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Poreword

This translation of the 9th Issue of "Nuclear Constants™
contains only those articles which are directly pertinent to
nuclear data measurements. Articles 9 to 14 are not planned
to be translated by the IAEA. The first article of this
report has been translated earlier and was released as

INDC(CCP)-26/U in September 1972.
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(Vol. 9, pp 34-43)

RE-EVALUATED NUCLEAR CONSTANTS FOR THE ENERGY 0.0253 eV

G.B. Morogovsky

In 1970-71 two programmes for processing nuclear data (SIGMA and NYPF)
were written in FORTRAN at the Nuclear Energy Institute (NEI) of the
Byelorussian SSR Academy of Sciences and run on a Minsk-22 digital computer.
The first programme was designed for obtaining recommended values of the
standard parameters 0 qa, %J N, V and a for a fissionable nucleus and

f’
the second for calculating standard values for the four nuclei 233U, 235U,

239Pu and 2520f simultaneously using the correlations between them, The
results of the calculations performed with the two programmes are presented

in Tables 1 and 2.

Table 1 contains nuclear parameter values obtained with the SIGMA
programme on the basis of initial data presented by Hanna in Ref, [1], and
deviations from the values suggested by him, The observed deviations of
the calculated values from Hanna's results indicate a correlation between

the parameters of the different nuclei.

Table 2 contains the results of calculations performed with the NYPF
programme and values of V recommended by other authors. The calculated
values are lower than the recommended ones, which is in line with the way
in which fission yield values (number of neutrons per fission) are tending

to change.
Table 1

Results obtained with the SIGMA programme on
the basis of Hamna's initial data

-_— — ——_— —— — et aa

: U 23 ; Ll 235 b [e39 L Pkl
Ly 3 ! 4 !5
7 2,289+0,0079 2,0738+G,0078 2,1102+0,0089 2,I513+0,0I30
(10,23%)* _(£0,098) _______ _(#0,08%)______(4G,II%)
. V 2,4958+0,0086 2,4266+0,0091 2,8704+0,0127 2,9438+0,0250
e (30,37%) (+0,15%) (=0,33%) (+0,33%) _
62 529,1I542,48 580,38+1,50 742,973, (7 1010,343,2
e (=0,27%) (+0,13%) (0,188 {+0.30%).

NEI-Hanna %).

* Percentage deviation from Hanna's final data ( Horma



Table 1 (continued)

I 1 2 ! 3 r g s
576,782,639 679,8242,27  I0I0,0134,I 1382,53,2
ba  (-0,14%) (+0,19%) (~0,23%) (+0,527)
0,02002+C,00036 0,17012+0,00052 0,36022+0,00610 0,*684+0,00%6
oA (+1,72%) (+0,43%) (~1,55%) (+0,82%)
G, 47.64:0,31 98,83+0,45  267,64+1,93 372,1942,6
. (+1,367) (+0,50%) (=1,35%) (+1,I15)__
Table 2

Comparison of the results of NYPF calculations
with values recommended by other authors

—— - o ——

v (u VW) RPN )
2,505 + G,CI2 2,438 + 0,011 2,901+C,CI8 [2]
2,502 x 0,014 2,434 + 0,019 2,89 +0,05 [3]
2,504 + 0,008 2,442 % 0,(06 2,598+0,0I1  3,779+0,0I0 [4]
2,494 + 0,009 2,430 + 0,C08 2,871:0,0I4  3,772+4C,CIS [5]
2,4856+ C,006% 2,4229+0,0066 2,8799+0,00%0 3,765+0,012 g
2,4544+ 0,0026  2,4093+0,001S 2,8550+0,0027 %,7333+0,0038 )

———— et . Pt ey . e o Tt o i = e O

%) The present work (1971).
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ABSOLUTE MEASUREMENTS OF « FOR 257U and 23%pu
IN THE NEUTRON ENERGY RANGE 10 keV-l MeV

