International Atomic Energy Agency

INTERNATIONAL NUCLEAR DATA COMMITTEE

<u>INDC(BZL)-28</u> Distr.: G+Spec.

INTERCOMPARISON OF DERIVED INTEGRAL DATA FROM EVALUATED DATA LIBRARIES OF THE ACTINIDES

R. Paviotti Corcuera (*), A. Trkov (**)

 (*) Instituto de Estudos Avancados Centro Técnico Aeroespacial
 12225 Sao José dos Campos, SP, Brazil

(**) Jozef Stefan InstituteE. Kardelj University6100, Ljubljana, Yugoslavia

<u>INDC(BZL)-28</u> Distr.: G+Spec.

INTERCOMPARISON OF DERIVED INTEGRAL DATA FROM EVALUATED DATA LIBRARIES OF THE ACTINIDES (#)

R. Paviotti Corcuera (*), A. Trkov (**)

(*) Instituto de Estudos Avancados Centro Técnico Aeroespacial12225 Sao José dos Campos, SP, Brazil

(**) Jozef Stefan Institute
 E. Kardelj University
6100, Ljubljana, Yugoslavia

1987

(#) Work performed under research contracts 3692/R1/RE and 3691/R2/RB with the International Atomic Energy Agency.

Abstract

Resonance integrals and fission spectrum averaged cross-sections are calculated for the actinides from all recent major evaluated libraries. Whenever possible the results are compared against measurments. It is found that the experimental data are scarce and that there exist considerable differences between experimentally measured data and those derived from the evaluated libraries.

> Printed by the IAEA in Austria December 1988

> > **88-0**5739

<u>Contents</u>

Tables 2-5 Table 6: C	: Infinite dilution resonance integrals 2-252 fission spectrum averaged cross-sections	••
Comparison	is with experiment	• •
90-Th-232		• •
91-Pa-233		
92-U-233		• •
92-U-235	• • • • • • • • • • • • • • • • • • • •	• •
92-U-236		• •
92-U-238		• •
93-Np-237		• •
94-Pu-238		• •
94-Pu-239		• •
94-Pu-240		• •
94-Pu-241	· · · · · · · · · · · · · · · · · · ·	• •
94-Pu-242		• •
95-Am-241		• •
95-Am-242m	1	• •
95-Am-243		• •
96-Cm-242		
96-Cm-243	• • • • • • • • • • • • • • • • • • • •	• •
96-Cm-244		• •
96-Cm-245		• •
96-Cm-246	· · · · · · · · · · · · · · · · · · ·	• •
96-Cm-247		• •
0		
Conclusion	15	• •

1. Introduction

With the refinement of the calculational procedures in reactor analysis there is a growing demand for accurate Transactinium isotope (Z > 99) neutron data. The Transactinium isotopes play an important role in the nuclear fuel cycle of both thermal and fast reactors and have found increasing areas of application in science and industry.

The Actinide nuclear data are required for the calculation of core poisoning and absorption effects, decay heat and gamma source terms, delayed neutron yields and spactra, Sodium void and Doppler coefficients, breeding ratio and doubling time, neutron source terms and prompt nautron effects.

Integral data such as the Maxwellian thermal spectrum averaged cross sections, the Resonance integrals, the Cf-252 and the U-235 fission spectrum averaged cross sections and the cross sections measured in well known reference neutron fields C72 can be used to check the evaluated data in various energy ranges, provided the uncertainty in the integral measurments is smaller than that in the evaluated libraries.

The objective of this study is to check the consistency and the adequacy of the energy range given for the data in evaluated libraries by comparing the Resonance integral over the I/E spectrum and the fission spectrum everaged cross sections against experimentally measured values. The emphasis is on the INDL/A library with the purpose of its verification.

The list of libraries considered is shown in Table 1 together with abbreviations which are used in this report. The KEDAK-4 and the JENDL-2 libraries are not considered separately because their actinides data are included in the INDL/A-83 library.

1	Library	1	format	1	abbr.	• 1	comment	1	refl
1	INDL/A-83 E	 	ENDF-4,	5	15	1	files 1,2	1	1
İ	INDL/A-83 J	1	ENDF-5	Ì	IJ	i	JENCL-2 evaluations	Ì	1 1
Ì	INDL/A-83 U	Í	UKNDL	1	ΪU	1	file3	1	1.1
ł	INDL/A-83 K1	1	KEDAK	1	IKI	1	file4 Mat.No.: 1,2	1	1
L	INDL/A-83 K2	1	KEDAK	I	162	1	file4 Mat.No.: 8-58	1	1
I	UKNDL-80	. t.	UKNOL	1	UΚ	f		1	2
ł	LENCL-54	1	ENDF-5	1	L4	ł		1	3 1
1	ENDF/3-4	1	ENDE-4	- 1	Ē 4	1		1	- 4
1	ENDF/5-5 Act.	1	ENDF-5	1	5 S A	1		ł	5 1
1	ENDF/3-5 Dos.	1	ENDF-5	1	150	1	from IRCF-85 file	1	c I

Table 1 :Evaluated libraries considered in the analysis

The material accession numbers for the processed materials can be extracted from Tables A1-A10 in the Appendix.

2. Definition of Integral Quantities

The integral quantities considered in the analysis for a particular reaction (x) are defined by the equation:

 $I_{\mathbf{x}} = \int_{-\infty}^{1} G_{\mathbf{x}}(z) \mathbf{X}(z) dz$

The infinite dilution resonance integral (R.I.) is obtained by defining $\chi(\epsilon)$ as the 1/E spectrum. The lower integration limit is 0.5eV an the upper integration limit is 20 HeV unless stated otherwise.

Similarly the spectrum averaged cross sections are obtained when $\mathcal{X}(E)$ is the Cf-252 or U-235 fission spectrum. The limits of integration are 1.0E-4 eV and 18 MeV respectively because the spectra, which are taken from the IRDF-85 E61 file only covar this range. $\mathcal{X}(E)$ must be normalized such that the integral of $\mathcal{X}(E)$ over the same energy range is equal to one.

3. Processing Codes

Libraries IE, IJ, E4 and E54 were processed first by direct integration with codes NJCY E83 and LINEAR-RECENT-GROUPIE E93 sequence (abbreviated L-K-G hereafter). The same quantities were calculated by generating the flat-spectrum averaged cross sections in the 620 group S4ND-II structure by NJOY. These cross sections were then condensed using program AVSFECTM E103 with an appropriate group averaged spectrum given in the same group structure. The processing errors in producing the R-I. and the spectrum averaged cross sections sections can be seen from Tables 2 - 6 for each of the processed libraries:

- The discrepancies between the calculated integrals and published values [11] in Table 2 may be due to the use of a more recent version [13] of the source library in ref.[11].
- The discrepancies between the integrals calculated by NJOY and L-R-G in Tables 2 - 5 may be due to the use of the versions of the codes before the IAFA Cross Section Code Verification Project [12] was completed. Another source of error is the non-strict observation of ENDF format (for example the use of modified Adler-Adler parameters in Pu-241 evaluation in the INDL/4 file in Table 4). It is difficult to say which of the two sets of the results is correct.
- The R.I. values obtained by condensation of group averaged cross sections are generally in good agreement with those calculated by direct integration. Differences up to 5% are observed only in Tables 2.3.5 in some fission integrals where the fission cross-section has a threshold. These differences can be traced not to the processing method but to the use of the b20 group structure which extends only up to 15 MaV as compared to the 20 MeV limit in direct integration. The proup condensation approach is found to be accurate as seen from Table 4 where the evaluated data do not extend, above 18 MaV (except for Th-232 and Ph-733). This observation has an implication on the KEDAK and UKNDL formatted data and on other evaluations where the energy range does not extend above 15 MeV.
- The differences in the calculated R.T. from the JENDE-2 evaluations could be due to non-strict observation of ENDE-5 format recommendation on spin assignment in the resolved resonance parameters.

6

Table 2 : Infinite dilution resonance integrals (barns) from ENDF/P-5

ure l
JOY I AVSP.I
1#85.931
57.31 857.31
1 1
60.51 663.11
1 1
47.31 350.31
1#279.31
41.
640.31
53.81 153.51
1 2 1
1 1
1 1
274. 1288.
424. 1424.
2.031 1
89.81 289.61
321. 1819.
11.7 .1
50.91 250.91
34.31 583.51
17.51 117.61
04.01 103.21
92.51 1

· · · ·

data form IROF-85 (ENOF/8-5)

.

Table 3 : Infinite dilution resonance integrals (barns) from ENUF/B-4

-	 sotope	t L-R-G	 o t NJOY	 ह 	1 AVSP.		L-R-G	f :	Lssi NJCY	。 /	n AVSP.		capture L-R-G NJCY AVSP.	
	Tn-232 Pa-233 U-233 U-233 U-234 U-235 U-236 U-236 U-238 Np-237 Pu-238	312.6 1030. 1059. 979.1 502.5 633.5 509.3 828.4 434.5	313.2 1031. 1058. 978.1 603.4 633.4 610.6 840.1 436.5		311.7 1030. 1068. 954.5 602.1 635.5 609.4 936.7 435.2		• 593 2•948 763•1 5•555 253•4 0•427 2•056 6•934		• 5 9 2 8 1 2 • 9 4 7 1 7 6 2 • 4 1 5 • 5 9 0 1 2 9 3 • 5 1 3 • 4 2 5 1 2 • 0 5 7 1 6 • 8 4 3 1 2 0 • 3 9 1		• 5 3 9 1 2 • 7 7 6 7 6 2 • 2 5 • 3 6 2 2 8 3 • 0 3 • 2 4 7 1 • 9 1 5 5 • 5 6 1 2 0 • 5 0		35.57 85.57 35.37 356.8 857.3 857.3 134.7 134.7 134.7 631.6 631.7 637.6 138.8 133.9 133.5 347.1 347.1 350.0 277.7 277.8 277.1 640.7 641.0 640.3 163.1 144.6	
	Pu-239 Pu-240 Pu-241 Pu-242 Am-241 Am-243 Cm-244	£73.1 9407. 893.4 1511. 1513. 1569. 1029.	673.8 9409. 894.3 1512. 1848. 1560. 1929.		678.7 9394. 894.5 1524. 1847. 1553. 1021.		303.6 9.537 586.6 5.337 21.01 4.363 44.29		303.8 3.544 5.544 5.86.6 13.87 4.365 44.89		303.5 3.319 5.36.4 5.533 1.3.60 4.213 44.25		194.1 194.2 194.4 9449. 8451. 9438. 125.7 125.7 125.8 1127. 1127. 1140. 1617. 1641. 1641. 1362. 1363. 1362. 593.4 593.9 587.9	

 ∞

.

.

•

. . • .

_					
1	1	t	otal	fission	canture
ļ	Isotopel	L-R-G	NJOY AVSP.	I L-R-G NJOY AVSP.	L-R-G NJDY AVSP.
	Th-232	325.4	336.9 335.3	•6271 •5267 •5710	80.15 80.32 80.07
ł	Pa-233	1034.	1071. 1070.	2.974 2.965 2.755	876.3 892.1 382.3
1	Np-237	850.2	.843.5 1 849.0	5.822 5.832 5.832	654.2 634.1 653.7
ł	Pu-238	404.3	404.5 404.2	31.53 31.54 31.49	143.5 143.6 143.5
ł	Pu-239	562.9 1	655.2 665.7	306.4 304.5 304.7	182.5 182.5 192.9
ł	Fu-240 1	9410. L	9288. 9286.	1 9.352 4.264 4.259	3430. 3421. 3420.
1	Pu-241	1897.	2583. 2491.	1215. 1219. 1220.	109.6 683.3 634.5
۱	Pu-242 1	1517. 1	1432. 1493.	5.133 5.140 5.139	1136. 1136. 1146.
1	4m-241	1627. 1	1526. 1626.	13.76 13.77 13.77	1439. 1439. 1440.
	0m-243	2029. 1	2032. 1 2030.	1 5.926 1 5.934 1 5.932 1	1813. 1915. 1813.
1	Cm-242	327.5 1	328.4 327.1	11.50 11.52 11.62	115.2 115.9 114.3
1	Cm-243	1 .5525	2334 . 1	1873. 1375.	293.2 1 294.0 1
l	Cm-245	1110. 1	1115.	621.1 A23.5	115.5 116.7
ĺ	Cm-246	334.7	334.2 233.3	1 6.947 1 6.936 1 6.925 1	110.7 111.0 110.2
ĺ	Cm-247 1	1237. 1	1343.	1 651.5 1 663.5 1	493.9 435.6 1
-					

•

Table 4 : Infinite dilution resonance integrals (barns) from INDL/A-83 file-2

9

.

Table 5 : Infinite dilution resonance integrals (barns) from INDL/A-83 (JENDL-2 files)

-			-																
ł	I	· • • • •		o t	อ	1	1	1	F j	issi	c	n c	T	· c	: :	a p t u	; 1	r a	f
ļ	Isctopel	L-R-G	1	NJCY	I	AVSP.	ł	L-8-6	ł	NJOY	1	AVSP.	I	L-R-G	1	NJUY	ł	AVSP.	· !
		226 1			·				1							70 .01	· _ ·		• 1
1		32401	+		1		1	• € 2 5 2		• 0 5 0,4	1		!	79.90	!	17.71	1		. !
	Pa-233		1	963.1			ļ	4 . 513		4.582			1	113.5		119+2	1		
	U-233	1039.	1	1090.	1		1	771.3		771.3	1			138+6	1	138.6			
1	U-234	949.9	1	949.2			1	6.437		6.439	1		1	609.0	I	609.0			ł
1	U-235	514.0	Ł	613.3	1	512.2	Ł	278.7	ł	275.3	ţ.	275.0	1	153.3	ł	153.4	1	153.1	1
1	U-236	545.8	Ł	646.5	1		Ĺ	7.61	1	7.61	Ł		Ì.	347.0	Ì	347.1	1		- İ
i.	U-238 1	552.4	i	633.3	i	622.4	i	1.252	i	2.053	ì	1.915	i	280.2	Ì	279.0	i	278.5	; i
i	ND-237	873.6	i	874.5	i		i	6.258	i	6.257	i		i	662.2	i	667.4	i		i
÷		452.0	i	491.5	i		i	3.2.66	i	32.43	i	•	i	156.3	1	156.7	i		i
-		472 4	;		-	671 0	;	201 4	-	336 3	:	200 7	-	105+3	-	101 1	-	12/ 0	
-	PU-2.39	512.0	1	55/•~	1	514.5	1	501.0		274.1	!	279.1	1	193.3	!	171.1	!	1944:	
1	PU-240 1	9410.	1	9410.	1	9396.	1	10.09	ł	10.08	1	9.643	1.	8449.	I.	8449.	1	9427.	
1	Fu-241	959.6	Ł	960.7	1	961.5	ł	590.4		590.1	1	591.5	1	125.9	1	136.9	ŀ	136.8	!
1	PU-242	1479.	1	1473.	1	· .	1	6.35		6.35	1		1	1117.	1	1117.	1		1
1	Am-241	1496.	1	1297.	1	•	1	14.69		13.52	1		1	1298.	1	1092.	1		1
-	Am-242c1	1.535.	1	1925.	I.		L	1265.	ł	1259.	1		1	392.6	1	391.1	ł		1
Ì	A.m-242ml	1907.	İ	1907.	i	:	İ.	1529.	i	1523.	Ì		i	205.9	i	206.9	i		i
i	Am-243	2041	i.	1740.	i		i	11.36	i	10.51	i		i	1916.	i	1522.	i		i
÷	(n - 262)	351.2	i	351.5	i		i	11.00	i	11.09	i		i	116 3	i	116 ?	i		- i
-		2222	-		1		н. 1	1017	-	150 1	1		;	100 7	1	1100C	-		3
	し 前二 2 4 5 1	42930	I.	532.0	1		1	1013e	-	103.3	1		1	52201	1	43.11	1		
1	LT-244	963.7	ļ	963.2	1		1	18.39	1	18+38	1		1	293.4	1	593.5	ļ		1
	Cm-245	1086.	I	1094.				799.9	ł	799.3	1		1	107.8		107.8	ł		

· -								
1	1	t	ot	a 1	1 f 3	l z s 1 o n	1 c	apture
1	Isctopel	L-P-G	· NJUY	I AVSP.	L-R-G	VA YOUN	SP. L-R-G	NJUY AVSP.
1								
1	th-272 1	7.536	7.544	1 7.544	.074941	.075861 .0	75861 .035741	.09501 .09501
ł	Fa-233	7.491	7.455	1 7.455	1 .6038 1	.5083 1 .6	093 .1590	•1565 •1565
ł	Np-237	7.561	7.548	1 7.548	1.298	1.308 1.	308 .1381	.1844 .1844
1	Pu-233	7.803	7.790	1 7.790	1 1.975 1	1.993 1.	983 .07441	.073341 .07334
1	Pu-239	7.704	7.717	1 7.717	1.795	1.795 1.	795 1 .054201	.053351 .05335
ł	PU-240 1	•2285 I	6.533	6.503	1.0021301	.097571 .0	8757 . 0086951	.035461 .03545
1	Pu-241 1	.1342	7.962	1 7.952	1 .026591	1.607 1.	607 1.0054601	.066441 .06544
1	Pu-242	7.720	7.765	1 7.755	1 1.112 1	1.118 1.	118 .07839	.078161 .07815
1	Am-241	7.548	7.635	1 7.635	1.341	1.349 1.	349 1 . 2031 1	•3028 •3028
1	Am-243	7.676 1	7.553	1 7.653	1.116	1.124 1.	124 .2385	.2350 .2350
I	Cm-242	8.075 1	8.055	1 8.056	1 1.660 1	1.654 1.	664 1 .030231	.029631 .02963
1	Cm-243 1	7.975 1	7.955	I	2.170	2.167 1	. 017281	•016961
ł	Cm-245	8.129	8.107	1. 1. 1. 1. 1.	1 1.977 1	1.901	.047291	.046581
ł	Cm-246 1	3.791	8.742	1 9.742	1.338	1.342 1.	342 .023331	.022841 .02284
I	Cm-247 1	3.392 1	8.556	- F	1 2.259 1	2.265 1	05111	.050131

Table 6 : Cf-252 fission spectrum averaged cross sections (barns) from INDL/A-33 file-2

- The agraement between the Cf-252 fission spectrum averaged fission cross sections calculated by NJDY and L-R-G is generally very good except for the Pullisotopes in the IE library (see Table 6). Looking at the file of group averaged cross sections for Pu-240 produced by NJDY is seems that the pointwise data up to 5.5 MeV are ignored.
 - No differences were observed in the fission spectrum averaged cross sections obtained by direct integration and by group condensation. This is to be expected since there is no difference in the upper integration limit in the two approaches and the cross section energy dependence around mean spectrum energy is usually rather smooth.

The integrals for the ESC library were calculated by condensation of the group averaged cross-sections from the IRDF-95 [6] file where the actinide date were generated from the available ENDF/9-5 files including all recent improvements [13] with latest L-R-G [14] set of codes. The cross sections are given in the extended SAND-II group structure which extends up to 20 MeV. Very gcod agreement of the results with the published data [11] reconfirms the adequacy of the condensation approach to calculate the integrals (see entries in Table 2 marked with an asterisk).

The remaining libraries were all processed by FECGROUP-C84 [15] into group constants in SAND-II Extended 640-group structure and condensed into relevant integrals by AVSPECTM [10]. The verification of FECGROUP-C84 in [12] is applicable because the processed libraries are very simple.

In some of the experimental measurments the assumed upper energy range of integration is less than 20 MeV. Such measurments are renormalized accordingly and they are marked with an asterisk in the tables.

4. Comparison with Experiment

The resonance integrals (R.I.), the U-235 and the Cf-252 fission spectral averaged cross sections are considered for all isotoces for which experimental data are available. The experimental values are extracted from an EXFOR retrieval [16]. The cross section ratio measurments and the data without cuoted errors are not considered. Whenever more than one exprimental value is available the mean value is calculated using a weighted least squares technique. The correlation between errors is neglected so the mean value is equivalent to the weighted average. The inverse of the square of the experimental error is used as the weight.

For each isotope the experimental values, the calculated mean, the value from an independent compilation [17] and the calculated values from various avaluated libraries are compared. The quoted errors are the experimental errors in measurments, the standard deviation for the calculated mean value or the deviation from this mean for the values calculated from the evaluated libraries.

For consistency the R.I.s obtained by group averaged cross section condensation are used in all cases. The NES recommended U-235 fission spectrum in group averaged form as given in E61 is used rather than the ENGF/3-5 equivalent.

To conform with the units commonly encountered in the literature the R.I.'s are given in barns and the fission spectrum averaged cross sections are given in millibarns.

4.1 30-Th-232

The capture resonance integral measurments are wildly scattered. In fact only 5 measurments out of 20 have error bars consistent with the calculated mean. This is an indication that the quoted errors are underestimated or that they do not include some systematic errors such as the uncertainty around the cadmium cut-ofr energy or the deviation from the 1/F spectrum. The measured R.I. of Th-232 is therefore not suitable as a criterion to judge the quality of evaluations.

Table 7: Resonance integrals for Fission (R.I.f) and Dapture (R.I.c) and the fission cross section averaged over the Cf-252 fission spactrum (Cf.f) and the U-235 fission spectrum (U5.f.)

