

INTERNATIONAL NUCLEAR DATA COMMITTEE

PRINCIPLES OF CONSTRUCTING SYSTEMATIZED,
BIBLIOGRAPHIC NUCLEAR DATA FILES

A.I. Abramov
Institute of Physics and Power Engineering
Obninsk, USSR

Translated by the IAEA November 1972

PRINCIPLES OF CONSTRUCTING SYSTEMATIZED, BIBLIOGRAPHIC NUCLEAR DATA FILES

A.I. Abramov
Institute of Physics and Power Engineering
Obninsk, USSR

Translated by the IAEA November 1972

		•
		,

FEI-337

PRINCIPLES OF CONSTRUCTING SYSTEMATIZED, BIBLIOGRAPHIC NUCLEAR DATA FILES

A.I. Abramov
Institute of Physics and Power Engineering
Obninsk, USSR

The author discusses the general principles of constructing systematized, bibliographic nuclear data files for information storage on magnetic computer tape and suggests modifications to the CINDA system which would permit the inclusion of data on all nuclear reactions. Principles for a single approach to the compilation of keywords are set forth. To demonstrate the possibilities of such a system, the author presents information on all known investigations relating to photoneutron reactions near the threshold and, giving a number of examples, demonstrates the possibility of using the system to record information on other types of nuclear reaction.

1. INTRODUCTION

The growing interest in non-neutron nuclear data has raised the question of the need to create systematized bibliographic files for such data. In the case of neutron data, a file (CINDA) was devised 15 years ago by Prof. Herbert Goldstein of Columbia University, USA. In 1965, CINDA was adopted as an international system for the exchange of bibliographic information, and since then four nuclear data centres have joined in collecting data for CINDA. As a result of their combined efforts the number of references has greatly multiplied, the quality of the references has improved and considerable experience has been accumulated of the technical aspects of data collection, the processing of data and the use of data by specialists working in a wide variety of fields.

In view of the fact that many scientists in a large number of countries have found the CINDA system satisfactory after working with it for several years, it is natural to ask whether the system could be used for systematizing bibliographic information relating to all nuclear data. This is an attractive prospect, for one could make full use not only of the specialists' experience, but also of the available machine processing programmes, keyword lists, codes, etc. However, we do not consider it feasible, for the reasons given below.

CINDA was designed from the outset exclusively for neutron data. This automatically led to a number of limitations as regards the codes used and the format, so that the system cannot be applied to all kinds of nuclear data. For example, in the CINDA system quantities and types of reaction are as a rule coded without any indication of the particle which caused the reaction (as it is always tacitly assumed that the particle was a neutron). Obviously, the use of keywords such as "elastic" or "absorption" and of the corresponding codes for all nuclear reactions would leave users in the dark as to what particles had been scattered or absorbed.

Moreover, CINDA can be used for systematizing references only on the basis of neutron energy. The corresponding columns could easily be used for information on the energy of other primary particles; however, in the case of several nuclear reactions (for example, when one is measuring the energies of inelastically scattered charged particles or using the time-of-flight method to measure the energy distributions of photoneutrons) it is necessary to indicate - in addition to the energy of the primary particles - the energy range of the secondary particles, the latter often being more important than the former. The "Comments" column is clearly not convenient for this purpose. Even less convenient is the use of the CINDA format for systematizing data such as information on nuclear masses, spins, level structures, decay schemes and lifetimes.

Lastly, the experience of working for several years with CINDA files has shown that the present system of entries requires some modification in the interests of easier reading and more rapid information selection. It would be very useful if one could, say, select on the basis of the form of data presentation (in the CINDA system, this parameter is dealt with under "Comments" and cannot be used as a basis for selecting references), for specialists are often interested not in all information relating to a particular quantity, but merely in whether the information is in graph or tabular form. Essentially worthless references containing no factual information (the letters "NDG" - "No Data Given" - appear in the "Comments" column alongside such references) are a form of interference which causes loss of time when one is handling CINDA files, for one has to read a line through to its end in order to establish that a reference contains no data.

From what has been said above it would seem that there is a need for several systems of compiling bibliographic references relating to nuclear data, these systems differing in particular details. At the same time, the number of systems should not be too great (3-5), so that each is as comprehensive as possible, and in devising them one should apply as far as possible the principles underlying the CINDA system, which have proved themselves in practice. A great many workers in various countries are familiar with the format of the CINDA system, its coding designations and the procedures for compiling and reading entries, and a large proportion of them will need to take an interest in non-neutron nuclear data also. All bibliographic systems should therefore have as much in common as possible.

To demonstrate the workability of the principles formulated above, we attempt in this paper to construct a system which could be used in the compilation and systematization of data relating to a very wide range of nuclear reactions. We discuss the format of such a system and propose general rules for the construction of keywords; in addition, we indicate what modifications and additions to the CINDA glossaries we consider necessary, these modifications and additions being incorporated in the system proposed by us here (Annex 1). In Annex 2, we present as an example of how the system would function - entries for all information known to us on investigations relating to photoneutron reactions near the threshold. We would mention in this connection that, while there is in all glossaries and in this paper a strong bias in favour of this particular kind of data, we believe the principles formulated above could easily be applied in compiling glossaries for the recording of information on any nuclear reactions in the low-energy region (this can be seen from examples given in Annex 3).

2. FORMAT

2.1. General remarks

We consider here only the output format in which the information is presented in reference works and machine printouts. The question of input format would have to be solved in the course of writing programmes for the recording of data on computer tapes and for data processing. It might be necessary to devise, for different types of machine, different input formats for use with a single output format.

To suit the digital printers used in conjunction with many Soviet computers, we chose a line length of 128 characters (including spaces). The system employs Latin letters, Arabic numerals and the usual symbols, so that it is compatible with foreign as well as Soviet computers.

We took as a basis the CINDA format, making certain changes in the number, order and size of the columns. The columns are separated by two spaces and the entries within a column by one line space.

