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ABSTRACT 

This paper presents the generalization of a semi-analytical technique 

for the evaluation of angular integrals appearing in the generation of 

elastic and discrete inelastic transfer matrices for transport codes. 

Whereas the generalized series expansions present a high degree of 

complexity, which puts them at a disadvantage in comparison with the Gaussian 

quadrature technique, the recursion relations developed in this study are 

superior to the quadrature formulas in those cases where the propagation of 

round-off errors is not significant. 

1. INTRODUCTION 

Among the techniques used at present in generating transfer matrices 

for elastic and discrete inelastic scattering in processing codes, the 

technique used in the NJOY [1,2] system is one of the most accurate and 

reliable, insofar as the numerical algorithm used [3] is concerned. This 

algorithm involves the evaluation of the angular integrals [4] 

Xk.£ <E'.8> " 

<V1<E') 
du P k ( u ) P £ ( u ) • • ' • ( ! ) 

a) (E1) 
g 

by means of the Gaussian quadrature formula. In equation (1), P (x) denotes 

the Legendre polynomial of order n, a> is the cosine of the scattering angle 

in the centre-of-mass system and \i is the cosine of the scattering angle in 

the laboratory system, related to ui by [5] 

y - [l + Y(E')«D [1 + 2Y(E')U + Y2(E')]~1/2 , (2) 
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where Y ( E " ) e[AJA] is.a parameter depending on the initial energy of the 

neutron, defined by 

Y(E') = Al 1 +^4 ^ V / 2 , • . . (3) ( ' • T 2 0 ' 
A being the ratio between the mass of the scattering nucleus and that of the 

neutron and Q 4 0, i = 0, 1, ..., I, the excitation energy of the level i of 

the scattering nucleus, with the fictitious level Q = 0 representing elastic, 

scattering. Also in Eq. (1), g denotes the final energy group, with 

E E (E , E ), and the limits of integration are given by 
g g _ i & b j 

ai ( E 1 ) = max { -1 , min [ U (E , E ' ) , 1 ]} and u < ( E ' ) = min { 1 , max [cu(E , , E ' ) , - l ] } 
g g g-1 g-1 

where 
,„ÍF FM = 1 ) [<L^\\lA_^ il . 1 ../„n) 

(4) 
.(=^>-í|[(A*1)2f-lJ V^Ty- Y(E')| 

The main difficulty encountered in evaluating X (E',g) by numerical 

quadratures consists in the determination of the lower order of quadrature 

necessary for the result obtained to satisfy a given accuracy criterion for 

all the k's and î,'s desired. Since the theoretical estimates of the errors 

associated with the quadratures are difficult to evaluate in this case, this 

determination has to be made numerically in actual practice. A numerical 

study [ó],.made for k. = 0 and 1 and î, = 1, 2, ..., 20, reached the conclusion 

that the lower order of quadrature for a pre-established accuracy criterion 

can vary appreciably with Y(E') and the size of the integration interval 

[u (E'), a) ..(E')] - a fact which complicates the solution of this question. 

For the cases of k = 0 and k = 1, which provide all the information 

necessary for generating transfer matrices for the scattering codes, a semi-

analytical technique was developed which uses recursion relations and series 

expansions as alternatives to the numerical quadratures [4], A comparison 

between the two techniques [6] warranted the conclusion that, for k = 0 and 

k = 1, the semi-analytical technique offers greater computational effectiveness. 

The generalization of the series expansions for the generation of transfer 

matrices for transport codes, in which it is often necessary to have k >1, is 

obtained in this study; the resulting expressions present a high degree of 

complexity, which - from the computational point of view - puts them at a 

disadvantage compared to the Gaussian quadratures. By contrast, the general

ization - as obtained in this study - of the recursion relations presented in 

Ref. [4] affords an effective and economic means of processing the evaluation 

of Eq. (1) within the limit Y(E')-»-1, which is extremely difficult for the 

technique of numerical quadratures and also for that of series expansions. 
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To simplify the notation, the dependence of X (E',g) on E1 and g 

continues to be implicit in the subsequent equations and the limits of 

integration in Eq. (1) will be denoted by a = a (E1) and b = u (E1). 

