INDC-240

PROGRESS REPORT
OA RUCLEAR DATA RESEARCH IN BRASIL

for the period May 1968 to May 1969

INSTITUTO DE ENERGIA ATÔAICA

Operated by the Conissào Nacional de Energia Nuclear (CNEN) and by the Universidade de Säo Paulo (Brasil)

the TOTAL MLTTRON CROSS-SECTION FOR POLYCRYSTALLINE IRON

L.A. Vinhas, S.B.Herdade, C.Rodriguez and L. Amaral. Instituto de Energia Atômica, S.Paulo

The total neutron cross section for polycrystalline Iron has been measired for neutrons with wavelength in the range of $0,750 母-5,444 \&$ using the curved slit slow neutron chopper and time of flight spectrometer installed in one of the bean holes of the IEAR-1 swiming pool reactor of the Instituto de Energia Atômica íReport IRA 136).

The messurements were made with a sample of polycrystalline iron, reduced by hydrogen (The Carlo Erba Co. Milan, Italy); the average grain size of the sample was of 1 micron and the number of nuclei per cubic centimeter was determined by measuring the sample weight and its volume.

The results are presented in Table I with the statistical errors of the measurement.

TOTAL NEUTROA CROSS SECTION OF FE

Laercio A. Vinhas, Silvio B. Herdade Claudio Rodriguez and Lia Q. do Amaral
 reference: IEA-152

$\lambda(\$)$	$\sigma_{\text {total }} \text { (barns) }$			$\lambda($ R $)$1.034	$\sigma_{\text {totaf }} \text { barns) }$		
0.750	11.88		. 11		12.46	\pm	. 05
0.760	12.29		. 11	1.045	12.44	\pm	. 05
. 771	12.17		. 10	1.056	12.45	\pm	. 05
. 792	11.96		. 09	1.066	12.60	\pm	. 05
. 802	12.02		. 09	1.077	12.65	\pm	. 05
. 813	11.83		. 08	1.097	12.80	\pm	. 05
. 824	12.04	\pm	. 08	1.098	12.79	\pm	. 05
. 834	12.02		. 08	1.108	12.80	\pm	. 05
. 845	12.20		. 08	1.119	12.66	\pm	. 05
. 855	12.08		. 08	1.129	12.50	\pm	. 04
. 866	12.28		. 07	1.140	12.51	\pm	. 04
. 876	12.39		. 07	1.150	12.43	\pm	. 04
. 887	12.16		. 07	1.161	12.41	\pm	. 04
. 897	12.34		. 07	1.172	12.57	\pm	. 04
. 908	12.40		. 07	1.182	12.53	\pm	. 04
. 918	12.09		. 07	1.193	12.58	\pm	. 04
: 929	12.19		. 07	1.203	12.71	\pm	. 04
. 940	12.30		. 06	1.214	12.70	\pm	. 05
. 950	12.21		. 06	1.224	12.69	\pm	. 05
. 961	12.23		. 06	1.235	12.76	\pm	. 05
. 971	12.20	\pm	. 05	1.245	12.80	\pm	. 05
. 982	12.31	\pm	. 05	1.256	12.87	\pm	. 05
. 992	12.29	\pm	. 05	1.266	12.87	\pm	. 05
1.003	12.41	\pm	. 05	1.277	12.86	\pm	. 05
1.013	12.42	\pm	. 05	1.288	12.85	\pm	. 05
1.024	12.55	\pm	. 05	1.298	12.82	\pm	. 05