2.2. Column headings and widths

- 1. Nuclide (6 vertical lines; 1-6). The method of recording is the same as for CINDA except that the ordinal number of the nuclide is omitted. Even this difference could be eliminated by inserting the ordinal number and the atomic weight above the set of entries relating to a particular nuclide, as was done in CINDA 71 \int 1 \int \cdots\$. Column 1 would then disappear, with the result that either the line would be shortened to 120 characters or the eight characters thereby released would become available for other purposes (for lengthening the entries in the last column, numbering the lines, etc.).
- 2. Quantity (12 vertical lines; 9-20). This corresponds to the "Quantity" column in the CINDA system. However, the code glossary needs to be expanded considerably (see Annex 1-1). The main principle in devising codes to designate nuclear reactions is that the type of reaction should be indicated by the beginning of the code. For example, GN DIF SIG denotes the differential cross-section for a (γ,n) reaction.
- 3. Form of data presentation (4 vertical lines; 23-26). There is no such column in the CINDA system, the information in question being included under "Comments". We have already referred to the usefulness of such a column. The code glossary is based on CINDA (see Annex 1-2).
- 4-5. Energy of primary particles (9 vertical lines; 29-37). The method of making entries is exactly the same as in the CINDA system. The maximum and

minimum energy values are separated by one space. If measurements have been made at only one primary particle energy, the energy in question is indicated in the four left-hand vertical lines (29-32).

- 6-7. Energy of secondary particles (9 vertical lines; 40-48). The CINDA system does not have these columns. The method of making entries is similar to that used in columns 4-5 for the energies of primary particles.
- 8. Type of publication (2 vertical lines; 51 and 52). The method of making entries is exactly the same as in the CINDA system (see Annex 1-3).
- 9. Laboratory (3 vertical lines; 55-57). The method of making entries is exactly the same as in the CINDA system. For code glossary see CINDA 71 _1_7.
- 10. Author(s) (10 vertical lines; 60-69). There is no such column in the CINDA system, the surname of the first author appearing at the beginning of the "Comments" column. The column is a useful one in that, together with columns 11 and 12, it corresponds to the traditional method of formulating bibliographic references; it also enables one to pick out the works of a particular author. As in the CINDA system, the symbol "+" after a surname indicates co-authorship.
- 11. Source (14 vertical lines; 72-85). The method of making entries is exactly the same as in the CINDA system. For abbreviations of the titles of journals and other sources see CINDA $71 \int_{-1}^{1}$.
- 12. Month and year of publication (3 vertical lines; 88-90). The method of making entries is exactly the same as in the CINDA system [1].
- 13. Comments (36 vertical lines; 93-128). Like the "Comments" column of the CINDA system, this column is intended for the presentation in uncoded form of information on experimental techniques, treatment of the data and where possible the results obtained. The glossary of abbreviations used in this column is again based on the corresponding CINDA glossary (see Annex 1-4); in this column, however, in contrast to the preceding ones, any other abbreviations comprehensible to the unprepared reader without additional explanation are permitted. It is recommended that the order employed in the corresponding glossary (Annex 1-4) be adhered to in the making of entries in the "Comments" column.

2.3. Ordering of entries

As in the CINDA system, all entries are sorted and arranged on the machine printout tape by element, isotope mass number, quantity (in accordance with the order shown in Annex 1-1) and date of publication. Sorting on the basis of other parameters is not normally required; in the extremely rare cases of a coincidence of all four above-mentioned parameters, any ordering of the entries is possible.

The groups of lines relating to different nuclei are separated by one blank line.

As a rule, for each type of nucleus each measured quantity for which there is a corresponding code in Annex 1-1 should be presented in a separate line. For example, if the authors of a particular work have investigated two isotopes of an element, measuring for each of them the differential cross-sections and deriving the resonance parameters, four lines will be needed for the entries relating to this work.

EXAMPLES

In Annex 2 we illustrate how the proposed system would function by presenting information on all investigations relating to photoneutron reactions near the threshold; the energy of the primary particles (columns 4 and 5) is taken to be the maximum bremsstrahlung energy $\mathbf{E}_{\gamma}^{\max}$. If measurements have been performed at various $\mathbf{E}_{\gamma}^{\max}$, the lowest (column 4) and highest (column 5) values are given. We present in columns 6 and 7 respectively the lowest and highest neutron energies for which data on measured quantities are available in graph or tabular form. If only one value has to be given for the energy of primary or secondary particles, it is always written on the left (in column 4 or column 6 as appropriate).

In the case of the CINDA system, if the same data are contained in several works (report, preprint, conference paper, article), only an entry relating to the most recent work appears, all preceding works being referred to under "supersedes". In Annex 2, on the other hand, there is a complete line for each work as we feel that slight changes in minor details may sometimes be of interest; moreover, one never knows which of the sources is most readily accessible to the reader.

We present below by way of example a one-line entry (the line has been broken into two parts to fit the page):

<u> </u>	I		2		3	4	5	6	7	8	9	10
13	025	G21	DIF	SIG	GRPH	II+7		25+4	9+05	ĿJ	LitL	BAGLAN
			-						~			
	II		12		····	15						
PR	3 Cá	72	27I	TOF	S005	GG I.6	N3/!	135	DEG	A. 100 PAGE		

The meaning of this entry is as follows: for magnesium-25 (1) information is presented on differential cross-sections for a (γ, n) reaction (2) in graph form (3). The measurements were performed at a maximum bremsstrahlung energy of 11 MeV (4) in the neutron energy range from 25 keV (6) to 2 MeV (7). The work which was experimental and an account of which was published as an article in a journal (8), was carried out at the Lawrence Radiation Laboratory (9) by

Baglan et al. (10). The journal, Physical Review 3 p. C672 (11), appeared in February 1971 (12). The authors employed the time-of-flight method, using a scintillation detector with a ²³⁵U plate and recording gamma-gamma coincidences. The measurements were performed with a resolution of 1.6 ns/m and at an angle of 135° (13).

