH A E ATED, BUT PARAMET					
		WILL NOT BE MON					
		S. SINCE 0.1 PEF					
I	AW THE	FIRST ERROR LAW	V LINE MAY BE	LEFT BLAN	NK.		RECENT
-							RECENT
		HE DEFINITION OF E THE STANDARD F		ES BLANK -	- THE PROGRA	M WILL	RECENT RECENT
-			100470-000				RECENT
г	HE FOL	LOWING 7 INPUT C	ARDS ARE REQ	UIRED.			RECENT
						•	RECENT
	1	1.00000-08	0	0	0	0	RECENT RECENT
							RECENT
	92000	92999					RECENT
	90232		•		ICALLY SET T	0 90232)	
			(END REQUES	-		3.57)	RECENT
			(USE STANDA	RD OPTION	FOR ERROR L	AW)	RECENT RECENT
Е	VAMOLE						ICH CHINI
	WHELDE:	INPUT NO. 3					RECENT
-		INPUT NO. 3					RECENT RECENT
- Т	HE SAM	E AS EXAMPLE INE					RECENT RECENT
- 1 C	THE SAM	E AS EXAMPLE INE ECTIONS OVER THE	E ENERGY RANG	Е 0.01 ТО	0.1 EV - AC	ROSS THE	RECENT RECENT RECENT
- ד נ	HE SAM ROSS S HERMAI	E AS EXAMPLE INE ECTIONS OVER THE ENERGY RANGE. N	E ENERGY RANG NOTE, THE ONL	E 0.01 TO Y DIFFEREN	0.1 EV - AC NCE BETWEEN	ROSS THE THE INPUT	RECENT RECENT RECENT
- I C I F	THE SAM ROSS S HERMAI PARAMET	E AS EXAMPLE INE ECTIONS OVER THE	E ENERGY RANG NOTE, THE ONL E AND IN EXAM	E 0.01 TO Y DIFFEREN IPLE NO. 2,	0.1 EV - AC NCE BETWEEN , IS THAT ON	ROSS THE THE INPUT THE	RECENT RECENT RECENT RECENT RECENT
- I C I F S U	THE SAM TROSS S THERMAL PARAMET SECOND JSE \PR	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SERSIN THIS CASE INPUT LINE WE HAR REPRO94\LINEAR\EN	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE NDFB.OUT AS I	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS	ROSS THE THE INPUT THE 0.1 EV. OUTPUT -	RECENT RECENT RECENT RECENT RECENT RECENT
- I I S U S	THE SAM TROSS S THERMAL PARAMET SECOND JSE \PR SINCE E	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA REPRO94\LINEAR\EN CNDFB.OUT IS THE	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE NDFB.OUT AS I STANDARD OUT	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS	ROSS THE THE INPUT THE 0.1 EV. OUTPUT -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I I S U S	THE SAM TROSS S THERMAL PARAMET SECOND JSE \PR SINCE E	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SERSIN THIS CASE INPUT LINE WE HAR REPRO94\LINEAR\EN	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE NDFB.OUT AS I STANDARD OUT	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS	ROSS THE THE INPUT THE 0.1 EV. OUTPUT -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- T S U S F	THE SAM TROSS S THERMAI PARAMET SECOND JSE \PF SINCE E SINCE E	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA REPRO94\LINEAR\EN CNDFB.OUT IS THE	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE NDFB.OUT AS I STANDARD OUT INPUT OR LEF	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND F PUT FILENA T BLANK.	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS	ROSS THE THE INPUT THE 0.1 EV. OUTPUT -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- T S U S F	THE SAM TROSS S THERMAL PARAMET SECOND USE \PF SINCE FOL THE FOL	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE NDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F IPUT FILENA T BLANK. QUIRED.	0.1 EV - AC NCE BETWEEN , IS THAT ON NNGE 0.01 TO ENDFB.OUT AS AME THE NAME	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I I F S S U U S S F T	THE SAM CROSS S THERMAL PARAMET SECOND USE \PR SINCE E SITHER THE FOI THE FOI	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE NDFB.OUT AS I STANDARD OUT INPUT OR LEF	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND F PUT FILENA T BLANK.	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS	ROSS THE THE INPUT THE 0.1 EV. OUTPUT -	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I I F S S U U S S T I	THE SAM TROSS S THERMAL PARAMET ECOND USE \PR SINCE E TITHER THE FOI PRO94\LI	E AS EXAMPLE IN SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE NDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F IPUT FILENA T BLANK. QUIRED.	