EXPRESSIONS FOR X 
k, I 

Series expansions for X, can be derived by following a procedure 
K ) it/ 

similar to that proposed by Amster [7,8] for the transformation matrices of 

Zweifel and Hurwitz [9], which are a special case of the X which are studied 
k j JO 

here. Such expansions make use of representations of V in terms of the 

functions which are generatrices of Legendre polynomials like those used in 

Ref. [4], expansions of P, (y) in Taylor series and Clebsch-Gordon expansions 

for the product P (w) P„(co). 
m í , 

2.1. Case of y < 1 

In accordance with Amster [7], we can write 

X _/-2fc±i dw uPk(p) P£(w) 
\k+1 k-l,«. 

(5) 

which can, after use of the representation 

•V = (1 + Yü>)X/-l)m Y™ P (w)> 
m=0 m 

(6) 

for y < 1, be rewritten as 

k + , ' * - U + i 
2k+1 

ib 

du P ̂ E^V^V^^^-i- lVl , . • (7) 
m=0 \ k + 1 

where 

f (Y) m 
= (-1) m 

L\2m-1/ iá) s] m (8) 

The Clebsch-Gordon expansion 

•'J« 

Pn(U) P £U) =X)
AJ,i.,tnP£+m-2j

M -
i.-0 

(9) 



where J = min (S,,m) and the coefficients A. „ are given explicitly in 
s .J,£,m 

Ref. [10], enables Eq. (7) to be reduced to 

J. 

k+1,£ ^-) Z l ^ V ^ £ Aj,£,m
 Xk,£+ra-2j " ( T T ) Xk-1,. 

+ 1 / m=ü j=0 -" ' ' J \ k + 1 / ' 

2k+1 

k 

(10) 

Equation (10) can be used recursively in k to calculate the X of interest, 
K 5 Jo 

from X and X , which can be calculated as described in Ref. [4]. Once 
\J y Jo 1 j JO ' 

an accuracy criterion has been established, the series which appears in 

Eq. (10) can be truncated for m = M, in such a way that the relative 

contribution of the term of order yM+1 is negligible. Note that, in order to 

evaluate X . for 1 = 0 , 1, ..., L, it is necessary to have evaluated 
K + J. j JO ' 

*u ' ̂  = 0> * ' • • • » L+M, in addition, of course, to X , Î, = 0, 1 , ...,L. 

The low computational effectiveness of Eq. (10) then follows from the need to 

calculate a large number of superfluous X elements in intermediate 
K ^ Jo 

calculations. 

2.2. Case of Y > 1 

Despite the fact that the procedure for y < 1 is also applicable in 

deriving a series expansion for X, valid for y > 1, it is more convenient 
K y JO 

in this case to use a Taylor series expansion, like the one employed by 

Amster [8] in studying the transformation matrices of Zweifel and Hurwitz. 

Initially, it is readily verifiable [8] that 

> \ M 

9Y m 
= m: 

k+ m 

E 
J=Ji 

m b"' . P.(w) 
k,J J (11) 

where J. = max (k - m, 0) and the constants b, . can be calculated recursively 
i k , j • 

with 

(j + 1) (j+3-m) bi»"
1 _ j(j+m-2) bm-1 

- (2j+3) k> i + 1 (2J-1) k'J _ 1 J 
(12) 

and the initial values b. . =6 .. Thus, P (p) can be expanded in Taylor 
K,J KJ K 

series around Y = °° and the result substituted in Eq. (1), giving 

k,£ 
m=0 

k_±_m 

" m V b m S. • 
k,j J,* 

"J K. T U 

J = J i 

(13) 



where 

Ib 

j.* 
du P.(ÜJ) P. (to) 

J * 
(14) 

can be calculated with the expressions supplied in Ref. [4]. Note that as a 

result of the truncation of the series in m = M, the calculation of X for 
K j J6 

f. = 0, 1, ..., L, requires the evaluation of S , j = J., J. + 1, ..., k+M 

and 2. = 0, 1, ..., L. The existence of the double summation compromises the 

computational effectiveness of Eq. (13). 