In Annex 3 we present examples of entries for various nuclear reactions. The entries are only illustrations and are not exhaustive even as regards the works to which they relate.

4. COMPATIBILITY WITH THE CINDA SYSTEM

If the proposed system is adopted, but the CINDA system is used in parallel at some centres, despite the above-mentioned drawbacks (which also apply to the recording of non-neutron data) it will be necessary to devise algorithms for the transfer of data from one system to the other.

The transfer of data from the proposed system to the CINDA system will consist simply in transferring information from columns 3, 6, 7 and 10 to the "Comments" column, it being possible to retain CINDA's traditional order of entries in this column (first the author's surname from column 10, then the form of data presentation from column 3, etc.). The energy of the secondary particles, from columns 6 and 7, can be written as follows (this is applicable not only to the case under consideration): E(N)=(2.5E+4)-(2.0E+6), or E(N)=25 keV-2 MeV. The entire entry in the "Comments" column thus becomes

BAGLAN+, GRPH, E(N)=25 keV - 2 MeV, TOF.

As the space available for entries in the "Comments" column of the CINDA system and in column 13 of the proposed system is about the same, the transfer of information from columns 3, 6, 7 and 10 to the "Comments" column will require that some data be omitted. In the case under consideration, for example, we have omitted all information about the detectors, the energy resolution and the measurement angle, while the entry has also acquired a form which is less convenient for reading. The reverse process - the transfer of information from the CINDA system to the proposed system - is more complex and would require special study.

5. CONCLUSION

From what has been said and from the examples given in Annexes 2 and 3, it follows that the system proposed by us possesses the following features:

 Suitability for recording data on measurements of many quantities for virtually any nuclear reactions;

- 2. Close relationship with the CINDA system as regards format, codes and abbreviations;
- 3. Possibility of data transfer to the CINDA system;
- 4. Order of entries more convenient for reading, with the form of data presentation, the energy of secondary particles and the author's surname placed before the name of the journal;
- 5. Allowance for the printing capabilities of Soviet computers.

This paper is in no way an attempt to present a completely thought-out system for the compilation of bibliographic data on nuclear reactions. Before such a system can become operative, it will be necessary to do a great deal of work on preparing code glossaries for different types of quantity, different reactions, details of experimental methods, etc. Moreover, many serious problems will have to be overcome in devising the input format and the supporting programmes; for example, the limited amount of information that can be put onto one punch card (78 or 80 symbols) may lead to some shortening of the line length (even if abbreviated codes are used) or to the use of two punch cards for one line. Moreover, with the creation of non-neutron data libraries the proposed system will become useful as a catalogue for such libraries (an attempt is being made at present to use CINDA as a catalogue for the EXFOR system); this will entail the introduction of special subscripts in each line, which will reduce by several more characters the amount of information recorded. All these questions would have to be solved during the development of a working version of the system.

It should be noted that this paper is not connected with any current organizational activities. Its purpose is merely the discussion of a general approach to the development of one kind of information system in the nuclear data field, and any observations will be welcome.

The author wishes to thank L.N. Usachev and V.M. Bychkov for their interest in this work and for their valuable advice.

REFERENCE

CINDA 71, An Index to the Literature on Microscopic Neutron Data, IAEA, Vienna (1971).

ANNEX 1

Additions to code glossary

1-1 Quantities

GN YIELD Yield of (γ, n) reaction. Used when data presented in relative units or as number of counts recorded in analyser channel, or when it is simply stated that a reaction has been detected but no information on it is given.

PA YIELD As above, but for (p, α) reaction.

GN DIF SIG Differential cross-section for (γ, n) reaction. The measurement angle should be indicated in "Comments" column.

GN RES PARAM Resonance parameters measured in studying (γ, n) reaction. It usually denotes parameters of the levels of the compound nucleus created during the reaction in question.

RES PARAM Resonance parameters of the nucleus indicated in column 1 regardless of how it is created.

NON RESN GN Non-resonance process (direct or semi-direct) in (γ, n) reaction.

STRNG FNC GO Radiative strength function.

STRNG FNC N3 Strength function for neutrons with &= 3.

ANALG STATES Any information on analog states.

DOORWAY STS Any information on doorway states.

GN-NG Comparison of information on direct (γ, n) reaction and inverse (n, γ) reaction, or use of data on direct reaction in calculating parameters of inverse reaction.

DN POLAR Investigation of polarization of neutrons from (d,n) reaction; measurement of polarization coefficients.

P SCAT ANG D Proton scattering - angular distribution.

GNP+GD SIG Total cross-section for (γ, np) and (γ, d) reactions.

G TOT SIG Total cross-section for photons.

D2N ISOM Investigation of isomers occurring in (d, 2n) reaction.

1-2 Form of data presentation

NDG No data given. The reason for the lack of data (data processing

not completed, sought effect not detected, etc.) may be indicated

in "Comments" column.

GRPH Data presented in graph form.

TBL Data presented in digital form in table.

TEXT Data presented and discussed in text of paper.

GRTB Paper contains both graph and table.

1-3 Type of publication

First vertical line

E Experimental work

T Theoretical work

M Joint presentation of experimental and theoretical data.

R Review

C Compilation of experimental data.

D Evaluation of results of experimental works.

Second vertical line

J Journal

C Conference paper

B Book

D Dissertation

R Report

A Abstract (also abstracts in progress reports)

P Preprint

W Private communication

1-4 Comments

Method

ACT Activation

TRNSM Measurements by transmission method

TOF Time-of-flight method

Detectors

SC Scintillator; scintillation counter.

SC+BlO Scintillator with boron-10.

SC+H(NN) Hydrogenous scintillator with recording of recoil protons

produced in elastic neutron scattering.

