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ABSTRACT 

A study is made of the computational efficiency of a semi-

analytical technique which has recently been proposed for the evalua­

tion of angular integrals encountered in the generation of the 

isotropic and linearly anisotropic components of transfer matrices 

for elastic and discrete inelastic scattering. From a comparison 

with the results obtained with the use of numerical quadratures it 

is concluded that the technique has computational advantages which 

recommend its implementation. 

1. INTRODUCTION 

A semi-analytical technique has recently [l] been proposed for the 

evaluation of angular integrals encountered in the generation of the 

isotropic and linearly anisotropic components of transfer matrices for 

elastic and discrete inelastic scattering. The components of the 

expansion of the collision cross-section for transfer from group g' to 

group g in Legendre polynomials were expressed by 

° x (g'-g.k) = W 
-1 

* 

'V 

dE' W(E') o (E') F.(E\g) 
X K. 
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where 

F k ( E \ g ) = l I (2£+l) f x(E\£) J^ £(E\g) 
«,=0 ' 

(2) 

and the remaining quantities were defined earlier [l]. In Eq. (2) 

functions X (E',g) represent the angular integrals [l] 
K j IL 

,V1(E') 

V ( E '«g ) = du P j[1+Y(E')u)][1 +2Y(E')u+Y2(E,)rl/2}PJi^) (3) 

u (E') 
g 

which are the subject of this study. Since generally in neutron calculations 

only the isotropic (k = 0) and linearly anisotropic (k = 1) components are 

important, Ref. [l] was confined to the study of X (E',g) and X (E',g). 
O , Jo 1 , £ 

Functions X (E',g) were expressed by 
o j Jo 

„£(E'>S>= ( 2 ¿ T ) [ P £ + 1
( W )- PÍ-1 ( W )] 

(o ,(E') 
8-1 

•a) (E') 
g 

(4) 

and functions X. (E',g) by 
1 , Ji. 

«,.»«'••> - V E ' • • ' « Î H T [Ut° Ifi« ,-» ) •*Vi«''«)] (5> 

where Y (E',g) obey the recurrence relation for i > 0 

(2£*3)Y£+1(E\g) = (l-6 o^)( 1-2£)Y £_ l(E
,,g)-(2£ +1)r—1— +Y(E')1 

x Y, 2 / W , M 1 / 2 .(E''g) + TaF) I [1+2Y(E')a)+ y 2 ( E , ) ] 

[P£+1
("} - P £ - 1 ( w ) ] 

V i ( E , ) 

CÜ(E') 
g 

(6) 
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Since the recurrence relation expressed by Eq. (6) becomes unstable for 

Y(E') >>1 or y(E') <<1) the following series representations were developed 

in Ref. [1] 

(7) 

x I — 1 — 1 ,Y(E') 
L Y(E') J 

m+1 

" > 1 
» 

and 

x,,l(E..g, =jo <_„- sm>t(E.,g) [feAyfeiya.>] ,-(E. ) 
(8) 

, Y(E') < 1 

for alternative use in the recursive scheme formed by Eqs (5) and (6), when 

necessary. The purpose of the present study is to evaluate the computa­

tional efficiency of the technique of calculation of X (E',g) and 

X (E',g) summarized by Eqs (4)-(8) arid to compare it with the technique 
i , x. 

which uses a representation of Eq. (3) in quadratures like that used in the 

NJOY system [2]. 

2. RESULTS 

It is known that any comparison between execution times for different 

techniques is valid only when the techniques are used in such a way as would 

yield results with the same numerical accuracy. Thus, in this study the 

accuracy criterion imposed on X (E',g) and X 0(E',g), ^= 0> *> •••> 20, 
O , J6 1 , *-

was so chosen as to guarantee a minimum of five correct significant digits 

in F (E',g), k = 0 and 1, for both the techniques studied. With this 

criterion it was possible to determine, on numerical bases, that the 

recursive scheme of Eqs (5) and (6) can be used only for 2/5 < y(E') < 5/2. 