2.3. Case of y -» 1 

It is obvious that the number of terms to be considered in the series 

present in Eqs (10) and (13), for a given accuracy criterion, increases as 

Y approaches 1. It therefore becomes necessary to use an alternative 

procedure for Y + 1 • This procedure makes use of the recursion relations 

developed in Ref. [4] for generating the two first lines X and X , 

9L Z 0. For completing the two columns X, and X , k = 2, 3, ..., k, we 
K j U K j X 

can use the following recursion relations, derived by applying the basic 

properties of the Legendre polynomials, as shown in the Appendix. 

w=b 
X2,0~ X0, A +— Y ''i - \Y+— lu +— (-, Y ¿n(l+2Yw+Y ) 

•° 8 L V Y/ 2 V Y/ 
(15a ) 

¡D=a 

W =(¿7)[2(2k+1) VO "(2k+3) \-2,0 
(2k+1)(2k+3) 

k ( k + 1) 
X, 

k , l 

and 

k+1 

•ft) ( 1 + 2 Y U H - Y 2 ) ^ P k + 2 ( y ) - P k ( u ) 
2k+ 3 

Kk+1) (2k-D_ y>.>-pk_2c»)jj 

(15b) 

4Ú-M) (1 +Y^) (1+2YO)+Y~) P k + 1 ^ ) - p k - l ( v ) -

j = b 

u)=a 

(k+2)Y+- k+1 ,U 

-(k~4)' V i , i - [ ( k - , ) Y - 7 ] xk-i,o| 
(15c ) 

Initially, Eq. (15a) gives X„ ; subsequently, Eq. (15b) with K = 1 gives 

X„ and Eq. (15c) with k = 1 gives X„ ... Continuing to use Eqs (15b) and 
3,0 ¿, I 
(15c) alternately for k = 2, 3, ..., once the two first lines and columns 
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have been obtained, the remaining X constituents can be calculated with 
K y JO 

the recursion relation derived in the manner shown in the Appendix, 

w- 1 ""fcK2.*-1 ~te)v ^K^teite) ,Xk ' '-2 

(¿) 1+ 
k-1 

k+r 
k.,£-1 

2k+iy^+i+ViY, /n+r 
, 2 U 2 , k+1 

1 + 
' k -1 

2Í .+2/ ' - UU+1 -

X ( Y + 0K , + a 
k-1 

"k+1 

/2k + A/ a Ul 
k>*+1A2U2A'\+1 k-,j:+; 

k-1 

k+1, 

x .fc) .̂*-' feji^r)^.*;^.»*'. (16) 
making I vary from 1 to L + K - (k + 3) for k varying from 0 to K-2. The 

quantity a present in Eq. (16) is given by n(n + l)/(2n + 1). 

3. RESULTS 

The recursive scheme presented in Section 2.3 was implemented in the 

CYBER 170/750 system of the lEAv and compared with the Gaussian quadrature 

technique. The comparisons performed took into consideration the calculation 

of X for k = 0, 1, ..., 10 and s = 0 , 1, ..., 20 for different values of y 
iC , Jo 

and of the integration limits a and b. Adopting the same accuracy criterion 

as that used in Ref. [6], by which the transfer matrices can be calculated 

with 5 significant algorithms, it was possible to determine numerically that 

the recursion scheme can be used with assurance for 2/3 i y ¿ 4/3, without the 

propagation of round-off errors compromising its efficiency. This determination 

took into account limits greater than 10 and 20 in k and î, , respectively. If 

these limits are reduced, especially the limit in 8,, the validity range of the 

recursive scheme can be extended. For example, in the case of elastic 

scattering in deuterium (y = 1.997), there are no problems in using the 

recursive scheme since the upper limit in s, given in File 4 of ENDF/B is equal 

to 6. 

Table 1 shows some values of X. calculated by the recursive scheme 

for elastic scattering in hydrogen (y = 0.99917) with a = -1 and b = 0.9. 
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TABLE 1. • - X for Y = 0.99917, a = -1 and b = 0 . 9 , c a l c u l a t e d w i t h t he r e c u r s i v e scheme. 
k,C 

k £ « 0 £ » 1 £ = 2 1 - 3 £ = 4 £ = 5 £ . - 6 £ » 7 £ = 8 1 = 9 £ - 1 0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1,900000 

1,235699 

0,404999 

-0,092595 

-0,171913 

-0,082203 

-0,043877 

-0,068516 

-0,077005 

-0,052954 

-0,035281. 

