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The thermal radiative capture cross sections of 87 nuclides were computed 
using a Monte Carlo selection of reduced neutron widths, and the assumption that 
distant resonance levels determine the cross section. 

Histograms of possible cross-section values were prepared for each nuclide, 
and the 87 samples analyzed to find the overall accuracy of estimation. The 
results indicated a fluctuation of 0.4 ±0.6 for the logarithm of the ratio of experi­
ment to the calculated mean cross section. 

Tables of results for means and standard deviations are given together with 
the results of Keane's summation formula. The possible use of this technique in 
estimating unknown cross sections is discussed. 

I. INTRODUCTION 

From the time when reactor physics was in its 
early infancy to the present day, reactor designers 
and engineers have been asking the nuclear physi­
cists if it is at all possible to calculate unmea­
sured neutron cross sections. Invariably, the 
answer has been that average cross sections of 
intermediate and heavy nuclei can be estimated in 
the keV-MeV range, but at low energies, where 
resonances are well resolved, the statistical fluc­
tuations in resonance locations and strengths 
make such predictions impossibly inaccurate. 
However, a quantitative assessment of these 
errors has not been undertaken. . 

We have attempted here to synthesize thermal 
cross sections by using statistical resonance 
parameters along with a quantitative estimate of 
the errors involved. We report the results of 
Monte Carlo calculations on 87 nuclides whose 
thermal-neutron cross sections are known. A. 
mean cross section and standard deviation were 
computed for each nuclide, assuming that the re­
duced neutron widths obey the Porter-Thomas 
distribution law.1 The overall accuracy with 
which thermal-neutron cross sections can, in gen-

*C. E. PORTER and R. G. THOMAS, "Phys". Rev., 
104, 483 (1956). 

eral, be predicted was determined. The Monte 
Carlo method was used because it is a rigorous 
technique if all relevant information is available 
and allows the checking of analytical approxima­
tions against exact answers. In this problem, no 
exact analytical solution exists. 

In particular, the technique can be applied to 
the estimation of unmeasured cross sections for 
relatively short-lived fission products. 

II. RESONANCE THEORY 

The basic assumption underlying our calcula­
tions is that the thermal-neutron cross section for 
the ,(и,|Ц) and (n,f) reactions can be expressed as 
the contribution from the sum over distant Breit-
Wigner levels2 as follows: 

. Each level contributes an amount 

a„,y№) = 4 , ^ I ^ . _ i _ , (1) 

where 
к = the wavelength of the neutron in cm 

IV = Гв° A/£ = the neutron width 

Гя° = the reduced, s-wave neutron width 

2G. BREIT and E. WIGNER, Phys. Rev., 49; 519 
(1936). 
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THERMAL CROSS-SECTION ESTIMATION 

Ту = the radiation width 

T = T„+Ty+Tf 

Tf = the fission width 

X =j,(E-ET) 

E = the neutron energy 

ET = the energy at exact resonance. 

The reduced neutron widths Г ° fluctuate over wide 
ranges of values and, according to Porter and 
Thomas, obey a chi-squared distribution with one 
degree of freedom 

P(y) = ех.р{-у/2)/Шу, 

where 

у = r„7rn° 
Г„° = the average reduced width. 

Summing over all levels, one would obtain a ther­
mal cross section of 

a„.yiE) = 47г* 2Г уГ я°Уё g 
1 +Х{

2 ' 

where we have neglected variations in 1 n which 
affect Г . 

If we further assume that levels are equally 
spaced, then 

EH = En + ND , (4) 

where 
D = the average level spacing 

N = an integer. 

