International Atomic Energy Agency

INDC(AUS)-015 Distr. L

INTERNATIONAL NUCLEAR DATA COMMITTEE

UPDATE OF THE EVALUATION OF THE CROSS SECTION OF THE NEUTRON DOSIMETRY REACTION ¹⁰³Rh(n,n')^{103m}Rh

A. Pavlik, M.M.H. Miah, B. Strohmaier and H. Vonach

Institut für Radiumforschung und Kernphysik der Universität Wien Vienna. Austria

October 1995

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria November 1995

INDC(AUS)-015 Distr. L

UPDATE OF THE EVALUATION OF THE CROSS SECTION OF THE NEUTRON DOSIMETRY REACTION ¹⁰³Rh(n,n')^{103m}Rh

A. Pavlik, M.M.H. Miah, B. Strohmaier and H. Vonach

Institut für Radiumforschung und Kernphysik der Universität Wien Vienna, Austria

October 1995

Update of the evaluation of the cross section of the neutron-dosimetry reaction ¹⁰³Rh(n,n')^{103m}Rh

A. Pavlik, M.M.H. Miah¹, B. Strohmaier and H. Vonach Institut für Radiumforschung und Kernphysik der Universität Wien

<u>Abstract</u>: On the occasion of a new measurement of the excitation function of the reaction 103 Rh(n,n') 103m Rh in the energy range between 5.69 and 12.0 MeV performed at the present institute in collaboration with the PTB Braunschweig, the cross section of this reaction, which is part of the International Reactor Dosimetry File (IRDF-90), was re-evaluated. Whereas the energy range of the evaluation, namely from threshold to 20 MeV, was kept unchanged with respect to IRDF-90, the underlying data base was extended by the experiment mentioned as well as by another measurement, and revised with regard to judgement and normalization of older data in the light of recent information. Based on the experimental data upgraded in this way, new model calculations were carried out, which in the energy region 14 - 20 MeV served to supplement the experimental cross sections for this evaluation. The cross sections and their uncertainties were evaluated in energy groups with widths of 0.2 to 1.0 MeV, and the relative correlation matrix of the evaluated cross sections at the different energies was calculated. The results presented here supersed the corresponding values published in Physics Data 13-5 and included to the IRDF-90.

1. Introduction

The excitation function for the reaction 103 Rh(n,n') 103m Rh was first evaluated at the Institut für Radiumforschung und Kernphysik der Universität Wien (IRK) in the energy region from threshold (40 keV) to 20 MeV in 1980 [1]. In the energy ranges 6.5 to 12.5 MeV and beyond 17 MeV this evaluation was based entirely on the results of nuclear model calculations. For an updated version of the evaluation of neutron-dosimetry cross sections [2], also meant for inclusion in the International Reactor Dosimetry File (IRDF-90) [3], the recommended cross sections for the reaction 103 Rh(n,n') 103m Rh were taken over unchanged, as no new measurements could be retrieved from EXFOR [4] in early 1990. In 1993, two of the present authors started a precision measurement of the 103 Rh(n,n') 103m Rh cross section in collaboration with the PTB Braunschweig. A short description of this experiment with preliminary results was presented at the Gatlinburg Conference in 1994 [5], a more complete report is available now [6] and will be published shortly [7]. - Apart from this measurement, another experiment between 3.74 and 5.18 MeV incident neutron energy, presented by Wu et al. [8] at the Mito

¹ Permanent address: Department of Physics, University of Chittagong, Chittagong, Bangladesh.

Conference in 1988 and included to EXFOR [4] in 1990 was added to the experimental data base.

The new experiment [5,6,7] covers the energy range 5.69 to 12.0 MeV and triggered off a critical review of the ¹⁰³Rh(n,n')^{103m}Rh cross sections which had been measured previously and formed the data base for the evaluation in 1980 [1]. Consequently, also the reaction model calculations which had been part of the previous evaluation [1,2] were repeated as both the experimental ¹⁰³Rh(n,n')^{103m}Rh excitation function to be reproduced and the features adopted for the reaction models required some revision. The reaction model calculations were extended to comprise the major neutron-induced reactions on ¹⁰³Rh for which experimental data existed in a consistent theoretical description [9].

The present evaluation was carried out applying the procedures adopted previously for evaluations at the IRK [1,2,10]. The experimental data underlying the evaluation, together with short summaries of newly included data sets as well as considerations regarding the older data sets, are presented in Sec. 2. The nuclear reaction model calculations used for extension of the evaluation beyond 14 MeV are discussed in Sec. 3. In Sec. 4, the evaluation and its results are described. In Sec. 5 we present the relative covariance matrix of the evaluated group cross sections and in Sec. 6 the integral cross section in the ²⁵²Cf fission neutron spectrum.

2. Experimental data base

A literature search was performed using the bibliographical index CINDA [11] and the EXFOR data library [4]. In addition, the proceedings of recent international nuclear data conferences were also checked for relevant papers. The deadline for the literature search was the end of the year 1994. Beside the already mentioned experiments performed in collaboration between IRK and PTB Braunschweig (*Miah 95*) and by Wu et al. (*Wu 88*) no additional data sets for inclusion in the data base were identified.

The most important information on all experimental papers is summarized in Table 1. Two entries appear for the papers Santry 74, Barnard 78, and Paulsen 80. These authors had used two different methods to determine the neutron fluence. According to the evaluation procedures applied (see Ref. 10, Sec. II.), these papers were split into two parts for further processing. For experiments which are based on the measurement of the characteristic K x rays of Rh following the highly internally converted isomeric decay of 103m Rh the value of 0.0766 ± 0.0014 [12] for the number of K x rays emitted per decay and a half-life of 56.114 ± 0.020 min [13] were adopted as standards.

A number of original values given for the cross sections or their uncertainties had to be renormalized according to the general procedures outlined in Ref. 10, Sec. II. Some obviously erroneous data points had to be rejected from the final data base. As the recommended values for decay data and reference cross sections have been changed since 1980 renormalizations done by Strohmaier et al. [1] had to be revised in several cases. A critical review of all available data sets showed that corrections significantly different from those carried out in 1980 should be applied to the experiments *Santry 74* and *Paulsen 80*. In the following paragraphs we describe all renormalization procedures in detail.

Nagel 66 and Kimura 69: Both data sets had already been rejected in the course of the work of Strohmaier et al. [1] due to strong deviations from all other measurements.

Pazsit 72: In this experiment both K x rays and γ rays from the ^{103m}Rh decay were measured. A renormalization due to changes in the decay scheme was not performed as no value for the fluorescence yield used by Pazsit et al. in the analysis of their data was given in the paper. Their result was, however, normalized in order to refer to the evaluated value of the reference cross section (²⁷Al(n, α)²⁴Na) as given by Wagner et al. [2].

Santry 74: Santry and Butler had calibrated their x ray detector by a conversion electron - x ray coincidence experiment using a chemically purified ^{103m}Rh source. In this way, the "detector efficiency" (given by the number of detected x rays per ^{103m}Rh decay) was measured. With this technique the measurement became independent of conversion coefficients and fluorescence yields. On the other hand, it was possible to measure the x ray emission probability comparing the measured "detector efficiency" with an efficiency value determined independently from x ray absorption coefficients. An x ray emission probability of 0.0697 \pm 0.0028 was determined this way which is about 9 % lower than the standard value used for this evaluation. According to our judgement this discrepancy stems most probably from a too low detector efficiency measured in the coincidence experiment. Therefore, we decided to apply a renormalization factor of 0.9099 to all data points of *Santry 74* and keep the relative uncertainties as given in the original papers.

The cross section data measured relative to the ${}^{32}S(n,p){}^{32}P$ cross section (Santry 74A) were not corrected for changes in the reference cross section as we think the used reference cross sections are a better choice than using the cross section values recommended in ENDF/B-VI. (See the detailed discussion in Ref. 2, p. 10.) As the uncertainty of the reference cross section is not included in the errors given, an uncertainty of \pm 5% was added quadratically in order to obtain the total error.

Santry and Butler had used different neutron production reactions $({}^{7}Li(p,n){}^{7}Be, T(p,n){}^{3}He, D(d,n){}^{3}He and T(d,n){}^{4}He)$ for different (overlapping) energy regions in their experiment. The cross sections for neutron energies above 8 MeV measured with the $D(d,n){}^{3}He$ source reaction had been corrected for activation of the Rh samples by deuterium-breakup neutrons. The correction factors given in *Santry 74* were replaced by correction factors estimated in the recent IRK/PTB experiment [5,6]. With these corrections we found the decision made in the course of the 1980 evaluation to disregard the data points measured with the $D(d,n){}^{3}He$ source reaction no longer justified. These data now show reasonable agreement with the (also corrected, see below) data of Paulsen et al. (*Paulsen 80*) as well as with the recent results (*Miah 95*). On the other hand, the excitation function measured with the T(p,n){}^{3}He source reaction exhibits a nearly

vanishing slope for neutron energies between 2.5 and 6 MeV. In this way, it deviates from the results given in *Paulsen 80* in shape as well as in magnitude. Around 6 MeV, where both neutron producing reactions were used, disagreement exists between the cross sections measured with the $D(d,n)^{3}$ He and the $T(p,n)^{3}$ He source reaction. This had already been noted in the 1980 evaluation; however, the fact that owing to the renormalization to the new value of the x ray emission probability the part from the $D(d,n)^{3}$ He source reaction is confirmed by the data of *Paulsen 80* and *Miah 95* for neutron energies greater than about 6 MeV now suggests to disregard all data points measured with the $T(p,n)^{3}$ He source reaction at neutron energies above 2.5 MeV from the data sets *Santry 74A* and *Santry 74B*.

Pazsit 75: The cross section results were renormalized in order to refer to the x ray emission probability given in Ref. 12 and the reference cross section $(^{115}In(n,n')^{115m}In)$ recommended by ENDF/B-VI [14]. The uncertainties were adjusted accordingly.

Barnard 78: The cross section values given in the original paper remained unchanged. The uncertainties of the data set Barnard 78A had already been increased in the course of the work of Strohmaier et al. [1] to account for the uncertainties of the reference cross section.

Paulsen 80: The calibration of their x ray detector is finally based on an absolute measurement of the activity of a 103m Rh source by Vaninbroukx using liquid scintillation counting techniques [15]. This absolute measurement was also used to determine the K x ray emission probability in the isomeric decay of 103m Rh by calibrating the x ray detector conventionally using standard reference sources. The K x ray emission probability of 0.0843 ± 0.0013 reported by Vaninbroukx and Zehner [16] is about 10 % higher than the standard value used in the present evaluation. Like in the case of *Santry 74* we think that the discrepancy in the x ray emission probability stems from the absolute activity measurement on which the detector calibration for the cross section measurement is based. Therefore, we decided to apply a renormalization factor of 1.1005 to all cross sections from the data sets *Paulsen 80A* and *Paulsen 80B* and keep the relative uncertainties. With these corrections we now achieve good agreement within the uncertainty limits of the data given by *Santry 74*, *Paulsen 80* and *Miah 95*, which are now based on the same value of the K x ray emission probability.