= :		**********	= = = :	=====	=====	******	*****	= = = = = = = =		======	*****
1	90-TH-232	.Res. In	t.	and	Spec	trum av	eraçe	d cros	s-sect	•	I
I	R.I.f err.	mef.I R.I	• C - I	err.	ref.I	Cf.f.	err. I	raf.I (L5.f.	err. r	ef.I
I	(b) (b)	. I CE)	(5)	I	(mb)	(mb)	I	(mb)	(ゕゥ)	I
Ŀ											·
Ī		I 70	• 0	5 .0	52 I	89.4	2.7	30 I	78.1	3.9	75 I
I		I 95	• 0	8.5	25 I	54.7	4.9	94 I	77.0	4 • C	76 I
I		I Š2	• 7	1.8	29 I			I			I
I		I 82	• 5	3.0	28 I			I			I
I		63 I	• 0	3.0	20 I			I			I
I		I 83	• 0	5.C	27 I			I	•		I
I		I 31	• 2	2.4	30 I			I			I
I		I 33	• 0	6.0	26 I			Ţ			I
I		I 37	• 0	4.0	21 I		4	I			I
I		I 87	• 0	2.0	29 I			I			I
I		· I 96	• 0	6.Û	24 I		•	I			I
I		I 59	• 0	5.0	24 I			I			I
I		I 64	• 0	7.0	24 I			I			I
I		1 68	• 0	5.0	24 I			· I			I
I		I 68	• 0	3.0	24 I			I			I
I		I 63	• 0	2.0	24 I			I			I
I		I 79	• 0	4.0	31 I		•	I			I
I		I \$59	• 5	4.0	90 I			I			I
I		I #93	• 2	6.0	1 39 I			I			I
I		I #72	• 5	4.5	71 I		*	ĩ			I
1	mean value	(33) (33)	reco	0.000 	datio 	ns from The trom	ret.1	l7 and	ref.1	8	I
I		I 79	• 4	0.8	55 I	88.3	2.4	1 33	77.7	2.7	I 33
1	.0746 .016	17 I 82	• 3	2.4	17 I		÷	-			1
Ī		I as	•	5.	18 I	,					Ī
			-								

. :

= =		**********			. = = # = = = = = = =		======	:=
I	90-TH-232	FISSION	R.I.	and Spectr	um aver.	cross-sect	•	I
III	Library	₹.I. (b)	e rr. (b),	CH-252 f. (m's)	эгг. (тb)	U-235 f. (mb)	err. (mb)	I T
I I I I I I ==	EXPERIMENT UKNCL-80 LENCL-84 ENCF/8-4 ENCF/8-5 INCL/A E INCL/A E INCL/A K2	0.5153 0.6432 0.5391 0.6161 0.5710 0.5925		39.30 79.93 31.17 74.43 78.07 75.36 74.43	$\begin{array}{r} 2.40 \\ -5.37 \\ -7.13 \\ -13.57 \\ -10.23 \\ -12.44 \\ -13.87 \end{array}$	77.70 73.73 75.19 63.00 72.40 70.19 59.00	2.70 -3.57 -2.52 -8.70 -5.30 -7.52 -9.70	I I I I I I I I
== 1	90-TH-232	(N,GAMMA)	====== ۹.I.	and Spectr		cross-sect	-	== I
I I	Library	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (тб)	U-235 f. (mb)	err. (mb)	I I
I I I I I I I I	EXPERIMENT UKNEL-30 LENCL-84 ENDF/3-4 ENGF/8-5 D INDL/4 E INDL/4 K2	73.40 110.66 92.77 85.37 85.93 80.07 82.53	0.75 31.25 14.37 5.97 6.53 0.67 3.43	118.70 95.94 38.39 39.59 95.01 97.47		125.10 100.60 103.30 94.24 93.67 102.30		

Enly four measurments are available for the fission spectrum averaged fission cross section but they seem to be more consistent. All the evaluated libraries underestimate the fission cross section slightly. This underestimation is least pronounced in the L4 library. The two INDL/A evaluations (IE and IK2) together with E4 show largest deviation. 4.2 \$1-Pa-233

The measured capture R.I.'s are self-consistent. The values derived from the E4 and the E54 libraries lie within the error bars of the measured values but the values from the UK and 15 libraries are considerably overestimated.

Table S: R.I.s for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

=				=======	=====					=====
IIII	91-8 R.I.1 (b)	Pa-233 f err. (b)	Re ref.I I	s. Int R.I.c (b)	err. (b)	nd Spec ref.I I	trum aver Cf.f. err (mb) (n	raged cros • ref.I (• L) I	s-sect. S.f. err. (mb) (mb)	I ret.I I
IIIIIII			1 1 1 1 1 1	930. 857. ≈026. ≈921. ≈349. ≈340.	135. 35. 90. 43. 43.	33 I 69 I 35 I 34 I 35 I 35 I		I I I I I I I		I I I I I I
I	mean	value	(22)	and rea		ndation	s from ra	ef.17 and	ref.18	I
III	3.		I I 19 I	95 1. 865. 860.	13. 35. 35.	58 I 17 I 12 I		I I I		I I I

=			=======					:=
I	91-P4-233	(N,GAMMA)	R.I.	and Spectru	um aver	.cross-sect	•	I
I I	Library	۶.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. (mb)	I I
	EXPERIMENT UKNCL-80 ENDF/8-4 ENDF/8-5 A INCL/A E	350.87 886.00 357.28 857.23 882.27	18.59 35.13 6.41 6.41 31.40	117.70 178.60 178.60 156.50		127.00 165.20 188.20 168.30		

4.3 \$2- U-233

The R.I. measurments show good consistency except for two fission R.I. values. The UK and L4 libraries underestimate the fission K.I. and the L4, 34 and IK2 libraries uncerestimate tha capture R.I. by an amount exceeding the uncertainty in the measurment.

• .

Table 9: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (Uf.f.)

	92- L R.I.f (b)	J-233 err. (5)	ref	= = = ? e : • T · T	R.I.((b)	: err. (b)	nd Spec ref.I I	:trum a Cf.f. (mb.)	err. (mb)	ed cro ref.I I	===== ss-sec U5.f. (mb)	t. err. ref. (mb)
	798. 839. 771. 850. 820. *729. #729. #824.	26. 40. 49. 90. 60. 26. 24. 70.	29 39 39 41 42 37 37 32	I I I I I I I	135 146 ≠14∂.	а. З. 7.	39 I 42 I 35 I I I I I I	1893. 1947. 1947.	48. 31. 31.	20 I 37 I 2 I 1 25 I I I I		
I	mean v	value	(32)) :	and re	ecomme	rdatio	ns from	n ref.	17 and	ref.1	P
I I I =	77 3 .? 783.4 760.	13.4 7.8 17.	٤٤ 17 15	I I I ==:	143.4 133.3 137.	4 4.4 1 4.5 5.	56 I 17 I 19 I	1939.	20.	I 33 I I		

=: I	92-U -233	FISSION	?.I.	======================================	um avera	cross-sect	. I
=: I I	Library	R.I. (b)	err. (b)	C1-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
IIII	EXPERIMENT UKNDL-80 LENCL-94 ENDF/6-4 INCL/A K2	773.92 756.52 755.02 762.19 764.47	13.43 -17.40 -18.90 -11.75 -9.45	1938. 1091. 1896. 1833. 1834.	20. -47. -42. -105. -104.	1899. 1904. 1841. 1842.	

· · · ·

=:	92-U -233	======================================	====== R•I•	and Spectr		cross-sect	
I I	Library	R.I. (b)	err. (b)	Ct-252 f. (mb)	err. (пb)	U-235 f. (mb)	err. I (mis) I
I I I I I I I	EXPERIMENT UNNCL-80 LENCL-84 ENDF/8-4 INDL/4 K2	143.36 145.46 133.91 134.66 134.94	4.39 2.10 -9.45 -5.70 -8.42	41.64 50.44 50.36 60.85		45.10 64.36 64.23 64.23	I I I I I

I	92-U -235	FISSION	R.I.	and Spectr	um aver	.cross-sect	•	
= = I I	Library	R.I. (b)	err. (b)	C1-252 f. (mb)	err. (mb)	u-235 f. (mb)	err. (mb)	=
 I	EXPERIMENT	280.16	3.61	1225.	 9.	***		-
Ī	UKNEL-80	274.42	-5.74	1237.	12.	1239.		
Ī	LENCL-84	283.90	3.75	1232	7.	1232.		
Ī	ENDF/3-4	282.96	2.80	1241.	16.	1241.		
I	ENDF/8-5 D	221.73	1.55	1236.	11.	1236.		
I	INDL/A J	274.96	-5.20	1248.	22.	1248.		
I	INDL/A K2	209.02	-11.13	1256.	31.	1256-		
= =			222222		==#===			=
*								= .
= = - I	92-U -235	(N, GAMMA)	R.I.	and Spectr	um aver	.crośs-sect		H
= = I I I	92-U -235	(N, GAMMA) R.I.	R.I.	and Spectr		.crośs-sect		
== I I I	92-U -235 Library	(N,GAMMA) R.I. (b)	R.I. err. (5)	and Soectr Cf-252 f. (mb)	um aver err. (mb)	U-235 f. (mb)	err. (mb)	
=== I I I I	92-U -235 Library EXPERIMENT	(N,GAMMA) R.I. (b) 140.23	R.I. err. (5) 2.40	and Spectr C1-252 f. (mb)	um aver err. (mb)	U-235 f. (mb)	9rr. (mb)	
=== I I I I I	92-U -235 Library EXPERIMENT UKNSL-SG	(N, GAMMA) R.I. (b) 140.23 139.91	R.I. err. (b) 2.40 -0.32	and Soectr Cf-252 f. (mb) 77.15	um aver err. (mb)	U-235 f. (mb) 82.93	9rr. (mb)	
=== I I I I I I	92-U -235 Library EXPERIMENT UKNSL-SG LENCL-84	(N, GAMMA) R.I. (b) 140.23 139.91 139.58	R.I. err. (5) 2.40 -0.32 -0.65	and Soectr Cf-252 f. (mb) 77.15 91.46	um aver err. (mb)	U-235 f. (mb) 82.93 97.63	9rr. (mb)	
=== I I I I I I I	92-U -235 Library EXPERIMENT UKNSL-SC LENCL-84 ENDF/6-4	(N, GAMMA) R.I. (b) 140.23 139.91 139.58 139.55	R.I. err. (5) 2.40 -0.32 -0.65 -1.58	and Soectr Cf-252 f. (mb) 77.15 91.46 95.82	um aver ===== err. (mb)	U-235 f. (mb) 82.93 97.63 101.60	9rr. (mb)	
== I I I I I I I I I I	92-U -235 Library EXPERIMENT UKNSL-SG LENCL-84 ENDF/6-4 INDL/A J	(N, GAMMA) R.I. (b) 140.23 139.91 139.58 139.55 153.11	R.I. err. (b) 2.40 -0.32 -0.65 -1.58 12.66	and Soectr Cf-252 f. (mb) 77.15 91.46 95.82 127.40	um aver ====== err. (mb)	E2.93 01-235 f. (mb) E2.93 97.63 101.60 133.90	9rr. (mb)	

.

17

•

.

4.5 92- U-236

.

The capture R.I. measurments are contradictory and they can not help to select the evaluated data which also show enormous discrepancies.

Table 11: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

I I I I	92- U R.I.f (b)	-236 err. (b)	Res Ref ref.I I	R.I.c (b)	err. (b)	ref.I I	===== trum Cf.f. (mb)	averaged err. re (mb)	cross- f.I US. I (m	sect. f. err. re b) (mb)	==== I ef.I I
IIIII			I I I I I	450. 417. 419. 381. 259.	30. 25. 70. 20. 22.	49 I 50 I 50 I 22 I 92 I			I I I I I		I I I I I I
I	mean v	alue	(23)	and rec	; ommer	ndation	is fro	m ref.17	and re	f.18	I
III	2. 7.9	1.6	I 17 I 18 I	3 6 6. 358. 360.	12. 8. 15.	&& I 17 I 18 I			I I I		I I I

I 92-U -236	(N,GAMMA)	R.I.	and Spectr	um aver		. I
I Library I	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I EXPERIMENT I UKNCL-80 I LENCL-84 I ENDF/8-4 I ENDF/8-5 A	365.30 322.87 631.49 350.04 350.32	11.55 -43.43 465.20 -16.26 -15.98	171.10 158.20 170.20 170.20		179.30 176.30 178.60 178.50	I I I I I

.

.

4.6 92- 0-239

The capture R.I. measurments are reasonably consistent. A clear distinction may be observed between the "before 1972" and "after 1972" measurments, the former being higher. The R.I. values derived from the evaluated libraries are slightly overestimated except in the case of the L4 library where the value is within the experimental uncertainty an the UK library which underestimates the capture R.I.

Table 12: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

=	= = = =	= =	= =	:=:	:=:	: 3 :	= =	33	:=	= =	= :	= =	= = =	:=:	5 3 :	2.3 -	= = =	= =	= = :	1 2 2	. = =	= = :	= =	22	= =	: = =	: = =	:=:	2 2	2 2	:==	:=:	====	: 2,2
I	92	-	U -	2	88			Re	s	•	1	n+	•	2	an	d S	S E e	эc	tru	រក	2 V	e r	80	e d	c	r	ss	;-;	s e	c 1	t.			I
ī	R.T	. f	Â		· .	•	a f	- 1		ż.	T	. c	81	۰r.	_	r e 1	F . 1	r	Cf.	. 4 .		r r		re	f.	T	115		f.	e		•	ret	f.I
Ŧ	/ • •	5						-			5	`						r				 (- - \			Ŧ	7	-			(.			- T
÷	(0	٠_			,,			- 4					. `	υ.				•		,		(m)				<u> </u>					C 11			Ŧ
1																																		<u> </u>
I								1		2	8	Ζ.	Z	20.		52	2]	[·]	3.	24.	•	14.	٠	- 7	5	T	3	0	5.		15	•	83	5 1
I								Ĵ		2	8	6.		25.	•	89		[3 ()8.	•	17	•	- 7	3	I								ī
I						. '		I		2	28.	2.		8.		53	3 3	Γ	31	11.		14		9	4	I								I
Ť								1	•	2	Q.	1.	1	ā.	_	2:	2	7	2 5	22.		7		g	c	Ť							•	T
÷								-	•		 	~ • ~			•			-	2		•	Ż	•		ź	÷								÷
Ŧ								1	•	۷	0	(•		2		21		1	، د	+ [•	•	0	•	5	c	1								1
I								1		2	٠÷	9.		5.	•	-46	5 3	1	- 34	÷7.	•	6	•	8	7	I								I
I								1		‡2	:6	5.		22.		- 91	L 1	I	32	25.	•	7	•	7	8	I								I
I								3		≄ 2	27	8.	1	0.		71		I								I								I
Ŧ					•			1		÷ 2	2	<u>.</u>	1 1	4	-	5		7								Ŧ								T
1								-		T 4	. 0				•		• •	•								•		_	_	_	_		_	
1																													_ -					
I	nea	n	٧Ŧ	11	10	(3.2)	3	n d		re	CON	1 m €	90	da1	110	n c	S	fro	n c	re	f.	17	ð	and	i r	• e	† .	18	3			I
-				-							-				• •	~ ~ ~	-									~								
I								1	[27	2	• 4	1	2.9	9	13		I	32	28.		3	•	3	3	I	3	0	3 .		45		4	ΔI
T	. 001	3		. n (10:	, ,	17	1		27	6	. 3	:	. •	7	1 1	7 .	T								т								T
÷	001	5 /			0.0		•	0 1	•	 		• •	-	. •	•	1		•								Ŧ								Ŧ
Ŧ	• 001	24	•	υı	101	12	-	0 1	•	2 (ſ	•		•		т. Т.		L										_		_				•
=		= =	22	= = =	:=:	:::	= =	= :	: 2	8 3	:=	= =	= 2 1	===	= =	= = :	5,2 :	3 2	223	= = 3		2 2	= =	= =	= :			=	= =	= 1				
*		= :	:=:	= = :	2 2	S 2	= 3	= ;	= =	= =	= =	= =	= 2	2 2	= =	= =	= =	= =	:==	= = :	= = =	= =	= = =	= = =	:=	= = :	= = :	= =	= :	: = :	= = :	= =	= = = =	= =
I	92	!-i	. ا	- 2	38		FI	S:	SI	10	N.			R	.I	•	an	d	Sp	e c '	tru	m	-8 \	/ е г	•	cre	0 5	s –	56	≥C	t.			I
*	====	:=:	:=:	= = :	= = :	= =	= =	= :	= =	= :	= =	= =	.==:	= =	= =	= =	± 2	= =		= = :	= = =	= =			=	- · = = :			= =		= = :	= =	= = = :	= =
Ŧ	1 1 1									0	Ŧ				_		- 4	_ 7		4								 						 -
-	614			y						2	• 1	•		er.	Г. н 1. Х			- 4		т. 	•	e	er r			0.	- 2	22		•			rr•.	<u> </u>
T										C	(כ			C	0)				Cm	נט			m t)				(m	ь,)		C	mb)	I
-				• •• •																					-									
I	EXP	P E F	ll!	1E	NT.													32	28.	00		3	. (00			30	8.	00)		15	.00	Ĩ
I	UKN	CL	1	80				1.	. 6	00) 8						_	29	6.	80	-	31	- 2	20		;	27	8.	70	1	-	29	.30	I
Ī	LEN	121	- {	34				2	. 0	5/	6.8						÷	- - 	21.	70		- 4		20			20	2.	20	3		- 5	- 80	Ŧ
7	END	18	R.	- 4				1		1 6	5 0					-		21	5		_	1 2					20. 20		67	Ś	_	• •	200	÷‡.
÷		. E			~				• 7	1.1	20							21		4 U	_	16	• 9	50			27	7 •	50		-	12	• 2 0	1
1	ENL		0	- 2	υ			2.	• 0	30	63							31	.3.	60	-	14	• 4	• 0			29	+ +	6.)	-	13	• 41)	I
1	IND	11/	Α	J				1.	. 9	15	50							32	23.	30		-4	• 7	7 0			30	4.	00)	•	- 4	•00	1
I	IND	11/	Ά	K.	2			1.	• 6	62	27		•					31	.3.	00	-	15	• (0 (294	4.	00)	-	14	.00	I
=	= = = = =	= = =	; = ;	5 z :	22	= =	ż =	= :	2 2	= :	= =	= =	==:	= 2 :	= 3	= =	= =	2 3	: = =	= = :	= = =	= =	= 1		=	==:		= #	= =	: = :	= = :	= =		= =
-																																•		
-								-	= =					= =	= =	= =	= =	= =	. = =	= = :	===	= =	= 3	:==		= = :		= =	2 2	. = :	= = :	= =	===:	= =
T	92	-1) •	- 2 .	38		CN	, (5 4	Mr	1 A)		R	• I	•	an	d	Sρ	ec.	tru	n,	εv	/er	•	cro	55	5 -	s e	C.	t.			I
2	= = = =	33	: = :	= = :	= = :	= =	= =	= :	2 =	= =	:•=	= =	= = :	= = :	= =	= = :	= = :	= =	: = =	= = :	= = =	= =	= =	= =	= :	= = :	= = ;	= =	2 2	:=:	= = :	= =	===	2 2
I	Lib	r a	an y	1						R.	I	•		eri	r.	,	C 1 -	- 2	252	f.		e	rr	•.		ี ป-	- 2	35	f	•		e	rr.	I
I									•	C E)			0	h٦				6 m	h)		C	n !:	5				(m	Ъ			0	m in D	T
_																			~															
-	EVO	c -							, -		-				~ -			_							_									
1	EXP	2 1	ι I I	121	11			2	12	• 3	39		i	۷۰ '	91																			I
I	UKN	CL	- 1	90				26	57	• 4	• 5		~ (4 • '	94			9	3.	17							8.	7.	38	2	,			I
I	LEN	00	. - 9	34				27	τ3	• 8	3 2			L	44			7	'4.	35							7	8.	79)				I
I	END	F	18-	- 4				27	77	, ſ	9 (71			7	1	36							7	5.	07	,				. T
1	END	F	д.	. =	n			27	, .		in		•		•				2	2 / 2								, •	0 ¢ 1					÷
÷	- LIVO			<u>د</u>	U			21		• -	U.		e	•	71			÷.	• • •	3 4							1	6 e.	00	,				l
T	TND	L/	Ä	J				27	r 3	• 4	8			b • (09			5	4.	9.5							61	d •	63)				I
I	IND	1/	Ά	κ.	2			27	73	• 4	9			5	11			7	•0 •	92							74	4.	91					I
																		•																

4.7 93-Np-237

The Cf-252 fission spectrum averaged fission cross section measurments are not sufficiently consistent to be used as a selection criterion for the evaluated data.

Table 13: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (US.f.)

= I I I T	93 R.J	= = = 3 - N (• f >)	=== p-2 er (==: 37 r. b)	ref	Re: •I I	= = = s . R . (Ir I	:=: ht. c	err (b	an •	id S r.ef	re •I I	= = = c t r C 1 (•um •f•f	= = = -)	vera err. (mb	i==: (10) (10)	= = : d (e f (= = : c r (. I I	us-se Us.f. (mb)	ct. err. (mb	ref.I) I
IIII				_ ~ -		I I I	• • • •	-	•				I I I	13	3 9 0 4 2 56 5	•	100. 23. 27.		79 32 79	I I I			I I I I
I	mea	in	val	ue	33))	and	l r	.ec	: o m m	er	idat	io	ns	fr	0 11	ref	.1	7	ותה	d ref.	18	I
	6	5.5	1	• 2	17 13	I I I	8	522	2	58 50		17	I I I I	14	09	•	17.	{	3.2	I I I I			I I I

I 93-NP-237	FISSION	R.I.	and Spectr	um aver.	.cross-sect	. I
I Library I	R.I. (b)	err. (b)	Ct-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I EXPERIMENT I UKNGL-80 I LENDL-84 I ENDF/8-4 I ENDF/8-5 D I ENDF/8-5 A I INDL/A E I INDL/A K2	6.9020 7.4796 6.5606 6.8705 6.5869 5.9325 5.8622		1409. 1371. 1303. 1351. 1352. 1352. 1308. 1287.	17. -38. -106. -58. -57. -57. -101. -122.	1338. 1275. 1320. 1322. 1322. 1322. 1275. 1257.	I I I I I I I I

4.8 94-Pu-238

The data in all but the UK evaluated libraries agree well with the single fission R.I. measurment. It would be useful to have this value confirmed by another experiment. The capture R.I. measurment is more than an order of magnitude larger than the recommended value from ref.[17] and the values derived from the evaluated libraries. The source of the discrepancy needs to be resolved to see which value is more correct.

Table 14: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

I 94-Pu-238 Res. Int. and Spectrum averaged cross-sect. I I R.I.f err. ref.I R.I.c err. ref.I Cf.f. err. ref.I U5.f. err. ref.I I (b) (b) I (b) (c) I (mb) I (mb) (mb) I (b) I (b) I (b) I (b) I (c) I (--I I 32. 5. I 3260. 280. 55 I I I 3310. 400. 55 I I Ι I Ι _____ ---I mean value (&&) and recommendations from ref.17 and ref.18 T -----5. EE I 3276. 229. EE I I Ι 32.

