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ABSTRACT

The authors consider the accuracy required of microscopic nuclear data to

ensure a given accuracy in the calculation of reactor parameters. They evolve

a general method of allowing for the correlations of errors in microscopic quantities

relating to different processes, energy groups and isotopes. The error is

considered to consist of components differing in correlation properties. By

dividing the error into components, it is possible to obtain simple formulae

for linking these components with the required accuracy of a reactor parameter.

They further use "experiment planning" methods to obtain a mathematical

formulation of the problem of determining the least costly complex of experiments

which will ensure a given accuracy in the calculation of a reactor parameter.

The solution to this problem is obtained in the form of simple formulae.

The requirements relating to all error components are calculated. It is

shown that the requirements can be eased if the same method is used to measure

neutron fluxes in experiments on fission and capture cross-sections.

The error in curve normalization is shown to be of particular importance,

and the special role of evaluation in determining this error is stressed.

1. INTRODUCTION

(a) Variation of a reactor parameter as a function of variations in
microscopic (group) quantities

The calculated value of each reactor parameter "C", for example the

effective multiplication constant, breeding ratio, etc., depends on a large

number of different microscopic quantities, such as the effective interaction

cross-sections for different neutron energies, the number of secondary fission-

neutrons and so on. Calculations are usually performed within the framework of

a group model. The relative variations of the group quantities (—) . .,
a

corresponding to a quantity of type "a" for isotope "i" in group j, define the
relative variation of the reactor parameter 6 c/C through the linear relation
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The coefficients in this relation S . ., known as sensitivity coefficients,

are calculated in generalized perturbation theory / ! _ / •

(b) Formulation and solution of the problem of determining the necessary
accuracies of nuclear constants in previous work

In order to determine the error in a reactor parameter "C", one needs to

make an assumption regarding the sum of the contributions from the many errors

entering into formula ( l ) . If we consider these contributions as random

quantities which are not correlated with one another, then, according to the

rules of mathematical stat ist ics, the dispersion or (to put i t another way) the
2 2 g

sliiared standard deviation of reactor parameter "C", i.e. D (D = ( 5 C/c) ),
will be expressed in terms of the dispersions of the microscopic group quantities
2 2

d . (d . . = (ba/a) . ) in the following manner:

This assumption was used by Moorhead / 2_/, who obtained the sensitivity

coefficients by direct calculation using a five-group model. Greebler,

Hutchins and Linford £~?>J on the other hand suggested that i t might be important

to consider correlation of errors in the problem under discussion. They

expressed the view that in real conditions almost every nuclear constant can

have two or three correlation intervals over the whole of the energy axis. We

might mention here that Moorhead £~?J in fact used five correlation intervals

since he performed a five-group calculation.

Zaritsky and Troyanov /~4_7 studied the problem in great detail; they

calculated a wide class of fast reactors, using generalized perturbation theory

with an 18-group model, and performed comparative studies on the required

accuracy of the constants for all these reactors. They have also provided

formulae for the required accuracies of constants leading to a given accuracy

in a reactor parameter, both for non-correlated constants and for constants

correlated within a number of intervals. To distribute the error requirements

for the different quantities in the right-hand side of formula (2), identical

contributions from the different error sources are required, i . e . the following

requirement is imposed:

• " • • " (3)
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The latest work of Zaritsky, Nikolaev and Troyanov /~5_7 offers a justification

for requiring 1% accuracy in K „„ and 2f0 accuracy in the breeding ratio.

Requirements are also formulated for the accuracy of a large number of

microscopic quantities on the assumption of statistical independence of the error

in each of the 18 groups. Here they depart to some extent from the principle

of equal contributions by different constants (3), formulating intuitive

considerations regarding comparable attainability of accuracy in the different

constants by a method of selection and successive approximations.

Of special interest in this work is the idea of formulating accuracy
2S2

requirements for the ratios of the quantities to standards such as v for Cf

and the fission cross-section of uranium-235, and also for the accuracy of the

standards themselves. Such requirements have in fact been formulated, but they

are based on the same assumption regarding non-correlation of errors in

18 groups.