The cross section curve measured in the experiment *Paulsen 80B* shows unrealistically high values at neutron energies above 14 MeV, probably caused by activation due to background neutrons of lower energy. Therefore, we rejected the data points at 15.0 MeV, 16.0 MeV, and 16.7 MeV and decided to use the results of the model calculations only in the energy range 15 to 20 MeV.

Wu 88: Wu et al. stated their results to be tentative and preliminary in their paper published in 1988, as higher accuracy might be achieved by further calibration measurements of their x ray detector. In 1990 these tentative data have become available in the EXFOR data library and to our knowledge no final results were ever published. As the uncertainty of the detector calibration is included in the final cross section uncertainty given by Wu et al. we accepted this data set for our evaluation without further renormalizations. As no information on the decay parameters used is given in the paper of Wu et al. we could not decide if a normalization with respect to the x ray emission probability might be necessary.

Miah 95: No normalization procedures were applied to the data given in this paper.

In Fig. 1, all accepted and renormalized data points are displayed. Here, the tag *Strohmaier 95* indicates the results of the model calculations described in the following section. In Fig. 2, the same data are shown on an expanded scale in the energy range from 0 to 6 MeV.

3. Nuclear model calculations

Due to the features of the experimental data base, the 1980 evaluation [1,2] of the 103 Rh(n,n') 103m Rh excitation function included statistical model calculations in the energy regions 6.0 - 13.5 MeV and 16.0 - 20.0 MeV. The parameters of the model calculations were adjusted to reproduce the experimental values in the 14 - 15 MeV range.

For the updated evaluation [2] performed for the IRDF-90 [3], we checked not only the status of the experimental data, but also that of the calculations supplementing the evaluations. At that time, part of the parameters or information entering the ¹⁰³Rh(n,n')^{103m}Rh calculations appeared to be not quite to the state of the art. E.g., refined measuring techniques had yielded more comprehensive and more reliable data on low-lying levels and their γ -decay than had been available in 1980, optical-model analyses of neutron differential cross sections on ¹⁰³Rh had resulted in optical potentials appropriate especially for this nuclide, and the use of a pairing correction in preequilibrium-model particle-hole state densities is now common. - Also, with regard to γ -ray strength functions, prescribing the ratios of strengths of radiation of all multipole types to that of E1 radiation at the neutron binding energy may attribute too much strength to radiation of multipole types other than E1 at small γ -ray energies, if the strength function for E1 is derived from a giant-dipole resonance, but for the other multipole types is assumed energy independent according to the Weisskopf model. However, as in the 1980 calculations no reactions competing with ¹⁰³Rh(n,n')^{103m}Rh were considered, these possible deficiencies were evidently alleviated by an appropriate choice of the rest of the parameters, as the calculated excitation function described the accepted experimental data very well. Therefore, in connection with the evaluation update for Refs. 2 and 3, it was decided not to redo the calculations as long as no esssential changes in the data base occurred.

When this was the case in 1994, model calculations were carried out again, superior to the older ones as the improvements mentioned above were considered, and aiming at a consistent description of the experimental cross sections for the (n,2n), (n,3n), (n,p) and (n,α) reactions up to 30 MeV together with the $(n,n')^m$ reaction.

7

The details of the choice of the model parameters are discussed in Ref. 9. The main changes with respect to the 1980 calculations are the use of the coupled-channel optical model together with a neutron optical potential adjusted individually for ¹⁰³Rh [17] for generating the neutron transmission coefficients in the incoming channels. In the outgoing neutron channels, the same optical potential with an increased imaginary part was used in single-channel mode. For charged particles, the spherical optical model was applied with the global optical potentials of Mani et al. [18] for protons and of Huizenga and Igo [19] for α -particles.

In the exciton model, we used a pairing shift in the particle-hole state densities and an exciton-number dependent matrix element in the internal transition rates.

The level schemes and decay properties were updated on the basis of Nuclear Data Sheets [13,20]. For determining the γ -ray strength functions, a giant dipole model was applied for E1 as well as M1 radiation, with normalization factors chosen such as to achieve agreement with the corresponding strength function values compiled in Ref. 21.

The resulting excitation functions, also for the other reactions considered, are displayed in Ref. 9. For the 103 Rh(n,n') 103m Rh reaction, the excitation function as evaluated from all accepted experimental data is well described by the theoretical result in the energy regions from threshold to 2 MeV and between 6 and 14 MeV. In Ref. 9, the calculation overestimates the experimental evaluation in the energy range 2 - 6 MeV, where the latter has a shape problem. This has meanwhile been solved by omission of part of the data points measured with the T(p,n)³He source reaction of the set *Santry 74B* as expounded in Sec. 2. The overshoot of the experimental values over the theoretical ones above 14 MeV in Fig. 1 of Ref. 9 is due to the inclusion of the data points of *Paulsen* 80B in this energy range which were rejected for the present evaluation.

The influence of the model calculations on the evaluation is reduced with respect to the 1980 version [1,2,3] as the theoretical curve is used between 14 and 20 MeV only.

The parameter variations which had been performed in 1980 to derive uncertainties of the calculated cross sections were not repeated for the new choice of parameters. Instead, we retained the relative uncertainties of the 1980 calculations [1,2,3] for the 1995 results.

4. Evaluation and results thereof

All accepted experimental data points as well as the results of the model calculation included in the data base are listed in Table 2. For each data point the following quantities are given:

- the average neutron energy, the energy spread (half-width at half maximum) and the uncertainty of the average neutron energy;
- the cross section value and uncertainty as given by the authors;

- an indication which renormalization procedures had been applied, and finally,
- the renormalized cross section and its uncertainty.

The neutron energy spread and the uncertainty of the average neutron energy, which were not reported in several papers, were estimated according to the experimental conditions.

For the evaluation procedure, the energy range between 0.1 and 20.0 MeV was divided into 31 groups. The widths of these groups are based on the density of the data points, the shape of the excitation function and the average neutron energy resolution in the respective group. The results of the evaluation, i.e., the cross section averages over the individual groups and their uncertainties are listed in Table 3. The last column of the table gives the ratios of the external to the internal errors, indicating good agreement amongst the data. In Fig. 3, the results of the present evaluation are compared with those of the previous one [1,2,3]. There is an essential increase in magnitude of the newly evaluated excitation function compared to the preceding edition in the plateau and the descending part, viz. between 2 and 12 MeV, which is plausible from the revision of the data base used previously and the effect of the newly added data set from the IRK/PTB collaboration. In Fig. 4, we compare the evaluated ¹⁰³Rh(n,n')^{103m}Rh cross sections with those of the nuclear reaction-model calculations. The overall agreement is quite satisfactory, with a slight deviation remaining between 2 and 4 MeV incident neutron energy.

5. Relative covariance matrix

Relative correlation coefficients and covariances between the cross sections in the energy groups used in the evaluation were computed for the excitation function of the ¹⁰³Rh(n,n')^{103m}Rh reaction. The correlation coefficients were derived from the quantities B_{nnk} , the average correlation coefficients within each data set k (see Ref. 10, Sec. II.2.). Estimates of these coefficients B_{nnk} are compiled in Table 4 for all included data sets which contain more than one data point; in case of measurements they were based on the information on experimental uncertainties relevant in the respective works.

Table 4: Average relative correla-
tion coefficients B_{nnk} assumed for
the various data sets.

Reference	\mathbf{B}_{nnk}
Santry 74A	0.30
Santry 74B	0.65
Pazsit 75	0.40
Barnard 78A	0.70
Barnard 78B	0.70
Paulsen 80A	0.71
Paulsen 80B	0.97
Wu 88	0.80
Miah 95	0.50
Strohmaier 95	0.95

Whereas in the 1980 evaluation the elements of

the covariance matrix in the higher-energy part of the excitation function, where model calculations entered the evaluation, were derived from the results of the cross-section

variations according to a procedure described in Sec. II.1.2. of Ref. 1, in the present work, all covariance-matrix elements were computed from correlation coefficients throughout the energy region. The B_{nnk} value for the theoretical calculation was assumed to be 0.95, expressing nearly full correlation between the calculated cross sections in different energy groups.

The relative covariance matrix for the reaction 103 Rh(n,n') 103m Rh is given in Table 5.

6. Comparison of spectrum averaged cross sections in the ²⁵²Cf fission neutron spectrum

The evaluated excitation function for the reaction 103 Rh(n,n') 103m Rh was used for calculating a fission spectrum average, $\langle \sigma \rangle$, in the neutron spectrum of 252 Cf for comparison with measured values of this quantity. For the description of the Cf neutron spectrum, we used the evaluation of Mannhart [22]. The experimental cross sections $\langle \sigma \rangle$ were again converted to a common value of 0.0766 ± 0.0014 [12] for the number of K x rays per decay of 103m Rh. In the case of the result of Pazsit et al. [23], renormalization for the cross sections of the neutron flux monitor reaction was performed, too, using the evaluated value for the spectrum-averaged cross section of the monitor reaction 115 In(n,n') 1115m In given by Mannhart [24]. In Table 6, the integral cross section calculated from the present evaluation is given together with various experimental values. The uncertainty of $\langle \sigma \rangle$ computed from the evaluated excitation function is made up of the uncertainties of the 252 Cf neutron spectrum and those of the evaluated cross sections

taking into account the correlations between the data for the different energy groups. As can be seen from Table 6, the discrepancy between the experimental values of $\langle \sigma \rangle$ is increased by the renormalization. Our calculated result is a fair reproduction of the mean value of the measured $\langle \sigma \rangle$ data.

Table 6: Calculated average 103 Rh $(n,n'){}^{103m}$ Rh cross section in the 252 Cf neutron spectrum compared with experimental data for $<\sigma>$.