0.1 EV - AC NCE BETWEEN , IS THAT ON NNGE 0.01 TO ENDFB.OUT AS AME THE NAME	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I I S U S E I I	THE SAM TROSS S THERMAL PARAMET ECOND USE \PR SINCE E TITHER THE FOI PRO94\LI	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08	E ENERGY RANG NOTE, THE ONL AND IN EXAM AVE ADDED THE IDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0	0.1 EV - AC NCE BETWEEN , IS THAT ON NNGE 0.01 TO ENDFB.OUT AS AME THE NAME	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I S U S E I I	THE SAM TROSS S THERMAL PARAMET SECOND USE \PP SINCE E THER THE FOI 1 PRO94\LI 3.OUT	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE IDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0 0- 1 T AUTOMATI	0.1 EV - AC NCE BETWEEN , IS THAT ON NNGE 0.01 TO ENDFB.OUT AS AME THE NAME	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I I S U S E I I	THE SAM TROSS S THERMAL PARAMET SECOND USE \PF GINCE E CITHER THE FOI 1 PRO94\L 3.OUT 92000	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE IDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST)	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 0	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232)	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I S U S E I I	THE SAM TROSS S THERMAL PARAMET SECOND USE \PF GINCE E CITHER THE FOI 1 PRO94\L 3.OUT 92000	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE IDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST)	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232)	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I S S E I V PREE ENDFE	THE SAM TROSS S HERMAL PARAMET SECOND USE \PF SINCE E SINCE E THE FOI PRO94\1 3.0UT 92000 90232	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SERS IN THIS CASE INPUT LINE WE HA SEPRO94\LINEAR\EN SNDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE IDFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES	E 0.01 TO Y DIFFEREN IPLE NO. 2, E ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST)	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 0	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232)	RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT RECENT
- I S U S E I V PREE ENDFE ENDFE	THE SAM TROSS S THERMAL TARAMET SECOND USE \PF SINCE E CITHER THE FOI PRO94\L 3.OUT 92000 90232 CXAMPLE	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EPRO94\LINEAR\EN SUDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 S INPUT NO. 4	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE STANDARD OUT STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST) RD OPTION	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232) AW)	RECENT RECENT
- I S U S E U S S U S S U S S E S S C U S S S C U S S S S S S S S S S S	HE SAM CROSS S HERMAL PARAMET SECOND USE \PF SINCE E CITHER 1 PR094\L 3.OUT 92000 90232 CXAMPLE CCONST	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EPRO94\LINEAR\EN SUDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 : INPUT NO. 4 	E ENERGY RANG NOTE, THE ONL AND IN EXAM WE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST) RD OPTION ACTIONS, F	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232) AW) WHETHER	RECENT RECENT
- I S S E F E NDFE ENDFE	THE SAM ROSS S HERMAI PARAMET SECOND SECOND SECOND SECOND 1 PRO94 1 PRO94 1 PRO94 1 PRO94 2 2 2 2 2 2 2 2 2 2 2 2 2	E AS EXAMPLE INF SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INFUT LINE WE HAT EXPROSALLINEARLEN INDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEARLENDFB.OUT 92999 1.000 29999 1.000 2000 1.0000 2000 1.000 2000 1.0000 2000 1.0000 20000 2000 1.0000 2000 1.0000 20000 2000 1.0000 200000 200000 200000 2000000	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA DUTPUT ALL RE GROUND CROSS	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- I S S E V PREF ENDFE ENDFE E T F C C F	HE SAM ROSS S HERMAL PARAMET SECOND JSE \PF