-0,095000 

0,172179 

0,408075 

0,369804 

0,125706 

-0,078360 

-0,116685 

-0,065620 

-0,039173 

-0,050970 

-0,054110 

-0,085500 

-0,122231 

-0,082468 

0,072103 

0,215468 

0,206638 

0,066425 

-0,059993 

-0,083861 

-0,047310 

-0,026854 

-0,072438 

-0,059180 

-0,070059 

-0,095019 

-0,064690 

0,044709 

0,148830 

0,147294 

0,049441 

-0,042079 

-0,059554 

-0,057071 

-0,062105 

-0,055421 

-0,043459 

-0,051739 

-0,070074 

-0,046261 

0,038059 

0,119492 

0,119947 

0,044280 

-0,040827 

-0,037575 

-0,039950 

-0,044168 

-0,037927 

-0,028101 

-0,034966 

-0,049935 

-0,031128 

0,036665 

0,102792 

-0,025130 

-0,026808 

-0,024947 

-0,021895 

-0,024536 

-0,028566 

-0,023790 

-0,016276 

-0,022800 

-0,036130 

-0,021339 

-0,011235 

-0,010277 

-0,011649 

-0,013805 

-0,012512 

-0,010539 

-0,013733 

-0,018103 

-0,014959 

-0,009548 

-0,016121 

-0,000099 

-0,001107 

-0,000922 

-0,000566 

-0,002760 

-0,005578 

-0,005296 

-0,004523 

-0,008300 

-0,013039 

-0,011195 

•0,007713 

0,007859 

0,006650 

0,004837 

0,004325 

0,003830 

0,000955 

-0,002401 

-0,002937 

-0,003021 

-0,007056 

0,012062 

0,011334 

0,010967 

0,010452 

0,008505 

0,006114 

0,005016 

0,003945 

0,000777 

-0,002710 

-0,003587 



TABLE 2. - Comparison of X, _ for Y = 0.99917 and various integration intervals. 

Interval Method— */ k = 2 k = 3 k = 4 k •- 6 k = 8 10 

Q(40) -0,004274 -0,003957 -0,003661 -0,003306 -0,002766 -0,002172 -0,001700 -0,001214 -0,000545 

[-1 ; 0,9] Q(80) -0,004273 -0,003966 -0,003663 -0,003295 -0,002762 -0,002185 -0,001704 -0,001200 -0,000539 

R -0,004270 -0,003976 -0,003669 -0,003284 -0,002754 -0,002195 -0,001715 -0,001191 -0,000526 

Q(4) 0,004260 0,003989 0,003639 0,003218 0,002738 0,002210 0,001648 0,001065 0,000478 

[0,9; 1] Q(6) 0,004274 0,004006 0,003659 0,003243 0,002769 0,002248 0,001695 0,001124 0,000551 

R 0,004274 0,004006 0,003659 0,003243 0,002769 0,002248 0,001695 0,001124 0,000551 

Q(10) 0,003090 -0,000496 -0,001427 

[-0,4; 0,6] Q(12) 0,003090 -0,000495 -0,001427 

R 0,003090 -0,000495 -0,001427 

-0,000310 0,000928 0,000664 

-0,000311 0,000926 0,000661 

-0,000311 0,000926 0,000661 

-0,001172 -0,003158 -0,003628 

-0,001173-0,003155 -0,003617 

-0,001173 -0,003155 -0,003617 

*/ Q(N): quadrature of order N 

R: recursion 



TABLE 3. - Comparison of X , for y = 1.997 and various integration intervals. 
Ic, j 

¿ / 
I n t e r v a l Method-' k = 2 k = 3 k - 4 k - 5 k » 6 k = 7 k = 8 k = 9 k = 10 

Q(20) -0,061546 0,015582 -0,091891 -0 ,063107 0,051262 0,088679 0,053692 0 , 0 1 2 2 0 8 - 0 , 0 0 8 5 2 3 

[-1 ; 0 ,9 ] Q(24) -0,061546 0 , 0 1 5 5 8 2 - 0 , 0 9 1 8 9 1 - 0 , 0 6 3 1 0 7 0,051262 0,088679 0,053691 0,012210 -0,008531 

