
IAEA-NDS-0244
Rev. 2024/07

INTERNATIONAL ATOMIC ENERGY AGENCY

NUCLEAR DATA SERVICES

DOCUMENTATION SERIES OF THE IAEA NUCLEAR DATA SECTION

EXFOR Utility Codes

Naohiko Otuka
IAEA Nuclear Data Section, Vienna, Austria

July 2024

IAEA Nuclear Data Section, Vienna International Centre, A-1400 Vienna, Austria

Note:

The IAEA-NDS-reports should not be considered as formal publications. When a nuclear data
library is sent out by the IAEA Nuclear Data Section, it will be accompanied by an IAEA-NDS-
report which should give the data user all necessary documentation on contents, format and
origin of the data library.

IAEA-NDS-reports are updated whenever there is additional information of relevance to the
users of the data library.

For citations care should be taken that credit is given to the author of the data library and/or to
the data centre which issued the data library. The editor of the IAEA-NDS-report is usually not
the author of the data library.

Neither the originator of the data libraries nor the IAEA assume any liability for their
correctness or for any damages resulting from their use.

96/11

Citation guideline:

When quoting the EXFOR Utility Codes in a publication this should be done in the following
way:

N. Otuka, “EXFOR Utility Codes”, report IAEA-NDS-0244 Rev. 2024/07, International
Atomic Energy Agency, 2024.

 IAEA-NDS-0244
Rev. 2024/07

EXFOR Utility Codes

Naohiko Otuka
IAEA Nuclear Data Section, Vienna, Austria

Abstract
Descriptions are given for a package of utility codes operating on the experimental
nuclear reaction data files in the EXFOR format. This program package is written in
Python and may be downloaded from the NRDC website (http://nds.iaea.org/nrdc/).

July 2024

Introduction

The EXFOR Utility Codes are written to process EXFOR Entry files and EXFOR/CINDA
Dictionary files. Currently, the following 10 codes (Python scripts) are included in this package.

 DIC227: Produce Archive Dictionary 227 from a NUBASE file.

 DICA2J: Convert Archive dictionaries to a JSON Dictionary.

 DICDIS: Prepare Archive and Backup dictionaries for distribution.

 DICJ2A: Convert a JSON Dictionary to Archive dictionaries.

 DICJ2T: Convert a JSON Dictionary to a Transmission dictionary.

 DIRINI: Split an EXFOR library tape into EXFOR entry files.

 DIRUPD: Update the EXFOR entry files with an EXFOR transmission tape.

 MAKLIB: Merge EXFOR entry files into a single library tape.

 SEQADD: Add record identification and bookkeeping information to an EXFOR file.

 SPELLS: Check English spell in free text in EXFOR format.

This document explains how to use these codes. Users need to install Python3 in their
environments prior to run these utility codes. Any comments on the use of the codes, including
difficulties encountered or any suggestions are welcome.

Option available in all codes

 -h Display help information

 -v Display the version

 -f Never prompt

Acknowledgements

The developer would like to thank Oscar Cabellos and Nicolas Soppera for their comments and
proposals.

History (major revisions only)

2023-10-23:

 First release of 4 scripts (DIRINI, DIRUPD, MAKLIB, SEQADD)

2023-11-02:

 First release of IAEA-NDS-0244.

2024-05-03:

 First release of 6 scripts (DIC227, DICA2J, DICDIS, DICJ2A, DICJ2T, SPELLS)

2024-06-25:

 Addition of -c option to MAKLIB.

 Update of DICA2J to implement format changes of Dictionaries 25, 209 and 227
concluded in the NRDC 2024 meeting (C12 and C13).

DIC227

This code reads a NUBASE file and a supplemental input file (compilation of properties of
elementary particles and natural elements in the Archive dictionary format), and convert them
to Archive Dictionary227.

Input

 NUBASE file (can be an argument following -i)

 supplemental input file (can be an argument following -s)

Output

 Archive Dictionary 227 file (can be an argument following -o)

Option

 -i NUBASE_file Specify the NUBASE file to read

 -s supplemental_file Specify the supplemental input file to read

 -o dictionary_file Specify the archive dictionary file for output

Example

Convert a NUBASE file nubase.txt to dict_arc_new.227 with a supplemental input file sup.txt:

python3 x4_dic227.py -i nubase.txt -s sup.txt -o dict_arc_new.227

DICA2J

This code reads Archive Dictionaries and convert them to a JSON Dictionary.

