AVERAGE GROUP DATA FOR ${ }^{241} \mathrm{Pu}$ IN THE
 0.1 - $\mathbf{2 1 . 5} \mathbf{k e V}$ ENERGY REGION
 N.T. Koyumdzhieva and N.B. Yaneva
 Nuclear Research and Power Institute, Sofia, Bulgaria

(Translated from a Russian original published in Yadernye Konstanty 4/1990)

Translation editor: Dr. Alex Lorenz

February 1994

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria
February 1994

AVERAGE GROUP DATA FOR ${ }^{241} \mathbf{P u}$ IN THE

 0.1-21.5 keV ENERGY REGION

 0.1-21.5 keV ENERGY REGION
 N.T. Koyumdzhieva and N.B. Yaneva
 Nuclear Research and Power Institute, Sofia, Bulgaria
 (Translated from a Russian original published in Yadernye Konstanty 4/1990)

Translation editor: Dr. Alex Lorenz

AVERAGE GROUP DATA FOR ${ }^{241} \mathrm{Pu}$ IN THE 0.1-21.5 keV ENERGY REGION

N.T. Koyumdzhieva and N.B. Yaneva
Nuclear Research and Power Institute, Sofia Bulgaria

Abstract

Group neutron data for ${ }^{241}$ Pu neutron were calculated for the unresolved resonance region (0.1-21.5) keV using multilevel R-matrix formalism.

INTRODUCTION

Neutron data for the heavy isotopes of Pu are essential to improve fuel processing in the $U-P u$ cycle and also to predict reactor characteristics for a nuclear power plant. Recent efforts have been directed towards obtaining reliable physical models to have a reliable description of available experimental results and also to extrapolate neutron cross-sections in a region for which no (or little) experimental information exists [1].

In recent years several evaluations [2, 3, 4] have been made for ${ }^{241} \mathrm{Pu}$ in the unresolved resonance region. All these evaluations were based on the single-level Breit-Wigner formalism [5] with the addition of elastic scattering from the permanent background to the resonance cross-section to allow for the effect of inter-resonance interference and the contribution of widely spaced resonances. In the present paper the ${ }^{241} \mathrm{Pu}$ neutron data (average neutron cross-sections, resonance
self-shielding factors and their Doppler broadening) are calculated. Multilevel R-matrix formalism of the nuclear reactions (Reich-Moore approximation) [6] is used and allowance made for the statistical distributions of average resonance parameters by using the Monte-Carlo statistical method.

Average resonance parameters

Energy averaged resonance parameters are used to parameterize neutron cross-sections in the unresolved resonance region. They are constants for the given energy range (energy group) and their values change when they undergo transition to a different energy group. It is in this sense that we refer to the energy dependence of average resonance parameters.

In this paper we took the average resonance parameter values from the JAERI evaluation [3] and reduced them to the BNAB energy ranges [7] by the linear interpolation method.

The average radiative width $\overline{\Gamma_{\gamma}}$ and the potential scattering radius R_{c} are taken as energy independent values. For all spin states $\bar{\Gamma}_{\gamma}=0.4 \mathrm{eV}$ and $R_{c}=9.8 \mathrm{fm}$ (Table 1).

The average spacing between the resonances of a compound nucleus with $\operatorname{spin} J^{x}$ is $D_{J}=\frac{2(2 I+1)}{(2 J+1)} \quad D_{\text {obs, }}$ where I is the nuclear target spin, J is the compound nucleus spin, $D_{\text {obs }}$ is the average observed spacing between resonances in the low energy region. The energy dependence for D_{J} starts to develop when $E_{n}>4 \mathrm{keV}$, and this dependence is taken into account in $D_{\text {obs }}$ (Table 2). Not making allowance for the energy dependence $D_{\text {obs }}$ in the energy group (10-21.5) keV leads to a 2.4% drop in the average radiative capture cross-section $\bar{\sigma}_{\gamma}$ and to a 1.5% drop in the average fission cross-section $\bar{\sigma}_{\boldsymbol{f}}$.