V.N. Kononov, E,D. Poletaev, Yu,S. Prokopets
A.A, Metlev, Yu.,Ya, Stavissky

The ratio of the radiative capture and fission cross-sections of
235U and 239Pu was measured using a pulsed Van-de-Graaff accelerator and
the time—-of-flight method in the neutron energy range 10 keV-1 MeV, The
capture and fission events were recorded by a liquid scintillation
detector with a volume of 400 litres, The capture and fission events
were identified by recording fission neutrons after slowing-—down and
absorption in cadmium., In the neutron energy range 10-80 keV, the
experiment was performed on the basis of the continuous spectrum of
neutrons from the reaction 7Li(p,n)7Be, the energy of the neutrons being
measured by the time-of-flight method. At higher energies, the
experiment was performed using mono-energetic neutrons, The method used
for measuring the values of a is an absolute one, In the experiments,
metallic 239Pu samples with a thickness of 2,9 x 1021 nuclei/cm2 and
235U O8 samples with a thickness of 4.1 x 1021 235U nuclei/cm2 were used,

3
235,

The main experimental results relating to the value of a for
and 239Pu are presented in Tables 1 and 2. The tables also contain the
mean-square error of the energy dependence of a (including only the

statistical error) and the total mean-square error in the values of a.



Values of a for

235

Table 1

U obtained in the present work

B (keV) a } a NGRS
12,4 + 047 0,549 0,043
13,4 + 0,8 0,476 0,061
I4,3 + 0,8 0,457 0,040
15,4 + 0,9 0,531 0,032
15,9 + 1,0 0,452 0,030
16,4 + 1,0 0,424 0,031
16,9 + L,I 0,365 0,032
7,4 + I,I 2,350 0,026
17,9 + 1,2 0,39% 0,33
18,5 + 1,2 0,398 0,024
19,1 + 1,3 0,370 0,020
19,8 + I,4 0,338 0,029
20,4 + I,4 0,317 0,024
21,1 + 1,5 0,307 0,020
21,9 + 1,6 0,337 0,034
22,7 + 1,7 0,339 0,021
23,5+ 1,8 0,344 0,021
24,3 + 1,9 0,336 0,013
25,3 + 2,0 0,283 0,017
26,2 + 2,0 0,268 a,019
27,3 + 2,2 0,292 0,014
28,4 + 2,4 0,312 0,0I6
29,5 + 2,5 0,333 0,017
30,7 + 2,7 0,346 0,0I9
32,1 + 2,8 0,350 0,0I9
33,4 + 3,0 0,342 C,0I8
34,9 3+ 3,2 0,350 0,017
36,5 + 3,4 0,340 0,020
3842 + 3,7 0,346 0,019
40,0 + 3,9 0,332 0,019
42,0 + 4,2 0,335 0,019
84,1 + 4,6 0,308 0,011
46,3 + 4,9 0,307 0,0I6

g (due to curve 1!:’“ (total error)

0,057
0,069
0,051
0,048
0,043
0,042
0,041
0,036
0,043
0,036
0,033
0,038
0,033
0,030
0,042
0,031
0,032
0,030
8,026
0,027
0,025
0,027
0,029
0,031
0,031
0,050
0,030
0,031
0,031
0,030
0,030
0,025
0,027



Table 1 (continued)

' 10 due to lof total error
En (keV) ] a__ i acE_rve__s_h_aﬁp_Q)_i__ui __________ )_ -
48,8 + 5,3 0,030 0,017 0,27
S5I,4 + 5,7 0,285 0,016 0,026
54,3 + 6,2 0,288 0,018 0,027
57,4 + 6,8 0,277 0,0I5 C,025
60,8 + 7,4 0,232 0,013 0,025
90 + I5 0,307 0,020 0,030
I35 + 25 0,247 0,015 C,024
185 + IS 0,218 0,010 0,019
300 + I0 0,181 0,011 0,018
400 + IO 0,183 0,010 0,018
500 + IO 0,150 0,006 0,014
750 + 30 0,127 0,011 0,012
900 + 30 0,101 0,0I0 0,014
1100 + 30 0,077 0,009 0,013
Table 2

