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Foreword

th
This translation of the 9 Issue of "Nuclear Constants"

contains only those articles which are directly pertinent to

nuclear data measurements. Articles 9 "to 14 are not planned

to be translated by the IAEA. The first article of this

report has been translated earlier and was released as

INDC(CCP)-26/U in September 1972.
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RE-EVALUATED NUCLEAR CONSTANTS FOR THE ENERGY 0.0253 eV

G.B. Morogovsky

In 1970-71 two programmes for processing nuclear data (SIGMA and NYPF)

were written in FORTRAN at the Nuclear Energy I n s t i t u t e (NEl) of the

Byelorussian SSR Academy of Sciences and run on a Minsk-22 d ig i t a l computer.

The f i r s t programme was designed for obtaining recommended values of the

standard parameters o a f ° , H, v and a for a fissionable nucleus and
233 235the second for calculat ing standard values for the four nuclei U, U,

239 252

Pu and Cf simultaneously using the correlations between them. The

results of the calculations performed with the two programmes are presented

in Tables 1 and 2.

Table 1 contains nuclear parameter values obtained with the SIGMA

programme on the basis of initial data presented by Hanna in Ref. [l], and

deviations from the values suggested by him. The observed deviations of

the calculated values from Hanna1s results indicate a correlation between

the parameters of the different nuclei.

Table 2 contains the results of calculations performed with the NYPF

programme and values of v recommended by other authors. The calculated

values are lower than the recommended ones, which is in line with the way

in which fission yield values (number of neutrons per fission) are tending

t o change.

Table 1

Results obtained with the SIGMA programme on
the basis of Hanna1 s in i t ia l data

^ 2 3 3 j ^ 2 3 5 j #,239 j fa 241
i

I__J 2 L 3_ ! ft i 5
2,289+0,0079 2,0738+0,0078 2,1102+0,0089 2,1513+0,0130

_ 1+0,2 l$f_ (+0^092) (+Q*08g) i±0,1121.

, \ f 2,4958+0,0086 2,4266+0,0091 2,8704+0,0127 2,9438+0,0250
_ j _ L+Q , im i+o v i5j} (zo, 33jj L+O , im _

5 j 529J5+.2.48 580,96^1,90 742,97+3,07 1010,3+3,2
1 LrQ527|l (+0,1321 LtQiiegl .J[±fi.3O2L

Percentage deviation from Hanna's final data ( j
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Table 1 (continued)

I !

576,73x2,69 679,82+_2,2I. I0I0 ,J i r4 , I7 1382,5+3,2
(-0,14%) ^+0,I9%) (-0,23%) (+0,52%)

0,09002+0,00036 0,17012+0,00052 0,36022^0,00610 0,3684+0,0096
("It 5 5 % ) ( + 0 ^ 8 2 % )

47,64+0,31 98,83+0,45 267,64+1,93 372,19+2,6
(+1,362} L+C • 5* ?) Jtr * i J 5ZO L+l. IL£L_

Table 2

Comparison of the r e s u l t s of NYPP ca lcula t ions
with values recommended by other authors

2,5C5 + 0,012 2,438 + 0,011 2,901+0,018
2 ,502+0,014 2,434+ 0,019 2,69 x0,05
2,504 + 0,008 2,142 + 0,006 2,5^8+0,011 3,779+0,010 []
2 ,494+0 ,009 2 ,430+0 ,006 2,871+0,014 3,772+0,015 [5j
2,4866+ C,0069 2,4229+0,0066 2,3799+0,0090 3,765+0,012 [ij
2,4544+0,0026 2,4093+0,CwI9 2,8590+0,0027 3,7333+0,0038 »)

*) The present work (1971).

REFERENCES

[ l ] HAHNA, G.C., e t a l . f Atom. Energy Rev. J (1969) 4 .

[2] SJOSTRAND, N.G., STORY, J . S . , Neutron Data for Reactor Design,

Ch. 4, U.K.A.E.A., r ep . AEEW-M 125 ( l 9 6 l ) .

[3] LEONARD, B.R., Neutron Physics (YEATER, M.L., Ed . ) , Academic Press (1962).

[4] SHER, R., FELBERBAUM, J . , Least Squares Analysis , USAEC rep . BNL-918 (1965).

[5] WESTCOTT, C.H., e t a l . , Atom. Energy Rev. _3 (1965) 2.
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ABSOLUTE MEASUREMENTS OP a FOR 2-^U and 2-*9pu
IN THE NEUTRON ENERGY RANGE 10 keV-1 MeV

V.N. Kononov, E.D. Poletaev, Yu.S. Prokopets
A.A. Metlev, Yu.Ya. Stavissky

The ra t io of the radiat ive capture and f iss ion cross-sections of
235 239

U and ^Pu was measured using a pulsed Van-de-Graaff accelerator and

the t ime-of-fl ight method in the neutron energy range 10 keV-1 MeV. The

capture and f iss ion events were recorded by a l iquid s c i n t i l l a t i o n

detector with a volume of 400 l i t r e s . The capture and f ission events

were ident i f ied by recording fission neutrons af ter slowing-down and

absorption in cadmium. In the neutron energy range 10-80 keV, the

experiment was performed on the basis of the continuous spectrum of
7 7

neutrons from the reaction Li(p,n) Be, the energy of the neutrons being

measured by the t ime-of-fl ight method. At higher energies, the

experiment was performed using mono-energetic neutrons. The method used

for measuring the values of a i s an absolute one. In the experiments,
239 21 / 2

metal l ic Pu samples with a thickness of 2.9 x 10 nuclei/cm and
235 21 235 / 2

U On samples with a thickness of 4«1 x 10 U nuclei/cm were used.
235The main experimental resu l t s re la t ing to the value of a for U239and ^Pu are presented in Tables 1 and 2. The tables also contain the

mean-square e r ror of the energy dependence of a (including only the

s t a t i s t i c a l error) and the t o t a l mean-square error in the values of a.
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Table 1

235Values of a for U obtained in the present work

En

12,4
13 U
14,3
15,4
15,9
16,4
16,9
17,4
17,9
18,5
19,1
19,8
20,4
21,1
21,9
22,7
23,5
24,3
25,3
26,2
27,3
28,4
29,5
30,7
32,1
33,4
34,9
36,5
38,2
40,0
42,0
44,1
46,3

(keV)

+ 0,7
+ 0,8
± 0,8
+ 0,9
+ 1,0
+ 1,0
± LI
± LI
± 1.2
± 1,2
± 1.3
± I.*
± I.*
± 1.5
+ 1,6

± I.?
+ 1,8

± 1,9
+ 2,0
+ 2,0
±2,2
± 2,4
±2 ,5
±2,7
+ 2,8
+ 3,0
±3,2
±3,4
±3,7
±3 ,9
±4.2
± 4,6
+ 4,9

!
t a

0,549
0,476
0,457
0,531
0,452
0,424
0,365
0,350
0,394
0,398
0,370
0,338
0,317
0,307
0,337
0,339
0,344
0,336
0,283
0,268
0,292
0,312
0,333
0,346
0,350
0,342
0,350
0,340
0,346
0,332
0,335
0,308
0,307

la (due to curve ! a
(

! a . shape) 1

0,043
0,061
0,040
0,032
0,030
0,031
0,032
0,026
0,033
0,024
0,020
0,029
0,024
0,020
0,034
0,021
0,021
0,013
0,017
0,019
0,014
0,016
0,017
0,019
0,019
0,018
0,017
0,020
0,019
0,019
0,019
0,011
0,016

j (total error)

0,057
0,069
0,051
0,048
0,043
0,042
0,041
0,036
0,043
0,036
0,033
0,038
0,033
0,030
0,042
0,031
0,032
0,030
0,026
0,027
0,025
0,027
0,029
0,031
0,031
0,050
0,030
0,031
0,031
0,030
0,030
0,025
0,027
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Table 1 (continued)

E n

48,8 +
51,4 +
54,3 +
57,4 7
60,8 +

90 +
155 +
185 +
300 ±
400 +
500 +
750 +
900 +

1100 +

(keV)

5,3
5,7
6,2
6,8
7,4
15
25
15
10
10
10
30
30
30

i

I a

0,030
0,28b
0,288
0,277
0,232
0,307
0,247
0,218
0,181
0,183
0,150
0,127
0,101
0,077

jO"a (due t o
_! curve shagM

0,017
0,016
0,018
0,015
0,013
0,020
0,015
0,010
0,011
0,010
0,006
0,011
0,010
0,009

\O (total error)
a l l a

0,027
0,026
0,027
0,025
0,025
0,030
0,024
0,019
0,018
0,018
0,014
0,012
0,014
0,013

Table 2

230
Values of a for "Puobtained in the present work

^ (ke

9.*
10,4
II-.3 ,
12,2
13,1
14,2
15,2
15,9,
16,4
16,8
17.3 ,
17,9
18,4
19,2 ,
19,6
20,3
20,9

V)

+ 0,5
±0,5
±0,6
±0,7
± 0,7
+ 0,8
+ 0,9
±1,0
±1,0
± I.I
± I.I
±1.2
± 1.2
1 1.3
+ M
+ 1,4

±1.5

a

0,502
0,508
0,572
0,517
0,538
0,478
0,418
0,366
0,342
0,331
0,325
0,329
0,316
0,328
0,340
0,352
0,346

i a (*due to t a
! curve shape) i

0,079
0,058
0,041
0,068
0,077
0,037
0,054
0,038
0,042
0,032
0,028
0,030
0,026
0,031
0,025
0,032
0,021

(total error)

0,085
0,06?
0,055
0,076
0,084
0,048
0,061
0,045
0,049
0,040
0,037
0,038
0,035
0,039
0,034
0?040
0,052.
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Table 2 (continued)

En

21 ,'6
22,4
23,2
24,0
24,8
25,8
26,7
27,8
28,8
30,0
31,2
32,5
33,9
35,3
36,9
38,6
40,4
42,3
44,3
46,5
48,9
51,4
54,2
57,2
60,4

64

no
150
185
300
400
500
750
900

1000

(keV) I

+ 1,6

± I.?
± 1.8
± 1.9
+ 2,0
+ 2,2
±2,3
± 2 , 4
+ 2,6
± 2 , 7
± 2 , 9
± 3,1
±3,3
±3,5
± 3 , 4
+ 4,0
±4,3
± ^»6
+ 4,9
±5,3

± 5-7

± 6,2
+ 6,7
±7.3
+ 8,0
±20
± 25
± I5

± 10
± io
± I0

± 30
±30
+ 30

a

0,369
0,348
0,346
0,320
0,316
0,330
0,302
0,293
0,282
0,247
0,258
0,272
0,286
0,260
0,260
0,243
0,247
0,240
0,225
0,213
0,207
0,193
0,176
0,174
0,170
0,172
0,149
0,115
0,090
0,103
0,075
0,082
0,071
0,032
0,008

' o (due to curve
• shape)

0,018
0,015
0,022
0,018
0,015
0.02L
0,017
0,015
0,021
0,011
0,011
0,012
0,016
0,015
0,009
0,011
0,014
0,010
0,007
0,006
0,009
0,007
0,008
0,007
0,005
0,006
0,007
0,010
0,009
0,012
0,009
0,010
0,009
0,006
0,013

!°a ( total error)

0,030
0,029
0,033
0,029
0,027
0,032
0,027
0,026
0,030
0,022
0,022
0,024
0,026
0,025
0,022
0,022
0,024
0,021
0,020
0>0I9
0,020
0,018
0,018
0,018
0,017
0,017
0,015
0,016
u,0I5
0,018
0,015
0,015
0,015
0,012
0,017
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RELATIVE YIELDS OP DELAYED NEUTRONS PROM URANIUM-238 FISSION BY
NEUTRONS WITH ENERGIES IN THE RANGE 3.9-5.1 MeV

B.P. Maksyutenko, Yu.F. Balakshev, G.I. Volkova

After a metallic U sample weighing 30 g had teen irradiated for

300 seconds, the decay curves of the delayed neutrons were recorded for

1024 seconds with a channel width of one second. The neutrons were

obtained by the reaction D(d,n) He from a titanium-deuterium target

(thickness 1 mg/cm ; diameter 45 ™&) using a KG-2.5 accelerator.

A series of 30 measurements was summed over the channels so as to

obtain one decay curve for a given energy of the fission-inducing

nsutrons. For each energy two such decay curves were obtained, each

being treated separately. The decay curves were expanded by the least-

squares method for specified half-life values [ l ] .

Table 1 contains the relative yields of groups of delayed neutrons

together with the mean-square errors obtained from the scatter of the

curves for the two series. Pig. 1 shows the variation in the ratio of

the group yields with changes in the energy of the neutrons inducing

fission. The figures above each curve are the numbers of the groups whose

yield ratio is described by the curve in question. The lines drawn through

the points are arbitrary, for no rule has been established for the

variation in yields and the yield of any group except the first one is

the sum of the contributions of many precursors. It can be seen that

the variations amount to *- 20—30̂  and exceed the experimental errors.

REFERENCE

[ l ] KEEPIN, J .R . , Physics of nuclear k i n e t i c s (1965).



Table 1

Relative yields of delayed neutrons from U fission by fast neutrons

Group l ^ v j 1 1 Relative yields
number j I / 2 \ ^ J ~ 3~9 MeV ~ ] V,l MeV ] "~ 4 , i f MeV " [ " 4,8~MeV J 5 ,1 MeV

1. 52,38 1,0 1,0 1,0 1,0 1,0 °°

2. 21,58 9,24 ± 0,14 8,72 + 0,06 9,29 + 0,32 10,48 ± 0,06 8,0 ± 0,2

3 . 5,00 14,37 ± 0,71 12,23+0,23 12,50+0,47 14,5 + 0 , 1 11,4 ± 0t9

4. 1,93 43,0 + 3,7 38,6 ± 4,8 31,6 + 4,6 . 44,53 + 0,05 37,4 ± 4,8
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Fig. 1. Relative yields of delayed neutrons.



- 10 - (Vol. 9, pp 50-106)

EXPERIMENTAL CROSS-SECTIONS FOR NUCLEAR REACTIONS INVOLVING
NEUTRONS WITH ENERGIES OF ABOUT 14 MeV

G.N. Maslov, F. Nasyrov, N.F. Pashkin

The authors present the r e s u l t s of measurements - performed for

various isotopes - of c ross - sec t ions f o r ( p , n ' ) and (n f2n) reac t ions and

for reac t ions accompanied "by the escape of charged p a r t i c l e s . In the

case of ni t rogen and oxygen, the t o t a l c ross -sec t ions for the reac t ions

were found.

