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ABSTRACT 

A new technique is proposed for the generation of the isotropic 
and linearly anisotropic components of transfer matrices for elastic 
and discrete inelastic scattering. It enables some angular integral.' 
to be expressed in terms of functions which can be calculated by the 
use of recurrence relations or series expansions instead of numerical 
quadratures. 

1. INTRODUCTION 

Efficient generation of transfer matrices for use in reactor calcula­

tions has been the subject of extensive studies for the last twenty years. 

A review of the techniques used for generating transfer matrices in compu­

tational codes has recently been completed [l]. In general, since the 

mechanisms of elastic and discrete inelastic scattering are most important 

in the generation of transfer matrices, efforts were concentrated on the 

search for new techniques which could be used to treat these mechanisms 

with accuracy without irreparably sacrificing computational efficiency. 

Thus, for example, the treatment of discrete inelastic scattering evolved 

from the simplified model [2] adopted in the MC code, where scattering is 

considered to be isotropic in the laboratory system, for the fixed-angle 

2 

model [3] used in the MC -2 code. The majority of the existing computa­

tional codes use different techniques for treating elastic and discrete 

inelastic scattering. This is due basically to the fact that certain 

possible simplifications in the treatment of elastic scattering do not 

apply to the case of discrete inelastic scattering. Mention may be made, 



- 2 -

among others, of the simplifications resulting from the use of a group 
2 

structure with constant lethargy width which were tried out by the MC 
2 

and MC -2 codes or of difficulties inherent in discrete inelastic 

scattering, like the double-energy region [4]. An exception to this 

rule is the unified treatment [5] provided by the NJOY system where 

representation in the centre-of-mass system avoids the difficulties 

caused by the double-energy region in the treatment of discrete inelastic 

scattering. The flexibility afforded by the NJOY in the choice of the 

group structure is more advantageous than the use of a separate treatment 
2 

for elastic scattering as in the MC • 

In this study a new technique is proposed for generating the iso­

tropic and linearly anisotropic components of transfer matrices for 

elastic and discrete inelastic scattering. The formulation used is 

similar to the unified treatment provided by the NJOY except that the 

angular integrals are expressed in terms of functions which can be calcula­

ted by recurrence relations or series expansions, as opposed to calculation 

by numerical integration as in the NJOY. It is hoped that the treatment 

developed here will, after it is implemented, be useful in the generation 

of transfer matrices suitable for fast reactors. 

2. ANALYSIS 

The collision cross-section for transfer of neutrons from group g' 

with energy E'e(E ,,E , ) to group g with energy E E ( E ,E ) through 

elastic or discrete inelastic scattering is given by 

ox(g
,-Kg.vj) [2TT W g I] 

-1 
V-i 

dE' W(E') O x(E') 

'V 

> i 

dE f (E'->-E,u) 
x 

(1) 

where o (E1) is the collision cross-section for mechanism x at energy E', 

f (E'-»-E,y) describes the probability of a neutron of energy E' giving 

rise by mechanism x to a neutron of energy E, the angle between the 

directions of the initial and the final motion in the laboratory system 

is given by cos V and W(E') is the weighting function, with W ( given 

by the integral of W(E') over group g'. If x = m, the mechanism 
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considered is that of elastic scattering, while x = n'i denotes discrete 

inelastic scattering involving the excitation level i of the scattering 

nucleus. Distribution f (E* -»-E,)J) is normalized so that the integral 

over all possible final energies and over ye [-1,1] yields unity. Con­

sidering the known relationship [4] between p and w, the cosine of the 

scattering angle in the centre-of-mass system 

y = 
1 + Y(E*)W 

[ 1 + 2 Y (E')OI + Y2(E') ] 1 / 2 
(2) 

Lth 

A+l Q,-
•(£') = A ( 1 + ¿¿i _* ) 

1/2 (3) 

where A is the ratio between the mass of the scattering nucleus and that of 

the neutron and Q. = 0 , i = 0, 1, ... I, is the energy of excitation of 

level i of the scattering nucleus (i = 0 is a fictitious level with Q = 0 , 

representing elastic scattering), we can formally write 

f (E'->E,u) = f (E'+E) 6 [ u - S(CÜ.E') ] x x 
(4) 

where 

S(w,E*) = 1 + Y(E')u) 

[ 1 + 2 Y (E')w + Y2(E') ] 1 / 2 
(5) 

Using the transformation 

f (E'+E) 
x fx(E\ù.) 

dû) 
dE 

(6) 

and representing f (E',u>) by an expansion in Legendre polynomials truncated 

after (L + 1) terms, Eq. (4) can be written as 

f (E'-E.u) = j O[U-S(Ü),E') ] ^ I (2U1) f (E',£) P„(w) , 
dE 

(->) 
£=0 
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where f (E',£) are the coefficients of expansion of f (E',w). It is to 

be noted that the absolute value used in Eq. (6) was removed from Eq. (7) 

because from the relation [4] 

E = 
E* 

(A+l)' 
[ 1 + 2Y (E')U) + Y (E') ] (8) 

it is easy to verify that, for fixed E', E increases monotonically with w. 