In this way, for >{E') > 5/2 and Y(E') < 2/5 the present study used the 

series representations given in Eqs (7) and (8), respectively, truncated so 

as to provide the desired accuracy. For the calculation the quadratures of 

Eq (3) were used to test different orders of the Gauss-Legendre quadrature [3] 

and the lowest order in each case was chosen so as to guarantee the desired 

accuracy. 
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Table 1 compares the results obtained for X (E',g) with Y ( E ' ) = 1, 
1, Î. 

ü) (E') = -1 and <D -(E') = 0.9 by Eqs (5) and (6) and the results provided 
6 to 

by Gauss-Legendre quadratures of order 20 and 40. The lowest order of 

quadrature found which would obey the pre-established criterion of accuracy 

was 32 in this case. Table 2 presents results similar to those in Table 1 

for the case Y(E') = 1, u> (E') = 0.9 and w ÍE') = 1. It will be noted 
g g-1 

that much lower orders of quadrature were sufficient. The lowest order 
required to guarantee the pre-established accuracy was 6 in this case. 

Table 3 summarizes the approximate execution times in the CYBER 170/750 

system of the Institute of Advanced Studies (IEAv) for the calculation of 

X „(£'»§) a n^ X ,(E',g), Î, = 0, 1, ..., 20, obeying the stipulated accuracy 

criterion for various values of Y(E') by the technique given in Ref. [l]. 

It was verified that the execution time was essentially independent of the 

w (E') and u> ,(E') values considered; the values given in Table 3 can 
g g"1 

therefore be taken as representative values for any u)'(E') and OJ ,(E'). 
g g-1 

This is not so when quadratures are used, as is shown in Table 4. Analysis 

of the results presented in Table 4 shows that the order of quadrature needed 

to guarantee the stipulated accuracy increases with increase in the size of 

the integration interval [w (E'), w (E1)]. In the case of integration 
g g"1 

intervals of a size close to the maximum possible, i.e. 2, it is also noted 
that for Y(E') equal or close to 1, the necessary orders of quadrature are 
sufficiently high. 

From a comparison of the results given in Tables 3 and 4 it can be con­

cluded that the recursive scheme of Eqs (5) and (6) is much more efficient 

in computational terms than the quadrature technique. Such a scheme can 

therefore be used with advantage in the generation of elastic transfer 

matrices for hydrogen and deuterium and also in a large part of the double-

energy region for discrete inelastic scattering [4], As for the series 

representations given by Eqs (7) and (8), they also in general offer a 

certain advantage in computational terms. This advantage tends to disappear 

when the integration interval is small. In the case of elastic scattering 

in heavy elements, the integration intervals tend to be large provided the 

group structure is not excessively fine; in this case, therefore, the use 

of Eq. (7) can reduce the time of execution to approximately half of the 

time required by the quadrature technique. 
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3. FINAL CONSIDERATIONS 

Considering the computational advantages mentioned in the preceding 

section, the semi-analytical technique of angular integration proposed in 

Ref. [l] should serve as a useful tool for the generation of the isotropic 

and linearly anisotropic components of transfer matrices for elastic and 

discrete inelastic scattering. Additional tests will be carried out after 

implementation of the above technique with a view to a better evaluation of 

its performance in practice. It is also intended to study its possible 

generalization for the generation of components of transfer matrices for 

elastic and discrete inelastic scattering of a higher order. 
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Table 1: Comparison of functions X „(E',g) calculated by the technique 
1 , Jo 

