

INTERNATIONAL NUCLEAR DATA COMMITTEE

Evaluation of the 58Ni(n, 2n)57Ni Cross Sections

by

A. Pavlik and G. Winkler

Institut für Radiumforschung und Kernphysik der Österreichischen Akademie der Wissenschaften und der Universität Wien, A-1090 Vienna, Boltzmanngasse 3

June 1983

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria June 1983 83-3568 EVALUATION OF THE ⁵⁸Ni(n,2n)⁵⁷Ni CROSS SECTIONS

Ъy

A. Pavlik and G. Winkler

.

Institut für Radiumforschung und Kernphysik der Österreichischen Akademie der Wissenschaften und der Universität Wien, A-1090 Vienna, Boltzmanngasse 3.

Abstract

The excitation function for the reaction 58Ni(n,2n)⁵⁷Ni was evaluated in the neutron-energy range from the threshold (12.41 MeV) to 20 MeV. All available experimental data sets were critically reviewed and obviously erroneous data sets were disregarded. If necessary, the data were renormalized in order to take into account adjustments of the decay data of the product nucleus 57 Ni and of reference cross sections. Cross section values were evaluated for energy groups 0.2 MeV to 1.5 MeV wide, the width depending on the number of available data points. For each evaluated cross section value also an uncertainty, representing an equivalent standard deviation, was derived taking into account the errors given by the experimentalists (after a critical review) and the general consistency of the experimental data. In addition the covariance matrix and the correlation matrix of the evaluated cross section data were derived. In the energy range above 15 MeV the results of the evaluation are up to 30% higher than the values from the ENDF/B-V, caused by the inclusion of a number of recent experiments and by renormalizations applied according to adjustments in the decay scheme of 57 Ní.

CONTENTS

	page
I. Introduction	ł
II. Experimental data base	2
III. Evaluation and results	6
III.1. Evaluation of group cross sections	6
III.2. Evaluation results	7
III.3. Derivation of the covariance matrix	7
III.4. Comparison with integral data	8
References	9
Tables	11
Figures	23
References to experimental data base	28

.

I. INTRODUCTION

In order to satisfy the increasing demand for neutron cross section evaluations also providing information on the uncertainties of the evaluated data and their correlations, procedures were developed at our institute for deriving values of the diagonal and, at least approximately, also of the off-diagonal elements of the covariance matrices of the evaluated cross sections /1, 4/. These procedures were applied to a number of neutron induced reactions chosen for their importance in fast neutron dosimetry /1, 2, 3/. In continuation of this evaluation programme the cross sections of the 58 Ni(n,2n) 57 Ni reaction were evaluated using the general procedures described in Ref. /1/, section II.

The 58 Ni(n,2n) 57 Ni reaction has a Q-value of - 12.20 MeV /5/, resulting in a reaction threshold of 12.41 MeV. Therefore this reaction has become important for activation-detector fast-neutron dosimetry applications, and a precise knowledge of the energy dependent cross section data is required. This reaction has been classified as a category-I reaction, but above 15 MeV the knowledge of the excitation function has been unsatisfactory. There are differences > 30% between the results of different authors (not taking into account the obviously wrong data of Jeronymo 63). The cross sections originally reported by the authors are shown in Fig. 1 for all experiments providing data points above 16 MeV neutron energy.

Previous evaluations /6-10/ resulted in excitation functions similar to the measurement of Paulsen 65. Recent experiments (Adamski 80, Hanlin 82, Pavlik 82), which were not considered in the previous evaluations, delivered cross sections up to 30% higher, in agreement with Bayhurst 75. To evaluate the cross sections of the ⁵⁸Ni(n,2n)⁵⁷Ni reaction all available experimental literature data were critically reviewed and renormalized, if necessary.

and the state of the state of the same water

II. EXPERIMENTAL DATA BASE

To establish the data base, CINDA up to Supplement 81 (November 1981) and the compilation in Ref. /11/ were used as index to the existing literature. The most recent editions of some journals most likely to contain relevant publications have also been searched up to Nov. 1981. The experiment of Hanlin 82 (private communication) and the authors' own experiment (Pavlik 82) were also included in the data base.

The original papers had been looked up, whenever available. Simultaneously it was checked that references cited therein were already contained in the literature list. The most important information on the 37 papers found in this way is briefly summarized in Table 1. The authors used the activation method throughout. Columns 1 to 7 give the energy range of the experiment, the number of data points within this range, the accuracy of the measurements as estimated by the evaluators, the method used to determine the neutron fluence, the first author and date of the respective paper and a reference number used furtheron in the compilation. In several cases where measurements of the cross sections by different methods were reported in one paper, the paper was split up into two parts for further processing. Therefore two entries appear in Table 1 for the papers Prestwood 61, Csikai 65, Bayhurst 75 and Pavlik 82.

A number of papers was rejected because they had been superseeded by more recent papers of the same authors:

Rayburn 59 by Rayburn 61

Preiss 60 by Bramlitt 63

Cross 62 by Cross 63

Bormann 65 incorporated in Bormann 66

Adamski 77 and Marcinkowski 79 by Adamski 80.

Detailed analysis of the remaining experiments resulted in rejection of three further data sets for the following reasons: Jeronymo 63, reference number 22:

The cross sections deviate by more than 3 standard deviations from the main body of the data in the energy range above 14 MeV.

Csikai 65, reference number 177:

The experimental results for the shape of the excitation function did not allow adequate renormalization as the shape strongly deviated from a preliminary evaluated excitation function based on experiments that provided absolute cross section values. (For the renormalization procedure of relative excitation functions see Ref. /1/, section II.)

Bormann 66, reference number 456:

The data deviate more than three standard deviations from the average. Due to the lack of information given in the relevant paper about the standards used, a (probably necessary) renormalization was not possible. Also the shape of the excitation function disagrees strongly with all other data.

The cross section values from all accepted data sets are summarized in Table 2. The table lists all cross section measurements in order of increasing neutron energy. For each data point the following quantities are given: the average neutron energy and the energy spread (half width at half maximum) of the neutrons employed for the measurement, the uncertainty of the average neutron energy, the cross section value and its uncertainty as reported by the author, an indication which renormalization procedures were applied to both cross section and uncertainty (see explanation of the correction codes at the end of Table 2), and finally the renormalized cross section value and its uncertainty. The uncertainties of the average neutron energies were not given in most papers and were estimated from the experimental conditions described in the papers.

The renormalized cross sections and uncertainties have reference to: a) Decay scheme and half life of ⁵⁷Ni such as given in the Table of Isotopes, 7th edition /12/.

b) Cross sections for the reference reactions ⁵⁶Fe(n,p)⁵⁶Mn,

 65 Cu(n,2n) 64 Cu and 238 U(n,f) such as in the ENDF/B-V file /6/. The uncertainties of these reference cross sections were taken from the corresponding covariance file and included in the final uncertainties of the renormalized cross sections. c) The cross sections and their uncertainties for the reference reactions $\frac{27}{1.41}(n,\alpha)^{24}$ Na and $\frac{63}{1.41}$ Cu (n,2n) 62 Cu such as given in the recently performed evaluations, Refs. /3/ and /1/, respectively.

In the following cases additional special corrections had to be applied: Paulsen 65:

The neutron fluence was measured by means of a proton-recoil telescope. The data from Gammel /13/ had been used for the (n,p) scattering cross sections. To convert to the (n,p) scattering cross sections of Hopkins and Breit /14/ as reference, small renormalization factors (for the two runs of Paulsen's experiment 1.013 and 1.009, respectively) were applied.

Strain 65:

The goal of the original work was to derive γ -spectra from the decay of various radioactive nuclei. For some of the producing reactions cross sections had been deduced. As no uncertainty information is given by the author an uncertainty of \pm 15% was assumed according to the "state of the art" in 1965 and taking into account the uncertainties of the reference cross sections.

The most important adjustment was the renormalization according to the decay scheme in the most cases. In Table 1, column 4, the type of radiation is indicated, which had been used to measure the induced activity. If the β^+ or the 0.511 MeV annihilation radiation had been measured, cross section values were multiplied by 1.15 to 1.17 (depending on the decay scheme data used by the experimentalists) to relate the measurements to the reference decay scheme. A renormalization factor of 1.03 to 1.11 was applied, if the 1.37 MeV γ radiation of the 57 Ni decay had been measured.