_	<\sigma> _{orig} [mb]	<\sigma> _{renorm} [mb]	Origin	l st author, y	r Ref.
	647 ± 70	621 ± 67	exp.	Kirouac 74	[25]
	757 ± 53	741 ± 39	exp.	Pazsit 75	[23]
	739 ± 22	813 ± 26	exp.	Lamaze 88	[26]
	750 ± 27		calc.	Pavlik 95	this work
	150 ± 21		calc.		tins work

Energy range [MeV]		Nr. of data points	Average accur. [%]	Method	Flux, reference cross section	Ref.	Nr.
14.20	14.20	2		Act., NaI, x rays	⁶⁵ Cu(n,2n) 945 mb, ⁵⁶ Fe(n,p) 109 mb	Nagel 66	210
0.18	4.60	18		Act., NaI, x rays	Calculated from prot. or deut. beam current	Kimura 69	209
14.70	14.70	1		Act., Si(Li), x rays	27 Al(n, α) 114 ± 4 mb	Pazsit 72	203
4.80	14.74	33		Act., NaI, x rays	³² S(n,p) excitation function	Santry 74A	201
0.12	6.00	46		Act., NaI, x rays	Calibrated long counter	Santry 74B	202
2.70	14.80	2		Act., Si(Li), x rays	¹¹⁵ In(n,n') 340 ± 30 mb; 63 ± 6 mb	Pazsit 75	207
0.55	1.50	10		Inel. scatt. neutr. in liq. sc.	Carbon elastic scattering	Barnard 78A	205
1.10	1.93	8		Inelast. y with Ge(Li)	92 Zr(n,n' γ) and 94 Zr(n,n' γ)	Barnard 78B	206
0.20	6.10	62		Act., Nal, x rays	Rel. exc. fct., norm. to n-p scatt. at 1.8 MeV	Paulsen 80A	204
3.00	16.70	5		Act., NaI, x rays	Rel. exc. fct., norm. to Paulsen 80A	Paulsen 80B	208
3.74	5.18	9	9.7	Act., Si(Li), x rays	Proton recoil telescope	Wu 88	212
5.69	12.00	14	4.6	Act., Si(Li), x rays	²³⁸ U(n,f), ENDF/B-VI	Miah 95	213
14.14	19.79	15		Model calculation	Code "STAPRE"	Strohmaier 95	214

Table 1: Summary of experiments for the reaction 103 Rh(n,n') 103m Rh.

Table 2:	Cross	section	data	for	the	reaction	¹⁰³ Rh(n	n') ¹⁰	^{)3m} Rh
Table 2.	CI033	section	uara	101	inc.	reaction	TOTAL T	, <i>j</i>	1011.

NR.	E-NEUTR [MEV]	WIDTH [MEV]	ERR.CENTR [MEV]	X-SECT(ORIG) [MB]	ERR (OR IG) [MB]	CORR.APPL.	X-SECT(FIN) [MB]	ERR(FIN) [MB]	REF.
1	0.12	0.020	0.002	12.900	1.000	1)	11.738	0.910	SANTRY 74B
2	0.15	0.040	0.004	26.400	2.700	1)	24.021	2.457	SANTRY 74B
3	0.15	0.020	0.002	21.600	1.300	1)	19.654	1.183	SANTRY 74B
4	0.20	0.024	0.003	74.000	5.900	1)	81.437	6.515	PAULSEN 80A
5	0.20	0.020	0.002	40.500	3,000	1)	36.851	2.730	SANTRY 74B
6	0.22	0.040	0.004	43,100	3.000	1)	39,217	2.730	SANTRY 74B
7	0.25	0 020	0.007	63 100	3 100	15	57 415	2.821	SANTRY 748
8	0.25	0 026	0.002	103 000	7 400	15	113 352	8 161	PALII SEN 804
ő	0.29	0.020	0.005	97 900	7.400	1)	76 250	3 003	CANTDY 7/.D
10	0.20	0.040	0.004	81 700	/ 500	1)	76.230	/ 005	CANTRY 740
10	0.30	0.020	0.002	01.700	4.500	1)	170 040	4.075	DALL CEN DOA
11	0.30	0.025	0.004	119.000	8.300	1)	130.900	9.107	PAULSEN OUA
12	0.30	0.030	0.005	94.500	5.400		85.980	4.915	SANIRI 748
15	0.35	0.040	0.004	100.000	6.000	1)	90.990	5.459	SANIRY 74B
14	0.35	0.021	0.003	124.000	9.300	1)	136.462	10.235	PAULSEN 80A
15	0.35	0.030	0.003	113.000	5.000	1)	102.819	4.550	SANTRY 74B
16	0.40	0.027	0.004	129.000	9.200	1)	141.964	10.124	PAULSEN 80A
17	0.40	0.040	0.004	123.000	6.000	1)	111.918	5.459	SANTRY 74B
18	0.40	0.030	0.003	122.000	6.000	1)	111.008	5.459	SANTRY 74B
19	0.41	0.030	0.003	135.00	10.000	1)	122.837	9.099	SANTRY 74B
20	0.45	0.040	0.004	131.000	6.000	1)	119.197	5.459	SANTRY 74B
21	0.45	0.020	0.003	146.000	7.000	1)	132.845	6.369	SANTRY 74B
22	0.46	0.020	0.003	144.000	7,000	1)	131.026	6.369	SANTRY 74B
23	0.50	0.030	0.003	146.000	7.000	1)	132.845	6.369	SANTRY 748
24	0.50	0 058	0 005	151 000	9 100	1)	166 175	10.014	PAULISEN 804
25	0.55	0.015	0.000	205 000	20,000	2)	205 000	20 000	RADNADO 78A
26	0.55	0.015	0.020	180,000	20.000	1)	163 782	7 270	SANTDY 7/D
20	0.55	0.000	0.005	2/7 000	12.000	17	103.702	10.010	SANIKI 74D
21	0.57	0.100	0.010	247.000	12.000	1)	224.745	10.919	SANIRI 74B
20	0.60	0.015	0.020	260.000	20.000	2)	260.000	20.000	BARNARD 78A
29	0.60	0.040	0.005	238.000	12.100	1)	261.919	15.516	PAULSEN BUA
50	0.65	0.030	0.003	300.000	14.000	1)	272.970	12.739	SANTRY 74B
31	0.70	0.030	0.003	379.000	18.000	1)	344.852	16.378	SANTRY 74B
32	0.70	0.069	0.005	368.000	16.900	1)	404.984	18.598	PAULSEN 80A
33	0.77	0.100	0.010	450.000	22.000	1)	409.455	20.018	SANTRY 74B
34	0.79	0.030	0.003	546.000	27.000	1)	496.805	24.567	SANTRY 74B
35	0.80	0.054	0.007	525.000	24.200	1)	577.763	26.632	PAULSEN 80A
36	0.90	0.030	0.003	622.000	27.000	1)	565.958	24.567	SANTRY 74B
37	0.90	0.098	0.008	593.000	27.300	1)	652.596	30.044	PAULSEN 80A
38	0.92	0.015	0.020	555.000	29.000	2)	555.000	44.000	BARNARD 78A
39	0.99	0.030	0.003	623.000	28.000	1)	566.868	25.477	SANTRY 74B
40	1.00	0.090	0.009	633.000	28,000	1)	575.967	25.477	SANTRY 74B
41	1.01	0.106	0.008	613.000	28,200	1)	674.607	31.034	PAULSEN 80A
42	1.02	0.015	0.020	593.000	29,000	2)	593.000	48,000	BARNARD 784
43	1.10	0.015	0.020	606.000	35.000	$\frac{2}{2}$	606.000	50,000	BARNARD 784
44	1 10	0 030	0.003	505,000	76 000	NONE	505 200	76 000	RAPNARD 788
15	1 10	0 110	0.005	576 000	28 200	1)	433 888	31 034	DALLISEN SOA
1.6	1 15	0.110	0.010	673 000	20.200	1)	412 343	27 207	SANTDY 7/D
40	1.15	0.030	0.003	673.000	30.000	22	612.303	50 000	DADNADD 704
41	1.15	0.015	0.020	619.000	29.000	2)	577.000	50.000	BARNAKU 78A
48	1.18	0.030	0.003	533.000	80.000	NUNE	555.000	80.000	BARNARD 78B
49	1.19	0.080	0.008	675.000	30.000	1)	614.182	21.291	SANTRY 74B
50	1.20	0.015	0.020	590.000	29.000	2)	590.000	48.000	BARNARD 78A
51	1.20	0.110	0.010	631.000	30.900	1)	694.415	34.005	PAULSEN 80A
52	1.30	0.015	0.020	643.000	29.000	2)	643.000	52.000	BARNARD 78A
53	1.30	0.030	0.003	585.000	88.000	NONE	585.000	88.000	BARNARD 78B
54	1.30	0.110	0.010	619.000	29.100	1)	681.209	32.024	PAULSEN 80A
55	1.35	0.030	0,003	706.000	106.000	NONE	706.000	106.000	BARNARD 788
56	1.36	0.030	0.003	672.000	31.000	1)	611.453	28.207	SANTRY 74B
57	1.40	0.015	0.020	698.000	30.000	2)	698.000	56.000	BARNARD 784
58	1 40	0.140	0.010	726,000	33,400	1)	798,963	36.757	PALILSEN 80A
50	1 50	0.090	0 008	747 000	33 000	1)	679 695	30 027	SANTEN 7/.D
27	1 50	0.000	0.000	ANS 000	25 000	2)	605 000	50.027	BADNADO 704
00	1.50	0.013	0.020	407 000	01 000		407 000	01 000	
01	1.50	0.050	0.005	720,000	91.000 7/ 700	NUNE 1 N		77 7/7	BARNARD /8B
62	1.50	0.090	0.010	129.000	54.500	1)	BU2.204	31.141	PAULSEN BUA
63	1.55	0.030	0.003	668.000	100.000	NUNE	608.UUU	100.000	BARNARD 78B
64	1.60	0.080	0.010	718.000	33.000	1)	790.159	36.316	PAULSEN 80A
65	1.70	0.030	0.003	714.000	107.000	NONE	714.000	107.000	BARNARD 78B

			-					
r								
			_		102	102-00-1		
Table 2.	Croce	section	data for	the reaction	103 Rh(n n'	<u>אייי</u> Rh <i>(</i>	contd)	١
LADIC 4.	C1035	section	uala iui	the reaction	101(11,11	j m	oomu.)	,

