INDC

International Atomic Energy Agency

INDC(BUL)-2/G

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS REPORT

BULGARIA 1970

May 1971

PROGRESS REPORT Bulgaria 1970

The activities are going on at the Institute of Physics with Nuclear Research Centre, Bulgarian Academy of Sciences, Sofia

I. A group /N.Kashukeev, N.Kalinkova et al./ is developing a programme of photo-fission studies at the IRT-IOOO reactor in Sofia /see Progress Report, Bulgaria I969/. Test results on correlation measurements of energy, mass and angular fission fragment distributions after neutron irradiation have been obtained. A double pulse ionization chamber with grids and electronic collimation has been applied. Minsk-2 electronic computer data processing has been used.

The energy distribution results are the following ones:

	Time-of-flight method	Present experiment
Light fragment energy	99.4 - I.O MeV	IOO.I4 MeV
Heavy fragment energy	68.2 ± 0.7 MeV	69.64 MeV
Width at I/2h, L	I3.8 MeV	I2 MeV
Width at I/2h, H	20 MeV	I9 MeV
Ratio of most	+ 40	
probable energies	I.46	I.46

The total kinetic energy distributions of fission fragments for all fragment masses and fixed mass ratios $m_{\rm I}/m_2$ have been obtained. The average total kinetic energy for all $m_{\rm I}/m_2$ is I68.5 MeV, distribution width - 26 MeV. The total kinetic energy decrease in the symmetric fission region is estimated to 2I.5 MeV.

The most probable mass ratio $im_{1}/m_{2} = 1.48$. The min/max ratio in the mass distribution has an order of magnitude I/400.

The fragment ranges for Ar + 4% CO₂ and Ar + 4% CH₄ have been studied. The angular distribution has been found to be isotropic, which is a check for angular distribution measurement possibilities.

2. A group /V.Hristov, A.Stanolov, L.Alexendrov/ continues its investigations on neutron diffusion and thermalization in heterogeneous water lattices by pulse methods, using a fast chopper at the IRT-IOOO reactor in Sofia.

Several series of experiments on thermal neutron heterogeneous absorption by non-stationary diffusion /parameters D and C/ have been performed, and the data are under processing. The purpose is to verify recent theoretical results by Kazarnovsky, Ilieva /Institute of Physics, USSR Academy of Sciences, Moscow, to be published/. Cubic light water lattices with a geometric parameter $B^2 = 0.0695 - 0.3965 \text{ cm}^{-2}$ have been used, containing cylindrical aluminium tubes /lattice spacing I.8 cm, tube radius 0.5 cm/ with water solution of H_3BO_3 , $\sum_n \approx 0.2 \text{ cm}^{-1}$.

Experiments on the dependence of neutron temperature on \mathbb{B}^2 , and experiments on \mathbb{K}_2 /thermalization parameter/ by the moderator poisoning method with a non- I/V absorber are under preparation.

3. A group /N.Antonov, D.Damianov, V.Hristov, T.Troshev/ has performed experiments on two-group fast neutron diffusion parameters for a heterogeneous water medium with empty cylindrical tubes /lattice spacing I.8 cm, tube radius = 0.5 cm and ratio of tube to water volumes p = 0.3198/ at the IRT-IOCO reactor in Sofia.

The first group relaxation lengths λ_{μ} , λ_{μ} have been determined by the removal cross-section method. The second group coefficients L_{μ}^{2}/L_{c}^{2} , L_{μ}^{2}/L_{c}^{2} and the coefficient of anisotropy L_{μ}^{2}/L_{μ}^{2} have been obtained by the exponential method.

The results are as follows:

	Experiment	Theory /Behrens/
	λ ₁₁ 16.75 cm	a=
3 MeV < E	λ_{\perp} 16.75 cm	
	$\overline{\lambda}$ 16.75 cm	I4. 18 cm
	L"/L° 2.16	I.95
I.44 eV < E < 3 MeV	L1/L I.79	I.79
	∠ ² /∠ ² I.20	I.09

compared with the theory by Behrens D.I. /Proc.Phys.Soc.A62,607,1949/.

One observes that the $\lambda_n \approx \lambda_1$ measured values are slightly higher than the calculated homogeneous value $\overline{\lambda}$. This could be explained as a diffusion prolongation according to the theory of Behrens. One also observes that the L_n^2/L_o^2 value/ and accordingly L_n^2/L_o^2 / is slightly higher than the calculated one. The measured and calculated L_1^2/L_o^2 values coincide.

- 4. A group /Z. Zhelev et al. / is working on decay properties and level schemes of neutron defficient isotopes obtained on a 660-MeV proton accelerator /in Dubna/.
- 5. A group /E.Nadjakov et al./ is working on decay properties and level schemes of neutron defficient isotopes obtained on heavy ion accelerators /U-300 and U-200 in Dubna/.

Lisison Officer to the INDC for Bulgaria:
Emil Nadjakov
Institute of Physics with Auclear Research Centre
Bulgarian Academy of Sciences
Sofia I3, Bulgaria