The renormalized and corrected cross section data of all accepted measurements are shown in Figs. 2 and 3. The renormalized cross sections from the various authors agree quite well in the whole measurements are shown in Figs. 2 and 3. The renormalized cross sections from the various authors agree quite well in the whole mergy range. The renormalized values from Paulsen 65 (0.511 MeV beneficial of bobs for the off the section of the formation of the annihilation radiation measured) are now in agreement as well with concepted agree section of the formation of the

 4_{\pm}

the data from Adamski 80 (1.37 MeV γ radiation detected) as with the data from Bayhurst 75 and Pavlik 82. Bayhurst 75 used a NaI(T1) well-type detector for the calibration of the proportional counter employed. Pavlik 82 measured the induced activity directly by means of a NaI(T1) well-type detector. Activity measurements with NaI(T1), well-type detectors are rather independent of the decay scheme data used (see e.g. /15/). For instance, the variation of the calculated detection efficiency of the 12.7 x 12.7 cm NaI(T1) well-type detector at our institute was found to be less than 1% using the various versions of the decay scheme for 5^7 Ni from the literature /12, 16, 17/.

By application of the appropriate renormalization factor due to the decay scheme agreement amongst experiments employing different methods of activity measurement was achieved. This shows that discrepancies in the original data were essentially effected by inconsistent decay scheme data used by different authors.

. . .

III. EVALUATION AND RESULTS

III.1. Evaluation of group cross sections

The whole energy range was divided into 16 energy bins. In the energy range from 13.5 to 14.7 MeV the bin width was chosen to be 200 keV, considering the energy resolution of the most experiments and to get a sufficient number of data points within each bin. Outside this range the bin width depended on the number of available data points. It was chosen in such a way that at least one data point of each experiment covering the respective energy range was inside each bin.

The intermediate and final evaluation results are given in Table 3. Column 1 shows the lower limit of the energy bin, columns 2 to 4 show the neutron energy, renormalized cross section and uncertainty of each data point, in column 5 the cross section value related to the center of the energy bin is listed. In order to adjust the cross section to the bin center the shape of a preliminary evaluated excitation function was used. The group cross sections of the preliminary excitation function were calculated as weighted average of the cross section values in each bin.Column 6 contains the reference number.

The final group cross section, i.e. the weighted average of the cross sections related to the center of each bin, is given in column 7 at the end of each group. The internal and external errors of the group cross sections are given in the columns 8 and 9. If one energy bin contained two or more data points of the same experiment, these data were pre-averaged assuming full correlation within that bin. This avoids the weight of a data set to become higher only due to a larger number of data points.

In order to take into account the uncertainty of the average neutron energy, corresponding uncertainties $(d\sigma/dE)\Delta E$ were added quadratically to the standard deviations of the cross sections. The inverse squares of these uncertainties were used as weights to calculate the weighted average. The internal or the external error, in any case the larger one, was assigned as equivalent standard deviation of the evaluated group cross section.

III.2. Evaluation results

The results of the evaluation are given in Table 4. The cross section averages (group cross sections) may as a good approximation also be considered as cross sections at the centers of the corresponding energy bins, since the curvature of the excitation functions is sufficiently small within each energy bin.

Thus we recommend to use the evaluated group cross sections also as point cross sections at the group centers and to calculate the cross sections at other energies by linear interpolation. The evaluated cross section are given in Table 5 according to the ENDF/B format.

Except for the first energy bin the average uncertainty of the evaluated cross section is 3.6% and in the energy range above 15 MeV the average uncertainty is 4.3% which is sufficient for most applications in fast neutron dosimetry.

The evaluation results and a comparison with previous evaluations /6, 7/ are shown in Fig. 4. Above 15 MeV the results of the new evaluation are up to 30% higher than the ENDF/B-V values. Since the data base has been improved by a number of precise measurements, there is a significant decrease of the uncertainties in the whole energy range compared to previous evaluations.

III.3. Derivation of the covariance matrix

Covariances and correlation coefficients between all evaluated cross sections were calculated approximately according to the procedures described in Ref. /1/, section II. These procedures use an average correlation coefficient B_{nnk} within each data set and neglect correlations between different data sets. The B_{nnk} values for the data sets containing more than one data point were estimated from the error analysis given in the papers, and are summarized in Table 6. A number of papers was split into two experiments, assumed to be independent, if the correlation between the two data sets was small (< 10%) and different B_{nnk} values had to be assigned to each data set (see section II).

The correlation matrix for the evaluated group cross sections is given in Table 7, the corresponding fractional covariance matrix with matrix elements cov $(x_i, x_j)/(x_i x_j)$, is given in Table 8.

• . . .

.

. . .

· · · ·

. . . .

. . .

. .

. ·

III.4. Comparison with integral data

Using the presently evaluated cross sections for the reaction 58 Ni(n,2n) 57 Ni, the spectrum-averaged cross section < σ > for the 252 Cf spontaneous-fission neutron field was calculated taking spectra parameters from Grundl and Eisenhauer /18/. This resulted in:

 $\langle \sigma \rangle_{calc} = 0.00856 \pm 0.00040$ mb for a Maxwellian spectrum, (<E> = 2.13 MeV) and segment corrections, $\langle \sigma \rangle_{calc} = 0.0113 \pm 0.0003$ mb for a Maxwellian spectrum with the same average energy and no segment corrections.

The uncertainties of the calculated <0> values stem from the uncertainties of the evaluated cross sections considering the full covariance matrix, but do not take into account the uncertainty of the ²⁵²Cf spectrum representation. The calculated averaged cross sections can be compared with the most recent experimental value from Mannhart /19/:

 $<\sigma>_{exp} = 0.00894 + 0.00028 \text{ mb}.$

.

ACKNOWLEDGEMENT

The authors are indebted to S. Tagesen, for his assistance in using the computer codes, and to H. Vonach for stimulating discussions.

.

REFERENCES

and the second second states and

A state of the second seco

- /1/ S. Tagesen, H. Vonach, B. Strohmaier, Evaluation of the cross sections for the reactions ²⁴Mg(n,p)²⁴Na, ⁶⁴Zn(n,p)⁶⁴Cu, ⁶³Cu(n,2n)⁶²Cu and ⁹⁰Zr(n,2n)⁸⁹Zr (Physics Data 13-1), Fachinformationszentrum, Karlsruhe 1979
- /2/ B. Strohmaier, S. Tagesen, H. Vonach, Evaluation of the cross sections for the reactions ¹⁹F(n,2n)¹⁸F, ³¹P(n,p)³¹Si, ⁹³Nb(n,n')^{93m}Nb and ¹⁰³Rh(n,n')^{103m}Rh (Physics Data 13-2), Fachinformationszentrum, Karlsruhe 1980
- /3/ S. Tagesen, H. Vonach, Evaluation of the cross sections for the reaction ${}^{27}\text{Al}(n,\alpha){}^{24}\text{Na}$ (Physics Data 13-3), Fachinformations-zentrum, Karlsruhe 1981
- /4/ S. Tagesen, Anzeiger d. Österr. Akad. Wiss., mathem.-naturw. Kl., 116, 166 (1979)
- /5/ A.H. Wapstra, K. Bos, Atomic Data and Nuclear Data Tables <u>19</u>, 215 (1977)
- /6/ ENDF/B-V Dosimetry Files, Mod. 2, National Nuclear Data Center, Brookhaven National Laboratory (1981)
- /7/ L. Adamski, M. Herman, A. Marcinkowski, Report INDC(POL)-8/L (1977)
- /8/ ENDL-78, Livermore (LLL) Evaluated Nuclear Data Library (1978)
- /9/ A.A. Lapenas, Kh. Ja. Bondars, Ja. K. Vejnbergs, Izmerenie Spektrov Nejtronov Aktivacionnym Metodom, Zinatne, Riga 1975
- /10/ P. Guenther, A. Smith, D. Smith, J. Whalen, R. Howerton, Report ANL/NDM-11 (Argonne National Laboratory 1975)
- /11/ M.F. Vlasov, A. Fabry, W.N. McElroy, Report INDC(NDS)-84/L+M(1977)
- /12/ C.M. Lederer, V.S. Shirley (eds.), Table of Isotopes, 7th ed., Wiley-Interscience, New York 1978
- /13/ J.L. Gammel in Fast Neutron Phyics (eds. J.B. Marion, J.L. Fowler), Part II, p. 2209, Interscience Publ., New York 1963
- /14/ J.C. Hopkins, G. Breit, Nuclear Data Tables A9, 137 (1971)