SCU5GG Scintillation detector with 235U plate and gamma-gamma

coincidence recording.

LIGLASS Scintillation detector with lithium glass.

SCC Semiconductor detector (SI SCC - silicon semiconductor

detector).

Other experimental details

1.6 NS/M Resolution (1.6 ns/m.)

135 DEG Measurement angle (135°).

TGT Target (AL TGT - aluminium target).

Measured quantities

E(N) Neutron energy.

SIG(NR) Cross-section for non-resonance process

S(GO) Radiative strength function: $S_{\gamma 0} = \langle \Gamma_{\gamma 0} \rangle / \langle D \rangle$.

TRNS Transition (EI TRNS - EI transition).

WG Radiative width: Γ_{γ}

WGO F

WGODS Radiative width of doorway state: $\Gamma_{\gamma \, 0}^{\quad \text{in}}$.

WNAS Neutron width of analog state: Γ_n^{an}

Numbers

1.1 + -0.5 should be read as 1.1 ± 0.5 ; 1.9E-5 should be read as $1.9 \cdot 10^{-5}$.

	i	Form of	F	E ₄	Ē	a	Туре	7 1	Refe	rence	Month	
Nuclide		data oresen- lation	min.	max.	min.		of publi- cation		Author(s)	Source	and year	Comments
I	2	3	4	5	6	7	8	9	IO	II	I2	13
HE 004	CH-NO	GRFH	22+7	3I+7	IO+5	80+6	EA	LRL	Berman+	WASH 1136 87	969	
ES 009	GN DIF SIG	GRPH	35 + 6		I +3	40+4	EJ	LRL	BERMAN+	PR 163 958	N67	TOF SC+BIO 135 DEG PT TGT
BE 009	PLS PARAM	TBL	35+6		I +3	40+4	БJ	LRL	Berman+	PR 163 958	N67	WG =I.8 EV
											}	·
B OIO	on die aid	GRPH	10+7		IO+4	91+5	ED	TEF	VAN HELERT	UCRL 5050I	968	RES STRCT NO CESRVD
F 019	GR DIF SIG	GRITH	II+7		IO+4	10+6	ED	LRL	VAN HELERT	UCRL 5050I	958	TOF YAL TOT
₹ 0 1 9	GN DIF SIG	GRPH	II+7		20+4	80+5	EJ	LRL	BAGLAN+	FR 3 C672	271	TOP SCU5GG 3.5 NS/M 135 DEG
£ 013	RES FARAM	TBL	12+7		10+5		EJ	LRL	Baglan+	PR 3 C672	271	
					Ì							
NG 024	GN DIF SIG	GRPH	I6 +7	19+7	IO+4	22+6	ED	LRL	VAN HEMERT	UCRL 5050I	968	TOF C TGT
MG 024	GN DIF SIG	GRPH	20+7	•	10+4	50+6	EJ	LRL	BAGLAN+	FR 3 C672	271	TOF SCU5GG 2.3 NS/M 135 DEG
MG 024	RES PARAM	NDG					EA	LRL	BOWMAN+	WASH II27 96	469	·
MG 024	RES FARAM	TBL	20+7	•	22+4	20+6	EJ	LRL	BAGLAN+	FR 3 C672	271	
MG 024	analg states	TEXT					ED	LRL	VAN HEMERT	UCRL 5050I	968	
NG 025	GN DIF SIG	GRPH	83+6	II+7	IO+4	I4+ 6	ED	LRL	VAN HEÆRT	UCRL 5050I	968	TOF Y+AL TGT
MG 025	GN DIF SIG	GRFH	II+7		30+4	20+6	EJ	LRL	REBUAH+	PRL 24 319	270	TOF 135 DEG Y TGT
NG 025	GN DIF SIG	GRPR	II+7	,	25+4	20+6	ED	IRL	BAGLAN	UCRL 50902	870	TOF SCU5GG I.6 NS/M 135 DEG
MG 025	GN DIF SIG	GREH	11+7	,	25+4	20+6	EJ	LRL	BAGLAH+	PR 3 C672	271	TOF SCUSGG I.6 NS/M I35 D&C
MG 025	RES PAPAM	TEXT	II+7	,	30+4	20+6	EJ	LRL	BERMAN+	PRL 24 319	270	
MG 025	RES FARAM	TBL	83+6	II+7	41+4	I2+6	ED	TET.	BAGLAN	UGRL 50902	670	
MG 025	HES FARAM	TBL	83+6	II+7	4I+4	18+6	EJ	DRL	BAGLAN+	PR 3 0572	271	
MG 025	non resn gn	ndg			1		FA	IRL	BOUMAN+	WASH II27 96	459	
KG 025	ANALG STATES	NDG	L		<u> </u>	*	ĿĀ	IRL	BOWMAN+	WASH II27 96	469	