Most of the c ross - sec t ions were measured "by a r e l a t i v e method, the

reac t ion Cu(n,2n) Cu being used as a standard; c ross - sec t ions of

920 _+ 20 mbarn and 960 + 20 mbarn were assumed for t h i s reac t ion in the

case of neutrons with energies of 14.2 MeV and 14.6 MeV respec t ive ly [ l , 2 ] ,

The reac t ions were recorded by the ac t iva t ion method.

The ac t iva ted mate r i a l s were of na tu ra l i so top ic composition (metal

f o i l s or t h in p e l l e t s made from powder). The a c t i v i t y of the i r r a d i a t e d

mate r i a l s was determined by using a gamma spectrometer with a s ingle

Nal(Tl) c ry s t a l 80 x 80 mm in diameter to measure the i n t e n s i t y of the

gamma rad ia t ion in the photopeaks. The s e n s i t i v i t y of the spectrometer

to gamma photons of d i f fe ren t energies was determined using gamma sources

of known s t r eng th .

The measurement r e s u l t s are presented in Table 1, which also shows

the gamma y i e l d s assumed in the experiments. For the standard reac t ion ,

a y i e ld of 2>&fo was assumed for gamma photons with an energy of 0.51 MeV [ 3 ] .

The c ross - sec t ion for the Pb(n,2n) reac t ion for a na tura l mixture of

isotopes was determined by measuring neutron transmission through spher ica l

lead envelopes.

Some reac t ions led to the formation of isomeric pa i r s with isomeric

t r a n s i t i o n s to the ground s t a t e , which was determined by the h a l f - l i f e of

the isotope whose y i e l d was being s tudied . In a l l cases the a c t i v i t i e s

were recorded over a period su f f i c i en t l y long for t r a n s i t i o n of the nucle i

from the metastable to the ground s t a t e . The authors thus measured the

cumulative c ross - sec t ion for the formation of nuc le i in the ground s t a t e .
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Total c ross - sec t ions for reac t ions in a i r , n i t rogen and oxygen were

measured using neutrons with an energy of 14.1 + 0.1 MeV:

I638 + 35 mbarn (dry a i r ) ;

1614 _+ 40 mbarn (n i t rogen) ;

I696 + 50 mbarn (oxygen).

The c ross -sec t ions were found from the a t tenuat ion of the neutron, flux

by the gaseous medium. The measurements were performed in a "good"

geometry using a collimated neutron "beam. Attenuation of the neutron flux

was recorded by ac t iva t ion de tec tors based on the reac t ions Cu(n,2n) Cu

and 6 5Cu(n,2n)6 4Cu.

REFERENCES

[ l ] Neutron Cross-Sections, BNL-325, Vol. I I A, Second Edi t ion ,

Supplement No. 2, 1966.

[2] GUZZOOREA, P . , PERILLE, E. , NOTARRIGO, S. , Bes t - f i t s for some

standard neutron-induced react ion c ross -sec t ions around 14 MeV,

INFN/BE-67/13, 1967. I n s t i t u t o Nazionale di F i s i ca Nucleare.

[3] LEDERER, C. Michael, HOLLANDER, J.M., Table of Isotopes , Sixth

Edi t ion , 1968.
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Table 1

Experimental c ross -sec t ions for nuclear reac t ions involving
neutrons with energies of 14.2 £ 0.2 MeV

and 14.6 + 0 . 2 MeV

Reaction
J E JGamma } ° (mbarn)

i y i e ld » • y
6MeV

A/ctl(t
37,4+4,0

16
25

188

29,2+3,0 31,2+3,2

152 +16

J3*(",*J/fy*0* ^6.9
0,279 81

Mo<°° (>

J (a

Cs '**(«

Wl&2(

PS*"!*,

^,£".}Cs'}£ 6,59_a_

0,

o,

Q.

pe

c'

140
386

668
Hzrea

356
9D

90

34
35
99

: 100

25
94

189

1920+140

1*50+200

1755+180
2050+400

2243+160

84,8+9,0

-

-

—

-

-

76,2+8,0

.0^27 77 0,527+0,070 0,67.3+0,070
.614 IC0

~~ 2240 +170

Key

= years

days M

hours
min.
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EXCITATION FUNCTIONS FOR THE REACTIONS 2^Al(n,a)24N

AND 2 2 r 7

Yu.A. Nemilov, Yu.N. Trofimov

The l i t e r a t u r e contains many accounts of work in which cross-sections

for reactions induced by 14 MeV neutrons were measured with fa i r accuracy.

However, comparatively few cross-section determinations have been made at

other neutron energies, and the resu l t s of different authors often diverge

considerably [2, l ] . In view of the importance of knowing these cross-sections

for fast reactor calcula t ions , the authors measured the cross-sections for the
97 9y1 97 97

reactions Al(n,a) TJa and Al(n,p) Mg by the activation method in the
neutron energy range 7«7-9«3 MeV.

Mono-energetic neutrons from the reaction Tl(d,n) He were obtained using

the Radium Institute 's cyclotron, which accelerates deuterons to 6.6 MeV.

Thin layers of deuterium-saturated zirconium or titanium were used as targets.

The neutron energies were varied by varying the angles of exposure of the

samples. The aluminium targets were in the shape of discs 10 mm in diameter

and 100 |j.m thick. The samples were placed at a distance of 45 n™ from the

centre of the neutron soiirce.

The irradiation time varied within the range 0.5-1.5 hours. The beam

current was 1-2 piA. By a system of diaphragms, the deuterons were collimated

to a spot 3 nun in diameter. The non-uniformity of the neutron energies - due

to slowing-down of the deuterons in the zirconium layer and to differences in

the neutron escape angles caused by the finite dimensions of the source and

target - was about 0.3 MeV.

The induced beta activity was measured in a 471 proportional, methane-filled

flow counter. Particular attention was paid to the purity of the target, which

was controlled by checking that activities with other half-lives were not present.

Specific activity determinations were performed by irradiating aluminium samples

of different thicknesses simultaneously. The specific activity was determined

by extrapolation to zero thickness.
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The fast neutron flux was measured using an ionization fission chamber
2^8

with a U layer. The amount of uranium in the chamber was found by alpha-

counting.

In determining the neutron flux, we introduced a correction for the neutron

background. For this purpose, a tungsten target with a zirconium layer not

saturated with deuterium was introduced into the beam. The correction varied

between 10% and 60%, depending on the angle of exposure of the sample. The

neutrons from the break-up of deuterons by deuterons - the reaction H(d,np)TI -

could not be taken into account in these measurements, so that the corresponding

correction had to be made by computational means. The neutrons from this

reaction are distributed over the energy range 1-3 MeV and do not participate

in the reaction Al(n,a) TJa, the threshold of which is 3.25 MeV. In this
?7 ?7

energy region, the cross-sections for the reaction Al(n,p) Mg (thresh-

old 1.87 MeV) are less than or of the order of 1 mbarn [4]. As - at the energies

in question - the number of neutrons from the deuterium break-up reaction is only

5% of the total number, i t is safe to say that these neutrons do not make an
27appreciable contribution to the activity of Mg. When estimating the neutron

flux, however, i t is necessary to introduce a correction for these neutrons.

The number of U fission events is proportional to the product of the fission

cross—section and the neutron intensity. The cross-section for fission by the

break-up neutrons has the following appearance:

The correction to the f iss ion event count to allow for the break-up neutrons i s

found from the re la t ion
/rHXX 6H2 a d6 -too

Using the resu l t s of Granberg et a l . [ 5 ] , we find that the correction was 5 + 1 %

in the case under consideration. The overal l mean expected error i s made up of

the following measurement e r rors :

1. The inaccuracy in determining the weight of the U 1«5%

2. The uncertainty in the U cross-sect ion value 3%

3. The s t a t i s t i c a l error in the f i ss ion event count 2%

4. The inaccuracy in determining the efficiency of

counting the act

aluminium ta rge t

counting the activity of the *TJa and Mg in the
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5. The error introduced by the inaccuracy in determining 3$

the neutron background

6. The statistical error in determining the sample count 1%

rate

7. Errors associated with inaccuracies in taking into 1%

account the geometric conditions of the experiment

The mean square error is estimated by us at 6%>; in certain less favourable

cases it is as high as

The measurement results, together with the corresponding errors, are

presented in Table 1. The excitation function curves obtained by us and those

known from the literature are shown in Figs 1 and 2. Our results for the
?7 97

reaction Al(n,p) Mg are in good agreement with the measurement resu l t s
27 24_

reported in Ref. [4j» For the reaction Al(n,a) itfa, the cross-section values

found by us are close to the resu l t s of Butler et a l . [3] and somewhat higher

than those of Lisken et a l . [ l ] and Grundl et a l . [ 6 ] ,
Table 1

E o 2 7 Al(n ,a ) 2 4Na o (n,,p)27Mg
n na v ' ' npv ' ^ ' B

(MeV) (mbarn) (mbarn)

9.3 8 2 + 6 9 2 + 8

9.05 7 8 + 7 9 8 + 9

8.6 7 7 + 8 9 2 + 1 0

8.0 - 7 5 + 8

7.7 4 3 + 5
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POLARIZATION AND ANGULAR DISTRIBUTION OP RESONANT NEUTRONS

E.M. S a p r y k i n , A.A, Lukyanov

1. Introduction

The polarization, or a definite orientation, of the spin of a neutron

relative to its direction of motion occurs in nuclear reactions as a result of

a strong dependence of the interaction potential on the spin state of the

colliding particles. Neutron polarization in nuclear reactions is usually-

associated with the presence of a spin-orbital interaction. In this case, the

differential cross-section for the reaction depends on the orientation of the

spin vector relative to the orbital momentum vector, which leads to polarization

of the reaction products, for neutrons with one spin direction scatter more

readily through certain angles while those with another spin direction scatter

more readily through other angles.

In principle, study of the interaction of polarized particles with

oriented nuclei enables one to determine the corresponding nuclear reaction

parameters which characterize the interaction potential for the different spin

states of the colliding particles (or the reaction products), whereas the use

of unpolarized particles gives only averages over every kind of spin state.

Let us define the problem more precisely. A given bombarding particle a*

and a nucleus A1 form an overall system in one of i ts possible states a1. It

is assumed that the disintegration of this system leaves a particle a and a

residual nucleus A in one of the possible states a. For the sake of definiteness

we shall assume that in both cases the small letters denote the lighter particles.

The entire discussion will be conducted in the non-relativistic approximation,

although many conclusions can be applied without modification to the relativistic

case. This approximation is a valid one when the kinetic energy of the particles

is less than a few per cent of their potential energy.

Actual calculations are best performed for a fixed energy; accordingly, the

steady-state formalism of scattering theory is used. It is also assumed that the

law of parity conservation holds.

Having made these assumptions, let us consider the following problem. If

the polarizations of the particles a1 and A' are given, what will be the polariz-

ations of the particles a and A? The usual formulation of a nuclear reaction
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problem consists in a comparison of the parameters characterizing the colliding

particles before the reaction with the corresponding parameters for the reaction

products. In classical mechanics, these parameters include the co-ordinates

and momenta of the particles before and after collision and certain variables

characterizing the internal state of the particles. In a quantum-mechanical

description, the states of a system of particles before and after interaction

are specified by corresponding sets of quantum numbers. In the steady-state

consideration of a reaction involving only two particles in the initial and

final states, the intensity of (or cross-section for) the reaction is character-

ized by the amplitude of the probability of transition from an initial state

(entrance channel) with a definite set of quantum numbers to some final state

(reaction channel) with corresponding quantum numbers. It is assumed that for

any pair of nuclei there is some final distance r between the nuclei constitu-

ting the pair such that with greater distances neither nucleus is affected by

any polarized potential fields produced by the other nucleus. We shall apply

the word "channel" to every kind of two-particle system state characterized by

a definite set of quantum numbers in a situation where the particles are

separated by a distance exceeding r • What quantum numbers define a channel?

There are two ways of describing the relative motion of particles. One is

to use a representation in which states are represented by plane waves, each of

which propagates in a definite direction, usually characterized by the wave

vector K. In this case, the quantum numbers characterizing the relative motion

of the particles are the vector modulus K, K = K (which is associated with the

energy of relative motion of the particles and is therefore included in the

assembly of quantum numbers denoted by the single subscript a) and a unit vector

in the direction of propagation - n̂ . = K/K.

A plane wave contains all the moments of momentum of relative motion. This

representation is therefore more convenient when a large number of partial waves,

corresponding to specific moments of momentum of relative motion, play a part in

reactions in which only a small range of angles around the direction of an

incident beam is involved.

The other way is to use a representation in which a state has a specific

moment of relative motion I and i ts projection m,, but covers the entire range

of angles.

The first representation is normally used to describe the relative motion

of particles in the entrance channel of a reaction. Actually, experiments usually
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involve particles of fixed energy which, moving along some axis from the

source, hit a target. Thus, the momentum of the particles is known, whereas

the orbital momentum is not determined.

The second representation is convenient for describing the relative motion

of particles in reaction channels, for only a small number of angular momenta

contribute to the reaction cross-section if the energies of the incident

particles are relatively low.

If the colliding particles have non-zero spin (for example, particle a1

has spin i* and projection m!, while particle A' has spin I ' and projection m*),

the spin state of such a system of particles can be characterized by a wave

function dependent on i ' , I 1 , m! and ml. It is sometimes convenient to use

another representation. Instead of i ' , I 1 , m! and m», the channel spin s1 and

i t s projection m1 are introduced, so that the spin state of the system is
s

characterized in the new representation by wave functions dependent on s1

and m1. The channel spin s is a vector sum of the spins i f and I 1 , s = i f + I '
s

and can assume values (i1—i') $ s1 ^ I1 + i*. We shall use both these representa-

tions.

Thus, the entrance channels can be characterized by, for example, the

following subscripts:

a1 - the type of particles in a pair and their internal state,

i1 - the magnitude of the vector of the orbital momentum of relative

particle motion,

s' - the magnitude of the channel spin,

m' and m* - the projections of the corresponding momenta on the z axis.

For a reaction channel we use a set of subscripts without primes:

c = {aisnum } or [aft.Im.mj

Besides these quantum numbers, the system of colliding particles is

characterized, both in the entrance channel and in the exit channel of a reaction,

by those quantities which are conserved in the reaction (integrals of motion).

They are the total momentum of the system J = (J) = (i* + s*f) = (1 + sT), i t s
—»

projection M, parity n, the total energy E and the total linear momentum P of

the system-' •

In some applications, isotopic spin is also used as an integral of motion.
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Further discussion will be conducted in the centre-of-mass system. Thus,

the total linear momentum of the system is excluded from consideration as i t is

by definition equal to zero in this system.