- /15/ G. Winkler, A. Pavlik, Int. J. Appl. Radiat. Isot. 34, 547 (1983)
- /16/ C.M. Lederer, J.M. Hollander, I. Perlman, Table of Isotopes, 6th ed., Wiley and Sons, New York 1967
- /17/ R.L. Auble, Nuclear Data Sheets 20, 327 (1977)

,

- /18/ J. Grundl, C. Eisenhauer, Techn. Doc. IAEA-208, Vol. 1, p. 53, IAEA Nuclear Data Section, Vienna 1978
- /19/ W. Mannhart in Nuclear Data for Science and Technology (ed. K.H. Böckhoff), p. 429, D. Reidel Publ. Co., Dordrecht 1983

TABLE 1	EXPERIMENTS	SUMMARY	FUR	THE	REACTION	SB NI	(N+2N)

ENERGY-I [me]	RANGE Vj	NR.OF DATA POINTS	AVERAGE ACCUR X	METHOD		FLUX, REF X-SECTION	REF	NR.	
14,50	14.50	1	35	ACT: PROP C;	BETA+	LONG CTR CALIB BY ASS ALPHA PART	PAUL 53	12	
14.10	14.10	1	27	ACT. SCINT C	, 1511 MEV BAH	ASSUC ALPHA PART	PURSER 59	451	
14.40	14.40	1		ACT + NA1 + 15	11 MEV GAM COINC	6300(N+2N)	RAYBURN 59	470	
14.80	14.80	1		ACT		27AL(N)A); 63CU(N;2N); 65CU(N;2N)	PREISS 60	61	
16.50	19.76	3	8.7	ACT. PROP C.	BETA+	238U(N+F)	FRESTWOOD 61	100	
13.52	14.81	6	6	ACT. PROP C.	BETA+	ASSOC PARTS 27AL(NEA) REL EXÈ FOTN	PRESTWOOD 61	111	
1,4.40	14.40	1	22	ACT, NAI, .S	11 MEV GAN COINC	6300(N+2N) 503 MB	RAYBURN 61	112	
14.50	14.50	1		ACT'S BAN		27AL(N)A) 115 HB	CROSS 62	471	
13.86	14.88	9	8	ACTI NATI (5	11 HEV BAH COINC	ASSOC PART: 6500(N;2N) REL EXC FOTN	GLOVER 62	55	
14.70	14.70	1	12	ACT, NAT, 1.	37 NEV DAM	276L(N7A) 114 NB	BRAHLITT 63	101	
14,50	14.50	1	13	ACT+ BAH		27AL(N+A) 115 MR	CRUBB 63	452	•
12.55	21.00	• 8		ACT+ NAT WELL	L, BAM	PLASTIC SZINT RECOIL SPECT	JERONYHO 63	22	
14.10	14.10	1		ACT, NAL, GA	M	STILBENE C	BORMANN 65	472	
13.30	15.50	7	17	ACT, NAT, .5	11 HEV GAN COINC	ASCU(N+2N) AT 14-2NEV+S6FE(N+P) REL	CHUJNACKI 65	453	
14.60	14.60	1	8	ACT, NAL WELL	L, GAN	63CU(N+2N) 541 HB	CSIKAI 65	454	
13.56	14.71	.24	5	ACT, NAI WEL	L. BAM	RELATIVE EXCLT FORM	CSIKAI 65	177	
12.98	19,58	25	7 - 10	ACT. NAL. S	11 HEV BAH	PROTON-RECOIL TELESCOPE	PAULBEN 65	455	
14.70	14.70	1	15	ACT, NAI, GA	н	27AL(N;A); 43CU(N;2N); 28SI(N;P)	STRAIN 65	14	
12.95	19.60	10	7	ACT, NAI, GA	M	STILBENE C AT 14-1 HEV	BORMANN 66	456	
15,40	15.40	1	15	ACT+ NAI+ 5	11 HEV GAN	63CU(N,2N) 488 MB AT 14.1 NEV	CUIKAI 67	176	
13.72	14.79	6	10	ACT, NAI, .5	11 NEV DAH	ASBOC ALPHA PART	TEMPERLEY 68	457	
14.60	14.60	1	3	ACT+ NAT+ 1,	37 NEV GAM	27AL(N+A) 120-7 MB	BARRALL 69A	13	
14.50	14.50	1	6.3	ACT		27AL(N+A) 121.0 MB	BARRALL 698	175	
14.80	14.80	1	4.3	ACT+ NAT+ 1.3	37 NEV GAM	PROTON-RECOIL TELESCOPE	BARRALL 69C	407	
14.40	14.40	1	13	ACT: GE(LI):	BAH	56FE(N+P) 100 MH	FINK 70	458	
14.50	14.60	1	10	ACT+ NAT+ .5	11 NEV GAM	63CU(N+2N) 538 NB	ARAHINONICZ 73	123	
14.70	14.70	1	4.6	ACT: NAI: 570	CO GAN	56FE(N,F) 97.8 HB	HENINGWAY 73	459	
17.23	19.99	3	2	ACT+ PROP+BE	TATICAL BY NAI-W	27AL(N#A) EXCLT FOTN	BATHURST 75	106	1
16.21	28.05	7	5	ACT, PROPISE	TATICAL BY NAI-W	PROTON-RECOIL TELESCOPE	BAYHURST 25	460	

· · ·

ENERGY- CME	RANGE VJ	NR.OF DATA PUINTS	AVERAGE Accur "Z	метнов	FLUX, REF X-SECTION	REF	NR
Teres.	. · · • •		•	к ² ·	•		
14.10	14.10	1	13	ACT, NAI, .511 MEV BAH	27AL(N+A) 115 HB	SPANGLER 75	<u>د</u>
14,70	14.70	1	8.5	ACT, BE(LI), 1.37 HEV_BAH	27AL (N2A) 121 HB	WAIN 76	462
14.60	1,4.60	1.	8.5	ACT, GE(LI), GAM	27AL (NA) 114.2 HB	S100 76	461
14,00	17.90	6	10	ACT, BE(LI), 1,37 MEV GAN	2AL(N)A), 56FE(N)P)	ADAHSKI 77	473
13, 30	17.10	5,	9	ACT: GE(LI) 1.37 MEV DAM	27AL(N:A) EXCIT FOTH	HUDSON, 28	463
14.00	17.90	4	10	ACT, GE(LI), 1,37 NEV GAM	27AL(N)A)+ 56FE(N+P)	HARCINKUWSKI 79	474
14.00	17.90	6	10	ACT, GE(L1), 1.37 HEV BAH	27AL(N+A), 56FE(H+P)	ADAMSKI BO	464
13,55	14.71	6	8	ACT, GE(LI), 1,37 NEV GAM	27AL(NJA) EXCIT FOTN	N00C 80	465
13.52	1.4 .80	5	. 4	ACT: BE(L1); 1:37 MEV; 127	27AL(N/A) EXCIT FOTN	RA105 81	467
12.79	18.26	13	1 - 10	ACT; NAI; 1.37 NEV BAH	27AL(N;A)AT 14.6 NEV	HAN LIN 82	466
13.47	14.83	18	2	ACT; NAI-WELL; GAM	27AL(NIA) EXCIT FOTN	PAVLIK 82	128
1,3 .,3,1	19.57	11	4.5	ACT, NAI-WELL, BAM	PROTON-RECOIL TELESCOPE AT 0 DEG	PAVLIK 82	127