 24.2
 2.7
 17
 I
 154.
 9.
 17
 I

 33.
 5.
 18
 I
 162.
 15.
 18
 I
 I

 I Ι I I

I 94-PU-238 FISSION R.I. and Spectrum aver.cross-sect. I I Library R.I. err. Cf-252 f. err. U-235 f. err. I (b) (b) (mb) (mb) (mb) (mb) I I I EXPERIMENT 32.03 5.08 I UKNCL-80 75.95 43.92 1935. 1912. I LENCL-84 32.21 0.18 2047. 2027. I ENDF/B-4 30.60 -1.44 2078. 2045. I ENDF/B-5 A 30.48 -1.56 1983. 1956. I INDL/A E 31.49 -0.54 1983. 1959. I INDL/A K2 31.25 -0.75 1936. 1910. I Ι I I 1956. Ι I Ι

I 94-PU-238 (N,GAMMA) R.I. and Spectrum aver.cross-sect. I I Library R.I. err. Cf-252 f. err. U-235 f. err. I I (b) (b) (mb) (mb) (mb) (mb) I I EXPERIMENT 3276.44 229.38 74.47 I UKNEL-80 137.90-3138.54 79.92 I

 I
 UKNUL-80
 137.90-3138.54
 74.47

 I
 LENUL-84
 151.66-3124.78
 110.30

 I
 ENDF/8-4
 144.55-3131.89
 41.00

 I
 ENDF/5-5
 A
 153.50-3122.94
 142.30

 I
 INDL/A
 E
 143.50-3132.94
 73.34

 I
 INDL/A
 K2
 158.50-3117.93
 122.40

 114.70 I 43.64 I 150.d0 J 73.21 Ι 129.60 T 4.9 94-Pu-239

The fission R.I. measurments are often scatterred more than the quoted errors would allow and for the capture R.I. a single measurment is available. On the other hand the k.I. values for capture and fission derived from the evaluated libraries are all very close together but the evaluators seem to prefer a somewhat lower value of the capture and the fission R.I.

For the fission cross section averaged over the Cf-252 fission spectrum the same comment applies as for the R.I.

Table 15: Resonance integrals for Fission (P.I.f) and Capture (R.I.c). and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

I 94-Pu-239 Res. Int. and Spectrum averaged cross-sect. I I R.I.f err. ref.I R.I.c err. ref.I Cf.f. err. ref.I U5.f. err. ref.I I (b) (b) I (b) (b) I (mb) (mb) I (mb) (mb) I -1 I 1790. 41. 77 I I 1°61. 20. 87 I I 1861. 30. 82 I I 387. 22. 44 I 221. 11. Ι I 301. 10. 45 I Ι 327. 22. 40 I I I I 366. 26. 56 I I 1824. 35. 78 I I I 330. 30. 41 I 1 I T I 328. 22. 67 I Т Ι I I 320. 19. 72 I I I I I 327. 22. 88 I T I T I 434. 81. 57 I Ţ I Ī - --I mean value (&&) and recommendations from ref.17 and ref.18 Ι I 323.8 6.5 && I 221. 11. && I 1841. 17. && I I 312.2 8.2 17 I 191. 16. 17 I 1 I I 301. 10. 18 I 200. 20. 18 I I I

I 94-PU-239	FISSION	R.I.	and Spectru	um aver	cross-sect	. I
I Library I	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (djn)	U-235 f. (mb)	err. I (mb) I
I EXPERIMENT I UKNCL-SO I LENCL-34 I ENDF/3-4 I ENDF/3-5 D I INDL/A E I INDL/A J I INDL/A K2	323.90 300.15 307.01 303.63 303.96 304.68 259.71 304.44	6.49 -23.65 -16.79 -20.17 -19.83 -19.11 -24.09 -19.36	1841. 1783. 1781. 1789. 1792. 1795. 1819. 1786.	17. -53. -60. -52. -49. -46. -23. -53.	1775. 1774. 1781. 1785. 1787. 1812. 1781.	

I	94-PU-239	(N,GAMMA)	R.I.	and Spectru	um aver	.crcss-sect.	I
I I I	Library	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mu)	err. I (mb) I
Ī	EXPERIMENT	221.08	11.03				 I
I	UKNCL-80	179.19	-41.89	46.51		50.29	I
I	LENDL-84	205.58	-15.40	41.53		44.88	I
I	ENDF/8-4	194.39	-26.69	39.75		43.45	I
I	INDL/A E	182.95	-38.23	53.35		57.46	I
I	INDL/A J	194.94	-26.24	59.01		63.30	I
I	INDL/A K2	194.32	-26.76	37.65		41.08	I
=	***********			========================			

4.10 94-Pu-240 ------

The capture R.I. measurments are characterised by very large quoted uncertainties but the avaraged value is still outside the error bars. In the evaluated libraries the evaluators seem to prefer a considerably lower value of the capture R.I.

A single measurment for the Cf-252 fission spectrum averaged fission cross section is available. Calculations from the avaluated libraries produce values which are scattered around the measured point by more than the experimental error. The large discrepancy in the value derived from the IE library seems to be due to some processing errors described in the pravious section.

Table 15: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

= :	= =	=	=	= :	= :	= \$: =	= :	= =	: =	=	= :	= :	= :	:=	=	= 1	= :	: =	=	=	= :	: =	=	= :	2 2	=	= :	= =	: =	=	::		:=	= :	= =	Ξ	= =	: 2	\$	= =	=	= :	: =	:=	= :	= =	: =	= =	==	= =	:=
T		9	4	- 1	P		• >	4	n			1	R	e 9	: .		T (۲.			2	• •	đ	;	î.	.	~ •	tr	• • •	61		• v		r.	= 0	6	4	r	r	.	ς.	- <	: 0		+	_					T
Ŧ	c	ſ	÷		•	۰.			~	_	_	`ء		 -			÷				_	_`	••••	2		2 H	-	٦,	È.	. "				_	_	- 9	-		č	· · ·	يد م رو	5	4	, ,					_			÷
÷.		•	÷	•	1	•			•	•	8	1	• •	-		•		ه (ر	•	e	5		•	L.	6	•	· -			•	Ţ	•	6	2	٢.	•	Г	8	•	-	U	12	• !			e.	r r	•	्रा	. е	1	· +
T		(р)			C	b)					I		ζ	Þ)			C	52)				I		C	m	b)		C	m,	ь)				I	·	C	n I:	"))	1	Çπ	b)			I
I٠	-	-	-					-		• •	-	-			•		-			-	-			-			-			-	-			-	-		-		•									-				٠I
I														Ī		8	ç.	04	4		5	5 ()		51	ĥ	T		1 3	17	7			3	2			8 (}	٢												I
Ŧ														-	4	1	ń.		'n	1	6	0.0			2	0	Ţ				'	•		~	-	•		<u> </u>		Ţ												Ŧ
÷.													1	+	4		2			4			,		20		+													1												-
T														I	7	.1	7	3	L	1	U	3()		9	3	Ι													I												I
Ι														I	1	. 1	4	5 9	Э	1	0	0()		8	9	I													τ												Ι
I													•	Ť	ź	:3	6	5 (5		7	00)		5	9	T													Т												T
Ξ.			_	_				_			_	_		-			_				<u>.</u>			_	_			_	_		_				_					Ĩ.					_							
-	-	_	_	_								-								-	_				-										-			_							_	-						-
T	7	10	а	n		Va	e T	. u	е	C	٤	٤)	2	30	d		r	9 C	0	11	m e) u	d	9.	ti	0	n	S	t	r	01	T)	٣	e	† •	1	7	2	n	đ	r.	e 1	t.	, 1	8						1
	-	-	-	-	-			-			-	-			• -	-	-		-	-	-			-	-		-	-		-	-				-		• •	-				-				-			-			
Ι														I	9) 5	7	9.			3	67	7.		8	3	I		13	33	7	•		3	2	•		8.1		I												
Ŧ			5								1	7		Ŧ		۰.	À	۸.			2	^ :			1	7	Ŧ			-		-		-	_	-			-	Ŧ												Ŧ
÷.			ź	•							t	:		÷.			2	~	•		2	0. 	<u> </u>		÷.		+													1												-
T			8	٠	3						T	3		T	5	1	U	0	Ð		4	υ	• ر		1	ຮ	Ă.													T												1
=	= :	:=	=	2	=	= :		=	= :	: =	=	=	= :	:	= =	:=	Ξ	= :	2 2	: =	=	= :	= =	=	=	= :	=	=	= ;	: =	=	= :	= =	=	Ξ	= =	: =	= 1	2 2	=	= =	:=	= ;	= 3	= =	=	= :	: =	= ;	= =	= =	:=
=	=		: =	=	=	=	= :	: =	= :	= =	. =	=	=	=	= :	= =	: =	=	z :	= =	=	=	= =	: 2	=	= :	= =	=	= :	= =		-	= :		. =	= :	= =	=	= :	= =	= :	= =	=	= :	= =	: =	=	= =	=	= =		Ŧ
-	-			-	_				~		-	Ţ	Ţ.	~	• •		. –		_		-	~		, -	_				~			T				_		_			-		-	-			_		-		Ξ,	-
1		2	4	-	٢	U	- 4	4	U		r	τ.	ა	2	τι	16	1					ĸ	•	•		aı	٦đ		21	D e) C	τ	r I	u fi	1	91	v e) r	• (:r	0 :	55	-	5.6	e c	:τ	•				•	T.
Ξ	Ξ	2 2	: =	=	=	=	= =	= =	= :	= =	:=	=	=	=	2 :	: 3	=	=	= :	: =	=	± :	= :	: 2	=	23	= =	=	= :	= =	: =	2	= :	2 2	: =	=	= =	: =	= :	= =	= :	= =	= :	= :	= =	: 2	=:	2 2	1 =	= =	2:	=
Ι	1	.i	b	r	а	r	y					<u>,</u> .			F	۲.	I	•			e	r	r.	•		C٠	f –	2	5	2	f				e	r i	۰.			U	- 7	23	5	•	f.	,		ं e	r	r.		I
т							•					_			6	• •	5					0	Ь,	\$		-			ζ,				•		1	m i	• •			-		٢		6.3	`			0	m	5		Ť
1															`														•	a i,	.,					111 1	.,							υ.	/							Ŧ.
_	-	_			-	_			_			-	-	-			-	-			-	-			-			-	-	••	• -	-			-					-			-				-				-	
I		ΕX	(P	'E	R	I	M	ΞN	T																			1	3:	37	1.					37	2.															I
I	1	JK	(N	C	L	-	8 ()					6	•	43	39	9											1	2	5 5	5.				-	8	2.	,			1	12	2	7.	•							I
т	1	F	• •	D.	i.	_	R 4	4				1	٥		0:	, p	13											1	4	1	ξ.		2			7/	ς.					13	8	1							. •	Ť
÷				Ē	7	а.	_ /	Ż				•	õ	•			2											ŝ	2							_							2	2	•							r T
1				E C	1	0		•					7	•	יכ		C										~	r	2	30	•	-		_		Ξ.	7					1.2	5	2.	•						•	1
I		[N	15	L	/	A	1	-					4	•	Ζ:	5 8	3 5							•					1	58	3.		•	- 1	2	4	9.						6	5.	•							I
Ι		ΙN		L	1	A	•	J					9	•	84	+ 2	27											1	37	57	1.					3,	Э.	,				13	3	Β,	• .							I
Ι		IN	10	L	1	Α)	(2					8		37	57	1											1	2	7 f	2.					5	9.					12	5	2.								Ī
-	z	2 3		=	=	=	= :	= =	=	= =	: =	-	_	-	= :		. =	=	= :		-	z			-	-		2	-			-	-		. =	=	= =	. =	= :	= =	= :	. =	=	= :	= =	: =	=	= =	:=	= =	. = '	=
-	-				-	-			-					-			-	-				_			-	-		1	-			-	-			-		. –			-		_			-	-				-	-
=	=	= =	: 2	=	=	=	= :	= =	= :	= =	=	=	=	=	= :	= 4	: =	=	= :	= =	=	=	= =	: =	Ξ	= :	= =	2	= :	= 7		Ŧ	=	= =	: =	=	= =	=	2 :	= =	= :	= =	=	= :	= =	= =	Ξ	= =	:=	= =	= :	=
I		5	94	. –	Ρ	υ	- 3	24	0		C	N		3	Δ !	41	1 A)				R	• 1	ι.		aı	n d		Si	0 6	e c	t	r	ur.	1	3	V 3	n	• (r	0	s s	-	S 4	e :	:t	•					Ī.
-	_				÷	-	= :		=			=	-	-	-			-	= :	= =		=	= :		-	=		=	=	= =	= =	=	= :	= =	: 2	:=:	= =	: =	= :	: =	= :	= =	=	= :	= =	= =	=	= 2	: =	= =	=	=
-	-				-	-			_					-				_				-			-	~		5	~	•		, –	-			_	_				_	, ,	c		4					_		T
T		- 3) r	а	r	Y									K a	1	٠			e	r	r (•		Ć.	τ	ć	2	4	Т	•				1	۲			U		<i>د</i> ع	<u>`</u>		14	•			: T'	T •		7
Ι																(i))					(b)					0	πl)))			C	Π.	5))				ς	n	Þ)			(្រំព	b)		Ĩ.
-	-			-	-	-			-			-	-	-				-				-				_			:				-				-				-			-			-				-	-
Ŧ		εv	<u>،</u> د) E	p	т	м	E NI	т					c	5	7 (2	4	7	_																												I
1		- (<u>,</u> ,	د. مار		+	111 11	L 11						ź	ź	- -	. •						-	•				~	-		• •	,										c a		1	2							T
T		UF	()	IL.	L		51	6						3	υ.	2:	. •					2	2						2	• `	30											30	•	1	2							1
I		LE	EN	i C	L	-	34	4						3	3	2 9	÷.		•	- 1	2	5	2.	6				٩	ő	•	3 2	2									4	5 2	. •	81	C						•	£
I		E١	10) F	1	â	- 4	4						8	4	3 8	3.			- 1	1	4	2 .	•				Ś	2	• :	11				·							86	; •	7	8							I
Ŧ		T A	JГ	νİ.	1	ā		F						0	4	7 (ົ		• •	- 1	1	4	ถ	_				9	5	_ /		;										51		0	2							ī
÷		₩ 4' ₩ 4'	4 L.	• • 	1	7	- 1	-						2	7	5	, . ,					2	2	•					5	•	- C	,										ć		4	4							Ŧ
T		ΤĻ	4 L	i L	/	A	•	J						g	4	٥	•			- 1	L		2	•				3	v	•	1 4				·							73	. •	0	-							4
I		I١	10	L	1	A	1	K 2	·					7	9	7 2	2.		•	-1	ιó	0	7.	•			1	. 0	9	• (5 ()			·						1	16	• (0	U							T
=	=	= =	: =	=	=	=	= :	: :	=	= =	: =	: =	: =	=	=	= :	= =	=	= :	= :	: =	=	= :	2 2	: =	=	= =	: =	=	= :	= =	:=	=	= :	= =	: =	= :	: =	= :	2 =	=	= =	: =	=	= :	= =	:=	= 4	2 2	= =	: = '	=
~																																																				
2	4																																																			

4.11 94-Pu-241

The measured fission R.I are consistent but the evaluators prefer a somewhat higher value. The value derived from IF library is incorrect due to the use of modified Adler-Adler parameters.

A single measurment for the Cf-252 fission spectrum averaged fission cross section is available with a fairly large uncertainty. The data in all the evaluated libraries are consistent with this measurment.

Table	17:	Resonance integrals for Fission (R.I.f) and Capture (R.I.c)
		and the fission cross section averaged over the Cf-252
		fission spectrum (Cf.f) and the U-235 fission
		spectrum (U5.f.)

=: I I I	====== 94-Pu R.I.f (b)	err. (b)	ref.I I	====== s. Int. R.I.c (b)	err. (b)	===== d Spec ref.I I	:==== :trum :Cf.f. (mb)	averag err. (mb)	ref.I	ss-sect. U5.f. err. (mb) (mb)	===== I ref.I I
I I I I	557. 550. \$524.	33. 40. 16.	44 I 41 I 37 I			Í Í Í	1,616.	80.	I 03 I I		I I I I
I	mean v	value	(33)	and red	:០ភាភាមក	datior	ns fro	m ref.	17 and	ref.13	I
I I I	532. 552. 570.	14. 18. 15.	ξε <u>τ</u> 17 Ι 13 Ι	161.	13.	I 17 I 19 I ======	1616.	80.	I 33 I I		I I I =====

I 94-PU-241	FISSION		and Spectro	um avera	.cross-sect	• I
I Library	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I EXPERIMENT I UKNCL-30 I LENCL-84 I ENDF/B-4 I INDL/A E I INDL/A J I INCL/A K2	532.61 563.64 581.06 586.43 1220.30 591.51 582.49	13.55 31.04 48.45 53.33 687.70 58.90 49.37	1616. 1661. 1593. 1650. 1607. 1621. 1637.	80. 45. -23. 34. -9. 5. 21.	1652. 1597. 1650. 1610. 1626. 1640.	

:

4.12 94-Pu-242

The measured capture R.I. are consistent. The values derived from the L4 and E54 libraries are in agreement with the measurment. All other evaluations underestimate the capture cross section considerably but they agree with the recommended value from ref E17].

Table 18: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the J-235 fission spectrum (U5.f.)

I I I T	94-Pu-24 R.I.f err (b) (b	2 Re • ref.I) I	s. Int. R.I.c (b)	and err. r((b)	spec spec ef.I I	trum ave Cf.f. er (mb) (raged cros r. raf.I (mb) I	ss-sect. J5.f. err. ref (mb) (mb)	== I •I I
I I I		I I I	1275. 1275. 128C.	30. 30. 50.	55 I 55 I 60 I		I I I		I I I
I	mean valu	e (88)	and red	commenda	ation	s trom r	ef.17 and	ref.18	I
I I I =	5. 5. 2	I 17 I • 19 I	127 6. 1131. 1115.	20. 57. 40.	έε Ι 17 Ι 18 Ι =====		I I I		I I I ===

I I	94-PU-242	(N,GAMMA)	R.I.	and Spectru	m aver	.cross-sect.	I
I I	Library	R.I. (b)	err. (5)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I	EXPERIMENT	1276.	20.				I
I	UKNDL-80	1131.	-144.	53.02		56.19	I
I	LENCL-84	1311.	36.	81.48		85.39	I
I	ENCF/B-4	1140.	-136.	55.41		58.51	I
I	ENDF/3-5 A	1288.	12.	70.40		74.85	I
I	INDL/A E	1146.	-129.	78.16		82.84	I
I	INDL/A K2	1132.	-143.	94.73		99.53	Ť
=			======	**********	= = = = = = =		

4.13 95-Am-241

The measured capture R.I. are completely contradictory and therefore useless for any sensible intercomparison before the discrepancies are resolved.

Table 19: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

I I I I	95-Am-241 R.I.f err. (b) (b)	Res. Int ref.I R.I.c I (b)	err. ref.I (b)	trum averaged cross-sec Cf.f. err. ref.I US.f. (mb) (mb) I (mb)	t. I err. ref.I (mb) I
I I I I I		I 2100. I 850. I 1140. I 1570.	200. 62 I 60. 31 I 40. 54 I 110. 72 I	I I I I I	I I I I I I
I	mean value	(&&) and re	commendation	s from ref.17 and ref.1	8 I
I I I	14.4 1.0	I 1119. I 1330. 18 I 1230.	32. 56 I 117. 17 I 100. 18 I	I I I	I I I

========= I 95-AM-24	1 (N,GAMMA)	R.I.	and Spectr	um aver	.cross-sect	. I
I Library I	R.I. (b)	err. (b)	Ct-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I EXPERIMEN I UKNDL-80	T 1119. 1414.	31. 295.	252.10		272.80	I I
I LENCL-84 I ENDF/8-4	1507. 1541.	388. 522.	157.40 51.90		172.50 68.27	I I T
I INDL/A E I INDL/A U	A 1424. 1440. 1393.	320. 274.	302.80		273.50 327.70 272.80	I I
I INCL/A K2	1453.	334.	214.60		234.90	Ī

27

4.14 95-Am-242m -----

A single measurment for the fission R.I. and only three evaluations for this isotope are available. The fission R.I. derived from the evaluated data are all lower than the measurment.

Table 20: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.t) and the U-235 fission spectrum (U5.f.)

= =	===	= =	= :	: = =	= =	: = :	= = =	= =	= =	= :	: =	= =	:=	= =	= :	= =	=	= =	= :	:=:	= =	= =	= =	= =	= = .	= =	= =	= =	= =	:=:	: : :	8 2 :	= = ;	= = = =	:=:
I T	95 3 - T	- A - f	- m -	-24	2.7		if.	ie T	5. ?	1	[n	t.		rr	ar	h d		Sc f.	э с Т	ti C'	-u F	m f.	a v e	er rr	e g	e d	c f	ro T	9 S S 11 S	5 - 5	5 e (F .	ct.	•		f.
[[(b	>		(5	>			I		Ċ	;)	~	-	(ь	5				Ī	Ŭ	m	6)		(m	b)			Ī	((mt)		Cmt	· · · ·	
[–	225	0.		200	•			I	_	. – .									I									I							
[me a	 n	V a	alu	e	(8	22	5	an	d	r	ec	: 0	 m-m		n d	5	τi		ıs	f			 re	f.	17	a	nd	l r	e	f.:	18			
1	Z 2 6	C •	2	200	•		33	1											1									I							
[[226	C • 0 •	4	200 65	•	-	17	I I	1	10	00	•	5	00	•		1	7	I I									I I							
= =	222	= =	= :	===	= =	:=:	: = :	= =	= =	= :	= =	= =	=	= =	=	= =		= =	= :	: = :	: =	==	= =	= =	= =	= =	= =	:==	: = :	: = :	= = :	= = :	= = :	. = 7 :	:=:
= =	===	= =	= =	===	==	:=:	= = :	2 2	= =	= = :	: 2	= =	: =	==	=	= =	: = :	2 2	= :	. = :	= =	==	= =	==	= =	= =	= =	:==	. 2 :	:		= = :	= = :		:=:
I = =	95	- A = =	M -	-24	2 m	1 f	=1:	s s = =) N = = =				_ R = =	•	1. ==	: =	a n = =	d = :	S) e = =	ct ==	ru = =	.m = =	8 v = =	e r = =	• •	; r 0		5-9	5 e (c t = =	•		
I	Lib	r a	n y	/					2		Ι.			er	•	•	_	C 1	-:	25	2	f.		e	r r	•		U-	-2	35	f	•		erra	
I 								_	(Ь) 	_) 	ь —) 				() 	πb))	m (5 — —) 	_			(m) 	b) 			(mb)) : :
I	EXP	ER	II	1 E.N	IT			2	26	0.	•		_	20	0	•		-	_		•			•		_	_	-							
									-	-					~																				
Ī	LEN	CL.	-1	34				1	.54	2.	•		-	71	8	•			2	18	25	•							1!	83.	3.				:

4.15 55-Am-243

The two measurments for the fission P.I. differ by nearly a factor of two although a high accuracy is claimed for each of them. The evaluated libraries produce values which are far below or equal to the lower measurment. The capture R.I. measurments are consistent but the values derived from the evaluated libraries are very underestimated.

Table 21: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U+235 fission spectrum (U5.f.)

.

