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DESCRIPTION OF RESEARCH, RESULTSAOBTAINED.AND'CONCLUSIONSv

Since the last progress.report, our research effort has
concentrated on the development of»computef codes to calculate one
and two step continuum :DWBA. angular distributions and. -cross
sections, on'tﬁe combinatorial calculation of level- and trénsition
strength densities.. and. methods to simplify them and on the
development of an exciton-like model from the multi-step direct
multi-step compound one. In this project report, each of these

will be discussed in turn.

1. One and Two Step DWBA Codes

After the failure of our moment method approximation to
the one step DWBA transition strength densities, ' we retreated to
the original collective form factor particlé—ﬁole approach of
Tamura and Udagawa,(‘y modifying - our code appropriately.
Comparison with the expefimental data was somewhat encouraging.
At sufficiently high'exéitation energies, we generally found our
calculations to 1lie slightly below the experimenﬁgl ‘daté,
suggesting thét the use of. the full two-body interaction (and not
just the Wigner term) could supply the needed transition strength.
However, the deficienciés of a simple particle-hole apbroéch ‘to
nuclear excitations-its lack of collectivity. énd inability fo
describe the low lying states - led us to pursue andfher path. We
are currently preparing to perform one step calculations along the
same lines as those of the Bratislava éroup, () which are based
on Sélovie?ﬁs.quasi-particie phonon modél'of nuclear structure.(3)

To perform two step DWBA calculatibné,' ﬁé have éabpted
the coupled channels code ECIS79 (*5 as the cross section module.

With a suitable choice of form factors and reduced matrix



elements, ‘one. iteration:of Raynal’s.ECIS-method .yields a:one step
cross section for the first excited state, a two step cCross
section:. for .the ‘second excited-state.and so-forth.. . Although we
lost :several months: before succeeding:in entering:the form factors
and ' .matrix - elements.in. a mahner: acceptable  to. the{ code, . this
problem. ‘has:now been'solveduand-é driver code-.is being.developed.
The driver  will prepare the necessary - -input :to .ECIS79-  and
manipulate its ‘outbuthinto.thewdesired one and two-step. angular

distributions and. cross+ sections.

2. Level and Transition Strength Densities

fAlthough we found the moment method approximation to
‘give.aAppor desgriptiqq of the energy dependehce of - particle-hole
‘level densifies, its deséription of the spin dépendence is
generally quite good. We begin this section by demonéﬁrating how
fhis fact can be used to simplifyvthe combinatoriai éalculation of
1§ve1 densities.

We recail that the generating function for the density
of states
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can be expanded 1in terms of the generating functions of the
particle-hole densities
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We can then write the particle-hole state densities and their spin
moments as inverse Laplace transforms of derivatives of the
generating functions.
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The derivatives and Laplace transforms are easily performed,

,yleldlng comblnatorlal expre551ons in terms of the single particle

levels rather than ths'

A

We have
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where A, and W, are the occupatlon numbers of the single
particle/ﬁéle levels, g and gL are thelr mult1p11c1t1es and

(vw*?l_) <\m‘>L--'are their average squared spin projections.

We note that in a spherical.basis,,Where
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this method leads to a sizeable reduction in computation time.

In an axially symmetric basis, with

Ci',. = cew 4\&\‘5‘- = w\-‘l
the reduction is much lese significant.

We have obtained a similar combinatorial expression for
the fourth moment, Ly (0D , which allowe us to calculate

the kurtosis, -
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With these three quantities, we reconstruct the density of states



as LT,
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where we have 1dent1f1ed the spin cutoff factor, G’(e'k U\ , as
T w0 T WD (pa)

The level density is then.determined in the usual manner.
We have found the method to yieid excellent results. 1In
Figure 1, we 'compare: the combinatorial level density to the

reconstruction in an extreme case of large kurtosis.
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Fig. 1. Spin dependence of the level density as
a) calculated combinatorially, b) reconstructed in terms
of the spin cutoff parameter and the Xkurtosis and

c) reconstructed in terms of the spin cutoff parameter alone
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Fig: 2a. The one particle-one hole density of states as obtained
combinatorially : and as obtained using the Bloch and
Williams expressions with adjusted single particle/hole

parameters.