Figure 1 shows the variation of final energy E with initial energy E' 

for various values of <DE[-1,1] in the case of inelastic scattering involving 

the first level of Li(Q = -0.478 MeV). The threshold energy for 

inelastic scattering E0 = - (A + 1)Q./A, in this example, is approxi-

mately equal to 0.546 MeV. The threshold energy of backscattering 

E = - A Q./(A - 1)— corresponds to point B in the graph. In the case 

of elastic scattering points A and B coincide and move towards the origin 

of the (E',E) plane and the family of curves represented in the graph 

degenerates into a family of straight-line segments. 

Using the expression for f (E' +E,y) given by Eq. (7) in Eq. (1) and 

considering the sub-interval of integration over E' for which the 

integrand does not vanish, we obtain 

ov (g'+g.u) = [4iW ,] 
x 6 

-1 

* 

V-l 

* 

V 

dE' W(E') a (E') I (2)1+1) f (E',¿) 
x JUO X 

u)(Eo .,E') 
g-1 

Jw(E ,E') 

da) P£(w) 6 [ u_S((D,E') ] , (9) 

where E*. = max (E ,,E„), E*. . = max (E . „,E„) and the limits of 
g g "" g -1 g -i l 

integration over w are determined with the help of Eq. (8). In practice, 

"'/ Translator's note: The subscript r presumably stands for 
"retroespalhamento" meaning "backscattering". 
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instead of the direct use of o (g' -"-g,p), it is customary to expand 

o (g* *g,y) in Legendre polynomials and to utilize the components of the 

expansion 

ox(g'-*g»k) •= 2TT 
'-1 

du Pk(y) ox(g'-*g,u), k = 0,1 K. (10) 

Substitution of Eq. (9) into Eq. (10) results in 

o (g'-g.k) = W"î 
A 6 

where 

* 

V 

dE» W(E') o (E') F. (E'.g) d i ) 

Fk(E',g) I I (24+1) f (E',£) \ (E'.g) 
¿ £=0 . ' 

(12, 

In Eq. (12), functions X (E',g) are defined as 

Y * ( E ' ' 8 ) = 

u ,(E') 
r g-1 

>u <E') 
g 

da) P k [ S(Ü),E') ] P£(u) , 
(13) 

where a> (E') = max { -1, min[w(E ,E'),l] } and w .(E') 
g g g"1 

= min {1, max[(u (E .E'),-l] ) . Extensive studies [6, 7] were made of 
g-1 

the special case of Eq. (13) where u (E1) = -1 and u „(E') = 1. In 
g g-1 

practice, only the isotropic (k = 0) and linearly anisotropic (k = 1) 

components of o (g' + g, p) are important for reactor calculations. For 

this reason, the present work is confined to the study of these compo­

nents. The problem reduces to calculating functions X (E',g) and 

X (E',g) since a (E') and f (E',S,) are supplied or calculated from 
1 , x, X X 

basic data stored in libraries like ENDF/B [8] and the weighting function 

W(E') is chosen from among simple forms such as E ,n = -1, 0, 1 or 
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pre-calculated and supplied in tabular form. For k = 0, it is possible 

to show with the help of the properties of the Legendre polynomials [9] 

that the functions 

X0>£(E',g) 

V i ( E ' } 

w (E') 
g 

du) PjU) 
(14) 

are given by 

x o , £ ( E ' ' 8 ) = ( i è r ) [ î V i ( u ) " p£-i(w) J 

V i ( E , ) 

Ü) (E1) 
g 

(15) 

with P_1(o)) = 0. Equation (15) can be used to calculate the functions 

X (E',g) required in Eq. (12) with k = 0. For k = 1 it is advantageous 

to define 

yE',g) -

V l ( E ' ) 

u> (E') 
g 

du [ 1 + 2Y(E') o) + Y
2(E') ]'1/2 P (u) (16) 

so that 

X1>£(E',g) 

% - l ( E , ) 

0) (£') 
g 

1 + Y(E') 

[ 1 + 2Y(E') a) + YZ(E') ] 
T72 p i ( u ) (17) 

can be expressed by 

X M ( E \ g ) = Y£(E\g) 

. Y(E') 
2JU-1 [ (Ul) Y. .(E'fg) • i Y„ .(E'.g) ] . 

i+l £-1 

(18) 
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With the use of the properties of the Legendre polynomials it is possible 

to show that functions Y (E',g) satisfy the recurrence relation, 

for I = 0, 

(2£+3> W * \ g > - " - %¿ (1 - 2 £ ) Y£-l^',8) - (2U1) 

x tTTjry. Y(E') ] Y£(E',g) + - * 
YTE7! 