The cross-section for the process a '^ 's '-^ais for given values of the

integrals of motion J,« and E is characterized by elements of the scattering

matrix S t (j,n,E), the general properties of which - symmetry and unitarity -

follow from basic physical principles (.conservation of the probability flux, time

reversibility and causality)-' .

A matrix element of the SCJJ^JE) matrix can be represented in the form [ l ] :

where the parameters of the formalism are: <P t and op the phases of potential
c c

scattering; I\ , and I\ - the widths of the X level for the {a' Ps1 } and

{ais } channels respectively; I\ - the total width of the A. level; E, - the

energy of the A. level; and A - the displacement of the A. level (the sum over

includes levels only of a given set of J and n).
Another relation for the S-matrix elements is given by the R-matrix theory

of Wigner and Eisenbud [24];

where

R, (1.3)

2
Here, 2P y. is the partial width of decay of the k level in a channel with

C CC

(ais), P is the penetrability, L = S -b + iP , and S -b is the displacementc c c c c c c
factor for the boundary condition b .

* / The S-matrix elements are a quantitive characteristic of the reaction
intensity and do not depend on the projections of the momenta; otherwise,
their magnitude would change when the system of co-ordinates was rotated.
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In the single-channel case, by representing R(j,n,E) in the form of the

sum R = Ro + R, (where RQ includes the non-resonance part of the R-matrix and

R, includes the resonantly energy-dependent part), the function s(j,n,E) can

be reduced to the form:

where

The general approach to analysing the polarization and the angular distr i-

bution of reaction products consists primarily in expressing the corresponding

cross-sections in terms of S-matrix elements, without specifying their explicit

form; only in application to specific examples does the need arise to use a

parametric representation for the S-matrix. This one-to-one link between

cross-sections and S-matrix elements characterizes the kinematics of a nuclear

reaction.

2. Wave functions in the external region

The wave function of a system of nucleons satisfies the Schrb"dinger

equation. For a definite channel "C", the total wave function can be written

as the product of four wave functions:

where

<p is a wave function describing the internal state and the

type of the colliding particles (internal variable particles),

Y (r)is a wave function describing the relative motion of particles

in the centre-of-mass system,

X. and X-r are wave functions describing the spin states of thelm. lm_

particles a and A respectively.



The functions introduced above are orthonormalized. The orthonormality

of the <P functions with respect to the subscripts a and a1 in the event that

these subscripts correspond to different particle types is a consequence of

the spatial non-overlapping of the corresponding functions. When, on the other

hand, the subscripts a and a1 correspond to different excited states of the same

particles, orthonormality is then a consequence of the usual orthonormality of

wave functions corresponding to different energy states of a specified system.

The X- wave functions are eigenfunctions of the operators 1 and i . Theyim. z
are column matrices containing (2i + l) elements and satisfy the following

orthonormality relation:

(2.2)

The same applies to the XT functions.

2.1. Channel spin wave functions

In the channel C, the particle interaction potential is by definition

independent of the relative orientation of spins i and I of particles a and A,

so that there is degeneration with respect to their projections. For the same

reason it is possible to take a linear combination of the products of wave

functions describing the spin state of particles a and A as the wave function

describing the spin state of the channel. Such linear combinations are selected

in such a way that the wave function has a specified channel spin value as

quantum number:

As*,," Z- C'^I^^W SWiJ^^/Ciw,,. (2.3)

The coefficients (ilm.iiL,. sm ) are Clebsch-Gordan coefficients (vector sum
1 J. ' s

coefficients; see Annex l). The channel spin wave functions are orthonormalized:

s'̂ s ' (2.4)

This is a consequence of the unitarity of the vector sum coefficients (see

expression A.I.5). It should also be noted that, as there are no polarized

potentials in the channel, the channel spin s is an integral of motion in the

channel•

Under time reversal conditions, the wave functions considered by us behave

as follows:
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(2.5)

The operator ̂  is a time reversal operator [23]. The reversal property (2.5)

follows from expression (2.3) if X; and Xj behave in the same way as

Y \onder time reversal conditions.1
sm
s

2.2. Wave functions of relative motion

As the interaction in a channel is described only by central potentials

(the Coulomb potential plus the centrifugal potential), the orbital momentum I

is an integral of motion in the channel ia^s i • Thus, the angular dependence

of the wave functions of relative motion is factorized in the form of the

functions i Y - , which are eigenfunctions of the operators of the orbital
m I

momentum and of its projection m,. The Y^ functions are ordinary normalized

spherical functions satisfying the relation:

lev*t - i'i) ' X L -W,€ . (2.6)
i

Under time reversal conditions, the functions i Y, behave like the Y
*m ^sm

functions:

The total wave functions of relative motion can be represented in the form:

I » ,

where the functions U ̂  are a solution of Schrtt'dinger's radial equation. The

solutions of Schrt)dinger*s radial equation in the central potential, correspond

ing to converging and diverging waves, have the form [24]:

where P £ and G £ are respectively the regular and singular solutions of

Schr»dingerfs radial equation. Here and below we use the following notation:
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E - energy of r e l a t i ve motion of the pa r t i c l e s const i tu t ing a pa i r ,

m = m m./(m + mA) - reduced mass,a a A' v a A' '

k = V~2m E |/"ft" - wave number,

v =» tik /m - r e l a t i ve veloci ty ,a. a a
2 »•

T\ = Z Z.e /nv - Coulomb f ie ld parameter,a a A ' a T

o = arg F(l + 4 + ih ,) - Coulomb phase sh i f t ,
< x * ot * ^

Q = k r u = a a = S arc t g (n / n ) .
a a T a* a* ao n = l e > v a ' /

When there is no Coulomb field (n = 0),

p =,. (Il±)i , f t J 6^€=(-2-/^-«-^ c y v (2.9)

the asymptotic form of the functions I . and 0 ^ corresponding to converging

and diverging spherical waves when o » 1 [24]s

(2.10)

3. Amplitude of the reaction

In experiments, particles of a particular kind and with a fixed energy

usually hit the target as they move along the z axis. Thus the momentum of a

particle is assumed to be known. In view of the finite size of the source, i t

is impossible to attribute a fixed orbital momentum to a particle. Consequently,

in the entrance channel i t is best to select a wave function of relative motion

in the form of a plane wave. If the system of co-ordinates is selected in this

way, the scattering angles coincide with the angles determining the direction

of propagation of the scattered beam. To simplify the notation, when

characterizing the entrance and exit channels we shall omit h .̂, and h .̂,

remembering, however, that i t is they which define the scattering angles. We

represent the total wave function in the entrance channel a's1 in the form:

It should be noted that for the channel a 's1 i t is possible to introduce one

particular spin orientation m , , although all other orientations are possibl
s

for the incoming particle. This can be done because different values give
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independent non-coherent contributions to the cross-sections. The plane

wave e a can be series-expanded in the Y» fun

of this expansion (for Q , » l) has the form [2]:

wave e1 a Z can be series-expanded in the Ŷ  functions. The asymptotic form

(3.2)

where the exponential terms correspond to converging and diverging spherical

waves. As already mentioned, the total momentum J of the system,'its projection

on the direction of the incident beam, and parity w are conserved in the

reaction. When characterizing a reaction by the value of the total momentum J,

it is therefore convenient to go over to the operator eigenfunctions J and J ,
2

which have the sense of generalized spherical functions:

where (ism.in JM) are vector sum coefficients. By virtue of the orthogonality
is

of these coeff ic ients :

(3.4)

or, in our case,

(3.5)

The sum over M has vanished, for the coefficient (^fsfom f JM) is non-zero

only when m , = M. The wave function of the in i t ia l state in the channel can,s
with allowance for expression (3»5)i be reduced to the form:

v [e

(3.6)

J

For some def in i te set J,M,n ( in our case M = m , ) , the ful les t representation
s

of the wave function in the exit channel as can be written in the form of an
expansion in the functions Ĝ  T :

s
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where the amplitudes of the converging and diverging waves are linked through

the scattering matrix

Z S .i€V flJ,c#s, . (3.8)

When the wave function is determined in this way, the coefficients A and B

correspond to the probability amplitudes in respect of the particle flux. It

should also be noted that the coefficients S « , », , are independent of the
<x*s,a" *'s*

projection of the total momentum m , [2],

s

Comparing the standard form of the wave function representation (3.7) with

the plane wave expansion (3.6), we determine the amplitude of the converging

wave:

^ (3.9)

It should be noted that A is determined by expression (3»9) for the entrance

channels (a's'i1), For the remaining channels (ais), A = 0. Thus, by substituting

expression (3*9) into expression (3.8), we obtain:

it V
The asymptotic part of the wave function $ ($,<D), which is connected with

OL 13

the diverging wave, is investigated experimentally. In order to obtain i t , one

must separate out of 4? the part which corresponds to the initial state:

(3.11)

where $. is the incident plane wave (3.6). Thus, we obtain the asymptotic
x nc

form $ in reaction channel as in the form:
reac.



^ aee'
(€Vows .PK-; (™'+>f- (3.12)

Expression (3.11) is a convenient one when the detector selects particles with

total momentum J and its projection m f. However, it is usually particles

moving at an angle ($,<p) to the incident beam, the channel spin s and its

projection m which are recorded. In this case, the following form is more
s

convenient:

w h e r e

The square of the wave function (3.13) gives the flux of particles with given

(a,s); the wave function in the entrance channel is normalized to unit flux.

Thus, the reaction cross-section is:

(3.15)

where g represents internal variables of the particles.

Using expression (3.13) and taking into account the orthogonality of the

functions <P (g) and X , we obtain:
ct sin

(3.16)

As terms with different m values make independent contributions to the cross-

section, the quantity F̂  s - expression (3.14) - may be termed the

"amplitude" of the reaction a's'm , -•asm . The cross-section for the reaction
s s

Qt's'm . ~* asm can be written in the form:
s* s



The reaction amplitude P, and consequently the reaction cross-section, depends

on the angle 9, since the m , and m directions are fixed. The cross-section
s s

for the reaction o's' -»as is obtained, without allowance for polarization, by

averaging over the initial spin directions m , and summing over the final spin
s

directions m :
s

(3.18)

Obviously, the same result can be obtained by averaging over m t in expression (3.l6)g
s

Lastly, the cross-section for the reaction a1 -» a can be obtained, without allow-

ance for channel spin, by averaging over all possible s1 states and summing over

all possible s states:

where I'(l) and i'(i) are the spins of the nucleus and the particle before and

after the reaction, and (2s1 + l) is the statistical weight of the channel.

The values of P s for fixed a and a1 constitute the matrix in the

channel spin representation

F =

Taking expression (3.20) into account, one can write the cross-section (3.19) in

the form:



where Sp(PF ) is the sum of "the diagonal elements of the matrix (FF ).

In concluding this section, we would point out that the reaction amplitude

may be regarded as some operator converting the wave function of the

initial state into the wave function of the final state.

4. Scattering of partially polarized nucleons
unpolarized nuclei

We shall therefore consider the scattering of particles with a spin

of -g- by nuclei with a spin of 1. The problem includes obtaining the

differential cross-section for the process and the polarization of the

scattered particles if the polarization of the incident particles is

specified.

The mean value of the spin operator is termed "polarization by

definition". It is obviously a vector quantity. If the wave function "l

describing a given particle state is known, the polarization in this state

can be calculated as

In a real situation, however, an experimentally prepared beam cannot

always be described by a definite wave function. In fact, when conducting

experiments one does not usually know the spin projection of each particle

or quantum numbers such as the channel spin and i ts projection. The quantum

numbers for particles in an experimentally obtained beam are distributed

with some probability. Moreover, the initial system may consist of several

non-coherent sub-beams which are represented in the beam with certain weights.

In this case, i t is possible to introduce a Q-matrix such that the mean

value of any physical quantity f acting in the spin space of the system, in

a state corresponding to a mixed ensemble, is given by the expression

(4.2)

1. It should be noted that the sum of the diagonal elements of the density

matrix gives the intensity of the particle beam. Assuming that the

intensity of the incident beam is unity, we obtain

Sp
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for the density matrix of the incident beam. The density matrix

corresponding to the reaction products does not have a unit spur, for

the intensity of the diverging beam is not unity. In this case, the

spur of the density matrix gives the differential cross-section for the

reaction:

(4.4)

2. It should also be noted that, when there is no coherence between"

particle spin states, the total density matrix of the system can be

represented in the form of the product of the density matrixes for

incident particles and target nuclei. The structure of the density

matrix becomes clearest if it is expanded in base matrixes of spin space

satisfying the following orthogonality and normalization condition:

3
p U3 O - o ^ ( 2 ~- + i-J (4.5)

In the case of particles with a spin of -g-, the system of base matrixes

consists of a unit matrix and the Pauli two-dimensional matrixes &' = 1,

2-- Q*^ , (4.6)

where the coefficients iL. are defined as

A.=^-SPSO". (4.7)

As a resu l t , we have

Si > (4.8)

where
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Thus, the density matrix i s expressed d i rec t ly in terms of the

imentally measured mean values <<o > of the base matrixes.

Accordingly, for particles with a spin of -§•

where _p>

P being the "polar izat ion vector".

We would point out that SpQ = 1 for incident pa r t i c l e s , so that

knowledge of the polar izat ion vector completely determines the density

matrix of the incident p a r t i c l e s :

§ = •£ ( 1 + p § J . (4.12)

The density matrix for the unpolarized nuclei of the target i s

Thus, the total density matrix of the system in the initial state is the

product

As noted in section 2, for fixed a1 and a the reaction amplitude Pa s ms'
asms

may be regarded as an operator converting the pure spin state

(s'm ,) of the entrance channel to the pure spin state (sm ) of the exit
S + s

channel. The quantity FQ. F can then be identified with the density
l iJ-C

matrix of the spin states of the scattered beam:

The differential cross-section (4*4) is equal to

J O . „ . ' : . . - ; ! (4.16)
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In the case of an unpolarized beam of incident nucleons, P. = 0 ,
y ' m e '

ff ( 4 a 7 )

Thus, expression (4.16) may be rewritten in the form

The mean value of the polarization vector in the exit channel is determined

in accordance with expression (4.2) by the formula

P

In the case of unpolarized incident nucleons

S PFF
+ +SPFR..6F" <4a9)

The polarization vector (P ,) P of the scattered unpolarized nucleons

is a pseudovector (the mean value of the Pauli vector matrix). In the

case of the scattering of an unpolarized beam of nucleons by unpolarized

nuclei, this vector may be only a function of the relative momenta in the

entrance (k1) and exit (k) channels. One can therefore write

l U n P 0 1 - - - • • - ( 4 . 2 1 )

where

V) = T Z ~~ (4.22)

Thus, with unpolarized nucleon scattering by unpolarized nuclei, the

polarization vector is always non-perpendicular to the scattering plane.