$\lambda(\mathbb{R})$	$\sigma_{\text {total }}(\text { barns })$			$\lambda(8)$1.646	$\sigma_{\text {total }} \text { (barns) }$		
1.309	12.89		. 05		13.08	\pm	. 06
1.319	13.02	\pm	. 05	1.657	23.08	\pm	. 06
1.330	12.93		. 05	1.667	13.00	\pm	. 66
1.340	12.93		. 05	1.678	13.22	\pm	. 06
1.351	12.88		. 05	1.688	13.18	\pm	. 06
1.361	12.77		. 05	1.699	13.34	\pm	. 06
1.372	12.68	\pm	. 05	1.709	13.32	\pm	. 06
1.383	12.75		. 05	1.720	13.59	\pm	. 06
1.393	12.83	\pm	. 05	1.731	13.65	\pm	. 06
1.404	12.93		. 05	1.741	13.77	\pm	. 07
1.414	13.14		. 05	1.752	14.00	\pm	. 07
1.425	13.13		. 05	1.762	13.91	\pm	. 07
1.435	13.24		. 05	1.773	14.12	\pm	. 0 ?
1.446	13.28		. 05	1.783	14.07	\pm	. 07
1.456	13.41		. 05	1.794	14.11	\pm	. 07
1.467	13.51		. 05	1.804	13.89	\pm	, 07
1.477	13.68		. 05	1.815	13.44	\pm	. 07
1.488	13.83		. 05	1.825	13.01	\pm	. 07
1.499	13.80		. 05	1.836	12.82	\pm	. 07
1.509	13.87		. 05	1.847	12.82	\pm	. 07
1.520	13.51		. 05	1.857	13.01	\pm	. 07
1.530	12.99		. 05	1.868	12.92	\pm	. 07
1.541	12.63		. 05	1.878	13.24	\pm	. 07
1.551	12.50		. 05	1.889	13.19	\pm	. 07
1.562	12.38		. 05	1.899	13.33	\pm	. 07
1.57?	12.36	\pm	. 05	1.910	13.44	\pm	. 07
1.583	12.50	\pm	. 05	1.920	13.52	\pm	. 08
1.593	12.80	i	. 05	1.931	13.61	\pm	. 08
1.604	12.74	\pm	. 05	1.942	13.73	\pm	. 08
1.615	12.88	\pm	. 06	1.952	13.96	\pm	. 08
1.625	1.3 .03	\pm	. 06	1.963	14.05	\pm	. 08
1.636	13.01	\pm	. 06	1.973	14.18	\pm	. 08

tetal newtion ニavos sectiou of Fe

$\lambda(R)$	$\sigma_{\text {total }}$	barns)	$\lambda(1)$	$\sigma_{\text {total }}$	(barns)
2.931	13.85	$\pm .08$	3.615	18.72	$\pm .14$
2.953	13.79	$\pm .08$	3.637	18.73	$\pm .15$
2.974	14.03	$\pm .08$	3.658	19.29	$\pm .15$
2.995	14.14	$\pm .08$	3.679	19.11	$\pm .16$
3.017	14.28	$\pm .08$	3.701	19.18	$\pm .16$
3.038	14.23	$\pm .08$	3.722	19.65	$\pm .17$
3.059	14.50	$\pm .08$	3.744	19.99	$\pm .18$
3.081	14.55	$\pm .09$	3.765	19.97	$\pm .: 8$
3.102	14.73	$\pm .09$	3.786	20.27	$\pm .19$
3.124	15.02	$\pm .09$	3.808	20.44	$\pm .20$
3.145	15.23	$\pm .10$	3.829	20.89	$\pm .20$
3.166	15.09	$\pm .10$	3.850	20.63	$\pm .20$
3.188	15.45	$\pm .10$	3.872	20.74	$\pm .20$
3.209	15.67	$\pm .10$	3.893	20.70	$\pm .20$
3.230	15.67	$\pm .10$	3.915	21.15	$\pm .21$
3.252	15.96	$\pm .10$	3.936	21.35	$\pm .21$
3.273	16.03	$\pm .10$	3.957	21.59	$\pm .22$
3.295	16.30	$\pm .10$	3.979	20.81	$\pm .22$
3.316	16.48	$\pm .11$	4.000	20.39	$\pm .23$
3.337	16.61	$\pm .11$	4.022	18.24	$\pm .22$
3.359	16.70	$\pm .11$	4.043	15.68	$\pm .22$
3.380	16.84	$\pm .12$	4.064	12.78	$\pm .21$
3.402	16.99	$\pm .12$	4.086	10.21	$\pm .21$
3.42?	17.29	$\pm .12$	4.107	8.55	$\pm .20$
3.444	17.33	$\pm .12$	4.128	7.97	$\pm .19$
3.466	17.40	$\pm .12$	4.150	7.30	$\pm .18$
3.487	17.84	$\pm .13$	4.154	6.86	$\pm .18$
3.508	17.80	$\pm .13$	4.164	7.27	$\pm .19$
3.530	17.95	$\pm .13$	4.175	7.81	$\pm .18$
3.551	18.19	$\pm .13$	4.186	7.12	$\pm .18$
3.573	18.32	$\pm .14$	4.196	6.78	$\pm .19$
3.594	18.68	$\pm .14$	4.207	7.03	$\pm .19$