 For éomparison; we also sﬁow the reconstrﬁCted density
obtained when the kurtosis in neglected. Values of the kurtosis
as largé as that shown are typical near threshold or for low
exciton . number configurations, as can be seen in Figures 2c and
3c. |

. We have also used the moment method described here to
include gpin in thé-density of states expressions of Blochf{f) and
Williamsglgﬁ Using sinéle partiqle parametefs‘obtained from fits
to the - single particle speét:a uséd in - the cqmbinatorial
calculations, we found it ©possible to obtaihv a fairly good
approximation to the combinatorial results, as‘'can be seen in
Figures 2 and 3. However,the Bioch;énd Williams dénsities continue
to predict »pqor%yA'the thre;hqld of higher exciton number

configurations (see Fig. 3).
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Preparatory studies to the development of a code to
calculate the transition strength densities discussed}in the last
progress report revealed the need for a slight reformulation of
the model in order to extract mean field_contributiohs contained
in the densities. This was performed by redefining the

creation/annihilation operators as

-‘
a4, = “y Gy Ay for particle states
and
0 = ‘oo CV;, \o: for hole states
v .

The unnormalized single particle density operator could

then be rewritten as
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where the last term is different from that given in the last
progress report. The transition state density obtained after
Laplace transforming and restricting to the energy conserving

transitions is identical to that given previoﬁsly. In this case,
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the modified term only contributes to nonconserving transitions.
However, modifications do occur in the energy conserving
transition rates which leave the e*citon number unchanged.

We have developed a code to calculate comﬁinatorially
the transition strength densities which increase the number of
particles and holes by one each. We have used a neutron/proton
formélism rather than an isospin one and have begun by attempting
to calculate the transition state density, UL(AMJLM); The matrix

elements of this quantity are : S

AN
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which ensure the conservation of angular momentum and . parity.
Neutron and proton number conservation is taken into account

-explicitly in .the code.
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The matrix elements of the transition state density
differ £rom those of a general interaction only in the reduced

. . . -T .
matrix elements which enter the sum over J . In order to

eventually calculate average matrix elements, WY, it will be
necessary to have at hand the density \Aﬂipxuo.ﬂ\ as the
£ransition strength density which we have defined cofresponds to
the exciton model quantity {371‘4*(P-\‘°VN\ “3LP'“‘°'M\‘

As stated above, we have developed the code necessary to
calculate the transition rates, X,(yMHUJM\ , anéd have begun
by attempting to calculate the transition state densities,
w,ip&hkhv@\. We have discovered, however, that the computation
time necessary 1is too great to permit any but the simplest
calculations. As an example, our calculation of the near energy
conserving transitions (1100) = (2200), (1111), wusing an average
of ten single particle orbitals for the neutron proton
particle/hole levels, requires about 5000 s. on our CYBER 750. We
thus need a faster method of counting, the obvious one being the
reduction from state to level counting described earlier.

We have performed the algebra necessary to program the
reduced 1level counting calculation. Although much more tedious
than the level density example discussed earlier, the calculation
is straight forward but for one point. The single complication
involves Pauli correction terms which enter as sums over sguared
matrix eclements in which one of the initial single particle states

so a final one.

b b :
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We have not yet succeeded in analytically reducing these sums to
sums over reduced matrix elements. For the calculation of A, and
. , "this difficulty is not important as, in this case, the

correction terms do not contribute to the near energy conserving
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transition ,rates.  .These terms do contribute, . however, tow_tpe
energy conserving transitions in 3» and W.-. Calculation of the
latter -will thus require.further work. . At the moment, we are
developing the —code 'necessary to calculate the. near energy
conserving contributions to A, and W+ .

Finally; we'coﬁfeesfthat we ﬂeVe:made no'proéress in the
collaboratlon w1th Dr._ Reffo of ENEA on the_ modified exciton
_ model ~ The, respon51b111ty for thlS 1s entlrely ours, as we have
not yet eupolled hlm w1th the tran51tlon state den51t1ee necessaty
for performing calculat1 ‘ns w1th1n the modlfled model .However,
as we have made progress in the calculatlon of tran51t10n s*rength
densities, we believe that we are now at a point where we can
provide the necessary quified densities. After the CRP meeting,
thie researcher will spend ten days with Dr. Reffo in Bologea with

this intention.

3. Development of an Exciton-Like Model

Our attempt to derive an exciton-like model from the
multi-step direct multi-step compound one 1is based on the
following objection raised by Blann and Reffo: (3\ The distincticn
between bound compound nucleus states and resonant states is an
arbitrary model dependent one. It is lost after introducing the
residual interaction. All states then become resonant states.