Wolfenstein and Ashkin [25] have shown that, in the case of the elastic

scattering of nucleons by unpolarized nuclei, owing to the invariance of
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the scattering amplitude with respect to time reversal the following

equality is satisfied:

Taking into account expressions (4.23) and (4.20), it is possible to

represent the differential cross-section expression (4.I8) in the form

j unpol.r / J ^ p / , 7 u n p o l . »

= (T£ (1+ P P (4.24)
From t h i s i t can be seen that the d i f fe rent ia l cross-section for the

scat ter ing of polarized pa r t i c l e s depends on the angle 9 . The coefficient

determining the aximuthal asymmetry i s | p ^ P 0 *p, j < 1 .

—* + ~* ~* +When calculat ing the matrix elements of the matrixes FaF , Fp. oFxnc
and oFP. oF entering into expressions (4.16) and (4.19) for the polar izat ioninc
vector and differential cross-section respectively, it is convenient to

switch to quantities defined as follows:

where a represents unreduced operators of the spin vector for pa r t i c l e s with

a spin of -g-:

It can be seen from expression (4»25) that the quantities T(q v) _

q = 0, 1 and v= -1, 0, 1 - can be used for describing the differential cross

section and the polarization in nuclear reactions. Using the expression for

Pa's!ms' and also the fact that
a s m 1 ^ = Z. W^

-,; (4.26)

it is possible to obtain a general formula combining expressions (4.I8) and

(4.19) and giving for the T(q v) value of the scattered beam an expression

in terms of T(qf v1) for the incident beam [29]:
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C
4*27

w h e r e
0 iT - ^̂ *~

^ ^ S ~ S ~ ^Vs' (4'28)' - O

Here, summation is over m , m_, M,, M?, rn
1, m', M1, M', s , s , s', s*, u r

2» !» 2» 1» l» l» J' y *• 2' id' 2' J2» *2' i2'

It is more; convenient to calculate the final tensor moments with respect

to the axes, which are oriented in a simple manner relative to the final

direction. We select a new z axis along the k direction and a new y axis

along the [k1 x k] direction, where k' and k are the init ial and final linear

momenta respectively. The Euler angles for rotation of the co-ordinate

axes will be (©, %, 0), where % is the polar and ip the azimuthal angle of

scattering.

According to the definition (4«25)» the T(q v) quantities are transformed

whenever the system is rotated by means of the Wigner matrixes Dq, [26],

Thus, T(q v) in the new axes is associated with T(q v) in the old axes by

the relation

The spherical harmonics entering into expression (4.27) should henceforth be

described in terms of Wigner D functions:
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In this system of co-ordinates, expression (4*25) can be reduced to the form

where

( 4 ' 3 2 )

(4.33)

Here, the G function is given by the expression

e i CS/^« \ (.4.34)

The coefficients of B contain a series snunrre-.l over the magnetic quantum

numbers. It should be noted that the T qaanbities contain all the information

about the spin directions before and after the reaction, the B quantities

introduce all the geometric information relating bo the entire multiplicity

of intermediate moments, and the A qua* it I ties yield all the information

about the dynamics of the problem which is contained in the elements of the

V-matrices. This convention was first used by Bl.att and Biedenharn [2]

to describe the angular distributions when unpol a^ized targets are bombarded

by an unpolarized beam.

The resulting relations - reiatior:-'-- {A*'i}>) srA (4.34) - contain the main

results of Simon [4] with allowance for all xhe recognized phase and

normalization errors. For the particular c.r~o q = 0, we obtain

' * (4-35)

For this case, the Racah coefficients o-i-i-erin/r into expression (4-33) have the

form

] V s , S t . (4.36)
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For the case qf = 0 (unpolarized entrance team), we obtain

t
where the D quantities are expressed in terms of the spherical harmonics

(4.30).

For the case q = 0, the general relation (4«3l) has the form

*L
 (4*38)

and in the case q = q' =0 (unpolarized entrance and exit beams) i t has

the form

(4.39)

(For the sake of simplicity, whenever s.. = s. or s' = s', they are replaced by

s or s 1).

Let us consider the case q = 1, q1 = 0 :

-</+€i-i

(4.40)

T
As the definition of Gv contains (iqOv/Lv), i t follows that

(4.41)

The multiplier in expression (4.41) is therefore (-l)q and

E ° , (4.42)
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Thus, T(lO), which is determined by expression (4.40), is identically equal

to zero. This means that, provided that the law of parity conservation is

satisfied, there is no polarization along the direction of propagation of

the scattered beam if the initial beam was not polarized.

Let us consider T(ll) and T(l-l), which - in accordance with

expression (4.25) - determine the "spiral polarization" of particles with

a spin of -g-:

(4.43)

It should be noted that I can assume the values 4= L + 1, L and L - 1.

However, i t follows from the condition for non-zero values of the coefficient

( A'iX)OJLO) and from the law of parity conservation that 4' + i ' + L is even

and i* + I* + I + I is even. Prom the condition for non-zero values of

(iL iOO|iO) i t follows that t + t +1 is even. Then, 4+ L is even.

Consequently, I = L. Thus,

Tin) -- / G i; = (* *;

v X j ^ ^ ^ ; ^ t « ^ ^ ^ (4-44)

w( e/J.^/j, s ^ ) ^ '

In accordance with expression (4»25),

(4.45)
and, in order to obtain agreement with the preceding formulas, we determine

the degree of polarization as follows:

P(9J - 2 />B^r+ !^>l + I'^^l J • (4.46)

Accordingly, a beam corresponding to a pure magnetic sub-state with a maximum

projection in some direction will have P = 1. It is now possible to write
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^ lT(,.jTOi;J = O (4.47,)

It can be seen from expression (4.47) that the scattered beam is
polarized along the y axis - i . e . along the vector v-Tr [£'xKj/KK'x/<j/ . Thus,
we finally obtain

(4.48)

Expressions (4.44) a-ncl (4.47) have interesting implications:

1. If, in the initial or the final state, only the s wave is effective, then

T(ll) = 0.

Actually, in this case either I' = I' = 0 or £ = I' = 0. One of the

coefficients (iM»0C)|L0) or (i i 00|L0) then gives L = 0, from which it

follows that the coefficient (LlOljLl) is equal to zero, for L must be greater

than or equal to unity;

2. If only those levels of the compound nucleus are significant which have

J = -g- and a definite parity or J = 0 with any parity, then T(ll) = C.

/JiW
Actually, if follows from the properties of XjJ2^2s2l that L = 0

. . VL L I /
when J = J = 0, which gives T(ll) = 0. For J 1 = J,? = t» L = 0 or 1.
However, if the levels posse as the same parity, •# +-* is even and it follows
from the requirement that the coefficient (^ ^ 00 LO) be non-zero (which
consists in •£, + ^ ? = L being even) that L = 0. I t should be noted that,
as follows from expression (4«39)f ^n e differential cross-section for the
reaction is isotropic in both these cases;
3. If, in the final state, only one channel with s = 0 is open, then T(ll) = 0.

Actually, in this case the triangle rule does not hold in the last

column of the function X|Jo^osoJ«
V/LT. V

4. When there is no spin-orbit interaction, there is also no polarization

of the scattered beam.
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This result is obtained if - using the fact that, when there is no

spin-orbit interaction, the V-matrix does not depend on the total momentum

J - summation is carried out over J.. and J in expression (4.44) •

5. As follows from expression (4.47a), there is no polarization of the

scattered beam along the direction of propagation.

6. As follows from expression (4.47c), if the choice of direction of the

y axis is taken into account, the incident beam polarization vector is normal

to the scattering plane.

7. The angular distribution of the polarization is characterized by

P«(cos3), while LmaX < 21 , 2&f , 2J - as can be seen fromL — max7 max' max

expression (4.44). In many nuclear reactions, only the s-and p-waves are

significant, so that the angular dependence of the polarization will be

determined by P'(cos-3 ) and P'(cos 3). In this case, therefore, maximum

polarization is to be expected at 15° and 135° in the centre-of-mass system.

8. The V-matrix enters into expression (4.44) in the form V*V - V V*, so

that a severe limitation is imposed on the conditions under which i t is

possible to achieve polarization. For example, if all the matrix elements

of the V-matrix have the same phase or if they are real (as they are in the

Born approximation), then polarization does not occur.

Polarization occurs in the following very simple cases:

1. The reaction passes with appreciable intensity through two

compound states with different J and t ;

2. A contribution to the reaction is made by one resonance and

by the interfering amplitudes of potential scattering with

other J and n (this case is limited to elastic scattering);

3. A contribution to the reaction is made by one resonance with

several possible ini t ial and final spins or orbital momenta.

Unfortunately, this mechanism is very often suppressed owing

to the great difference in penetrability. The behaviour of

the differential cross-section and the polarization near the

resonance is considered for cases 2 and 3 in section 5»
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5. Scattering of partially polarized nucleons
by nuclei with zero spin

General relations

Let us consider in greater detail the case of elastic scattering of

particles with a spin of g- by particles with zero spin. In this case, the

spin of the entrance ar>d exit channels is ;V. As parity and the total momentum

J = \~2 ' + l/21 = \l + l/21 are conserved during the reaction, i t is obvious

that in this case the orbital momentum is also the integral of motion I - -#' I.

As already mentioned, for fixed a1 gjid a, the reaction amplitude is a matrix

in the channel spin representation: .

\

(5.1)

Using the reaction amplitude definition (3.14)7 i t is possible to write the

scattering matrix in the form

F =^r L.(^) Ue mripm^'^'We, [if*oW#\ J. (5.2)

In the case under consideration, two values of J correspond to any non-zero

value of & : J = I + -§- and J = I - -g-. Thus, i t is possible to rewrite

expression (5.2) as a sum only over I'.

Here, we use

Let us present the part of expression (5.3) which is in square brackets in

the form of an expansion in the linearly independent matrices 1, a f a , a ,

where 1 = ( n i ) is a unit matrix and o = ( ) , o = ( . ^ ) and a = ( ) are

Pauli matrices:



> £^ ' (5-4)

where

- O ;
(5.5)

Solving the system of equations for b and b , we obtain

As d and <p are scattering angles, the right-hand side of expression (5.4)

can be written in the form

(5.6)

where

•'A
(5.7)

and the unit vector n is determined by the equality

(5.8)

Taking into account expressions (5«5) and (5»7), we obtain an expression for

the reaction amplitude:

F= (5.9)

where

(5-11)

Using expression (5«9)» one can reduce the d i f ferent ia l sca t te r ing

cross-section (4.16) to the form

" (5.12)
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where P. is "the incident particle polarization vector. If the incidentme

particles are unpolarized, then the differential cross-section is

.unpol.

In accordance with definition (4.19)» "the scattered particle polarization

vector can be obtained in the following form using the amplitude (5.9):

|Ar+|8f+2/?eAB
If the incident pa r t i c l e s are unpolarized, then the scattered par t i c le

polarizat ion vector i s equal to

(P.out

Taking into account expressions (5.12) and (5.15)» we obtain for the

di f fe ren t ia l cross-section for polarized neutron sca t te r ing

Another useful re la t ion for the value of the polarizat ion vector can be

obtained using expressions (5.14) and (5 .

IJo
(5.17)

o«t

As can be seen from t h i s formula. P J = 1 i f P. = 1 or p ^ ]_

* out1 me out

6. Scattering of neutrons by Li nuclei

In the t o t a l neutron cross-section of the Li isotope there i s a strongp-resonance at E = 225 keV; t h i s corresponds to the 2.26 MeV level in the
8 n * +

Li compound nucleus, which i s characterized by J = .3 . As the ground

sta te of Li has a spin of - ,̂ the reaction through the 3 resonance occurs

with a channel spin of 2. Elwyn and Lane [ l l ] have pointed out that s

sca t te r ing occurs also with a channel spin of 2. This means that there i s

a broad s-resonance J = 2~ at an energy of somewhat higher than 2.26 MeV.
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Q

In all further calculations, it is assumed that there is a Li level at

2.26 MeV with i = 3+ and some level with J = 2~ at a higher energy

(E, » 3 MeV). In the energy region around the 2.26 MeV resonance, i t is

sufficient to consider these two levels in order to describe the existing

experimental data on the differential cross-section and the polarization.

In the energy region E > 0.5 MeV, no sharp resonances are observed. Little
o n -~

is known about the Li level structure in this region, so that additional

postulated levels are introduced for the purpose of describing the

differential cross-section and the polarization in this energy region.

It is assumed that the postulated levels are broad and give only a

slightly varying phase shift, for the differential cross-section and the

polarization are almost constant in this region.

The following assumptions are made:

1. At the energy in question, only one level with defined

J and TC is significant. This makes it possible to use

the single-level approximation for the scattering matrix;

2. The terms corresponding to incoming and outgoing particles
•7

with ^ >2 are negligible._ As the ground state of Li

is characterized by J = — , in the reaction involving the 3

and 2~ levels the channel spin is conserved: s1 = s = 2.

The single-level approximation is based on the fact that there are

usually no overlapping levels in light nuclei and interference phenomena are

not observed in the total cross-section. The resonance parameters must

be chosen in such a way that one obtains:

1. The true non-resonance background below 0.5 MeV;

2. The correct energy dependence of the differential cross-

section and the polarization around the 3 resonance

(E = 0.255 MeV);

3. A smooth variation of the differential cross-section and

the polarization above the 3 resonance.

As has been shown experimentally, in the energy region E ~ 0.5 MeV

the polarization is determined mainly by an angular dependence of the

form const x sin 2$; this leads to predominance of the coefficient G

in the polarization expression P(d)do/dQ = Zc^?^. As can be seen from
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formula (4.44)» "the terms corresponding to even values of L occur as

a result of the interference of partial waves of the same parity. Such

terms may therefore be expected to occur in this energy range either as

a result of interference of p waves or as a result of interference of

s and d waves. At such energies, the d wave is not at all pronounced, so

that the interference of the d waves is negligible by comparison with

that of the s and d waves. In the first case, one can postulate levels

with Jrt = 0+, 1+, 2+, 3+. The sets of levels 1+, 2+ (case A) and

0 , 2 (case B) are introduced here. Other sets give worse results.