total neutron cross section of Fe

total neutron cross section of Fe

$\lambda(8)$	$\sigma_{\text {total }} \text { (barns) }$			$\lambda(8)$5.191	$\sigma_{\text {total }}$ (barns)		
4.915	7.70	\pm	. 26		7.98	\pm	. 32
4.926	8.24	\pm	. 26	5.201	8.69	\pm	. 33
4.937	7.25	\pm	. 25	5.212	8.16	\pm	. 33
4.947	7.87	\pm	. 26	5.222	8.34	\pm	. 33
4.958	8.31	\pm	. 26	5.233	8.13	\pm	. 33
4.968	8.01	\pm	. 27	5.243	8.34	\pm	. 34
4.979	7.78	\pm	. 27	5.254	8.83	\pm	. 34
4.990	7.57	\pm	. 27	5.265	8.69	\pm	. 35
5.000	8.04	\pm	. 27	5.275	8.60	\pm	. 35
5.011	8.19	\pm	. 28	5.286	8.52	\pm	. 35
5.021	8.13	\pm	. 28	5.296	8.54	\pm	. 35
5.031	8.06	\pm	. 28	5.307	8.36	\pm	. 36
5.042	8.62	\pm	. 29	5.317	9.12	\pm	. 37
5.053	8.04	\pm	. 28	5.328	8.44	\pm	. 37
5.064	8.20	\pm	. 29	5.339	8.70	\pm	. 37
5.074	7.99	\pm	. 29	5.349	8.35	\pm	. 37
5.085	7.81	+	. 29	5.360	8.56	\pm	. 38
5.095	8.22	\pm	. 30	5.370	8.85	\pm	. 40
5.106	7.96	\pm	. 29	5.381	8.59	\pm	. 40
5.116	8.03	\pm	. 30	5.392	8.08	\pm	. 38
5.127	8.18	\pm	. 30	5.402	9.04	\pm	. 43
5.138	8.17	\pm	. 30	5.413	8.16	\pm	. 40
5.148	7.93	\pm	. 30	5.423	8.82	\pm	. 40
5.159	7.90	\pm	. 30	5.434	8.37	\pm	. 41
5.169	8.15	\pm	. 30	5.444	8.41	\pm	. 42
5.180	8.50	\pm	. 32	is			

INFLUERCE AND ELIMINATION OF TEE EFPECT OF CONTAMINATION DUE TO SECOND ORDER REFLLECTION NEOTRONS IN TRANSHISSION MEASURPMENT WITH THE CRYSTAL SPECTROMETER

R. Stasiulevicius and R. Fulfaro Instituto de Energia Atômica, São Paulo, Brasil

In order to increase the interval of energy in w'ch the IBA crystal spectrometer operates, some methods were developped for eliminating neutrons frow second order reflections, that influence the measurement of a total cross section, σ_{T}. To estimate these influences, measurements of σ_{T} of gold, In the region of energy 0.01 to 1 eV , were made with monochromator crystals of AI and Ge, and a comparison was made between the obtained experimental points and the theoretical curve of σ_{T} for Au. Both crystals were utilized in the planes (ill), Al (111) giving the strongest intensity. However, for Ge (111) the second order reflections are theoretically forbidden, giviag thus an advantage over Al (111) for measurements at lower energies, where this contamination effect is mostly felt. The lover limit of eaergy is 0.04 eV for Al (111) and 0.025 eV when Ge (111) is used; for energies below this value (0.025 eV), the effect of contanination of higher orders than the second are present. In the region of higher energies, close to 1 eV , measurements of σ_{T} were made only with Al (111), and it was verified that there is not much influence of higher order contaminations for cross sections varying as $1 / v$, as it is the case for gold. Nevertheless, the measurement of a resonance in that region is pariicuianiy second order reflections; these effects were estimated in the measurement of the resonance of Iridium at $R=0.654 \mathrm{eV}$, and a Tellurium filter was used in order to elimingte them.

SLON-NEUTRON SCATTERING AND ROTATIOTAL FREEDCH OF METHYL GROUPS IN SEVERAL URGANIC COMPOURDS

S.B. Herdade
Instituto de Eneryie Atômica, Sảo Paulo, Brasil

APPENDIX
 SLOA-AEUTRON SCATTERING ARD ROTATIONAL FREEDOM OF TRE CH 3 GROUP IH
 ACETONITRILE

The barrier for internal rotation of the CH_{3} group in acetonitrile is expected to be zero. Nevertheless, proton magnetic resonance measurements (16) resulted in a barrier of $2,6 \mathrm{Kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{Cr}$ in the soi id state at low temperatures. This barrier has been attibuted to intermolecu lar forces within the crystal.

