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MODIFICATION OF THE SUPERTOG PROGRAM APPLIED TO LIBRARIES
WITH TABULATED ELASTIC-SCATTERING ANISOTROPY DENSITIES

G. Bojkov, V. Gadzhokov, K. Ilieva
Instltute of Nuclear Research and Nuclear Power,
Bulgarlan Academy of Sciences, - Sofla

. ABSTRACT

In calculating the matrix for intergroup elastic—scattering transitions
by the SUPERTOG.program; it is‘necéssary that the data on the anisOtfopy of
the elastic'scattering be given in terms df the coefficients fbr a Legendre
_ polynomial expansion of the density function. However, for all the material .
in the ENDL library and for some of the material in ENDF/B-IV, the infor-
ﬁation on the scattering anisotropy is given in the form of tabulated values
of the actual density function. Existing versions of the SUPERTOG program |

cannot be used for these materials.

- We have develdped a modificaﬁion of. the SUPERTOG program which enébleé
us to calculate the elastlc scattering matrix whichever of the two ways the
anlsotropy is glven - With this method, which is based on an approx1mat10n
by means ofuorthonormal‘polynomlals, it is p0551ble 'to calculate the
coefficients in the Legendre polynomial expansion of the density function
during the operation of the actual program. In.fact, this procedure takes

less than 15% of the total running time of SUPERTOG.
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1. INTRODUCTION

The SUPERTOG program [1] is one of the widely used methods for
preparing data for multigroup neutron transport calculations. The program

gives the following information:
(a) Scattering cross-sections averaged over energy groups; and

(b) Matrices for intergroup transitions resulting from elastic and

inelastic scattering and (n,2n) reactions.

For calculating the elastic-scattering transition matrix, the program
needs the group averaged elastic-scattering cross—sections and data on the
anisotropy in the centre-of-mass system. In the ENDF/B format files [2], the
.information on the scattering anisotropy is usually given invone of two ways:
as tabulated values of the function p(]J,E)ffor the probability densiﬁy of
the scattering of a neutron with energy E at an angle‘e( y= Cos g) or as
the coefficients f £(E) in the expansion of the function p( ;,E) in the

Legendre polynomials L 2(u):

? Ej-é‘j e4
Pre st wfe(f)Le(/q (1)

where N is the optimal order for truncating the series.

The existing versions of the SUPERTOG program can calculate the elastic-
scattering group transitioﬁ‘métrix only when the'coefficients f 2(E) are given
in the library of initial nuclear physical constants. However, for all the
material in the ENDL library and for some of the material in ENDF/B-IV, the

elastic~scattering anisotropy is given in the form of tabulated values of the

functioh p( W,E).

2. FORMULATION OF THE PROBLEM

The need therefore arises to modify the SUPERTOG program so that‘the‘
elastic-scattering matrix can be calculated for either of the two ways in whlch

the anisotropy information may be given. This means that for given sets

{/‘ﬂ}, { Plr, E)f ‘E-‘ (,2,..,



corresponding to some fixed- energy E, we have to find the order N and the set

of coefficients

{ je(f)} £’0141“‘)”"

" which, when substituted into the right-hand side of Eq. (1), would reconstruct
the tabulated values of p( u,E) with an accuracy no worse than that of the

original data.

At least three approaches to the solution of the overall problem are

possible:

(a) To change the calculation algorithim in SUPERTOG and thus to get
‘the possibility of working directly with the tabulated values of

the function p{ w,E);

(b)  To carry'out expansion of the function p(u ,E) in terms of Legendre
polynomials {i.e. to calculate the coefficients f ,(E)] during the

running of the SUPERTOG program;

(¢) To prepare beforehand a version of the library in which the tables

of the function p( u,E) are replaced by the corresponding coefficients
f Q(E)..

We have developed a modification of the SUPERTOG program in which the
coefficients £ 2(E) are calculated during the running of the program itself

inside the algorithim for calculating the elastic-transition matrix.

3. . METHODS OF SOLUTION .