IINCE E CITHER HE FOI 92000 90232 2222 2222 2222 2222 2222 22	E AS EXAMPLE INF SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INFUT LINE WE HA EEPRO94\LINEAR\EN INDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 INEAR\ENDFB.OUT 92999 1.000 29999 1.000 3000000000000000000000000000000000	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DIFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA DUTPUT ALL RE GROUND CROSS 1. RECONSTRUC	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SE	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- T C T F S S E T T V PREF ENDFE E NDFE E T C F C C F C C C C C T T C C C T T T C C C T T T S S S C C C S S S S	HE SAM ROSS S HERMAL PARAMET SECOND JSE \PF IITHER 1 PRO94\I 3.OUT 92000 90232 CXAMPLE ECONST R NOT PROGRESS ACCURAC	E AS EXAMPLE INF SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INFUT LINE WE HAT EXPROSALLINEARLEN INDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEARLENDFB.OUT 92999 1.000 29999 1.000 2000 1.0000 2000 1.000 2000 1.0000 2000 1.0000 20000 2000 1.0000 2000 1.0000 20000 2000 1.0000 200000 200000 200000 2000000	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS 1. RECONSTRUC JINEAR\ZA0922	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND E PUT FILENA T BLANK. UIRED. 0 0- 1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SE	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- T C S S S E T V PREE ENDFE E NDFE E T F C C C C C C C C C C C C C C C C C C	THE SAM TROSS S HERMAL PARAMET SECOND JSE \PF SINCE E SINCE E SINCE E SINCE FOI PRO94\L PRO	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EEPRO94\LINEAR\EN INDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 29999 1.000 32999 1.000 32999 1.000 32999 1.000 4 FRUCT ALL DATA. C THERE IS A BACKG SS OF THE PROGRAM CY. USE \ENDFB6\I S\RECENT\ZA092238	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS 1. RECONSTRUC JINEAR\ZA0922 3 AS OUTPUT.	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0-1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SE 38 AS INPU	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- I S S U S F I V PREF ENDFE ENDFE E T F C C C S C C C S S S S S S S S S S S S	THE SAM TROSS S HERMAL PARAMET SECOND JSE \PF SINCE E SINCE E SINCE E SINCE FOI PRO94\L PRO	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA LEPRO94\LINEAR\EN INDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 92999 1.000 SINEAR\ENDFB.OUT 92999 1.000 CTHERE IS A BACKO SS OF THE PROGRAM CY. USE \ENDFB6\I	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS 1. RECONSTRUC JINEAR\ZA0922 3 AS OUTPUT.	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0-1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SE 38 AS INPU	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- I S S U S F I V PREE ENDFE ENDFE E F G C C C S S C C S S S S S S S S S S S S	THE SAM TROSS S THERMAL TARAMET SECOND USE \PF SINCE E SINCE E SINCE FOIL PRO94\I 2.2000 90232 SAMPLE SAM	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EPRO94\LINEAR\EN INDFB.OUT IS THE INCLUDED IN THE SUPPOY INFOLO LOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 32999 1.000 32999 1.000 32999 1.000 32000 - 08 JINEAR\ENDFB.OUT 92999 1.000 32000 - 08 JINEAR\ENDFB.OUT 92999 1.000 32000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 3000 -	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE STANDARD OUT STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS A. RECONSTRUC LINEAR\ZA0922 3 AS OUTPUT. CARDS ARE REQ	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA IPLT AND F PUT FILENA T BLANK. UIRED. 0 10-1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SF 38 AS INPU UIRED.	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 C ICALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1 JT AND	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232) AW) WHETHER OR THE PER-CENT	RECENT RECENT