(c) Criticism of previous work and the need for a correct approach to the
analysis of error structure

Comparison of the results given in the papers referred to above /~2-5_/

shows that in determinations of " required accuracy" the result is very much

subject to the assumption made regarding correlation or non-correlation of

errors. Greebler and co-workers estimate this effect to be a factor of 3-5*

Furthermore, depending on whether correlations are / 2 , 3) 4_7 o r a r e n 0 ^ L 5_7

taken into account, the accuracy requirements for microconstants vary from

values which cannot be satisfied within the foreseeable future to values which

are already almost satisfied.

Since the solution of this problem must have a substantial influence on the

definition of scientific policy, i t is necessary to develop a more correct

approach to the analysis of error correlations and to the more general problem

of planning microscopic experiments as a whole.

In our opinion, the chief drawback of the papers mentioned above - a

drawback which we are seeking to eliminate - is that the error in each quantity

was regarded as an unstructured whole and considered to be either fully

correlated with the errors of neighbouring quantities or fully non-correlated.

On more careful examination, however, i t becomes clear that one needs to take

into account the structure of an error, the individual components of which

differ from each other in correlation properties.
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2. COMPONENTS OP THE RELATIVE ERROR IN A GROUP MICROSCOPIC QUANTITY AND
THEIR RELATION TO THE ERROR IN THE REACTOR PARAMETER

(a) Notations and concepts

The relative error in the group microscopic quantity figuring in

expression (l) is given above as (6a/a) . ..

The subscripts are:

i - isotope number

j - group number

a - a characterization of the quantity which assumes values determined

by the following table:

Quantity Subscript in place of
a

Average number of secondary fission neutrons v

Fission cross—section f

Radiative capture cross-section C

Fraction of fission spectrum in group "k"
•k

'k
Transport cross-section t r

Reaction cross-section in group "K" re.

The error in the quantity, as determined from the microscopic experiment,

aracterized by a standard deviation

which is given by the following formula:

is characterized by a standard deviation "d . ." , the probability sense of

cr/ p

(4)

where (bo/b) . . is regarded as a random quantity and the bar denotes averaging

over a large number of measurements. However, the standard deviation determined

from expression (4)» i.e. from the spread of experimental values in a specific

experiment, is only a statistical component of the error. In fact, a process

of fitting to some standard is usually applied in the experiment. The actual

error must therefore include not only the statistical error but also the

systematic error inherent in the method of fitting - that is, in our

terminology, the normalization error - and also the error in the standard

itself. Thus we have

? •/ j stand

°" J (5)
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The sense of the vector f. in formula (5) will be explained below.
J

Usually, in calculating the total experimental error, all three above-mentioned

error components are considered to be uncorrelated with each other and the

squared standard deviations related to (bo/a) by formula (4) are added up:

. 2 J .stat*^ , norm

dLj < l i " * l ' ' J " ' (6)

TT j.1- J. J. • J. • 1 J- ,stat , .stand . _ ,stat .
Here the statistical sense of d . . and d is clear, d . . is

a l J stand a l J

determined in the experiment itself, while d is taken from the nominal data
on the standard or the standard method. The sense of d . appears only when we

ai

consider some conceivable complex of experiments conducted by different methods,

for which averaging can be performed in accordance with the definition in

expression (4)« Hence it is clear that the errors incurred in fitting or curve

normalization can be evaluated experimentally only by analysing several

experiments performed by independent methods, i.e. through an evaluation of

nuclear data.

(b) Correlation properties of error components

Let us consider each of the three terms in the right-hand side of expression (5)»

The first term is purely statistical in nature and not correlated with other

energy groups or with other types of process or with other isotopes. If within

a single group there are n experimental points, each with a statistical error d,

then

stat

a * i j " ' (7)

Expression (7) should be kept in view in discussing the permissible

statistical error.

The third term is constant for all groups, substances and types of

quantities, in the measurement of which the standard under consideration is

used. This error component is thus fully correlated in the range where the

standard is used. We shall mention two examples. If californium calibration
,. / > stand

is used in measuring the average number of secondary neutrons, (00/0) is

the error in the value of v for californium-252. If we consider a complex of

measurements of different cross-sections in all of which the neutron flux is

measured by the same method, (60/a) denotes the systematic error in the

flux measurement method.
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The second term represents an error component correlated in different

energy groups, i.e. the error in curve normalization. In cross-section

measurements this error component can result, for example, from the error in

determining the amount of the substance under study in the layer, from the

systematic error in detecting events corresponding to the quantity being

measured, or from the error in measuring the absolute neutron flux or in the

standard cross-section from which the neutron flux was determined, if this

error is not allowed for in the third term.