NR.	E-NEUTR	WIDTH	ERR.CENTR	X-SECT(ORIG)	ERR(ORIG)	CORR.APPL.	X-SECT(FIN)	ERR(FIN)	REF.
	[MEV]	[MEV]	[MEV]	(MB)	(MB)		[MB]	[MB]	
66	1.70	0.170	0.010	805.000	37.000	1)	885.902	40.718	PAULSEN 80A
67	1.80	0.180	0.010	817.000	29.400	1)	899.108	32.355	PAULSEN 80A
68	1.85	0.070	0.007	849.000	38.000	1)	772.505	34.576	SANTRY 74B
69	1.90	0.120	0.010	800.000	37.600	1)	880.400	41.379	PAULSEN 80A
70	1.93	0.030	0.003	622.000	93.000	NONE	622.000	93.000	BARNARD 78B
71	2.00	0.100	0.010	844.000	39.700	1)	928.822	43.689	PAULSEN 80A
72	2.10	0.180	0.010	867,000	39.900	1)	954.133	43.910	PAULSEN 80A
73	2.20	0.100	0.010	885.000	40.700	1)	973.943	44 .79 0	PAULSEN 80A
74	2.30	0.140	0.010	916.000	44.000	15	1008.060	48.422	PAULSEN 80A
75	2.40	0.170	0.010	927.000	42,600	15	1020,160	46.881	PAULSEN 80A
76	2.50	0 160	0 010	898.000	41.300	15	988.249	45.451	PAULSEN 80A
77	2 60	0 150	0 010	994 000	45.700	15	1093.900	50.293	PAULSEN 80A
78	2 70	0 200	0.020	000 000	111.000	1)3)	941.957	66.530	PAZSIT 75
70	2 70	0.130	0.020	974 000	44 800	1)	1071 890	49.302	PAULSEN 80A
80	2.00	0.170	0.010	050 000	43 700	15	1045 480	48 092	PALILSEN 80A
81	2.00	0.170	0.010	1050 000	47 700	1)	1165 430	52 494	PAULISEN 804
82	3 00	0.100	0.010	103/ 000	52 700	15	1137 020	57 006	DALII SEN ROA
97	3.00	0.170	0.020	1034.000	50 000	1)	11/3 / 20	56 015	PAULSEN BOA
20	7 20	0.200	0.020	1057.000	50 500	1)	1157 720	55 571	DALIN SEN BOA
95	7 70	0.210	0.020	1002.000	51 000	1)	1100 500	56 125	DALIL CEN ROA
07	3.30	0.210	0.020	1078 000	50.000	1)	11/2 720	56 07/	DALU CEN OOA
00	3.40	0.220	0.020	1038.000	50.900	1)	1142.320	55.974	PAULSEN OUA
0/	3.50	0.230	0.020	1049.000	51.400	1)	1154.420	50.500	PAULSEN BUA
88	3.60	0.240	0.020	1022.000	49.100	1)	1124.710	53.986	PAULSEN 80A
89	3.70	0.250	0.030	1031.000	50.500	1)	1134.620	55.596	PAULSEN BUA
90	3.74	0.130	0.013	1170.000	116.000	NONE	11/0.000	116.000	88 UW
91	3.80	0.260	0.030	1075.000	51.600	1)	1183.040	56.785	PAULSEN 80A
92	3.90	0.270	0.030	1045.000	50.200	1)	1150.020	55.201	PAULSEN 80A
93	4.00	0.280	0.030	1077.000	50.600	1)	1185.240	55.706	PAULSEN 80A
94	4.07	0.140	0.014	1013.000	103.000	NONE	1013.000	103.000	WU 88
95	4.10	0.290	0.030	1094.000	51.400	1)	1203.950	56.585	PAULSEN 80A
96	4.13	0.120	0.012	1202.000	121.000	NONE	1201.000	121.000	WU 88
97	4.20	0.340	0.030	1140.000	69.500	1)	1254.570	76.529	PAULSEN 80A
98	4.28	0.110	0.011	1164.000	101.000	NONE	1164.000	101.000	WU 88
99	4.30	0.340	0.030	1250.000	73.800	1)	1375.630	81.162	PAULSEN 80A
100	4.37	0.160	0.016	1124.000	115.000	NONE	1124.000	115.000	WU 88
101	4,40	0.340	0.030	1122.000	70.700	1)	1234.760	77.789	PAULSEN 80A
102	4.50	0.340	0.030	1066.000	62.900	1)	1173.130	69.215	PAULSEN 80A
103	4.57	0.100	0.010	1243.000	122.000	NONE	1243.000	122.000	WU 88
104	4.60	0.340	0.030	1064.000	61.700	1)	1170.930	67.914	PAULSEN 80A
105	4.70	0.330	0.030	1139.000	66.100	1)	1253.470	72.701	PAULSEN 80A
106	4.76	0.060	0.006	1170.000	109.000	NONE	1170.000	109.000	WU 88
107	4.80	0.330	0.030	1080.000	63,700	1)	1188.540	70,123	PAULSEN 80A
108	4.90	0.330	0.030	1194.000	68,100	15	1314.000	74.898	PAULSEN 804
109	4 96	0.110	0 011	1135 000	117.000	NONE	1135 000	117,000	LII 88
110	5 00	0 320	0.030	1163 000	67.500	1)	1279 880	74.233	PALILISEN ROA
111	5 00	0 150	0.015	1231 000	55 000	1)2)	1120 000	75 106	SANTRY 74A
112	5 10	0.150	0.010	1164 000	72 200	1)	1280 980	70 421	DALII SEN ROA
113	5 18	0.050	0.005	1164 000	102 000	NONE	1164 000	102 000	UNI 88
116	5 20	0.000	0.005	1017 000	50 000	1)	1110 210	4/ 01/	DALIL SEN ROA
115	5 30	0.300	0.030	1017.000	57 200	17	1103 800	42 017	PAULSEN OUA
114	5.30	0.270	0.030	120/ 000	68 000	1)2)	105.500	70 057	CANTDY 7/A
117	5.30	0.100	0.010	1174 000	40.000	1)2)	1250 170	49 750	DALLICEN DOA
117	5.40	0.200	0.030	1117 000	62.000	1)	1220.170	47 400	PAULSEN OUA
110	5.50	0.270	0.030	1750 000	71 900	1)	1795 570	70 075	PAULSEN OUA
170	5.00	0.250	0.030	1239.000	57 545	NONE	1202.220	10.713	PAULSEN OUA
120	5.09	0.104	0.020	1314.270	57.505	NUNE	1314.270	57.505	MIAH YO
121	5.70	0.230	0.020	1077 000	02.100	1)	1105 3/0	00,341	PAULSEN BUA
122	5.80	0.210	0.020	1077.000	00.300		1103.240	00.3/3	PAULSEN 80A
125	5.90	0.190	0.020	1111.000	60.000	1)	1222.000	00.024	PAULSEN 80A
124	5.94	0.130	0.013	1368.000	55.000	1)2)	1244.740	78.734	SANTRY 74A
125	6.00	0.150	0.010	1239.000	66.900	1)	1365.520	73.630	PAULSEN 80A
126	6.04	0.095	0.020	1295.560	47.158	NONE	1295.560	47.158	MIAH 95
127	6.10	0.110	0.010	1207.000	65.200	1)	1328.300	71.728	PAULSEN 80A
128	6.40	0.120	0.012	1478.000	56.000	1)2)	1344.830	84.367	SANTRY 74A
129	6.51	0.120	0.012	1433.000	57.000	1)2)	1303.890	83.308	SANTRY 74A
130	6.53	0.086	0.020	1311.540	48.7 8 9	NONE	1311.540	48.789	MIAH 95

Table 2: Cross section data for the reaction	on 103 Rh(n,n') 103m Rh (contd.).
--	---

