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G. Bojkov, V. Gadzhokov, K. Ilieva 
Institute of Nuclear Research and Nuclear Power, 

Bulgarian Academy of Sciences, Sofia 

ABSTRACT 

In calculating the matrix for intergroup elastic-scattering transitions 

by the SUPERTOG. program, it is necessary that the data on the anisotropy of 

the elastic scattering be given in terms of the coefficients for a Legendre 

polynomial expansion- of the density function. However, for all the material 

in the ENDL library and for some of the material in ENDF/B-IV, the infor­

mation on the scattering anisotropy is given in the form of tabulated values 

of the actual density function. Existing versions of the SUPERTOG program 

cannot be used for these materials. 

We have developed a modification of the SUPERTOG program which enables 

us to calculate the elastic-scattering matrix whichever of the two ways the 

anisotropy is given. With this method, which is based on an approximation 

by means of orthonormal polynomials, it is possible to calculate the 

coefficients in the Legendre polynomial expansion of the density function 

during the operation, of the actual program. In fact, this procedure takes 

less than 15% of the total running time of SUPERTOG. 
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.1. INTRODUCTION 

The SUPERTOG program [1] is one of the widely used methods for 

preparing data for multigroup neutron transport calculations. The program 

gives the following information: 

(a) Scattering cross-sections averaged over energy groups; and 

(b) Matrices for intergroup transitions resulting from elastic and 

inelastic scattering and (n,2n) reactions. 

For calculating the elastic-scattering transition matrix, the program 

needs the group averaged elastic-scattering cross-sections and data on the 

anisotropy in the centre-of-mass system. In the ENDF/B format files [2], the 

information on the scattering anisotropy is usually given in one of two ways: 

as tabulated values of the function p( y,E ) for the probability density of 

the scattering of a neutron with energy E at an angle Q( V= cos Q) or as 

the coefficients f (E) in the expansion of the function p( y,E) in the 

Legendre polynomials L . ( y) : 

•• t'O & * * / (D 

where N is the optimal order for truncating the series. 

The existing versions of the SUPERTOG program can calculate the elastic-

scattering group transition matrix only when the coefficients f .(E) are given 

in the library of initial nuclear physical constants. However, for all the 

material in the ENDL library and for some of the material in ENDF/B-IV, the 

elastic-scattering anisotropy is given in the form of tabulated values of the 

function p( U,E). 

2. FORMULATION OF THE PROBLEM 

The need therefore arises to modify the SUPERTOG program so that the 

elastic-scattering matrix can be calculated for either of the two ways in which 

the anisotropy information may be given. This means that for given sets 

í / s í , i /"/<,=•)J'r- t.z,...,. YVú 



- 3 -

corresponding to some fixed energy E, we have to find the order N and the set 

of coefficients 

{ * « ' * > * t - e , < H 

which, when substituted into the right-hand side of Eq. (1), would reconstruct 

the tabulated values .of p( u ,E) with an accuracy no worse than that of the 

original data. 

At least three approaches to the solution of the overall problem are 

possible: 

(a) To change the calculation algorithim in SUPERTOG and thus to get 

the possibility of working directly with the tabulated values of 

the function p( v ,E); 

(b) To carry out expansion of the function p(u ,E) in terms of Legendre 

polynomials [i.e. to calculate the coefficients f ¿(E)] during the 

running of the SUPERTOG program; 

(c) To prepare beforehand a version of the library in which the tables 

of the function p( y ,E) are replaced by the corresponding coefficients 

f,(E). 

We have developed a modification of the SUPERTOG program in which the 

coefficients f „ (E) are calculated during the running of the program itself 

inside the algorithim for calculating the elastic-transition matrix. 

3. METHODS OF SOLUTION . 

3.1. The coefficients f (E) can be calculated .directly by numerical inte­

gration. Since the Legendre polynomials are orthogonal, we have in fact 

from .Eq. (1) that 

À 

-< ..(2)' 

here, 

E is the neutron energy in electron volts, 
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v = cos 6, where Q is the scattering angle in the centre-of-mass system, 

L ( u) is the Legendre polynomial of order £ , and 

p( u,E) is the probability density for elastic scattering of a neutron 

with energy E at an angle 6 , where 6 = cos M-

In view of the severe non-linearity of the higher-order polynomials 

L ( v ), this approach requires the use of a close numerical-integration grid 

and leads - for reasonable accuracy in the estimates of Eq. (2) - to large 

expenditures of machine time, considerably greater than the normal calcula­

tion time in the SUPERTOG program. 