O
Values of a for 23’Puobta.ined in the present work

Enlen) L a4 {ete ) 1% (iotal error)
9,4 + 0,5 0,502 0,079 0,085
10,4 + 0,5 0,508 0,058 0,067
1,3 + 0,6 0,572 0,041 0,055
12,2 + 0,7 0,517 0,068 0,076
I3,1 + 0,7 0,538 0,077 0,084
14,2 + 0,8 0,478 0,037 0,048
15,2 + 0,9 0,418 0,054 0,061
15,9+ I,0 0,366 0,038 0,045
I6,4 + 1,0 0,242 0,042 0,049
I6,8 + I,1 0,331 0,032 0,040
I7,3 + I,I 0,325 0,028 0,037
17,9 + 1,2 0,329 0,030 0,038
I8,4 + 1,2 2,316 0,026 0,035
19,2 t 1,3 C,528 0,031 0,039
19,6 + T,4 0,340 0,025 0,034
20,3 + L4 0,352 0,032 0,040
20,9 + I,5 0,346 0,021 0,052



Table 2 (continued)

E, (kev) a 1o, (dues;tl:ngl)lrve ;Oa (total error)
21,6 + 1,6 0,369 0,018 0,030
22,4 + 1,7 0,348 0,015 0,029
23,2 + 1,7 0,346 0,022 0,033
24,0 + 1,8 0,320 0,018 0,029
24,8 + I,9 0,316 0,015 0,027
25,8 + 2,0 0,330 0,022 0,032
26,7 + 2,2 0,302 0,017 0,027
27,8 + 2,3 0,293 0,015 0,026
28,8 + 2,4 0,282 0,021 0,030
30,0 + 2,6 0,247 0,011 0,022
31,2 + 2,7 0,258 0,011 0,022
32,5 + 2,9 0,272 0,012 0,024
33,9 + 3,1 0,286 0,016 0,026
35,3 + 3,3 0,260 0,015 0,025
36,9 ¢+ 3,5 0,260 0,009 0,022
38,6 + 3,4 0,243 0,011 0,022
40,4 + 4,0 0,247 0,04 0,024
42,3 + 4,3 0,240 0,010 0,021
44,3 + 4,6 0,225 0,007 0,020
46,5 + 4,9 0,213 0,006 0,019
48,9 + 5,3 0,207 0,009 0,020
SLyd + 5,7 0,193 0,007 0,018
54,2 + 6,2 0,176 0,008 0,018
57,2 + 6,7 0,174 0,007 0,018
60,4 + 7,3 a,I70 0,005 0,017

64 + 8,0 0,172 0,006 0,017
110 + 20 0,149 0,007 0,015
150 + 25 0,115 0,010 0,016
185 + IS 0,090 0,009 v,0I5
300 + IO a,Ia3 0,012 0,018
400 + IO 0,075 0,009 0,015
500 + I0 0,082 0,010 0,015
750 + 30 0,071 0,009 0,015
900 + 30 0,032 0,006 0,012
1000 + 30 0,008 0,013 0,017



RELATIVE YIELDS OF DELAYED NEUTRONS FROM URANIUM-238 FISSION BY
NEUTRONS WITH ENERGIES IN THE RANGE 3.,9-5.1 MeV

B.P. Maksyutenko, Yu,F., Balakshev, G.I. Volkova

238U sample weighing 30 g had been irradiated for

After a metallic
300 seconds, the decay curves of the delayed neutrons were recorded for
1024 seconds with a channel width of one second. The neutrons were
obtained by the reaction D(d,n)3He from a titanium-deuterium target

(thickness 1 mg/cmg; diameter 45 mm) using a KG-2.5 accelerator.

A series of 30 measurements was summed over the channels so as to
obtain one decay curve for a given energy of the fission-inducing
n2utrons, For each energy two such decay curves were obtained, each
being treated separately., The decay curves were expanded by the least-

squares method for specified half-life values [1].

Table 1 contains the relative yields of groups of delayed neutrons
together with the mean-square errors obtained from the scatter of the
curves for the two series, Fig. 1 shows the variation in the ratio of
the group yields with changes in the energy of the neutrons inducing
fission, The figures above each curve are the numbers of the groups whose
yield ratio is described by the curve in question. The lines drawn through
the points are arbitrary, for no rule has been established for the
variation in yields and the yield of any group except the first one is
the sum of the contributions of many precursors. It can be seen that

the variations amount to ~ 20-30% and exceed the experimental errors.