131 6.75 0.120 0.012 1406.000 63.000 1/2) 1279.320 85.893 SANTEY 74A 133 7.25 0.100 0.020 1320.010 46.492 NONE 1320.10 46.492 NONE 1320.210 80.686 SANTEY 74A 134 7.47 0.100 0.010 1320.300 43.007 NONE 1203.340 43.077 MIAH 95 135 7.58 0.070 0.020 1221.200.340 43.070 NONE 123.340 43.077 MIAH 95 138 8.51 0.080 0.020 1221.200 64.4280 NONE 123.100 44.280 MIAH 95 139 8.55 0.060 0.020 1220.000 44.180 NONE 123.100 45.000 132.60 175.80 75.3 SANTEY 74A 140 8.97 0.062 0.020 1220.000 44.180 NONE 123.100 45.000 132.61 115.20 123.5 134.14.95 14.14.95 14.14.9	NR.	E-NEUTR [MEV]	WIDTH [MEV]	ERR.CENTR [MEV]	X-SECT(ORIG) [MB]	ERR(ORIG) [MB]	CORR.APPL.	X-SECT(FIN) [MB]	ERR(FIN) [MB]	REF.
132 6.93 0.080 0.020 1320.10 64.692 NOME 1320.810 86.462 MIAH 95 133 7.25 0.100 0.010 1326.000 50.000 122 1260.210 80.665 SANTRY 74A 135 7.58 0.072 0.020 1201 1267.490 80.654 SANTRY 74A 136 7.80 0.100 0.010 1393.000 63.000 122 1267.490 84.576 SANTRY 74A 137 7.98 0.068 0.020 1224.7200 44.280 NOME 1275.900 43.290 138 8.51 0.080 0.020 1220.600 44.180 NOME 128.900 56.001 1216.917.560 79.156 SANTRY 74A 140 9.02 0.080 0.020 1227.900 47.520 NOME 128.900 56.001 1216.91 116.560 79.560 HAH 95 142 9.55 0.060 0.020 137.600 49.800 1126.91 56.56	131	6.75	0.120	0.012	1406.000	63.000	1)2)	1279.320	85 .893	SANTRY 74A
133 7.25 0.100 0.101 1324.000 59.000 1)2) 1264.710 80.686 SANTRY 74A 135 7.57 0.072 0.020 1233.340 43.079 NOME 120.1266.210 85.575 SANTRY 74A 135 7.58 0.072 0.020 1247.200 44.280 NOME 127.1274.590 85.54 SANTRY 74A 137 7.98 0.066 0.020 1247.200 44.280 NOME 1277.278.590 85.75 SASTRY 74A 138 8.51 0.065 0.020 1220.600 44.180 NUH 1220.600 44.180 MIAH 95 140 8.97 0.062 0.020 1227.900 47.520 NOME 1227.900 47.520 MIAH 95 142 9.55 0.600 0.020 1227.900 47.520 NOME 127.90 47.520 MIAH 95 143 9.60 0.600 0.020 127.900 47.520 NOME 1179.400 47.520 MIAH 95 144 9.02 0.607 0.626 NANTR 74A NA	132	6.93	0.080	0.020	1320.810	46.492	NONE	1320.810	46.492	MIAH 95
134 7.47 0.100 0.101 1385.000 62.000 1)2) 1260.210 88.576 SAMTRY 74A 135 7.58 0.072 0.100 0.101 1393.000 63.000 1)2) 1267.400 85.545 SAMTRY 74A 138 8.55 0.065 0.020 1227.200 44.280 MIAH 95 138 8.51 0.080 0.020 1270.200 44.280 MIAH 95 139 8.55 0.065 0.020 1293.100 48.490 MONE 1220.600 44.180 MIAH 95 141 9.02 0.080 0.008 1287.000 55.000 172.60 177.520 MIAH 95 142 9.55 0.060 0.020 1227.900 47.520 MIAH 95 50.006 50.000 122.69 48.500 48.501 MIAH 95 143 9.02 0.057 0.020 179.500 MIAH 95 50.006 77.520 MIAH 95 144 9.02 0.055 0.020 179.600 47.520 MIAH 95 50.500 50.711 66.781 6	133	7.25	0.100	0.010	1324.000	59.000	1)2)	1204,710	80 .686	SANTRY 74A
135 7.58 0.072 0.020 1233.340 43.079 NOME 120.3340 43.079 MIAH 95 137 7.98 0.068 0.020 1247.200 44.280 NOME 1247.200 44.280 MIAH 95 138 8.51 0.080 0.008 1409.000 63.000 11216 1273.100 48.490 NOME 1220.400 44.480 MIAH 95 140 8.97 0.062 0.020 1220.600 44.180 NOME 1220.400 44.180 MIAH 95 141 9.02 0.060 0.020 1227.900 47.520 NOME 1227.900 47.520 MIAH 95 142 9.22 0.057 0.020 1227.900 47.520 NOME 197.680 SANTRY 74A 144 9.22 0.057 0.020 172.000 47.520 NOME 197.680 SANTRY 74A 145 10.03 0.080 0.008 1026.011266 188.587 57.497 SANTRY 74A 144 10.50 0.080 1020 171.030 46.010 NOME <td< td=""><td>134</td><td>7.47</td><td>0.100</td><td>0.010</td><td>1385.000</td><td>62.000</td><td>1)2)</td><td>1260.210</td><td>84.576</td><td>SANTRY 74A</td></td<>	134	7.47	0.100	0.010	1385.000	62.000	1)2)	1260.210	84.576	SANTRY 74A
136 7.80 0.100 0.010 1393.000 63.000 1)21 1267.200 64.280 NONE 127.200 64.280 NAH P5 138 8.51 0.060 0.008 1409.000 63.000 127.61 1278.500 85.763 SANTRY 74A 139 8.55 0.065 0.020 1220.600 44.180 NONE 1220.600 44.180 NONE 120.600 44.180 NONE 1220.600 44.180 NONE 1227.900 47.520 NAIN P5 141 9.02 0.050 0.020 1227.900 47.520 NONE 1227.900 47.520 NAIN P5 SANTRY 74A 142 9.55 0.060 0.008 1099.000 59.000 122.61 1212.140 81.597 SANTRY 74A 144 9.20 0.057 0.020 97.680 88.010 NONE 192.61 186.560 79.688 SANTRY 74A 144 10.05 0.080 0.008 1022.000 122.61 855.945 S9.478 S7.497 SANTRY 74A 144 10.056 0.020	135	7.58	0.072	0.020	1203.340	43.079	NONE	1203.340	43.079	MIAH 95
137 7.98 0.068 0.020 1247.200 44.280 NONE 1278.570 85.763 SANTRY 74A 139 8.55 0.080 0.002 1220.600 44.180 NONE 1221.140 81.597 SANTRY 74A 142 9.02 0.057 0.020 192.60 95.000 122.61 186.500 79.668 SANTRY 74A 145 10.03 0.080 0.008 1022.60 95.763 SANTRY 74A 146 10.50 0.080 0.008 1022.60 957.630 SANTRY 74A 147 10.58 0.050 0.020 727.900 49.020 NONE 71.733	136	7.80	0.100	0.010	1393.000	63.000	1)2)	1267.490	85.454	SANTRY 74A
138 8.51 0.080 0.008 1409,000 63.000 1226,50 85.763 SANTRY 77A 140 8.97 0.062 0.020 1220.600 44.180 NONE 1227.900 47.520 NIAH 95 143 9.02 0.057 0.020 1309.000 59.000 1226.6 1212.140 81.597 SANTRY 74A 144 9.92 0.057 0.020 177.600 1226.6 94.850 MIAH 95 145 10.03 0.080 0.008 1099.000 49.000 1226.6 95.781 64.699 SANTRY 74A 146 10.55 0.020 97.680 48.010 NONE 97.680 48.010 NANE 97.690 49.100 NANTRY 74A 149 11.00 0.080 0.008 1026.000 46.000 1226.5 59.4	137	7.98	0.068	0.020	1247.200	44.280	NONE	1247.200	44.280	MIAH 95
139 8.55 0.065 0.020 1293.100 48.490 NONE 1293.600 44.180 MIAH 95 141 9.02 0.080 0.008 1220.600 54.000 1220.600 44.180 MIAH 95 142 9.55 0.060 0.020 1227.900 47.520 MONE 1227.900 47.520 MIAH 95 143 9.60 0.060 0.020 127.900 47.520 MONE 1195.400 49.850 MIAH 95 145 0.030 0.080 0.008 1099.000 49.000 1226.6 965.781 64.699 SANTRY 74A 146 10.50 0.080 0.008 1026.000 49.000 1226.6 955.7497 SANTRY 74A 147 10.58 0.055 0.020 771.030 46.880 MONE 771.030 46.880 MAR 74.97 SANTRY 74A 151 11.42 0.054 0.020 720.900 49.020 NONE 771.030 46.880 MIAH 95	138	8.51	0.080	0.008	1409.000	63.000	1)2)6)	1278.590	85.7 63	SANTRY 74A
140 8.97 0.062 0.201 1220.600 44.180 MIAH 95 141 9.02 0.080 0.008 1227.900 47.520 MONE 1227.900 47.520 MIAH 95 142 9.55 0.060 0.020 1227.900 47.520 MONE 1227.900 47.520 MIAH 95 143 9.020 0.057 0.020 1195.400 49.850 MONE 1195.400 49.850 MIAH 95 145 10.03 0.080 0.008 1027.000 172.61 185.560 79.668 SANTRY 74A 147 10.58 0.056 0.202 937.680 48.010 NONE 937.680 48.010 MIAH 95 148 10.75 0.080 0.008 1026.000 122.61 838.787 57.497 SANTRY 74A 147 10.50 0.020 771.030 46.880 MIAH 95 122.61 11.64 0.054 0.202 720.900 49.020 NONE 721.900 49.020 NONE 721.900 49.020 NIAH 95 133.120 0.065 SANTRY 74A <td>139</td> <td>8.55</td> <td>0.065</td> <td>0.020</td> <td>1293.100</td> <td>48.490</td> <td>NONE</td> <td>1293.100</td> <td>48.490</td> <td>MIAH 95</td>	139	8.55	0.065	0.020	1293.100	48.490	NONE	1293.100	48.4 9 0	MIAH 9 5
141 9.02 0.080 0.081 1287.000 \$8.000 1)2)6) 117.960 79.156 SANTRY 74A 143 9.80 0.080 0.008 1309.000 \$9.000 1)2)6) 1212.140 81.597 SANTRY 74A 144 9.92 0.057 0.020 1195.400 49.850 MONE 1195.400 47.520 MIAH 95 145 10.03 0.080 0.008 1272.000 57.000 1)2)6) 1186.560 79.668 SANTRY 74A 146 10.50 0.080 0.008 1099.000 49.000 1)2)6) 957.810 64.699 SANTRY 74A 147 10.58 0.056 0.020 937.680 48.010 NONE 977.680 48.010 NIAH 95 148 10.75 0.080 0.008 981.000 46.000 1)2)6) 838.787 57.497 SANTRY 74A 150 11.64 0.055 0.020 771.030 46.880 NONE 771.030 46.800 NIAH 95 151 11.60 0.80 0.008 767.000 43.000 <td>140</td> <td>8.97</td> <td>0.062</td> <td>0.020</td> <td>1220.600</td> <td>44.180</td> <td>NONE</td> <td>1220.600</td> <td>44.180</td> <td>MIAH 95</td>	140	8.97	0.062	0.020	1220.600	44.180	NONE	1220.600	44 .18 0	MIAH 95
142 9.55 0.060 0.020 1227.900 47.520 MIAH 95 143 9.80 0.080 0.008 1309.000 59.000 1125.100 49.850 MIAH 95 144 9.92 0.057 0.020 1195.400 49.850 NONE 1195.400 49.850 MIAH 95 145 10.03 0.080 0.008 1272.000 57.000 1)2/6) 185.560 75.686 48.010 MIAH 95 147 10.58 0.056 0.020 937.680 48.010 NONE 937.680 48.010 MIAH 95 148 10.75 0.080 0.008 1026.000 102/6) 835.765 59.498 SANTRY 74A 150 11.42 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 771.030 45.800 122/6) 599.099 45.065 SANTRY 74A 153 12.00 0.080 0.008 767.000 122/6) 599.099 45.845 888 888 88	141	9.02	0.080	0.008	1287.000	58.000	1)2)6)	1175.960	79.156	SANTRY 74A
143 9.80 0.080 0.008 1309.000 59.000 1)2)6) 1212.140 81.597 SANTRY 74A 144 9.20 0.057 0.020 1195.400 49.850 NONE 1195.400 49.850 MIAH 95 145 10.03 0.080 0.008 1272.000 57.000 1)2)6) 186.560 79.668 SANTRY 74A 146 10.50 0.080 0.008 1026.000 40.000 1)2)6) 858.745 59.498 SANTRY 74A 147 10.58 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 148 10.75 0.080 0.008 981.000 42.000 1)2)6) 838.787 57.497 SANTRY 74A 150 11.42 0.054 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.040 0.020 564.760 45.180 NONE 564.760 45.180 MIAH 95 151 11.64 0.020 564.760 45.180 NONE	142	9.55	0.060	0.020	1227.900	47.520	NONE	1227.900	47.520	MIAH 95
144 9.92 0.057 0.020 1195.400 49.850 NONE 1195.400 49.850 NANE 145 10.03 0.080 0.008 1027.000 57.000 112.65 75.660 46.010 MIAH 95 146 10.50 0.080 0.008 1099.000 49.000 112.65 965.781 64.699 SANTRY 74A 147 10.58 0.056 0.020 937.680 48.010 NONE 973.680 48.010 MIAH 95 144 10.00 0.080 0.008 981.000 46.000 112.16 885.945 59.498 SANTRY 74A 150 11.04 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 767.000 43.000 132.16 599.909 45.065 SANTRY 74A 153 12.00 0.080 0.008 645.000 42.000 132.16 533.099 43.912 SANTRY 74A 154 12.60 0.080 0.008 546.000 47.000	143	9.80	0.080	0.008	1309.000	59.000	1)2)6)	1212.140	81.597	SANTRY 74A
145 10.03 0.080 0.008 1272.000 57.000 1)2)6) 965.781 64.699 SANTRY 74A 146 10.50 0.080 0.008 1099.000 49.000 1)2)6) 965.781 64.699 SANTRY 74A 147 10.58 0.056 0.020 937.680 48.010 NONE 937.680 48.010 MIAH 95 148 10.75 0.080 0.008 981.000 46.000 1)2)6) 838.787 57.497 SANTRY 74A 150 11.04 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 720.900 49.020 NONE 720.900 49.020 MIAH 95 152 11.80 0.080 0.008 665.000 42.000 1)2)6) 533.099 43.348 SANTRY 74A 153 12.10 0.080 0.008 78.000 47.000 1)2)6) 533.099 40.348 SANTRY 74A 155 12.10 0.0800 0.008	144	9.92	0.057	0.020	1195.400	49.850	NONE	1195.400	49.850	MIAH 95
146 10.50 0.080 1.099.000 49.000 12)65 965.781 64.699 SANTRY 74A 147 10.58 0.056 0.020 937.680 48.010 NONE 937.680 48.010 MIAH 95 148 10.75 0.080 0.008 1026.000 46.000 1)2)6) 885.945 59.498 SANTRY 74A 149 11.00 0.080 0.008 981.000 46.000 1)2)6) 885.945 59.498 SANTRY 74A 150 11.42 0.054 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 767.000 43.000 1)2)6) 503.899 49.12 MIAH 95 153 12.00 0.054 0.020 564.760 45.180 NONE 544.760 45.180 MIAH 95 155 12.00 0.080 0.087 86.000 37.400 1) 437.999 41.172 PAULSEN 80B	145	10.03	0.080	0.008	1272.000	57.000	1)2)6)	1186.560	79.668	SANTRY 74A
147 10.58 0.056 0.020 937.680 48.010 NONE 937.680 48.010 MIAH 95 148 10.75 0.080 0.008 1026.000 46.000 1)2)6) 885.945 59.498 SANTRY 74A 149 11.00 0.080 0.008 981.000 46.800 1)2)6) 885.945 59.498 SANTRY 74A 150 11.42 0.055 0.020 771.030 46.880 NONE 720.900 49.20 MIAH 95 151 11.42 0.054 0.020 720.900 49.020 NONE 720.900 49.20 MIAH 95 154 12.00 0.054 0.020 564.760 45.180 NONE 564.760 45.180 NONE 564.760 45.180 NONE 564.063 SANTRY 74A 156 12.60 0.080 0.006 384.000 47.000 1)216) 353.099 43.912 SANTRY 74A 157 13.00 0.180 0.006 380.000 37.400 1)226) 354.646 64.660 SANTRY 74A 157	146	10.50	0.080	0.008	1099.000	49.000	1)2)6)	965,781	64.699	SANTRY 74A
148 10.75 0.080 0.008 1026,000 46.000 1)2)6) 835.945 59.498 SANTRY 74A 149 11.00 0.080 0.008 981.000 46.000 1)2)6) 835.787 57.497 SANTRY 74A 150 11.04 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 152 11.80 0.080 0.008 767.000 43.000 1)2)6) 599.990 45.065 SANTRY 74A 153 12.00 0.080 0.008 767.000 43.000 1)2)6) 533.099 43.912 SANTRY 74A 155 12.00 0.080 0.008 78.000 1)2)6) 533.099 43.912 SANTRY 74A 156 13.58 0.100 0.013 359.000 16.000 1)2)6) 535.564 60.636 SANTRY 74A 157 13.58 0.000 0.004 373.000 92.000 1)2)6 <td>147</td> <td>10.58</td> <td>0.056</td> <td>0.020</td> <td>937.680</td> <td>48.010</td> <td>NONE</td> <td>937.680</td> <td>48.010</td> <td>MIAH 95</td>	147	10.58	0.056	0.020	937.680	48.010	NONE	937.680	48.010	MIAH 95
149 11.00 0.080 0.008 981.000 46.000 1)2)6) 838.787 57.497 SANTEY 74A 150 11.04 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 720.900 49.020 NONE 720.900 49.020 NONE 720.900 45.065 SANTEY 74A 153 12.00 0.080 0.008 655.000 42.000 1)226) 500.887 40.348 SANTEY 74A 154 12.00 0.054 0.020 564.760 45.180 NONE 564.760 45.180 MIAH 95 155 12.10 0.080 0.008 566.000 49.000 1)226) 555.56 40.633 SANTEY 74A 157 13.00 0.180 0.006 398.000 37.400 1)226 555.56 40.633 SANTEY 74A 159 13.58 0.900 0.009 373.000 92.000 1)216 255.544 64.060 SANTEY 74A 160 13.89 0.660	148	10.75	0.080	0.008	1026.000	46.000	1)2)6)	885.945	59.498	SANTRY 74A
150 11.04 0.055 0.020 771.030 46.880 NONE 771.030 46.880 MIAH 95 151 11.42 0.054 0.020 720.900 49.020 NONE 720.900 49.020 MIAH 95 152 11.80 0.080 0.008 665.000 42.000 1)2261 599.909 45.065 SANTRY 74A 153 12.00 0.080 0.008 767.000 45.180 NONE 564.760 45.180 MIAH 95 155 12.10 0.080 0.008 718.000 47.000 1)2261 533.099 43.912 SANTRY 74A 156 12.60 0.880 0.008 746.000 49.000 1)2161 375.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)212 226.654 218.77 27.131 SANTRY 74A 160 13.89 0.060 0.014 325.000 27.200 1) 134.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700	149	11.00	0.080	0.008	981.000	46.000	1)2)6)	838.787	57.497	SANTRY 74A
151 11.42 0.054 0.020 720.900 49.020 NONE 720.900 49.020 MIAH 95 152 11.80 0.080 0.008 65.000 43.000 1)2)6) 599.909 45.065 SANTRY 74A 153 12.00 0.080 0.008 65.000 42.000 1)2)6) 500.887 40.348 SANTRY 74A 154 12.00 0.054 0.020 564.760 45.180 NONE 564.760 45.180 MIAH 95 155 12.10 0.080 0.008 718.000 47.000 1)2)6) 395.556 40.635 SANTRY 74A 157 13.00 0.180 0.006 398.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)2) 256.554 21.879 SANTRY 74A 160 13.89 0.660 0.014 325.000 27.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200	150	11.04	0.055	0.020	771.030	46.880	NONE	771.030	46.880	MIAH 95