When v is measured with a californium standard, this error component can,

more specifically, be due to differences in the hardness of the fission spectra
2S2

for Cf and the isotope under study, for such differences may result in

different neutron detection efficiencies.

If there are several independent errors with identical correlation

properties, they can be combined according to the ordinary rule of quadratic

addition.

It is sometimes possible to introduce a calculated correction for the

systematic error. Then the error remaining in the normalization will be the

error in this correction. In such cases, we can draw conclusions concerning

the behaviour of this error in relation to group number.

To describe this behaviour we introduce the vector f., which is equal to
J

unity in the group with the maximum error and to zero or a negative quantity

in groups where the systematic error under consideration should, from physical

considerations, vanish or change sign.

I t must be pointed out that neutron cross-sections and fluxes in different

energy regions are measured by different methods. Thus as one approach we can

select, in accordance with these regions, correlation intervals in each of

which expression (5) is valid but which are not correlated with one another.

(c) Correlation of errors of the evaluated data

Data should be evaluated with due allowance for the correlation properties

of the errors in the experimental data. Specifically, for example, when several

sets of experimental data are available, the error in normalizing the

cross-section curve should be determined from all of them. Thus, in the

process of evaluation this error is determined and does not vanish, as Zaritsky

and co-workers /~5_7 ^ n effect assume. Hence, in formulating the requirements

to be imposed on the accuracy of evaluated and recommended data, one must

consider the correlation properties of the errors as described above.
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(d) Er ror in reactor parameter as a function of the e r ro r components in
microquant i t ies

I t i s c l ea r from the foregoing that i f s ingle e r ro r s , d . ., arose from

er ro r components in accordance with formula ( 6 ) , they would be p a r t i a l l y

cor re la ted . I t i s therefore not a correct procedure to go from formula ( l )

to formula ( 2 ) .

The present work suggests a natural way of overcoming t h i s d i f f i c u l t y .

This cons is t s in subs t i t u t i ng into the re la t ion derived from general ized

per turbat ion theory ( l ) a component-wise representat ion of the e r ro r (5) and.

in grouping terms with iden t ica l ba/a'-

stand , .. &tand

The first and second terms are obtained without any specific assumptions.

In the case of the third, v is assumed to be measured for all fissionable

isotopes over the whole energy region in accordance with the californium

standard. The fourtn term is derived on the assumption that a single flux

measurement method is used in measuring the radiative-capture and fission

cross-sections for all isotopes where summation over the subscript i is implicit.

In the relation obtained, each relative error is uncorrelated with the others.

If we assume m correlation intervals (see the last paragraph of section (b)),

the second and fourth terms on the right-hand side should be broken down into

corresponding parts with independent relative errors:

m.

ff 4TUX

where ru, and m̂  are the numbers of the first and last groups of the K-th

correlation interval. We rewrite the right-hand side of the relation obtained

as a single sum from unity to N, where N is the number of independent errors,

(ba/a). The left-hand superscript £ takes values from 1 to N. Let us denote

the coefficient before (ba/a) by Z . I t is obvious that

5 J
l'< *

S f/c = (9)



g

Since all (6a/o) are random non-correlated quantities, an expression for the

dispersion of the reactor parameter is obtained in terms of the dispersions of

the corresponding quantities:

1 - 1 (10)
? ? 2 £ ?

where D = (&c/c) and d^ = (60/0) (see section 2a).

In relation (10), allowance for the correlation of the error components

is indicated "by the fact that the coefficients before the individual mean-

square errors are squares of the sums of the sensitivity coefficients.

3. MINIMIZATION OP COSTS FOR THE WHOLE COMPLEX OF
MICROSCOPIC EXPERIMENTS AND EVALUATIONS

NEEDED TO ATTAIN A GIVEN ACCURACY
IN REACTOR CALCULATIONS

(a) Theory and formulae

In this section we shall use the concept of statistical weight of an

experiment or a complex of experiments, equal to the reciprocal of the root-

mean-square error:

(11)

As is often done in "experiment planning", the cost of the -2-th experiment

is taken to be proportional to the statistical weight and equal to X W , where

*•£ is a constant representing the cost of obtaining unit statistical weight in

the determination of the -£-th quantity.