Keane3 introduced the assumption that all levels 
have the same average Г„°, and was able to sum 
Eq. (3) to an analytic form, using a Poisson sum­
mation rule, obtaining 

ä„,y(E) = 4тг*2 TjTyJE a sinh a 
2 coshdaO-co's {aa)' 

where 
2(ET0 -E) 

Г = Tr+ Tf + T„0SE, and 

To estimate the thermal cross section, taking ac­
count of neutron width fluctuations, we used 

3A. KEANE, "An Estimate of the Decrease in the 
Effective Resonance Integral due to Resonance Over­
lap," AAEC/TM296, Australian Atomic Energy Com­
mission (1965). . -. 

, ч 4тг X2 Ту Т„ у Xj 
Ш = =7—^- Р..Т-77ГТ77Л? . • (6) Г 2 i=-N l+(a + iß)2 

where 

>•? 
III. CALCULATIONS 

The standard random-number routine from the 
IBM-7040 systems library at the AAEC was used 
to select random X, values from a Porter-Thomas 
distribution. The thermal-neutron cross section 
was computed 50 times using the summation 
formula of Eq. (6) with N'= 10. A histogram of 
probability values per interval in a was computed, 
while the me an and standard deviations were also 
determined by the usual statistical methods. This 
operation was repeated for each of the 87 nuclides 
and an overall estimate was obtained for the 
quantity 

г = log q( experiment) 
a (theory) 

The parameter N was varied from 2 to 100 to 
find the optimum value which gave less than 5% 
e r ro r in the summation, yet presented a reason­
able time for computation. A value of N = 10 was 
eventually chosen from test cases in which the 
e r ro r in summation rarely exceeded 2%. To se ­
cure reliable statistics, the value of 50 was chosen 
as the number of t r ials for each nuclide. With 20 
tr ials or less , the standard deviation appeared to 
fluctuate more than 10%, but with 50, the maximum 
fluctuation found was 5%. With much greater than 
50 tr ials the computation time became an obstacle. 

The influence of irregulari t ies in level spacings 
can be taken into account properly only by simul­
taneous sampling of widths from a Porter-Thomas 
and spacings from a Wigner distribution while r e ­
computing the cross section at least 500 times to 
ensure good statist ics. This posed ä considerable 
problem in computing time, and intuitive argu­
ments suggest that the mean values already ob­
tained would be affected little, though the standard 
deviations would certainly increase. 

It was assumed that only the lowest resonance 
energy was known. Without this assumption; the 
resultant thermal cross section could vary over 
five orders of magnitude with an appropriate 
probability distribution, because a resonance is 
equally probable at all energies, if the location of 
other resonances has not been fixed. Should the 
energy of one resonance become fixed, the span of 
values for its neighbors immediately becomes 
narrower, because the other resonances will be 
distributed according to the Wigner distribution 
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relative to the first. Nevertheless, there will still 
be a finite probability that a resonance eould 
occur right at 0.0253 eV, or at a maximum dis­
tance from this energy which leads to a very high 
or abnormally low cross section. Such alterna­
tives do not exist if one assumes that resonances 
are equally spaced. 

We therefore justify our assumption of equal 
increments between levels by surmising that this 
is the most probable many-resonance configura­
tion and intend to inquire further into this feature 
of level statistics. 

Figure 1 is a typical histogram obtained for 
232Th. Note the long exponential tail for large val­
ues of a, and the prominent peak. This shape is 
characteristic of all nuclides. The mean value of 
9.5 b is quite close to the experimental value of 
7.4 ± 1 b. Keane's formula gives 5.4 b, again a 
quite reasonable estimate, though the standard de­
viation is 12 b, which clearly indicates that the 
only certain result of such calculations is a prob­
able upper limit. 

Tables I and, II give the results for the 87 
nuclides. The mean cross section, the standard 
deviation, the value from Keane's formula, and the 
quantities z are shown. The z values fluctuated 
between 1' and -1 showing that in nearly every 
case the experimental result was reproduced to 
within one order of magnitude. The average value 
of z: was found to be -0.40, which implies that the 
most probable experimental value lies at about 0.4 
of the calculated mean. The standard deviation in 
z was about 0.63, indicating that the actual value 
is such that . 