152 11.80 0.080 0.008 767.000 43.000 1)2)6) 599.909 45.065 SANTRY 74A 153 12.00 0.080 0.008 665.000 42.000 1)2)6) 500.887 40.348 SANTRY 74A 154 12.00 0.080 0.008 718.000 47.000 1)2)6) 533.099 43.912 SANTRY 74A 155 12.10 0.080 0.008 718.000 47.000 1)2)6) 535.099 43.912 SANTRY 74A 156 12.60 0.080 0.008 546.000 49.000 1)2)6) 395.556 40.636 SANTRY 74A 157 13.00 0.180 0.006 398.000 16.000 1)2 326.654 21.879 SANTRY 74A 159 13.58 0.100 0.013 359.000 16.000 1)2 326.654 21.879 SANTRY 74A 160 13.88 0.000 0.014 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.012 260.700 14.562<	151	11.42	0.054	0.020	720.900	49.020	NONE	720.900	49.020	MJAH 95
153 12.00 0.080 0.008 665.000 42.000 1)2)6) 500.887 40.348 SANTRY 74A 154 12.00 0.054 0.020 564.760 45.180 MONE 564.760 45.180 MIAH 95 155 12.10 0.080 0.008 718.000 47.000 1)2)6) 395.556 40.636 SANTRY 74A 156 12.60 0.080 0.006 398.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)2) 326.654 21.879 SANTRY 74A 160 13.89 0.060 0.014 325.000 27.200 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1)3.14.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 280.000 12.02 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.030 280.000 25.000 9) 276.276 <td>152</td> <td>11.80</td> <td>0.080</td> <td>0.008</td> <td>767.000</td> <td>43.000</td> <td>1)2)6)</td> <td>599.909</td> <td>45.065</td> <td>SANTRY 74A</td>	152	11.80	0.080	0.008	767.000	43.000	1)2)6)	599.909	45.065	SANTRY 74A
154 12.00 0.054 0.020 564.760 45.180 NONE 564.760 45.180 MIAH 95 155 12.10 0.080 0.008 718.000 47.000 1)2)6) 533.099 43.912 SANTRY 74A 156 12.60 0.080 0.008 546.000 49.000 1)2)6) 395.556 40.636 SANTRY 74A 157 13.00 0.180 0.006 389.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.090 0.009 373.000 92.000 1)2)6 295.777 27.131 SANTRY 74A 160 13.89 0.606 0.014 285.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMALER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 275.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 280.000 25.000	153	12.00	0.080	0.008	665.000	42.000	1)2)6)	500.887	40.348	SANTRY 74A
155 12.10 0.080 0.008 718.000 47.000 1)2)6) 533.099 43.912 SANTRY 74A 156 12.60 0.080 0.008 546.000 49.000 1)2)6) 395.556 40.636 SANTRY 74A 157 13.00 0.180 0.006 398.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)2) 326.654 21.879 SANTRY 74A 160 13.89 0.060 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMALER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 276.276 22.710 PAZSIT 74A 165 14.54 0.001 0.001 236.200 13.193	154	12.00	0.054	0.020	564,760	45.180	NONE	564.760	45.180	MIAH 95
156 12.60 0.080 0.008 546.000 49.000 1)2/6) 395.556 40.636 SANTRY 74A 157 13.00 0.180 0.006 398.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)2) 326.654 21.879 SANTRY 74A 159 13.58 0.090 0.009 373.000 92.000 1)2) 295.717 27.131 SANTRY 74A 160 13.89 0.660 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMAIER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.54 0.001 0.001 280.000 25.000	155	12.10	0.080	0.008	718,000	47.000	1)2)6)	533.099	43.912	SANTRY 74A
157 15.00 0.180 0.006 399.000 37.400 1) 437.999 41.172 PAULSEN 80B 158 13.58 0.100 0.013 359.000 16.000 1)2) 326.654 21.879 SANTRY 74A 159 13.58 0.090 0.009 373.000 92.000 1)2) 295.717 27.131 SANTRY 74A 160 13.89 0.060 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMALER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 275.682 17.417 SANTRY 74A 164 14.50 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 166 14.70 0.150 0.020 272.000 12.0076	156	12.60	0.080	0.008	546,000	49.000	1)2)6)	395.556	40.636	SANTRY 74A
158 13.58 0.100 0.013 359.000 16.000 1)2) 326.654 21.879 SANTRY 74A 159 13.58 0.090 0.009 373.000 92.000 1)2)6) 254.544 64.060 SANTRY 74A 160 13.89 0.060 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMAIER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 276.276 22.710 PAZSIT 72 165 14.74 0.200 0.202 272.000 12.000 1)3) 187.639 14.998 PAZSIT 75 166 14.70 0.150 0.020 216.000 26.000	157	13.00	0.180	0.006	398,000	37,400	1)	437,999	41.172	PAULSEN 80B
159 13.58 0.090 0.009 373.000 92.000 1)2)6) 254.544 64.060 SANTRY 74A 160 13.89 0.060 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMAIE 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 275.682 17.417 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMAIER 95 166 14.70 0.150 0.030 280.000 25.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000	158	13.58	0.100	0.013	359.000	16.000	1)2)	326.654	21.879	SANTRY 74A
160 13.89 0.060 0.014 325.000 25.000 1)2) 295.717 27.131 SANTRY 74A 161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMALER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMALER 95 166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 216.000 12.076 8) 216.200 12.076 STROHMALER 95 170 15.35 0.001 0.001 199.600 32.202	159	13.58	0.090	0.009	373.000	92.000	1)2)6)	254.544	64.060	SANTRY 74A
161 14.00 0.250 0.004 286.000 27.200 1) 314.743 29.900 PAULSEN 80B 162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMAIER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 280.200 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 272.000 12.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 185.700 29.960	160	13.89	0.060	0.014	325,000	25.000	1)2)	295.717	27.131	SANTRY 74A
162 14.14 0.001 0.001 260.700 14.562 8) 260.700 14.562 STROHMAIER 95 163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMAIER 95 166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 185.700 29.960	161	14.00	0.250	0.004	286.000	27,200	1)	314.743	29,900	PAULSEN 80B
163 14.24 0.080 0.014 297.000 13.000 1)2) 270.240 17.958 SANTRY 74A 164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMALER 95 166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 163.900 30.868	162	14.14	0.001	0.001	260.700	14.562	8)	260,700	14.562	STROHMAIER 95
164 14.50 0.150 0.015 281.000 13.000 1)2) 255.682 17.417 SANTRY 74A 165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMAIER 95 166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 272.000 12.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 163.900 30.868	163	14.24	0.080	0.014	297.000	13.000	1)2)	270,240	17.958	SANTRY 74A
165 14.54 0.001 0.001 236.200 13.193 8) 236.200 13.193 STROHMAIER 95 166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 199.600 32.770 8) 174.000 32.770 STROHMAIER 95 172 16.16 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 174 16.96 0.001 0.001 155.200 29.230	164	14.50	0.150	0.015	281.000	13,000	1)2)	255.682	17.417	SANTRY 74A
166 14.70 0.150 0.030 280.000 25.000 9) 276.276 22.710 PAZSIT 72 167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 172 16.16 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 173 16.56 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMAIER 95 174 16.96 0.001 0.001 147.500 30.174	165	14.54	0.001	0.001	236.200	13, 193	8)	236,200	13, 193	STROHMALER 95
167 14.74 0.200 0.020 272.000 12.000 1)2) 247.493 16.503 SANTRY 74A 168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 185.700 29.960 8) 185.700 29.960 STROHMAIER 95 172 16.16 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMAIER 95 175 17.37 0.001 0.001 147.500 30.174 <td>166</td> <td>14.70</td> <td>0.150</td> <td>0.030</td> <td>280.000</td> <td>25.000</td> <td>9)</td> <td>276.276</td> <td>22.710</td> <td>PAZSIT 72</td>	166	14.70	0.150	0.030	280.000	25.000	9)	276.276	22.710	PAZSIT 72
168 14.80 0.200 0.020 216.000 26.000 1)3) 187.639 14.998 PAZSIT 75 169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 185.700 29.960 8) 185.700 29.960 STROHMAIER 95 172 16.16 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 174 16.96 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMAIER 95 175 17.37 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 175 17.37 0.001 0.001 147.500 30.174 </td <td>167</td> <td>14.74</td> <td>0.200</td> <td>0.020</td> <td>272.000</td> <td>12,000</td> <td>1)2)</td> <td>247.493</td> <td>16.503</td> <td>SANTRY 74A</td>	167	14.74	0.200	0.020	272.000	12,000	1)2)	247.493	16.503	SANTRY 74A
169 14.94 0.001 0.001 216.200 12.076 8) 216.200 12.076 STROHMAIER 95 170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMAIER 95 171 15.75 0.001 0.001 185.700 29.960 8) 185.700 29.960 STROHMAIER 95 172 16.16 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMAIER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMAIER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMAIER 95 177 18.17 0.001 0.001 134.700 28.659	168	14.80	0.200	0.020	216.000	26.000	1)3)	187.639	14.998	PAZSIT 75
170 15.35 0.001 0.001 199.600 32.202 8) 199.600 32.202 STROHMALER 95 171 15.75 0.001 0.001 185.700 29.960 8) 185.700 29.960 STROHMALER 95 172 16.16 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMALER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMALER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMALER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMALER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMALER 95 177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMALER 95 178 18.58 0.001 0.001 129.200 27.489	169	14.94	0.001	0.001	216 200	12.076	8)	216.200	12.076	STROHMATER 05
171 15.75 0.001 0.001 185.700 29.960 8) 185.700 29.960 STROHMALER 95 172 16.16 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMALER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMALER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMALER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMALER 95 176 17.77 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMALER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMALER 95 177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMALER 95 178 18.58 0.001 0.001 129.200 27.489	170	15 35	0 001	0 001	199 600	32 202	8)	199 600	32 202	STROHMATER 05
172 16.16 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 174.000 32.770 8) 174.000 32.770 STROHMAIER 95 173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMAIER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMAIER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMAIER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMAIER 95 176 17.77 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMAIER 95 177 18.17 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMAIER 95 178	171	15 75	0 001	0 001	185 700	29.960	8)	185 700	29 960	STROUMATER 95
173 16.56 0.001 0.001 163.900 30.868 8) 163.900 30.868 STROHMALER 95 174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMALER 95 175 17.37 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMALER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMALER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMALER 95 177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMALER 95 178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMALER 95 179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMALER 95 180 19.39 0.001 0.001 119.800 25.822	172	16 16	0.001	0 001	174 000	32.770	8)	174,000	32.770	STROHMATER 95
174 16.96 0.001 0.001 155.200 29.230 8) 155.200 29.230 STROHMAIER 95 175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMAIER 95 176 17.77 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMAIER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMAIER 95 177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMAIER 95 178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMAIER 95 179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMAIER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMAIER 95 181 19.79 0.001 0.001 115.800 24.959	173	16 56	0 001	0 001	163 900	30.868	8)	163 900	30 868	STROHMATER 95
175 17.37 0.001 0.001 147.500 30.174 8) 147.500 30.174 STROHMATER 95 176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMATER 95 177 18.17 0.001 0.001 140.700 28.659 8) 134.700 28.659 STROHMATER 95 178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMATER 95 179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMATER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMATER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMATER 95	174	16.96	0 001	0 001	155 200	29,230	8)	155,200	29.230	STROHMALER 95
176 17.77 0.001 0.001 140.700 28.783 8) 140.700 28.783 STROHMALER 95 177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMALER 95 178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMALER 95 179 18.98 0.001 0.001 124.300 26.447 8) 129.200 27.489 STROHMALER 95 180 19.39 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMALER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMALER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	175	17.37	0.001	0.001	147.500	30,174	8)	147.500	30,174	STROHMALEP 95
177 18.17 0.001 0.001 134.700 28.659 8) 134.700 28.659 STROHMALER 95 178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMALER 95 179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMALER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMALER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	176	17 77	0 001	0.001	140 700	28.783	8)	140.700	28.783	STROHMALER 95
178 18.58 0.001 0.001 129.200 27.489 8) 129.200 27.489 STROHMALER 95 179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMALER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMALER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	177	18 17	0.001	0.001	134.700	28,659	8)	134,700	28,659	STROHMATER 05
179 18.98 0.001 0.001 124.300 26.447 8) 124.300 26.447 STROHMALER 95 180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMALER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	178	18 58	0.001	0.001	129.200	27.489	8)	129,200	27.489	STROHMAIER 05
180 19.39 0.001 0.001 119.800 25.822 8) 119.800 25.822 STROHMALER 95 181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	179	18 98	0.001	0.001	124.300	26.447	8)	124.300	26.447	STROHMAIEP 95
181 19.79 0.001 0.001 115.800 24.959 8) 115.800 24.959 STROHMALER 95	180	10 39	0 001	0 001	119 800	25.822	8)	119.800	25.822	STROHMAIEP 05
	181	19.79	0.001	0.001	115.800	24.959	8)	115.800	24.959	STROHMAIER 95