The second case — i .e . the interference of s and d waves — may come

about owing to the presence of 0 , 1 , 2 f 3 or 4 levels. Only in the
a _

case of the level with J = 3 is there reasonable agreement with

experiment. It should be noted that in this case only the process of

transition from a state with a channel spin of 2 to a state with a channel

spin of 1 contributes to the polarization. A process which occurs without

spin mixing of the channels does not contribute to the polarization, for

the X coefficients entering into formula (4.44) vanish for the quantum

numbers under consideration. The 3 level must be extremely broad in

order to give a smoothly varying differential cross—section and polarization

in the region under consideration.

Lane [l2] has suggested describing the contribution of the Jn = 3~ level

by means of a two-channel scattering matrix:

From an analysis of the angular distribution, the same author obtained the

phases a , and b , presented in Pig. 3.c c c c

The subscripts c1 and c relate to the s = 1 and. s = 2 channels. Thus,

calculations of the differential cross-section and the polarization were

performed using formulas (4»39) â d (4»44) snd the following three sets

of resonance parameters. The interaction radius is assumed to be 4f«

The sign of the ( I" )2 quantities entering into the scattering matrix is

assumed to be positive.
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E (MeV;lab.)J J* ! -£ I 5 j - — - - —
n j t j i o — J- ; ^ — — i

0,25 3+ I 2 0 0,307 - 0,045
A 3,4 2" 0 2 0 2,28 3,0

1,5 I+ 1 1,2 1,5 1,5 0,2
1,0 2+ I I 3_,0 0 !*§§__.
0,25 3+ I 2 0 0,307 - 0,043 "

B 3,4 2" 0 2 0 2,28 3,0
1,0 0+ I I 3,0 0 - 0,7
LLQ 2! I I 3^0 0 L55__
0,25 3+ I 2 0 0,307 - 0,043

C 3,4 2" 0 2 0 2,28 3,0
3,4 3" 2 1,2 Phase shift (Pig. 8)

The results of the calculations together with experimental data from

Ref. [12] are presented in Figs 9-13. In Pigs 9 and 10, we present the

coefficients of the expansion of the differential cross-section and the

polarization in Legendre polynomials:

The dotted, dashed and continuous lines represent the results of

calculations based on sets A, B and C respectively.

In Pigs 11-13, we present the angular dependence of the differential

cross-section and the polarization in the energy region 0.226-2 MeV, which

is calculated on the "basis of resonance parameter set C.

We would point out in conclusion that the data on neutron scattering
7

by Li nuclei in the energy region E » 0.25 MeV can be described fairly

well by considering the J =3 resonance which is formed by the p wave and

the J = 2~ resonance which is formed by the s wave and which lies at a

lower energy and gives a constant background.

When calculating the polarization in the energy region 0.5-2 MeV it is

necessary to take into account the additional levels. The best agreement
n

with experiment is observed if one includes the J =3 level with the phase

shift indicated. One of the most difficult problems at higher energies is

associated with the fact that the differential cross-section and the

polarization vary slowly with energy - i .e . there are no predominant resonance

like, for example, the resonance at En = 0.25 MeV. This situation can be

ascribed to the presence of a large number of overlapping resonances in this

region.
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7. The reaction Li(ptn) Be
7 7

Prom data on the total cross-section for the reaction Li(p,n) Be,
Q

Macklin and Gibbons [l3] found that Be has two resonances in the energy

range extending from the reaction threshold (E =1.88 MeV) to 2.3 MeV:

an s-resonance with J = 2" at E =1.9 MeV and a p-resonance with J = 3
7at 2.25 MeV. Prom the fact that the ground state of the Li nucleus is

characterized by J = 3/2 i t is clear that the reaction Li(p,n) Be through

the s and p levels of the Be compound nucleus (with J = 2~ and J = 3+

respectively) occurs with a channel spin of 2. Austin et a l . [14J tried

to interpret differential cross-section and polarization data using the set

of levels proposed in Ref. [13]. It was found that the calculations based

on this set of levels were in poor agreement with the observed angular
o

distributions and polarization. Level schemes of Be are given in Refs [15]

and [l6]. It can be seen from the schemes that the levels corresponding to

I < 2 (a reaction involving a channel spin of 2) are the levels with J = 1
and j " = 2 + at E = 3.0 MeV-^.

P

In this section we attempt to interpret data on the differential

cross-section and the polarization in the energy region extending from the

threshold to 3 MeV using the levels with / = 2~, 3+ and 2+ at 1.9 MeV,

2.25 MeV and 3.0 MeV respectively.

The differential cross-section and the polarization were calculated

using formulas (4.39) and (4.44). We made assumptions similar to those

made in the preceding section - namely,

1. At the energy in question, only one level with definite J

and * is significant (this enables one to use the single-

level approximation for the scattering matrix);

2. The terms corresponding to incoming and outgoing particles

with i > 1 are negligible;

3. Owing to parity conservation, the orbital momenta of the

incoming and outgoing particles are the same (£=!'), As

the ground states of Li and Be have J = 3/2~, in

a reaction passing through the 2 and 3 levels the channel

spin is conserved (and s1 = s = 2). Neglect of orbital

angular momenta greater than I1 is justified by the fact

that, in the energy region 1.88-3.0 MeV, the penetrability

It follows from the general polarization formula (4«44) that, if the
levels interfere and contribute to the polarization, then each of them
must be formed by a wave with a channel spin which is the same as that
of at least one of the remaining levels.



of the Coulomb barrier is at least an order of magnitude

greater for an s-wave than for a d-wave (for a p-wave

than for an f-wave). In the same energy region, the

penetrability for a p-wave is greater than the

penetrability for a d-wave by a factor of at least 5»
7 7

In the case under consideration - i . e . that of the reaction Li(p,n) Be
a f a1 and o = 0 . Then K

' aa1

(7.1)

* s^s^'s^S^1 sit,-(S^-s^vvf**-'^^;. (7.3)
Here _._ g ^

vfJ = 6 ; - 6-, - $w - *p (7.4)

(where o is the Coulomb phase, and <£ and$ are the phases of scattering
* n p

by a solid sphere for neutrons and protons respectively),

where V and P are partial widths of neutron and proton emission fromo n p

a Be compound state characterized by definite J and ft; P is the sum of

the partial widths of decay of the Be compound nucleus over all other open

channels; E is the resonance energy; E is the energy of the incoming

protons.

The interaction radius was calculated from the formula

T-- IA fA *+ i j / (7.6)
and assumed to be equal to 4f.

The +_ in the expression for f is there because the scattering

amplitude phases are determined experimentally to within K. Here, the
Jn

signs for f are chosen so as to obtain the correct sign for the B -co-

efficient with P^cos 0) in the expansion of the differential cross-

section in Legendre polynomials.
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The calculations were performed using the following level parameters:

(MeV)E (MeV, lab^ i

1.9
2,25
3,0

2"
3 +

2+

! c !S
I *•> t

2
2
2

iign fo:

_

+
-

5
5
I

7/x
,0
,2
.0

p i ^ (Me'

4,

o,
o,

VilatOj

3
83
28

TccO

0
0
0,57

For the phases of scattering by a solid sphere for neutrons near the
threshold we chose the same values as would be obtained in the case of
scattering by a solid sphere having a radius of 12f and then the same values
as would be obtained if the interaction radius decreased smoothly by
a linear law to 4f at 2.3 MeV. This was done without an adequate theoretical
basis for f i t t ing a computed curve to polarization data. I t is known,
however, that distant resonances can influence a phase shift through the
constant diagonal terms in the R-matrix and the corresponding energy
dependence of the phases may quite well be linear.

The results of the calculations are presented in Figs 14 and 15, together
with experimental data taken from Ref. [143• As can be seen from these
figures, the set of parameters l isted above satisfactorily describes the

experimental data on the total cross-section for and the polarization of
7 7

neutrons in the reaction Li(p,n) Be at 50° for proton energies in the
range extending from the threshold to 3 MeV. Less satisfactory agreement
is observed in the case of the angular distribution of the polarization,
especially for E = 2.6 MeV. However, the experimental data are not
completely rel iable. For example, the measurements of the differential

7 7
cross-section for the reaction Li(p,n) Be for E = 2.7 MeV presented in

Ref. [17] differ from the data presented in Ref. [l8] by more than ̂ Ofo.

8. Scattering of neutrons by **He nuclei

This example was first considered in detail by Lepore [5]« It is
assumed that contributions to the scattering process are made simultaneously
by the resonances of two odd states (Pw ? and P-,/p) of the -'He compound
nucleus. It is also assumed that al l the contributing partial waves have
total momenta of 3/2 and l/2 - i . e . in polarization calculations based on
formula (7.15)» with A and B determined in accordance with expressions
(5.10) and (5.1l) , in the elements V̂  = l-exp(-2i&^) the phases 6, for
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s , p . Pw? and d.,/ waves introduced in expression (l.4) were

assumed to be non-vanishing. The contribution of the other momenta is

insignificant at energies below 10 MeV. The dependence of the polarization

on neutron energy, which was calculated from the phase shifts presented in

Ref. [6], is shown in Fig. 1, where the scattering angle is given for each

curve (the first number indicates the angle in the centre-of-mass system

of co-ordinates and the number in parentheses indicates the angle in the

laboratory system). For high neutron energies, the results are in good

agreement with the calculations of Levintov et al. [7]; however, around

1 MeV Levintov's results differ somewhat from those obtained by us. It

can be seen from Fig. 1 that helium is an excellent polarization analyser.

Owing to the considerable width of the two P states which appear here, the

polarization varies relatively slowly with energy; the polarization value

is very significant. At neutron energies above 0.4 MeV, by a suitable

choice of scattering angle it is possible to find a polarization value

exceeding O.75» The maximum polarization angle increases from •& = 90°

at a neutron energy of 1 MeV to 0 = 135° for neutron energies of 4 MeV or

more. Little is known about the uncertainty associated with the calculated

polarization.

The differences between results obtained in determining the p.. /?-phase

shift at 2.6 MeV were discussed in Ref. [8], The value of the d-phase is

s t i l l very uncertain. This is the reason for the considerable uncertainty

associated with calculations of the polarization at neutron energies above

10 MeV; however, no quantitative estimates of the error have been made so

far. From the available information we estimate that below 6 MeV the

uncertainty associated with the polarization is lOfo near the angular

distribution maximum and about 20^ where the polarization varies rapidly

with the angle.
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129. Elastic scattering of neutrons "by C nuclei

12In the case of neutrons with energies up to 4 MeV and C nuclei, only
12elastic scattering is possible. As C has zero spin, the entrance and

exit channel spin is l /2. It has "been reliably established that there

are two d, /^-resonances - at E = 2.95 MeV and E = 3.5 MeV - which interfere

strongly with each other, as can be seen from total cross-section experiments

The extent of such interference between "resolved" states with the same J and

is unusual in fast neutron spectroscopy and requires the use of at least

a two-level collision matrix when these states are being described, 'which is

important for polarization at energies below 2 MeV.

Prom angular distribution data, Lane [lO] obtained the parameters of

R-function (l.3) presented in Table 1.

Table 1

12R-function parameters for neutron scattering by C
nuclei in the case of an interaction radius
r = 3.72f and with a boundary condition

such that E, « E for the resonances
A. J^Q gat energies up to 4 MeV

0 1/2 - 1,86 4,0 - 0 1,035
1 1/2 - - 0,1 0
1 3 / 2 - - - - 0,25 0
2 3/2 2,734 0,212 3,372 1,7*2 0,107 - 1,368
2 5/2 - 1,922 0,030 - 0,558 - 1,541

In Pigs 2—7, we give — together with the experimental results reported

in Ref. [io] - "the results of calculations performed on the basis of the

resonance parameters presented in Table 1 and of formulas (4.39) aricl. (4.44)»

where relation (l.4) is used for V. In Figs 2-4» we present the angular
12

dependence of the polarization of neutrons scattered by C nuclei for the

energy range 0,5-2 MeV. The neutron energy is given in the laboratory

system of co-ordinates and the angles in the centre-of-mass system. In

Pigs 5-7i we present the corresponding energy dependence of the coefficients



of the expansion of the differential cross-section and the polarization in

Legendre polynomials:

As can be seen from these figures, the resonance parameters selected

(Table l) satisfactorily describe all the data on the angular distribution

and the polarization for energies up to 2 MeV.
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Annex 1

We present "below some properties of the vector sura coefficients used

in this work.

1. Clebsch-Gordan coefficients

Clebsch-Gordan coefficients are used here for expanding the wave

function in the representation of the total momentum in wave functions

in the representations of the orbital momentum and the spin:

VvlcW>i ( A . l . l )

The squares of the Clebsch-Gordan coef f ic ien ts ( I (6SH<- Wl*, I JM)I )g ive

a p robab i l i ty t h a t , on being added, the o rb i t a l momentum I with project ion m.
At

and the spin s with projection m will yield the total momentum J and its
s

projection M. Clebsch-Gordan coefficients possess the following symmetry,

orthogonality and normalization properties:

a) h ^ + y\\c- / i . (A.l.2)

b) (ov&o* [j | c ) r ) = ( € G - p - " * I C " X ) = (A.1 .3)

C ) (CXZ>CQ\<LC)--C (Ci + Z + t. = 1*+*.) ) (A. I .4)

d) 21 (a^^p,|cVJ(^^^Pl c^ r ^cc' £**' ) (A.l.5)

(A.L6)

2. Racah coefficients

In analyses of the angular distribution and the polarization in

nuclear reactions, use is made of Racah coefficients determined by the

following relation [25] :

Z (a6M-v,vv,l|^h-w,t^;(gelhi1v»»-»v,I|fw,jlc/h-w1h,|cw;x
,r n 1 o\ (A . l .8 )

W(o.Bcc/; ef)
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Racah coefficients possess the following symmetry properties:

Moreover, Racah coefficients satisfy the following orthonormality

conditions:

and also possess the following properties:

(A.1.10a)

(A.i.lOb)

c[;eQ) (A.i.iia)

^

(A.I.12)

The following relations are extremely useful when one is summing over

magnetic quantum numbers:

3. Z coefficients

The final expressions for the angular distributions contain Blatt

Biedenharn coefficients defined as follows [28]:

tfe •

Prom this i t is clear that Z(abcd; ef) is non-vanishing only when a + c + f

is even and that Z (abed; ef) is real. Z coefficients satisfy the following

symmetry and orthogonality conditions:

.i. 17)
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Lastly, we give values of Z when either ^ or f is zero:

f j ] | ; .i is)

(tt j (A.1.19)

4. X coefficients

X coefficients have been used by Pano and Racah in the following

manner [27]:

whe re

Fano and Racah have shown that X is multiplied by (-l) if two columns

change places and that the transposition of X relative to the main diagonal

leaves X unchanged. It should be noted that the elements of each row and

each column should form a triangle. The following relation is useful in

practical applications:

(A.I.21)
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Annex 2

Polarization at isolated resonances

As indicated in section 6, the polarization in nuclear reactions occurs

in the following very simple cases:

1. The reaction proceeds with appreciable intensity through

two compound states with differing total momenta or

parity;

2. A contribution is made to the reaction by one resonance

and the interfering amplitudes of potential scattering

with other J and n (this case is confined to elastic

scattering);

3. A contribution is made to the reaction by one resonance

with several possible initial and final channel spins

or orbital momenta.