3.1. The coefficients f 2(E) can be calculated directly by numerical inte-
gration. Since the Legendre polynomials are orthogonal, we have in fact

from Eq. (1) that

‘ 4 : | :
f, (E) - ij/u,E-)Le(/m) dp , L% 0,4,y ¥
. c | | | (2

here,

E is the neutron energy in electron volts,
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U= cos 8, where g is the scattering angle in the centre—of—mass system,
£< g) is the Legendre polynomial of order &, and

‘p(u,E) is the probability density for elastic scattering of a neutron

with energy E at an angle 6, where 6 = cos™? T

In view of the severe non-linearity of the higher—ofder polynoﬁials
L 2( p), this approach requires the use of a close numerical-integration grid
and leads - for reasonable accuracy in the estimates of Eq. (2) - to large
expenditures of machine time, considerably greatef than the normal calcula-

tion time in the SUPERTOG program.

3.2. Using the values of the sets from section 2, we can write expression (2)

med 4/“53-4
fp (E)= 2 fﬁ(/‘,f)!-g(/‘}d/‘
b=t

in the form

(3) -
We shall denote the coefficients in the expansion of the Legendre polynomial
A (u) by b(z)
¢
: (£t 4
da
(4)

We shall further -assume that in the interval (v LY +1],

m-1, the values of the functlon p( u,E) are calculated from the linear

i=1, 2, «.cc.,

interpolation model

»,P(/«,f)'é d’c'/“ + o Yatts é/ Syl (5)

{/“uw , E)= /o{/«“ £)
//‘Lfc //“

where d) 0

e P, E o P i E)
Srirr T M

and

“
i
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Then, using Eqs (4) and (5), we get from expression (3) that
-
n=1 /a‘

fg(h)=2:.zé /{//u-/-é-/a)d/*
(= /'
Afrer 1ntegrat10n .and some cumbersome but elementary alegbraAwe arrive at

the follow1ng expression for the coefficients f y (E):

: ‘ , - - E) [l +
HeE)e L S [pegret-tlpia 2]
'w ol (£,2) /*

Jfﬁp.Z
¢ é'{ﬁ f Valls) P(/“i; E) ‘/“i F(/‘(o'v-u 5/{ «/.*'_/‘ o"Hj.
. : » Y ¢ /)
" ‘/‘—Mo/ (¢2) (,/'*4/7*1) {mt /“ZH "/“ ‘ /“ : .

erp.z

where the summatlon over the index % takes into account the fact that the

Z(u ) are-even functions.

Despite the'fect that libraries of nuclear physical constants are in fact
designed to use linear interpolation forgetting thevalues of p(y ,E) in the
grid intervals {“i } the accuracy of the numerical approiimation obtained by
this method is unsatisfactory. This seems to be the result of tlf(uz)loss of

.significant figures that occurs when working with coefficients b which

vary in sign and have a large absolute value.

3.3. The third approach to the calculation of f2 (E) consists in using a
special class of orthonormal polynomials [3-5]. .This approach reduces to

. two Steps: _
3.3.a. We construct [3] the set of polynomials {E{V)} L= 0,4, m=-o

which are orthonormalized in the point set {/“: - 4,2
‘ ’ '...‘

"with weights { v, } , where
W, = € {/‘in ‘/“5-4) , 6 2s3, 0 m.-l
" and the constant ¢ is determined from the condition for normallzatlon

of the den51tv function p(y ,E),

1

X Psﬂ,f)dy4- 4

-4
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This choice of weights allows for the fact that the grid {y . }, is

: ST
non-uniform and also takes into account the linearity of the inter-
polation model from which the values of p( u,E) are calculated in the

grid intervals.  We can now express the anisotropy function as

pluEl = L ar(E) /3(/«)

¢=°
' (6)

where N {m-1 and the coefficients aj are calculated from the equation

a;(E) = CZ"},P(/“‘.'EM‘: fz(/ﬂ)