	•
ł	_
Ĺ	v
	Ì

π	S	3	4	5	6	7	В	9	10	II	12	13
MQ 025	ANATO STATES	TEXT	II+7	1	30+4	20+6	EJ	LRL	BERMAN+	PRL 24 319	270	
MG 025	ANAIA STATES	TEXT	II+7		40+5		ED	LRL	BAGLAN	UCRL 50902	870	FOR ANALG OF GND ST E(N)=438.5 KEV
NG 025	ANALO STATES	TEXT	II+7		44+5	12+6	EJ	LRL	BAGLAN+	FR 3 C572	271	
	ļ										ļ	
MG 026	GN DIF BIG	GRPH	11+7	I3+ 7	IO+4	I5+6	ED	LRL	VAN IDEMERT	UCRL 5050I	68	TOF
MG 026	GN DIF SIG	GRFH	13+7		I0+4	15+6	EJ	LRL	BERMAN+	PRL 23 386	869	TOF 135 DEG FOR ASTROPHYS PROBLEMS
113 026	GN DIF SIG	GRPH	13+7		IO+4	I5+6	ЕJ	IRL	BAGLAN+	PR 3 C672	271	TOF SCU5GG 2.3 NS/M I35 DEG
MG OSE	RES PARAM	DCM					ΣA	LRL	BOWMAN+	WASH II27 96	469	
MG 026	RES PARAM	TBL	13+7		54+4	II+6	EJ	LRL	BAGLAN+	PR 5 0672	271	
MG 026	STRING FNC CO	TBL					EA	LRL	BAGLAN+	NCSAC 33 106	ס70	S(GO)=(3.I+-2.O)E-5
81 028	GN DIF SIG	GRIM	18+7		10+4	70+5	ED	LRL	VAN HEMERT	UCRL 5050I	68	TOF
P 031	CN DIF SIG	GRPH	I4+7		I0+4	13+6	ED	LRL	VAN HEMERT	UCRL 50501	68	TOF RES STROT NO OBSERVED Y+AL TGT
P 03I	RES PARAM	TBL	I4+7		10+5	94+5	EJ	LRL	BAGLAN+	PR 3 C672	271	
		•			į							
S 032	GN DIF SIG	GRFH	17+7		I0+4	I0+6	ED	LRL	van hemert	UCRL 5050I	68	TOF C TOT
GA 040	GN DIF SIG	GRFH	17+7		10+4	I0+6	ED	LPL	van hemert	UCRL 50501	68	TOF RES STROT NO OBSERVE C TGT
į												
OR 052	GN DIF SIG	GRPH	I4+7		60+4	I0+6	ED	LKL	BAGLAN	UCRL 50902	271	TOF SCU5GG I.I NS/M 135 DEG AL TOT
OR 052	GN DIF SIG	GRPH	I4+7		60+4		EJ	LRL	BAGIAN+	FR 3 0672	271	TOF SCU5GG I.I NS/M 135 DEG AL TGT
OR 052	RES PARAM	TBL	I 2+7	I4+7	68 <i>÷</i> 4	39+5	ED	LRL	BAGLAN	UCRL 50902	870	
CR 058	HES FARAM	TBL	I2+7	14+7	68 + 4	39+5	EJ	LRL	BAGLAN+	FR 3 0672	271	į
CR 052	STRING FING GO	TBU					ED	TKT	BAGIAN	UCRL 50902	870	S(GO)=2.7E-5
OR 052	ANALG BIATES	ndg					EA	LRL	+nankog	WASH II27 96	469	
OR 052	ANAIO STATES	ndg	I4+7		60+5	10+6	ED	IRL	BAGIAN	UCRL 50902	870	NO OBSERVD
OR 052	ANAIG STATES	NDG				ļ	EA	LRL	Baglan+	NOSAC 33 106	D70	NO OBSERVD
SE0 20	ARALG STATES	TEXT	I4+7		60+5	IO+5	EJ	LRL	BAGIAN+	FR 3 C672	271	

.

	ŧ
1-	_
1	>

•

1	2	3	4	5	6	7	8	9	10	II	12	13
•			•			l						
CR 053	GN AIRID	GREH			20+4	52+5	EA	ANL	JACKSON	NCSAC 33 9	D70	TOF 135 DEG
CR 053	GN DIF SIG	GREH			20+4	20+5	EA	IRL	BAGLAN+	NCSAC 3I 100	570	TOF 135 DEG
CR 053	GN DIF SIG	GRFH	12+7		20+4	I 6+5	ED	LRL	BAGLAN	UCRI, 50902	870	TOF SCU5GG I.I NS/M 135 DEG
CR 053	ON DIF SIG	GRTH	I2+7		20+4	I6+5	EJ	LRL	BAGLAN+	PR 3 C672	271	TOF SCU5GG I.I NS/M 135 DEG
CR 053	GN DIF SIG	GRFH	12+7		20+4	I6+5	EJ	IRL	BAGLAN+	FR 3 02475	671	TOF SCUSGG I35 DEG
CR 053	RES PARAM	NDG				,	EA	LRL	BOWMAN+	WASH 1127 96	469	
CR 053	RES PARAM	TBL	92+6	12+7	2 I +4	52+5	ED	LRL	BAGLAN	UCRL 50902	870	
CR 053	RES PARAM	TBL			21+4	37+5	EA	ANL	Jackson	NOSAC 33 9	D70	
CR 053	RES PARAM	TBL	92+6	12+7	21+4	55+5	EJ	LRL	BAGILAN+	FR 3 0672	271	
CR 053	STRNG FNC GO	TBL	ı				ED	LRL	BAGLAN	UCRI 50902	870	S(GO)=2.9E-5
OR 053	STRIG FNC GO	TBL					EA	T:IT	BAGTAN+	NOSAC 33 106	D70	S(GO)=(I.6+-0.8)E-5 FOR EI TRNS
OR 053	DOORWAY STS	TEXT			20+4	20+5	Eλ	LRL	BAGIAN+	HOSAG 3I 100	570	
CR 053	DOORWAY STS	TEXT	I2+7		50+4	60+5	El	LRL	BAGIAN+	PR 3 0672	271	
CR 053	DOORWAY STS	TEXT	12+7		20+4	I5+5	EJ	LRL	Baglan+	PR 3 02475	67I	CORREL NO OBSERVD
TE ·	GN DIF EIG	grfh	13+7		I +3	I2+4	EJ	LRL	Berman+	FRL 17 761	066	TOF SC+BIO 15-30 NS/M 135 DEG
FE	GH AIEID	GRFH	I2+7		I +3	IO+4	EC	FEI	ABRAMOV+	71 KIEV	571	TOF SC+DIO 30 NS/H 75 DEG AL TO
FS 056	GH DIF SIG	GRPH	13+7		I +3	70+4	EJ	LRL	BOWMAN+	PR 163 951	N67	TOF SC+BIO 135 DEG AL TGT
FE 056	GN DIF SIG	NDG					EA	GΛ	SUND+	NCSAC 31 68	570	TOF SC+BIO AU+AL TGT
FE 056	GN DIF SIG	GRPH	13+7		50+4	10+6	ED	LRL	BAGLAN	UCRL 50902	870	TOF SOUSEG I.I NS/M 135 DEG
FB 036	en dif sig	GRPH			50+4	IO+6	EA	LRL	BAGLAN	NOSAC 33 106	D70	TOF 135 DEG
PE 056	GN DIF SIG	GRPH	13+7		50+4	I0+6	EJ	LRL	BAGLAN+	PR 3 0672	271	TOP SOUSSG I.I NS/M 135 DEG
FB 056	RES PARAM	TBL	I2+7	I3+7	19+3	98+3	EJ	LRL	BOWIJAN+	FR 163 951	н67	
PE 056	FES FARAM	TBL	II+7		1	71+5	i	LRL	BAGLAN	UCRL 50902	870	
73 0 56	FEW PARAN	TBL	II+7		}	71+5	{	LRL	BAGLAN+	FR 3 0672	271	
FE 056	STRING FINC GO	TBL					ED	LRL	BAGLAN	UCRL 50902	870	S(GO)=3.2E-5
FB 056	ANALG STATES	NDG					EA	LRL	BOYEMAN+	WASH 1127 96	469	
FE 056	ANAIG STATES	NDG	13+7		25+9	75+5	SD	LPL	BAGLAN	UCRL 50902	870	NO OBSERVD