R -0,061546 0,015582 -0,091891 -0,063107 0,051262 0,088679 0,053691 0,012210 -0,008532 

Q(2) 0,039254 0,037728 0,035761 0,033406 0,030726 0,027791 0,024672 0,021441 0,018169 

[0 ,9 ; 1] Q(4) 0,039261 0,037741 0,035785 0,033450 0,030801 0,027914 0,024866 0,021738 0,018606 

R 0,039261 0,037741 0,035785 0,033450 0,030801 0,027914 0,024866 0,021738 0,018606 

Q(6) 0,048369 -0,003890 -0,059166 

[-0,4 ; 0 , 6 ] Q(8) 0,048369 -0,003890 -0,059166 

R 0,048369 - 0 , 0 0 3 8 9 0 - 0 , 0 5 9 1 6 6 

-0,052661 0,007377 0,051267 0,036672 -0,007133 -0,028197 

-0,052662 0,007377 0,051269 0,036673 -0,007143 -0,028308 

-0,052662 0,007377 0,051269 0,036673 -0,007143 -0,028308 

[/ Q(N): quadrature of order N 

R: r ecurs ion-



TABLE 4. - Orders of Gauss-Lcgendre quadratures recotnmen 

within the accuracy criterion mentioned in th 

Magnitude of 
the integration Y «1/100 Y-1/10 Y-l/2 Y 

in te rva l 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1,0 

1,1 

1,2 

1,3 

1,4 

1,5 

1,6 

1,7 

1,8 

.1,9 

2,0 

6 

8 

8 

8 

10 

10 

10 

10 

10 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

6 

8 

8 

10 

10 

10 

10 

12 

12 

12 

12 

12 

12 

12 

16 

16 

16 

16 

16 

16 

8 

10 

12 

16 

16 

16 

20 

20 

20 

20 

24 

24 

24 

24 

24 

24 

24 

32 

32 

32 

d for o b t a i n i n g X , k = 0 . 1 , . . . , 10 and t = 0 . 1 , . . . , 20, 

* / • t e x t - . 

- 2/3 Y - 4/3 Y' - 3/2 Y - 2 Y - 10 Y - 100 

10 

16 

16 

20 

20 

24 

24 

24 

32 

32 

32 

32 

32 

32 

40 

40 

40 

40 

40 

40 

16 

20 

24 

32 

32 

32 

40 

40 

40 

40 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

12 

16 

20 

20 

24 

24 

32 

32 

32 

40 

40 

40 

40 

40 

40 

40 

80 

80 

80 

80 

10 

12 

16 

16 

20 

20 

20 

24 

24 

24 

32 

32 

32 

32 

32 

32 

32 

32 

40 

40 

8 

10 . 

10 

12 

16 

16 

16 

16 

16 

16 

16 

20 

20 

20 

20 

20 

20 

20 

20 

20 

8 

10 

10 

12 

12 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

20 

20 

20 

20 

20 

For ÏC [2/3, ¿/3] the recursive scheme should be used. 



Order of 

quadrature 

2 

4 

6 

8 

10 

12 

TABLE 5. - Approximate ratio of the time for carrying out the 

Gauss-Legendre quadrature technique (Tn) and the recursive 

technique (T ), • for the calculation of X , k = 0.1,..., 10 
K . K, ** 

and «. = 0.1,..., 20. 

T /T ° r d e r ° f T /T 
quadrature 

0,3 16 2,3 

0,6 20 2,b 

0,9 24 3,3 

1,2 32 4,5 

1,4 40 5,6 

1,7 80 11,0 

In Table 2, the values of X „ , k = 2, 3, ..., 10 for y = 0.99917 and various 

integration intervals, are compared with results of the Gauss-Legendre quad

rature. It may be noted that, for the larger interval considered, the quad

rature of order 80 is insufficient since, for the smaller intervals, quadratures 

of low order yield good results. Table 3 presents a comparison of the values 

of X, ,» k = 2, 3, ..., 10, for y = 1-997 and various integration intervals; 

we can also observe the greater difficulty of the quadrature technique in the 

treatment of the larger integration interval considered. By way of guidance 

for using the Gauss-Legendre quadrature technique for y < 2/3 and y > 4/3, 

Table 4 presents the recommended orders of quadrature for obtaining X , 
K. ) JO 

k = 0, 1, ..., 10 and % = 0, 1, ..., 20 within the above-mentioned accuracy 

limits. For values of y and integration magnitudes different from those shown . 