¥

12

INSLE	.2 CR	USS-SECI	IUN DATA FU	IN THE REACTION	DE NI (N/2	N 3			PHOE I	
	E NEURO		EDE CENTE	7-850T/0010)	Ebb/Abtas	0000 600	V-SCOT/STMA	EBO/ETNY	0FF.	
NR +	CMEV3	ENEVJ	ENEVO	LUKU	EWRJ	CORKARPLA	CMB3	EKR(FIN)		
. 1	12.79	0.290	0.030	3.500	0.500	(1)9)	3.800	v. 500	HAN LIN 82	
2	12.86	0.210	0.030	3.600	0.400	109)	3.900	0.400	HAN LIN 82	
3	12.98	0.1.70	0.020	3.200	0,300	1)6)	3,800	0.400	PAULSEN: 65	
, 4	13.10	0.180	.0.020	4.600	0.400	1)6)	5,500	0.500	PAULSEN 65	
. 5	13.30	0.300	0,030	21.000	4,000	1)3)	23,000	4.000	CHOJNÁCKI 45	
. 6	13,30	0,140	0.015	.11.000	1.000	1)9)	12,100	1,100	HUDSON 78	
7	13.31	0.115	0.025	9.060	3,330	NONE	9,060	3,330	PAVLIK 82	
8	13.38	0,210	0.020	10,100	0.700	1) ()	12,100	0.800	PAULSEN 65	
9	,13,47	0,160	0.015	11.240	0., 330	NUNE	11,240	0,330	PAVLIK 82	
10	13,50	0.200	0.020	19,000	4000	1)3)	22,000	4:+000	CHUJNACKI AS	
	13.52	0.130	0,015	13.900	0.700	1,191	15,700	0,900	PRESIWUUD AI	
12	13.52	0.120	0,015	12.000	0.500	1)9)	12,400	0,000	KALUS BI	
13	13.04	0.220	0.030	11.400	0.800	1101	19.200	1.200	NROC 80	
	17 = 7	. 170	0.015	10 000	1.100	1/7/ NONE	10 000	1 1 4 100		
13	13.3/	0,100	0.010	14.200	0.400	NONE	14 200	0 740	FRVEIN 02 (DAULTE 82	
17	13.64	. 0.310	0.010	16.400	1,300	1)9)	17.700	1.400	HAN LIN 82	
18	13.68	0.350	0.040	18,700	0.900	1191	20. 200	1,000	HAN JIN H2	
19	13.68	0.110	0.010	15.080	0.100	NONE	15.080	0,400	PAULIK 82	
20	13.72	0,200	0.020	19.000	1.900	1)	21,700	2.200	TEMPERLEY 68	
21	13.75	0.100	0.010	16.300	0,600	1)9)	16,900	0.600	RAICS 61	
22	13.77	0,120	0.015	15.900	1.200	1)9)	17,300	1.300	NG0C 80	
23	13.82	0.+090	0,010	18.150	0.360	NONE	18.450	0,360	PAVLIK 82	
24	13.86	0,100	0,015	18.700	1.500	1)3)	21,200	1.700	GLOVER 62	
25	13.88	0.100	0.015	21,400	1,100	1)9)	24,300	1.500	PRESTWOOD 61	
26	13,88	0.240	0.030	19.600	1.400	1)6)	23.400	1,200	PAULSEN 65	
27	13,95	0,200	0.020	24.400	2,400	1)	27.800	2,800	TEMPERLEY 68	
28	13 96	0.130	0.030	21.430	3,000	NONE	21.430	3.000	PAVLIK 82	
. 29	13,96	0,080	0.010	21.370	.0.430	NONE	21.370	0.430	PAVLIK 82	
30	14.00	0,800	0.030	19.900	2,300	1)3)	21.800	2.500	ADAMSKI BO	
. 31	14.04	0.080	0.010	23.410	0.460	NONE	23,410	0.460	PAVLIK.82	
32	14.05	0.250	0.030	22.000	1.500	1)6)	28.300	1.800	PAULSEN 65	
, 33	14.08	0,110	0.010	20.800	1.800	1)9)	22,900	2,000	NUUL 80	
.34	14.09	0.100	0.015	23.500	1.200	1)9)	27,100	12.000	PKC338000 01 Dilogra 50	
35	14,10	0,300	0,030	38.000	3,000	1)8)	37 400	3 500	SPANDLER 25	
.30	14.10	0.220	0.020	22.000	2.000	1)9)	23,800	2,200	HUDSON 78	
18	14.11	0.100	0.015	22.900	1.800	1)3)	25.900	2.100		
10	14 17	0090	0.010	24.770	0.350	NONE	24 770	0.350	PAULTE 82	
40	14.12	10.0R0	0.010	22.700	0.700	1)9)	23.800	0,200	RATUS 81	
41	. 14. 20	0,100	0.020	30.000	7,000	* 1)3)	34.000	6,000	CHUJNACKI 65	
42	14.20	0.250	0.020	25.500	2.400	1)	29.100	2,900	TERPERLEY 68	
43	14.24	0.100	0.015	27.200	2.200	1)3)	30.300	2,100	GLOVER 62	
.44	14,27	0,110	0.010	28.780	0.590	NONE	28,780	0.590	PAVLIK 82	
45	14.31	0.130	0.015	31.100	1,600	1.39)	35,900	2,200	PRESTWOOD 61	
.46	14.31	0.310	0.020	28.100	2.800	1)	32.100	3.200	TEMPERLEY 68	
. 47	14.37	0.150	0,015	29. 300	2,300	1)3)	32,600	2.600	GLOVER 62	
, .48	14.40	0,300	0.030	34.200	7.500	1)7)	32,600	7.200	RAYBURN 61	
49	14.10	. 0.300	0.030	38.000	2.000	1)3)	40.700	5,300	FINK 70	
50	14.40	0,130	0.010	27.000	2.100	1)9)	29.300	2.300	NGOC 80	
. 51	14,42	0.150	0,010	31,470	0.560	NONE	31,470	0.560	PAVLIK-82	
· 52	14.42	0,260	0.030	29.400	2.100	1)6)	35,100	2.500	PAULSEN 65	
53	14.45	0.120	0,015	29,600	1,000	1)9)	30,800	1.000	RAICS 81	
54	14.48	0,170	0.015	33.240	0.490	NONE	33.240	.0.490	PAVLIK 82	
55	14.49	0,200	0,020	31.700	2,500	103)	35,600	2.900	BLUVER 62	
20	14.50	0.350	0.100	40.800	12.200	17	4/.500	101000	FHUL DA	
57	14,50	0.200	0.020	34.300	1,700	1)9)	39,000	2,300	PRESTWOUD 61	
-58	14,30',		0.030.	. 32+000	- 4.000	1)7)	78'800	5.000	LKU33.63	

.

1. -.