ŧ
5
ţ

. ,

I	2	3	4 5	6 7	8	9	IO	II	I2	13
						1				
FE 056	ANALO STATES	TEXT		30+5 75+	5 EA	LEL	BAGLAN+	NOSAC 33 IOG	D70	
FE 056	ANAIG STATES	TEXT	13+7	30+5 75+	5 EJ	LRI	BAGLAN+	PR 3 C672	271	
	j									
IFE C57	GN DIF SIG	GRPH	12+7	20+4 16+	5 ED	LRL	BAGLAN	UCRL 50902	870	TOP SCUSGG I.I NS/M I35 DEG
FE 057	GN DIF SIG	GRPH	12+7	20+4 16+	5 EJ	LRL	BAGLAN+	PR 3 C672	271	TOF SCUSGG I.I NS/M I35 DEG
FB 057	GM DIF SIG	GRPH	I2 +7	20+4 16+	5 EJ	LRL	BAGLAN+	PR 3 02475	67I	TOF
FE 057	RES PARAM	NDG			AZ	IRL	BOWMAN+	WASH II27 96	469	
FE 057	RES PARAM	TBL	86+6 I2+7	26+4 39+	5 ED	LRL	BAGLAN	UORL 50902	870	
FE 057	RES PARAM	TBL	86+6 12+7	26+4 39+	5 EJ	LRL	BAGLAN+	PR 3 C672	271	
FE 057	STRNG FNO GO	TBL			ED	LRL	BAGLAN	UCRL 50902	870	S(GO)=I.9E-5
FS 057	STRNG FNC GO	TBL			EA	LRL	BAGLAN+	NOSAC 33 IO6	סקם	S(GO)=(I.I+-O.6)E-5
FE 057	DOORWAY STS	NDG		10+5 40+	5 ED	LRL	BAGLAN	UCRL 50902	870	
FE 057	DOORWAY STS	TEXT		50+4 25+	EA	LRL	BAGLAN+	NCSAC 33 106	סקם	
FE 057	DOORWAY STS	TEXT	12+7	60+4 60+	EJ	LRL	BAGLAN+	FR 3 C672	271	NO STRONG CORRELATION
FE 057	DOORWAY STS	TEXT	I2+7	20+4 16+	EJ	LRL	BAGLAN+	PR 3 C2475	67I	DOORW STS NEAR 50 AND 250 KEV
FE 057	non resn gn	TEXT		22+4 28+	ED	LRL	BAGLAN	UCRI 50902	870	SIG(NR)=4.2 MUB/SR
PB	GN YIELD	GRPH	82+6	30+4 50+	EJ	MIT	HERTOZZI+	PL 6 108	863	TOF SC+AG(NG) 12 NS/M 77 DEG
PB	GN YIELD	GRPH	74+6	I.:+5 40+	EA	VNT	JACKSON	NCSAC 31 10	570	TOF LIGLASS 135 DEG
PB	GN DIF SIG	GRPH	9 +6	36+4 44+4	ED	LRL	BAGLAN	UCRL 50902	870	TOF SCU5GG I.I NS/N 135 DEG
FB	GN DIF SIG	GRPH	98+6	35+5 II+	EJ	LRL	BOWMAN+	FRL 25 1302	N70	TOF SC+H(NN) 135 DEG
PB 206	GN YIELD	GRPH	83+6 10+7	I +3 50+4	1	LRL	BOWLIAN+	PR 173 1827	269	TOF SC+BIO PULSE-SHAPE DISCR
PB 206	GN DIF SIG	GRPH	10+7	6 +3 10+6	ED	LRL	BAGLAN	UCRL 50902	870	TOP SCU5GG I.6 MB/M I35 DEG
P3 206	GN DIF SIG	GRPH	10+7	6 +3 IO+6	EJ	LRL	BAGLAN+	PR 3 0672	27I	TOF SCU5GG I.6 NS/M I35 DEG
FB 206	RES PARAM	NDG			EA	LRL	BAGLAN+	NCSAC 33 106	סקם	AT E(N)=7.3 KEV SIG(GN)=3 B
PB 206	RES PARAM	TBL	83+6 10+7	I +3 50+4	EJ	LRL	BOWNAN+	PR 178 1827	269	