ﬂ3.3.b. We now have to transform the coefficients {aj }into the {f }
from Eq. (1). As expected, this transformation is most accurate and
stable from the point'of view of numerical calculations when it is made
in the orthonormal basis {Pj} . We therefore expand the Legendre

polynomials "in this basis:

¢
L= 2 & i

(/':40 : (7)

. 'where

o

0 Lpguir B
d L= d

(8)

Substituting Eqs (6) and (7) into expression (1), we get the relationship

-3 =D

¢

N d‘ .
s Yoozj+t "y
L) L =g G0 2 0 A
.0 ‘



from which we can easily derive a triangular system of linear equations

in the unknown coefficients fj(E).

N T

, : . : )9 ,
- - E)=(4=0:y) . ¥ (E) (9)

4 (F) = ———— [a,.(:) (=2l &9 v ]
T T R LT

where (: = N , N-l, cevy 2, l, Oo"

4, CHOICE Of OPTIMUM APPROXIMATION ORDER

As we have already mentioned, a linear interpolation model was provided
in the libraries for the preparation of evaluated data on the anisotropy of
elastic scattering. In other words, the data were normalized so that the

normalization condition . _
_ | 4
§(£) = ff)(/l,f)a}d -
-t A

was satisfied most accurately for numerical integration by the trapezoidal
method. Thus, the condition for the coefficient fo(E) to be close to unity is
also the criterion for the expansion to be close to the linear model for the

interpolation of the function p( u,E).

On the other hand, to obtain a more accurate approximation by Legendre
polynomials it is necessary to.include terms of a comparatively high order in
thé expansion. Oscillations then begin to occur in the approximating curves as
a result of the limited accuracy of the numerical calculations. In particular,

this can lead to significant deviations of fO(E) from unity.

To damp out the oscillationé,'the algorithim includes the addition of
a grid {Ui } of intermediate points. The values of p(u ,E) at these points
are calculated by linear interpolation of the data in the original grid. The
number and positions'of the intermediate points are chosen so that not only:
are the oscillations damped but the uniformity of the grid is improved. The
condition is iﬁposéd that the maximum abéoiute deviation of fo(E) from unity

should not exceed 0.00S.
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Next, from the set of values N satisfying this criterion, the choice
of the optimum order is made. The criterion is that the following product

should be a minimum:

CHI(N) * EYMAX(N) * ED(N)

where CHI(N) is the value of X2 normalized to one degree of freedom;

EYMAX(N) is the maximum relative deviation of the approximating series

from the initial data at the grid points (initial or supplementary);

ED(N) is the maximum absolute deviation at the same points.

5.  PROGRAMING DETAILS

Our version of the SUPERTOG program which accepts both forms of the
information on elastic-scattering anisotropy in the centre-of-mass system

includes:

(a) The necessary changes in the SUPERTOG-4 program package, NEA DATA
BANK - 1978 version; o

»(b) The LTTAS! package, which calculates the coefficients f2 (E) in the

expansion of the function p( u,E).

The changes in SUPERTOG concern the TRANS, GADD and TMF4 modules. A
sub~program TAB1S is added to arrange proper storage of the library data on

the anisotropy.

The LTTAS1 package is only called when it is necessary to calculate the
elastic scattering matrix and if the value of the parameter LTT in the
ENDF/B format file is equal to 2 - corresponding to tabulated density func-
tions.‘ If these conditions are satisfied, the TMF4 sub-program of the

SUPERTOG package calls on LTTAS1, which consists of the following modules:

5.1. LTTAS! - the control module of the package. This checks the
initial anisotropy data, prints control information on the .
Legendre approximation process and stores the calculated expansion

» coefficients in the SUPERTOG COMMON area.

5.2. ORNINT - controls the orthonormalized and Legendre approximation

processes.

5.3, ‘WEIGHT, FLINT - calculate the weighting coefficients and carry out

linear interpolation of the function p( y,E).
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5.4. APPRO1, PREPF1, ORTHN1 [3, 5] - calculate the coefficients of the

orthonormalized approximation (6). .