The neutron scattering cross-section σ_{s} / H vs λ_{n}, for acetonitrile, is presented in Figure 4, as measured in the 1iquid state at room temperatu where l re. The slope 12.6 ± 0.3 barns $/ \AA-H$ corresponds to a free rotation of the CH_{3} group, probably indicating that the influence of intermolecular forces is negligible for this compound in the liquid state.

As all mubstances in this paper can be considered as non-associated liquids, this last coment may be also extended to them.
(16) Stejknl, E.O, Woesener, D.E., Parrar, T.C. and Gutowaky, H.S., J. Chew. Phwt. 31, 55 (1959)

1) SLON NEUTRON SCATTERING ARD ROTATIONAL FREEDOM OF METEYL GROUPS TN SEVERAL ORGANIC COAPOUNDS

S.B. Herdade

Instituto de Energia Atômica , Sào Paulo , Brasil

Total cross-sections of $\mathrm{CH}_{3} \mathrm{NO}_{2},\left(\mathrm{CH}_{3}\right) \cdot \mathrm{CO}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO},\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$, and dimethyl polysiloxane (silicone oil), have been measured for neutrons with wavelength in the range 5-10 $\AA_{\text {. The Scattering cross- }}$ sections per H atom, σ_{s} / H, may be approximated by stright lines $\sigma_{s} / H=$ - $a_{s}+b_{s} \lambda_{n}$, for $\lambda_{n}>5$. An empirical correlation is observed to exist between the slopes b_{8} and the barrisr heights for internal rotation of CH_{3} groups in the molecules, and a calibration curve is plotted using some of the experimentally determined slopes and the published values of the barrier heights determined by other physical methors.

From the slopes (12.3 ± 0.5) barns/R-H for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}$, and ($12,3 \pm 0.3$) barns $/ \AA-H$ for dimethyl polypiloxane, it is concluied that the internal rotation of CH_{3} groups in these compounds is practically free. An average barrier height of about 1 Rcal/mole is estimated for $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, from the experimentally determined slope (10.8 ± 0.3) barns $/$ R-H.
(Paper published in the Proceedings of the Copenhagen Symposium on Neutron InelastIc Scattering - Copenhagen, May 20-25, 1968 - pag. 197).

C. Rodriguez, L.A. Vinhas, S.B. Herdade and L. Q. Amaral
Reference: IEA - 152 - page 91

The total neutron cross section of UO_{2} has been measured with a slow neutron chopper and time-of-f1ight spectrometer (see IEA-136), in the neutron wavelength region of $1.0 \AA$ to $8.0 \AA$. A He ${ }^{3}$ detector with a pressure of 2 atmospheres has been used.

The UO_{2} sample was cylindrical, with a 3.2 cm diameter and 1.0 cm thick; the density was of $10.45 \mathrm{~g} / \mathrm{cm}^{3}$. This sample has been sintered at 14009 C by the Division of Metallurgy of the IEA. Its procedence is shown in the graph below.

The experimental results are in the separate table. The quotei errors are statistical only. The data for $\lambda<3.6 \&$ represent an average over three channel numbers, and for $\lambda>5.2 \&$ they are an average over results obtained by three independent measurements.

The number of atems fburn of the ample has been deternined from mass and sutface measurcments. The mass was measured many times, during
the experiments, to ensure that there was no water absorption by the sample.
the coherent elastic scattering has been calculated theoretically from the assumption of a crystalline structure of the CaF_{2} type. with $a_{0}=$ $=5.47$. The scattering amplitudes and the Debye temperatures of U and 0 were taken from the interature.

From the region $\lambda>6.3 \mathrm{X}$, ord supposing a I / v absorption, the extrapolated value for the thermal absorption cross section

$$
\sigma_{t h}\left(\mathrm{UO}_{2}\right)=8,2 \pm 0.6 \mathrm{~b}
$$

is obtained.