- I S S U S S U S S U S S U S S S U S S S U S S S S U S	THE SAM TROSS S THERMAL TARAMET SECOND USE \PF SINCE E SINCE E SINCE FOIL PRO94\I 2.2000 90232 SAMPLE SAM	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INCLUDED IN THE SECTION SUDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 2000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 3000 - 08 JINEAR\ENDF	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE DFB.OUT AS I STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS 1. RECONSTRUC JINEAR\ZA0922 3 AS OUTPUT.	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0-1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SE 38 AS INPU	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECENT RECENT
- T C S S E F I VPREF ENDFE ENDFE	HE SAM ROSS S HERMAL PARAMET SECOND JSE \PF IINCE E IITHER 1 PRO94\I 3.OUT 92000 90232 CXAMPLE ECONST PROGRESS CCURAC ENDFB6 THE FOI 0 TE6\ZAO	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INCLUDED IN THE SECTION SUDFB.OUT IS THE INCLUDED IN THE SLOWING 7 INPUT C 1.00000-08 JINEAR\ENDFB.OUT 92999 1.000 2000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 92999 1.000 3000 - 08 JINEAR\ENDFB.OUT 3000 - 08 JINEAR\ENDF	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE STANDARD OUT STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS A. RECONSTRUC LINEAR\ZA0922 3 AS OUTPUT. CARDS ARE REQ	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA IPLT AND F PUT FILENA T BLANK. UIRED. 0 10-1 T AUTOMATI T LIST) RD OPTION EACTIONS, F SECTION. I T CROSS SF 38 AS INPU UIRED.	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDFB.OUT AS AME THE NAME 0 C ICALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1 JT AND	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232) AW) WHETHER OR THE PER-CENT	RECENT RECENT
- T C S S E F I VPREF ENDFE ENDFE	HE SAM ROSS S HERMAL PARAMET SECOND JSE \PF IINCE E IITHER 1 PRO94\I 3.OUT 92000 90232 CXAMPLE ECONST PROGRESS CCURAC ENDFB6 THE FOI 0 TE6\ZAO	E AS EXAMPLE INE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE SECTIONS OVER THE INPUT LINE WE HA EEPRO94 LINEARLEN INDFB.OUT IS THE INCLUDED IN THE LOWING 7 INPUT C 1.00000-08 JINEAR ENDFB.OUT 92999 1.000 92999 1.000 92999 1.000 SECTION A SECTION A SECTION SECTION A SECTION A SE	E ENERGY RANG NOTE, THE ONL AND IN EXAM VE ADDED THE STANDARD OUT STANDARD OUT INPUT OR LEF CARDS ARE REQ 0 000- 2 1.0000 (UPPER LIMI (END REQUES (USE STANDA OUTPUT ALL RE GROUND CROSS A. RECONSTRUC LINEAR\ZA0922 3 AS OUTPUT. CARDS ARE REQ	E 0.01 TO Y DIFFEREN IPLE NO. 2, ENERGY RA NPUT AND F PUT FILENA T BLANK. UIRED. 0 0-1 T AUTOMATI T LIST) RD OPTION ACTIONS, F SECTION. I T CROSS SF 38 AS INPU UIRED. 0	0.1 EV - AC NCE BETWEEN , IS THAT ON ANGE 0.01 TO ENDIFB.OUT AS AME THE NAME 0 CALLY SET T FOR ERROR L REGARDING OF DO NOT MONIT ECTIONS TO 1 JT AND 0	ROSS THE THE INPUT THE 0.1 EV. OUTPUT - CAN BE 0 0 0 90232) AW) WHETHER OR THE PER-CENT	RECENT RECENT

	1.00000- 2	RECENT
	(END FILE 2 ERROR LAW)	RECENT
		RECENT
	EXAMPLE INPUT NO. 5	RECENT
		RECENT
	RECONSTRUCT ALL DATA. ONLY OUTPUT REACTIONS FOR WHICH A BACKGROUN	ORECENT
	CROSS SECTION IS GIVEN. DO NOT MONITOR THE PROGRESS OF THE PROGRAM	MRECENT
	RECONSTRUCT CROSS SECTIONS TO 0.1 PER-CENT ACCURACY. USE ENDFB.IN	RECENT
	AS INPUT AND ENDFB.OUT AS OUTPUT.	RECENT
		RECENT
	THIS CORRESPONDS TO USING ALL OF THE STANDARD OPTONS BUILT-IN TO	RECENT
	THE PROGRAM AND ALL INPUT CARDS MAY BE BLANK.	RECENT
		RECENT
	IN THIS CASE THE FOLLOWING 5 INPUT CARDS ARE REQUIRED.	RECENT
	(ZEROES ARE INDICATED ON THE FIRST LINE, BELOW, ONLY TO INDICATE	RECENT
	WHERE THE LINE IS. THE ACTUAL INPUT LINE CAN BE COMPLETELY BLANK)	. RECENT
		RECENT
	0 0.0 0 0 0 0	RECENT
	(USE STANDARD INPUT FILENAME = ENDFB.IN)	RECENT
	(USE STANDARD OUTPUT FILENAME = ENDFB.OUT)	RECENT
	(RETRIEVE ALL DATA, END REQUEST LIST)	RECENT
	(0.1 ERROR, END FILE 2 ERROR LAW)	RECENT
		RECENT
=		RECENT