0.093 x a(calculated mean) < a(experiment) 
„ < 1.7 x <x(calculated mean), (8) 

to within a confidence interval of 67%. 
The frequency distribution of z is illustrated by 

Fig. 2. Rather than appearing as a normal dis­
tribution, it is biased toward the positive values 

Ш 
- 2 0 -1-6 -1-Я -О-в - 0 - 4 0 : 0 0-4 О-в 1-2 1-6 

Fig. 2. Distribution of z values. 

A - M E A N (SA> 12-11) 
В -FORMULA OF A.KEANE 
С - EXPERIMENTAL VALUE 

(Not* change of seal«) 

2 0 3 0 4 0 SO OO 
O* (barn«) 

Fig. 1. Frequency distribution of a for Z32Th. 
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TABLE I 
Calculated Thermal Cross Sections: Sampled Neutron Widths 

uclide 

,5Sc. 
5°V 
50Cr 
52Cr 
55Mn 
5 4Fe 
S6Ee, 
" F e 
59Co 
53Cu 
B5Cu 
58Zn 
69Ga 
71Ga 
75As 
74Se 
76Se 
" S e 
80Se 
79Br 
85Rb 
87Rb 
84Sr 
""Sr 
88Sr 
9 0Zr 
9 1Zr 
9 2Zr 
9 3Zr 
94 Zr 
98 Zr 
95Mo 
97Mo 
98Mo 
100Mo 
99Tc 
101Ru 
102Ru 
103Rh 
105Pd 
106Pd 
ша р а 
loeAg 
113Cd 
115In 
127 , 

129 , 

,31Xe 
135Xe 
133Cs 
138Ba 
139La 
u i p r 
l43Nd 
145Nd 

E x p e r i m e n t ^ 

25. ± 2. 
80. ± 60. 
15.9 ± 1.6 
0.7.6 ± 0.06 

13.3 ± 0.1 

2.8 ± 0.4 
2.7 ± 0,2 
2.5 ± 0.2 

37.2 ± 0.6 
4.51 ± 0.23 

2.2 ± 0.2 
1.095 ± 0.11 
2.1 ± 0.2 
5.15 ± 1.0 
4.3 ± 0.2 

50. i 7. 
22. ± 1. 
42.0 ± 4.0 

0.61 ± 0.06 
10.9 ± 0.6 

0.91 ± 0.08 
0.12 ± 0.03 
1.05 ± 0.17 
0.8 ± 0.1 
0.005 ± 0.001 

0 .10± 0.07 
1.58 ± 0.12 
0.25 ± 0.12 
1.1 ± 0.4 
0.075 ± 0.008 

0.05 ± 0.01 
14.5 ± 0.5 

2.2 ± 0.7. 
0.15 ± 0.2 
0.5 ± 0.5 

22. ± 3 . 
3.1 ± 0.9 
1.44 ± 0.16 

150. ± 5. 
11.0 ± 6.0 

0.292 ± 0.029 
12.2 ± 0.2 
91 . ± 3. 

(2 ± 0.03) x 104 

199. ± 8. 

6.2 ± 0.2 
28. ± 3 . 

110. ± 20. 
(3.6 ± 0.4) X 106 

31.6 ± 1.7 

0.35 ± 0.15 
8.2 ± 0.8 

12. ± 3 . 
335. ± 10. 

52. ± 2. 

Mean.b 

13.64 
321.3 

2.966 
1.337 

83.28 

0.7937 
10.94 
9.894 

301.4 
3.818 . 

15.44 
8.383 

12.96 
88.81 
61.10 

232.3 
3.562 

142.7 
1.252 

89.80 

4.630 
6.725 
9.748 
1.221 
0.02695 

0.3881 
6.434 
0.2207 

. 6.220 
16.23 

4.262 
11.56 
4.405 
0.2425 
4.101 

96.09 
11.66, 

138.2 
1041. 

