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Institute for Nuclear Research and Nuclear Energy, 
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ABSTRACT 

The Legendre-series coefficients of the anisotropy 

density of neutron elastic scattering are computed starting 

from tabulated data and using the basis of natural cubic 

splines. The method is implemented and incorporated in the 

SUPERTOG package. Processing results are reported and com­

pared with previous ones. 

INTRODUCTION 

The anisotropy density of scattering is usually represent-

ed by means of the Legendre-series coefficients. This is being 

done despite the well-known fact that polynomials are not al­

ways suitable for the approximation of this class of functions. 

Nevertheless, as Legendre series are derived when the problem 

is analytically solved and as there exists a number of computer 

codes which solve the same problem numerically on the basis of 

a polynomial model, the search for effective numerical proce­

dures converting tabulated data into a set of Legendre coef­

ficients cannot as yet be considered out-of-date. 

In ref.[ll a method is proposed which uses a basis of 

special-class polynomials to represent both the anisotropy 

and the Legendre polynomials. The Legendre coefficients are 

then derived from these presentations. The procedure is pro­

grammed and incorporated in the SUPERTOG package which prepares 
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multigroup constants for the solution of neutron transfer 

problems. 

When this modified SUPERTOG version was used to prepare 

the L26P3S34 library[2] , however, a limited number of cases was 

observed where unsatisfactory fits were computed. Por some ma­

terials at certain energies and angles the anisotropy-density 

function restored by means of the Legendre coefficients was 

deviating considerably from table data and even reaching negative 

values. 

In the present paper a similar method is described. It 

diffères from that of [l]by the use of natural cubic spline 

basis instead of special-class polynomials. Input data and out­

put results are, as before, tabulated anisotropy-density values 

and Legendre coefficients respectively. Again, the procedure is 

implemented and incorporated in SUPERTOG. 

FORMULATION OP PROBLEM 

Let the elastic-scattering anisotropy data in the centre-

of-mass system be given in the form of tabulated values of the 

function p(M, E) , i.e. the probability density of scattering 

a neutron of energy E at an angle Q- , A, =cos 9 .To develop 

in a Legendre-polynomial series will then mean to find the order 

U and the coefficients {^(E)} of the series 

P</*,E) = L ^~ f«<E)Le(/0 < 1 > 
at given sets 

where Lg(M is a Legendre polynomial of order Z • It is request­

ed that (1) restore with greatest possible accuracy the input 

set'ipí/t¿,E)}. 
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(2). 

METHOD OP SOLUTION i 

Due t o t h e o r t h o g o n a l i t y of L ^ A ) we o b t a i n from e q . ( 1 ) 

it (E) = j p</4¡ E) L¿(/*) JUC 

and ú i ' 

f e ( E ) - . Z i J . pi/*. E) L^í/*) ¿yu , € = 0 , V - -

Let i n each i n t e r v a l J C / ^ I A L + H I I ¿ = ' , . 2 > - - - > , ' V 1 ~ / Í t he 

f u n c t i o n pi/*, E) be approximated by a n a t u r a l cubic s p l i n e w i th 

c o e f f i c i e n t s b . , c . , ' d . , 
3 

' p (yu ,E) = p;. + $;, (/*-[/<:)+ c¡, ify*L)Z + ¿¿ l/*y¿) 

where /<, e C/t; , yU¿+4 3 and p¡. = p (/<¿ , E ) -

- ' I 
Accordingly, let ¡¡ 

be the cubic-spline approximation of the polynomial í¿ (> ) , where 
I 

the coefficients are fc ¿ »$e¿. »ii«(u and L^Í denotes L^Í/*¿) . 

We can now rewrite eq.(2) in the form 

= £^7 y*i ^ LPi\ ^ ^ - ^ ¿ J . + ^ Í A - ^ ) 1 * - u Í £ Í / « - « t - ) 5 ] -

' T L£,¿ r f€,C í /*}"/*^ + § « . ¿ ( / * - / < ¿ ) Z + ^ | ¿ (/*-,«£ ) 3 ] 
wi - •( 6 ¡ / * t -n ' 

I 

Pe U,¿. 

Pe * € , t + 

where 

A 

A 

A 

ÍO ) 

O) 

12) 

(*) 

«,£ 

«; L e.i. 

p ; g«,£ + tf¿ t£,L + C£ L € ( : 

A T , - p¿ íi«,£ + |¿£ #£,¿ t c¿ j -É |¿ +• cl¿ L¿ # , 
í 

A i ( ' t = £¿ ^e,¿ + k g « - t + dL iZ)i 

Í5-) 

€ ,t = ci ^e, í + ^c j c i . 

