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ABSTRACT 

A method is given for solving the inverse reaction problem to obtain complex potentials 

as in the optical model of the nucleus. The method will reproduce reaction data to the accuracy 

with which the reaction matrix can be least squares fitted to a sum of simple poles. 
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1. INTRODUCTION 
In a previous paper (Cook 1970) it was shown that given the complex phase shifts in each 

channel of a reaction, a set of real channel wave functions and potentials could be evaluated which 
reproduced the phase shifts to the accuracy with which one could least squares fit the reaction 
matrix to a sum of poles. This formulation can be generalized to accommodate spin-orbit coupling, 
and to derive an equivalent alternative theory which uses complex potentials, as in the optical 
model (Preston 1962). 

2. THE OPTICAL MODEL 
The basic radial wave equation for the optical model wave function Ucp for the incident channel 

с and orbital angular momentum P is (Preston 1962) 

This wave function has the asymptotic form 

-2ßd 

where 

Urf ( r - a o ) - S ) r f £ l * e 2 ^ ) s i n ( k c r - Ц- • a c f ) 

+ l (1 - e c t ) cos ,kcr - у - + ад)J , 

®c£ = an arbitrary complex constant 

ac£ = the real part of the phase shift 

ßc( = the imaginary part of the phase shift 

Scp = <XC( + i ßcf . 

Neglecting spin for the present, the cross sections are as follows: 

(a) Elastic: 

<rcc = - 1 j ( 2 f • « | l _ e 2 i W -
Kc ' 

(2) 

(b) Absorption: 
n_ -*ßd 

К f 
ca - иг I ( 2 f + D ( 1 - е ) 

(c) Total: 
aCT - Ц. Ъ (29.* I) [ l - R e e 2 i S c P ] 

К 
Let us suppose there are two channels in the reaction. We may associate with the cross 

sections a two-channel S-matrix 

(3) 

. S i i S i 2 ' 

\ О 7 i Ъ 7 J 

such that Si-, S71 , as required by time reversal invariance, 

and S „ = e2iSif 

iSi . l1 - 1 - e " 4 ^ ' . (4) 
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Unitarity and time reversal invariance ensure only three independent elements. Thus a phase in 
S_; and the phase of S 1 ; are arbitrary. In order to determine these elements, we introduce the 

t 
equiphase assumption on the reduced transition matrix (Cook 1967), T . 

The Tp matrix is defined as 

If = k (-l' _ i ) • (5) 

The reduced transition matrix is defined by the equation 

l f - ^ (Qs
f - I ) • Qf Tp n f , (6) 

where fl is the diagonal matrix (Lane and Thomas 1958) 

u , ' ( . . - « ) ' 

and d^ , d,| are the hard sphere phase shifts for channels 1 and 2. This assumption ensures that 
tue Bohr (1936) compound nucleus condition holds for the resonant part of the reaction. Since the 

i 
S matrix is unitary, it can be shown readily that the T matrix must be of the form 

2i Фг 4 1 — г}2 е 

If 27 ( Ь С« 
2\Ф( 2i(2 0 f - a l f ) 

' — v e - 1 

where vo = e 

Фу is an independent function 

and a p 7 a j. + (9.p = the reduced phase shift. 

The equiphase condition yields 
! f 

- 77 sin 2 а, о a, p + a„ p 
Тап2ф= i l _ , Фр - — — , (9) 

1 — г) cos 2 ^p 2 

from which S^2 and the phase of SJ2 can be found. The second condition follows from unitarity 

and time reversal alone. The first allows the determination of Ф. However, in solving the inverse 

reaction problem, one associates a real channel wave function ŷ cp with each phase shift Scp such 

that each 0cp obeys Schrodinger's equation. 

<*'Ф с Г pff + 1 ) "I 
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'/'.£ and 4'„j have asymptotic forms 

^it "* С t ? sin (k t r - - j 1 + at g ) 

^sf ~* Ccf s i n ( k
2

r ~ ~T * ot
2f) 

<//̂  and <//„ p are not independent or each ether but are coupled through their asymptotic normalisa­

tion constants, Cd and C,g . This is how one determines Vf . 