223.9 

0.04839 
9.519 

112.4 
4.391 x 1Ö4 

135.9 

33.25 
26.04 
24.39 

''" 'У.939Х 107 

87.20 

0;2050 
3.604 

16.80 
195.9 
454.7 

Standard 
Deviation,b 

21.53 
678.9 

2.679 
1.933 

133,1 

0.9720 
17.59 
12.44 

576.7 
4.658 

24.44 
14.53 

• 19.87 
91.10 
78.83 

459.3 
7.117 

227.8 
1.623 

83.99 

6.336 
9.788 

13.86 
1.911 
0.04463 

0.6115 
7. ,421. 
0.2424 

10.53 
29.47 

8.828 
18.52 

5.540 
0.3214 
7.361 

121.7 
15.08 

217.6 
1708. 

417.5 

0.0218 . 
12,90 

218,8 
5.306 x 104 

231,2 

35.49 
29.35 
29.53 

6,405 x 107 

148.0 

0.3014 
7.717 

27.68 
199.1 
725.5 

log 
(expt/mean) 

0.2631 
-0.6038 

0.7292 
-0.2453 
-0.7966 

0.5475 
-0.6077 
-0.5974 
-0.9086 

0.0723 

-0.8462 
-0.8840 
-0.7904 
-1.2297 
-1.1526 

-0.6671 
0.7907 

-0.5312 
-0.3123 
-0.9159 . 

-0.7065 
-1.7485 
-.0.9677 
-0.1836 
-0.7316 

-0.5889 
-0.6098 

0.0541 
-0.7524 
-2.3352 

-1,9306 
0.0984 

-0,3015 
-0.2086 
-0.9139 

-0.6403 
-0.5753 
-1.9821 
-0.8414 
-1.3087 

0.7806 
0.1078 

-0.0917 
-0.3415 

0.1674 

-0.7294 
0.0315 
0.6542 

-1.0391 
-0.4408 

0.2323 
0.3570 

-0.1461 
0.2330 

-0.9417 . 

No. of 
Resonances 

15 
16 

4 
14 
42 

21 
23 
7 

62 
30 

18 
2 
"8 
4 

112 

2 
11 
10 

9 
7 

9 
8 
8 
8 

19 

13 
13 

8 
.-
17 

18 
-
9 
6 
4 

-
11 

-
47 •. 
26 

-
r 

-
9 

11 

-
5 
-
-

123 

23 
-
-
7 
_ 

Data a expt 
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TABLE I (Continued) 

Nuclide 

l48Nd 
150Nd 
147 Pm 
147Sm 
148Sm 
149Sm 
l50Sm 
151Sm 
152Sm 
154Sm . 
l51Eu 
153Eu 
155Eu 
l55Gd 
157Gd 
158Gd 
176 Lu 
I86

w 
232Th 

,2 3 lPa 
233Pa 
232U 
233U 
234U 
235U 
236 U 
238U 
237Np 
239Pu ' 
M 1Pu 
X I Am 
a sAm 

E x p e r i m e n t s 

2.9 ± 0.5 
3.0 ± 1.5 

235. ± 24. 
87. ± 60. 

9.0 ± 9.0 

(4.08 ± .09) x 104 

97,. 0 
(1.5 ± .04) x 104 

216 ± 6. 
5.5 ± 1.1 

(7.8 ± 0.2) x 103 

,450. ± 20. 
(1.4 ± . 4 ) x 104 

( 5 . 8 ± . 3 ) x l 0 4 

(2.42 ± .04) x 105 

3.9 ± 0.4 
(4.0 ± .8) X 103 

35. ± 3. 
7.4 ± 0.1 

200. ± 10. 

43. ± 5. 
78. ± 4. 
49. ± 6. 
90. 

101. ± 2. 

6. ± 1. 
2.73 ± .04 

170. ± 5. 
273.9 
425. ± 40. 