3.2. Using the values of the sets from section 2, we can write expression (2) 

in the form 
m » 4 A ¿H 

ft(£)~ L J p(^B)Lti^^ 
L~< A i 

(3) 

We shall denote the coefficients in the expansion of the Legendre polynomial 

L „'( U) by'bU): 

Hi j 

(4) 

We shall further assume that in the interval [v ., V. „], i = 1, 2, .... 
L i i+lJ ' 

m-1, the values of the function p( y,E) are calculated from the linear 

interpolation model 

where 

PL^}B) - ¿£yu f S"c > /+;+< */* */*i (5) 

* 

and 



- 5 -

Then, using Eqs (4) and (5), we get from expression (3) that 

«•-'Va A 
After integration and some cumbersome but elementary alegbra we arrive at 

the following expression for the coefficients f «(E): • 

¿ • / W J 7 

, £ — - I ' <Av/ /"¿ J> 

where the summation over the index £ takes into account the fact that the 

L ' ( y ) are even functions. 

Despite the .fact that libraries of nuclear physical constants are in fact 

designed to use linear interpolation for getting the values ofp( y ,E) in the 

grid intervals {y . } the accuracy of the numerical approximation obtained by 

this method is unsatisfactory. This seems to be the result of the loss of 

.significant figures that occurs when working with coefficients b which 

vary in sign and have a large absolute value. 

3.3. The third approach to the calculation of f . (E) consists in using a 

special class of orthonormal polynomials [3-5]. .This approach reduces to 

two steps: 

3.3.a. We construct [3] the set of polynomials I *\t/ J tm 0t*y* ***" 

which are orthonormalized in the point set / u. I . A — 

with weights{ w. } , where 

and the constant c is determined from the condition for normalization 

of the density' function p(y ,E), 

• < 

Í PV"̂  T 
•-4 
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This choice of weights allows for the fact that the grid {y }, is 

non-uniform and also takes into account the linearity of the inter­

polation model from which the values of p( p ,E) are calculated in the 

grid intervals.- We can now express the anisotropy function as 

(6) 

where N <m-l and the coefficients a . are calculated from the equation 

<L¿(E)- I p(/*CtB)tí>¿ f>.(f.£) 

3.3.b. We now have to transform the coefficients {a. } into the {f } 
J £ 

from Eq. (1). As expected, this transformation is most accurate and 

stable from the point of view of numerical calculations when it is made 

in the orthonormal basis {P. } . We therefore expand the Legendre 

polynomials in this basis: 

LtM- L '? PW 
where 

snA 

(8) 

Substituting Eqs (6) and (7) into expression (1), we get the relationship 

T C.(E)P-IM>- i -£— y a z - c* p^r' 

a 
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from which we can easily derive a triangular system of linear equations 

in the unknown coefficients f .(E). 
J 

where C> = N , ̂ / — 1 , • ••» 2, 1, U. 

4. CHOICE OF OPTIMUM APPROXIMATION ORDER 

As we have already mentioned, a linear interpolation model was provided 

in the libraries for the preparation of evaluated data on the anisotropy of 

elastic scattering. In other words, the data were normalized so that the 

normalization condition 

i 

was satisfied most accurately for numerical integration by the trapezoidal 

method. Thus, the condition for the coefficient f.(E) to be close to unity is 
o 

also the criterion for the expansion to be close to the linear model for the 

interpolation of the function p( u,E). 

On the other hand, to obtain a more accurate approximation by Legendre 

polynomials it is necessary to.include terms of a comparatively high order in 

the expansion. Oscillations then begin to occur in the approximating curves as 

a result of the limited accuracy of the numerical calculations. In particular, 

this can lead to significant deviations of f (E) from unity.. 

To damp out the oscillations, the algorithim includes the addition of 

a grid {y . } of intermediate points. The values of p(u ,E) at these points 

are calculated by linear interpolation of the data in the original grid. The 

number and positions of the intermediate points are chosen so that not only 

are the oscillations damped but the uniformity of the grid is improved. The 

condition is imposed that the maximum absolute deviation of f (E) from unity 

should not exceed 0.005. 
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Next, from the set of values N satisfying this criterion, the choice 

of the optimum .order is made. The criterion is that the following product 

should be a minimum: 

CHI(N) * EYMAX(N) * £D(N) 

2 
where CHI(N) is the value of x normalized to one degree of freedom; 

EYMAX(N) is the maximum relative deviation of the approximating series 

from the initial data at the grid points (initial or supplementary); 

• ED(N) is the maximum absolute deviation at the same points. 

5. PROGRAMING DETAILS 

Our version of the SUPERTOG program which accepts both forms of the 

information on elastic-scattering anisotropy in the centre-of-mass system 

includes: 

(a) The necessary changes in the SUPERTOG-4 program package, NEA DATA 

BANK - 1978 version; 

•(b) The LTTAS1 package, which calculates the coefficients f. (E) in the 

expansion of the function p( y,E). 