REFERENCE

[1] XEEPIN, J.R., Physics of nuclear kinetics (1965).



Relative yields of delayed neutrons from 238U fission by fast neutrons

Table 1

- 54 et T g R e o S el R S P e P W O Y s e Bt O i a7 e P P s o 0

Group | oD ; B ‘Ril_aj:ive ylf}fis L |

nunber 1“1/ 3,9 MeV 4,2 MeV | 5 HeV 4, BNeV | 5,1 eV
I, 52,38 1,0 1,0 1,0 1,0 1,0
2. 21,58 9,24 ¢ 0,14 8,72 + 0,06 9,29 + 0,32 10,48 4 0,06 8,0 # 0,2
3, 5,00 14,37 4+ 0,71 12,23 £ 0,23 12,50 4 0,47  I4,5 3+ 0,1 4 0,9
4o 1,93 43,0 # 3,7 38,6 + 4,8 31,6 14,6 44,53 + 0,05 37,4 44,8




Relative yields
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Fig. 1.

Relative yields of delayed neutrons.
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EXPERIMENTAL CROSS-SECTIONS FOR NUCLEAR REACTIONS INVOLVING
NEUTRONS WITH ENERGIES OF ABOUT 14 MeV

G.N. Maslov, F, Nasyrov, N.F, Pashkin

The authors present the results of measurements - performed for
various isotopes - of cross-sections for (n,n') and (n,2n) reactions and
for reactions accompanied by the escape of charged particles. In the
case of nitrogen and oxygen, the total cross—sections for the reactions

were found.

Most of the cross-sections were measured by a relative method, the
reaction 650u(n,2n)640u being used as a standard; cross-—sections of
920 + 20 mbarn and 960 + 20 mbarn were assumed for this reaction in the
case of neutrons with energies of 14.2 MeV and 14.6 MeV respectively [1, 2].

The reactions were recorded by the activation method.

The activated materials were of natural isotopic composition (metal
foils or thin pellets made from powder). The activity of the irradiated
materials was determined by using a gamma spectrometer with a single
NaI(T1) crystal 80 x 80 mm in diameter to measure the intensity of the
gamma radiation in the photopeaks, The sensitivity of the spectrometer
to gamma photons of different energies was determined using gamma sources

of known strength.

The measurement results are presented in Table 1, which also shows
the gamma yields assumed in the experiments. For the standard reaction,
a yield of 38% was assumed for gamma photons with an energy of 0.51 MeV [3].
The cross-section for the Pb(n,2n) reaction for a natural mixture of
igotopes was determined by measuring neutron transmission through spherical

lead envelopes.

Some reactions led to the formation of isomeric pairs with isomeric
transitions to the ground state, which was determined by the half-life of
the isotope whose yield was being studied, In all cases the activities
were recorded over a period sufficiently long for transition of the nuclei
from the metastable to the ground state, The authors thus measured the

cumulative cross—section for the formation of nuclei in the ground state.
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Total cross-sections for reactions in air, nitrogen and oxygen were
measured using neutrons with an energy of 14.1 + 0.1 MeV:

1638 + 35 mbarn (dry air);
1614 + 40 mbarn (nitrogen);
1696 + 50 mbarn (oxygen).

The cross—sections were found from the attenuation of the neutron flux
by the gaseous medium. The measurements were performed in a "good"
geometry using a collimated neutron beam. Attenuation of the neutron flux
was recorded by activation detectors based on the reactions 63Cu(n,2n)620u
and 650u(n,2n)640u.

REFERENCES

[1] Neutron Cross—Sections, BNL-325, Vol., I1 A, Second Edition,
Supplement No. 2, 1966,

(2] GUZZOOREA, P., PERILLE, E,, NOTARRIGO, S,,Best-fits for some
standard neutron-induced reaction cross-sections around 14 MeV,

INFN/BE-67/13, 1967, Instituto Nazionale di Fisica Nucleare.