13

NR.	E-NEUTR CMEVD	WIDTH Cheaj	ERR.CENTR Lmevj	X-SECT(ORIG) Embi	ERR(ORIB) Embj	CORRAPPLA	X-SECT(FIN) Emri	ERR(FIN) Embj	REF
60	14.53	0.320	0.020	27,300	2.700	1)	31.100	3.100	TEMPERLEY,68
61	14.55	0.180	0.015	34.840	0.670	NONE	34,840	0.670	FAVLIK 82
62	14,59	0.200	0,020	33.500	2.700	1)3)	37,900	3,000	GLOVER 62
63	14.60	0.100	0.010	37.000	3.000	1)9)	34,800	2.900	CSIKAI 65
64	14.60	0.200	0.020	33,400	0,020	1)2)9)	35,100	1,100	BAKKALL 67A
	14.60	0.380	0.040	37.900	3.800	1)9)	37.000	3,700	ARAMINUWICZ /3
47	14.60	0.200	0.020	34.700	2.300	1)4)	38,700	2.200	9100 78 9400 28 45
40	14 41	0.200	0.030	74 900	1 700	1 1 9 1	39.900	1 400	HAN ITH OD
49 	14.47	0.300	0.015	30,100	2.400	1 1 9 1	37,700	2.600	NROP PA
70	14.44	0.210	0.015	36.620	0.470	NONE	36.620	0.470	PAULTK 82
71	14.69	0.250	0.025	35.900	2.900	1)3)	40.400	3,200	GLOUFE A2
72	14.69	0.150	0.030	38.060	3.080	NONE	38.060	3.080	PAULTK 82
73	14.69	0.150	0.030	37.650	2.820	NONE	37,650	2.820	PAVLIK 82
74	14.70	0.200	0.040	31.000	1,000	1)9)	29,700	3,800	BRANLITT 63
75	14.70	0.300	0.100	35.000	0.000	1)6)9)	37,700	5.700	STRAIN 65
76	14.70	0.200	0.015	32,600	2.700	3)	34,500	1.600	HEHINGWAY 73
77	14.70	0,300	0.030	35.000	3.000	1)9)	36.300	3,100	UAIM 76
78	14.71	0.140	0.015	31.200	2,300	1)9)	34,400	2.500	NBOC 80
79	14.75	0.230	0.015	39.050	0.620	NONE	39.050	0.620	PAVLIK 82
80	14.77	0.230	0.025	36.200	2,900	1)3)	10,900	3.300	GLOVER 62
81	14.78	0.240	0,015	39,630	0.520	NONE	39.630	0.520	PAVLIK 82
82	14.79	0.300	0,020	29,100	2,900	1)	33,200	3,300	TEMPERLEY 68
83	14.80	0.200	0.040	36.000	3.000	1)5)	39,900	1,700	BARNALL 690
84	14.80	0.1/0	0.015	33,300	1,400	1)7)	37.800	1.400	KHIU5 81 885510005 (4
83	14.81	0.310	0.030	37.300	2.000	1777	44,800	2.700	PRESIMUUN OI
80	14.81	0.230	0.015	40,010	0.630	NUNE	40,010	0,630	PAVLIK 62 DANUTK 60
88	14.89	0.270	0.013	39.500	3.200	1)3)	40.330	3.400	REALTER 42
80	14 90	0 700	0,030	47.000	10 000	1)7)	AP 000	9 000	
80	14.99	0.220	0.030	38.000	2.700	1)6)	45.400	3,200	PAHI SEN AS
91	15,18	0.260	0.030	39.500	2.800	1)6)	47.200	3,300	PAULSEN 65
92	15.20	0.210	0.020	35.000	3,000	1)9)	36.000	3,100	HUDSON 78
93	15.20	0.400	0.030	47.000	12.000	1)3)	53.000	9.000	CHUJNACKI 65
94	15.40	0.300	0,030	52,000	13,000	1)3)	58.000	10,000	CHOJNACKI 65
95	15.40	0.100	0.015	45.000	6.800	1)9)	49.200	7.400	CSIKAI 67
96	15.49	0.160	0.035	51.920	4.600	NONE	51,920	4.600	PAVLIK 82
97	15.50	0.300	0.030	71.000	16.000	1)3)	80.000	14,000	CHOJNACKI 65
98	15.55	0.240	0.030	43,000	3.000	1)6)	51,400	3,600	PAULSEN 65
79	15.68	0.360	0.040	56.300	3.000	1)9)	60,800	3.200	HAN LIN 82
100	15,71	0.2.50	0.020	44.500	3,100	1)6)	53,200	3,700	PAULSEN 65
101	16.00	0.150	0.015	46.000	5.000	1)9)	50.500	5,500	HUDSON 78
102	16.03	0.210	0.020	46,100	3,200	1)0)	35,100	3,800	PAULSEN 60
10.5	14 71	0.430	0.040	47 000	3.200	1)	647800	3.300	DAN LIK DZ
104	16,21	0.110	0.020	47 100	3,000	1)4)	84,300	3,100	BATHURDI /B
104	16.24	0.145	0.020	58.580	3,090	NUNE	58.580	3,900	PAULTE 92
107	16.50	0.300	0.030	53.300	4.300	1530	57.000	5.000	PRESTROOM A1
108	16.39	0.190	0:020	50.400	3,500	1)6)	60.200	4,200	PAULSEN 65
109	16.63	0.330	0.040	64.800	2.400	1)9)	70.000	2.600	HAN LIN 82
110	16.90	0.700	0.030	53,400	4,500	1)3)	59.700	5,000	ADAMSKI BO
111	16.93	0.470	0.040	49.900	3.500	1)6)	59.400	4.200	PAULSEN 65
112	17.10	0.100	0.015	54.000	5.000	1)9)	22,800	5,200	HUDSON 78
113	17.12	0.170	0.040	65.410	2.900	NONE	65.410	2.900	PAVLIK 82
114	17.18	0.380	. 0.040	68.300	2.500	1)9)	73.800	2,700	HAN LIN 82
115	17.23	0.170	0.020	70,000	5,000	1)9)	69.500	5.000	BAYHURST 75
116	17.27	0.460	0.040	51,200	3.600	1)6)	60.900	4.300	PAULSEN 65
117	17.30	0.260	0.030	69.700	2,600	1)9)	75,300	2.800	HAN LIN 82
118	17,40	0.400	0,020	60.600	6,200	1)7)	6.5,500	6,500	ADAMSKI 80

NR.	E-NEUTR CMEVD	WIDTH Cnevj	ERR.CENTR [mev]	X-SECT(ORIG) [mb]	ERR(ORIB) Embj	CORR.APPL.	X-SECT(FIN) [mbj	ERR(FIN) [NH]	REF
119	17.40	0.400	0.020	65.300	6.900	1)3)	72.800	7.700	ADAMSKI BO
120	17.54	0.220	0.030	72.800	2.700	1)9)	78.600	2.900	HAN 1.18 82
121	17.59	0.440	0.040	55.100	3,900	1)6)	65.600	4,600	PAULBEN 65
122	17.88	0.170	0.035	69.230	2.970	NONE	69,230	2.970	PAVLIK 82
123	17.90	0.420	0.040	55.000	3,900	1)6)	65,400	4,600	PAULSEN 65
124	17.90	0.100	0.020	64.000	6.500	1)9)	67.400	6.800	ADAMSKI 80
125	17.90	0.100	0.020	69.100	7,100	1)3)	77,000	7,900	ADAMSKI 80
126	17.95	0.320	0.032	67,600	3.400	1)3)	73,200	6.400	PREBIWOOD 61
127	17,97	0.270	0.030	71.000	2.700	1)9)	76.700	2,900	HAN LIN 82
128	18.19	0,390	0.030	56.400	4.000	1)6)	67,100	4.800	PAULBEN 65
129	18.24	0.090	0,020	76.000	5.000	1)9)	78.600	5.200	BAYHURS'I 75
130	18.24	0.210	0.030	75.800	2.900	1)9)	81.900	3,100	HAN LIN 82
131	18.47	0.340	0.030	58.500	4.100	1161	49.400	4.900	PAULSEN 45
132	18.54	0.175	0.030	72,160	3,010	NONE	72.160	3,010	PAVLIK 82
177	18.71	0.130	0.030	40.400	4.200	1141	21.900	5.000	PATH SEN 45
174	19 94	0.300	0.030	40 800	A 200	1 \ 4 \	72,000	5.000	DAIL SEN 45
134	10.74	0.270	0.020	25 200	7 1 4 0	1707	72.000	7 140	PAULTY 00
133	17.07	0.203	0.023	/3.200	3,160	NURE	73.700	3,100	
130	19.29	0.200	0.020	63.800	4.300	1)6)	25,700	5.400	PHULDER 63
137	19.42	0.220	0.025	78.700	3,340	NUNE	28,200	3,340	PAVLIK 82
138	19.57	0.225	0.020	79.250	3,420	NONE	79.250	3.420	PAVLIK 82
139	19.58	0.190	0.020	65.500	4.700	1)6)	77,900	5.600	PAULSEN 65
140	19.76	0.430	0.043	77.400	3.900	1)3)	91,000	7.900	PRESTWOOD 61
141	19.99	0.110	0.020	92.000	6,000	1)9)	92,400	6,100	BAYHURST 75

CORRECTION CODES:

.

1) CROSS-SECTION RENORMALIZED TO PRESENT DECAY DATA (HALF-LIFE, BRANCHING RATIOS ETC.) 2) Error given in publication did not include error of reference (Ross-Section.

- 3) CROSS-SECTION RENGRMALIZED TO ENDF/B-V VALUES OF REFERENCE CROSS-SECTION USED IN MEASUREMENT, ERRORS TAKEN FROM THE ASSOCIATED FILE 33 INCLUDED IN FINAL ERROR.
- 4) CROSS-SECTION RENORMALIZED TO ANGULAR DISTRIBUTION OF SOURCE NEUTRONS OF LISKIFN AND PAULSEN.
- 5) ERROR HAS BEEN REDUCED BY A FACTOR TWO OR THREE IN ORDER TO REPRESENT 1 STANDARD DEVIATION.

6) SPECIAL CORRECTION. SEE TEXT FOR DETAILS.

7) CROSS-SECTION FRUM MEASURED RELATIVE EXCIT. FN., NURHALIZED TO PRESENT EVALUATION.

- 8) CROSS-SECTION FROM THEORETICAL CALCULATION, NORMACIZED TO PRESENT EVALUATION.
- 9) RENORMALIZATION USING REF.X-SECTION EVALUATED AT IRK,

SEE PHYSICS DATA 13-1, 13-2, 13-3.

•

.

