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G. Voykov, V.'Gadjokov, K. Ilieva

Institute for Nuclear Research and Nuclear Energy,

Bulgarlan Academy of Sclences, Sofia

ABSTRACT

The Legendre-series coefficients of the anisotropy
density of neutron elastic scattering arevcomputed starting
from tabulated data and using the basis of natural cubic
splines. The method is implemented and incorporated in the
SUPERTOG package. Processing results are reported end com-

pared with previous ones.

INTRODUCTION

The anisotrepy density of scattering is usually repreéeht--
ed by means of the.Legendre-series'eoefficients. This is being
"done despite the weli-known fact that polynomials are not al-
ways suitable for the approiimation of this class of functions.
Nevertheless, as Legendre series are derived when the problem
is analytically solved and as there exists a number of computer
codes whlch solve the same problem numerically on the basis of
a polynom1a1 model, the search for effective numerlcal proce-
dures converting tabulated data into a set.of»Legendre coef-
ficients cannot as yet be considered out-of-date.

‘In ref.[1] a method is proposed which uses a basis of
special-class polynomials to repreaent both the amisotropy
and the Legendre polynomials. The‘Legendre coefficients are
then derived from these presentations. The procedure is pro-

grammed and incorporated in the SUPERTOG package which prepares



multigroup constants for the'solﬁtion}of neutron transfer
problems.

When this modified SUPERTOG version was used to pfepare
the L26P3S34 1ibrary[2] ’ however, a limited number of cases was
observed where unsatisfactory fits were computed. For some ma-
terials at certain energies aﬁd angles the‘anisotropy-density
function restored by means of the Legendre coefficients was
deviating considerably from table datahand even reaching negative
values.

In the present paper a gimilar method is described. It
differes from that of [1]by the use of natural cubic spline
basis instead of special-class polynomisls. Input data and out-
put results are, as before, tebulated anisotropy-density values
and Legendre coefficients respectively. Again, the procedure is

implemented and incorporated in SUPERTOG.

FORMULATION OF PROBLEM

Let the elastic-scattering amisotropy date in the centre-
of-mass system be given in the form of tabulated values of the
function psu,E), i.e. the probability density of scattering
a neutron of energy E at an angle & , Jv =cos # . To develop
in a Legendre-polynomial series will then mean to find the order

N end the coefficients {f,(E)} of the series |
' N

P () Ey=/_

£=0

2€+1

fe(E)Le(/l?) )
at given sets A

(il (PG B e
where Legﬁd is a Legendre polynomial of order €. It is request-

ed thet (1) restore with greatest possible accuracy the input

set {plu;, EN}.
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METHOD OF SOLUTION

Due to the orthogonalitﬂy of L, (#) ve obtain from eq. (1)
4 ! '

¢ (E) = (/4 E)Ly(rm) o
e 5P e/4 Yae

4
gnd m- 4 ‘S/‘LH } o _r
felE) = 2. (,E)L(,u)at , £=04,--., N . 5y
e(€) i=1 /“LP/‘4 L5 /7 .“ (2)
Let in each interval ‘[/‘uc,/u‘;H] ,oi= A2, ., m A the

function P(/u, E) be approxa_mated by a natural cubic spline with
coefficients by, c;, 'dy, ﬁ
P(/A,E)= pL + €-L(/u ‘/u )+c (/«/AL) + d.,(u/u )
where  u e E/ql; ,/u.;..'.4] ?.nd P. = Pflug, E
Accordingly, let ‘ J |
Lo () = Leo + feb(/*/“c)"‘ge‘,(/‘*/‘) 1-116“(/4/«(L

be the cubic-spline approx:.matlon of the polynomial Le(,u) where

the coefficients are &e Lo geu ’?e (s and Le i denotes Le (/«;_) .

We can now rewrite eq. (2) in the form
m-—q4 My
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. Integrating the previous expression we obtain the coef-
ficients sought for |
m

R Y A'f"‘ (K) ‘
[ %
Sete) = 7. L Ag i (3)
;81 wal K+ !
Where Ai.:/‘f'q.‘ -/"I: ) ia{ {,Z'..., m-4 .