			= 4 f - 0 1	= : m 	= = 2 = - 2 = 2 = 2 = 2 = 2 = 2 = - 2 =				= e - 67 -	= f 7 2		2 2 2 2	= ·(- 2321-	= I L L - S O G 3 -			= 		== a •) - • • • • • • • • • • • • • • • • •	= n -		= = S = S = S = S = S = S = S = S	-	== ? I I I I I I I I I I 		== tr t t t t t	=: u: n: -:	= = m f b) 					= = ge r) 	d e	= = c f • 				=	= = = = = = = = = = = = = = = = = = =		== t . er (= = • • • • • • • • •	• •	= =	= = e f 	
	m e 		- 0 ປ	v i 	a 1 		• 	(£ - £ 1 1 =	5 5 7 8 =	 [[= =	2			- e 			nn 		=	d a 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	or I I ==		; 	f : 		•	1 = :	==	- f 	• 1 	7			d ≢ :		e 1 	f . 	:=	9 	= =	-		= =	I - I I I I =
-	= = L - EJLEEIII= = 9 = 1 - XKENNNN=		ニムニュ ニアレレノノノニ			= = = 4 3 = = = N 1 A 2 = =		= -				= 0 = R < - 03118350 =	= N = • b - 83838219=			= = -082766666=		= R = r (- 87891759 =	= ·= rb - 74949568=	= I = •) - 78775851 =		= a= C -	= n = f =	= = d = = - 2 - 1 1 1 1 1 1 1 = =	= S 5 C 1 0 1 1 2 1 1 2	= P= 2 m - 1220225=	=e= b- 0335443=				= = e(= 5 = r m + 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5			= = • C = = 	= r = U	= = - 2 2 1 1 1 1 1 = =	= = = 3 (- 9 0 9 1 0 0 2 =	= - = 5 m - 7996881 = 9034684 =			= = = = = = = = = = = = = = = = = = =		= : er (
	= = L _ EULEEIII.		ニムニコ ーRLL////	EMER LI-BBAAA		= = = = = = = = = = = = = = = = = = =	= = 3 = = T	: =	=(= -	= N =	= G = - 2 2 2 9 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	= M = R(-55261144	= M = • D - 97229357-					= = e - 949444411		= I = •) - • • • • • • • •		= = 3 = = C	= r = f	= = = = = = = = = = = = = = = = = = =			= e = b - 0570012	= c = f > - 4250000										= s = 3 (- 5479335		= s = 11 - 6856896-		:: : :		= (= = = = = - = -	= = 	

4.16 96-Cm-242

A single measurment of the capture R.I. and two evaluations are available. The R.I. values calculated from the evaluated data are within the experimental uncertainty.

Table 22: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

=				= = :								
I	96-Cr	n-242	1	₹e :	s. Int	• •	nd Spec	strum a	averaged	cross	-sect.	I
I	R.I.f	err.	ref	• I	R.I.c	err.	ref.I	Cf.f.	err. ref	F.I U5	.f. err	raf:I
I T	(6)	(6)		I	(6)	(5)	I	(cm) 	(mb)	I (mb) (mb) I
I				I	150.	40.	I			I		I
I	mean	value	33))	and re	Comme	ndatio	ns fro	m ref.17	and r	ef.18	I
I				I	150.	4Ü.	 I 33			I		I
I	33.		17	I	156.	35.	17 I			Ι.		I
I				I	110.	20.	18 I			I		· I
Ξ	======	22228	====	= = :		=====	522522 ;		********		========	======

=					=======		
I	95-CM-242	(N,GAMMA)	R.I.	and Spectrum	aver.c	ross-sect.	I
I	Library	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
IIII	EXPERIMENT LENCL-84 INDL/A E	150.00 164.42 114.88	40.00 14.42 -35.11	95:43 29.63		100.50 32.90	I I I

4.17 96-Cn-243

The fission R.I. measurments seem to be consistent. A single measurment for the capture R.I. is available. The values derived from the LENCL-84 or the ENDF/B-5 Actinides libraries which are the only ones available for this isotope bear no resemblance to each other or to the measurment.

Table 23: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

= I I I I	96- R.I. (b)	Cm-243 f err. (5)	Res. ref.I R. I (Int. ar I.c err. (b) (b)	d Spectrum ref.I Cf.f I (mb	averaged cross-sec • arr. ref.I U5.f.) (mb) I (mb)	t. I err. ref.I (mb) I
I I I I	1360 1480 ≠1591	. 400. . 150. . 136.	63 I 2 73 I 70 I	216. 20.	I I I	I I I	I , I , I
I	mean	value	(88) and	i recommen	dations fr	om ref.17 and ref.1	۲ ع ۲
I I I	1560 1527 1570	98. 142. 100.	& £ I 2 17 I 2 18 I 2	16. 20. 14. 17. 15. 20.	56 I 17 I 18 I	I I I	I I I

I 96-CM-243 FISSION R.I. and Spectrum aver.cross-sect. I I Library R.I. err. Cf-252 f. err. U-235 f. err. I I (b) (b) (mb) (mb) (mb) (mb) I I EXPERIMENT 1560. 98. I I LENDL-84 777. -783. 1996. 1997. I I ENDF/B-5 A 1965. 405. 2073. 2075. I

I 96-CH-243 (N,GAMMA) R.I. and Spectrum aver.cross-sect. I I Library R.I. err. Cf-252 f. err. U-235 f. err. I I (b) (b) (mb) (mb) (mb) (mb) (mb) I I EXPERIMENT 215.71 20.31 I I LENCL-84 121.43 -94.28 41.00 44.30 I I ENCF/8-5 A 250.86 35.15 14.77 16.24 I

.

4.18 96-Cm-244

The capture R.I. measurments are consistent and the fission R.I. measurments are in reasonably good agreement. All evaluations overestimate the fission K.I. This overestimation is less pronounced in the E5A and IK2 libraries. On the contrary all evaluations underestimate the capture R.I. except the IK2 evaluation which produces a value within the experimental uncertainty. The values from the IK1 library are not representative because there are no data below 400 eV on the file.

Table 24: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

I 96-Cm-244 Res. Int. and Spectrum averaged cross-sect. I I R.I.f err. ref.I R.I.c err. ref.I Cf.f. err. ref.I U5.f. err. ref.I I (b) (b) I (b) (b) I (mb) (mb) I (mb) (mb) · I I-----.....

 I
 12.5
 2.5
 63
 I
 650.
 50.
 61
 I
 I
 I

 I
 13.4
 1.5
 67
 I
 550.
 63
 I
 I
 I
 I

 I
 13.4
 1.0
 83
 I
 626.
 53.
 74
 I
 I
 I

 I
 #18.1
 1.0
 56
 I
 I
 I
 I
 I

 I mean value (88) and recommendations from ref.17 and ref.18 I 15.1 0.6 & I 643. 29. E I I I 13.4 1.5 17 I 633. 32. 17 I I 12.5 2.5 18 I 650. 30. 18 I I T T T I 96-CM-244 FISSION R.I. and Spectrum aver.cross-sect. I I Library R.I. ørr. Cf-252 f. err. U-235 f. err. I I (b) (b) (mb) (mb) (mb) I I EXPERIMENT 15.12 0.61 I UKNCL-80 43.83 28.71 1749. 1703. I LENCL-84 34.93 19.71 1399. 1372. I ENDF/8-4 44.25 29.13 1755. 1710. I ENDF/8-5 A 19.31 3.19 1614. 1578. I INDL/A K1 7.95 -7.18 1630. 1594. I INDL/A K2 19.01 3.85 1630. 1594. I Ţ I I I . I 96-CM-244 (N,GAMMA) R.I. and Spectrum aver.cross-sect. I R.I. err. Cf-252 f. err. U-235 f. .err. I (b) (b) (mb) (mb) (mb) (mb) [I Library I ______ _____ I EXPERIMENT 642.60 29.41 • I

 I UKNCL-80
 587.43
 -35.17
 54.44
 67.83

 I UKNCL-80
 587.43
 -35.17
 54.44
 67.83

 I LENDL-84
 606.58
 -36.02
 41.38
 45.29

 I ENDF/8-4
 587.94
 -54.67
 64.87
 63.27

 I ENDF/8-5
 A
 583.52
 -54.09
 119.30
 128.40

 I INDL/A K1
 14.43
 -628.17
 96.05
 102.80

 I INDL/A K2
 631.30
 -11.31
 95.16
 102.90

 · I I I I T T

4.19 36-C.m-245

Except for one measurment the capture and the fission R.I. measurments are consistent. The fission R.I. calculated from the evaluated files are within the experimental uncertainty but the capture R.I. values are somewhat overestimated.

Table 25: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-255 fission spectrum (U5.f.)

= I I I I T	96-(R.I.1 (b)	===== Cm-24 f err (b	===== 5 • re1)	=== Re f.I I	==== s. 2 R. 2 (t	=== Int I.c >)	err. (b)	nd Sp ref.	=== ect I C I	:====== :rum av :f.f. e (mb)	veraged err. re (mb)	cross-s f.I U5.f I (mb	ect. . err. re) (mb)	==== I ef.I I
III	77C. 805. 802. ≉1161.	150 80 80	6 6 8 6	3 I 7 I 3 I 5 I	1(≠1(09. 04.	81. 9.	74 64	I I I			I I I		I I I I
I	mean	valu	33) e	:>	and	re	conmer	ndati	015	from	ref.17	and ref	.18	I
I I I =	878 905 840	47 80 40	. 28 . 17 . 18	I I I I I I I I	104 10 10 ====	4.3 01. 01.	8.0 3. 8.	22 17 18	I I I ===			I I I ========		I I I I====

= :	96-CM-245	FISSION	R.I.	and Spectru	m aver		
I I	Library	R.I. (b)	err. (b)	C1-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I I I ==	EXPERIMENT LENCL-84 ENDF/8-5 A	878.41 832.95 833.09	46.77 -45.46 -45.32	1723. 1975.		1724. 1978.	I I I

=:	96-CM-245	(N,GAMMA)	R.I.	and Spectrum	aver.c		I
I	Library	R.I. (b)	err. (b)	Cf-252 f. (mp)	err. (mb)	IJ-235 f. (mb)	err. I (mb) I
I I I =:	EXPERIMENT LENCL-84 ENCF/8-5 A	104.32 121.43 117.56	7.96 17.10 13.23	41.00 40.74		44.30 43.97	I I I =======

4.20 96-Cm-246

The fission R.I. measurments are in reasonable agreement although the errors are underestimated. The fission R.I. measurments are consistent. Except in the case of the E5A library the fission R.I. values calculated from the evaluated data are underestimated. The capture R.I. values derived from the evaluated data are much more scattered. The capture data in the IK1 and IK2 files seem to be the same and they underestimate the R.I. by an order of magnitude because the data are given between 200 eV and 15 MeV only.

Table 26: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

= :	= =	z	= :	= 2	= =	: =	=	=	=	= :	: 2	: :	: =	: =	=	=	= :	: =		= =	: =	= :	= =	=	= :	= =	: =	= :	= =	=	= =	:=:	= =	. = :	= =	= =	=	= =	=	= =	z :	: =	= :	= =	=	= =	= =	= =	: =
I I I I	R	9.	ó I b	- (C n	n –	2	- 4 r b -	6	r 	- 4	• •		I	5	- ?	-] -] - !	[n [•])	t	•	er (a n	d	e '	S t	ia I I	c ·	 tr (ບ 1	 m f. b)	a'	ve er (ר יר יחו		ec re	1 (2 f		0	ະ ເຮົ ເບິ5 (- s • 1 m1	5 e f . c)	c .	t. er (r ml	• b)	re		I .I I -I
I I I	*	1 1 1	3 3 0	• 3	3		1 1 0	•	5 5 4		8 6 6	38 57 55	} ,	I I I		*	11	2 S 2 1	•	_	i	5 . 8 .	- -	_	74 64	4	I I I						_					I I I	_		_	_					_		I I I
I	fT	e	a	n	`	/ 2	1	u	e	((8	2.2	:)		a	n	d	r	e	с с	 ว.ก		e n	d	3	ti	0	n	s	ť	ro	o m	 r	е	f •	1		an	d	- r	91	f.	1	8	_				I
I I I		1 1 1	0 1 0	•	4 3 2		010	•	424		8 1 1	17	3	I I I		1 1 1	2 (2 : 2 :		5	_	6 7 7	• :	3	_	£: 1''	5 7 9	I I I	_		_						_		I I I											I I I
=		-	=	= -				-	=							Ξ	= :			= -		= :	= =	=	3		. =		= =										-										_
I		9	<u>ع</u>	- (: N	 1	2	= 4 -	6		F	- 1	: = : S	S	I	= 0 -	= = N		-			R	- I	•	=	ər	nd 	-	s p	e	= = c t 	: = :	== ບູກ ==		2 4 8 v 	er	•	= = : r 	0	 s s 	- 9	 5 e	c	 t.]	[
I I	L	i	 b	ra	ə r	`y	-	-	-				-	-	-	R (•]	•	-		e				(C 1	-	2	52 (m	10	<u>+</u> .	, -		e (;		U	-	2 3 (5	ا د د	•			er (m	r.]	[[
				- FL///		- 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	- 2452883	- N 1 2 =	T A	= 1		1	070665	• • • •	461900=	- 144211=				0.200300	372444		76 2 2 3 4 2 4 2 4 2 4	-	2	= 1	. 2	1: 1: 1: 1: 1:	34 38 34 37 37	6255	•	. =		: = '					. 2	13 13 13 13	1	3.5.3.5.3.5.3.5.3.5.3.5.3.5.5.3.5.5.5.5		2 1	. =		. = =		
_		_		-	_		_			_			_							_						_					•				_							_		_					

I 96-CH-246	(N,GAMMA)	R.I.	and Spectro	um ever	.cross-sect	• I
I Library I	R.I. (b)	err. (b)	Cf-252 f. (mb)	9 rr. (mb)	U-235 f. (mb)	erř. I (mb) I
I EXPERIMENT I LENCL-84 I ENDF/8-5 A I INCL/A E I INCL/A K1 I INCL/A K2	120.48 138.14 103.24 110.16 10.22 10.22	6.34 17.56 -17.24 -10.33 -110.26 -110.26	41.51 42.19 22.84 55.31 55.31		44.83 44.83 25.05 58.52 58.52	1 1 1 1 1 1

4.21 96-Cm-247

Except for one measurment the fission $R \cdot I$. measurments are consistent. A single capture $R \cdot I$. measurment with a high uncertainty is available. Only the L4 evaluation for this isotope exists. It somewhat overestimates the fission $R \cdot I$, and slightly underestimates the capture $R \cdot I$. as compared to the measurments and their uncertainties.

Table 27: Resonance integrals for Fission (R.I.f) and Capture (R.I.c) and the fission cross section averaged over the Cf-252 fission spectrum (Cf.f) and the U-235 fission spectrum (U5.f.)

	= = R	9 9 (== 6- I (= = - C . f)	== a- e	= 2	== 47 r. b)	= = r	:== •e1	= = R f •	= = 9 5 I I	:≡: R.	= = I . I (b	=: n1 •()	= = t . :	= = e r (== an •)	= = d r e	== Sp f,	ee I I	:== :tr C1 (:== um .f	== 3	== ve er (== ra r. mb	== ge r)	== d e f	== cr .I I	== os U	==: 5-: (#)	= = 5 e f • b)	= = ct e	== • rr (m	==: • (d	=== ref	== I .I I
IIII	≉ 1 ≉	9 7 0 7	3 (3 (6 2 8 4	5.	1	9 7 1 5	0. 0. 0.		63 67 65 64	R 7 5	I I I I	1	3 C	0.	•	4 (00	•			I I I	_	_						I I I I			 _				_	I I I I I
I	π	e	ar	n 1	va	1	ue	(23	:)	 		1 1	re	e c		וחו	e n	d ə	ti	ion	s	fr	0 m	r	ef	•1	7	an	d	r e	f.	18				I
III		5 7 7	0 6 5 4 6 (÷.		365	7. 0. 0.		58 17 13		I I I	!	5 5 5 5 3	0.0	•	4029	50	•	٤ 1 1	٤ 7 8	I I I								I I I	* *							I I I

= : I	96-CM-247	FISSION	R•I•	and Spectro	==#==== um aver	.cross-sect	. I
I I	Library	R.I. (b)	err. (b)	Cf-252 f. (mb)	err. (mb)	U-235 f. (mb)	err. I (mb) I
I I =:	EXPERIMENT LENCL-84	806.36 918.96	37.41 112.61	2066.		2062.	I I I

I 96-CM-247 (N,GAMMA) R.I. and Spectrum ever.cross-sect. I I Library R.I. err. Ct-252 f. arr. U-235 f. err. I (c'm) (c'm) (c') (c') (mb) I ĭ -**--------------I EXPERIMENT 300.00 335.95 ī I LENGL-84 363.92 -436.09 40.85 44.23 Ι

5. Conclusions

Looking at the tables and the comments for each of the isotopes the following observations and recommendations can be made:

- It is important to use validated programs for processing of evaluated libraries.
- Evaluations which do not obey format rules strictly should be identified. They are potentially dangerous to be included in a library and should be avoided if possible.
- The experimental data for the integral quantities considered are scarce.
- Different measurments for the same quantity often differ by more than the quoted experimental uncertainty. This indicates the fact that sometimes the quoted errors are underestimated or that they do not include systematic errors such as the uncertainty in the cadmium cut-off energy, deviation of the actual from the assumed neutron spectrum or the error in the reference cross section (this is particularly important in some older measurments).
- Whenever possible the ratio data should be used in preference to the absolute values. The best estimates of the reference cross sections obtained iterativaly should be used.
- A few measurments of cross sections averaged over some fairly well known reference spectra [7] are available. They should be included in the analysis.
- Error analysis for each of the measurments included for average value determination should carefully be considered. When measurments are contradictory and their error analysis is not described sufficiently they should be discarded or their error bars incerased suitably.

The evaluations for some of the major actinides in the INDL/A library have recently been superseeded by new evaluations from the same authors [19]. Revised data for some ENDF/8-5 evaluations have also been released. In any future work care should be taken to consider the most recent data.

Within the scope of present analysis a definite conclusion about superiority of one evaluation compared to another can not be made. By a more selective error analysis and by including the measurments in other known spectra the available data base could be improved and extended. This might help to resclve the discrepancies in some of the measurments and confirm some others. Experimental measurments could then be used with greater confidence as the selection criteria for evaluated data.

6. References

- E 13 V.G.Pronyaev, H.D.Lemmel, K.McLauchlin (Ed.), INUL/A-83 IAEA Nuclear Data Library for Evaluated Neutron Peaction Data of Actinides, IAEA-NDS-12 Rev.7 (Dec.1983).
- C 23 G.Schwerer (Ed.), UKNDL-80 Summary Documentation, IAEA-NDS+30, (Dec. 1980).
- E 3] D.E.Cullen, P.K.McLaughlin, ENDL-S4 The Lawrence Livermore Notional Laboratory Evaluated Nuclear Data Library in the ENDF-5 Format, IAEA-NDS-11 Rev.4. (May 1985)
- E 4] D.Garber et al., Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF/B-4 ENL-NOS-50496 (ENDF-102), Brookhaven National Laboratory, Upton, New York, (1975).

- [5] P.Kinsley et al., Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF/E-5 ENL-NCS-50496 (ENDF-102), Brockhaven National Laboratory, Upton, New York, (1979). [[[6] D.E.Cullen, P.K.McLaughlin, The International Reactor Dosimetry File (IRDF-85), IAEA-NDS-41 Rev.1, (April 1985)
- E 73 M.F.Vlasov (Ed.), Summary Report, IAEA Consultants' Meeting on Integral Cross-Section Measurments in Standard Neutron Fields, Vienna 15 - 19 Nov. 1976, INDC(NDS)-81, March 1977.
- E 8] R.E.MacFarlane et al., The NJOY Nuclear Data Processing System", LA-9303-M, ENDF-324, 1992.
- E 93 C.E.Cullen, Program LINEAR (Version 79-1), Program RECENT (Version 79-1), Program GROUPIE (Version 79-1), UCRL-50400, vol.17: Part A, Rev.1, (1978), Part C (1979), Part D (1980).
- [10] C.E.Cullen, private communication.
- E11] B.A.Magurno et al., Guidebook for the ENDF/B-5 Nuclear Data Files, EPRI NP-2510, BNL-NCS-31451, ENDF-328 (1982).
 - E123 D.E.Cullen, Report on the IAEA Cross Section Processing Code Verification Project, INDC(NDS)-170, May 1985
 - [13] F.K.McLaughlin, ENDF/8-5 Modifications 1936, IAEA-NDS-65
 - E143 D.E.Cullen, ENDF/B Pre-Processing Codes Feb.1986, IAEA-NDS-39
 rev.2
 - E15] A.Trkov, A.Perdan, M.Budnar, FEDGROUP-C84 An Improved and Modified CDC Version of the Program Package for Processing "Evaluated Nuclear Data in KED4K, UKNDL and ENDF Format, INDC(YUG)-9, April 1984,
 - [16] EXFOR Experimental Format for Exchange of Data; Cata supplied by the Nuclear Data Section IAEA (1984).
 - E17] E.M.Gryntakis, J.I.Kim, Thermal Neutron Cross Sections and Resonance Integrals, NOS - IAEA report to be published (1984).
 - [13] S.F.Mughabohab, Neutron Cross Sections, Vol.1 Part B, Academic Press Inc. (1984) (fourth edition of what was previously known as BNL-325, Neutron Cross Sections Vol.1 3-rd.Ed. 1973 by S.F.Mughabghab and D.I.Garber)
 - E193 V.G.Goula, H.D.Lemmel, P.M.McLauphlin, INCL/4 Suppl.86/5, IAEA-NDS-12 Suppl.86/5, (May 1986)
 - [20] E. Steinnes, J. Inorg. Nucl. Chem., 34(1972)2699.
 - [21] k. Vidal, EANOC(E)-57, 1965, P.170 (see also EANDC(E)-57, 1965, P.171).
 - [22] R.P. Schuman, J.R. Berreth, IN-1296, 1959.
 - [23] N.P. Baumann, DP-917, 1963.
 - [24] G.G. Myasischeva, M.P. Anikina, L.L. Gold'Din, B.V. Ershler, AT. Energ. (USSR), 2(1957)22 (Transl. in Soviet Atomic Energy, 5(1957)230).
- E251 F.J. Johnston, J. nalperin, R.W. Stoughton, H. Nucl. Energy, 11(1960)95.

[26] L.I.Tiren, J.M. Jenkins, UK AEE Report AEEW-R, 1962, F.163.