5.5. LORTHBR - calculates the coefficients of the Legendre polynomial
expansion in terms of the.polynomials of the orthonormalized

basis {%( ut.

5.6. CRIT - makes the choice of the optimum order N for the approxi-

mation by the Legendre series.

5.7. LEGEX - solvesithe triangular system of linear equations (9) and

finds the coefficients fQ(E).

5.8. OPTHNL - calculates the values of the Legendre polynomials by a

three-term recursive method.

5.9. TELSCL - calculates the sum on the right-hand side of Eq. (1)
by the telescoping method [5, 6].

5.10. ERRl - prints information on the imposed limitations in the order
of approximation N and on the errors in the operation of the

LTTAS1 package.

DISCUSSION OF RESULTS .

In accordance with-the requirements of the algorithms followed in

SUPERTOG, the order of the Legendre polynomial expansion of the functien

p( u,E) should not exceed 30 (not more than 31 coefficients, including the

zeroth). The special attention given to the problem of making the

coefficient fO(E) as close to unity as possible is due to the fact that in

SUPERTOG this value is taken necessarily to be equal to unity.

Table 1 shows for comparison purposes the results of approximating the

function p(u ,E) by methods 3.2 (direct use of the linear interpolation

model) and 3.3 (approximation by orthonormalized polynomials). For both

methods, the appropriate optimum expansion orders have been chosen. The

advantage of the second approach is fairly clear.

Table 2 gives the tabulated and reconstructed values of the density

function for 235U when E = 4.0 MeV. The second column lists the values

calculated from fz(E) ¢coefficients taken from the ENDF/B-IV Standard

library. The next'colqmn‘contains the values tabulated in the. ENDL library
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and the final column the values reconstructed from the £ Q(E) coefficients

obtained at the output of our LTTAS] package. It is once agafn clear that

the values in the fourth column are more accurate.

We may note in conclusion that unsatisfactory results in the numerical

approximation of the density function p( y,E) (i.e. large absolute or relative

deviations, negative values and so on) are observed in two cases:

(a)

(b)

The function p( usE) changes fairly rapidly in the interval-lgu g1,

- and its tabulated values in the library are given at fewer than

10 points. It maybe assumed in this case that the linear interpolation

model gives a poor description of the scattering process;

The function is given at the points of a fairly close grid over

the same interval but the actual values of the function differ from
one another by 4-5 orders of magnitude. "This fofm of numerical
problem is more difficult to avoid,-since‘it arises from the
limited accuracy with which numbers are represented in ‘the
computer. It helps to some extent to get proper choice of the
system of polynomials in which the function is expanded. This in
fact explains the higher accuracy obtained when working with the
LTTAS1 package.



Table 1.
Comparison of the accuracy of the approximation for»thé density function p(y,E)
with direct use of linear interpolation (method 3.2) and in the basis of ortho-
normalized polynomiéls (method 3.3) for the isotope 239Pu from the ENDL 1ibrary:

E = 1.46 MeV.

*/  0.43874 ° -1 means 0.43874 x 107_.