A€.£ - di lie,£ 



Integrating the previous expression we obtain the coef­

ficients sought for 
m - < 6 Ki"< tit) 

h^) - .21 I ^77- \ i (3) 
C» 1 it-0 k + < 

where AL=/*¿+1-yU¿ t £. <l2,..., w--t . 

The optimum order N is defined as follows. The coefficients 

ie(E) are computed up to £m=<min(30,m-1). The set U«[otg ] 

is investigated and a subject S£:N is defined for which the 

values restored 

21 ^ ~ *€(E)L4(/0 , *•* S 

are non-negative. Then N is selected from the condition 
(à)r(S> -. 2 

( min max. A¿ ° ¿ ) A b min 
s 

where X s is the chi-square normalized to one degree of freedom, 

A¿ andt>¿ are respectively the absolute and the relative de­

viation at point i for order of approximation s. 

If S is an empty set, then the criterion is modified to 

test all the orders £ ^[o, ̂  ] . 

IMPLEMENTATION 

The program implementation takes into account the require­

ment that the method should work in the SUPERTOG environment, 

using evaluated data in the EITDF/B format. Surely, the set of 

routines is also able to run outside the SUPERTOG-imposed limits, 

More essential are, however, their relations with data struc­

ture in library files. To damp down possible oscillations of 

the fitting function at intergrid points the algorithm adds a 

point to the middle of each interval F/°¿ > A t + < ] , 

i s 1,2,...,m-1. Library files are usually built in a way that 

the normalizing relation 
•i M¿+4 

X L . pl/M,E)d/« 

be satisfied for the case of linear interpolation between each 
•<- *.(E> - ü , 7v 
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pair of grid points. Hence, these additional points should be 

given values 

Therefore, the vicinity of ^0(E) to unity is a measure of vali­

dity for the linear interpolation model. At a preliminary stage 

of testing the method we used this property as a quality control 

of the spline approximation. Moreover, we found it more appro­

priate to fit separately the two functions ptfr,E) and L¿LM) 

rather than their product pu^E) L^CM • 

Our SUPERTOG version in which the algorithm outlined is 

implemented includes: 

(a) the necessary modifications of the SUPERTOG package, 

version NEA-DATA-BANK (1978). These modifications practically 

coincide with those introduced into the package for the ortho-

normal -polynomial basis Li II ; 

(b) the SPLINT subpackage which computes the coefficients 

fc(E)of eq.O). 

The SUPERTOG modifications affect subroutines TRANS, GADD 

and TMP4; to avoid collisions when reading in the library data 

on elastic-scattering anisotropy, a new TAB1S routine is added. 

The SPLINT subpackage is only called when the computation 

of the elastic-scattering matriz is needed and, in that case, 

if and only if the LTT parameter of the ENDF/B input file 

equals 2 (this corresponds to tabulated values of the 

function of the probability density). When both conditions are 

satisfied, the TI.IP4 routine of SUPERTOG calls SPLINT which con­

sists of the following modules: 

1) LTTAS1 - a control subroutine; 

2) SPLINT - computes the coefficients í¿LE) according to (3); 
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3) CRIT - selects the optimum order IT of the Legendre's 

fitting series; 

4) PLX - calculates the values of ^ih) by means of the 

three-term recurrence; 

5) TELSCL - computes the right-hand side of eq.(1) using, 

the telescoping method; 

6) SPLINE - carries out the natural cubic-spline appro­

ximation [3l • 

DISCUSSION 

Testing results are illustrated in Tables 1-4» The first 

three tables offer a comparison of precision reached when 

Legendre coefficients are computed in the orthonormal [il vs 

spline bases. The ENDL material 7132 (iron) was processed at 

energies of.4,5 and 7 MeV. Table 4 shows the optimum orders IT 

and the values of f0(
E) for the same energies. We call here a 

"fit order" the maximum order of Legendre polynomial in the 

series. It should be noticed that, whatever the value computed 

of i«(E) , SUPERTOG sets it to unity compulsorily. Hence, the 

same unit value is used to compute the optimum order II of series 

development. 