It thus seemed reasonable to attempt to include the
resonant continuum contribution with the bound compound nucleus
states to obtain an exciton-like model. An obvious attraction of
such a model is that the resonant terms would permit contributions

of the form

which could yield angular distributions asymmetric about 90.
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However, our simple minded attempt to derive such a model
encountered serious difficulties.
The decomposition of the Green's function into a sum of

bound state terms, resonant terms and a background,

(2 - 5 e Ll f_ VAN cfl . C"e

. e- < 1.,‘

as well as methods for the use of this expansion in calculating
matrix elements and perturbation series have been well documented.{%)
If we expand the continuum part of the Green's function into a

resonant sum and background,

G = T ADOUEN (R ¢ G
rl

and apply a perturbing potential, U, (small enough to not create
new resonances), Wwe can resum to write the perturbed Green's

function as

G = T ID G wgy

where
C"IG < C'ﬁcﬁ " Cac,g UCwe
18 )2 lad) » Geg UL
and (='V 2 \aNT

N = Do~ B (50D
as D is complex but symmetric, it can be diagonalized by a
complex orthogonal transformation, yielding an expansion similar

to the original one for (2;

G = T IO E(FL + Gy

However, to calculate the average Green's function, we must also
calculate the optical potential. Definition of the latter 1is

complicated by terms such as

\T(%& N C:r\l\‘l‘.\. (30 ("\o\ﬁv
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We would like these terms to average to zero but our statistical
hypotheses do not require this. If we assume that the above terms

are zero, we can define the optical potential in a natural manner,

U= VGaV -~ N O (¥ + N oD, otV

and calculate the average Green's functions as above.
This, however, 1is not sufficient to eliminate our
problems. When we turn to the calculation of cross sections, we

now encounter contributions such as

T ‘ — —
(G- INEYDs (SN (N TID (FIVIN

which require further statistical hypotheses for their evaluation.
What we have reencountered here are the same o0ld
problems which plagued the derivation from more fundamental
hypotheses, of the Hauser-Feshbach cross section. One of the
advantages of the statistical ensemble of matrix elements is its
ability to circumvent these difficulties. That we have
reencountered then here suggests that we have not chosen our
statistical hypotheses wisely. Although we have not yet succeeded
in obtaining statistical hypotheées which are reasonable within
this new context, we have not yet abandoned hope of doing so.
Beside the chief inyestigator, several other members of
the Theoretical Nuclear Physics Group at IEAv have taken an active
part in this research project. They are T. Frederico, R.

Mastroleo, A.C. Merchant and R.A. Rego.

REFERENCES

1. T. Tamura, H. Lenske and T. Udagawa, Phys. Rev. C26, 379

(1982)

15



w

~1

-S.. Gmuca and R. Antalik, "On Methods for the Calculation of

Neutron Induced - Reactions", Work presented at. the first
meeting of the IAEA Coordinated Research Program on "Methods
for the Calculation of Fast Neutron Nuclear Data for

Structural Materials", Bologna, Italy, October 7-10, 1986.

V.G. Soloviev, Sov. J. Part. Nucl. 9 (4), 343 (1978)

L.A. Malov and V.G. Soloviev, Sov. J. Part. Nucl. 11 (2), 111
{1980) | o
A.I. Vdovin and V.G. Soloviev, Sov. J. Part. Nucl. 14 (2), 99
(1983)

V.V.  Voronov and V.G. Soloviev, Sov. J. Part. Nucl, 14 (6),
583 (1983)

A.I. Vdovin, V.V. Voronov, V.G. Soloviev and Ch. Stoyanov,

Sov. J. Part. Nucl. 16 (2), 105 (19853)

J. Raynal, "Optical Model and Coupled Channel Calculation in
Nuclear Physics", from IAEA Report IAEA-SMR-9/8, 1980

J. Raynal, "Notes on ECIS 79", CRN-Saclay, 1982

.C. Bloch, Nuclear PhYsics, Les Houches Lectures (1968), p.

303
F.C. Williams, Phys. Lett 31B 183 (1970)
G. Reffo, private communication

G. Garcia-Calderon and R. Peierls, Nucl. Phys. A265, 443

(1976)
T. Berggren, Nucl. Phys. A389, 261 (1982)

W.J. Romo, Nucl. Phys., A398, 525 (1983)