in Table 4, use should be made of the larger order of quadrature shown by the 

values of y and the integration magnitudes close to those desired. In the 

preparation of Table 4, it was observed that integration intervals containing 

or approximating the point -1 require higher orders of quadrature than 

intervals of equal magnitude further away from point -1, mainly for values 

of y close to 1. The reason for this behaviour is that u, in accordance with 

Eq. (2), is singular for u = -(y + l/y)/2, and that a -1 tends to the left as 

Y + 1. For y = 1> the singularity of y in -1 is removable. However, the 

values of Table 4 are rather conservative for integration intervals further 
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away from -1. Lastly, Table 5 shows the ratio of the time for carrying out 

the Gauss-Legendre quadrature technique to that for the recursive technique 

in the CYBER 170/750 system, which enables us to evaluate the computational 

advantage of the latter. 

4. CONCLUSIONS 

The recursive technique presented in this study is an accurate and 

effective method for calculating the angular integrals X within the 
K j lb 

limits of y -»• 1. The technique can be used for 2/3 < y £ 4/3, without the 

propagation of round-off errors prejudicing its use. For values of y 

outside this interval, the technique of Gauss-Legendre quadratures is 

recommended, in accordance with the directions presented in Table 4 of this 

study. 
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APPENDIX 

Derivation of the recursion relationships 

To demonstrate Eq. (15b), the integration of 

b 

Xk,1 = «toPk<p)M 

i a. 

by parts gives 

b 

X. • = - (u)2-1) P. (p) - J-
k,1 2 k 2 

ib 

du (CÜ2-1) P/(u) ^ , 

ou 

(A-l) 

(A-2) 

which, with the use of the identity 

Y
2(u2-1) = (u2-l) (1 + 2YÜJ + Y2) , 

and the properties 

(2n+ l)(x2-1) P¿(x> = n(n+ 1> [Pn+1 (x) - Pn_! (x) ] 

and 

(2n+1)Pn(x)-p;+1(x)-Pi;_1(x) , 

followed by further integration by parts, may be rewritten as 

(A-3) 

(A-Aa) 

(A-4b) 

X. = -(u>2-1) P (u) 
k,1 2

 k 
\• i kíkm (1+2YU+Y2)f_L_ r, 

2Y 2k+1 (2k-1 L 
.(¡0- P.. 0( 

-—krfM-WI) ^ ^ ^ P - k 0-xk, 0] 
2 k + 3 L k + ¿ J ) a Y 2k+1 (2k-1 L k ' ° ^-2.0J 

" 2k̂ 3 IV 2» 0 " V °J ) * (A-

with the use of the i d e n t i t y (A-3) and the proper ty 

(2n+1)x Pn(x) = (n+1) Pn+J(x) + n Pn_,(x) , ( A_ 6 ) 

the first term of the right-hand side of Eq. (A-5) can be combined with 

the second term and the result rearranged, giving Eq. (15b). As this 
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equation cannot be used for K = 0 , the term X„ is calculated 

explicitly, on the basis of 

fb 

L2,0 
dw P2(u) = - du 

(A-7) 

which, after it is integrated, gives Eq. (15a), 

To demonstrate Eq. (15c), the relation 

(k+,)[xk+i,i+YXk+i,o]+k[v,,i^x
k-,,o] = (2k 

with the use of the identity 

du)(iu+ï')u Pk(lO . 

(A-8), 

Y 2 ( U ) + Y ) P = (1+YÜ))(1 + 2 Y U + Y 2 ) — , 

.3u) (A-9) 

and to the property (A-4b), followed by integration by parts, gives the 

desired result. 

The general recursion relationship, expressed by Eq. (16), can 

be derived by using the relationship 

Mk"-v-.l-(*) 
(b 

du (1 +2 YU)+ Y 2 ) ( u 2 - D P (n) ̂ ( u ) 

i (A-10) 

initally with l replaced by £ + 1, and later with i> replaced by & - 1, 

subtracting the two results and using the properties (A-4) and (A-6). 
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