Let us consider the last two cases in greater detail.

In accordance with expression ( l . l ) , a matrix element of the P-matrix

has the form

Thus,

( A ' 2 * 2 )

^
Using expression (A. 2.2), we calculate the quantities V V + V-. V? and

O - V.. V9 entering into expressions for the differential cross-section

and the polarization:
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>/t 'A

n

lE-ez-ir2/2Xe-e(-»ir,/2;

As can "be seen from expressions (A.2.3) and (A.2,4), from the product

of the V-matrices i t is possible to separate out terms corresponding to

purely potential scattering, resonance scattering and interference "between

potential and resonance scattering. After the substitution of expressions

(A.2.3) and (A.2.4) into expressions (4.39) and (4.44)» "the suras corresponding

to interference scattering can "be combined. When there is only one

resonance with definite Jn*0
 an<^ n̂» ^ e expressions for T(00) and T(ll) are

given by expressions (A.2.5) and (A.2.6). The quantities a, and b entering

into these expressions are the corresponding products of the vector sum

coefficients in expressions (6.24b) and (6.29):
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T(oo; -{Z

^ ^

L ft 7. t U (, Ks% y^w

( A 2 6 )

Using the fact that the potential scattering phases <P , and the partial

widths F t vary only slightly in the resonance region, it is possible toa* s
follow the energy dependence of T(00), T(ll) and the degree of polarization

Let us rewrite expressions (A.2.5) and (A,2.6) in the form

(A.2.8)

where A and B correspond to purely potential scattering, A , A , B? and B,

correspond to interference between potential and resonance scattering and

A. and B. correspond to purely resonance scattering. It should be noted

that A , A , A , A., B,, B?, B and B. are constants in the resonance region.
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Expression (A.3.9) can be reduced to the form

(A.2.10)

The first terra in expression (A.2.10) gives the constant background, while

the second gives the asymmetric resonance peak shifted relative to the

resonance in the differential cross-section and having another width.

Thus, in the case of elastic scattering (a = a ' ) , the percentage polarization

varies considerably at the resonance and has the form of an asymmetric

resonance peak. In the case of inelastic scattering or of an a f a' reaction,

o , = 0 and - as can be seen from expression (A.2.10) - the polarization is

constant at the resonance: B.
*(*)--£ (A.2.11)

A4

Let us now consider in greater detail the case of inelastic scattering

when the potential scattering phases do not depend on the total momentum

and there are one entrance - (ais) - and two exit - (a I s.. ) and (api?F?) -

channels.

In this case,

(

The resonance polarization will be significant if P and F are

<x, £. s, a, -4}sp
comparable and. i f cp „ / tp . n . . .

a-. *, s ' a, *pSp. Jbrom the phase inequali ty requirement

i t follows that -2, £ i_, for the potent ia l sca t te r ing phases depend only

s l igh t ly (or not at a l l ) on the channel spin s. I t follows from the law

of par i ty conservation that i , and I must dif fer by at leas t a factor of

two; hence, i f the energy of the outgoing pa r t i c l e s i s low, i t i s d i f f i cu l t

to find a case where F „ and F are comparable. Thus, the most
alVl alV2

interesting cases from the point of view of obtaining significant polarization
are those where the outgoing particles have an energy which is so high that

the penetrabilities for the s and d waves are of the same order of

magnitude.
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Fig. 1 Polarization in neutron scattering "by Tie at neutron energies
"below 10 MeV. The scattering angle is indicated for each
curve (the first num"ber indicates the angle in the centre-
of-mass system of co-ordinates, while the number in parentheses
indicates the angle in the laboratory system).

of, *-r^

12Fig. 2 Polarization of neutrons scattered by C. The neutron energy
(in MeV) is given in the laboratory system of co-ordinates and the
scattering angles in the centre-of-mass system. The continuous
curve is the result of calculations based on R-matrix theory and
performed using the parameters in Table 1.
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Figs 3 12Polarization of neutrons scattered "by C. The neutron
energy (in MeV) is given in the laboratory system of
co-ordinates and the scattering angles in the centre-of-
mass system. The continuous curve is the result of
calculations based on R-matrix theory and performed
using the parameters in Table 1.
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Fig. 5 Coefficients of the expansion of the differential cross-section
in Legendre polynomials. The differential cross-section and
the angles are given in the centre-of-mass system of co-ordinates
and the neutron energy in the laboratory system. The continuous
curve is the result of calculations performed using the
parameters in Table 1.
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Fig. 6 Coefficients of the expansion of the differential cross-section for
neutron scattering "by C in Legendre polynomials in the region of
the resonance at 2.08 MeV. The differential cross-section and the
angles are given in the centre-of-mass system of co-ordinates and
the neutron energy in the laboratory system. The continuous curve
is the result of calculations performed using the parameters in
Table 1.

u 11 j ' /i t.cKf

Coefficients of the expansion of the cross-section for polarization
in neutron scattering by 12Q i n associated Legendre polynomials.
The polarization cross-section and the angles are given in the
centre-of-mass system of co-ordinates and the neutron energy in
the laboratory system. The continuous curve is the result of
calculations performed using the parameters in Table 1.
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•1.0

o as i.o i.5 z.o

Fig. 8 The energy dependence of the phases used in calculating C.

Fig. 9 Coefficients of the expansion of the differential cross-section for
neutron scattering "by 'Li in Legendre polynomials. The differential
cross-section and the angles are given in the centre-of-mass system
of co-ordinates and the neutron energy in the laboratory system. The
dotted, dashed and continuous curves are the results of calculations
performed using the parameter sets A, B and C respectively. The
values of B with L > 3 are small and are not presented here.
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Fig. 10 Coefficients of the expansion of the cross-section for the
polarization of neutrons scattered by TLi in associated
Legendre polynomials. The polarization cross-section and
the angles are given in the centre-of-mass system of
co-ordinates and the neutron energy in the laboratory
system. The dotted, dashed and continuous curves are
the results of calculations performed using the parameter
sets A, B and C respectively. Values of C. with L > 3
are small and are not presented here.

Fig. 11 Angular distribution a(d) and polarization P( •&) of neutrons in
scattering by ?Li. The angles are given in the centre-of-mass
system of co-ordinates and the neutron energy (in MeV) in the
laboratory system. The continuous curves are the results of
calculations performed using parameter set C.
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ftm
•*(»!

Figs 12 and 13 Angular distribution o(3) and polarization P( ̂ ) of
neutrons in scattering by ^Li. The angles are given
in the centre-of-mass system of co-ordinates and the
neutron energy (in MeV) in the laboratory system.
The continuous curves are the results of calculations
performed using parameter set C.

«*

0

-Oi

at
•

-ai

-a*
ois
a/o

ftOJ

0

&40

OHO

e

ft
^

10 2.4 It t.ixfrl .

7 7
Fig. 14 Cross-section for the reaction Li(p,n) Be and the polarization of

neutrons from this reaction, calculated using the parameter set
indicated in the text. The angles are given in the centre-of-mass
system of co-ordinates and the proton energy in the laboratory system.
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Fig, 15 Angular distribution of the polarization of neutrons from the
reaction ^Li(p,n)'Be calculated using the parameter set
indicated in the text. The angles are given in the centre-
of-mass system and the proton energy in the laboratory system.
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MUF - A PROGRAMME FOR THE MULTILEVEL CALCULATION OF THE
CROSS-SECTIONS OF NON-FISSIONABLE NUCLEI FROM

RESONANCE PARAMETERS

L.P. Abagyan, M.N. Nikolaev, V.V. Sinitsa

Introduction

In the region of resolved resonances, the energy dependence of cross-

sections can be reproduced on the basis of known resonance parameters. In

the case of isolated resonances, when the widths of the levels ace less than

the distances between them (P « D), the neutron cross-sections are

satisfactorily described by the single-level Breit-Wigner formula under-

lying the URAN programme [ l , 2 ] . The URAN programme is intended for

calculating the cross-sections of heavy non-fissionable nuclei, for which

the condition V « D is usually satisfied. The cross-sections of such

nuclei are greatly influenced by the Doppler effect, so that the temperature

of the medium is taken into account when the cross-sections are calculated

by the URAN programme. The interference of potential and resonance

scattering is also taken into account. For light nuclei and nuclei of

intermediate atomic weight (in fact, for all nuclei at sufficiently high

energies), the isolated resonance condition may break down. In such

cases, in cross—section calculations it becomes necessary to take into

account the effect of inter-resonance interference.

In this paper, we describe the MUF (Mnoga-Urovnevaja Formula. = Multi-

Level Formula) programme, which enables one to calculate the energy

dependence of the cross-sections of non-fissionable nuclei with allowance

for the effects of inter-resonance interference and interference between

resonance and potential scattering. In the MUF programme, as in the URAN

programme, there is provision for calculating mean-group cross-sections,

self-shielding coefficients and transmission functions. In cross-section

calculations, the MUF programme does not make i t possible to take into

account the temperature of the medium, so that i t can be used for calculating

only the cross-sections of light nuclei and nuclei of intermediate weight,

for which the Doppler effect is negligible (in the temperature range of

practical importance, the resonance widths for these nuclei greatly exceed

the Doppler width)„
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Description of the formula for calculating the
energy dependence of the cross-sections

The MUP programme is "based on a multilevel formula derived by

A.A. Lukyanov [3] within the framework of the Wigner-Eisenbud formalism

with a number of assumptions. For each compound nucleus level system

(v) characterized by definite total momentum (J) and parity (* ) values,

the following assumptions are made:

1. In view of the large number of independent radiation

channels, the radiation width may be written

r^-^Kr (1)

where Xp. represents resonances from the system v and V

is the mean radiation width;

2. For a neutron width P , the single-channel approximation -

whereby only specific orbital momentum (i) and channel spin

(j) values correspond to each of the independent compound

nucleus level systems - is valid.

As a rule, these assumptions hold good for various non-fissionable

nuclei in the energy region where there is no inelastic neutron scattering

and where the contribution of waves with high orbital momenta (-* > 2) is

insignificant.

v
With these assumptions, the collision matrix element u may be

represented in the form

where

A u; -• r £.'"Y~iy_~l A (3)

E^ being the energy of the *• -th level from the system v (the sum is taken

over all levels
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The total cross-section (o) and the capture cross-section (a ) are
c

expressed in terms of collision matrix elements in the following manner:

G(E) •-- ?XAZ J ^ ~ M - ! 4 ( C ) J , (4.1)

g, G - I L C ( £ ) I 2 ) . ( 4 # 2 )

Here K is the neutron wavelength and gv the statistical weight of a state

with given Jv.

By substituting expressions (2) and (3) into expressions (4«l) and

(4*2), it is possible to obtain the following expressions for the cross-

sections:

. .

TT^aT, (5.2)

-- <5U) -§ (£) , (5.3)

where

If it is assumed that q>v is the phase of scattering by a reflecting

sphere, then

fsil,o) = x , ( 7 # 1 )

(7.2)

- x - Qic

(8)
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Here k is "the wave number of a neutron outside a nucleus; it is

associated with the kinetic energy of the neutron outside the nucleus by

the relation

0,2197 (9)

where A is the mass of the nucleus in neutron mass units and R is the

interaction radius. Weisskopf [4] has stated that R depends on atomic

weight as follows :

K * locl(A :/s + 0,55) (CM) ; tad- f,5H.S-fO'G (10)

In the MUP programme, the parameter rad is introduced together with other

input data. In some specific cases, rad can be determined more precisely

on the basis of total cross-section or potential scattering cross-section

measurements already perforated.

The energy dependence of the neutron widths is computed from the

formulas

(11)

1 i+x* ' 4 9*-jjf 'i-x* ' ( 1 2 )

The introduction of the quantity <p« (formulas (7.l)-(7.3)) enables

us to calculate the potential scattering cross-section:

6JE) = ^ir^L QM SLn'% = friLteSOlLnfe . f ^
r u & £ (13)

There is also provision in the MUF programme for introducing the non-resonance

part of the total cross-section (a ) as a function of energy. The array of

specified potential scattering cross-sections is designated as SPOT and the

array of energies at which they are specified as ESP. At the calculated

energy points, the values of o are determined by linear interpolation.

In calculations of the cross-sections of a mixture of isotopes, the

level system (v) is also characterized by Ay - the atomic weight of the

isotope to which i t belongs.
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The cross-section calculation formulas (5«l)-(5«3) have an advantage

over other multilevel formulas, for when using them to restore the energy

dependence of the cross-sections, there is no need to specify any

additional parameters characterizing the multilevel state. In

formulas (5.l)-(5.3)» the cross-sections are functions of the single-level

resonance parameters which are used in calculations based on the Breit-

Wigner formula. It is this set of parameters which, as a rule, is

determined by experimentalists when analysing data obtained near each

resonance (by the "method of squares" or the "method of shape").

In Ref. [5]» Garrison presents curves of the total cross-section

of two interfering resonances calculated using multilevel formulas.

The positions of the resonances were fixed (lOOO eV and 1010 eV), while the

widths varied within a wide range (l eV-50 eV). It was assumed that

there was no capture. These data were used as a basis for total cross-

section calculations by the MUF programme which made i t possible to

reproduce completely the shape of the total cross-section curves. In

Fig. 1 we present the results of the total cross-section calculations

using the MUF programme (continuous curves). The results of cross-

section calculations performed with the URAN programme are represented

by broken curves. It can be seen from the Figure that the URAN programme

can be used for restoring the energy dependence of the total cross-section

only if T / D < 0.1.

Description of the MUF programme

The programme is written in ALGOL-60. It is translated into M-20

computer language by a TA-2 translator. The comments below relate to

some of the blocks and compound statements constituting the MUF programme.

1. Next energy point selection statement (VYTOCKA). This governs

the size of the next energy step. For the i-th resonance, the first

step is P./32; i t then doubles, provided that the total cross-section

at two neighbouring points differs by less than 5%» Doubling of

the step proceeds until dE does not exceed P.. The step then becomes

constant and equal to P., but only if the total number of points on

the resonance wing in question does not exceed 100 (otherwise, the

step is selected in such a way that the number of points on the

resonance wing is 100).