The optimum order N is defined as follows. The coefficients
f¢(E) are computed up to € __=min(30,m~1). The set Ns[o,e. ]
is Investigated and a subject SE&N is defined for which the

values restored

S 28+4 g
T S gp(EdLgim) , se S
e=0 _
are non-negative. Then N is selected from the condition

(9) C(s) 2
( min  max, A; 5,;) - Xy — min

where Xls is the chi-square normalized to one degree of freedom,
A(? a.ndg?) are regpectively the absolute and the relative de-
viation at point i for order of approximstion s.

If S is an empfy set, .then the criterion is modified to

test a}l the orders € 6[0, e'ma.x] .

IfPLEMENTATION

The program implementation_takes into account the require-
ment that the method should work in the SUPERTOG enﬁironment,
using evaluated data in the ENDF/B format. Surely, the set of
~routines is also able to run outside the SUPERTOG—impbsed limits.
More essential are, however, their relations with data struc~
ture in library files. To damp dowh possible oscilletions of
the fitting function at intergrid points the algorithm sdds a
point to the middle of each interval [/«; WAk ]
i=1,2,e0e,m~1, Library files are usually built in a'way that
thé normalizing relation et i
1= $,(E) = 2 S,«; P ops B e

be satisfied for the case of linear interpoletion between each



pair of grid points} Hence, these additional points should be

given values :
. , y
,P(/"E)=_“I [F‘/‘*C)E)'* F“/“HnE)] -

Therefore, the vicinity of J,(E) to unity is a measure of vali-
‘dity for the iinear interpolation model.vAt a preliminary stage
of testing the method we used this property as a quéiity'control
of the spiine appfoximation. Moreover, we found it more appro-
priate to fit separately the two functions p(M,E) and Legﬂ)
rather than their product tpvu,E)l.eSM) . |

Our SUPERTOG version iﬁ which the algorithm outlined is
implemented includes: | |

(a) the necessary modi:ications of the SUPERTOG package,
version NEA-DATA-BANK (1978). These modifications practically
coincide with thoée introduced into the,package for the ortho-
normal-polynomial basis [1] H o

(b) the SPLINT subpackage which computes the coefficients

fe(E)of eq.(1). | | ,

The SUPERTOG modifications affect subroutines TRANS, GADD
and TMF4; to avoid collisiohs when reading in the library data
“on elastic-scattering anisotropy, a new TAB1S routine is added.

The SPLINT subpackaée is only called when thefcomﬁutation
of the elastic-scattering matrix is neéded and, in that casé,
if and only if the LTT parameter of the ENDF/B input file
equals 2 (this correspondg to tabulated values of the .
function of the probability densify).When both conditions are
satisfied, the TITF4 routine of SUPERTOG calls SPLINT which con-
sists of the following modules:

1) LTTAS1 - & control subroutine;

2) SPLINT - computes the coefficients §,(E) according to (3);



3) CRIT - selects the optimum order N of the Legendre's
fitting series;

4) PLX - celculates the velues of LEV” by means of the
three~term recurrence; |

5) TELSCL - computes the right-hand side of eq.(1) using.
the telescoping method; | '

6) SPLINE - carries out the natural cubic-spline appfo-

ximation [3] .

DISCUSSION

Testing results are illustreted in Tables 1-4. The first
three tables offer e comparison of precls1on reached when
Legendre coefflclents are computed in the orthonormal [1] vs
spline bases. The ENDL material 7132 (iron) was processed at
energies of.4,5 and 7 MeV. Table 4 shows the optimum orders I
and the values of §,(E) for the séme'energies. We cell here a
"fit order" the maximum order of Legendre polynomial in the
series. It should be noticed that, whatever the value computed
of $,(E) , SUPERTOG sets it to unity compulsorily. Hence, the
same unit vslue is used to compute the optimum order N of series
development.
| The following conclusions may be made from the testing
résults. The orthonormal expansion method sometimes shows an
ingtability manifested in linear fits of smooth but nonlinear
functions. Moreover, for rapidly-changing functions it may
lead to oscillations and even to.negative probabilities. In
these two cases the natural cubic spline method is the winner,
although in general it ensures e lower precisibn.becaﬁse of