TOTAL RIEUTRON CROSS SECTION OF 00_{2}

Claudio Rodriguez, Laércio A. Vinhas, Silvio B. Herdade and Lia Q. Amaral .
reference: IEA-152 - page 91

$\lambda(1)$	$\sigma_{\text {i:otal }}(\text { barn) }$		$\lambda(\mathbb{R})$	$\sigma_{\text {total }}$	(barn)
$1.000{ }^{\circ}$	$20.2 \pm$. 2	1.927	23.2	$\pm .2$
1.035	$20.4 \pm$. 2	1.963	23.5	$\pm .2$
1.071	$20.7 \pm$. 2	1.999	23.6	$\pm .2$
1.107	20.9 士	. 2	2.034	23.8	$\pm .2$
1.: 3	$20.7 \pm$. 2	2.070	24.7	$\pm .2$
1.175	$20.7 \pm$. 2	2.106	24.9	$\pm .2$
1.214	$20.8 \pm$. 2	2.141	25.6	$\pm .2$
1.250	$21.2 \pm$. 2	2.177	25.5	$\pm .2$
1.285	$21.2 \pm$. 2	2.213	24.5	$\pm .2$
1.321	$21.3 \pm$. 2	2.248	24.2	$\pm .2$
1.357	$21.7 \pm$. 2	2.284	23.0	$\pm .2$
1.392	$21.9 \pm$. 2	2.320	22.8	$\pm .2$
1.428	$21.8 \pm$. 2	2.355	22.9	$\pm .2$
1.464	$21.5 \pm$. 2	2.391	23.6	$\pm .2$
1.499	21.3 t	. 2	2.427	24.0	$\pm .3$
1.535	$21.3 \pm$. 2	2.462	24.4	$\pm .3$
1.571	$21.7 \pm$. 2	2.498	23.7	$\pm .3$
1.606	$21.7 \pm$. 2	2.534	24.3	$\pm .3$
1.642	$22.2 \pm$. 2	2.569	24.4	$\pm .3$
1.678	22.5 亡	. 2	2.605	24.8	$\pm .3$
1.713	$22.5 \pm$. 2	2.641	24.9	$\pm .3$
1.749	$22.2 \pm$. 2	2.676	25.2	$\pm .3$
1.785	$22.7 \pm$. 2	2.712	25.4	$\pm .3$
1.820	$22.7 \pm$. 2	2.748	25.0	$\pm .3$
1.850	$22.9 \pm$. 2	2.783	24.7	- 3
1.892	$23.3 \pm$		2.819	25.0	$\pm .3$
16			4		

total neutron cross section oi UO_{2}

$\lambda(\AA)$	$\sigma_{\text {total }}{ }^{\text {(ba }}$		$\lambda(8)$	$\sigma_{\text {total }}$	(barn)
2.855	$25.6 \pm$. 4	4.57	24.1	$\pm .3$
2.890	$25.6 \pm$. 4	4.65	25.0	$\pm .3$
2.926	$25.5 \pm$. 4	4.74	25.4	$\pm .3$
2.962	$26.1 \pm$. 4	4.82	26.5	$\pm .3$
2.998	$27.2 \pm$. 4	4.91	26.7	$\pm .3$
3.033	$27.4 \pm$. 4	4.99	27.1	$\pm .3$
3.063	$27.5 \pm$. 4	5.08	27.8	$\pm .4$
3.124	29.2 士	. 4	5.16	28.6	$\pm .4$
3.159	$30.2 \pm$. 4	5.25	29.4	$\pm .3$
3.195	$30.3 \pm$. 4	5.34	30.2	$\pm .3$
3.230	$30.4 \pm$. 4	5.42	30.6	$\pm .3$
3.266	$30.2 \pm$. 4	5.51	31.1	$\pm .4$
3.301	$30.7 \pm$. 4	5.59	31.3	$\pm .4$
3.337	$29.1 \pm$. 4	5.68	32.2	$\pm .4$
3.372	$29.0 \pm$. 4	5.76	32.9	$\pm .5$
3.408	$29.4 \pm$. 4	5.85	33.3	$\pm .5$
3.443	$29.4 \pm$. 4	5.94	33.4	$\pm .5$
3.479	$30.1 \pm$. 4	6.02	34.2	$\pm .5$
$? .514$	$30.4 \pm$. 5	6.11	34.9	$\pm .6$
3.550	$31.1 \pm$. 5	6.19	35.0	$\pm .6$
3.585	$31.8 \pm$. 5	6.28	33.6	$\pm .6$
3.63	$32.1 \pm$. 2	6.36	31.0	$\pm .6$
3.71	$32.7 \pm$. 2	6.45	29.9	$\pm .7$
3.80	$30.7 \pm$. 2	6.53	30.2	$\pm .7$
3.88	$26.6 \pm$. 2	6.62	30.9	$\pm .7$
3.97	$22.8 \pm$. 2	6.70	31.5	$\pm .7$
4.05	$22.5 \pm$. 3	6.79	31.3	$\pm .8$
4.14	$22.1 \pm$		6.88	31.5	$\pm .8$
4.22	$23.2 \pm$	$.3^{\circ}$	6.96	32.3	$\pm .9$
4.31	$23.7 \pm$. 3	7.05	32.9	$\pm .9$
4.40	$24.2 \pm$		7.13	33.5	± 1.0
4.48	$24.5 \pm$		7.22	33.6	± 1.0