CORRECTION CODES:

1) CROSS SECTION RENORMALIZED TO PRESENT DECAY DATA (HALF-LIFE, BRANCHING RATIOS ETC.)

2) ERROR GIVEN IN PUBLICATION DID NOT INCLUDE ERROR OF REFERENCE CROSS SECTION.

- 3) CROSS SECTION RENORMALIZED TO ENDF/B-VI VALUES OF REFERENCE CROSS SECTION USED IN MEASUREMENT. ERRORS TAKEN FROM THE ASSOCIATED FILE 33 INCLUDED IN FINAL ERROR. 4) CROSS SECTION RENORMALIZED TO ANGULAR DISTRIBUTION OF SOURCE NEUTRONS OF LISKIEN AND PAULSEN.

5) ERROR HAS BEEN REDUCED BY A FACTOR TWO OR THREE IN ORDER TO REPRESENT 1 STANDARD DEVIATION. 6) SPECIAL CORRECTION. SEE TEXT FOR DETAILS.

7) CROSS SECTION FROM MEASURED RELATIVE EXCIT. FUNCTION, NORMALIZED TO PRESENT EVALUATION.

8) CROSS SECTION FROM THEORETICAL CALCULATION.

9) RENORMALIZATION USING REFERENCE CROSS SECTION EVALUATED AT JRK, SEE PHYSICS DATA 13-5.

Energy [MeV] t	y group o [MeV]	Cross section [mb]	Error [mb]	Error [%]	Ratio $\Delta_{ext}/\Delta_{int}$
0.10	0.30	27 71	13.64	36.7	3 103
0.10	0.30	116.05	12.04	11.0	1 500
0.30	0.50	110.03	15.79	11.9	0.870
0.30	0.70	<i>221.9</i> 4	13.41	0.8	0.079
0.70	0.90	545.00	40.91	1.5	1.094
0.90	1.10	019.07	34.34 20.44	3.0	1.034
1.10	1.50	629.78	20.44	3.2	1.080
1.30	1.50	645.36	24.41	3.8	1.055
1.50	1.75	/31.96	41.27	5.6	1.913
1.75	2.00	816.23	60.20	/.4	2.373
2.00	2.50	1009.32	47.33	4./	0.552
2.50	3,00	1030.96	57.58	5.6	1.448
3.00	3.50	1148.88	57.14	5.0	0.592
3.50	4.00	1154.02	50.25	4.4	0.162
4.00	4.50	1208.80	59.50	4.9	0.901
4.50	5.00	1205.64	60.49	5.0	0.277
5.00	5.75	1219.33	40.90	3.4	1.100
5.75	6.50	1294.44	36.20	2.8	0.152
6.50	7.25	1303.72	41.30	3.2	0.339
7.25	8.00	1222.56	38.53	3.2	0.107
8.00	9.00	1267.73	41.01	3.2	0.140
9.00	10.00	1261.44	46.89	3.7	0.524
10.00	11.00	967.11	39.56	4.1	0.324
11.00	12.00	684.74	33.02	4.8	0.198
12.00	13.00	452.82	26.95	6.0	0.792
13.00	14.00	357.47	28 .46	8.0	0.685
14.00	15.00	237.90	13.23	5.6	1.707
15.00	16.00	193.28	31.18	16.1	[*])
16.00	17.00	164.90	31.06	18.8	^{*)}
17.00	18.00	144.99	29.66	20.5	^{*)}
18.00	19.00	130.06	27.67	21.3	^{*)}
19.00	20.00	117.67	25.36	21.6	^{*)}

Table 3: Evaluated group cross sections for the reaction 103 Rh(n,n') 103m Rh.