2. Determination of inter-resonance points. This is somewhat modified

in relation to the URAN programme [ l , 2 ] . For each i-th resonance, the

inter-resonance energy is determined on the right (E. .. .) and on the left
l—i, I

(E. . 1) of the resonance:
rc -4 c'' r P

t . - — _ _ . ^ ^

In those cases where

f i - i . i - , * fW ^f,,,, , (15)

the energy region from EN to E. 1 . was regarded in the URAN programme
i-i, l

as the "left wing" of the i-th resonance ( i . e . the cross-section

calculations were performed from the i-th resonance peak to an energy

of EN). Similarly, when

£i. . . i .**ev>£i.i . , , (16)

the energy region from E. to EV was regarded as the "right wing"
X f I T I

of the i-th resonance. As was shown in Ref. [2], with this approach

to the selection of inter-resonance points i t is not always possible

to achieve the required precision in integrating the energy dependence

of the cross-sections.

Accordingly, alterations were introduced into the inter-resonance

energy selection statement. For EN< E. . , the energy region EN-E. .
1 *"1, i i —1,1

is calculated by means of the "VYTOCKA" algorithm from EN to the right

with an init ial energy step P. ,/32. For EV> E. . .., the energy
T.*-"X 1 y l * r lregion E. . -E i s calculated by means of the "VYTOCKA" algorithm from

1,1+1 v

EV to the left with an ini t ia l energy step P. -,/32. In the remaining

cases, the calculations are performed from the i-resonance peak energy

E?, with a step ofr -/32, first for the left and then for the right wing

of the resonance.

This way of selecting inter-resonance points enables one to describe

in detail the energy dependence of the cross-sections in the case where

the resonance lies near the boundary of the group and outside the group

interval. The algorithm enables one to calculate the group cross-sections

in the case where the energy interval of the group falls into the region

between the resonance peaks.



- 77 -

Owing to the advantages of this way of determining the inter-resonance

energies, the algorithm in question has also been introduced into the

URAN programme.

3. Calculation of resonance integrals. In the group, such calculations

are performed using the formula

fv ^ ( 1 7 )

J o - r\\S • All - JQ - J
whe re K *

<3̂ ;-- hklfy-l^i (l8)

i s the cross-section at the resonance peak. Those levels ( i ) are summed

whose energies E . sa t is fy the inequali ty EN < E . < EV.

4. Calculation of quant i t ies averaged over the energy group (SUM block).

In the MUP programme there i s provision for obtaining:

(a) unblocked cross-sections -

(b) blocked cross-sections and self-shielding coefficients -

<? ~}±~M•••'*•?'••''

v _ ^ , e,^._-p.-..^.»,.^.

(21)
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(c) transmission functions

I *tfcV

(22)

The set of thicknesses {t^j for calculating the transmission functions

can "be calculated by the programme using the following relations:

( 2 3 )

In the programme, we take the coefficient £ to be 2 . There is also

provision for introducing the set of thicknesses on punched cards.

The array of specified thicknesses is denoted by TOL.

Examples of cross-section calculations
using the MUF programme

Total cross-section calculations were performed for the elements Ti,

V and Mn. These elements were chosen because, in the energy ranges

considered, the condition V/j) < 0.1 breaks down for some resonances.

As a result, inter-resonance interference is very prominent in the total

cross-section curves and the energy dependence of the cross-sections

cannot be restored using the URAW programme.

In the cross-section calculations using the MUF programme, the

resonance parameters recommended in Ref. [6] were first taken as a basis.

In Table 1 we present the resonance parameters of titanium.



- 79 -

i> (keV)

10.51
12.12
12.82
16.40
17.34
18.1
20. o
22.1
22.2
26.9

'27.0
25.1
U.2

51.2
32.3
35.g>
36.1
37.0
37. J
37.5*
39.1

Table 1

Resonance parameters

! ? n (eV)

60

bO

80
185

7500
154
122

4 J u

yj-j

410

7J0
?y

160
9<!5

500

142
202

200

I ! JO
ibbO
370

of 221

h.

47

47
47

47
48

'49

4<J

4y

4>-
4^

i 7

47
49

4i.'
4?

43

4?
47
48

49
47

^ [6]

i

B

1
0.08 |
O.Jo I
U.06
0.08
0.73
O.Ub
0. Jo
0.06
d. do
J.Ou
U.vJt)

o.ub
0.06
0.05
0.0«
0.06
0.08
0.08
0.73
0.06
0.08

In Pig. 2 we show the calculated curve of the energy dependence of the
t o t a l cross-section of titanium in the energy range 15-30 keV. The

experimental r esu l t s of Garg et a l . (open dots) are taken from Ref. [ 6 ] .

The resonance parameters for vanadium were taken from Ref. [ 7 j .

We succeeded in describing the energy dependence of the t o t a l c ross-

sections only af ter varying the neutron widths and resonance posit ions

several t imes. In Table 2 we present the i n i t i a l and modified resonance

parameters of vanadium.
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Table 2

Resonance parameters of _ V

S (keV)

4.17 (4.16)
6.89 (6.84)

II.81 ( i l . i )
J.G.6J (lu.'O
17.40 (17.J)
21.65 (21.6)
29.45 U'5.6)
39.30
4d. 15
^y.55
51.95
53.0
62. 9

r
n

508
1280
5500
350
350
790
191
570
150
630
115
960
3 SOU

'eV)

(450)

(1100)
(4300)

(30J)
(200)
(390)
(150)

J

n
3
3
4
4
3
4-
3
4
3
4

3
3

The cross-section of vanadium was considered in the energy range 2-30 keV.

The results of calculations of the total cross-section of vanadium based on

the in i t ia l ("broken line) and modified (continuous line) resonance

parameters are presented in Fig. 3. The experimental points were taken

from Ref. [6] ,

The cross-section of manganese was considered in the energy range

0.1-10 keV. In order to describe the total cross-section curve, the

neutron widths of two levels had to be modified somewhat relative to those

recommended in Ref. [6] , The resonance parameters of manganese taken by

us are given in Table 3.
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Resonance

E (keV)

-2.83
-0.U78
0.33?
1.098
2.375
7.170
8.670

17.8
18.0
21.0
23.7
25.9
26.4
27.0

rPable 3

parameters of pc-Mn £6]

IV, (ev)

26.9
0.14

22
14.6

400
425 (440)
404 (385)
15.0
45.0

860
380

7.0
1^0
380

J

2
3
2
3
3
2
3
2
3
3
2
3
2
3

The numbers in brackets are the modified neutron width values. In Pig. 4

we present the results of manganese total cross-section calculations.

In the cases considered, we succeeded in describing satisfactorily

the energy dependences of the cross-sections. For this we had to vary

the resonance parameters somewhat by hand. A programme for the automatic

fit t ing of resonance parameters, written on the basis of the given multi-

level formula, will have to be devised.

Besides the detailed energy dependence of the cross-sections, the MUF

programme permits us to calculate transmission functions, resonance self-

shielding coefficients and mean-group cross-sections. Some of these

quantities are presented by way of illustration in Tables 4 and 5 and in

Fig. 5.

It did not take more than 10-15 minutes to calculate any of the

variants on the M-220 computer.



Resonance s e l f - s c r e e n i n g f ac to r s and mean-group c ro s s - s ec t i ons of

Group
No.

(BNAB)

11

12

13

Boundaries
of groups

(keV)

10 - 21,5

4,65 - 10

2,15 - 4,65

ER

0,7656

0,7658

0,7718

Mean-group
cross-sections

(•barn)

<6 C >

50,94

0,028

56,91

0,056

69,76

78,74

0,13

78,61

Resonance self-shielding factors of cross-sections
for o (b|rn)

= 0 io lcr icr i<r

FT

FC

FS

FT

FC

FS

FT

FC

FS

0,2356 0,4237 0,7722 0,8656 0.3S34

0,7586 0,7971 0,9182 0,9873 0,9983

0,5558 0,6818 0,8831 0.9S27 0,9932 I

0,1222 0,2492 0,6624 0,9411 0,9935

0,6935 0,7551 0,8870 0,9795 0,9978

0,3708 0,5400 0,8205 0,9702 0,9953 j

U.I753 0,2048 0,3700 0,79IS 0,9730

0,2891 0,3491 0,5784 C,8yCS 0.SSG7 \

0,2750 0,3339 0,^654 C.BSSO 0,9^54 1

\

co



Table 5

Resonance self-screening factors and mean-group cross-sections of

! 1
Group } Boundaries

No. - of groups
(BNAB) j (keV)

12

13

4,65 - 10

2,15 - 4,65

ER

0,76S0

0,7715

Mean-group
cross-sections

(barn)
36,12

0,039

36,03

157,7

0,10

167,5

Resonance self-shielding factors of cross-sections
tor on (Darn)

LL

= 0

FT 0,1435

PC \ 0,3263

FS ! 0,2532

1C

0,2234

0,4 476

C.40I3

0,5397

U.7334

0,7183

FT j 0,02059 0,1.143

PC j 0,1514 0,1995

PS i OfISS3 0,2377

0,2352

0,4037

0,4453

103

0,9013

0,2509

0,9463

0.673:

0,8150

0,9(303

0,92-55
•1 O O / 1

0,9737

0,9755

OO

I
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E (eVj E (eV)

a f
(barn) { 'i*1" "barn)

Fig. 1 Results of calculations of the total cross-
sections of two interfering resonances with energies
E1 = 1 keV and E ? = 1.01 keV. Continuous curves -
calculations performed using the MUP programme;
"broken curves - calculations performed using the
URAN programme.
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:-V-.,-

L.".. : v- . - . r . - l - 4 -" i

i • : " ; - : •;; 1
• - - 1 -

E. - (keV)En

Fig. 2 Total cross-section of titanium

•: i ' ! • ' i

S :
I
e-

o •V-

I:

n
- ' (keV)

Fig, 3 Total cross-section of vanadium

'E^ - (keV)
n

Fig. 4 Total cross-section of manganese
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Fig. 5 Transmission functions TTf TC and TS as functions of thickness T
in the energy range 15-30 keV for pg^i
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ANNEX

T e x t of MUF programme i n ALGOL-6O

001: BEGIN RE/iL E N f E V i f l r , / l T ) , > l ! ; , r i C i , f l S , * ) V I « , f l V f , f l V 5 ,

0 0 2 ; R . / J 8 J , OF 1 , B 1 2 , E R . F P J , f t ^ 0 ;

3 0 J : 1 N T E G E H MR , MM . D M , S M , . M B 1 . tlB2 , I , J , K , K N . K M ,

0 0 A •: M i D . 5 . fl 5 M , N U . N' 1J M , 1 S P , P , P M , '1 , K 8 ;

0 0 5 : coc I ' p i c - r , K B ) ;

ooo; F9 : coo ( ' m o -2 ' i flfl i , R , NB , MM , uu , SM , PM , (,UM i fi « j i ;

U o ? : B E G I N H U H J I I t c M i C B S l U M ! i i t 0 , G ( i H , i ; f l i i i ( < i i i 0 | i : S t i 5 l N t i i j

0 0 d : T I L t l : f l B 5 ( S M ) ] , E . S l T . S l C l - 1 0 0 : i 0 0 ) f C K T » S K T ,

0 O 9 : S K T 2 [ i : f l B S l 5 M ) ] » R K T C i : f l b S < S M ) , i : f l 8 S < M M ) ] ,

o i o : s p , f l B , c , s u i , s u 2 l i : f l B s ( N U M ) ] ;

O i l : C O M M E N T C O ' E G 1 2 & ' C O ' ' C « N ' ' G f l C ' ' K f l R O ' 1 0 0 ' T I L ' 7

0 1 2 : ' C K T ' ' S K T 1 < S K T 2 ' 7 ' K K T 1 4 2 I S P ' ' f l B > l C > ' S U r ' S U 2 1 5 0 ;

0 1 3 ; B E G I N I N T C C E R flRRflV WNU [ J : flBS ( NB ) ] , L I 1 : >5B5 { NUM ) ] J

0 M : cowMfcNT co ' W N U ' I O O ' L ' S O ;

015: COOt 'R10-2' ,EC,EO,GflN,CflC,MNU,flB,C,L.TIL);

016: FOR NU:=1 STEP I UNTIL « B S ( N U M ) 00 BEGIN

017: sPtNu]:=/i6{NU];flB(NU):=fl»s(flBlNU}) EHO '; o: = I ;

018r F 5 : P : = 0 ; F O R N U : = O + 1 S T E P I U N T I L fibS(NUM) O O

0 1 5 : B E G I N IF S P I N U l ^ O T H E N B E G I N

0 2 0 : IF AB I U V ) * R b I O l T H E N B E G I N p : = P * i ;

0 2 1 : I F P = I T H E N M : = N U E N D E L S E • S P ( N U ] : = U E N D E N D ; O : = M ;

0 2 2 : I F P > 0 . H E N C O T O F 5 I

023: COD('P2-'10',flB1,NB,NUM,MM,SM,R);

" 2 ^ : P : = O , F O R H U : = I S T E P I U N T I L A B S ( N U M ) O O

0 2 5 : IF S P l N U ] < 0 T H E N p;=p*'i;

026: IF PM < Q T H E N P M : = - 5 O ;



o i 7 : 6 E c i \ £ R s ;•, v t x , o I - l : i 3 i f 5 P I i : i o ; , s u o T ! i : P , i : i o J ,

0 2 « : T O L , T T i T C , T S [ i : ! F P r « G T H E N i O C L S L P M I J

0 2 9 ; C 0 P M C U 1 DO ' S P O T ' 3 0 ' T O L ' ' TT ' ' VC ' ' TS ' 5C ;

C J O : I F P » D T ' l f N J U u U T t ' t> 1 0 - : ' ' , E SP , S P O T ) ;

•J 3 1 : i F t> M > 0 T W E »•: C 0 0 ! ' K 1 0 - 2 ' , J 0 L ) I

0 1 2 : B M : = 2 . 1 9 7 > s - « • $ « ? ; F C » ! : = 1 S T t ! » 1 U U T 1 L - U 3 ( N B ) DO

B F U I M .VU : - ( . ' V U t J ) J P : =F. M J E P ( .1 S [ I-L' ] ) ;

IF U ( N U ] = 1 THE''