total neutron cross section of OO_{2}

$\lambda(8)$	$0_{\text {total }}$ (barn)	$\lambda(1)$	$\sigma_{\text {total }}{ }^{\text {(barn) }}$
7.30	34.2 ± 2.0	7.73	35.2 ± 1.4
7.39	34.8 ± 1.1	8.82	36.7 ± 1.5
7.47	34.5 ± 1.2	7.90	35.7 ± 1.6
7.56	34.9 ± 1.2	7.99	37.1 ± 1.7
7.65	34.9 ± 1.3		
5		n	

THE EFFICIENCY OF h REUTRON "LONG COURTER" CALCULATED EY TAE MONIE CARLO METHOD

O.Y. Mafra and W. Sader
Instituto de Rnergia Atồica, São Paulo

Abstract

A computer program in Fortr.a II language, was developped in order to calculate, by a Monte Carls process, the efficiency of a system of BF_{3} meutron counters imbedded in a moderating mediun. Six of such counters are finbedded in a paraffin cylinder on whose axis a monoenergetic neutron source was placed.

For each neutron of a pre-deternined energy, its trajectory and energy losses are simulated until the neutron reaches the detector and is either absorbed by the detector, or by the paraffin or escapes from the moderator.

In the last two cases a new history is started and the neutron is considered as lost. In the case that the neutron reaches the detector, its intrinsic efficiency, which depends on the neutron energy, is calculated.

The efficiency of the whole aystea is also calculated. under the hypothenis that the six detectors are connected in parallel.

A.Suarez, F.A.B. Coutinho and E. Mazzili
Instituto de Energia Atômica, Sào Paulo

It is well known that there exists no analytical expression for calculating the resolution of a magnetic spectrometer when the second or higher orders of approximation are taken into account. In order to overcome this difficulty, a computer program was developped in order to calculate the resolution and the line shape of the beta-ray spectrometer Instsiled at the IEA reactor for capture gama-ray studies.

The calcuiation is made by using the Monte Carlo method for the simulation of random orbits originated in a particles source, whose dimensions and location in the spectrometer are previously specified.

The resolution function is obtained by registering the number of particles, of a given momentum interval, which are incident on a detector of pre-determirad dimensions and location. At the same time, the particles distribution both in the radial and axial directions are registered for particles of the same momentum.

The piogiaum can aiso be used for determining the spectrometer resolution when a system of multiple sources is used, increasing the Iuminosity of the apparatus several times when compared with that from a single source.

SPEED CONIROL OF A SLOW NEUTRON CHOPPER
W.A.W. Schrader, A. Ferreira and M.A.Lyra Instituto de Energia Atômica, S.Paulo

Abstract

The systen used for controlling the speed of the IEA slow neutron chopper was designed to keep its speed constant within 1% in the speed range between 2.000 and 15.000 r.p.m.

The electric motor sed is of the universal series type and its speed is controlled by a system which uses an electric signal from a magnetic pick up which gives a pulse pcr revolution. The signal from the magnetic pick up is fed to a pulse forming circuit, whose pulses are integrated by a diode pump circuit providing a D.C. voltage which is proportional to the rotor speed. The error signal, obtained from a comparison between .his voltage and a voltage reference sourcs in a voltage comparison circuit, determines the firing phase of silicon controlled rectifiera used to control the motor speed.

Experimental measurements of the system parameters allowed the determination of the transfer function of the system and the correct evaluation of the integrator time constant. The comparison between the thenraticol and experfincotel respuñe uí ine system is presented for a step input, for a step load, for a step change in the line voltage and temperature.
 AND THE KRIEGER-NELRIN MODEL

Claudio Rodriguez and Maria José Bechara Instituto de Energia Atốaica, São Paulc

The slow neutron scattering cross-section per hydrogen atom in methanol was measured with the IEA time of flight spectrometer. The scattering cross-section was obtained from the total cross-section of the molecule and by subtracting the contributions due to the other non hydrogenous atoms.