In our evaluation, we make allowance for the contribution of p-resonance states of the compound nucleus as one state averaged over spin J. We are able to do this because the p-resonance
contribution to the neutron cross-sections in the region examined is relatively small ($\approx 10 \%$). Then we obtain the average spacing between the p-resonances from the following equation:

$$
\bar{D}_{(p)}=\frac{1}{\sum_{j} \rho_{j}}=\frac{1}{\sum_{j}(1 / D)}
$$

where p_{j} is the resonance density of a compound nucleus with a $\operatorname{spin} \mathrm{J}^{\mathrm{z}}$ 。

The power functions for s-states \bar{S}_{0} and for p-states \bar{S}_{1} are heavily energy dependent. We obtain their average group values from the JAERI evaluation by reduction to the corresponding energy groups in the $B N A B$ system by quadratic interpolation.

The average fission widths are also dependent on the energy value. We used the same procedure as for the power functions to obtain the fission widths for each compound nucleus state $\mathrm{J}^{\mathbf{x}}$. In the calculation process we retain the ratio of the fission width in one spin state to the fission width in every other, as it is done in the JAERI evaluation. Since we consider the p-resonance contribution of the compound nucleus as one state averaged over the spin conditions $J^{\top}=1^{-}, 2^{-}, 3^{-}, 4^{-}$, then $\overline{\Gamma_{f(p)}}$ is obtained as an average of the fission widths of these states. All the energy dependent average resonance parameters are given in Table 2.

The degrees of freedom for the neutrons $\left(\boldsymbol{v}_{n}\right)$, the fission $\left(\boldsymbol{v}_{\boldsymbol{f}}\right)$ and radiative $\left(\boldsymbol{v}_{\boldsymbol{\gamma}}\right)$ widths are given in Table 1. For compound nucleus s-resonance states the values $\boldsymbol{v}_{\boldsymbol{n}}$ and $\boldsymbol{v}_{\boldsymbol{f}}$ are the same as those obtained by other authors [2]. For the generalized $p-s t a t e$ we take $\mathbf{v}_{\mathrm{n}}=1$ and $\mathbf{v}_{\mathrm{f}}=1$. The contribution of each of the two fission channels for the $J^{\Sigma}=2^{+}$state is considered equal as the use of the Porter-Thomas distribution to describe Γ_{f} fluctuations is only justified in cases of very weakly or very strongly diverging relative contributions of the channels, and when they are equal the integral values of u can be used rather than $v_{\text {eff }}[2]$. The average number of prompt fission neutrons $\mathbf{u}_{\mathrm{n}}=2.913+0.149 \mathrm{E}_{\mathrm{n}}$ agrees with the JAERI evaluation.

Results and discussion

Calculations were carried out using the MNCARL program [8]. Group averages were calculated for the neutron cross-section values. The radiative capture cross-section $\bar{\sigma}_{\gamma}$ and the fission cross-section $\overline{\boldsymbol{\sigma}_{\mathrm{f}}}$ were calculated using the procedure proposed by Luk'yanov with the aim of optimizing the calculation process. If we write the K-matrix elements in the form: $K_{n n}=A_{1}+A_{2}$, $K_{f f}=B_{1}+i B_{2}, K_{n f}=C_{1}+i C_{2}$ then:

$$
\begin{gather*}
\bar{\sigma}=4-\frac{A_{2}+2 N+B_{2}(N-M)+B_{1} Q}{|\Delta|^{2}} \tag{1}\\
\bar{\sigma}_{f}=4 \frac{C_{1}^{2}+C_{2}^{2}}{|\Delta|^{2}}, \tag{2}
\end{gather*}
$$

where:

$$
\begin{aligned}
& N=A_{2} B_{2}+C_{2}^{2} \\
& M=A_{1} B_{1}-C_{1}^{2} \\
& Q=A_{1} B_{2}+B_{1} A_{2}-2 C_{1} C_{2} \\
& |\Delta|^{2}=\left(1+A_{2}+B_{2}+N-M\right)^{2}+\left(A_{1}+B_{1}+Q\right)^{2} .
\end{aligned}
$$

The calculation of the cross-section using formulas (1)-(2) gives identical results to calculations using (1 - iK) matrix elements [9].