- [27] J.S. Samson, GA-3069, 1962.
- [28] J. Hardy, Nucl. Sci. Eng., 22(1965)121.
- [29] M. Brose, Nucl. Sci. Eng., 19(1964)244.
- [30] W.K. Foell, T.J. Connolly, Nucl. Sci. Eng., 21(1965)406.
- E31] M. Asghar, C.M. Chaffey, M.C. Moxon, N.J. Pattander, E.R.Rae, C.A. Uttley, Nucl. Phys., 76(1966)196.
- [32] E.M. Gryntakis, Thesis, Technical University of Munich, DM-6909, 1976.
- [33] T.A. Eastwood, R.W. Werner, Can. J. Phys., 38(1960)751.
- E34J J. Halperin, R.E. Druschel, R.W. Stouchton, A.E. Cameron, R.L. Walker, ORNL-3320, 1962, P.2.
- E35J J.C. Connor, R.T. Bayard, E. Mac Eonald, S.B. Gunst, Nucl. Sci. Eng., 29(1967)408.
- [35] J. Halperin, F.J. Johnston, R.W. Stoughton, J.H. Oliver, E.L. Blevins, P.E. Bruschel, A.L. Harkness, B.A. Swarz, Nucl. Sci. Eng., 16(1963)245.
- [37] C.B. Eicham, AECL-1910, 1964 (see also CRRP-1133, 1964).
- [38] T. Yasuno, Nucl. Sci. Techn., 2(1965)532.
- [39] C.E. Conway, S.E. Gunst, Nucl. Sci. Eng., 29(1967)1.
- [40] J. Hardy, Jr., Nucl. Sci. Eng., 27(1967)135.
- [41] M.A. Bak, K.A. Petrznak, Yu. G. Petrov, Yu. F. Romanov, E.A. Shiyamin, At. Energ. (USSR), 28(1970)359 (Transl. in Soviet Atomic Energy, 25(1970)460.
- E423 H.M. Eiland, L.S. Esch, F. Feiner, J.L. Mewherter, Nucl. Sci. Eng., 44(1971)180.
- E433 E. Clayton, AECD-4167, 1955.
- [44] J. Hardy, Jr., D. Klein, G.G. Smith, Nucl. Sci. Eng., 9(1961)341.
- E451 Hellstrand, Nuckleonik, 3(1966)1 (see also Aktiebolaget Atomenergi Reports, AE-131, 1965).
- [46] G.K. Underhill, Dissertation Abstracts Saction 8, 34(1974)6026.
- [47] I.H. Croker, EAN(CAN) 17/4, 1963.
- [48] R.W. Durham, G.C. Hanna, M. Lounsbury, C.B. Bigham, R.G. Hart, R.W. Jones, 66 Paris II, IAEA, 1967, P.17.
- [49] J. Falperin, J.F. Oliver, Froc. 2nd Intern. Conf. Peaceful Lses of Atomic Energy, IAEA Ganava, 15(1959)64.
- [50] N.P. Baumann, J.D. Halford, D.J. Pellarin, Nucl. Sci. Eng., 32(1965)265.

· · .

- [51] H.L. Anderson, Phys. Rev., 80(1950)499.
- [52] R.L. Macklin, H.S. Pomerance, J. Nucl. Energy, 2(1956)243.
- [53] J. Hardy, Jr., G.G. Smith, D. Klein, Nucl. Sci. Eng., 14(1962)358.
- E543 S.H. Eberle, H.J. Eleyl, H. Braun, A.V. Baeckmann, L. Koch, Report KFK-1453 (EUR-4726D),1972, P.1
- [55] J.P. Butler, M. Lounsbury, J.S. Merit, Can. J. Phys., 35(1957)147.
- [56] T. Yasuno, Nucl. Sci. Techn., 4(1967)43.
- [57] F.W. Corrish, M. Lounsbury, CRC-633, 1956.
- E58] W.H. Walker, C.H. Westcott, T.K. Alexander, Can. J. Phys., 38(1960)57.
- [59] W.H. Nichols, Nucl. Sci. Eng., 17(1963)144 see also Trans. Am. Nucl. Soc. 5(1962)374)).
- E603 J. Halperin, J.H. Cliver, ERNL-2679, 1964, P.13.
- [61] R.P. Schuman, WASH-1136, 1969, Pages 51, 53.
- [62] M.A. Bak, A.S. Krivokhatskii, K.A. Petrzhak, Yu. G.Patrov, Yu. F.Romanov, E.A. Shlyamin, At. Energ. (USSR), 23(1967)316 (Transl. in Soviet Atomic Energy, 23(1967)1059)).
- E533 M.C. Thompson, M.L. Hyder, R.J. Reuland, J. Inorg. Nucl. Chem., 33(1971)1553.
- [64] J. Halperin, R.E. Rusche, R.E. Eby, ORNL-4437, 1969, P.20.
- [65] J. Halperin, J.H. Eliver, R.W. Stroughton, GRNL-4581, 1970, P.37.
- E663 R.W. Senjamin, K.M. Mac Murdo, J.D. Spencer, Nucl. Sci. Eng., 47((1970)203.
- [67] K.D. Zhuravlev, N.I. Kroskin, A.P. Ujetvjerikov, AT. Energ. (USSR), 39(1975)285.
- [68] F.E. Spivak Et al., Proc. of Intern. Conf. on Peaceful Uses of Atomic Energy, Geneva, 5(1956)172.
- [69] J.C. Connor, WAPD-TMM-837, 1970.
- [70] C.E. Bemis Jr., J.H. Cliver, R. Eby, J. Falcerin, Nucl. Sci. Eng., 63(1577)413.
- E713 N.P. Baumann, D.J. Pellarin, Trans. Amer. Nucl. Soc., (1964)27.
- [72] V.D. Gavrilov, V.A. Goncharov, V.V. Ivanenko, V.P. Smirnov, V.N. Kustov, 75KIEV, 6(1975)71.
- [73] K.D. Zhuravlev, N.I. Kroshkin, Soviet Atomic Energy 47(1979)565.
- [74] V.D. Gavrilov, V.A. Goncharov, Atomnya Emergiya (USSR), 44(1978)246.

[75] J.A. Grundl, V. Spiegel, Jr., C. Eisennauer (J. ANS, 15, 945, 7211). [76] K. Kobayashi (J. ANE, 4, 177, 7705) Final Publication. [77] M.C. Davis, G.F. Knoll (J, ANE, 5, 583, 78). C783 H.T. Heaton II, D.M. Gillizm, V. Spiegel Jr., C. Eisenhauer, J.A. Grundl (R, ANL-76, 90, 333, 7606) = (C, 76 ANL, 333, 7607) (J, ANS, 44, 533, 8306) Revised Values (C, 75WASH, 1, 266, 7503) (C, 77N3S, 156, 7703) Revised Data. [79] G.J. Kirouze, P.M. Eiland, C.J. Slavik (P., KAPL-P-4005, 7401). [80] J.A. Grundl, D.M. Gilliam (J, ANS, 44, 533, 6206). EE1] N. Raisie (J, NUC, 13, (2), 57, 5502). [92] V.M. Adamov, L.V. Erapchinskij, S.S. Kovalenko, K.A. Petrzhak, G. JU. Kudrjavtsev, L.A. Pleskachevskij, A.M. Sokolov (C, 77KIEV, 3, 158, 7704) Data Given (P, YFI-24, 19, 7705) (C, 75KIEV, 6, 19, 7506) Experimental Details. E333 A.M. Bresesti, A. Rota, R.A. Rydin, L. Lesca, (J, NSE, 40, 331, 7005) Renormalization of the experimental data reported in ref., NSE, 29(1967)7 (J, NSE, 29, 7, 6703) Description of the experiment. C843 J. Csikai, Z.Dezso (R, ZFX-376, 44, 7812) VII. Gaussig (Sýmp. Nov. 1977 (C, 77KIEV, 3, 32, 7704) Superseded by ZFK-376(1973)44 (J, ANE, 3, 527, 7611) Detail of Cf-252 spectrum. Adanov, L.V. Drapchinskij, S.S. Kovalenko, K.A. E853 V.M. Petrzhak, L.A. Pleskachovskij, A.M. Sokolov (C, 73, KIV, 4, 21, 7305) Data given. .[96] V.M. Adamov, L.V. Dranchinskij, S.S. Kovalanko, G. JU. Kudrjavcev, K.A. Petrzhak, L.A. Pleskachevskij, A.M. Sokolov (P, Y=I-22, 14, 7611) Data Given (C, 75KIEV, 6, 19, 7607) Data Given. Aleksandrov, I.D. Alkhazov, L.V. [87] V.M. Adamov, B.M. Aleksandrov, I.D. Alkhazov, L.V. Drapchinskij, S.S. Kovalenko, D.I. Kostochkin, G. JU. Kudrtjavtsav, L.Z. Halkin, K.A. Petrzhak, L.A. Pleskachevskij, A.V. Fomichjov, V.I. Shpakov (P, YFI-23, 17, 7705) Data-error structure is given. E883 J.A. Grundl, V. Spiegel Jr., C. Eisenhauer (J. ANS, 15, 945, 7211) [89] R.B. Tatersall, H. Rose, S.K. Pattenden, E. Jowitt, J. Nucl. Energy, 12 (1960)32.

[90] L. Breitenhuber, H. Heimer, M., Pinter, ATOMKERNENERGIE, 15(1970)23 (see also EANÖC(DP)-63, 1968, P.10).

E911 R. Van der Linden, F. de Corte, J. Hoste, J. Radioanal. Cham., 20(1974)695 (see also 73 Paris, IAEA, 2(1973)241).

- [92] T.A. Eastwood, A.P. Eaerg, C.B. Pigham, F. Brown, M.J. Cabel, W.E. Grummitt, J.C. Roy, L.P. Roy, R.P. Schuman, 2nd Proc. Conf. Peceful Uses of Atomic Energy, IAEA, Geneva, 16(1956)54.
- [93] H. Rose, W.A. Cooper, R.S.Tattarsall, 2nd Proc. Conf. Peaceful Uses of Atomic Energy, IAEA, Genéva, 1(1953)16.

APPENCIX

In the following tables a complete list of spectrum averaged cross sections from all the evaluated libraries is given. The resonance integrals in barns can be reconstructed from the 1/E spectrum averaged cross sections by multiplying, the values with (1.0E2#ln(20.E6/0.5)) which is the 1/E spectrum integral in the assumed energy interval.

The processed libraries to which the calculated averaged cross sections belong are self-evident from the table headings. Energy ranges in which the spectra are defined are also given. The isotopes with threshold reactions and without subthreshold data can also be identified. The upper energy limit up to which the individual cross, section data are non-zero can be obtained from the number of groups processed starting from threshold. The SANG-II extended group structure may be assumed in all cases.

ladie – Al: Spectra averages (millibarns) from INUL/A-83 file-2	Spectra averages (millibarns) from	INDL/A-B3 file-2	
---	------------------------------------	------------------	--

		SP	ECTRA		1/E spect. .5 eV cut.	Cf-252 fig (NBS)	55 U-235 fis (NBS)	s U-235 f (ENDF/B
		NU Sp to	INBER OF 6F Ectra ener I (Nev)	ROUPS	475 5.0000-7 20.0	620 1.0000-10 18.0	620 1.0000-10 18.0	620 1.0000-10 18.0
	. •	SP St	ECTRA AVER Andard Dev	RAGED ENERGY (MEV) VIATION (MEV)	1.1426 3.1813	2.1194 1.7141	1.9771	2.0313 1.5967
ISOTOPE	MAT	GROUPS	THRESHOLD (MEV)	REACTION	SPECTRA (MILLI	AVERAGES BARNS)		
90-TH-232	9090	620		TOTAL	19156.	7544.	7592.	7557.
90-TH-232	9090	169	1.1	FISSION	32.62	75.86	70.18	72.75
90-TH-232	9090	620		(N,GAMMA)	4574.	95.01	99.67	97.33
91-PA-233	9193	620		TOTAL	61143.	7455.	7522.	7482.
91-PA-233	9193	218	0.09	FISSION	157.4	608.3	587.0	603.7
91-PA-233	9193	620		(N,6AKMA)	50403.	156.5	168.8	161.8
93-NP-237	9337	600		TOTAL	48504.	7548.	7593.	7561.
93-NP-237	9337	600	•	FISSION	333.2	1308.	1279.	1303.
93-NP-237	9337	600	·	(N,GAMMA)	37344.	184.4	199.0	189.1
94-PU-238	9438	579		TOTAL	23093.	7790.	7835.	7806.
94-PU-238	9438	579		FISSION	1799.	1983.	1959.	1978.
94-PU-238	9438	579		(N, GAMMA)	8198.	73.34	78.21	75,08
94-PU-239	9421	590		TOTAL	38029.	7747.	7756.	7723.
94-PU-239	9421	590		FISSION	17406.	1795.	1787.	1794.
94-PU-239	9421	5 9 0		(N, GAMMA)	10446.	53.35	57.46	54.47
94-PU-240	9431	590		TOTAL	530479.	6538.	6595.	6539.
94-PU-240	9431	382	0.47E-05	FISSION	243.3	87.57	66.26	67.88
94-PU-240	9431	59 0		(N,GAMMA)	481012.	85.46	91.02	87.58
94-PU-241	9440	590		TOTAL	153751.	7962.	8007.	7972.
94-PU-241	9440	5 90		FISSION	69714.	1607.	1610.	1609.
94-PU-241	9440	590		(N,GAMMA)	39106.	66.44	70.48	68.71
94-PU-242	9450	590		TOTAL	85279.	7766.	7816.	7774.
94-PU-242	9450	590		FISSION	293.6	1118.	1089.	1112.
94-PU-242	9450	590		(N,GAMMA)	65475.	78.16	82.84	80.34
95-AM-241	.9541	590		TOTAL	92901.	7635.	7690.	7651.
95-AH-241	9541	590		FISSION	786.8	1349.	1309.	1342.
95-AM-241	9541	590		(N,GAMMA)	82244.	302.8	327.7	309.8
95-AM-243	9530	590		TOTAL	115999.	7663.	7713.	7683.
95-AN-243	9530	590		FISSION	338.9	1124.	1088.	1116.
95-AM-243	9530	590		(N,GAKNA)	103592.	235.0	253.8	241.9
96-CM-242	9662	59 0		TOTAL	18689.	8056.	8098.	8067.
96-CH-242	9662	590		FISSION	663.6	1664.	1637.	1662.
96-CM-242	9662	590		(N,GAMMA)	6563.	29.63	32.90	30.85
96-CM-246	9666	590	I	TOTAL	19042.	8742.	8 800.	8762.
96-CM-246	9666	590		FISSION	395.6	1342.	1313.	1342.
96-CM-246	9666	590		(N,GAKHA)	6293.	22.84	25.05	23.61

•		SPECT NUMBE SPECT TO (P SPECT STANE	RA R OF GROUPS RA ENERGY RANGE IS FROM IEV) RA AVERAGED ENERGY (MEV) IARD DEVIATION (MEV)	1/E spect. .5 eV cut. 475 5.0000- 7 20.0 1.1426 3.1813	Cf-252. fis (NBS) 620 1.0000-10 18.0 2.1194 1.7141	(NBS) 620 1.0000-10 18.0 1.9771 1.5931	55 U-235 f (ENDF/B 620 1.0000-10 18.0 2.0313 1.5967
ISOTOPE	MAT (GROUPS THE	ESHOLD REACTION	SPECTRA (MILL	AVERAGES IBARNS)		
92-U -235	9235	620	TOTAL	34974.	7632.	7671.	7643.
92-U -235	9235	620	FISSION	15708.	1248.	1248.	1248.
92-U -235	9235	620	(N,GAMMA)	8747.	127.4	133.9	131.0
92-U -238	9238	620	TOTAL	36127.	7780.	7827.	7795.
92-U -238	9238	620	FISSION	109.4	323.3	304.0	314.8
92-U -238	9238	620	(N, GAMMA)	15909.	64.95	68.63	66.74
94-PU-239	9439	620	TOTAL	38552.	7699.	7740.	7710.
94-PU-239	9439	620	FISSION	17122.	1818.	1812.	1818.
94-PU-239	9439	606	(N,GAMMA)	11131.	59.01	63.30	60.76
94-PU-240	9445	620	TOTAL	536796.	7831.	7874.	7846.
94-PU-240	9445	620	FISSION	562.3	1367.	1338.	1364.
94-PU-240	9445	620	(N,GAMMA)	482007.	90.12	95.64	92.73
94-PU-241	9448	620	TOTAL	54929.	7828.	7870.	7843.
94-PU-241	9448	620	FISSION	33792.	1621.	1626.	1624.
94-PU-241	9448	620	(N,GAMMA)	10673.	145.5	152.7	149.0

Table A2: Spectra averages (millibarns) from INDL/A-83 file-2 (origin JENDL-2)

Table A3: Spectra averages (millibarns) INDL/A-83 file-3 (Mat. Acc. No. 1009,1010)

		SF	PEÇTRA		1/E spect. .5 eV cut.	Cf-252 fis (NBS)	s U-235 fis (NBS)	SU-235 f (ENDF/B
		NL	IMBER OF (GROUPS	475	620	620	620
		SF	PECTRA EN	ERGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		TC) (MEV)		20.0	18.0	18.0	18.0
		SF	PECTRA AVI	ERAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		\$1	IANDARD DI	EVIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOLI (MEV)	DREACTION	SPECTRA (MILL	AVERAGES		
95-AM-241	9541	590		TUTAL	90/5/.	//6/.	/801.	1///.
95-AM-241	9541	590		ELASTIC	10046.	5018.	5080.	5033.
95-AH-241	9541	590		NON-ELASTIC	80686.	2749.	2721.	2743.
95-AM-241	9541	160	0.04	INELASTIC-TOTAL	250.7	1064.	1062.	1064.
95-AM-241	9541	81	7.0	(N ₁ 2N)	17.21	5.206	3.342	3.488
95-AM-241	9541	5 9 0		FISSION	850.5	1426.	1382.	1417.
95-AM-241	9541	590		(N,GAMMA)	79567.	252.1	272.8	257.9
95-AN-243	9543	590		TOTAL	117811.	7668.	7717.	7688.
95-AM-243	9543	590		ELASTIC	11694.	4979.	5038.	4996.
95-AM-243	9543	590		NON-ELASTIC	106062.	2689.	2679.	2692.
95-AM-243	9543	165	0.04	INELASTIC-TOTAL	316.6	1321.	1331.	1328.
95-AM-243	9543	86	6.5	(N,2N)	19.75	7.332	4.854	5.058
95-AH-243	9543	590		FISSION	340.0	1124.	1088.	1116.
95-AM-243	9543	590		(N,GAMMA)	105384.	235.1	253.9	242.0

.

		SI	PECTRA		1/E spect.	Ct-252 fis	is U-235 fi	ss U-235 f
					.5 eV cut.	(NBS)	(NBS)	(ENDF/B
		i N	UMBER OF 6	ROUPS	475	620	620	620
	•	S	PECTRA ENE	RGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		. T	0 (KEV)		20.0	18.0	18.0	18.0
		S	PECTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
:		S	TANDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOLD (NEV)	REACTION	SPECTRA (MILL	AVERAGES IBARNS)		
96-EM-244	9654	295	0.40E-03	TOTAL	8181.	7982.	8040.	7997.
96-CH-244	9664	295	0.40E-03	ELASTIC	6642.	5259.	5351.	5277.
96-CH-244	9654	295	0.40E-03	NON-ELASTIC	1540.	2724.	2689.	2720.
96-CM-244	9664	204	0.04	INELASTIC-TOTAL	239.2	990.B	988.0	993.2
96-CM-244	9664	84	6.7	(N, 2N)	21.33	6.803	4.406	4.592
96-CM-244	9664	295	0.40E-03	FISSION	.454.1	1630.	1594.	1624.
96-CH-244	9664	295	0.40E-03	27	1278.	1726.	1697.	1722.
96-CM-244	9664	295	0.40E-03	(N,GAMMA)	824.4	96.05	102.8	98.45
96-CM-244	9654	295	0.40E-03	251	168.4	605.4	592.7	600.5
96-CM-246	9666	308	0.20E-03	TOTAL	8129.	8018.	8075.	8031.
96-CH-246	9566	308	0.20E-03	ELASTIC	6888.	5419.	5519.	5439.
96-CM-246	9666	308	0.20E-03	NON-ELASTIC	1241.	2600.	2556.	2591.
96-CH-246	9666	204	0.04	INELASTIC-TOTAL	282.5	1158.	1157.	1161.
96-CM-246	9666	88	. 6.3	(N,2N)	29.35	10.70	7.108	7.395
96-CM-246	9666	308	0.20E-03	FISSION	343.5	1375.	1333.	1366.
96-CM-246	9666	308	0.20E-03	27	927.6	1431.	1392.	1422.
96-CM-246	9666	308	0.20E-03	(N,GAHHA)	584.1	55.31	58.52	56.80
96-CM-246	9666	308	0.20E-03	251	166.4	594.9	581.7	589.6

Table A4: Spectra averages (millibarns) INDL/A-83 file-4 (Mat. Acc. No. 1,2)

Table A5: Spectra averages (millibarns) INDL/A-83 file-4 (Mat. Acc. No. 8 - 58)

		SF	ECTRA		1/E spect.	Cf-252 fi	s U-235 fi	ss U-235 f
					.5 eV cut.	(NBS)	(NBS)	(ENDF/B
		NE	JMBER OF GI	ROUPS	475	620	620	62 0
		Sf	PECTRA ENE	RGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		TC) (MEV)		20.0	18.0	18.0	18.0
		SF	PECTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		SI	TANDARD DE	VIATION (MEV)	3.1813	1.7141 -	1.5931	1.5967
ISOTOPE	HAT	GROUPS	THRESHOLD	REACTION	SPECTRA	AVERAGES		
			(MEV)		(MILL	IBARNS)		•
90-TH-232	9032	595	0.10E-08	TOTAL	19437.	7417.	7461.	7427.
90-TH-232	9032	595	0.10E-08	ELASTIC	14033.	4958.	5038.	4978.
90-TH-232	9032	250	0.05	INELASTIC-TOTAL	506.0	2263.	2236.	2262.
90-TH-232	9032	137	6.3	(N, 2N)	85.16	24.23	15.93	16.59
90-TH-232	9032	188	1.2	FISSION	33.87	74.43	69.00	71.55
90-TH-232	9032	595	0.10E-08	27	4765.	172.0	171.4	171.2
90-TH-232	9032	595	0.10E-08	(N,GAMMA)	4732.	97.47	102.3	99.62
90-TH-232	9032	640		251	154.9	522.9	508.7	517.2
92-11 -233	9233	640)	TOTAL	61349.	7347.	7384.	7354.
92-U -233	9233	640		ELASTIC	9646.	4297.	4350.	4307,
92-11 -233	9233	254	0.04	INELASTIC-TOTAL	251.5	1151.	1128.	1147.
92-11 -233	9233	140	6.0	(N.2N)	29.27	12.14	8.490	8,793

.