The experimental results were compared with the scattering cross--section per hydrogen atcm in methanol, calculated by the Rrieger-Nelkin theory.

The Rrieger-Nelkin method uses, essentially, an approximation of the Zemach-Clauber formalism in which the effects due to the rotations and vibrations of the molecule are separated.

The Krieger-Nelkin method can be applied to molecules in which the translational and rotational movements are considered free and for which the applicability of the approximation of the mass tensor is possible.

In the case of the mathanol, the agreement with the experimental results is reasonable due to the almost free rotation of the methyl radical and the low value of the rotational constant of the methanol molecule, $B=0,1 \mathrm{meV}$.

L.A.Vinhas, L.Q. Amaral, M.J. Bechara, C. Rodriguez and S.B. Herdade Instituto de Energiz Atômica, São Paulo

An arrangement for the study of cold neutron scattering in solids and liquids was built at the Instituto de Energia Atĉmica: it is constitut ed by a polycrystalline beryllium filiter and a slow chopper time of fligbt spectrometer.

The teryllium filter is refrigerated at the liquid nitrogen temperature: only neutrons of an energy smaller than 5 meV are trancaitted. This neutron beam is scattered by the sample and the scattered neutron intensity at pre-determined angles are energetically analyzed by the time of flight spectrometer.

Details of the experimental arrangement and the preliminary results of the characteristics of the cold neutron spectrum, the calibration and the resolution of the spectrometer are presented.
benct Hethoi lant

SLOH-NEUTRON SCATIERING IH HATER, POLYEIHYLETYB, AND METEIYL COYPOURDS

S.B. Herdsde
Instituto de Energia Atômica São Paulo, Brasil

(Submitted in partial fulfillment of the requirements for the Degree of Doctor of Science - University of Campinas, São Paulo, Brasil - :969)

ABSTK $_{\text {an }}$

The total neutron cross-sections of light water, polyethylene, nitromethane, acetone, methyl acetate, dimethyl sulphoxide, acetic anhy dride, acetonitrile, dimethyl-dichloro-silane, axi dimethyl polysiloxane (silicone oil), have been measured as a function of neutron wavelength λ in the range 0.8 to $10.0 \mathrm{~A}\left(1.34 \times 10^{-1}\right.$ to $\left.8.21 \times 10^{-4} \mathrm{eV}\right)$ using a curved slit slow-neutron chopper and time-of-flight spectroueter (1)(2) in operation at the IRA-R1 research reactor.

Measurements have been carried out at room temperature $\left(295^{\circ} \mathrm{K}\right.$ $297^{\circ} \mathrm{K}$) with chopper speeds from 4000 to 8000 RPM, firght paths from 1.48 m to 3.00 m , and 32 usec chonnel length. The wavelength resolution varied from $0.08 \&$ at $\lambda=1 \&$ to $0.30 \&$ at $\lambda=10 \AA$.
 lene sample was a 0.241 cm thick plate with a density of $(0.92 \pm 0.01) \mathrm{g} / \mathrm{cm}^{3}$, and $\approx 50 \%$ crystallinity. Methyl compounds samples were commercially available reagent grade chemicals, all liquid at room temperature. Liquid samples were contained in aluminum cells such as to present a thickneas of 0.25 cm.

The nuber of miecules per square centimeter, n, has been deternined from the measured internal dinensions of the cells and the density of the liquid at room temperature. Uncertainties in the n value anount to about 37 for the liquid samples, and 0.6% for the solid polyethylene sample.

Oaly statistical errors are indicated in tables and curves.

The water total cross-section results are in good agreenent with previous measurements both in the thermal and subtheral regions. They also agree with calculated values based on the models proposed by Koppel-Young and McMurry-Russell, in the thermal region. The polyethylene results are compared with the Goldman-Federighi and Kappel-Young calculated curves. Good agreement is observed in the thermal region but, for $\mathrm{E}_{\mathrm{n}}<0.003 \mathrm{eV}$, the experimental results are found to be lower than the calculated ones.