*) Not applicable (only data points from theoretical calculation in this energy group).

Table 5: Relative covariance matrix for the reaction 103 Rh(n,n') 103m Rh.

Correlations given in %

GROUI	,																																	ENERGY	GROUP
NUMB	R	1	2	3	4	5	5 (6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	[HeV] t	o [HeV]
1	10	0 6	5	48	52	59	7 5	6	58	56	60	26	21	26	24	22	22	11	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.10	0.30
2		10	0	46	47	56	5 5	4	57	54	58	20	16	20	18	16	17	8	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.30	0.50
3			1	100	45	64	6 6	2 _	62	63	47	29	24	29	26	25	25	12	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.50	0.70
4					100	58	3 5	7	46	56	62	62	50	62	56	53	53	26	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.70	0.90
5						100	0 6	6	63	66	60	41	33	41	57	35	35	17	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.90	1.10
°							10	U 4	65	60	63	41	33	41	57	34	35	17	19	0	0	0	0	U	0	0	0	0	0	0	0	0	0	1.10	1.50
								1	100	60 60	58	24	19	24	21	20	20	10	11	0	0	0	0	0	0	0	0	0	0	U	0	0	0	1.30	1.50
8										100	02 400	40	- 32 - 77	40	30	35	34	17	19	0	0	0	0	0	0	0	U	0	0	0	u	0	0	1.50	1.70
y 10											100	47	30	43	40	38	38	19	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.75	2.00
11												100	،د ۱۹۹	/ l 57	04 E 2	00	01	3U 2/	33 77	. U	0	0	0	0	0	0	0	0	0	0	0	0	0	2.00	2.50
12													100	، د ۱۸۸	32	40	47	24	21	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	2.50	3.00
13														100	100	00 77	77	20	30	0	0	0	0	ں م	0	۰ ۱	0	0	0	0	0	0	0	3.00	4 00
14															100	100	7/.	40	28	۰ ۱	۰ ۱	0	n	0	0 0	۰ ۱	0	ñ	ĥ	n n	n	0	n	4 00	4.00
15																100	100	41	20	0	n n	0	0	n 0	0	0	0	0	ő	0	n n	0	0	4.50	5.00
16																		100	46	36	36	36	36	35	35	34	9	7	D	Ď	ů.	0	0	5.00	5.75
17																			100	40	40	40	40	39	37	36	8	6	0	0	0	0	0	5.75	6.50
18																				100	45	45	46	44	42	41	9	7	0	0	0	0	0	6.50	7.25
19																					100	46	46	44	42	41	8	6	0	0	0	0	0	7.25	8.00
20																						100	46	44	42	41	8	7	0	0	0	0	0	8.00	9.00
21																							100	44	42	41	7	6	0	0	0	0	0	9.00	10.00
22																			-					100	42	41	10	8	0	0	0	0	0	10.00	11.00
23																									100	40	12	9	0	0	0	0	0	11.00	12.00
24																										100	12	10	0	0	0	0	0	12.00	13.00
25																											100	33	0	ß	0	0	0	13.00	14.00
26																												100	56	56	56	56	56	14.00	15.00
27																												1	00	95	95	95	95	15.00	16.00
28																														100	95	95	95	16.00	17.00
29																															100	95	95	17.00	18.00
30																																100	95	18.00	19.00
31																																	100	19.00	20.00

Fig. 1: Experimental cross section data for the reaction 103 Rh(n,n') 103m Rh. (The displayed data points represent the renormalized cross sections and their effective 1 σ uncertainties.)

Fig. 2: Experimental cross section data for the reaction ¹⁰³Rh(n,n')^{103m}Rh: expanded display of the energy range 0 - 6 MeV.

Fig. 3: Results of the present evaluation of the cross section for the reaction ${}^{103}Rh(n,n'){}^{103m}Rh$ compared to the previous evaluation reported in Ref. 2.

Fig. 4: The evaluated cross section for the reaction ¹⁰³Rh(n,n')^{103m}Rh compared with the results of model calculations [9].

References of the experimental data base for the reaction 103 Rh(n,n') 103m Rh

Nagel 66: W. Nagel and A.H.W. Aten jr., J. Nucl. Energy A/B 20, 475 (1966).

Kimura 69: I. Kimura et al., J. Nucl. Sci. Technol. 6, 1 (1969).

Pazsit 72: A. Pazsit and J. Csikai, Sov. J. Nucl. Phys. 15, 232 (1972).

Santry 74: D.C. Santry and J.P. Butler, Can. J. Phys. 52, 1421 (1974).

Pazsit 75: A. Pazsit et al., Int. J. Appl. Radiat. Isot. 26, 621 (1975).

Barnard 78: E. Barnard and D. Reitmann, Nucl. Phys. A303, 27 (1978).

Paulsen 80: A. Paulsen et al., Nucl. Sci. Eng. 76, 331 (1980).

 Wu 88: Wu Zhihua et al., Proc. Int. Conf. Nuclear Data for Science and Technology, Mito, Japan, 30 May - 3 June 1988, p. 315, Ed. S. Igarasi, Saikon Publishing Co. (1988).

Miah 95: M.M.H. Miah, Doctorate Thesis, University of Vienna (1995).

References

- [1] B. Strohmaier, S. Tagesen and H. Vonach, Physics Data 13-2, Fachinformationszentrum Karlsruhe (1980).
- [2] M. Wagner et al., Physics Data 13-5, Fachinformationszentrum Karlsruhe (1990).
- [3] N.P. Kocherov and H.K. Vonach, Proc. 7th ASTM-EURATOM Symposium on Reactor Dosimetry, Strasbourg, France, 27 - 31 August 1990, p. 357, Eds. G. Tsodridis, R. Dierckx and P. d'Hondt, Kluwer Academic Publishers, Dordrecht -Boston - London (1992).; N.P. Kocherov and P.K. McLaughlin, Report IAEA-NDS-141, Rev. 0, International Atomic Energy Agency, Vienna (1990).
- [4] EXFOR, File of Experimental Nuclear Reaction Data, as received from the IAEA, Nuclear Data Section, Vienna (1994).
- [5] M.M.H. Miah, H. Vonach, W. Mannhart and D. Schmidt, Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, USA, 9 - 13 May 1994, p. 278, Ed. J.K. Dickens, American Nuclear Society (1994).
- [6] M.M.H. Miah, Doctorate Thesis, University of Vienna (1995).
- [7] M.M.H. Miah, H. Vonach, B. Strohmaier, W. Mannhart and D. Schmidt, to be published in Phys. Rev. C.
- [8] Wu Zhihua et al., Proc. Int. Conf. Nuclear Data for Science and Technology, Mito, Japan, 30 May - 3 June 1988, p. 315, Ed. S. Igarasi, Saikon Publishing Co. (1988).
- [9] B. Strohmaier, Ann. Nucl. Energy 22, 687 (1995).

- [10] S. Tagesen, H. Vonach and B. Strohmaier, Physics Data 13-1, Fachinformationszentrum Karlsruhe (1979).
- [11] CINDA, The Computer Index to Neutron Data, as received from the IAEA, Nuclear Data Section, Vienna (1994).
- [12] U. Schötzig, Appl. Radiat. Isot. 45, 641 (1994).
- [13] M.J. Martin and J.K. Tuli (eds.), Nuclear Data Sheets 68, 349 (1993).
- [14] ENDF-B/VI, Evaluated Nuclear Data File, as received from the IAEA, Nuclear Data Section, Vienna (1994).
- [15] R. Vaninbroukx, "Liquid Scintillation Counting", vol. 1, p. 143, Eds. C.T. Peng, D.L. Horrocks and E.L. Alpen, Academic Press, New York (1980).
- [16] R. Vaninbroukx and W. Zehner, Int. J. Appl. Radiat. Isot. 32, 850 (1981).
- [17] A.B. Smith and P. Guenther, Report ANL-NDM-130, Argonne National Laboratory, Argonne, Illinois, USA (1993).
- [18] G.S. Mani, M.A. Melkanoff and I. Iori, Report CEA-2379, Centre d'Etudes Nucléaires, Saclay, France (1963).
- [19] J.R. Huizenga and G.J. Igo, Report ANL-6373, Argonne National Laboratory, Argonne, Illinois, USA (1961).
- [20] M.J. Martin and J.K. Tuli (eds.), Nuclear Data Sheets 60, 68 (1990); 63, 353 (1991); 63, 412 (1991); 64, 34 (1991); 68, 336 (1993).
- [21] J. Kopecky and M. Uhl, Report INDC(NDS)-238, p. 103, International Atomic Energy Agency, Vienna (1990).
- [22] W. Mannhart, Proc. IAEA Advisory Group Meeting on Properties of Neutron Sources, Leningrad, USSR, 9 - 13 June 1986, Report IAEA-TECDOC-410, International Atomic Energy Agency, Vienna (1986).
- [23] A. Pazsit et al., Int. J. Appl. Radiat. Isot. 26, 621 (1975).
- [24] W. Mannhart, Handbook on Nuclear Activation Data, IAEA Technical Report Series 273, p. 413, International Atomic Energy Agency, Vienna (1987).
- [25] G.J. Kirouac, H.M. Eiland and C.J. Slavik, Report KAPL-P-4005, Knolls Atomic Power Laboratory, Schenectady, NY, USA (1974).
- [26] G.P. Lamaze et al., Nucl. Sci. Eng. 100, 43 (1988).

Nuclear Data Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna Austria e-mail, INTERNET: SERVICES@IAEAND.IAEA.OR.AT e-mail, BITNET: RNDS@IAEA1 fax: (43-1) 20607 cable: INATOM VIENNA telex: 1-12645 atom a telephone: (43-1) 2060-21710

online: TELNET or FTP: IAEAND.IAEA.OR.AT username: IAEANDS for interactive Nuclear Data Information System username: NDSOPEN for FTP file transfer