622. ± 35. 
180. ± 20. 

a. F rom Stehn et a l . 6 

b. Natural p a r a m e t e r s used. 
с F rom Hughes et al .5 

Mean, b 

12.89 
8.926 

1176. 
184.3 

4.916 

1.114 x 105 

25.69 
9.264 x 103 

75.62 
19.02 

3.404 x 103 

1.517 X 103 

2.005 x 105 

1.556 X 10? 
4.703 x 10s 

21.85 
6.594 x 103 

30.57 
9.509 

3002. 

22.75 
13.26 

624.5 
19.61 

557.8 

38.55 
7.676 

310.9 
256.2 
955.1 

684.5 
309.3 

Standard 
Deviation, b 

18.61 
13.20 

1564. 
305.9 

8,366 

1.996 x 10s 

37.39 
1.486 x 10" 

123.3 
37.56 

•3.941 x Ю3 

2.013 x 103 

3.536 x Ю5 

2.277 x 105 

8.992 x 105 

32.46 
8.41.1 x 103 

43.84 
12.11 

5434. 

40.35 
18.30 

1191. 
34,08 

934.6 

61.84 
12.16 

450.4 
544.7 

1502. 

856.9 
231.8 

d. From Hughes ; 
e. From England. 

log 
(expt/mean) 

-0.6479 
-0.4735 
-0.6993 
-0.3260 

0.2626 

-0.4362 
0.5770 
0.2093 
0.4558 

-0.5388 

0.3601 
-0.5278 
-1.1560 
-0.4286 
-0.2886 

-0.7484 
-0.2171 

0.0588 
-0.1089 
-1.1764 

0.2765 
0.7696 

-1.1053 
0.6618 

-0.7422 

-0.8079 
-0.4490 
-0.2622 

0.0290 
-0.3517 

-0.0416 
-0.2351 

md Schwartz 
7 

f. F rom Stehn et al. ,° modifie 

No. of 
Resonances Data 

g. From Ref. 
h. Estimated. 

for z. This is produced by the long exponential 
tail in the distribution of a ' s , which allows for an 
appreciable probability of overestimating the 
answer. 

The experimental thermal-neutron cross sec ­
tions were taken from BNL-3254"8 and England,7 

while resonance parameters came from .BNL-325. 

4 D. J. HUGHES and R. B. SCHWARTZ, "Neutron 
Cross Sections," BNL-325, Second ed., Brookhaven 
National Laboratory (1958). 

5 D. J. HUGHES, B. A. MAGURNO, and M. K. BRÜS­
SEL, "Neutron Cross Sections," BNL-325, Suppl., 1, 
Second ed., Brookhaven National Laboratory (1960). 

.. R. STEHN, M. D. GOLDBERG, R. WEINER-
CHASMAN, S. F. MUGHABGHAB, B. A. MAGURNO, and 
V. M. MAY, "Neutron Cross Sections," BNL-325, 
Suppl. 2, Vol. Ш, Brookhaven National Laboratory 
(1965). 

The direct arithmetic average of spacings and 
widths was used where parameters were avail­
able.8 In cases where no resonances have been 
resolved, the level spacing was computed from an 
improved version of Gilbert and Camerons '9 free-
gas formula (Cook et al.10). Neutron widths were 
then estimated from the nuclear systematics of the 
s-wave strength functions, taken from the CESTDA 

7 T . R. ENGLAND, "Time-Dependent Fission Product 
Thermal and Resonance Absorption Cross Sections," 
WAPD-TM-333 Addendum No. 1., Bettis Atomic Power 
Laboratory, Westinghouse Electric Corporation (1965). 