The corresponding resonance self-shielding coefficients f_{t}, f_{f}, f_{y} and f_{n} and their Doppler broadening $\Delta t^{1,2}, \Delta f^{1,2}, \Delta \boldsymbol{\gamma}^{1,2}$ and $\Delta n^{1,2}$ were calculated for three temperatures, $3000 \mathrm{C}, 9000 \mathrm{C}$ and 21000 C , and also for the dilution cross-section values $\boldsymbol{o}_{0}=1 \mathrm{~b}$, $10 \mathrm{~b}, 100 \mathrm{~b}, 1000 \mathrm{~b}$. Doppler broadening was calculated according to the formulas:

$$
\begin{aligned}
& \Delta_{i}^{1}=\frac{\sigma_{1}\left(900^{\circ} \mathrm{C}\right) f_{i}\left(900^{\circ} \mathrm{C} ; \sigma_{0}\right)-\sigma_{i}\left(300^{\circ} \mathrm{C}\right) f_{i}\left(300^{\circ} \mathrm{C} ; \sigma_{0}\right)}{\sigma_{i}\left(300^{\circ} \mathrm{C}\right)} \\
& \Delta_{1}^{2}=\frac{\sigma_{i}\left(2100^{\circ} \mathrm{C}\right) f_{i}\left(2100^{\circ} \mathrm{C} ; \sigma_{0}\right)-\sigma_{1}\left(900^{\circ} \mathrm{C}\right) f_{i}\left(900^{\circ} \mathrm{C} ; \sigma_{0}\right)}{\sigma_{1}\left(300^{\circ} \mathrm{C}\right)},
\end{aligned}
$$

where $\mathrm{i} \equiv \mathrm{t}, \mathrm{f}, \boldsymbol{\gamma}, \mathrm{n}$. All the calculation results are given in Tables 5-8.

As can be seen from Table 2, the energy dependence $\overline{\Gamma_{f(p)}}$ is very weak. Calculations showed that not making allowance.for the energy dependence $\overline{\Gamma_{f(p)}}$ in the energy range $(0.1-21.5) \mathrm{keV}$ has no effect on the average radiative capture cross-section values which are very sensitive to the average fission width values. In this case $\overline{\Gamma_{f(p)}}$ was calculated as the average of the initial fission width values of all p-resonance channels; $\overline{\Gamma_{f 1}}=960 \mathrm{MeV}$, $\overline{\Gamma_{\mathrm{f} 2}}=270 \mathrm{MeV}, \overline{\Gamma_{\mathrm{f} 3}}=600 \mathrm{MeV}, \overline{\Gamma_{\mathrm{f} 4}}=230 \mathrm{MeV}$ (see JAERI [3]).

Kon'shin et al. [10] calculated the particle contributions of each spin state J in average fission cross-sections and of the radiative capture cross-section. Erom these calculations it can be seen that, owing to p-wave spin states, the fission cross-section is approximately 1% of the total fission cross-section at $E_{n}=1 \mathrm{keV}$. The same also applies to the radiative capture cross-section. When $E_{n}=10 \mathrm{keV}$, however, these contributions increase respectively by 10% for $\overline{\sigma_{y}}$ and 208 for $\overline{\boldsymbol{\sigma}_{\mathrm{f}}}$. Then use of one averaged p-resonance state in the 11 th energy group results in a 10% reduction in $\bar{\sigma}_{\gamma}$ and an approximately 18% reduction in $\bar{\sigma}_{f}$. Therefore we are limited to using one averaged p-resonance state only up to an energy value of $E_{n}=2 \mathrm{keV}$. The average fusion widths of the states $\mathrm{J}^{\mathbf{z}}=1^{-}$, $2^{-}, 3^{-}, 4^{-}$in energy groups 13,12 and 11 are given in Table 3.

In Table 4 the calculated group cross-sections of the present work are compared with the group cross-sections obtained on the basis of a full system of evaluated data [2]. These are the only average group cross-sections for ${ }^{241} \mathrm{Pu}$ in the BNAB energy ranges known to us. It can be seen that the calculated radiative capture cross-sections $\bar{\sigma}_{\mathbf{\gamma}}$ of the present paper are systematically higher than Kon'shin's group cross-sections. Comparison with the only available experimental data by Weston [11] (Fig. 1) shows good agreement, with the exception of the 17 th energy group (100-215) eV. The experimental data are taken from Ref [3].

In Fig. 2 the fission cross-section is compared with experimental results.

Conclusion

The average group data (e.g., average neutron cross-sections, resonance self-shielding coefficients, and their Doppler broadening) were calculated on the basis of a self-consistent approach to the calculation of the resonance structure of neutron cross-sections. The average group data were calculated in the BNAB system energy groups.