Table 1

Method 3.2. 3.8.
» Optimum o?der of 17 30
expansion
value £, (£) 0.100000 + 1 0.100029 + 1
( , ; wu, E . (u,E
Vot P Libr) lﬁpﬁ)% P! Appiox. lfpf 4 & Apirox.
-1,00 0.43874 - 1% 89 0.47923 - 2 | 25 | 0.33087 - 1
~0,9499( 0,43874 - 1| 97 | 0.97454 -3 | 35 {0.59388 - 1
-0.85 |0.,21987 - 1| 280 | 0.83719 -1 | 43 | 0.31569 -1
-0.75 10,2187 = 1| 283 -0,40303 -1 | 53 |0.33736 =1
~0.685 | 0.21987 - 1| 120 0.48%01 -1 | 29 |0.15700 - 1
~0.55 {0,21987 - 1| 414 0.11306 12 -1 0.19369 - 1
10,45 |0,21987 -1 | B395|-0.65050 -1 | 37 |0,30176 - 1
-0.,535 10.32830 = 1| 250 |-0.49572 =1 | 30 |0.22862 ~1
0,25 [0.43874 - 1| 234 0.14642 27 |0.55875 - 1
~0.15 |0.85851 -1 93| 0,12714 21 | 0.51920 = 1
-0.05 |*0.68861 ~ 1| 173|-0.48380 -1 | 16 |0,76487 - 1
0.05 |0.,43874 - 1| 112|-0,58558 -2 | 28 |0.3132 -1
0,15 10.,43374 - 1 | 368 | 0,20517 61 |0.70449 = 1
0.25 | 0.175%0 27 | 0.22315 8 |0.16133
0.35 | 0,33480 58 | 0.13904 2 |0.34113
0.45 | 0.33480 8| 0.308% 10 |0.29970
0.55 |0.21887 89| 0.41477 16 | 0.25489
0.65 | 0.21887 16 | 0.18452 22 10,26843
0.75 |0.97842 14| 0.84258 8 |0.89641
0.85 |0.93244 9| 0.10134 + 1 | 10 |0.83464
0.%0 |0.27384 213 | -0,31159 31 |0.35870
0.92 | 0.21857 293 | -0.42475 34 | 0.29567
0.2 10.,164%0 300 | -0,33005 59 |0.26240
0.93 | 0,32830 731 0.8773¢ -1 3 |0,31815
0.94 0.83244 5.1 0,97680 32 |0,62662
0.85 10,1750 + 1| 43] 0,25244 +1 | 13 {0.15336 + 1
0.96 |0.32781 + 1| 56| 0.49640 +1 | 14 10.36279 + 1
0.97 |0.74156 +1 | 16| 0.85828 + 1 | 4 |0.76859 + 1
6.%8 [ 0.14891 + 2 8| 0.13720 + 2 | 4 10.14277 + 2
0.99 | 0.22287 + 2 61 0.20828 +2 | 1 ]0.2259% + 2
. 1,00 ] 0.27783 + 2 ¢! 0.30379 + 2 | 0.4 [0.276881 + 2




Table 2.

Tabulated and reconstructed values of the density function p(u,E) for the isotope
235U with E = 4.0 MeV accordihg to the data from the ENDF/B-IV Standard and ENDL

libraries.



Table 2

YW
e
ENDF /B-1V ENDL LTTASI
Standard

-1.00 0.58775 = 1 | 0.17310 0.17250
0,95 0.11209 - 1 | 0.13710 0.,13769
0.85 0.13624 - 1 | 0.71130 - 1| 0.76982 - 1
-0.75 0,64014 = 1 | 0.44120 - 1| 0.58130 - 1
-~ 0.53 0.97326 - 1 | 0.35020 = 1| 0.27955 - 1
0,55 0.94952 - 1 | 0.35020 - 1| 0,.36169 - 1
0,45 0.70763 - 1 | 0.49120 — 1| 0.49684 - 1
-9.35 0.45204 - 1 | 0.66130 —'1| 0.62925 -1
-0.25 0.48220 = 1 | 0.71130 - 1| 0.71519 - 1
-2.15 0.70514 - 1 | 0.93140 = 1| 0,94942 - 1
-0.05 0.10869 0.12000 0.11409

0.05 ©0.14282 0,15510 0.16374

0.15 0.16856 0.19910 0.18378

0.25 0.17974 0.19910 0.20866

0.35 0.17359 0.15110 0.13650

0.45 0.14206 0,13310 0.15038
0.55 0.79725 - 1 | 0.10600 0.84804 = 1
0.65 0.38667 - 1 | 0.11500 0.14523

0.75 0.28380 0.33210 0.39201

C.85 0.16285 + 1 | 0.12600 +1 | 0.12768 +1
0.25 0.60632 + 1 | 0.54220 +1 | 0.54024 +1
1.00 0.10635 + 2 | 0.10200 +2 | 0.10200 +2 .
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