		Si	PECTRA	·····	<pre>I/E spect5 eV cut.</pre>	Cf-252 fis (NBS)	s U-235 fis (NB5)	s U-235 f (ENDF/B
		N	UMBER OF GI	ROUPS	475	520	620	620
		S	PECTRA ENE	RGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		Ť	(V3M) C		20.0	18.0	18.0	18.0
		S	PECTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		S	TANDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOLD (MEV)	REACTION	SPECTRA (MILL)	AVERAGES (BARNS)		
92-U -233	9233	640		FISSION	43673.	1834.	1842.	1837.
72-11 -233	9233	640		27	51383.	1896.	1907.	1900.
92-U -233	9233	640		(N,GAMMA)	7709.	60.86	64.23	61.75
72-U -233	9233	640	,	251	197.8	611.2	601.9	606.4
72-0 -235	9235	546	0.10E-08	TOTAL	33643.	7627.	7666.	7639.
92-0 -235	9235	546	0.10E-08	ELASTIC	9966.	4709.	4769.	4725.
92-U -235	9235	5 218	0.02	INELASTIC-TOTAL	343.6	1560.	1536.	1557.
92-U -235	9235	98	5.3	(N,2N)	23.40	13.68	9.805	10.12
72-0 -235	9235	5 546	0.10E-08	FISSION	15369.	1256.	1256.	1256.
2-0 -235	9235	546	0.10E-08	27	23509.	1347.	1354.	1350.
92-0 -235	9235	5 546	0.10E-08	(N.GAMHA)	8137.	90.29	96.12	92.76
92-0 -235	9235	640		(N.P)	0.00000	0.00000	0.00000	0.00000
72-11 -235	9235	640		(N.ALPHA)	0.00000	0.00000	0.00000	0.00000
12-1 -235	9235	546	0.10E-08	251	145.3	520.8	507.5	514.8
2-0 -237	9237	B1	0.01	TOTAL	2892.	1946.	2131.	1958.
2-11 -237	9237	81	0.01	ELASTIC	2329.	1435.	1575.	1447.
2-0 -237	9237	/ 81	0.01	NON-ELASTIC	563.4	510.6	555.7	511.2
12-10 -237	9237	81	0.01	INELASTIC-TOTAL	235.1	294.5	319.8	293.6
72-11 -237	9237	/ 81	0.01	FISSION	209.1	174.3	189.7	174.8
12-11 -237	9237	81	0.01	27	328.2	216.1	235.9	217.6
2-11 -237	9237	/ 81	0.01	(N.GAMMA)	119.2	41.81	· 46.22	42.81
72-11 -23R	9238	544	0 105-08	TRIAL	34073	7900	7047	7917
92-11 - 238	9238	544	0 105-08	FLASTIC	19520	5496	5577	5518
92-11 -238	9238	204	0.04	INFLASTIC-INTAL	441 1	1999	1990	1903
92-11 -23R	9738	201	6 1	(N 2N)	55 75	27.74	16.25	16 86
92-11 -238	9239	157	0.5	FISSION	94 99	23./4 717 A	204 0	10.00 704 Å
92-11 -238	9230	1 137 1 544	0 105-09	27	14005	313.V 707 D	7/07	304.0 777 A
92-11 - 230	9230	544	0.10C-00	(N GANNA)	15010	70 07	74 01	דם כר
92-11 - 230	9230	1 440	V. IVL VO		13710.	0.00000	0.0000	12.13
72 0 230 97-11 - 230	0230	040 640			0.00000	0.00000	0.00000	0.00000
92-11 -239	9770	, 07V , 511	0 105-00	251	149.2	5.47 7	570 5	510 A
93-NP-277	9337	, J10 , 511	0 105-08	τητ <u>α</u>	14017	J73.3 7849	7905	330.V 7966
93-NP-237	9777	54L	0.10E-00	FLASTIC	101VI. 10113	AQ61	503.	1000. 1070
97-NP-277	9777	070 077 '	0 205-03	NON-FLASTIC	170071 1770	7000 2000	3033. 2072	71/0.
73 NE 237	9777	200	0.07	TNELOSTIC	3037. ·	1432	1435	1434
97-NP-277	9777	207	6.03 6 7	IN 2N1	337.7 20 L7	5 741	1900. 7 101	19JO. 7 07/
75 M 23/	0777	1 511	0.7	ETECTON	10.0/ 114 D	Ji/91 1907	J.001 1957	1201
v (¶E "∡v/	130/	J40	~~IVE_VQ	1133104	334.7	12011	1631.	1701.

93-NP-237 9337

93-NP-237 9337

93-NP-237 9337

94-PU-238 9438

94-PU-238 9438

94-PU-238 9438

94-PU-238 9438

94-PU-238 9438

94-PU-238 9438

.

546	0.10E-08	(N,GAMMA)	8137.	90.29	96.12	92.76
640		(N,P)	0.00000	0.00000	0.00000	0.00000
640		(N, ALPHA)	0.00000	0.00000	0.00000	0.00000
546	0.10E-08	251	145.3	520.8	507.5	514.8
B1	0.01	TOTAL	2892.	1946.	2131.	1958.
81	0.01	ELASTIC	2329.	1435.	1575.	1447.
81	0.01	NDN-ELASTIC	563.4	510.6	555.7	511.2
81	0.01	INELASTIC-TOTAL	235.1	294.5	319.8	293.6
81	0.01	FISSION	209.1	174.3	189.7	174.8
81	0.01	27	328.2	216.1	235.9	217.6
81	0.01	(N,GAMMA)	119.2	41.81	46.22	42.81
546	0.10E-08	TOTAL	36073.	7800.	7847.	7813.
546	0.10E-08	ELASTIC	19520.	5496.	5573.	5518.
204	0.04	INELASTIC-TOTAL	441.1	1899.	1890.	1903.
90	6.1	(N,2N)	55.35	23.74	16.25	16.86
157	0.5	FISSION	94.99	313.0	294.0	304.6
546	0.10E-08	27	16005.	383.8	368.7	377.4
Š46	0.10E-08	(N,GANNA)	15910.	70.92	74.81	72.93
640		(N,P)	0.00000	0.00000	0.00000	0.00000
640		(N, ALPHA)	0.00000	0.00000	0.00000	0.00000
546	0.10E-08	251	148.2	543.3	530.5	538.0
546	0.10E-08	TOTAL	48101.	7849.	7905.	7866.
546	0.10E-08	ELASTIC	10662.	4961.	5033.	4978.
308	0.20E-03	NON-ELASTIC	3639.	2888.	2872.	2888.
209	0.03	INELASTIC-TOTAL	357.9	1432.	1435.	1436.
84	6.7	(N,2N)	20.67	5.741	3.681	3.836
546	0.10E-08	FISSION	334.9	1287.	1257.	1281.
546	0.10E-08	27	37028.	1450.	1433.	1449.
546	0.10E-08	(N,GAMMA)	36693.	162.7	176.3	167.4
308	0.20E-03	251	171.7	615.1	603.0	610.3
546	0.10E-08	TOTAL	23174.	7775.	7836.	7793.
546	0.10E-08	ELASTIC	12094.	4786.	4864.	4801.
175	0.04	INELASTIC-TOTAL	226.3	928.3	930.5	933.8
81	7.0	(N,2N)	5.858	2.344	1.537	1.605
546	0.10E-08	FISSION	1785.	1936.	1910.	1930.
546	0.10E-08	. 27	10841.	2057.	2037.	2055.

Table A5 (c	cont.)				۰.		
		SPECTRA		<pre>i/E spect5 eV cut.</pre>	Cf-252 fis (NBS)	U-235 fiss (NBS)	U-235 f (ENDF/B
		NUMBER OF GRE)UPS	475	620	620	620
		SPECTRA ENERI	GY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		TO (MEV)		20.0	18.0	18.0	18.0
		SPECTRA AVER	AGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		STANDARD DEV	TATION (NEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT GI	ROUPS THRESHOLD ((MEV)	REACTION	SPECTRA (MILLI	AVERAGES BARNS)		
94-PU-238	9438	546 0.10E-08	(N,GAMMA)	9055.	122.4	128.6	125.6
94-PU-238	9438	546 0.10E-08	251	169.5	616.9	604.6	612.5
94-PU-239	9439	546 0.10E-08	TOTAL	38728.	7693.	7734.	7705.
94-PU-239	9439	546 0.10E-08	ELASTIC	9937.	4762.	4831.	4781.
94-PU-239	9439	236 0.008	INELASTIC-TOTAL	266.8	1083.	1062.	1078.
94-PU-239	9439	9 5 5. 6	(N,2N)	25.35	15.87	11.55	11.89
94-PU-239	9439	546 0.10E-08	FISSION	17392.	1788.	1781.	1787.
94-PU-239	9439	546 0.10E-08	27	28497.	1824.	1820.	1824.
94-PU-239	9439	546 0.10E-08	(N,GAMMA)	11101.	37.66	41.08	38.71
94-PU-239	9439	640	(N,P)	0.00000	0.00000	0.00000	0.00000
94-PU-239	9439	640	(N, ALPHA)	0.00000	0.00000	0.00000	0.00000
94-PU-239	9439	546 0.10E-08	251	148.9	543.2	530.4	537.9
94-PU-240	9440	546 0.10E-08	TOTAL	500760.	7595.	7633.	7600.
94-240	9440	546 0.10E-08	ELASTIC .	45389.	5017.	5063.	5016.
94-PU-240	9440	174 0.04	INELASTIC-TOTAL	303.0	1184.	1199.	1193.
94-PU-240	9440	8/ · 6.4	(N,ZN)	17.8/	6.293	4.100	4.322
74-PU-240	7440	346 U.IUE-UB	F1551UM	4/8.0	1210.	1202.	12/0.
04-DU-240	7440	544 0 10E-08	27 (N. CAWKA)	400740.	138/.	1307.	112 4
94-FU-24V	744V 0440	546 0.10E-08	251	400447.	107.0	544 7	557 6
94-PU-240	0441	544 0 105-00		132.2	JJ/./ 7076	7897	7851
04_DH_241	0441	546 0.100-08		0710 0710	1030.	4675	1031.
94-PII-241	9441			312 0	1472	1475	1491
94-PII-241	9441	97 5 4	(N 2N)	312.0	34 55	26.18	26.83
94-PII-241	9441	546 0.10E-08	FISSION	33276.	1637.	1640.	1639.
94-PII-241	9441	545 0.108-08	27	44294.	1713.	1721.	1716.
94-PU-241	9441	546 0.10E-08	(N.GANHA)	11011.	75.57	81.06	77.39
94-PU-241	9441	546 0.10E-08	251	177.7	633.9	622.9	629.8
94-PU-242	9442	546 0.10E-08	TOTAL	84367.	7625.	7664.	7633.
94-PU-242	9442	546 0.10E-08	ELASTIC	19067.	5065.	5113.	5067.
94-PU-242	9442	164 0.04	INELASTIC-TOTAL	341.3	1360.	1373.	1368.
94-PU-242	9442	89 6.2	(N,2N)	19.23	11.14	7.774	8.070
94-PU-242	9442	472 0.47E-07	FISSION	268.7	1094.	1071.	1093.
94-PU-242	9442	546 0.10E-08	27	64944.	1188.	1171.	1190.
94-PU-242	9442	546 0.10E-08	(N, GAKKA)	64676.	94.73	99.53	97.45
94-PU-242	9442	546 0.10E-08	251	153.6	560.8	548.1	555.8
95-AM-241	9541	546 0.10E-08	TOTAL	94171.	7727 . ·	7791.	7745.
95-AM-241	9541	546 0.10E-08	ELASTIC	9866.	4359.	4411.	4351
95-AM-241	9541	205 0.04	INELASTIC-TOTAL	372.8	1747.	1781.	1776.
95-AM-241	9541	85 6. 6	(N,2N)	6.497	1.803	1.152	1.200
95-AH-241	9541	546 0.10E-08	FISSION	898.5	1402.	1359.	1393.
95-AM-241	9541	546 0.10E-08	27	83912.	1618.	1594.	1614.
95-AM-241	9541	546 0.10E-08	(N,GANNA)	83009.	214.6	234.9	219.8
95-AM-241	9541	546 0.10E-08	251	202.3	714.8	704.3	710.7
95-AM-242	954 2	546 0.10E-08	TOTAL	118728.	. 7747.	7814.	7764.
95-AH-242	9542	546 0.10E-08	ELASTIC	9490.	4493.	4553.	4505.

Table A5 (cont.)

-

		SPECTRA		1/E spect. .5 eV cut.	Cf-252 fig (NBS)	ss U-235 fis (NBS)	s U-235 f (ENDF/E
		NUMBER OF G	ROUPS	475	620 1 0000-10	620	629
		IN (NEV)		20.0	18 0	18 0	18 0
•		SPECTRA AVE	RAGED ENERGY (MEV)	1,1426	2,1194	1.9771	2.0313
		STANDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS THRESHOLD	REACTION	SPECTRA	AVERAGES		
		(IICV)					
95-AM-242	9542	214 0.02	INELASTIC-TOTAL	297.3	1324.	1324.	1333.
75-AM-242	9542	97 5.4	(N,2N)	27.13	16.29	11.63	12.02
75-AH-242	9542	546 0.10E-08	FISSION	9311B.	1838.	1842.	1835.
5-AH-242	9542	546 0.10E-08	27	109126.	1913.	1925.	1913.
75-AM-242	9 542	546 0.10E-0B	(N,GAMMA)	15979.	75.82	82.92	77.83
75-AM-242	9542	546 0.10E-08	251	202.7	715.4	704.9	711.3
75-AM-243	9543	546 0.10E-08	TOTAL	116441.	7757.	7824.	7774.
15-AM-243	9543	546 0.10E-08	ELASTIC	10071.	4655.	4747.	4680.
75-AM-243	9 543	205 0.04	INELASTIC-TOTAL	499.1	1725.	1728.	1721.
75-AM-243	9543	88 6.3	(N,2N)	4.102	1.173	0.7595	0.7898
75-AM-243	9543	546 0.10E-08	FISSION	326.2	1253.	1214.	1245.
5-AM-243	9543	546 0.10E-08	27	105824.	1378.	1351.	1374.
75-AM-243	9 543	546 0.10E-08	(N,GAMMA)	105512.	123.2	135.6	127.9
5-AM-243	9543	546 0.10E-08	251	146.7	524.1	510.8	518.0
76-CH-244	9644	546 0.10E-08	TOTAL	57621.	7976.	8032.	7989.
76-CH-244	9644	546 0.10E-08	FLASTIC	20191.	5251.	5343.	5269.
76-CM-244	9644	204 0.04	INELASTIC-TOTAL	240.9	991.3	988.6	993.8
76-CM-244	9644	84 6.7	(N. 2N)	21.33	6.803	4.406	4.592
96-CM-244	9644	546 0.10E-08	FISSION	1086	4630.	1594.	1623.
70 CH 244	9644	546 0 10E-0B	27	37151	1726	1697	1722
0 CH LII	9444	546 0 10E-08	(N COMMO)	34045	96 16	107.9	98 40
0 CH 244	9644	546 0 105-09	251	140 4	405 A	592.7	A00 5
0-60-244 04-68-044	OLAL	340 0.102-00		107.7	003.4	J72+7 P075	9071
70-UN-240	7040	300 0.20E-03		6127.	6V10.	50/J.	5470
10-UN-240	7090	308 0.202-03		0000.	J717. 2400	JJ17. DEE/	J437. DÉG1
70-LB-240	7040	308 0.200-03	NUN-ELHOIIL	1241.	2000.	2JJ0.	2371.
10-CH-240	7090	204 0.04	INELHOIJU-IUIRL	282.3	1138.	7 100	7 705
10-LA-240	7040	88 6.3	(N, 2N)	29.35	10.70	/.108	1.343
10-18-240	9646	308 0.20E-03	FISSION	343.5	13/5.	1353.	1386.
70-LN-246	7646	308 0.20E-03	21	927.6	1451.	12421	1422.
16-CH-246	9646	308 0.20E-03	(N,GAMMA)	584.1	55.51	58.52	56.80
16-CH-246	9646	308 0.20E-03	251	166.4	594.9	581.7	587.6
6-CH-248	9648	263 0.002	TOTAL	5837.	8044.	8105.	8060.
76-CM-248	964B	263 0.002	ELASTIC	5036.	5482.	5585.	5505.
76-CH-248	9648	263 0.002	NON-ELASTIC	800.8	2562.	2521.	2555.
96-CM-24B	9648	204 0.04	INELASTIC-TOTAL	302.3	1249.	1236.	1245.
76-CM-248	9648	89 6.2	(N,2N)	30.17	11.83	7.969	8.281
96-CM-248	964B	263 0.002	FISSION	305.0	1248.	1222.	1247.
76-CM-248	9648	263 0 .002	27	464.7	1301.	1277.	1301.
76-CM-248	9648	263 0.002	(N,GAMHA)	159.6	52.68	55.62	54.08
96-CM-248	9648	263 0.002	251	167.0	598.1	585.1	592.9

Table A5 (cont.)

47

.

		SPE	CTRA	·	1/E spect. .5 eV cut.	Cf-252 fis (NBS)	ss U-235 fis (NBS)	s U-235 (ENDF/1
		NUM	RER OF G	ROUPS	475	620	620	620
		SPE	CTRA ENE	REY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-1
		TO	(MEV)		20.0	18.0	18.0	18.0
		SPE	CTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1,9771	2.0313
		STA	NDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT 6	ROUPS T	HRESHOLD (MEV)	REACTION	SPECTRA AVERAGES (MILLIBARNS)			
 90-TH-232	 9032	 590		TOTAL	16681.	7336.	7383.	 7350.
90-TH-232	9032 -	590		ELASTIC	9658.	4709.	4787.	4729.
90-TH-232	9032	590		NON-ELASTIC	6971.	2626.	2595.	2621.
90-TH-232	9032	88	6.3	(N. 2N)	60.57	20.43	13.41	13.97
90-TH-232	9032	141	1.0	FISSION	29.44	79.93	73.73	76.44
90-TH-232	9032	590		(N.GAMMA)	6322.	118.7	125.1	122.0
91-PA-233	9133	540		τητώ	61427.	8224	8313.	8256.
91-PA-233	9133	540		FLASTIC	9882.	4972.	5047.	4987.
91-PA-233	9133	26	7.5	(N 2N)	8,180	4.820	3, 220	3.369
91-20-217	9133	123	0.2	FISSION	195.1	977.6	957.8	973.6
91-20-233	9177	540	V.2	(N SOMMA)	50616	117.7	127.0	122.0
92-11 -233	9777	590		τητοι	61253	7467	7490	7476.
92-11 -233	9233	590		SI ASTIC	9431	4432	4461	4437
02-11-233	9233	010	50		24 61	11 97	R 321	R 625
02-11 -233	0233	590	J. 1	EIGCION	43219	1891	1999	1895
72-0 200 02-11 -277	7233	444		(N CANNA)	93217.	A1 44	45 10	42 59
92-0 -233	7233	507			59217	9475	93.10	9447
72-U -234 02.11 - 274	7234	500		ELACTIC	20110	5777	5717	5700
72-0 -234 97-0 -234	7234	204	6 64	ELHOISE INCLASTIC_TOTAL	497 7	1011	1700	1915
72-0 -234	74.94	204	1.04	INCLUSIICTIUINL	423.3	1010. 777 C	1 447	1 570
72-0 -234	7234	03 270	0.0		. 11.44 304 A	2.3/3	1.90/	1151
92-0 -234	7209	2/0	0.001	FISSIUN	200.V	1130.	170.7	175 0
92-0 -234	7234	370			3/433.	7501	1/7.3	1/3.0
72-0 -230	7233	570			030003. 0305	/JVI.	1337.	4710
92-0 -235	9235	590		ELASTIL	9/83.	4/08.	4/34.	9/18.
92-0 -235	9233	590		NUN-ELASTIC	24030.	2/93.	2/82.	2/941
92-0 -235.	9235	98	5.5	. (N,2N)	2/.18	13.80	9.//1	10.09
92-0 -235	9235	590		FISSION	156//.	1237.	1239.	1238.
92-0 -235	9235	590		(N,GAMMA)	7993.	//.15	82.93	/9.55
92-0 -236	9236	590			36862.	/990.	8031. E7E7	8008.
92-0 -236	9236	590		ELASTIC	1/155.	3238.	JJJJ.	5284.
92-0 -236	9236	203	0.04	INELASTIC-TOTAL	44/.8	1961.	1950.	1964.
92-0 -236	9236	82	6.9	(N,2N)	52.45	11.61	/.649	/.9/1
92-0 -236	9236	152	0.6	FISSION	168.5	-584.2	22/12 -	5/5./
92-0 -236	9236	590		(N,GAMMA)	18445.	1/1.1	1/9.5	1/5.0
92-0 -237	9237	276	0.001	TOTAL	6083.	1366.	/ 389.	13/2.
92-0 -237	9237	276	0.001	ELASTIC	4812.	4532.	45/2.	4542.
92-1 -237	9237	276	0.001	NON-ELASTIC	1271.	2834.	2816.	2829.
92-U -237	9237	97	5.4	(N,2N) -	38.78	20.67	14.55	15:05
92-U -237	9237	276	0.001	FISSION	326.0	799.5	796.6	796.8
92-U -237	9237	276	0.001	(N,GAMMA)	471.3	139.2	147.4	142.8
92-U -238	9238	59 0		TOTAL	33203.	. 7797.	7840.	7810.
92-U -238	9238	59 0		ELASTIC	17231	. 5014.	5093.	5032.
92-0 -238	9238	59 0		NON-ELASTIC	15944	. 2783.	2746.	2778.
92-U -238	9 238	91	6.0	(N, 2N)	57.01	25.13	17.14	17.81
00 11 070	9238	276	0.001	FISSION	91.45	296.8	278.7	288.7
AT-0 -199								

Table A6: Spectra averages (millibarns) from UKNDL-80

.