x { [1 + 2Y(E') <o + Y - V ) ]
1 / 2 [PU1(«) - P ^ C Ü , ) ] } 

V l ( E ' ) 

M (E'> 

which can be used together with the initial value 

(19) 

VE''g) = TTE^T [ X + 2 ^ E ' > " + Y2(E') ] 1 / 2 
V i ( E , ) 

w (E') 
g 

(20) 

in order to calculate the functions Ŷ (E'.,g) required in Eq. (18) to 

establish functions X 0(E',g). It is apparent that the recurrence 
c 1 ,*• 

relation expressed by Eq. (19) is not adequate in the limits 

y(E') > > 1 and Y(E') < < 1. In these cases, an alternative treatment 

becomes necessary. For y(E')> > 1 we can use the representation [9] 

[ 1 + 2y(E') u + Y
2(E') ] " 1 / 2 

m=0 T(FT m 

valid for Y(E') > 1> in Eq- (17), obtaining the series 

X, „(E',g) = I (-l)m S (E'.g) 
1 , £ m=0 m'1 

X [ (^4) -'<*=T> Ï V ) ] t 

(22) 

1 ,m+l 
2m+3 2m-1 yWT 
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where 

S„ £(E\g) 
m, 

V i < E ' > 

-tt') 

du P (io) Pa(u)) m £ 
(23) 

Clearly, S (E',g) = S (E',g). Moreover, it can be shown with the 
m , I SL ,m 

help of the properties of the Legendre polynomials that for m ^ £ 

[ m(m+l) - £(£+1) ] S (E'.g) 
ni f JC 

* -wi PD(U) P I (ai) - P , (w) ] 2m+l £ m+J. m-1 J 

4 l 7 T - p
m ^ t

 p
l+i<«> "

 P£-i("> 1 > 
V i ( E , ) 

u (E') 
g 

(24) 

and for m = % 

( 2 £ + 3 ) S£+1,£+1
(E''8) " <2i+l) S, .<E\g) £,£' 

+ { 
£+2 , 
2173 l P£ + 2

( u , ) " V w ) 1 P£+1(u) - ̂ JL. 
(25) 

with 

x [ P£+1(U) - P^^o,) ] P („) } 
V i ( E , ) 

Ug(E») 

S0>0(E',g) = » (E«) - U (E«) . 
(26) 

For YÍE1) < < 1 the representation [9] 

[ 1 + 2Y(E')Ü) + Y2(E') ] ~ 1 / 2 I (-l)m Ym(E') P (u) , (27) 
m=0 
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valid for 0 = y (E') < 1, when substituted into Eq. (17), gives the series 

X (E'.g). I (-l)-S «•.tí[(£Í)-<^)TV)lT"(I'). (2Í) 
m=0 

Equations (22) and (28) can therefore be used to calculate functions 

X (E',g) efficiently in situations where the stability of the recurrence 

relation, Eq. (19), is in danger. 

3. FINAL CONSIDERATIONS 

The expressions given in the preceding section enable us to evaluate 

without recourse to numerical integration the angular integrals found in 

the generation of the isotropic and linearly anisotropic components of 

transfer matrices for elastic and discrete inelastic scattering. Since 

the representations of f (E',w) in Legendre polynomials supplied by the 

ENDF/B library can include up to 21 terms in the expansion, depending on 

the element and the value of the initial energy, the numerical integration 

technique calls for quadratures of order > 10 in the execution of angular 

integration, requiring evaluation of the Legendre polynomials for each of 

the nodes of the selected quadrature, while the technique proposed here 

requires evaluation of the Legendre polynomials only in the integration 

limits. Moreover, in the numerical integration technique, the results 

obviously depend on the quadrature selected. 

After the angular integration treated in detail in this work the 

generation of the isotropic and linearly anisotropic components of trans­

fer matrices for elastic and discrete inelastic scattering involves the 

integration over energy shown in Eq. (11). There are in principle 

several ways of carrying out this integration, varying from linear approxi-
2 2 

mations like those used by the MC and MC -2 codes in the ultra- and 

hyperfine structures, respectively, to gaussian quadratures such as those 

used in the NJOY system. Our purpose in implementing the method is to 

use the trapezoidal rule in the grid obtained by adding the discrete • 

structure utilized in the ENDF/B library to store o (E1) (in the case of 
x 

resolved resonances, the grid obtained in the reconstruction process will 
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be used) and f (E',*-). with the integration limits of Eq. (11), and we 

believe this will minimize the number of necessary interpolations without 

sacrificing the accuracy of the final result. 

The technique described here will shortly be implemented so that it 

will be possible to make a specific evaluation of its use in comparison 

with the other techniques currently utilized in the generation of transfer 

matrices for elastic and discrete inelastic scattering. 
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Fig. 1. Relation between final energy E and initial energy E' 

for discrete inelastic scattering involving the first 

excitation level of Li. 