Scattering cross-sections per H atom, σ_{8} / H, were deternined by subtracting the absorption cross-section from the total cross-section per molecule and dividing the result by the number of H atoms in the molecule. Por weter and polyethylene, the scattering cross-sections of oxigen and carbon, respectively, have been also subtracted to obtain σ_{8} / H. The scatter ing cross-sections per H atom may be approximated by straight lines $\sigma_{8} / H=$ $=a_{s}+b_{s} \lambda$, for $\lambda>5 \AA$. Slopes b_{s} were determined by a weighted least--squares fit to the data. Por water and polyethylene, the values 6.8 ± 0.1 b/R-H, and 5.1 ± 0.1 b/R-H were obtained, respectively.

For methyl compounds, an empirical correlation is observed to exist between the slopes b and the barrier heights for internal rotation of CH_{3} groupe in the molecules, and a "calibration curve" is plotted using some of the experimentally determined slopes and the published values of the barrier heights V_{0} determined by other methods (3). This curve can be represented by the empirical relation:

Kcalimole and b_{f} in barna/ $A-H$.

An average barrier height of $=1 \mathrm{Kcal} / \mathrm{mole}$ is estimated for $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, from the experimentally deterwined slope $10.8 \pm 0.3 \mathrm{~b} / \mathrm{i}-\mathrm{H}$. From the slopes $12.3 \pm 0.5 \mathrm{~b} / \mathrm{A}-\mathrm{H}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $12.3 \pm 0.3 \mathrm{~b} / \mathrm{A}-\mathrm{H}$ for dimethyl polysiloxane, it is concluded that the rotations of CH_{3} groups in these compounds are practically free. These results are very close to the calculated value $12 \mathrm{~b} / \AA-\mathrm{H}$ corresponding to a CH_{3} group freely rotating in one dimension around the C_{3} symetry axis.

References

1) S.B.Herdade, L.Q.do Amaral, C.Rodriguez, and L.A.Vinhas, "Ere rrimental Study of a Curved Slit Slow-Neutron Chopper and Time-ofFlight Spectrometer", IEA Report N甲 136 (1967) (in English).
2) L.Q.Amaral, L.A.Vinhas, C.Rodriguez and S.B.Herdade, "Certain Aspects of the Calibration and Resolution of Slow Neutron Spectrometers", Nucl. Instr. \& Methods, 63 (1968) 13-22.
3) S.B.Herdade, "Slow-Neutron Scattering and Rotational Freedom of Methyl Groups in Several Organic Compounds", Proc. Symp. on Neui-on Inelastic Scattering, Copenhagen 20-25 May 1968, Vol II (1968) 197-204.

O.Y. Mafra and F.G. Biapchini Instituto de Energia Atôica, Sago Paula

The photofission cross-sections of uranium and thorium were measured ip the energy interval between 5 and 11 MeV , using mono energetic game radiation from neutron capture in various elements placed near to the reachtor core.

The intensity of the strongest monoenergetic gama ray from each element was measured with a $\operatorname{NaI}(T 1) 3 " \times 3^{\prime \prime}$ crystal and the intensities of the secondary lines were determined frow the gama-ray intensity ratios available in the literature.

The collimated gama radiation strikes upon a parallel plate ionization chamber whose plates are covered by photofissile (Th or natural U) material electrolytically deposited. The ion chamber is connected to the recording system through a linear amplifier and discriminator and is $s 0$ ajusted that only fission events are recorded.

For a given photofissile target one can write a linear equation of the type
(1)

$$
\Sigma \sigma_{i} \varphi_{i}=\frac{c}{\varphi_{p}} \cdot R
$$

where
σ_{1} : cross-section at the $i^{\text {th }}$ line energy
ψ_{i} : gamra ray intensity of the $i^{\text {th }}$ line normalized to the principal line intensity
$i_{p}:$ gavena ray flux of the principel line
K : a constant which takes into account the number of nuclei of the photofissile material and the fission chamber efficiency.

By using the system (1) and making approximations in energy and by neglecting the effect of the secondary lines which do not coincide with the principal lines of other elements used as targets, one obtains a normal linear system of equations. Due to the approximations used and taking into account the errors in the gamma ray intensity measurement and the statiseical error, the error of the measurements is estimated to be smaller than 13\%.

The normalized obtained results were compared with those of Katz et al., which have used the Bremmsstrahlung radiation from a betatron, and with those of Manfredini et al. which have used monoenergetic gama rays from neutron capture radiation using an experimental arrangement similar to ours. Our measurements agree with those of Katz et al. within the experimental errors and show no agreement with those of Manfredini and co-workers.