The following conclusions may be made from the testing 

results. The orthonormal expansion method sometimes shows an 

instability manifested in linear fits of smooth but nonlinear 

functions. Moreover, for rapidly-changing functions it may 

lead to oscillations and even to negative probabilities. In 

these two cases the natural cubic spline method is the winner, 

although in general it ensures a lower precision because of 

stronger deviations from the linear interpolation model. This 

means that i0(E) may strongly differ from unity in the spline 

8 



Table 1 

Restored function pOu,E) ; material 7132 (Pe) 

of ENDL, E m .4 MeV 

A 

-1.0 

-0.7 

-0.5 

0.1 

1.0 

Library 

value 

0.44500 

0.40000 

0.40000 

0.44500 

0.71900 

Orthonormal A 0 
— % basis p 

0.32238 27.6 

0.37567 6.1 

0.41119 -2.8 

0.50000 -12.4 

0.67762 5.8 

Spline A P 

basis p / 

0.45160 -1.5 

0.40502 -1.3 

0.39988 0.3 

0.45309 -1.8 

0.73607 -2.4 

Table 2 

Restored function p(A<|E) ; material 7132 (Fe) 

of ENDL, E = 5 MeV . 

A 

-1.00 

-0.85 

-0.50 

-0.35 

-0.30 

-0.10 

0.15 

0.30 

0.40 

0.70 

0.90 

1.00 

Library 

value 

*-

0.73128-1 

0.36614-1 

0.91435-1 

0.12805 

0.12805 

0.91435-1 

0.36614-1 

0.36614-1 

0.73128-1 

0.95137 

0.27411+1 

0.47518+1 

Orthonorrual 

basis 

0.75361-1 

0.41267-1 

0.96385-1 

0.12695 

0.13108 

0.90433-1 

0.38198-1 

0.40742-1 

0.93188-1 

0.97714 

0.27421+1 

0.47540+1 

p 

-3.1 

-12.7 

-5.4 

0.7 

-2.4 

1.1 

-4.3 

-11.3 

-27.4 

-2.7 

-0.4 

-0.5 

Spline AP ^ 

basis r 

0.11354 -55.3 

0.46629-1 -27.4 

0.10180 -11.3 

0.12502 2.4 

0.13017 -1.7 

0.11390 -24.6 

0.33107-1 9.6 

0.49516-1 -35.2 

0.13844 -83.3 

0.10471+1 -10.1 

0.28575+1 -4.2 

0.48401+1 -1.9 

0.73128-1 means 0.73128x10" 

9 



Table 3 

Restored function p(y^.E) ; material 7132 (Pe) 

of EKDL, E « 7 MeV 

A 

-1.00 

-0.85 

-0.50 

-0.15 

0.00 

0.35 

0.60 

0.80 

0.85 

0.95 

1.00 

Library-

value 

0.33186-1 

0.99458-2 

0.49779-1 

0.82865-1 

0.82865-1 

0.33186-1 

0.16593 

0.11295+1 

0.17893+1 

0.53078+1 

0.86164+1 

Orthonormal ^- % 
P basis 

-0.79679 

-0.32855-1 

0.43169 

-0.67816-1 

-0.30687 

-0.29278 

0.68407 

0.23506+1 -108.0 

0.29167+1 -63.O 

0.42503+1 19.9 

0.50243+1 47-7 

Spline 

basis 

0.32305-1 

0.15910-1 

0.55005-1 

0.87012-1 

0.89985-1 

0.31886-1 

0.26093 

0.13061+1 

0.19804+1 

0.54755+1 

0.86812+1 

¿ P of 

2.7 

-60.0 

-10.5 

-5.0 

-8.6 

3.9 

-57.3 

-6.8 

-10.7 

-3.2 

-0.8 

Table 4 

Values of optimum approximation orders ÎT and 

zero-order coefficients f0(E) for the data 

of Tables 1-3 

E/MeV/ 

0.4 

5.0 

7.0 

Approximation order 

orthonormal spline 

1 3 

21 8 

3 12 

zero-order coefficient fQ(E) 

orthonormal spline 

1.000000 0.998786 

0.995492 0.980027 

0.996811 0.979506 

method. The orthonormal polynomials smooth the function being 

fitted, while the splines do not. 
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The study of the results for the same range of materials 

and energies where the weak points of the orthonormal method 

were detected leads to the conclusion that the same optimum 

criterion yields acceptable sets of coefficients for all the 

functions being fitted by means of the spline method. In particu­

lar, negative probabilities never occurred. On the other hand, 

however, "good" functions (which represent the majority) are 

better fitted by the orthonormal method. 

In conclusion, we may recommend the splines in automated 

procedures of data preparation while, if one can control the 

optimum criterion during the calculations, the orthonormal 

polynomials are recommended instead. 
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