F١	A	6	F		1
----	---	---	---	--	---

	GRP ENERGY Emevi	E-NEUTR Cmevj	X-SECT(EXP) [Mb]	ERR(EXP) (MB]	X-SECT(N.E) Embj	REF	X-SEC) (A90) (883	EXT ERR Enni	INI.EKR CMBJ
	12.75								
		12.79	3.600	0.500	6.271	466			
		12.86	3.400	0.100	5.455	166			
		12.78	3.800	0.400	4.129	455			
		13.10	5.500	0.500	3.934	455			
	13.25						4.541	0.800	0.431
	10120	13.30	23.000	4.000	26.022	453			
		13.30	12,100	1.100	13.490	163			
		13.31	9.060	3.330	10.158	127			
		13.38	12.100	0.800	12.041	155			
		13.47	11.240	0.330	10.281	128			
	17 50						10,777	0.692	0.303
	13.50	13.50	22.000	4.000	24.052	453			
	:: ··· .	13,52	15.700	0.900	14.849	111			
• .		13.52	12,400	0,500	13.324	467			
:	· · ·	13.54	14,200	1,000	15.000	455	. · ·		
	· .	13.55	13.000	1.200	13.617	465	· · · .		
· · ·	· .	13.57	12.980	0.400	13,427	128			
•	· ·	13.62	14.200	0.360	13.777	128	· · ·	•	
	• •	13.64	17.700	1,400	16.676	166			
• • •	· · · _ ·	13.68	20,200	1.000	17,990	166			
	• • • •	13.68	15,080	0,400	13.430	128			
					· ·		14,120	0,581	0.291
۰.	13.70		04 704		0 / 051				
•		13./2	21.700	2.200	23.931	457			
		13./3	12,700	1 700	17 010	10/			
		13.77	17.300	1.300	10 110	100			
		13.82	18.150	0,380	10.102	128			
	· .	13.80	21.200	1 500	17.737	111			
	· ·	13.66	29.300	1.300	22.910	111			
•		13.00	23.400	1.700	21.380	4.15	18,594	0.514	0.312
	13.90	•							
- 1		13.95	27.800	2.800	29.044	457			· ·. ·
•		13.96	21.430	3.000	22.303	127	•		
·	• • •	13.96	21.370	0.430	22.140	128			,
		14.00	21,800	2.500	21.800	164	•	• •	
· •		14.04	23.410	0.460	22.735	128		· ·	· ·
		14.05	26.300	1.800	25,252	455			
	•	14.08	22.900	2.000	21,499	165	•	•	
•	· · · · · ·	14.09	27.100	1.600	25.255	111			
							22,861	0.16	0.120
	19.10			13		A 17 -			
		14.10	27 400	12.000	48.971	401		۰.	·
		14.10	27 000	· 2.200	· 25 074 ·	447		1 - F	
	: .	14.11	23.000	······································	23.731	703 58	•		
· .:	; . · ·	14.12	23.700	0.350	26,018	128	· .		
		14.12	23.800	0.700	251577	447			
•		14.20	34.000	A.000	. 34.000	A13 3		•	
: •	:	14.20	29.100	2,400	29.100	457		· · · · ·	5 A
		14 14	70 700	2 400	20 022	55			
	. :	14.29	30.300	2.400	27.022	129			
			29.780				26.588	0.451	0.410
	14.30								
	19,00	14.31	35.900	2.200	39.073	111			
	(·	14.31	32,100	3,200	31, 937	457			

•.• 16

GRP ENERGY	E-NEUTR	X-SECT(EXP)	ERR(EXP)	X-SECI(N.E)	ĸFF	X-SECT(AVB)	EXT.ERK	111.588
CHEV]	[HEV]	[MB]	CHND	CMBJ		СИВЛ	CNF.	C 41 H 3
	14.37	32.600	2.600	33.507	55			
	14.40	52.800 AU 700	7.200	32.800	112			
	14.40	29.300	2.300	28 200	108			
	14.42	31.470	0.560	31,116	128			
	14.42	35.100	2.500	34.587	455			
	14.45	30.800	1.000	29.742	467			
	14.48	33.240	. 0.490	31,468	128			
	14.49	35.600	2,900	33.483	55	71 484	0 71 9	0 440
14.50						31,405	0.717	0.480
	14,50	47.500	16.600	50.5.55	12			
	14.50	39.000 -	2,300	41,492	111			
	14.50	38.800	3.000	41.277	1.75			
•	14.53	31,100	2.200	37.150	457			
	14.55	34,840	0.670	35.906	128			
	14.59	37.900	3,000	38,106	55			
	14.60	34.800	2,900	34.800	454			
	14.60	35.100	1.100	35.100	13			
	14.60	37.000	3.700	37.000	123			
	14.60	38.900	3.300	38.900	461			
	14.61	39.900	2.700	39.761	455			
	14.61	39.900	1.400	39.761	166			
÷	14.64	32,800	2.200	32.0/2	129			
	14.59	40.400	3.200	39.147	55			
	14.69	38.040	3.080	36.898	127			
	14.69	37.650	2.820	36,501	128			
14.70						36,858	0.661	0.5/1
	14./0	29.700	3.800	31.392	101			
	14.70	37.700	5.700	39.848	14			
	14.70	34.500	1.600	36.466	459			
1.11	14.70	36.300	3.100	38.348	462			
	14.71	34.400	2.500	36.238	465			
	14.77	40.900	7.820	40.389	128			
	14:78	49.630	0 520	40.295	128			
	14.79	33,200	3.300	34.028	457			
•	14.80	19.900	1,700	10.726	107			
	14.20	37.600	1.400	38.378	467			
•	14.81	44.800	2.700	45.5.19	111			
	14.61	40.010	0.650	40.6/0	128			
	14.83	40,550	40 بـ 0	40.882	128			
	14.88	44.700	3.600	44.163	55			
	14,90	48.000	8.000	17.046	, 153			
	14.99	.45.400	3.200	42.961	100	19.974	0.473	0.481
15.00		and the second				571760	0107.0	01101
-	15.18	47.200	3.300	52.554	4:55			
	. 15.20	36.000	. 3.100	39.799	463			
	15.20	23.000	9.000	28.245	403			
•< 1	15.40	49.200	7.400	50.795	176		•.	
·	15.49	51,920	4.600	52,142	127	• •		
	15.50	80.000	14.000	80.000	453			
	15.55	51,400	3.600	50.616	155			
	15.68	60.800	3.200	57.590	466			

TABLE 3 58 N1 (N,2N) INTERMEDIATE AND FINAL EVALUATION RESULTS

PAGE 2

.: 17

•

BRF ENERGY CMEVJ	E-NEUTR [mev]	X-SECT(EXP) (MB]	EKR(EXF) [HB]	X-SECT(N.E) IMBJ	ĸff	2-4F(1(AVG) LNB]	EX1,EKK LHBJ	186.EKK (863
	15.71	53.200	3.700	49.961	4:55	50.635	3.099	1.724
16.00							-	
	16.00	50.500	5,500	52.945	463			
	16.03	55.100	3.800	57.307	455			
	15.05	64.600	3,500	66.832	465			
	15.21	64.300	3,100	64.638	460			
	16.24	56.200	3.900	56.374	405			
	16.31	'.8.58C	3.090	58.161	127			
14 50						90' AHH	2.275	1.2.0
10.30	16.50	57.000	5.000	58.570	100			
	16.59	60.200	0.200	61.160	455			
	16.63	70.000	2.600	70.762	166			
	16.90	59.700	5.000	59.058	464			
	16.93	59.400	4.200	58.635	455			
						65,166	3.327	1.898
17.00								
	17.10	55.800	5.200	55.396	463			
	17.12	65,410	2.900	66.016	127			
	17.18	73.800	2.700	74.169	466			
	17.23	69.500	5.000	69.603	106			
	17.27	60.900	4.300	60.757	455			
	17.30	75.300	5,800	74.859	166			
	17.40	63.500	6.500	62.398	464			
	17.40	/2.800	7.700	/1.55/	164	17 444		1 544
17 50						67,600	2.000	1.04
17.50	17.54	78.600	2,900	80.479	166			
	17.59	65.600	4.400	66.788	455			
	17.88	69.230	2,970	68.293	127			
	17.90	A5,400	4,600	64.409	155			
	17.90	67.400	6.800	65.3/8	464			
	17.90	77.000	7.900	75,83	154			
	17.95	73.200	6.400	71,794	100			
	17.97	16.700	2,900	75.1.3	465			
						20.638	2.189	1.90.
18.00								
	15.19	67.100	4.800	58.780	4.15			
	16.24	75.600	5.200	50.243	102			
	15.26	81.900	3.100	83.4/H	100			
	18.47	69.600	4.900	69.765	155			
	18.54	/2.160	3.010	/1.764	12/			
	19.71	71.700	5.000	10 041	455			
	16.74	/2.000	3.000	071702	100	76.680	3. 31.1	1.865
19.00						/8/000	51515	
	19.02	75.700	3.100	77.173	. 27			
	19.29	75.900	40 0 ن	76.857	,55			
	19.42	78.700	3.340	79.112	127			
	19.57	29.250	3,420	79,115	127			
	19.58	77.900	5.600	77.767	455			
	19.76	51.000	7.900	90.845	100			
	19.99	92.400	6.100	92.242	106			
						81.785	3.421	2.459

18

FARE 3

TABLE 4

EVALUATED GROUP CROSS SECTIONS For the reaction 58 NI (N,2N) 37 NI

.