described in Ref. [l] with the results of the Gauss-Legendre quadrature 

for -Y(E*) = 1, U) (E') = -1 and w ,(E') = 0.9. 
g g"1 

Order of the Gauss-Legendre quadrature 

£ Ref [1] 20 40 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1,23459 

0,17284 

-0,12258 

-0,05894 

-0,06229 

-0,03742 

-0,02694 

-0,01017 

-0,00120 

0,00795 

0,01125 

0,01321 

0,01125 

0,00858 

0,00419 

0,00044 

-0,00320 

-0,00526 

-0,00634 

-0,00581 

-0,00452 

1,23462 

0,17282 * 

-0,12256 

-0,05896 

-0,06227 

-0,03745 

-0,02691 

-0,01019 

-0,00118 

0,00792 

0,01128 

0,01319 

0,01128 

0,00855 

0,00422 

0,00040 

-0,00317 

-0,00530 

-0,00630 

-0,00586 

-0,00446 

1,23460 

0,17284 

-0,12257 

-0,05894 

-0,06229 

-0,03743 

-0,02693 

-0,01017 

-0,00120 

0,00794 

0,01126 

0,01321 

0,01126 

0,00858 

0,00419 

0,00043 

-0,00320 

-0,00526 

-0,00634 

-0,00581 

-0,00451 
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Table 2: Comparison of functions X (E',g) calculated by the technique 

described in Ref. [l] with the results of the Gauss-Legendre quadrature 

for Y¿E') = 1, ID (E') = 0.9 and u> ,(E') = 1. 
g g-1 

Order of the Gauss-Legendre quadrature 

Ref. [1] 4 6 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0,0987394 

0,0938235 

0,0844823 

0,0716356 

0,0565185 

0,0405310 

0,0250708 

0,0113732 

0,0003785 

-0,0073561 

-0,0116912 

-0,0128829 

-0,0115116 

-0,0083739 

-0,0043549 

-0,0003006 

0,0030913 

0,0053490 

0,0062627 

0,0058790 

0,0044570 

0,0987394 

0,0938235 

0,0844823 

0,0716356 

0,0565185 

0,0405310 

0,0250708 

0,0113732 

0,0003785 

-0,0073561 

-0,0116912 

-0,0128829 

-0,0115116 

-0,0083739 

-0,0043550 

-0,0003008 

0,0030908 

0,0053477 

0,0062597 

0,0058725 

0,0044438 

0,0987394 

0,0938235 

0,0844823 

0,0716356 

0,0565185 

0,0405310 

0,0250708 

0,0113732 

0,0003785 

-0,0073561 

-0,0116912 

-0,0128829 

-0,0115116 

-0,0083739 

-0,0043549 

-0,0003006 

0,0030913 

0,0053490 

0,0062627 

0,0058790 

0,0044570 
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Table 3: Approximate execution times for the calculation of X (E',g) 
O » J6 

and X. 0(E',g), l = 0, 1, ..., 20, for different values of y(E') by the 

technique described in Ref. [l]. 

Y(E') Time (ms) Method Terms in the series 

0,01 4,8 Series 6 

0,1 5,5 " 10 

0,3 6,6 " 16 

1 1 , 2 . Recurrence -

3 6,7 Series 17 

10 5,5 " 10 

100 4,8 " 6 

235 4,6 " 5 

Table 4: Approximate execution times and orders of the Gauss-Legendre 

quadrature used in the calculation of X .(E',g) and X (E',g), 

Í = 0, 1, ..., 20, for .various intervals of integration I = [w (E'); u> . (E1)] 
g g"1 

y ( E ' ) 

0,01 

0,1 

0,3 

1 

3 

10 

100 

235 

I - [-1; 

Time (ms) 

9,7 

12,9 

12,9 

25,9 

12,9 

12,9 

9,7 

9,7 

0,9] 

Order 

12 

16 

16 

32 

16 

16 

12 

12 

I = [0,9 

Time (ms) 

5,0 

5,0 

5,0 

5,0 

5,0 

5*,0 

5,0 

5,0 

9 

Oi 

1] 

:der 

6 

6 

6 

6 

6 

6 

6 

6 

I = [-0,4 

Time (ms) 

8,3 

9,7 

9,7 

9,7 

9,7 

9,7 

8,3 

8,3 

;0,6] 

Order 

10 

12 

12 

12 

12 

12 

10 

10 