stronger deviations from the linear interpolation model. This

means that §,(E) may strongly differ from unity in the spline



Table 1

‘Restored function ng,E) ; material 7132 (Fe)

of ENDL, E = .4 MeV -

o Library Orthonormal »p . Spline s,
: value basis p basis P
-1.0 | 0.44500 | 0.32238  27.6 | 0.45160  =1.5
-0.7 | 0.40000 | 0.37567 6.1 | 0.40502  =1,3
-0.5 | 0.40000 | 0.41119 -2.8 | 0.39988 0.3
0.1 0.44500 0.50000 =-12.4 | 0.45309  -1.8
1.0 | 0.71900 | 0.67762 5.8 | 0.73607  -2.4
| ‘ Table 2
Restored funétion PQ“»E) ; material 7132 (Fe)
 of ZNDL, E = 5 MeV
Library | Orthonormal ap | Spline 4P
/3 value basis £l " basis ?;‘ ’
-1.00 | 0.73128-1| 0.75361-1 =3.1| 0.11354 -55.3
20.85 | 0.36614=1| 0.41267-1 -12.7 0.46629-1 -27.4
20.50 | 0.91435-1| 0.96385-1 =5.4 0.10180  =11.3
-0.35 | 0.12805 0.12695 0.7{ 0.12502 2.4
~0.30 | 0.12805 0.13108 ~2.4| 0.13017  =1.7
-0.10 | 0.91435-1| 0.90433-1 1.1 0.11390 -24.6
0.15 | 0.36614=1| 0.38198-1 -4.3 0;33107-1‘ 9.6
0.30 | 0.36614=1| 0.40742-1 =11.3| 0.49516-1 =35.2
0.40 | 0.73128-1| 0.93188-1 -27.4| 0.13844 - -83.3
0.70 | 0.95137 | 0.97714 ~2.7 | 0.10471+1 =10.1
0.90 | 0.27411+1] 0.2742141 =0.4| 0.28575+1 -4.2
1.00 | 0.47518+1| 0.47540+1 =0.5 | 0.4840141 =1.9

* 0.73128-1 means 0.73128x10~"



Restored function PQ“'E)

*

Table 3

material 7132 (Fe)
of ENDL, E = 7 MeV

| bbrery | orthonoma L % | spline 2L 5
value basis basis ,
|=1.00 0.33186-1 | =0.79679 0.32305-1 2.7
-0.85 | 0.99458-2 | -0.32855-1 0.15910-1 =60.0
-0.50 | 0.49779-1 | 0.43169 0.55005-1 =10.5
-0.15 | 0.82865-1 | -0.67816-1 0.87012=-1  =5.0
0,00 | 0.82865-1 | -0.30687 0.89985-1 -8.6
0.35 | 0.33186-1 | -0.29278 0.31886=1 3.9
0.60 | 0.16593 0.68407 0.26093  =57.3
0.80 | 0.11295+1 | 0.23506+1 -108.0]0.13061+1 -6.8
0.85 | 0.17893+1 | 0.29167+1 -63.0|0.19804+1 =10.7
0.95 | 0.53078+1 | 0.42503+1  19.9[0.54755+1 =3.2
1.00 | 0.86164+1 | 0.50243+1  47.7{0.86812+1 =0.8
Table 4

Velues of optimum epproximetion orders N and
zero-order coefficients f (E) for the data
of Tables 1-3

E/MeV/ Approximation order | zero-order coefficient fo(E)
orthonormal spline rorthbnormal spline

0.4 1 -3 1.000000 0.998786

7.0 3 12 0.996811 0.979506

method. The orthonormal polynomials smodth the function being
fitted, while the splines do not.

10



The.study of the results for the same rahge of materials
and energies where the weak points of the orthonormal method
were detected leads to the Qoﬁclusion that_the same optimum
criterion yields acceptable sets of coefficients for allkthe
functions being fitted by means of the spline method. In particu-
lar, negative probabilities never occurred. On the other hand,
however, "good" functions (which represent the majority) are
better fitted by the orthonormal method.

In conclusion, we may recommend the splines in automated
procedures of data preparation while, if one can control the
optimum criterion during the calculations, the orthonormal

polynomials are recommended instead.
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