0 3 7; 2 F L I N u 3 = ? T H f-: li

0 3 9 : N B 2 : = i;oIi1:= f c 1 U ;

o*o: F J R o: = i S T P P i U N T I L A U 5 ( D « ) - I D O

0 < i : B E G I N EN:=EGtD];flv«:=flvc:=flvs:=flT:=-rtc:=fls:=tk

0 < 2 : IF O M > 0 T H E N B E G I N ASM:=flB5(5M ) I

F O K s:=i 5 T K P i U N T I L « S M oo

o < 5 : F O R M : = I S T E P I U N T I L flesum D O

0 * 6 ; » K T l s . M ) : = o E N D E N O ;

o < 7 : F O H P : = I S T E P I U N T I L a b s ( p « ) O O

T T I P ) : = T C t P ) : = T S [ P J : = o ;

P : = N B 2 - 1 ; z x f o ) : = - 1 ;

0 5 0 ; F O R P : = P * I W H I L E e o ( p ] t e u ( t ) * i ) o o B E G I N

3 5 1 : IF P > « 6 S ( N 8 ) T H E N G O T O F 3 ;

0 5 2 : I F e o ( P ) > 5 N T h e N et c i N h u : = M N u j p ) ;

0 5 3 : i s p : = E N T i E R ( / ; b t N u ] ) ; f > n : - ( « & l N u ) - i s p ) » i o ;

0 5 < : B I 2 : = 6 1 i»«lriU)«c,fiNlP]/E0[pjt2;«vR:=flv(j*B

0 5 5 ; flV;: = B V c * B ! 2 / ( 1*CflN[PJ/CSCtPj ) END £MO ;
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0 5 6 ; F 3 : Mt>, i : = N32 ; F U S 1 : = K P ? . 1 • 1 V. 'HJLE E v < E G [ tv • 1) en

0 5 7 ; 5 E C I N SEAL G N , G /i . SO , S 1 T 1 . K £ i-: , S P 0 , S »". ;

Q 5 8 : a i i : s ( f l s [ M N u ! i ] ) - t i . r i E R l i i t l M N u [ i ] ] ) ) . i i j ;

0 5 9 : 0 t - 1 1 : = 0 [ n '. I F I < f l o S < N b ) T H E M b E U I K

0 1 1 : a 1 2 : = 1 fl 6 I *• N u I I ' l n - E N T l E R l f l b l n - N U U + i j n M i a ;

D 6 2 : E V ; = ! E 0 [ I » l l " . a « b I 1 ) - 0 [ l ] ' C . N » t ! 2 ) /

C b J : U a » B l i * G - i . c I I ) E K t ; E L ^ E E V : = E U I O * I J ;

U 6 < i : i.r F V > E 5 t D * U i H F i i e v : = L ' . ! u* 1 ] ;

0 6 5 : ; r t v < c l 1 ; T n E ^ r t r . I N N L - 2 : = K E ? * * ; : O T G F 3 t N D :

3 6 b ; 0 1 1 1 : = E v ; r. p, 2 : - 1 ; r<: = K H : = 0 ; K M : = 1 ; E { 0 ] : = E 0 I I 1 ; 0 : = - 1 ;

: t ? : I F o [ - i : > : [ t n X ^ E f - R f c " U 2 r - t l o ) : = o t - i ) : o : = i E L D :

C 6 6 : I F 0"l 1 J < E [ 0 1 T h E K h E I. 1 K £ [ 0 ] : t u ! l ] I K U : = 0 E ^ U ;

0 6 9 : F i: F U D K u : = i S T E P I U N T I L c B s t N u ̂ ) oo

3 7 3 : e E c i K S U U ' N U ] : = S U 2 [ M U V : = C E N D ;

071: Bn:=?.i97 w-<«Rao»stii?T<E[K]);

ff?2: F U R J : = I S T E P \ u K T 1 L flestsB) oo

0 7 3 ; 6 E C I N . KU : = M « J U [ O ] JP : = E H T 1 E « < C B [ K U J ) ;

0 7 * : K A K : = B J i » ( . s s « P t . 3 3 J 3 J > / ( i * i / p ) ; f l B i : r . K f l R t 2 ;

0 7 5 ; I F L l N u l = i T H E N K a s : = flE l / ( l * a t l > » K a ( j :

0 7 6 ; I f L [ H u l = ! T H E N K/JR : = f l B l r 2 / ( 9 * I « « B J*<JB 1 t 2 ) » K f l f t ;

0 7 7 ; C N :

0 7 8 ; s u ;

0 7 9 : s u n M N U i j j ] : = s u * s i n

0 8 0 ; SU2 IMNUIO] 1 : = 5 U « K f l R * S U 2 t M N U t J ) ) END ;
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o e i : s i T I K ) : = s ] c t K 3 : = o ; 1 1 ••: = i ; a i 2 : =;? £• o 9 >-, s / E I K 1 ;

O B 2 : F O R N U : = I S T E P I I M - I T I I . J I B S ( M J r : ) D O

0 8 3 : BET. IN

0 6 4 : fl9J: = (

o f. s :

O e 7 : J F S P [ N U J > 0 T H E N

0 8 8 ; S p [ t , U ] : = 5 1 T 1 » ( 5 I N

3 8 9 : I F S P ( N U 1 < O T H E N I J E C I N S P [ N U ) ; - - 0 ;

0 9 0 : F O R P : = 2 S T r IJ 1 U N J T I L TO O O B E E »»

091; IF FSP[P]>EtK] THEN

092: SPlMJl: = (<rSP[p)-ElK

093: •(E(K)-E5P(P-n)«Sp[jT[ 15P,P)]

3 9 < : / ( E S P [ P - l ] - E S P t P ] ) « M B 1 + S P [ N U T t « D F H D I

0 9 5 : I S P : = I S P * I E N D ;

0 9 6 ; I F L I N U ) = 1 THEN K / ) R : = S P o ;

0 9 7 : I F L f N U ) = 2 THEN K fl R : = S P I ;

0 9 « : l

0 9 9 ;

1 0 0 : S I T [ K ] : = S I T t K 3 « S I T l » ( { S U l [ N U l * S U 1 [ h : U j t 2 *

1 0 1 : s u 2 [ K j u ] t 2 ) » c o . s t K f l R ) - s u 2 [ M U . ) » s i N t K f l R ) ) :

1 0 2 : S I C l K ] : = 5 1 Ct K ) * S 1 T 1 - S U l ( NU ] ENO ',

1 0 3 : S P O : = O ; F O R N U : = I S T E P \ U N T I L / ) B S ( N U M ) U O

1 0 5 ; Jĵ F E x t 0 ) < 0 T H E N

1 0 6 : E x l O ) : = <

1 0 8 ; C O D t ' P 2 - I O •, Bvr», nvc . a v s ) ; E X ( o 1 : =



10«J: f f KXC T H E N PIE G t U R d U C P 2 , fil 2 . A?2 . HT ,

H O I T O T ) . T 0 T 2 . S S 1 , S S 2 , T T l . T T C ;

1 1 1 : ft"" A 6 S { K ) = 1 T h t N B E G I N

112: tRi:=e[oiiR;.i Ti:sSiT[oj.ECT;/iCi: = S;r[o}»t*Pi

113: fF PM<C THEM ECCJN

IU: E * [ - n : = E X P i - s j r [ o l o £ : x [ o J » . T 5 ) ;

u s : E » r u : = E x P ( - r . i T ( c ] « E x [ B J > ; T n u [ i j : = ^x[-i3»ER

lie.: TOL'2i:=Exti)«Efti;s: = - i ;

117: FOT P;=3 STf.P i UNTJL 5C Vc BEGIN

lie: T 0 L [ P ] : = T 0 L [ r - ? ) . £ : x [ s ) ; K x r s j : = E X [ 5 ] t 2 ; s : = - 5

liq: EN? fcNO E'iO ;

12 c: D t : = { E t K j - « : r K - a n « 5 / j ; E R r : = E [ K ] t R ;

123: flS: = ( f lTi - f lCl»

12^; IF PM<0 THEM

1 2 7 ; P O ^ P : = J S T E P J U N T I L J5 rr

13c: T 5 [ P l : = T S ( P ) * <

l a i: E X [ S ) . ( s t T [ K j - ) ; ;

E x t s j : = E x t s j t 2 ; s : s - s E N D rf:n ;
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\3S: IF T M > o T H E M B E G I N

j J 4 : pr.n P : M S T T . P I. U N T I L P M '. r.

1 3 6 :

1 3 7 : TT

1 3 B : TC

J39I : T 5 [ P ] : » { { S l T I K - Q ] - S I C l K - o : ) » T T i *

1 * 0 : ( S I T t K } - 5 l C l K l ) » T T 2 ) « 0 E » T S : P ] E N D L»

l M : ?f t)M>a T H E M B t G I N

1 < 2 : P C R 5 1 = 1 5 T T P 1 U N T j L t^r VC B E G I N

i * e : ssi :=

1 < 9 t I S P : = f l 8 s ( H M J ; I F T O T j - T C T 2 < , , - 3 T H E N ! 5 P : = 2 ;

15o: F O R M : = I S T E P I U N T I L I S P C O

1*1: B E ' I N S S I : = S S J / T O T 1 ; S 5 2 : = 5 S 2 / T O T 2 ;

J 5 2 : R K T [ 5 , M ) : = ( E p j # s s i * E f { 2 » S S r } » l J E * H K T [ S , M j E N D

\ii; E N D E N S ;ERi:=EfJ2;/lT1 ;i.-/lT2;/,C1:uflC2 E N D ;
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15<: F : K : = K * S ; I F * e i ( K ) - i

1 5 5 : olQ]:=r,a/iz; I F { 3* E r 0 J »c : C 5) >o [ 2) .n T H I fi

i5fc: BHr.iN E [ K ] : = P [ Q ] ; G C T O F T F N D ;

1 5 7 : E I « 1 : = E [ C J * o t o J . G ; C C T O ri F N D ;

-.58: IF AB5 ( S I T [j.-;.Q]/S I T [ K - C J-1 ) < . t T H E N

'. 5 s : B E ^ I N • F : » o f c i < i o [ a I - E t « - c i ) » a T n t N

',*>;.•. 6 E - I H 0 t C ) : = ? » C [ C J ; I" C f : 1 > C 3 T H r u

1 * 1 : 0 E C 1 N IF Q . ( n i t J - E l K - 3 ) ) / C f * ( t O O - . J P S ( K J ) THETK

1 6 2 : o[3l:=s/» E L S E c[ t ) :=c» (etc ]-t l K - a ] ) / ( ioc-'-6S(f >)

16 j : E -o t N 0 F f J t, ;

!&<<: |F (Q»E[K-oj*0[tJ)<OtQJ»r rnES

; if.: B E ~. I N E [ K ) : = E [ K - a ] » G » - o t c ) ; t; 0 T c f \ L N O ;

; <s t : if L [ K - U J ^ O [ O J T M T N B E:: 111 F j K j ^ c j n ] ; H C T O F J t

1 6 7 : I F Q < C T H C N P E t I N Q : = 1 ; K f l : = K » 1 I

l « > f : \r K M > O T H E N E t r . I N

1 6 9 : K : = O ; C O T O F E N D ; « : = I E N T ; K H ; = K - I ;

I 7 [ : I F ui> *C T ! iE I1

I M : B E ^ I N I ' I T E C F P B C ; /iRR/iv F r w [ K N : K H ] ;

l ' 2 : C O M M E N T oc ( ? O K ' 2 O 1 ;

173: POfl BO;=Kf! STEP ; UNTIL >'t< MO 8 Ofl [ f 0 J : : E [ B 0 ) ;

1?4; COD(«P2-10' ,F.ON) J

J?5: FOR BO;=KM STEP 1 UNTIL Vt: 00 3CN [ f 0 ] : s S I T I Ê C ) ;

l7e: C OO('P2-10',FOH);

]77; FOR BO;=K?: STEP 1 UNTIL KM DO 8CN [ £0 J *. = S 1 C [ fjr ) ;

ire: c o o ( « P 2 - : O ' , B O N J E N D E N D ;
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I 80 : E 0 T t l J : = E N ; B r T [ 2 j : = E v ; B 0 7 r 3 ) ; = E R ; B n T t 4 ] : = L N t E V / ' E N ) ;

1 9 2 :

1 8 3 : IF P M < 0 THf.fi E L G I N T O L [ l 1 : = c X [ 0 J « , 7 5 ; T n i . f 2 ] : s E X [ 0 J ;

1 8 ^ ; P C S P : = 5 5 T E P i U N T I L $2 ? T

J 8 5 : T 0 L [ P ) : = 2 e T O L f P - £ ] E H D ;

^ B G : IF P M ^ C T H E I! B E G I N

167: F a R P : = 1 s T r p i U N T I L /i t M r i.i) l c B I r, l N

158: Tt l ? ] : = r T lr ) /1 r<; i c \ P ) : =r c [r } / ac ;

1 8 9 : T S [ ? ] i s T S t P J / f l S E N D ;

t 9 0 : C D H ( ' P 2 - 1 0 * , r » O T , T O L , T T , T C , T S ) E N D ;

I ' M : t c OM>C T H E ' ! E f r ' ! N

1 9 2 : flR^fly C 5 , « . 6 , S E , i ' 1 T R B , F c , r r , f s 2 , F T ! 1 : J S M J ;

1 9 3 ; C O M M E N T o c ' c t • l S B ' I s n r ' " f > t ' ' ' r c ' ' r 5 ' l r s r ' i r T ' 7 ;

1 9 < ; Fc :« S : = i S T F P 1 U N T I L flSV n r j

1 9 5 : B E ^ I N c h [ s ] : = C K T i $ ] / R K T [ r ; , < , ] ;

1'fc: s c t s j : = S K T I s ] / R K T t S i 11 ;

1 « 7 : S 6 2 { 3 ] : = S K T 2 [ S J 7 R K T I S . 2 ] ;

I ' ? ; T R b ( S ] : = [ . K T t S , n / K K T I S , ? ] - - ! L l S ] ;

199: F T [ s j : = T i . i B i s j / b O T [ 5 l ; F C [ o ) : = c 6 t s i / . j t > T l 7 : ;

O O O : F S [ S ) : = S f - t S ) / P O T [ 9 ) J F S 2 I 5 3 : c S B 2 f S l / f C T f e J E K O ;

0 0 1 :

0 0 2 :

0 0 3 : B O T [ I O J : =

0 3 4 : C O U ( ' P 2 - 1 0 * , E r < T , T I L , r C , F 5 , » S 2 . F T , R K T ) E N D E N D 5

3 0 5 : £ N O ; C O D ( ' P 2 - 1 C ' . E G . E O . C / ' ? : , t f l C . M N u , flB, C , L , B/JO)

o o t : E N D E N O ; K B : = K e - i ;

C 0 7 : I F KB>C THEN GOTO F9

ooe: END END ;
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