Fig. 1. Comparison of evaluated group radiative capture cross-sections $\bar{\Gamma}_{\gamma}$ (solid line) with experimental data.

Fig. 2. Comparison of evaluated group fission cross-sections $\overline{\Gamma_{t}}$ (solid line) with experimental data.

Table 1
Average inter-resonance spacing \bar{D}_{J} and degrees of freedom for neutrons v_{n}, fission v_{f} and radiative $v_{\boldsymbol{p}}$ widths for compound nucleus s - and p-resonances

r	J^{π}	g_{J}	ν_{n}	ν_{f}	ν_{γ}	R_{c}	I_{m}
0	2^{+}	0.4167	1	2	∞	9.8	0.04
0	3^{+}	0.5833	1	1	∞	9.8	0.04
1	1^{-}	0.2500	1	2	∞	9.8	0.04
1	2^{-}	0.4167	2	2	∞	9.8	0.04
1	3^{-}	0.5833	2	2	∞	9.8	0.04
1	4^{-}	0.7500	1	2	∞	9.8	0.04

1: orbital moment of s- and p-neutrons,
J: compound nucleus spin and parity,
g_{s} : statistical factor

Table 2
Energy dependence of the strength functions \bar{S}_{0} and \bar{S}_{1} and of the average fission widths for s- $\overline{\Gamma_{f(2+)}}$ and $\overline{\left.\Gamma_{\mathrm{f}(9+1)}\right)}$ and p-resonances $\left(\overline{\Gamma_{f(p)}}\right)$ and $D_{o b s}$

Table 3
Average fission widths $\overline{\Gamma f}$ for p-resonance states above $\mathrm{E}_{\mathrm{n}}=1 \mathrm{keV}$

Table 4
Average group cross-sections $\overline{\boldsymbol{\sigma}}_{\mathrm{t}}, \overline{\mathbf{\sigma}_{\mathrm{f}}}, \overline{\boldsymbol{\sigma}_{\mathrm{y}}}$ and $\overline{\mathbf{\sigma}_{\mathrm{n}}}$

Table 5
Self-shielding resonance factors f_{t} and f_{f}

Table 6
Self-shielding resonance factors f_{γ} and f_{n}

Table 7
Doppler broadening of self-shielding factors

Table 8
Doppler broadening of self-shielding factors

REFERENCES

[1] KUZ'MINOV, B.D., The development trend in nuclear data research in: Neutron Physics, Moscow 1 (1988) 41.
[2] KON'SHIN, V.A., "Nuclear physics constants of fissionable nuclei", Handbook, Moscow, Ehnergoatomizdat (1984).
[3] YASUKI KIKUCHI and NOBUO SEKINE, Evaluation of Neutron Nuclear Data of ${ }^{241} \mathrm{Pu}$ for JENDL-2, Report JAERI-M 84-111, NEAND(J) 102/U, INDC(JPN) 88/L.
[4] EVALUATED NUCLEAR DATA FILE, ENDF/B-4-GEN/R.
[5] BREIT, G. and WIGNER, E.P., Phys. Rev. 49 (1936) 519.
[6] REICH, C.W., MOORE, M.S., Phys. Rev. 111 (1958) 929.
[7] ABAGYAN, L.P., BAZAZYANTS, N.O., NIKOLAEV, M.N. and TSIBULYA, A.M., "Group constants for reactor calculations and shielding", Moscow, Ehnergoatomizdat (1984).
[8] BUTSEVA, G.L. et al., Spectrum Processing Program Library for the ES EhVM type computers, B-10-1-88-2, Dubna: OIYaI, (1988).
[9] VANKOV, A.A. et al., Nucl. Sci. Eng. 96 (1987) 122.
[10] KON'SHIN, V.A. et al., Evaluation of nuclear data for ${ }^{241} \mathrm{Pu}$ in the neutron energy region $10^{-3} \mathrm{eV}-15 \mathrm{MeV}$. Part 3, Preprint, A.V. Lykov Institute of Heat and Mass Transfer, Minsk'(1979).
[11] WESTON, L.W. and TODD, J.H., Nucl. Sci. Eng. 65 (1978) 454.
[12] CARLSON, G.W., BEHRENS, W. and CZIRR, J.B., Nucl. Sci. Eng. 63 (1977) 149.
[13] BLONS, J., Nucl. Sci Eng. 51 (1973) 130.

Article submitted for publication 4 July 1990.