-ENERGY	X-SECTION	ERROR	ERROR
TO EMEVO	CMBJ	CMBJ	[%]
13.25	4.541	0.800	17.6
13.50	10,777	0.692	6.4
13.70	14.120	0.381	4.1
13.90	18.594	0.544	2.9
11.10	22.881	0.546	2.4
14.30 -	26.588	0.451	1.7
14.50	31,486	0.719	2.3
14.70	36,858	0.661	1.8
15.00	39,936	0.673	1.7
16.00	50.635	3.099	6.1
16.50	60.988	2,275	3.7
17.00	65.166	3.327	5.1
17.50	67.600	2.636	3.9
18.00	70.638	2.189	3.1
19.00	76.680	3.311	4.3
20.00	81,785	3.421	4.2
	-ENERGY TO EMEVJ 13.25 13.50 13.70 13.70 14.10 14.30 14.50 14.50 14.70 15.00 16.00 16.50 17.50 18.00 19.00 20.00	-ENERGY X-SECTION TO EMEVJ EMRJ 13.25 4.541 13.50 10.777 13.70 14.120 13.90 18.594 14.10 22.881 14.30 26.588 14.50 31.486 14.70 36.858 15.00 39.936 16.00 50.635 16.50 60.988 17.00 65.166 17.50 67.600 18.00 70.638 19.00 76.680 20.00 81.785	-ENERGYX-SECTIONERRORTOEMEVJEMRJEMRJ13.254.5410.80013.5010.7770.69213.7014.1200.38113.9018.5940.54414.1022.8810.54614.3026.5880.45114.5031.4860.71914.7036.8580.66115.0039.9360.67316.0050.6353.09916.5060.9882.27517.5067.6002.63618.0070.6382.18919.0076.6803.31120.0081.7853.421

TABLE 5

EVALUATED CROSS SECTIONS ACCORDING TO THE ENDF/B FORMAT

MATERIAL: 58NI REACTION TYPE: (N,2N)

NUMBER OF DATA POINTS: 17 INTERPOLATION LAW: LIN-LIN

REACTION	ù	VALUE:	-1.220E+07	Eν	
		•			

N	E	SIGMA(E)
	[EV]	[BARN]
•	1 24105107	
1	1+24102+07	0.000E+00
-	1.3000E+07	4.5412E-03
3	1.3375E+07	1.0777E-02
4	1.3600E+07	1.4120E-02
5	1.3800E+07	1.8594E-02
6	1.4000E+07	2.28816-02
7	1,4200E+07	2.6588E-02
8	1.4400E+07	3.1486E-02
9	1.4600E+07	3.6858E-02
10	1.48508+07	3.9936E-02
11	1.5500E+07	5.0635E-02
12	1.62502+07	6.0989E-02
13	1.6750E+07	6.5166E-02
14	1.7250E+07	6.7600E-02
15	1.7750E+07	7.0638E-02
16	1.8300E+07	7,66808-02
17	1.9500E+07	8.1785E-02

.

١.

20		

Table 6

Average correlation coefficients for data sets with more than one

. . . .

data point	11 M A		.:	·
	. •	·. ·		· · · ·
Ref.		Ref. Nr.	Bnnk	
Prestwood 61		100	0.80	
Prestwood 61		111 .	0.50	•
Glover 62	· .	55	0.80	
Chojnacki 65		453	0.50	
Paulsen 65		455	0.70	
Temperley 68		457	0.80	
Bayhurst 75		106	0.50	
Bayhurst 75		460	")	
Hudson 78		463	0.80	
Adamski 80		464	0.80	
Ngoc 80		465	0.40	
Raics 81		467	0.70	
Hanlin 82		46 <u>6</u>	0.60	
Pavlik 82		128	0.20	
Pavlik 82		127	0.50	

") From this data set only one point below 20 MeV was used in the evaluation

·· . .

TABLE 7

CORRELATION MATRIX FOR THE EVALUATED 38 NI (N,2N) 57 NI GROUP CROSS SECTIONS. CORRELATIONS ARE GIVEN IN %

s dita Mirit y													ā t						
	UP 18ER 1	2	3	4	5.		. 7	8		10	11	12	13	. 14	15	- 16	17	GROUP	ENERGY - [mev]
			-74 -					÷.	•							(- -			
E 7 %	1 0	0 *	~Õ~ `	10	0		• • •	0		0	- 0	0	0	0	0	O	0	0.00	12.75
	$\overline{2}$ $\overline{1}$	50°2	1 2	23	11	14	Ő	10	~ 2Å	. 9	47	39	50	41	41	42	26	12.75	13.25
	3 (10	Ō. 1	19	1.9	- 22	18	19	14	18	24	18	12	17	13	12	14	13,25	13.50
	4 1411-114	• `	10	00	36	22	30.	35	20	30	17	13	18	14	14	15	8	13.50	13.70
	5	:			100	23	33	37	18	32	6	5	6	5	5	.5	6	13.70	13.90
	6	2	·			100	15	23	19	21	10	10	12	13	14	10	12	13.50	14.10
	7		4 . E			•	100	33	11	28	7	4	0	4	0	0	0	14.10	14.30
	8		· · · ,		• .		:	100	18	31	6	5	6	5	5	5	6	14.30	14.50
	9								100	16	24	22	24	24	24	26	14	14.50	14.70
	10	, -								100	6	5	5	4	5	4	5	14.70	15.00
	11										100	50	39	54	43	44	29	15.00	16.00
	12										:	100	32	47	42	43	32	16.00	16.50
	13												100	43	52	37	23	16.50	17.00 🔅
	14												:	100	5Q	,52	38	17.00	17.50
	15													:	100	49	44	17.50	18.00
	16														:	100	42	18.00	19.00
	17																100	-19.00	20.00
			-													+			

TABLE E

FRACTIONAL COVARIANCE MATRIX ELEMENTS FOR THE EVALUATED 53 NI (N.2N) 57 NI GROUP GROUP GROUP GROUP). According to the Endf/9 format. (Lines and Columns are headed by the Lower Limit of Each Energy Group).

. .