8 Unpublished data of the Australian Atomic Energy 
Commission. 

9 A. GILBERT and A. G. W. CAMERON, Can. J. 
Phys., 43, 1446 (1965). 

10J. L. COOK, H. FERGUSON, and A. MUSGROVE, 
Aust. J. Phys., 20, 5 (1967), to be published^ 
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T A B L E I I 

Calculated Thermal Cross Sections: Keane's Formula 

TABLE II (Continued) 

Nuclide 

E x p e r i m e n t ^ 

25. ± 2. 
80. ± 60. 
15.9 ± 1.6 
0.76 ± 0.06 

13.3 ± 0 . 1 

2.8 ± 0.4 
• 2.7 ± 0.2 

2.5 ± 0.2 
37.2 ± 0.6 

4.51 ± 0.23 

2.2 ± 0 . 2 
1.0,95 ± 0.11 
2.1 ± 0.2 
5,15 ± 1.0 
4.3 ± 0.2 

' " : 7. 
22. ± 1. 
42.0 ± 4.0 

0.61 ± 0.06 
10.9 ± 0 . 6 

0.91 ± 0.08 
0.12 ± 0.03 
1.05 ± 0.17 
0.8 ± 0.1 
0.005 ± 0.001 

0.10 ± 0.07 
1.58 ± 0.12 
0.25 ± 0.12 
1.1 ± 0.4 
0.075 ± 0.008 

0.05 ± 0.01 
14.5 ± 0.5 

2.2 ± 0.7 
0.15 ± 0.2 
0.5 ± 0.5 

22. ± 3. 
3.1 ± 0.9 
1.44 ± 0.16 

150. ± 5. 
11.0 ± 6.0 

0.292 ± 0.029 
12.2 ± 0.2 
91. ± 3. 
(2 ± 0.03) X Ю4 

199. ± 8. 

6.2 ± 0.2 
28. ± 3. 

110. ± 20. 
(3.6 ± 0.4) x l O 6 

31.6 ± 1.7 

0.35 ± 0.15 
8.2 ± 0.8 

12. ± 3. 
355. ± 10. 

52. ± 2. 

Av log 
mean,b (expt/av mean) 

15.32 
209.9 

4.932 
0,9003 

45.67 

0.3719 
9.836 
7.676 

,177.4 
3.944 

7.312 
5.686 
8.402 

67.27 
39.86 

160.5 
2.784 

77.90 
0.8814 

58.91 

3.879 
6.076 
8.086 
1.207 
0.01533 

0.2251 
3.414 
0.1936 
3.499 
9.779 

3.694 
8.192 
2.914 
0.1544 
3.407 

88.52 
6.553 

154.0 
621.6 
202.0 

0.01039 
5.531 

92.93 
5.262 X10 4 

120.3 

23.63 
19.30 
14.79 

4.611 x 107 

64.03 

0.1430 
3.063 

10.71 
159.3 
266.4 

0.2126 
-0.4189 

0.5084 
-0.0736 
-0.5357 

0.8767 
-0.5615 
-0.4872 
-0.6695 

0.0582 

-0.5216 
-0.7154 
-0.6022 
-1.1090 
-0.9671 

-0.5065 
0.8978 

-0.2683 
-0.1598 
-0.7328 

-0.6297 
-1.7044 
-0.8865 
-0.1786 
-0.4866 

-0.3524 
-0.3346 

0 . 1 U 0 
-0.5026 
-2.1152 

-1.8685 
0.2480 

-0.1221 
-0.0126 
-0.8334 

-0.6046 
-0.3251 
-2.0292 
-0.6174 
-1.2640 

1.4488 
0.3436 

-0.0091 
-0.4201 

0.2203 

-0.5811 
0.1616 
,0.8714 

-1.1075 
-0.3067 

0.3887 
0.4277 
0.0494 
0.3228 
-0.7095 

I 2 4 3 A m 

i Experiment,!) 

2.9 ± 0.5 
3.0 ± 1.5 

235. ± 24. 
87. ± 6.0. 