The changes in SUPERTOG concern the TRANS, GADD and TMF4 modules. A 

sub-program TAB1S is added to arrange proper storage of the library data on 

the anisotropy. 

The LTTAS1 package is only called when it is necessary to calculate the 

elastic scattering matrix and if the value of the parameter LTT in the 

ENDF/B format file is equal to 2 - corresponding to tabulated density func­

tions. If these conditions are satisfied, the TMF4 sub-program of the 

SUPERTOG package calls on LTTAS1, which consists of the following modules: 

5.1. LTTAS1 - the control module of the package. This checks the 

initial anisotropy data, prints control information on the 

Legèndre approximation process and stores the calculated expansion 

coefficients in the SUPERTOG COMMON area. 

5.2. ORNINT - controls the orthonormalized and Legendre approximation 

processes. 

5.3. WEIGHT, FLINT - calculate the weighting coefficients and carry out 

linear interpolation of the function p( u,E). 
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5.4. APPR01, PREPF1, ORTHN1 [3, 5] - calculate the coefficients of the 

orthonormalized approximation (6). 

5.5. LORTHB - calculates the coefficients of the Legendre polynomial 

expansion in terms of the.polynomials of the orthonormalized 

basis {P. ( y )}. 

5.6. CRIT - makes the choice of the optimum order N for the approxi­

mation by the Legendre series. 

5.7. LEGEX - solves the triangular system of linear equations (9) and 

finds the coefficients i^.(E). 

5.8. OPTHNL - calculates the values of the Legendre polynomials by a 

three-term recursive method. 

5.9. TELSCL - calculates the sum on the right-hand side of Eq. (1) 

by the telescoping method [5, 6]. 

5.10. ERR1 - prints information on the imposed limitations in the order 

of approximation N and on the errors in the operation of the 

LTTAS1 package. 

6. DISCUSSION OF RESULTS 

In accordance with-the requirements of the algorithms followed in 

SUPERTOG, the order of the Legendre polynomial expansion of the function 

p( u,E) should not exceed 30 (not more than 31 coefficients, including the 

zeroth). The special attention given to the problem of making the 

coefficient f (E) as close to unity as possible is due to the fact that in 

SUPERTOG this value is taken necessarily to be equal to unity. 

Table 1 shows for comparison purposes the results of approximating the 

function p( u ,E) by methods 3.2 (direct use of the linear interpolation 

model) and 3.3 (approximation by orthonormalized polynomials). For both 

methods, the appropriate optimum expansion orders have been chosen. The 

advantage of the second approach is fairly clear. 

Table 2 gives the tabulated and reconstructed values of the density 
235 

function for U when E = 4.0 MeV. The second column lists the values 

calculated from f (E) coefficients taken from the ENDF/B-IV Standard 

library. The next column contains the values tabulated in the. ENDL library 
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and the final column the values reconstructed from the f „(E) coefficients 

obtained at the output of our LTTAS1 package. It is once again clear that 

the values in the fourth column are more accurate. 

We may note in conclusion that unsatisfactory results in the numerical 

approximation of the density function p( U,E) (i.e. large absolute or relative 

deviations, negative values and so on) are observed in two cases: 

(a) The function p( y ,E) changes fairly rapidly in the interval-1 <Cu ̂ 1> 

and its tabulated values in the library are given at fewer than 

10 points. It may be assumed in this case that the linear interpolation 

model gives a poor description of the scattering process; 

(b) The function is given at the points of a fairly close grid over 

the same interval but the actual values of the function differ from 

one another by 4-5 orders of magnitude. This form of numerical 

problem is more difficult to avoid, since it arises from the 

limited accuracy with which numbers are represented in the 

computer. It helps to some extent to get proper choice of the 

system of polynomials in which the function is expanded. This in 

fact explains the higher accuracy obtained when working with the 

LTTAS1 package. 



Table 1. 

Comparison of. the accuracy of the approximation for the density function p(u,E) 

with direct use of linear interpolation (method 3.2) and in the basis of ortho-
239 

normalized polynomials (method 3.3) for the isotope Pu from the ENDL library: 

E = 1.46 MeV. 

*/ 0.43874 ' -1 means 0.43874 x 10 



Table 1 

Method 

i. Optimum order of 

expansion 

Valu* 

/ \ 

-1.00 
-0.9499 
-0.85 
-0.75 
-0.65 
-0.55 
-0.45 
-0.35 . 
-0.25 
-0.15 
-0.05 
0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.90 
0.91. 
0.92 
0.93 
0.94 

0.96 
0.97 
0.93 
0.99 
i m 
— • w -J 

1 

-- h (s) 
P</*, ê) 

' L ib r . 