		SF	PECTRA		1/E spect. .5 eV cut.	Cf-252 fis (NBS)	ss U-235 fis (NBS)	s U-235 (ENDF/
		NU Sf	JMBER OF (Pectra eni	SROUPS ERGY RANGE IS FROM	475 5.0000- 7	620 1.0000-10	620 1.0000+10	620 1.0000-1
		TC) (MEV)		20.0	18.0	18.0	18.0
		58	PECTRA AVI	ERAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		51	IANDARD D	EVIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOL (MEV)	DREACTION	SPECTRA (MILL	AVERAGES IBARNS)		
92-U -239	9239	276	0.001	TOTAL	6059.	7362.	7383.	7367.
92-0 -239	9239	276	0.001	ELASTIC	4244.	4157.	4185.	4164.
92-0 -239	9239	276	0.001	NON-ELASTIC	1814.	3204.	3197.	3202.
92-0 -239	9239	104	4.7	(N.2N)	63.32	32.38	22.90	23.68
92-0 -239	9239	276	0.001	FISSION	412.6	623.2	627.2	621.2
92-1 -239	9239	276	0.001	(N.GAMMA)	800.6	263.3	277.2	270.4
92-U -240	9240	276	0.001	TOTAL	6260.	7761.	7802.	7771.
72-U -240	9240	276	0.001	ELASTIC	5425.	5109.	5177.	5122
72-11 - 240	9240	276	0.001	NON-ELASTIC	833.9	2651.	2625.	2650.
72-11 -240	9240	93	5.8	(N.2N)	50.51	22.44	15.25	(5.85
72-U -240	9240	178	0.2	FISSION	11.07	38.02	37.33	37.76
2-11 -240	9240	276	0.001	(N. GAMMA)	199.8	32.45	34.85	33.08
73-NP-237	9337	590		TOTAL	49270.	8866.	8894.	8877.
7-NP-737	9777	590		FLASTIC	10875	4789	4849	4800
73-NP-737	9337	209	0 03	INFLASTIC-TOTAL	628 0	2336.	2320.	2335
73 NP-237	9777	84	6.00	(N 2N)	9 854	2 811	1 796	1 973
93-NP-237	9337	590	0.,	FISSION	194 1	1371	1778	1745
73-NP-237	9777	590		(N. GAMMA)	37152	364 4	382.2	371 5
94-PII-238	9438	590		TOTAL	74538	7369	7375	734R
A-PII-238	9439	590		FLASTIC	10083	4694	4731	1499
94-PII-238	9479	590		NON-FLASTIC	15473	2676	2424	2670
94-PII-238	9438	91	6.0	(N 2N)	16 11	9 770	L 916	7 166
94-PII-238	9438	590	010	FISSION	4779	1935	1912	1931
74-PII-238	9439	470		(N. SAMMA)	7879	74 47	79 97	77 41
A-PII-779	9410	590		τητοι	79744	8002	R047	8015
74 10 237	9430	590		FLASTIC	10748	4377	4454	4797
01-01-237	0470	596		NON-ELOSTIC	27015	7475	7507	7400
74 10 237	0110	570	5.8	(N 2N)	27013.	9 440	. 5 577	5 000
94-PII-239	0740	590	0.0	FISSION	17147	1797	1775	1792
A-PII-739	9439	590		(N 60MMA)	1/14/1	AA A1	50.29	47.90
74-PII-740	9440	590		τητοι	508941	7995	R047	8008
74-PU-740	9440	590		FLASTIC	49667	5214	5298	5232
74 FU 240	9440	91 81	7 0	(N. 2N)	27 57	9 611	5 477	5 014
74 10 240 24-01-240	9440	590	1.0	FIGTION	717 0	1255	1997	1250
PA_DU_740	DARO	500		(N COMMA)	JU/ . T ASD/71	07 0A	00 17	05 7/
74-10-24V 04-011-241	0441	590		τητοι	50101	72.70	70.13	7J.20
94-PII-241	9441	590		FLASTIC	9014	7014. 8780	1030.	4754
PA-DU-241	9441	590		NON-FLACTIC	47210	7/70.	107.	3040
94-DIL-241	0441	01	55	(N 2N)	70 01	JU00. DT LT	17 70	17 04
74 10-241 94-0(1-241	1111	70 500	U.J	FIGION	27.00 77700	23.03	1/107	1/17
74-FU-241 DA_DH_941	7741	570		LIGITAL LIGITAL	52200.	1001. 70 07	1002.	1002.
74-60-241 04-60-949	7441	J21 50A		ια, σκηπκ <i>ι</i> Τάτλι	101/. 0/5/0	30.V3 7544	91.07 750/	37.12
74-FU-242	7442	340		IUIML FLACTIC	00000	/344, 4717	1300.	/ 309.
74-24Z	7992	570		ELHOIIL	21161.	4/13.	9811.	4/44.
74-242	7442	203	0.04	INCLASTIC-TUTAL	357.5	1509.	1487.	1202.
74-242 DA DU CAO	Y442	89	6.2	(N, ZN)	22.43	8./31	5.811	6.049
14-242	7442	232	0.010	FISSION .	.504.1	1244.	1208.	1234.

.

Table A6 (cont.)

	,	SF	ECTRA		1/E spect. .5 eV cut.	Cf-252 fi (NBS)	ss U-235 fi (NBS)	ss U-235 f (ENDF/B
		N	IMBER OF (GROUPS	475	620	620	620
		S	PECTRA EN	ERGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		T) (MEV)		20.0	18.0	18.0	18.0
		S	PECTRA AV	ERAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		S	FANDARD DI	EVIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOL (MEV)	D REACTION	SPECTRA (MILL	AVERAGES IBARNS)		
94-PU-242	9442	590		(N,GAMMA)	64629.	53.02	56.19	54.31
95-AN-241	9541	590		TOTAL	92045.	7767.	7801.	7777.
95-AM-241	9541	590		ELASTIC	10061.	5018.	5080.	5033.
95-AM-241	9541	590		NON-ELASTIC	81934.	2749.	2721.	2743.
95-AM-241	9541	160	0.04	INELASTIC-TOTAL	250.7	1064.	1062.	1064.
95-AH-241	9541	81	7.0	(N, 2N)	17.18	5.205	3.342	3.488
95-AM-241	9541	590		FISSION	858.3	1426.	1382.	1417.
95-AM-241	9541	5 9 0		(N,GANMA)	80807.	252.1	272.8	257.9
95-AM-243	9543	590		TOTAL	86834.	7989.	8004.	7999.
95-AM-243	9543	590		ELASTIC	10391.	4769.	4926.	4778.
95-AM-243	9543	190	0.08	INELASTIC-TOTAL	452.9	2130.	2111.	2133.
95-AM-243	9543	232	0.010	FISSION	224.7	1010.	979.2	1005.
95-AM-243	9543	590		(N,GAMMA)	77541.	60.04	65.63	61.96
96-CM-244	9644	590		TOTAL	58258.	7627.	7667.	7647.
96-CM-244	9644	590		ELASTIC	21818.	4623.	4715.	4655.
96-CM-244	9644	204	0.04	INELASTIC-TOTAL	293.8	1173.	1163.	1172.
96-CM-244	9644	84	6.7	(N,2N)	6.596	2.117	1.371	1.429
96-CM-244	9644	590		FISSION	2504.	1749.	1703.	1736.
96-CH-244	9644	59 0		(N,GAMMA)	33559.	64.44	67.83	65.91

Table A7: Spectra averages (millibarns) from LENDL-84 library

		SF NU SI TU SI	PECTRA UNBER OF PECTRA EN D (NEV) PECTRA AV	GROUPS ERGY RANGE IS FROM ERAGED ENERGY (MEV)	1/E spect. .5 eV cut. 475 5.0000- 7 20.0 1.1426	Cf-252 fi (NBS) 620 1.0000-10 18.0 2.1194	55 U-235 fig (NBS) 620 1.0000-10 18.0 1.9771	SU-235 f (ENDF/B 620 1.0000-10 18.0 2.0313
		ۍ 	IANDARD D	EVIALJUN (MEV)	2.1812	1./141	1.3731	1.398/
ISOTOPE	HAT	GROUPS	THRESHOL (MEV)	D REACTION	SPECTRA (MILL	AVERAGES I BARNS)		•
90-TH-231	7863	640		TOTAL	67792.	7259.	7322.	7273.
90-TH-231	7863	640		ELASTIC	10454.	4449.	4534.	4462.
90-TH-231	7863	250	0.05	INELASTIC-TOTAL	481.6	2431.	2425.	2448.
90-TH-231	7863	149	5.1	(N,2N)	99.26	78.17	59.40	60.86
90-TH-231	7863	640		FISSION	8915.	203.5	202.2	203.1
90-TH-231	7863	640		(N,GAMMA)	47812.	95.84	101.0	98.58
90-TH-231	7863	640		251	190.0	638.2	627.7	633.2
90-TH-232	7864	640		TOTAL	19251.	7417.	7456.	7426.
90-TH-232	7864	640		ELASTIC	13258.	4996.	5078.	5018. ·
90-TH-232	7864	250	0.05	INELASTIC-TOTAL	495.8	2219.	2186.	2216.
-90-TH-232	7864	135	6.5	(N, 2N)	77.19	24.20	16.07	16.72

•		SI	PECTRA		<pre>1/E spect5 eV cut.</pre>	Cf-252 fis (NBS)	s U-235 fis (NBS)	s U-235 f (ENDF/E
		Ni Si	UMBER OF G Pectra ene	ROUPS	475 5,0000- 7	620 1,0000-10	520 1.0000-10	620 1.0000-10
		T	0 (MEV)		20.0	-18.0	18.0	18.0
		S	PECTRA AVE	RAGED ENERGY (HEV)	1:1476	2.1194	1.9771	2.0313
		S	TANDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOLD (MEV)	REACTION	SPECTRA (MILL	AVERAGES		
90-TH-232	7864	190	1.0	FISSION	36.75	81.17	75.18	77.91
90-TH-232	7864	640		(N,GAMMA)	5357.	95.94	100.6	98.20
90-TH-232	7864	640		251	142.6	517.0	500.5	511.1
90-TH-233	7865	640		TOTAL	39727.	7184.	7249.	7199.
90-TH-233	7865	640	6	ELASTIC	10454.	4449.	4534.	4462.
90-TH-233	7865	250	0.05	INELASTIC-TOTAL	479.2	2416.	2414.	2436.
90-TH-233	7865	152	4.8	(N.2N)	101.4	94.77	73.62	75.39
90-TH-233	7865	640		FISSION	4793.	127.3	127.2	127.1
90-TH-233	7865	640		(N.SANMA)	23866.	95.68	. 100.9	98.38
90-TH-233	7865	640		251	198.6	640.0	629.9	635.2
92-0 -233	7866	640		TOTAL	60525.	7214.	7235.	7219.
92-11 -233	7866	640		ELASTIC	9508.	4197.	4239.	4207.
92-11 -233	7866	235	0. t	INFLASTIC-TOTAL	199.7	1053.	1022.	1047.
92-11 -233	7866	140	6.0	(N. 2N)	28.80	7.621	5.058	5.256
92-11 -233	7866	640	0.0	FISSION	47177	1995	1904	1899
92-11 -233	7866	640		(N. GAMMA)	7650	60.44	64.36	61.46
92-11 -233	7866	640		251	160 6	546.1	530.3	539.7
92-11 -234	7867	640		TNTAL	16045.	7588.	7615	7594
92-11 -234	7867	640		FLASTIC	10066.	5044.	5119.	5056.
92-11 -234	7847	253	0 04		222 9	1168	1144	1167
92-11 -274	7867	132	4.8	(N 2N)	27 42	9 320	5 1 4 3	F 403
97-11 -234	7947	275	0.0	FIGGION	740 4	1270	1202	1274
92-11 -234	7947	£33	011	(N GAMMA)	5779	176 6	147 0	140 2
02-11 -234	7007	440		251	155 1	527 0	50P 7	517 3
72-0 -234 00-0 -075	7007	440			74776	7574	7540	7544
02-11 - 233	7000	440			34//0.	1339.	/J00. #LL1	1340.
72-0 -233	7000	040	A A2	ELHDIIL INCLACTIC TOTAL	10103.	4013.	9001.	9029.
12-U -233	70/0	20/	0.02	INCLASTICTUTAL	302.0	1382.	1300.	1309.
92-U -233	/868	148	J.Z		33.07	10.04	10.73	11.31
12-0 -235	7000	040		FISSION	10/17.	1232.	1232.	1232.
Y2-U -233	70/0	640		(N, DHTTTH)	17/4.	71.40 507 0	1/.03	94.00
92-0 -233	7868	640			100.1	523.0	טעג./ סייר	31/.3
92-0 -236	7007	640			28212	/011.	/007. E170	7010.
92-0 -236	/869	640	6 AF	ELASTIC TOTAL	10075.	5055.	5130.	5066.
92-0 -236	7869	250	0.05	INELASTIC-IUTAL	348.3	1/82.	1760.	1/8/.
92-0 -236	/869	135	6.5	(N,2N) -	43.45	19.01	12.94	- 13.4/
92-0 -236	/869	640		F1551UN	331.3	586./	360.1	5/5.5
92-0 -236	/869	640		(N, 6AMMA)	4/502.	168.2	1/6.5	1/2.3
72-0 -230	7007	040			.133.0	522.9	JVB./	317.3
72-0 -237	18/0	640			5//46.	/324.	/3/0.	/324.
92-0 -237	/8/0	640		ELASTIC	10390.	4658.	4/1/.	4662.
42-0 -237	7870	267	0.02	INELASTIC-TOTAL	492.5	2075.	2061.	2081.
92-0 -237	7870	149	5.1	(N,2N)	54.37	32.19	23.04	23.81
92-0 -237	7870	640		FISSION	5453.	655.9	658.9	651.9
92-U -237	7870	640		(N,GAMKA)	21335.	103.0	110.3	105.1
92-0 -237	7870	640		251	160.1	541.0	525.3	534.5
00 11 070	7071	1.40		τοτοι	74104	7701	7070	7704

-

		SF	PECTRA		1/E spect. .5 eV cut.	Cf-252 fi (NBS)	ss U-235 fi (NBS)	ss U-235 f (ENDF/B
		N	JMBER OF Pectra en	GROUPS ERGY RANGE IS FROM	475 5.0000-7	620 1.0000-10	620 1.0000-10	620 1.0000-10
		T (Si) (MEV) Pectra av	ERAGED ENERGY (MEV)	20.0 1.1426	18.0 2.1194	18.0 1.9771	18.0 2.0313
		5	IANDARD D	EVIATION (MEV)	3.1813	1./141	1.5931	1.5967
ISOTOPE	MAT	GROUPS	THRESHOL (MEV)	D REACTION	SPECTRA (M1LL	AVERAGES 1BARNS)		
92-U -238	7871	640		ELASTIC	17779.	4834.	4919.	4853.
92-0 -238	7871	252	0.04	INELASTIC-TOTAL	575.0	2527.	25 12.	2535.
92-U -238	7871	140	6.0	(N,2N)	61.35	23.65	15.96	16.60
92-U -238	7871	207	0.4	FISSION	117.5	321.7	302.2	313.1
92-U -238	7871	640		(N, GAMMA)	15643.	74.85	78.79	76.92
92-11 -238	7871	640		251	165.2	554.5	540.9	549.1
92-0 -239	7872	640		TOTAL	35020.	7756.	7799.	7756.
92-1 -239	7872	640		ELASTIC	10390.	4665.	4723.	4668.
92-11 -239	7872	250	0.05	INELASTIC-TOTAL	512.6	2422.	2418.	2436.
92-11 -230	7872	157	4 R	(N. 2N)	84 77	84.85	45.09	66.75
92-11 -270	7972	132	-1.U	FISTON	15010	577 9	572 9	527 2
72 U -207 07_11 _070	7072	07V 140		(N CONKA)	10000	55 11	JJ2.1 LA 15	57 75
12-0 -234	10/2	04U		051	140.0	JJ.00 540 7	575 I	J/./J 574 7
72-U -23Y	1012	040		201 Total	100.0	JTV./ 7/04	JZJ.1	J34.3 7700
92-0 -240	/8/3	040			17430.	7670.	1120.	//00.
92-0 -240	/8/3	640		ELASTIC	8//0.	5367.	5452.	5387.
92-U -240	7873	280	0.01	INELASTIC-TOTAL	375.0	1953.	1924.	1961.
92-0 -240	7873	141	5.9	(N,2N)	70.78	45.76	32.94	34.03
92-U -240	7873	190	1.0	FISSION	92.21	242.3	226.7	235.1
92-0 -240	7873	640		(N,GAMMA)	10083.	80.95	84.16	82.83
92-U -240	78 73	640		251	155.0	522.9	508.7	517.3
93-NP-235	8307	640		TOTAL	34173.	7653.	7688.	7663.
93-NP-235	8307	640		ELASTIC	9956.	4802.	4884.	4819.
93-NP-235	8307	257	0.03	INELASTIC-TOTAL	371.9	1518.	1502.	1518.
93-NP-235	8307	130	7.0	(N.2N)	27.45	6.339	4.018	4.189
93-NP-235	8307	640		FISSION	427.3	1303.	1275.	1299.
93-NP-235	8307	640		(N GORMA)	27375	22 38	27 58	22.95
07_ND_275	0307	140		251	150 7	579 2	522.00	571 7
13 11-233	030/	140		201 TOTA!	110700	7070	9005	7951
13-715-230	0700	040		EVINL .	10517	1730.	4005	491 9
13-NF-230	0300	04V	A A7	CLH3116 INCLACTIC-TOTAL	101 7	1014	100J. 001 5	1017.
73-RF-230	0700	23/	0.03	INCLUDIIL-IUINL	170.3	1/10.	10 05	1013.
73-NF-236	8208	143	J./	(M ₃ 20)	20.32	10.70	12,2J	12.04
73-NP-236	8208	640		F1551UN	76/13.	2002.	2082.	20/0.
43-NP-236	8208	640		(N, BANNA)	3244.	52.85 E70.0	54.02	33.35
43-NP-236	8308	640		251	159.7	538.2	522.6	351./
93-NP-237	7874	640		IUTAL	46319.	//98.	/846.	/812.
93-NP-237	7874	640		ELASTIC	11679.	4803.	4885.	4819.
93-NP-237	7874	257	0.03	INELASTIC-TOTAL	371.9	1518.	1502.	1518.
93-NP-237	.7874	135	6.5	(N,2N)	27.47	6.364	4.037	4.209 .
93-NP-237	7874	640		FISSION	427:3	1303.	1275.	1299.
93-NP-237	78 7 4	640		(N,GAMMA)	33796.	166.5	181.1	172.0
93-NP-237	7874	640		251	159.7	538.2	522.6	531.7
93-NP-238	8309	640		TOTAL	93574.	7798.	7860.	7814.
93-NP-239	8309	640		FLASTIC	10517	4803	4885	4819.
91-NP-210	9700	257	10.01		701 D	1449	1474	1469
07_ND_070	0307	2J/ 14F	5.03	146643116-10186 (N-2N)	107.7 EA E7	30 Et	14 40	14 0/
10 NI 200	0.007	147	J. J	\N;2N/ E10010N	70122	20.31	1454	19.70
73-NF-238	0307	040		F 1551UN	/9465.	14/4.	1471.	14/8.
12-NN-228	A20A	640		(N, 6800A)	5244.	32.85	54.02	22.22

Table A7 (cont.)

		SP	ECTRA		1/E spect. .5 eV cut. 475	Cf-252 fi (NBS) 620	ss U-235 fi (NBS) 620	ss U-235 (ENDF/
		SP	FCTRA F	NERGY RANGE 15 FROM	5.0000- 7	7 1.0000-10	020	1.0000-1
		TO	(MEV) -		20.0	18.0	18.0	18.0
•		SP	ECTRA A	VERAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		ST	ANDARD	DEVIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	HAT	6ROUPS	THRESHO	LD REACTION	SPECTR	AVERAGES		
			(HEV)		(MILI	IBARNS)		
93-NP-238	8309	640		251	159.6	538.2	522.6	531.7
94-PU-238	7875	640		TOTAL	25483.	7761.	7821.	7775.
94-PU-238	7875	64 0		ELASTIC	14754.	4642.	4720.	4655.
94-PU-238	7875	250	0.05	INELASTIC-TOTAL	212.8	959.7	958.8	961.7
94-PU-238	7875	130	7.0	(N,2N)	11.05	2.285	1.407	1.468
94-PU-238	7875	640		FISSION	1840.	2047.	2027.	2044.
94-PU-238	78 75	640		(n, gamma)	8664.	110.3	114.7	112.5
94-PU-238	7875	640		251	160.1	543.0	527.3	536.7
94-PU-239	7876	640		TOTAL	41214.	7732.	7774.	7743.
94-PU-239	7876	640		ELASTIC	11667.	4710.	4777.	4721.
94-PU-239	7876	248	0.05	INELASTIC-TOTAL	236.8	1193.	1173.	1195.
94-PU-239	7876	144	5.6	(N, 2N)	18.39	7.205	4.936	5.125
94-PU-239	7876	640		FISSION	17539.	1781. .	1774.	1780.
94-PU-239	7876	640		(N, SAMMA)	11750.	41.53	44.88	42.65
94-PU-239	7875	640		251	155.0	522.9	508.7	517.3
94-PU-240	7877	- 640		TOTAL	532512.	·7442.	7490.	7455.
94-PU-240	7877	640		ELASTIC	55814.	4402.	4480.	4414.
94-PU-240	7877	252	0.04	INELASTIC-TOTAL	373.2	1533.	1533.	1538.
94-PU-240	7877	134	6.6	(N, 2N)	12.09	5.228	3.581	3.718
94-PU-240	7877	640		FISSION	572.9	1413.	1381.	1407.
94-PU-240	7877	640		(N.GAMMA)	475740.	88.92	92.80	91.03
94-PU-240	7877	640		251	155.0	522.9	508.7	517.3
94-PIJ-241	7878	640		TOTAL	55040.	8102.	8167.	8123.
94-PII-241	7878	640		FLASTIC	8585.	4826.	4891.	4839.
94-PII-241	7878	250	0.05	INELASTIC-TOTAL	296.6	1524.	1524.	1537.
94-PII-241	7878	147	5.3	(N. 2N)	46.34	45.32	34.68	35.50
94-PII-241	7878	640		FISSION	33195.	1593.	1597.	1595.
94-PII-241	7878	640		(N. SAHNA)	12901.	113.5	120.8	115.8
94-PII-241	7878	640		251	154.9	522.9	508.7	517.3
94-PII-747	7880	640		TOTA	104400	7912	7946	7929
94-PII-747	7880	640		FLASTIC	26917	4RRA	4945	4895
94-PII-242	7880	252	0.04	INFLASTIC-TATAL	127 3	1814	1909	1819
94-Pil-747	7880	137	6.3	(N 2N)	27 12	10.52	7.082	7 371
94-PII-242	7880	440	0.5	FIGSION	27.12	1126	1100	1122
94-PII-747	7880	640		(N GANNA)	74917	R1 49	05 70	97.45
94-DII-742	7890	640		251	174 0	504 0	591 5	500 0
04_DU_247	7000	440		201 TOTAI	57471	7804	7010	7971
04_DIL_243	7991	640		FLASTIC	11000	4505	1001.	/021, 4597
04_0U_243	7001	246	0.04		11170.	7303.	70/2.	9057
04_01-243	7001	150	5.00	INCLUSITC INTHE	J11.0 LA 70	LVJZ. L7 L1	50 17	2033. ST 11
74-1U-243	7001 7001	130	J.V	CRIZERA	09.30	0/.09	J2.93	J3.00
74-7U-243	7001 7001	04U 180		(N CANNA)	24200.	10/6.	1000.	10/3.
04_01.047	/001 7004	040	•	(R, DHAAH) 251	13886.	41.48 50/ /	44./Y	92.36 600 7
79-245	7000	640		201	1/5.9	374.6	381.2	, יצאכ זי זי
73-AR-241	7887	- 640		TUTAL	107029.	/615.	/65/	/625.
YD-AH-241	7882	640		ELASTIC	10130.	4732.	4799.	4741.
95-AH-241	7882	250	0.05	INELASTIC-TOTAL	246.4	1192.	1200.	1201.
AF AM AAA	7001	141	50	(1. 21)	15 83	15.87	12 14	12 43