н	8	8	#	5	9	7	8	. 6	IO	II	검		13	
FB 206	RES PARAM	MDG			-	<u>-</u>	EAL	TET	BOWMAH+	784 1127 96	469			
FB 206	PES PARAM	TBL	2+0I 9+ 6		7 +3 1	IO+5	ED T	IRI I	BAGLAN	11CHI 50902	870			
PB 206	RES PARAM	TET	2+0I 9+ 6		15+31	10+5	म	LRI.	BAGIAN+	PR 3 C672	271			
									1	,	(
PB 207	GN YIELD	GRUH	93+6		25+5 2	50+6	는 13	TIN .	BERCC22I+	PL 6 108	863	TOP SC+H(NN)	NN) 50 DEG	G TA TGT
FB 207	GN YTELD	GRIN	88+6		5 +3 2	25+4	EJ	I TEI	BOWKAN+	FR 178 1827	569	TOF SC+BIO	DEG SEI C	
PB 207	GN DIE SIG	GRFH			25+4 3	35+5	r vs	LATE 1	BOSTIGAZI4	WASH 1136 78	696			
PB 207	GN DIF SIG	CZETE			20+4]	15+6	EAL	THT 1	BOWEAN!+	WASH 1136 83	696			
FB 207	gn die sig	GREH	84+6		15+4 3	30+5	ED T	LRL	BAGLAN	CCRL 50902	870	TOF SCUSGG	H.I IIS/M	w 135 deg
PB 207	GN DIF SIG	GREH	9466		20+5 I	9+0I	1 03	LR. 1	BAGIAH	UCRE 50902	870	TOF SC+H(I	т) 0.6 и	SC+H(HH) 0.6 HB/M 135 DEG
EB 207	GN DIF STG	GRIPH	94+6		15+4	30+5	FI	TRE	BASILASA	FR 5 0672	271	TOF SCUSEG	LASM I.I E	W 135 DEG
PB 207	GN DIF SIG	GRUH	93+6		20.5	9+01	EJ Ca	Terr	BAGILAN+	PR 3 C672	271	TOF SC+H(NH)		0.6 NS/W I35 DEG
PB 207	GN DIP SIG	3.RJ. R	93+6		30+4 7	20+5	T PE	LAL	BAGILIN*	PR 3 02475	1/9	TOF SC+H(III)	III) 0.7 N3/M	13/N I35 DEG
PB 207	RES PARAM	TRL	77+6 88+6		3 +3 3	25+4	EJ L	L3L 1	BOWEAN+	IR 178 1827	269			
PB 207	RES FARAM	NDG					EA E	IRT 1	BO/ILIAIT+	WASH 1127 96	694			
PB 207	RES PARAN	TRI	74+6 98+6		Inter 9	57+5	7. OH	Tarr 1	BAGLAN	10RE 50902	870			
PB 207	RES PARAM	TBL	24+6 98+6		3 +3 5	58+5	EJ	IRI 1	BAGLAN+	PR 3 0672	27I			
PB 207	STRMG FNC GO	TEL					EA I	LKL 1	BAGLEM	NOSAC 33 106	020			
PB 207	NON RESN GN	Tim			40+4		EAL	137	BOWKAR+	WASH 1136 78	696			
PB 207	NON RESN GN	11DG					म्य भ	TIT!	- v = ·	MOSAC 35 8	D70			
FB 207	DOORWAY STS	TEXT			20+5 7	20+5	EA L	LRE	BOWLEAN	WASH 1136 83	696			
PB 207	DOORWAY STS	TEXE			20+5 6	60+5	<u>ក</u> ឩ	1.82.	BAGIAN	1031 50902	870	WGODS = 36.5 EV	.5 EV	
FB 207	DOORWAY STS	TLXT			50+4 5	20+5	ED Z	1.E.C. 1	BAGLAN	corr 50902	370	WGODS =16.3	.3 EV	
FB 207	DOORWAY STS	TEXT	9486	····	20+4 7	70+5	EJ	THE THE	BAGIAU+	PR 5 02475	149			
9	,	100							,	,				
200	ATT III	a di la	7240		27+72	40+0	3 4	3	BURECOST+	ru o 10s	600 1000	103 80+H(HN)	RI) 50 DEG	G TA TOT
PB 208	GN YIELD	GREH	T0+7	<u> </u>	25+5	50+6	EE FE	H	BERT0221+	PL 6 ICB	863	TOF SC+H(RH)	w) so deg	G TA TGT
PB 203	GN XIEID	GREH	9+6	1	3 +3 4	40+t	EJ I	LAL	BOWEIAN+	FR 178 1827	269	TOF SC+BIO	- 1	FULSE-SEATE DISCRIM