0.43874 -
0.43874 -
0.21987 -
0.21987 -
0.21987 -
0.21987 -
0.21987 -
U • Cu»udU ™* 

0.42374 -
0.65361 -
'0.65861 -
0.43S74 -
0.43374 -
0.17590 
0.33480 
0.33430 
0.21987 
0.21987 
0.97642 
0.93244 
0.27384 
0.21937 
0.16490 
0.32830 
0.93244 
0.17590 + 
0.31781 + 
0.74156 + 
0.14891 + 
0.22287 + 
0.27733 + 

1+ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
an 

1 
1 
2 
2 
2 

3.2. 

17 • 

0.100000 + 1 

f\% 
89 
97 
280 
283 
120 
414 
395 
250 
234 

93 
173 
112 
368 
27 
58 
8 

89 
16 
14 

9 
213 
293 
300 
73 

5-
43 
56 
16 

8 
O 

c 

' Approx. 

0.47923 - 2 
0.97454 - 3 
0.83719 - 1 

-0.40303 - 1 
0.48501 - 1 
0.11306 

-0.65050 - 1 
-0.49572 - 1 
0.14642 
0.12714 

-0.48380 - 1 
-0.53558 - 2 

0.20517 
0.22315 
0.13904 
0.30890 
0.41477 
0.18452 
0.84258 
0.10134 + 1 

-0.31159 
-0.42475 
-0,33005 

0.87734 - 1 
0.97680 
0.25244 + 1 
0.49640 + 1 
0.85828 + 1 
0.13730 + 2 
0.20828 +'2 
0.30379 + 2 

0.1 

U p oj 

1 p- * 
25 
35 
43 
53 
29 
12 
37 
30 
27 
21 
16 
28 
61 
8 
2 

10 
16 
22 
8 

10 
31 
34 
59 
3 

32 
13 
14 
4 
4 
1 

0.4 

3 .3 . 

30 

00029 + 1 

Approx. 

0.33087 - 1 
.0.59388 - 1 
0.31569 - 1 
0.33736 - 1 
0.15700 - 1 
0.19369 - 1 
0.30176 - 1 
0.22862 - 1 
0.55875 - i 
0.51920 - 1 
0.76487 - 1 
0.31322 - 1 
0.70449 - 1 
0.16133 
0.34113 
0.29970 
0.25489 
0.26343 
0.89641 
0.83464 
0.35870 
0.29567 
0.26240 
0,31815 
0.62662 
0.15336 + 1 
0.36279 + 1 
0.76859 + 1 
0.14277 + 2 
0.22594 + 2 
0.27681 + 2 



Table 2. 

Tabulated and reconstructed values of the density function p(p.E) for the isotope 
235 

U with E = 4.0 MeV according to the data from the ENDF/B-IV Standard and ENDL 
libraries. 



Tab le 2 

A 

-1.00 

-0.95 

-0.85 

-0.75 

- 0.65 

-0.55 

-0,45 

-0.35 

-0.25 

-0.15 

-0.05 

0.05 

0.15 

0.25 

yJ . O u 

0.45 

0.55 

0.65 

0.75 

0.S5 

0,95 

' 1.00 

R e c o n s t r u c t e d from 
c o e f f i c i e n t s o b ­

t a i n e d from 
ENDF/B-IV 

S t a n d a r d 

0.53775 - 1 

0.11209 - 1 

0.13624 - 1 

0.64014 - 1 

0.97326 - 1 

0.94952 - 1 

0.70763 - 1 

0 . 4 9 3 0 4 - 1 

0.4S220 - 1 

0.70514 - 1 

0.10669 

0.14282 

0.16856 

0.17974 

0.17359 

0.14206 

0.79725 - 1 

0.38667 - 1 

0.28380 

0.16285 + 1 

0.60632 + 1 

0.10635•+ 2 
i 

I 

fic/*:e) 

T a b u l a t e d 
v a l u e s 

ENDL 

0.17310 

0.13710 

0.71130 - 1 

0.44120 - 1 

0.35020 - 1 

0.35020 - 1 

0.49120 - 1 

0 . 6 6 1 3 0 - 1 

0.71130 - 1 

0.93140 - 1 

0.12000 

0.15510 

0.19910 

0.19910 

0.15110 

0,13310 

0.10600 

0.11500 

0.33210 

0.12600 +1 

0.54220+1 

0.10200 +2 

R e c o n s t r u c t e d from 
• c o e f f i c i e n t s o b ­

t a i n e d w i t h 

LTTASl 

0.17250 

0.13769 

0.76982 - 1 " 

0.58130 - 1 

0.27955 - 1 

0.36169 - 1 

0.49684 - 1 

0.62925 - 1 

0.71519 - 1 

0.94942 - 1 

0.11409 

0.16374 

0.18378 

0.20866 

0.13650 

0.15038 

0.84804 - 1 

0.14523 

0.39201 

0.12768 +1 

0.54024 +1 

0.10200 +2 . 
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