The wave functions ф1 p and ф2 p may be re-normalised to yield functions Фг g and ф2 p 

which satisfy (10a) and (b) and which have the asymptotic forms 

Ф1( - s i n ^ r - l~- * ai() 

In ( 1 1 ) 

Ф2р - s in(k 2 r - j - * д 2 р) 

3. THE EQUIVALENT OPTICAL MODEL 

Instead of using (o^p ,77p , фр ) we will use the equivalent variables ( a ^ ,<* -£ , 17g). 

The problem is to find for given '^p » a g ana< "Пр the complex potential in Equation 1 which 

yields the same Tp matrix as the wave functions <£lf and ф2р . This can be done as follows: 

The inverse reaction calculation (Cook 1970) is used to determine effective potentials V t and V-

such that wave functions Ф, p and ф„ p satisfy the transposed energy equations 

(12) 

- ^ - + L k l " V > + -рг-}ф>г = ° ' 
with asymptotic forms 

- (TT 
Ф,Р » sin ( k r - —- + a p) (13a) 

' • f - CO ' £. 

**t T~rt s»»iV - - jr + a ,p ) • (1 3 b) 

We now introduce asymptotic normalisation constants A, p , A sf , B,f and B2p such that for large r 

A l P 0 l f • B l F фгр - sir. (kxr - ~ • ilt) 

0 _ 
A i P #?P + В8рФ,р - s in(k ,r - — + S2p) . 

Hence we find 
sin ( S l P - a2p) 

A,p = 

A , p -

sin (a,p - a 2 g ) 

s i n ( 8 j F - a i F ) 

sin (« , .p- a tp) 
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<м 

sin (£;['— a tf) 

sin (a.j— a.2f) 

sin h Д, с 

s'm(<x:e-a,() 

sin h /3t i 
sin (atjp-outf) 

fl4) 

The functions Ul(' and U, j defined as 

U l f = A l f Фл (ktr) • В2(ф,г (kxr) 

u
a f = о 1 ? ф 1 ? ( к 2 г ) + А 2 е ф 2 ? (к 2 г ) (15) 

will satisfy Equation 1 provided 

Aj V, Фх
 + B2 V2 ф2 

Ö, 

0S 

A: 0 i + B5 ф2 

B t Vx Ф; * A2 V2 ф2 

Bi Ф; + А. ф2 

(16) 

are the complex potentials in each channel. 
More generally if we use source terms 

Vc ф(с - pc , Cc Upc = £ c (17) 

and the multichannel equations with the given asymptotic conditions (13) and (2), we will find 

«Sc'f . '»cP „ i«c*H 
e = Ac e + i Вес1 е 

с / с 

- iS c p ~ i it с Р - i a c ' f 
e - Ac e • S Bcc> e , (18) 

c'/c 

from which the complex constants Ac and BC(i can be evaluated only in the case where n =2. For 
n >2, the B c c ' are undetermined without additional constraints. We will then be able to find the 
general complex source in each channel from the equations 

£c - A c P c • X Bc c- pc- . (19) 

The spin-orbit contribution can be isolated by defining фс^ for each J, (, and establishing 
the contribution from the difference of p and p 

C J J + ^ C J J - И 
4. CONCLUSION 

A method has been given for calculating optical potentials in multichannel problems where 
only the complex scattering phase shifts are known. The method gives both the complex potential 
required to reproduce the phase shift and an optical model wave function. 

Although such functions reproduce all of the data, they are not, of course, unique. This 
difficult question of uniqueness is worthy of further investigation. We point out, however, that the 
calculation of a set of consistent p t ' s has been performed successfully for a wide range of phase 
shifts (Clayton and Cook,AAEC report in preparation), and given this information, the above method 
cannot fail to reproduce the data. 
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The constants A c and Bcc> are not uniquely detennined because the optical model groups all 

reaction channels together and cannot give information on these outgoing channels other than the sum 

of the cross sections. 
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