π	2	3	4 5	6	7	8	9	10	II	12	13
PB 208	GN DIF SIG	GRPH		I +3 3	35+5	EA	LRL	BOWMAN+	WASH 1127 96	469	TOF
PB 208	GN DIF SIG	GRPH	90+6	25+4 3		EJ	I,RL	BOWMAN+	PRL 23 796	069	TOP SCU5GG I35 DMG
PB 208	GN DIF SIG	GRPH	98+6	5 +3 3		ED	I.R L	BAGLAN	UGRL 50902	870	TOP SCU5GG I.6 NS/M I35 DEG
PB 208	GN DIF SIG	GRPH	10+7	35+5 I	[4+6	ED	LRL	BAGLAN	UCRL 50902	870	TOF SC+H(NN) O.6 NS/M 135 DEG
FB 208	GN DIF SIG	GRPH	98+6	I +3 3	35+5	ЕJ	INL	BOWMAN+	PRL 25 1302	N70	TOP SOUSCE 135 DNG
PB 208 :	GN DIF SIG	GRPH	98+6	5 +3 3	35+5	EJ	LRL	Bagian+	FR 3 0672	271	TOP SCUEGG I.6 NS/M I35 DEC
PB 208	GN DIF SIG	GRPH	10+7	35+5 I	I4+6	EJ	IRL	BAGLAN+	PR 3 0672	271	TOP SC+H(NN) 0.6 NS/M 135 DEG
PB 208	GN DIF SIG	GRPH	98+6	IO+4 I	10+6	ЕĴ	LRL	BAGLAN+	PR 3 C2475	671	TOF SC+H(NN) AND U5GG 135 DEG
PB 208	RES PARAM	TBL	93+6 10+7	26+5 8	35+5	EJ	LIT	BERTOZZI+	PL 6 108	ر86	WGO FOR 7 RESONANCES
PE 208	RES PARAM	TBL	77+6 9 +6	3 +3 4	10+4	EJ	LRL	BOWMAN+	PR 178 1827	269	
PB 208	RES PARAM	NDG				EA	LRL	BOWMAN+	WASH 1127 96	469	
PB 208	RES PARAM	TBI,	78+6 IO+7	8 +3 8	36+5	ED	LRL	BAGLAN	UCRL 50902	870	
PB 203	RES PARAM	TRL	98+6	30+4-8	36+5	EJ	LRL	BOWMAN+	PRI 25 1302	א70	
PB 208	RES PARAM	TBL	78+6 IO+7	29+3 8	36+5	EJ :	IRL	BAGIAN+	PR 3 0672	271	
PB 208	STRNG FNC GO	TBL				EA	LRL	BAGIAN+	NCSAC 33 106	D70	 S(GO)=(4.0+-3.6)E-5 FOR RI TRNS
PB 208	non Resn Gn	NDG				EA	LRL	BOWMAN+	WASH 1127 96	469	
80S ET	non resn gn	TEXT	90+6	4I+4		EJ	LRL	BOWMAN+	PRL 23 796	069	SIG(NR)=3.4 MB AT 40 KEV
PB 208	non rean gn	TEXT		4I+4		TA	LRL	WEISS	NCSAC 31 102	570	SIG(NR)=2.5 MB AT 40 KEV
FB 208	non resn Gn	TEXT		36+4 4	14+4	ED	IRL	BAGLAN	UCRI, 50902	870	SIG(NR)=0.5 MB/SR
PB 208	NON RESN GN	THXT		25+4 4	10+4	ΣΛ	ANL	JACKSON	NCGAC 33 8	D70	
FB 208	DOORWAY STS	TEXT	98+6	30+4-8	36+5	ਸ਼ਹ	LRL	BOWMAN+	FRL 25 1302	N70	OBSEV 7 MI RESONANCES
BOS ET	DOORWAY STS	TEKT	98+6	IO+4 I	20+6	EJ	LRL	BAGLAN+	FR 3 02475	67I	OBSRV 7 MI RESONANCES FROM 30 TO 860 KEV
											!
BI 209	GH KIEID	GRPH	83+6	I +3 I	0+6	EA	WRL	WINHOLD+	AERE FR/NP 16	869	TOP LI GLASS I2 NS/M
ni 503	on dir sic	GREN	II+7	1 +3 I	3+4	EJ	DEL	BOPHAN+	FRL 17 76I	036	der 80+010 15-30 NG/M 135 DBG

	I	2.	3	4	5	6	7	8	9	10	II	IS	13
υ	235	GN ADMD	RUG					EA	GA	SUND+	NOSAC 3I 68	570	
U	235	CH YIRLD	NDG	7 +6				АЯ	ANL	JACKEON	NOSAC 33 I2	D70	TOF RES STROT NO OBSERVD
										,			
U	238	GN YIELD	NDG					EΛ	GA	sund +	NOSAC 3I 68	570	
FU	239	GN YIELD	NDG					ΕΛ	ANL	SUMD+	NCSAC 3I 68	570	
	7.4	DEC DADAM	MAC					13/1	ANT	BOLL THOUGH	CC WASH 3 TOER	366	REV OF POSSIB OF NEAR THRSHLD MEASRA
MAN	¥ 3.	RES PARAM	NDG	<u> </u>	····			RC	ANL	POLLINGER	66 WASH 2 1064	205	REV UT PUSSION OF REAL TROUBLED MEASURE

I	2	3	4	5	6	7	8	9	10	II	12	13
D 005	DN POLAR	TBL	I2+6	27+6			EA	ITE	NOROZOV+	ALI 11 65	71	FOR 37 DEG
BB 004	P SCAT ANG D	GRIPH	10+7	3I+7			TJ	ni:	BATTY+	NP A175 I	N7I	OPTIDL CALC
LI 007	DG YIELD	GRFH	35 +5		I2+7	17+7	EJ	STR	SCHAEFFER+	NP A175 217	H7I	
0 016	GH DIF SIG	GRPH	<i>35</i> +7	65+7			ВJ	RPI	NAGIE+	NP AI27 559	459	TOP 0.25 HS/N
0 016	DN POLAR	ndg	3 +6	4 +6			EΑ	WRU	ANDERSON+	NGSAG 33 36	סקמ	
F 019	DP YIELD	GRPH	25+6	40+6			ЕJ	IFU	ZABEGAY+	YY II 277	270	SI SCC I5+I65 DEG
SI 0.28	GP YIELD	GRPH	23+7	27+7	35+6	II+7	EJ	พวร	GORYACHEV+	YF I 1005	665	si sec
GA 040	GNP+GD SIG	GRFH	20+7	30+7			IJ	ALL	BRAHANIS	NP A175 17	NZI	COMP OF THEORY WITH EXPT
FE	G TOT SIG	GRIH	10+7	25+7			EJ	LEB	DOIBIIK1N+	YF 9 675	469	TRIBM
NI 065	de aleid	GRFH	28+6				EJ	LGU	LITY IN+	YF II 273	270	MAGN ANALYSER
BI 209	GN XIELD	GREH	16+7		I +5	5 +6	TJ	CCP	BAZ+	ZET 47 I04I	654	
NE 237	DON ISON	mog	9 +6	I5+7			БA	MEL	ECCLEBHALL	10000 35 IS4	070	Delayad fis isom 100+900 ms