Accordingly, the total cost of a system of experiments for measuring

microscopic constants which will ensure a given accuracy in the calculation of

a reactor parameter is the sum of the costs attributable to each necessary

experiment and complexes of experiments.

Total cost = 2 t *
<"* (12)

We are interested in attaining, at minimum cost, a given accuracy in the
2

reactor parameter, o , which can also be expressed in terms of statistical

weight if we substitute expression (ll) in expression (10):

(13)
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The problem of the minimum of expression (12), with the additional

condition set by expression (13), is solved by the familiar method of indeterminate

Lagrangian multipliers in which we seek the extremum of the following expression:

(13a)

where X is an indeterminate Lagrangian multiplier.

Equating the partial derivatives with respect to VĴ  to zero, we obtain a

system of N equations:

TIP. \ \ 7 I 7 jr\j*

»*« ^ * > W,*X, Ae (13b)

Excluding l/X, we obtain N-l equations:

(14)

Using this relation and expressing d» in terms of d, in expression (l3)>

which is the N-th equation, we write

" (14a)

We determine dn from the last relation and the accuracies d. of all other1 x
experiments from relation (14)•

If the calculated errors in some quantities are larger than the values

assumed to have been attained, the calculation programme should have a block:

with the following functions. All such terms are identified and their
5" 7' I1

contribution to the total error is calculated by formula £- *-e «*e.2
This contribution is deducted from 6 and then the whole procedure is repeated

for the remaining terms. Provision should be made for iterations till full

convergence of this process. We thus find the required accuracies for all

quantities entering into the calculation which will satisfy the accuracy

requirements for a reactor parameter at minimum cost.

(b) Determination of the relative cost of experiments on the basis of the
hypothesis that experimenters have equal "ability to obtain funds"

In order to determine the relative cost of experiments, i.e. the ratios L

we shall assume that identical amounts of money have been spent to obtain
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statistical weights in all the experiments performed so far. In other words,

we are assuming that the experimenters who have been engaged in making different

measurements in different institutes and countries are men with an equal

"ability to obtain funds" for experiments, and that the difference in the

accuracy obtained derives from the comparative objective difficulties inherent

in the experiments. Thus we have

Assigning the W,, W, values attained so far, we obtain the relations

We could also introduce a "coefficient of attention" in the quantity "k",

viz. CAQ, and, in order to determine ̂ eAif' u s e

(c) Calculated required accuracies

The sensitivity coefficients are taken from Zaritsky and Troyanov /~4_7

for a reactor using plutonium-239 and uranium-238 oxides and having a volume

of 5000 l i t res .

The assumptions we have made as to accuracy attained in determining the

relative cost of experiments, are indicated in the table below. Results

corresponding to K ~£ = i 0.01 are presented. These accuracies ensure a

determination of breeding ratio to within i 0.02.

(d) Discussion of results

The assumption that the errors are purely statistical leads to a rather

low estimate of the necessary experimental accuracies. On this assumption, the

accuracies that have been achieved already would satisfy the requirements.



Quantity

Assumption as to accuracy
achieved, %

Statistical
error

component

Error in
normalization

or in the
standard

Sum EZ*~ x 10 determining
the energy-averaged
permissible errors

1? non-
correlated

groups

Error
correlated
over the
whole
energy
region

correlation
intervals

Contribution
of systematic

error and
error in

standard to
6 2

o

Errors (in %) ensuring K cc to within ± Y/o averaged over the whole, energy region
determined by the formula d = J contribution/tz^ l^L/

liirror correlated over the
whole region

Realistic variant, three
correlation intervals

Purely
statistical
error, fa

i-'lux measured
independently

in each
experiment

Single flux
measurement
method, dn o n n

° r d8tand

flux measured
independently

in each
experiment

Single flux measurement
method ____

Qnorm
or

dstarid
+ dstand

239
Fission 7Pu

cross-section U

390

28

3B50

66.5

1690

66.5

0.136

O.Old 3.5

0.75 0.6

1.6
1.1

2.0

C9
1.6

2.?