Input

 dictionary version (can be an argument following -n)

 Archive Dictionaries (their directory can be an argument following -i)

Output

 JSON Dictionary (its directory can be an argument following -o)

Option

 -n trans_ID Specify the dictionary version (transmission ID)

 -i directory_inp Specify the directory of Archive Dictionaries to read

 -o dictionary_out Specify the directory of JSON Dictionary for output

Example

Convert Archive Dictionaries input/dict_arc.top, input/dict_arc_new.001,
input/dict_arc_new.002 etc. to a JSON Dictionary output/dict.9128.json: with a transmission
ID 9128.

python3 x4_dica2j.py -n 9128 -i input -o output

DICDIS

This code reads Archive and JSON Dictionaries and process them for distribution after removal
of records with the alteration flag D (deletion) and updating the year+month field (YYYYMM).
At the same time, this code also produces the Backup Dictionary.

Input

 dictionary version (can be an argument following -n)

 Archive and JSON Dictionaries (its directory can be an argument following -i)

Output

 Archive, Backup and JSON Dictionaries for distribution (its directory can be an
argument following -o)

Option

 -n trans_ID Specify the dictionary version (transmission ID)

 -a directory_archive Specify the directory of Archive dictionaries to read

 -j directory_json Specify the directory of JSON dictionary to read

 -o dictionary_out Specify the directory of dictionaries for output

Example

Read Archive and JSON Dictionaries input/dict_arc.top, input/dict_arc_new.001,
input/dict_arc_new.002 etc. and json/dict.9128.json, process them for distribution, and output
them under the same names but under the directory output with a transmission ID 9128. At the
same time, it also produces the Backup Dictionary output/dan_back_new.9128.

python3 x4_dicdis.py -n 9128 -a input -j json -o output

DICJ2A

This code reads JSON Dictionary and convert it to Archive Dictionaries.

Input

 dictionary version (can be an argument following -n)

 JSON Dictionary (its directory can be an argument following -i)

Output

 Archive Dictionaries (its directory can be an argument following -o)

Option

 -n trans_ID Specify the dictionary version (transmission ID)

 -i directory_inp Specify the directory of JSON Dictionary to read

 -o dictionary_out Specify the directory of Archive Dictionaries for output

Example

Convert JSON Dictionary input/dict.9128.json to Archive Dictionaries output/dict_arc.top,
output/dict_arc_new.001, output/dict_arc_new.002 etc. with a transmission ID 9128.

python3 x4_dicj2a.py -n 9128 -i input -o output

DICJ2T

This code reads JSON Dictionary and convert it to a Transmission (TRANS) Dictionary.

Input

 dictionary version (can be an argument following -n)

 JSON Dictionary (its directory can be an argument following -i)

Output

 TRANS Dictionary (its directory can be an argument following -o)

Option

 -n trans_ID Specify the dictionary version (transmission ID)

 -i directory_inp Specify the directory of JSON Dictionary to read

 -o dictionary_out Specify the directory of TRANS Dictionaryfor output

Example

Convert JSON Dictionary input/dict.9128.json to TRANS Dictionary output/trans.9128 with a
transmission ID 9128.

python3 x4_dicj2t.py -n 9128 -i input -o output

DIRINI

This code reads an EXFOR library tape (e.g., a master) in EXFOR formats with MASTER, LIB
or REQUEST record as the first record, splits it into entries, and saves each entry file in an entry
storage. It initialises the storage (i.e, namely delete the files in the storage directory) at the
beginning of processing.

Input

 library tape (can be an argument following -l)

Output

 entry files (e.g., ./entry/a/a0510.txt)

 log file (dirupd.log)

Option

 -c Delete (1) trailing blanks in col. 12-66, (2) line sequential number (col.67-80)
and (3) N2 of ENDBIB/ENDCOMMON/ENDSUBENT/ENDENTRY.

 -l library_tape Specify the library tape to read

 -d storage_directory Specify the entry storage directory for outputs

Example

Initialise the entry storage directory entry by loading the input library tape lib/library.txt
(without elimination of the record identification and bookkeeping if the input library has them):

python3 x4_dirini.py -l lib/library.txt -d entry

At the end of processing, one obtains entry files under entry/1/, entry/2/, etc. and a log file with
a new line like

Seq. Update date/time Trans(N1) Trans(N2) Centre Tape
 0 2023-10-04 00:48:30.849567 0001 20231004 lib/library.txt

DIRUPD

This code reads a trans tape (starting from the TRANS record), and adds or updates the entry files
in the local storage.