53

•

		SF NU Sf T(Sf S1	PECTRA Imber of Pectra e (MeV)- Pectra a Iandard	GROUPS NERGY RANGE IS FRON IVERAGED ENERGY (MEV) DEVIATION (NEV)	1/E spect. .5 eV cut. 475 5.0000- 7 20.0 1.1426 3.1813	Cf-252 fi (NBS) 620 1.0000-10 18.0 2.1194 1.7141	55 U-235 fi (NBS) 620 1.0000-10 18.0 1.9771 1.5931	55 U-235 (ENDF/ 620 1.0000-1 18.0 2.0313 1.5967
ISOTOPE	MAT	6ROUPS	THRESHO	LD REACTION	SPECTRA (HILL	AVERAGES IBARNS)		
95-AH-241	7882	640		FISSION	949.6	1500.	1454.	1491.
95-AH-241	7882	640		(N.GAMMA)	86115.	157.4	172.5	161.5
95-AN-241	7882	640		251	177.8	629.1	617.6	624.2
95-AN-242	7883	640		TOTAL	107508.	7547.	7624.	7552.
95-AM-242	7883	640		ELASTIC	9791.	4531.	4610.	4534.
95-AM-242	7883	235	0.1	INELASTIC-TOTAL	207.4	1068.	1060.	1073.
95-AM-242	7883	144	5.6	(N.2N)	27.29	27.56	20,97	21.50
95-AM-242	7883	640		FISSION	88081.	1825.	1833.	1826.
95-Ali-242	7883	640		(N.GAMMA)	9393.	95.43	100.5	98.05
95-AM-242	7883	640		251	169.3	596.7	583.0	592.1
95-AM-243	7884	640		TOTAL	122480.	7667.	7722.	7684.
95-AM-243	7884	640		ELASTIC	17468.	4589.	4677.	4601.
95-AM-243	7884	240	0.08	INELASTIC-TOTAL	360.9	1888.	1893.	1904.
95-AM-243	7884	136	6.4	(N.2N)	46.40	25.57	17.77	18.45
95-AM-243	7884	- 640		FISSION	515.2	1123.	1090.	1118.
95-AM-243	7884	640		(N.GANMA)	104069.	41.52	44.85	42.61
95-AH-243	7884	640		251	174.1	595.3	581.9	590.5
96-CM-242	7 8 85	640		TOTAL	36383.	7707.	7766.	7735.
96-CH-242	7885	640		ELASTIC	24546.	4537.	4624.	4561.
96-CH-242	7885	252	0.04	INELASTIC-TOTAL	338.4	1627.	1625.	1634.
96-CH-242	7885	130	7.0	(N,2N)	35.02	14.64	9.765	10.18
96-CM-242	7885	640		FISSION	2064.	1433.	1407.	1432.
96-CM-242	7885	640		(N, GAMMA)	9393.	95.43	100.5	98. 05
96-CM-242	7885	640		251	169.3	596.7	583.0	592.1
96-CM-243	7886	640		TOTAL	63824.	8258.	8363.	8276.
96-CM-243	7886	640		ELASTIC	11998.	4585.	4672.	4597.
96-CM-243	7886	246	0.06	INELASTIC-TOTAL	434.4	1608.	1630.	1617.
96-CM-243	7886	143	5.7	(N, 2N)	40.49	26.73	19.65	20.21
96-CM-243	7886	640		FISSION	44405.	1996.	1997.	2000.
96-CH-243	7886	640		(N, GAMMA)	6937.	41.00	44.30	42.11
96-CH-243	7886	640		251	173.9	594.6	581.2	589.7
96-EH-244	7887	640		TOTAL	61576.	7654.	7710.	7680.
96-CH-244	7 8 87	640		ELASTIC	24547.	4537.	4624.	4561.
96-CM-244	7 8 87	252	0.04	INELASTIC-TOTAL	343.4	1661.	1658.	1669.
96-CH-244	7 8 87	132	6.8	(N,2N)	34.71	15.06	10.09	10.51
96-CM-244	7887	640		FISSION	1990.	1399.	1372.	1397.
96-CM-244	7887	640		(N,GANNA)	34653.	41.88	45.29	43.07
96-CM-244	7887	640		251	174.2	595.6	582.2	590 . B•
96-CH-245	7888	640		TOTAL	65504.	7964.	8063.	7 9 81.
96-CM-245	7 8 88	640		ELASTIC	10533.	4653.	4740.	4668.
96-CM-245	7888	246	0.06	INELASTIC-TOTAL	398.5	1519.	1534.	1527.
96-CM-245	7688	144	5.6	(N, 2N)	40.46	27.46	20 .26	20.83
96-CH-245	7888	640		FISSION	47585.	1723.	1724.	1723.
96-CM-245	7888	640		(N, GAMNA)	6937.	41.00	44.30	42.11
96-CH-245	7888	640		251	156.9	558.8	553.5	564.3
96-CM-246	7889	640		TOTAL	23798.	7622.	7669.	7641.
96-CM-246	788 9	640		ELASTIC	15054.	4510.	4588.	4527.

·

÷

	. '	SF NL SF TC SF	YECTRA Imber of Pectra e (mev) - Pectra a	GROUPS NERGY RANGE IS FROM	1/E spect. .5 eV cut. 475 5.0000-7 20.0 1.1426	Cf-252 fi (NB5) 620 1.0000-10 18.0 2.1194	ss U-235 f1 (NBS) 620 1.0000-10 18.0 1.9771	ss U-235 f (ENDF/I 620 1.0000-10 18.0 2.0313		
ISOTOPE	MAT	GROUPS	THRESHO	LD. REACTION	3.1813 1.7141 1.5931 1.5967 SPECTRA AVERAGES					
76-LE-246	/889	253	0.04	INELASTIC-TUTAL	347.8	1/01.	1/06.	1/12.		
10-LH-240	7887	136	6.4	(N,2N)	44.60	23.00	16.31	16.74		
90-LM-245	7887	640		F1351UN	436.8	1346.	1313.	1343.		
0-LN-240	7887	640		(N,6400A)	/892.	41.51	44.85	42.39		
/8-UR-248.	7889	640		201	1/4.1	575.0	281.6	370.1		
/6-68-24/	/890	640		TUTAL	85968.	/912.	/988.	/935.		
/6-CH-24/	7890	640		ELASTIC	12387.	4541.	4622.	4559.		
6-CH-247	7890	250	0.05	INELASTIC-TUTAL	237.4	1224.	1229.	1236.		
76-CH-247	7890	149	5.1	(N,2N)	40.41	41.05	31.66	32.38		
6-CH-247	7890	640		FISSION	52499.	2066.	2062.	2065.		
16-CM-247	7890	640		(N,GAMMA)	20790.	40.85	44.23	41.97		
/6-CH-247	7890	640		251	174.2	5 95 .6	582.2	590.7		
76-CM-248	7891	640		TOTAL	44743.	7633.	7672.	7653.		
6-CM-248	7891	640		ELASTIC	27331.	4522.	4598.	4536.		
76-CM-248	7891	252	0.04	INELASTIC-TOTAL	321.1	1668.	1663.	1679.		
76-CH-248	7891	138	6.2	(N,2N)	44.73	25.59	17.94	18.61		
76-CH-248	7891	640		FISSION	887.7	1342.	1313.	1341.		
16-CM-248	7891	640		(N,SAMMA)	16135.	74.85	78.81	76.93		
76-CM-248	7891	640		251	173.9	594.4	581.0	589.5		
17-BK-249	7892	640		TOTAL	244189.	7629.	7667.	7644.		
17-8K-249	7892	640		ELASTIC	18588.	4521.	4598.	4536.		
77-BK-249	7892	250	0.05	INELASTIC-TOTAL	420.8	2115.	2114.	2129.		
77-BK-249	7892	138	6.2	(N,2N)	59.65	29.36	20.31	21.09		
7-8K-249	7892	640		FISSION	280.0	888.6	856.4	881.0		
77-BK-249	7892	640		(N,GAMMA)	224811.	74.90	78.86	76.99		
7-BK-249	7892	640		251	174.0	594.8	581.4	589.9		
18-CF-249	7893	640		TOTAL	156123.	7858.	7924.	7877.		
98-CF-249	7893	640		ELASTIC	13668.	4522.	4599.	4537.		
78-CF-249	7893	252	0.04	INELASTIC-TOTAL	285.3	1509.	1511.	1523.		
78-CF-249	7893	144	5.6	(N,2N)	43.29	29.54	21.58	22.22		
98-CF-249	7893	640		FISSION	126894.	1721.	1714.	1718.		
78-CF-249	7893	640		(N,GAMMA)	15219.	74.89	78.85	76.98		
98-CF-249	7893	640		251	174.0	594.8	581.4	589.9		
18-CF-250	7894	640		TOTAL	896267.	8023.	8090.	8039.		
98-CF-250	7894	640		ELASTIC	60279.	4522.	4599.	4537.		
78-CF-250	7894	252	0.04	INELASTIC-TOTAL	293.8	1432.	1434.	1440.		
98-CF-250	7894	134	6.6	(N, 2N)	34.30	15.55	10.57	10.99		
78-CF-250	7894	640		FISSION	667.7	1978.	1968.	1974.		
78-CF-250	7894	640		(N,GAMMA)	834966.	74.93	78.90	77.03		
78-CF-250	7894	640		251	174.1	595.1	581.8	590.3		
98-CF-251	7895	640		TDTAL	257344	7862.	7929.	7881.		
	7005			FLASTIC	19777	4522	4500	4517		

Table A7 (cont.)

Table A7 (cont.)

	<i>.</i>	SF NL SF T(SF ST	PECTRA PABER OF GI PECTRA ENEI (MEV) PECTRA AVEI FANDARD DE	ROUPS Rey Range IS From Raged Energy (MeV) Viation (MeV)	1/E spect. .5 eV cut. 475 5.0000- 7 20.0 1.1426 3.1813	Cf-252 fis (NBS) 620 1.0000-10 18.0 2.1194 1.7141	55 U-235 fis (NBS) 620 1.0000-10 18.0 1.9771 1.5931	55 U-235 f (ENDF/E 620 1.0000-10 18.0 2.0313 1.5967
ISOTOPE	MAT	GROUPS	THRESHOLD (MEV)	REACTION	SPECTRA (MILL)	AVERAGES IBARNS)		
98-CF-251	7895	263	0.02	INELASTIC-TOTAL	281.4	1495.	1500.	1511.
98-CF-251	7895	149	5.1	(N,2N)	50.67	48.38	37.07	37.96
98-CF-251	7895	640		FISSION	99643.	1721.	1715.	1718.
98-CF-251	7895	640		(N, GAMMA)	137576.	74.92	78.89	77.02
98-CF-251	7895	640		251	174.1	594.8	581.5	589.9
98-CF-252	7896	640		TOTAL	25906.	7782.	7844.	7813.
98-CF-252	7896	640		ELASTIC	16315.	4640.	4731.	4667.
98-CF-252	7896	250	0.05	INELASTIC-TOTAL	251.2	1169.	1179.	1178.
98-CF-252	7896	138	6.2	(N,2N)	22.26	11.86	8.362	8.660
98-CF-252	7896	-640		FISSION	6455.	1922.	1883.	1919.
98-CF-252	7896	640		(N,GAMMA)	2854.	39.76	42.84	40.79
98-CF-252	7896	640		251	159.4	575.9	560.8	571.3

		S	PECTRA		1/E spect. .5 eV cut.	Cf-252 fig (NBS)	ss U-235 fi (NBS)	SS U-235 f (ENDF/B
		N	UMBER of G	ROUPS	475	620	620	620
		SI	PECTRA ENE	RGY RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		T	B (MEV)		20.0	18.0	18.0	18.0
		SI	PECTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		S	TANDARD DE	VIATION (MEV)	3.1813	1.7141	1.5931	1.5967
ISOTOPE	HAT	GROUPS	THRESHOLD (NEV)	REACTION	SPECTRA (MILL)	AVERAGES (BARNS)		
90-TU-272	1794	420			17807	7240	7744	7250
90-TH-232	1270	148	1 2	FISSION	30.80	74.43	A9 00	71 54
90-TH-232	1296	620	1.1	(N SAMMA)	4877.	98.39	103.3	100.6
91-PA-233	1297	620		TOTAL	58857.	7294.	7333.	7304.
91-PA-233	1297	186	0.5	FISSION	158.6	479.8	451.7	468.1
91-PA-233	1297	620		(N. GANNA)	48975.	178.6	188.2	183.9
92-11 -233	1260	620		TATAL	60998.	7254.	7281.	7262.
97-11 - 233	1260	620		FISSION	43542.	1833.	1841.	1836.
92-11 -233	1260	620		(N.GAKMA)	7693.	60.86	64.23	61.75
92-11 -234	1043	620		τηται	56243.	8437.	8495.	8459.
92-11 -234	1043	299	0 001	EISSION	306.3	1157.	1132.	1152.
92-11 -234	1043	670	0.001	(N GOMED)	36425.	170.4	178.7	174.4
92-11 -235	1241	620		TRIA	34396	7607.	7642.	7617.
92-11 -235	1261	620		FISSION	16165.	1241.	1241.	1241.
92-11 -235	1261	620		(N GAMMA)	7915.	95.82	101.6	98.16
92-11 -236	1143	420		τητοι	36311.	R015.	8074.	8033.
92-11 -236	1163	181	0.4	EISSION	185 5	587 5	560 6	577 2
92-11 -236	1163	420	V.U	(N SOMMO)	19997	170 2	178 6	174 2
92-11 -230	1263	620		τητοι	74917	7796	7847	7809
12-0 -230 02-11 -230	1202	020	0 105-05	EISCIAN	109 4	7770. 715 A	295 8	306 6
72-0 -230	1202	440	V. IVE-VJ	IN CANNAL	107.4	71 74	75 07	300.0 77 7A
72-U -230	1202	420			A7014	71.30	7170	75.54
73-NF-237	1203	620		ETECTON	4/714. 774 0	1751	1320	1745
73-NF-237	1203	420		(N COMMA)	3/7.0	147 0	174 4	147 0
73-NF-237	1200	620		(π ₁ οκαικι	JOJ/7. DA015	7500	1/0.0	10/.0
79-FU-230	1050	620			2700J. 1740	7307.	/ JJ7. 2045	7J20. 2010
74-FU-Z38	1050	620		(N CANNA)	1/40.	20/0.	2043.	2008.
94-PU-238	1020	620		(N, 68008)	8238.	41.00	43.04	42.09
94-PU-239	1264	.620			38//0.	1700	//33.	1707
94-PU-239	1204	620		FISSION	1/340.	1/87.	1/01.	1/8/.
94-PU-239	1264	620		(N, 64004)	11105.	37./6	43.43	- 4V.87
94-PU-240	1200	620			J300//.	/360.	1023.	/373
94-PU-240	1200	620		FISSION	232.3	1336.	1307.	1004
94-PU-240	1263	620		(N, BANNA)	482029.	82.11	80.78	0340
94-PU-241	1200	620			JIIVU. 77502	8188.	8261.	8207.
74-PU-241	1200	620		FISSIUR (N. CANNA)	32302	1030.	1030.	
74-PU-241	1200	620		(N, 6HNNR)	/188.	10/.3	111.5	107.4
74-PU-242	1161	620	A A4	IUIAL /	8/084.	/ 3/3.	100	1004
74-PU-242	1161	260	0.01	F1351UN	321.0	1234.	1178.	1224.
74-PU-242	1161	620		(N, BARRA)	65105.	53.41 0050	10.80	36./5
75-AH-241	1056	620		TUTAL	105538.	8237.	8258.	8261.
Y5-AN-241	1056	620		FISSION	//6.8	12/7.	1230.	1263.
95-AH-241	1056	620		(N,GAMMA)	93768.	61.90	68.27	64.98
95-AN-243	1057	620		TOTAL	89043.	7988.	8002.	7998.
95-AH-243	1057	260	0.01	FISSION	240.7	1023.	992.8	1019_
95-AM-243	1057	620		(N,GAMMA)	77800.	61.75	67.52	63.65
96-CM-244	1162	620		TOTAL	58304.	7632.	7672.	7651.
96-CM-244	1162	620		FISSION	2528.	1755.	1710.	1743.
96-CM-244	1162	620		(N,GAMMA)	33588.	64.87	68.27	66.32

Table A8: Spectra averages (millibarns) from ENDF/B-4 library

•

		SF	ECTRA		1/E spect. .5 eV cut.	Cf-252 fiss U-235 fiss U-235 (NBS) (NBS) (ENDF		
		NL	IMBER OF GI	ROUPS	475	620	620	620
		, SF	PECTRA ENEI	R6Y RANGE IS FROM	5.0000- 7	1.0000-10	1.0000-10	1.0000-10
		TE) (MEV)		20.0	18.0	18.0	18.0
		Sf	PECTRA AVE	RAGED ENERGY (MEV)	1.1426	2.1194	1.9771	2.0313
		SI	ANDARD DE	VIATION (MEV)	3,1813	1.7141	1.5931	1.5967
ISOTOPE	MAT	6ROUPS	THRESHOLD (MEV)	REACTION	SPECTRA (MILL	AVERAGES Ibarns)		
91-PA-233	1391	620		TOTAL	58857.	7294.	7334.	7304.
91-PA-233	1391	186	0.5	FISSION	158.6	479.8	451.7	468.1
91-PA-233	1391	620		(N, GAMMA)	48975.	178.6	188.2	183.9
92-U -234	1394	620		TOTAL	53521.	8499.	8553.	8518.
92-U -234	.1394	620		FISSION	360.8	1232.	1205.	1226.
92-U -234	1394	620		(N,GANMA)	37882.	170.5	178.9	174.5
92-U -236	1396	620		TOTAL	37171.	8071.	8139.	8096.
92-U -236	1396	620		FISSION	435.0	599.2	573.2	590.0
92-U -236	1396	620		(N. GANKA)	20013.	170.2	178.5	174.2
93-NP-237	1337	620		TOTAL	47929.	7765.	7807.	7782.
93-NP-237	1337	620		FISSION	376.3	1352.	1322.	1347.
93-NP-237	1337	620		(N. CAMMA)	. 36579.	162.7	176.5	167.7
94-PU-238	1338	620		TOTAL	25979.	7575.	7616.	7588.
94-PU-238	1338	620		FISSION	1741.	1983.	1956.	1976.
94-PU-238	133B	620		(N.GAMMA)	8769.	142.3	150.6	145.6
94-PU-242	1342	620		TOTAL	96275.	7934.	7988.	7945.
94-PU-242	1342	620		FISSION	304.8	1129.	1103.	1125.
94-PU-242	1342	620		(N.GAMMA)	73584.	70.40	74.85	72.55
95-AH-241	1361	620		TOTAL	93139.	7977.	8013.	7987.
95-AM-241	1361	620		FISSION	752.5	1474.	1429.	1465.
95-AH-241	1361	620		(N.GAMMA)	81358.	254.2	273.5	260.2
95-AH-242	1369	620		TOTAL	134932.	7040.	7074.	7029.
95-AH-242	1369	620		FISSION	108640.	2214.	2222.	2217.
95-AH-242	1369	620		(N. GAMMA)	16542.	18.68	20.40	19.62
95-AH-243	1363	620	•	TRTAL	116277.	7926.	7987.	7944.
95-68-243	1363	337	0 245-03	EISSION	336.4	1205.	1164.	1193.
95-65-243	1363	600		(N. GANNA)	103890.	73.00	79.69	76.20
96-CH-243	1343	· 620	•	τηται	137192.	8219.	8282.	8232.
96-CH-243	1343	620		FISSION	112280.	2073.	2075.	2081.
96-CH-243	1343	620	ł	(N.SAHKA)	14331.	14.77	16.24	15.50
96-CH-244	1344	620)	TOTAL	54792	7528.	7578.	7538.
96-CH-244	1344	620		FISSION	1046.	1614.	1578.	1607.
96-CH-244	1344	620)	(N. GAMMA)	33621	119.3	128.4	122.8
96-CH-245	1345	620)	TOTAL	63454	8218.	8317.	8237.
96-CM-245	1345	5 620)	FISSION	47593	1978.	1978.	1980.
96-CH-245	134	5 620)	(N.GAMMA)	6716.	40.74	43.97	41.77
96-CH-246	134/	h7(,)	TOTAL	18025	. 7768.	7828.	7778.
96-CH-246	134/	620)	FISSION	579.6	1386.	1345.	1378
96-CM-246	134	620)	(N,GAMMA)	5898.	42.19	44.83	43.28

Table A9: Spectra averages (millibarns) Actinides from ENDF/B-V Actinides

		SFE	CTRA		 1/E spect. .5 eV cut. 	Cf-252 fis (NBS)	s U-235 fis (NBS)	s U-235 ((ENDF/I		
		NUP	BER OF	GROUPS	- 475	620	620	620		
		SPE	CTRA EI	VERGY RANGE IS FROM	- 5.0000-7	1.0000-10	1.0000-10	1.0000-10		
		10	(MEV)		- 20.0	18.0	18.0	18.0		
•		SPE	CTRA AV	/ERAGED ENERGY (MEV)-	- 1.1426	2.1194	1.9771	2.0313		
•		STA	NDARD [EVIATION (MEV)	- 3.1813	1.7141	1.5931	1.5967		
ISOTOPE	MAT 6	ROUPS T	HRESHOL	D REACTION	SPECTRA	SPECTRA AVERAGES				
			(MEV)		(MILLIBARNS)					
90-TH-232	6390	205	0.5	FISSION	35.31	78.07	72.40	75.04		
90-TH-232	6390	640		(N,GAMMA)	4909.	89.69	94.24	91.97		
92-U -235	6395	640		FISSION	16095.	1236.	1236.	1236.		
92-U -238	6398	640		FISSION	116.1	313.6	294.6	305.2		
92-0 -238	6398	640		(N, GANNA)	15956.	68.34	72.06	70.25		
93-NP-237	6337	640		FISSION	392.5	1352.	1322.	1347.		
94-PU-239	6399	640		FISSION	17365.	1792.	1786.	1791.		

Table Al0: Spectra averages (millibarns) Actinides from ENDF/B-V Dos MOD-2