2.6

Capture ' J 3 P U
238cross-section U

10

5

3.8

88
31.2
758

21.5

426

0.062

0.152

17

5-7

5 -5

1.7

4.4 6.7

2.4

5-4

1-9

5-7

2.3

239
?u

U

Remarks:

0.5

0.5

750

700

V45O

1130

7450

liiO

O.O96

0.015

1.6

2

0.36

O.9I

0.36

0.91

0.36

0.91

O.36

0.91

0.5

1

V

Neutron flux

252Cf

-

1

5

10 000

1400

10 000

507

0.112

0.20(3

0.33

-

0.33

1.2

0.33

-

0.33

2.0

2 / In not purely s t a t i s t i c a l variants 6 - 1 i s made up of the following contributions: 0.8 is accounted for by systematic errors and errors in standards, 0.1 by s t a t i s t i c a l errors and 0.1
is left for the contribution of errors in quanti t ies not considered.

»«/ In the non-flux and californium-standard variants, the i r contributions are redistributed to other quant i t ies .



When we take into consideration the possibility of errors in the

normalization,of curves, i .e . systematic errors, the requirements at once

become more severe and difficult to satisfy in the near future, especially

in view of the accuracy of Q.jfo demanded for the fission cross-section of

plutonium and 1.7% for the capture cross-section of uranium-238. If the whole

energy region is divided into three correlation intervals,

E-̂  > 1.4 MeV >E2 > 0.1 MeV >E, , the above requirements become slightly less

stringent: 1.1% for the fission cross-section of plutonium and 2.4% for the

capture cross-section of uranium-238. The errors mentioned also include those

of absolute flux measurement and errors from other causes which lead to a

systematic shift in the quantity of interest.

If the neutron flux is measured by a single method in experiments on

capture and fission cross-sections, we obtain a correlation between the errors

in the different cross-sections, which, unlike that between errors in

neighbouring energy groups, appreciably reduces the accuracy requirements. Thus,
239

in the case of the fission cross-section of Pu, the accuracy now required for

the two variants discussed, including flux, is 1.45 and 2.2f0, respectively. In

the case of the capture cross-section of U these figures are 2.2 and 2.8%,

respectively.

We consider that the assumption of three correlation intervals is realistic,

i . e . that of the variants considered i t gives the closest representation of the

actual experimental situation.

I t is for this case, therefore, that we carried out the following

calculations. First, the accuracy assumed to have been attained gives

K „„ = i 1.8%. Second, a calculation performed on the basis of the accuracy

requirements of Zaritsky and co-workers £~5j gives K f f = + 1>5% and not

1 1% as they believed.

This shows that our accuracy requirements are, on average, 1.5 times more

severe. The difference is not greater for the reason that, although no errors

in normalization were assumed by Zaritsky (this is equivalent to assuming no

correlation between errors in different groups), the correlation between errors
252

due to Cf standards and the uranium-235 cross-section were in fact taken into

account.

CONCLUSIONS

The following conclusions can be drawn from the results. The accuracy

requirements can be reduced by a rational choice of correlations in the
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measurements. We should seek to correlate the capture and fission measurements

for different isotopes, keeping in mina the different signs of the sensitivity-

coefficients . The same should also be done in the evaluation of nuclear data.

But, at the same time, a great deal of work has yet to be carried out in order

to satisfy these requirements. This implies, first of all, a need to measure

the absolute neutron flux with an accuracy of 2%, the absolute value of v for
PS p oon

Cf with an accuracy of 0.33%, v for Pu in relation to californium with an

accuracy of 0.36^ in normalization, and U capture with a systematic error

not exceeding \.Qjfo.

We must also point out the need for further analysis of the required

accuracy of microscopic constants on the basis of the method developed above.

Other isotopes and other cross-sections, apart from those considered here, will

have to be studied. In the present work they were taken into account by reserving
2

0.1 from 6 = 1 . This is approximately true, as can be concluded from the

results of Zaritsky and co-workers / 5_/«

The formulation of requirements relating to evaluation work follows from

everything that has been said.

Such work should analyse all the error components anticipated above and

give evaluations of their magnitudes. Only if this is done will we be able to

determine the error in a reactor parameter calculation due to a particular

quantity evaluated, and hence the requirement for more refined measurement and

evaluation of that quantity.

The most important error in the normalization of curves can be objectively

determined only by analysing work carried out by different methods. The

determination of this error is no less important than that of i t s average

magnitude.

In conclusion, the authors wish to express their profound gratitude

to M.F. Troyanov, B.D. Kuzminov, G.N. Smirenkin and V.A. Tolstikov for

discussion of the work, and to A.N. Bavletshin for his help in the calculations.
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