9.0 ± 9.0 

(4.08 ± 0.09) x 104 

97. 
(1.5 ± .04) x 104 

216. ± 6. 
5.5 ± 1.1 

(7.8± 0.2) x 103 

450. ± 20. 
(1.4 ± . 4 ) x 104 

(5.8 ± .3) X 10" 
(2.42 ± .04) x 105 

3.9 ± 0.4 
(4.0 ± .8) x 103 

35. ± 3. 
7.4 ± 0.1 

200. ± 10. 

43. ± 5. • 
78. ± 4. 
49. ± 6. 
90. 

101. ± 2. 

170. ± 5. 
273.9 
425. ± 40. 

622. ± 35. 
180. ± 20. 

Au log 
mean,b (expt/av mean) 

7.96 
6.504 

1097. 
144.2 

3.723 

6.985 x 104 

14.80 
5.896 x 103 

50.25 
12.18 

2.714 x 103 

1.349 x 103 

1.213 x 105 

1.387 x 1Ö5 

4.144 X 105 

15.79 
9.520 x 103 

19.55 
5.369 

1900. 

18.08 
9.567 

525.6 
13.49 

356.6 

18.61 
6.019 

254.2 
232.1 
919.3 

-0.4385 
-0.3361 
-0.6691 
-0.2194 
0.3834 
-0.2335 
0.8165 
0.4055 
0.6333 
-0.3453 
0.4585 
-0.4768 
-0.9377 
-0.3786 
-0.2336 
-0.6073 
-0.3766 
0.2529 
0.1393 
-0.9777 
0.3763 
0.9113 
-1.0305 
0.8242 
-0.5479 
-0.4916 
-0.3434 
-0.1747 
0.0719 
-0.3351 
0.1450 
-0.2347 

compilation,11 while radiation widths were also 
obtained by interpolation through the periodic 
table. The position of theJLowest energy resonance 
was initially assigned at D/2. For reactor physics 
cross-section calculations, this assignment was 
later varied until the correct thermal cross sec­
tion was attained. In this way, estimates of un­
measured resonance integrals can also be 
calculated. 

One source of e r ro r in the calculations is that 
we assumed averaged parameters for even-odd 
and odd-even nuclei were the same in each spin 
state, the level sequences of which are randomly 
located. Although this is not a bad approximation, 
one should properly specify two low-lying reso­
nances, one from each state to fix the relative s e ­
quence, then compute the contribution from each 

L 1 "CINDA - An Index to "the L i t e r a t u r e on M i c r o ­
scop ic Neu t ron D a t a , " ' E A N D C 46 " U " N Y O - G E N - 7 2 -
27, New York Ope ra t i ons Office, USAEC (1965). 
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spin state separately. Our approximation amounts 
to replacing the double sequence by an average 
single sequence, and we do not expect the e r ro r 
incurred by this assumption to be comparable with 
that produced by neutron-width uncertainties. In a 
preliminary survey of this kind, it was felt to be a 
justifiable approximation. 

IV. CONCLUSION 

The statistical distribution of reduced neutron 
widths was taken into account in predicting the 
possible range of values for the thermal-neutron 
cross section. In taking a sample of 87 nuclides it 
was found that the fluctuation in the order of mag­
nitude was 0.4 ± 0.6 for the logarithm of the ratio 
of experiment to the calculated mean. This result 
allowed us to estimate unmeasured thermal-

neutron cross sections . to within one order of 
magnitude. 

There is an additional statistical uncertainty we 
must take into account if estimates are to be made 
of cross sections where no resonances are avail­
able. This is the so far unknown probability dis­
tribution for the location of the lowest energy 
resonance. We are investigating the 87 nuclides 
listed in this paper to search for correlations that 
may give us this law. The general conclusions of 
this investigation are not expected to be altered 
appreciably by inclusion of such a distribution, 
though standard deviations may increase. 

The result may be applied to the resonance 
overlap theory developed by Keane to give est i ­
mates of e r ro r s in overlap corrections. It could 
also be used to estimate unmeasured fission-
product cross sections. 