ENERGY [EV]	1.000E-05	1.275E+07	1.325E+07	1,350E+07	1.370E+07	1.390E+07	1,410E+07	1-430E+07	1,450E+07	1.470E+07
1,0008-03	0.00E+00	0.00E+00	0.00E+00	0,0000000	0,00E+00	0.00E 500	0.00E+00	0,00E+00	0.008+00	0.00E+00
1.275E+07		3.11E-02	2.41E-03	1.63E-03	5-64E-04	5.70E-04	0.006400	4.228-04	8.12E-04	2:71E-04
1.3258+07			4.12E-03	5.088-04	3-51E-04	3-388-04	1>91E-04	2.768-04	1,586-04	1.928-04
1.350E+07				1.69E-03	4.33E-04	2.20E-04	2.10E-04	3,298-04	1.516-04	2.05E-04
1.370E+07					8,538-04	1-61E-04	1,66E-04	2,47E-04	9.708-05	1.566-04
1.390E+07						5.708-04	6.196-05	1,23E-04	8,23E-05	8.578-05
1.410E+07							2-87E-04	1,28E-04	3,43E-05	7.986-05
1.430E+07								5.218-04	7.22E-05	1,19E-04
1,450E+07									3.22E-04	4.916-05
1.470E+07										2.84E-04

ENERGY (EV)	1.3008+07	1.6006+07	1.650E+07	1.700E+07	1,750E+07	1,900E+07	1,900E+07	2,000E+07
1.000E-05	0.00E+00	0.00E+00	0.00E+00-	0.00E+00	0.00E+00	0,0000000	0.00E+00	
1.275E+07	5.02E-03	2.56E-03	4.51E-03	2.798-03	2522E-03	3.18E-03	1.91E-03	
1.325E+07	9.33E-04	4.33E-04	3.798-04	4.34E~04	2,628-04	3-39E-04	3,868-04	
1.3508+07	4,18E-04	2.068-04	3.728-04	2.308-04	1-80E-01	2.528-04	1.40E-04	
1.370E+07	1.13E-04	5.958-05	8.87E-05	5.54E~05	4,928-05	6.338-05	7-178-05	
1.3908+07	1.50E-04	9,132-05	1.51E-04	1.178~04	1.07E-04	1.048-01	1.21E-04	
1.410E+07	7.50E-05	2.41E-05.	0,00E+00	2.69E-05	0.000+00	9,00E+00	0+00E+00	
1.4305+07	8,478-05	4.456-05	6.33E-05	4.148-05	3.688-05	4.73E-05	5.368-05	
1.450E+07	2.64E-04	1.46E-04	2.19E-04	1.71E-04	1.35E-04	1.998-04	1:02E-04	
1.470E+07	5.888-03	2.868-05	4.278-05	2,668~05	2.37E-05	3,048-05	3,45E-05	
1.500E+07	3.75E-03	1.14E-03	1.22E-03	1,28E-03	8.08E-04	1-16E-03	7:32E-04	
1.600E+07		1.39E-03	6.128-04	6,846-04	4.898-04	6,948-01	5.05E-04	
1.650E+07			2.61E-03	8.62E-04	8.15E-04	8:23E-04	· 1,93E-04	
1.700E+07				1.526-03	6.05E-04	8:83E-04	6,15E-04	
1.750E+07					9.60E-04	6.52E-04	5,73E-04	
1.8005+07						1,846-03	7.548-04	
1.900E+07						-	1.75F-03	•

.

.

- Fig. 1. Cross sections for the ⁵⁸Ni(n,2n)⁵⁷Ni reaction as originally reported in the literature (Only data sets are shown which provide values above 16 MeV neutron energy)
- Fig. 2. Renormalized and corrected cross section data for the reaction ${}^{58}Ni(n,2n){}^{57}Ni$ from the threshold to 20 MeV
- Fig. 3. Renormalized and corrected cross section data for the reaction 58 Ni(n,2n) 57 Ni in the energy range 13 MeV to 15 MeV
- Fig. 4. The final evaluated ⁵⁸Ni(n,2n)⁵⁷Ni cross sections compared with previous evaluations

25 .

Fig. 3.

26

REFERENCES TO EXPERIMENTAL DATA BASE

- Paul 53 E.B. Paul, R.L. Clarke, Canadian J. Physics 31, 267 (1953)
- Purser 59 K.H. Purser, E.W. Titterton, Australian J. Physics <u>12</u>, 103 (1959)
- Rayburn 59 L.A. Rayburn, Bull. Am. Phys. Soc., Ser. II, 4, 288 (1959)
- Preiss 60 I.L. Preiss, R.W. Fink, Nucl. Phys. 15, 326 (1960)
- Prestwood 61 R.J. Prestwood, B.P. Bayhurst, Phys. Rev. <u>121</u>, 1438 (1961)
- Rayburn 61 L.A. Rayburn, Phys. Rev. 122, 168 (1961)
- Cross 62 W.G. Cross, R.L. Clarke, K. Morin, G. Slinn, N.M. Ahmed, K. Beg, Bull. Am. Phys. Soc., Ser. II, 7, 335 (1962)
- Glover 62 R.N. Glover, E. Weigold, Nucl. Phys. 29, 309 (1962)
- Bramlitt 63 E.T. Bramlitt, R.W. Fink, Phys. Rev. 131, 2649 (1963)
- Cross 63 W.C. Cross, R.L. Clarke, K. Morin, G. Slinn, N.M. Ahmed, K. Beg, Report EANDC(CAN)-16,1 (1963)
- Jeronymo 63 J.M.F. Jeronymo, G.S. Mani, J. Olkowski, A. Sadeghi, C.F. Williamson, Nucl. Phys. <u>47</u>, 157 (1963)
- Bormann 65 M. Bormann, F. Dreyer, E. Fretwurst, P. Schehka, Report EANDC(E) 57"U", 17 (1965)
- Chojnacki 65 S. Chojnacki, P. Decowski, E. Gierlik, W. Grochulski, A. Marcinkowski, K. Siwek, I. Sledzinska, Z. Wilhelmi, Report INR 680/I/PH (Institute of Nuclear Research, Warsaw 1965)
- Csikai 65 J. Csikai, Proc. Int. Conf. on the Study of Nucl. Structure with Neutrons, Antwerp, 19-23 July 1965, paper 102, also Atomki Közlemények <u>8</u>, 79 (1966)
- Paulsen 65 A. Paulsen, H. Liskien, Nukleonik 7, 117 (1965)
- Strain 65 J.E. Strain, W.J. Ross, Report ORNL-3672 (1965)
- Bormann 66 M. Bormann, F. Dreyer, U. Zielinski, EANDC(E) 66"U", 42, (1966)

Csikai 67 J. Csikai, G. Petö, Acta Phys. Acad. Sci. Hung. 23, 87 (1967)

Temperley 68: J.K. Temperley, Nucl. Sci. Eng. 32, 195 (1968)

- Barrall 69A R.C. Barrall, J.A. Holmes, M. Silbergeld, Report ÀFWL-TR-68, 134 (1969)
- Barrall 69B R.C. Barrall, M. Silbergeld, D.G. Gardner, Report WASH-1127 (1969), also Report SUPH-69-2 (1969)
- Barrall 69C R.C. Barrall, M. Silbergeld, D.G. Gardner, Nucl. Phys. A138, 387 (1969)
- Fink 70 R.W. Fink, Wen-Deh Lu, Bull. Am. Phys. Soc., Ser. II, <u>15</u>, 1372 (1970)
- Araminowicz 73 J. Araminowicz, J. Dresler, INR-1464/I/A, 14 (Institute of Nuclear Research, Warsaw 1973)
- Hemingway 73 J.D. Hemingway, J. Nuclear Energy 27, 241 (1973)
- Bayhurst 75 B.P. Bayhurst, J.S. Gilmore, R.J. Prestwood, J.B. Wilhelmy, Nelson Jarmie, B.H. Erkkila, R.A. Hardekopf, Phys. Rev. C12, 451 (1975)
- Spangler 75 R. Spangler, E. Linn Draper jr., T.A. Parish, Transactions Am. Nucl. Soc. 22, 818 (1975)
- Qaim 76 S.M. Qaim, N.I. Molla, Proc. 9th Symp. on Fusion Technology, Garmisch, 14-18 June 1976
- Sigg 76 R.A. Sigg, Thesis, University of Arkansas (1976), (Diss. Abstracts B, 37, 2237)
- Adamski 77 L. Adamski, M. Herman, A. Marcinkowski, Report INDC(POL)-8/L (1977)
- Hudson 78 C.G. Hudson, W.L. Alford, S.K. Ghorai, Annals of Nuclear Energy 5, 589 (1978)
- Marcinkowski 79 A. Marcinkowski, Report INDC(NDS)-103/M, 40 (1979)
- Adamski 80 L. Adamski, M. Herman, A. Marcinkowski, Annals of Nuclear Energy 7, 397 (1980)

· · · . .

- Ngok 80 P.N. Ngok, S. Gueth, F. Deak, A. Kiss, Proc. 5th All Union Conf. on Neutron Physics, Kiev, 15-19 Sept. 1980, vol. 1, p. 259
- Raics 81 P. Raics, F. Pászti, S. Daróczy, S. Nagy, Atomki Közlemények 23, 45 (1981)
- Hanlin 82 Lu Hanlin, Huang Jianzhou, Fan Peiguo, Cui Yunfeng, Zhao Wenrong, Institute of Atomic Energy, Academica Sinica, Beijing, private communication

Pavlik 82 A. Pavlik, Thesis, University of Vienna (1982)