Input

 trans tape (can be an argument following -t)

 entry storage (can be an argument following -d)

Output

 entry files (e.g., ./entry/a/a0510.txt)

 log file (dirupd.log)

Option

 -c (Same as DIRINI. Use this option if you use it for DIRINI.)

 -t trans_tape Specify the trans tape to read

 -d storage_name (Same as DIRINI)

Example

Update of the entry storage entry by a tape trans/trans.1234:

python3 x4_dirupd.py -t trans/trans.1234 -d entry

At the end of processing, one obtains new and/or updated entry files under entry/1/ etc. and a
log file with a new line like

Seq. Update date/time Trans(N1) Trans(N2) Centre Tape
 0 2023-10-04 00:48:30.849567 0001 20231004 lib/library.txt
 1 2023-10-04 00:48:31.725707 1234 20160121 NNDC trans.1234

MAKLIB

This reads and combines the entry files in the entry storage and create a single library tape.

Input

 entry storage (can be an argument following -d)

Output

 library tape with LIB and ENDLIB records as the first and last records.

Option

 -a addition of “19” to two-digit year in N2 of ENTRY/SUBENT/NOSUBENT.

 -c (Same as DIRINI.)

 -n exclusion of dictionaries

 -d storage_name (Same as DIRINI)

 -l library_tape Specify the library tape to create

 -i tape_ID An integer printed at cols 12-22 of the first record

Example

Create a library tape lib/library.txt by merging entry files in the storage entry with the tape ID
001:

python3 x4_maklib.py -d entry -l lib/library.txt -i 0001

This operation does not add a new line in the log file.

Note: The format of the output library tape depends on the format of the files in the entry storage.
If user maintains the entry files in the storage without record identifications etc. (e.g., with -c
option of DIRINI and DIRUPD), then the produced library tape also does not have them. The
record identifications can be added by processing the output library tape by SEQADD.

SEQADD

This code adds and/or updates record identifications (cols.67-79) and bookkeeping information
such as N1 and N2 of BIB and ENDBIB. records. (Similar to ORDER developed at NNDC and
ZORDER developed at NDS).

Input

 entry, trans or library tape (can be an argument following -i)

Output

 entry, trans or library tape with updated record identifications and bookkeeping

Option:

 -m do not add “19” to two-digit year in N2 of ENTRY/SUBENT/NOSUBENT, and do
not alter N2 of ENDBIB/ENDCOMMON/ENDDATA/ENDSUBENT/ENDENTRY/ENDSUBDICT
records.

 -i input_file Specify the input

 -o input_file Specify the output

Example

Create a new trans tape trans/trans.ord by adding and updating the record identification and
bookkeeping information in trans/trans.txt.

python3 x4_seqadd.py -i trans/trans.txt -o trans/trans.ord

SPELLS

This code checks English spells in the free text field in the EXFOR format. It checks each set
of lower characters in free text (i.e., the first word of a sentence is not checked). The default
dictionary does not know nuclear physics technical terms, and the user should add the to the
dictionary to minimize the output.

Execution requires a Python module spellchecker, which may be installed by the following
command if pip (a standard Python package manager) is installed in your computer:

pip install pyspellchecker

Input

 entry, trans or library tape (can be an argument following -i)

 dictionary collecting known words (can be an argument following -d)

Example of the dictionary file (a plain text file to be updated by the user by adding more
technical terms etc.)

Output

 log file summarizing typos (can be an argument following -l)

Option:

 -i input_file Specify the EXFOR file to read

 -d input_file Specify the known word dictionary to read

 -l log_file Specify the log file name for output

Example

Check spells in an EXFOR entry file exfor.txt with a dictionary x4_spells.dic and record the
checking result in x4_spells.log.

python3 x4_spells.py -i exfor.txt -d x4_spells.dic -l x4_spells.log

atm
deadtime
decoupler
epithermal
fluence
linac
nonuniformity
subentry

Nuclear Data Section e-mail: nds.contact-point@iaea.org
International Atomic Energy Agency fax: (43-1)26007
P.O. Box 100 telephone: (43-1)2600-21710
A-1400 Vienna web: http://nds.iaea.org/
Austria