3 LEDERER, C. Michael, HOLLANDER, J.M., Table of Isotopes, Sixth
’ ? ’ ’ ’
Edition, 1968,
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Table 1

Experimental cross-sections for nuclear reactions involving
neutrons with energies of 14.2 + 0.2 MeV

and 14.6 + 0,2 MeV

. : T ,! E ' Gamma '! o {(mbarn)
Reaction i 1/2 i (MeV) ;yleld 3= T
i ] (%) 1 I4,2MeV i  14,6MeV
- I 2 I3 ! 4 1 5 e
N3 (nin) Sl 2,82 0 1,275 100 21,1+2,2 37,4+4,0
0,51 I80
7o 46/, 2n) 7843‘ 3,009 0,51 170 12,7+1,3 -
O En)Ce5 27,0 5 (0,332 9 347430 543450
MO Zn) paP% 303§ 0,835 103 - BG6+E5
_FePF(na)CeST 3 0,32 9 - 10647
O 7 (n.p) 2 * 45,6 X ig:g 216: - 6447
- L. —
M (np)lo38 1.3 3 021D 99 - 382,27
e B rep) + 270n  0,I22 87 658455 812457
57
n.a) (o 0,136 Il
5,263 ¢ 1,173 100 179+20 -
/ré'ﬁo[n ) Cot? ! i =
1,332 100
AL (2, 2] S 99 u__ 0,067 839 - Tk +15
N2 o, 1 G ™ 1398 1,17 180 12,5+1,5 13,541,4
65/, 1)0p® 5263 T 1,173 100 - 53,5 46,0
e (4 1,332 100
Co O np) a8 2,568 0 TII5 16 29,243,0  31,2:3,2
1,481 25 .
MeRln 2n) Mo 15,49 1 0,57 188 152 +16 -
Mo (12, 2n) 209 G657 v 2,140 90 1920+140 -
PP o1 U6 128 R 0,386 34 19504200 -
Sl L,667 33
G5 P on)C 2 6,59 1 0,668 99 1755+180 -
W’&’{rzﬁn)w/‘g" 140 1 perzrer 100 20504400 -
Ty
6,18 2 0,333 25 22434160 -
gu /”2 /# 55 6, . T
0,256 9%
B 2 )ETY 66,9 0,90 189 84,8+9,0 76,248,0
Pé"""[__ Hfz//’f“‘ 52,1y 0,279 1 1950+I40 2130 +ISC
P67 (r %) /977 46,6 1,279 77 0,527+0,070 0,673+0,070
%208 (0, 2 /753‘7" 3,10 2,614 100 - 1,26 0420
Key
= years Y = hours
I = days M = min.
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EXCITATION FUNCTIONS FOR THE REACTIONS 2'-(Al(n,a.)sza.
AND 2'-(Al(n,p)z'-(Mg

Yu.Ae Nemilov, Yu.N. Trofimov

The literature contains many accounts of work in which cross—sections
for reactions induced by 14 MeV neutrons were measured with fair accuracye.
However, comparatively few cross—section determinations have been made at
other neutron energies, and the results of different authors often diverge
considerably [2, 1]. In view of the importance of knowing these cross-sections
for fast reactor calculations, the authors measured the cross-sections for the
reactions 2'-(Al(n,a.)sza and 2'-(Al(n,p)z'-(Mg by the activation method in the

neutron energy range T.7-9.3 MeV,

Mono-energetic neutrons from the reaction 2H(d,n)3He were obtained using
the Radium Institute's cyclotron, which accelerates deuterons to 6.6 MeV,
Thin layers of deuterium-saturated zirconium or titanium were used as targets.
The neutron energies were varied by varying the angles of exposure of the
samples., The aluminium targets were in the shape of discs 10 mm in diameter
and 100 pym thick. The samples were placed at a distance of 45 mm from the

centre of the neutron source,

The irradiation time varied within the range 0,5-1.5 hours., The beam
current was 1-2 pA, By a system of diaphragms, the deuterons were collimated
to a spot 3 mm in diameter, The non-uniformity of the neutron energies - due
to slowing-down of the deuterons in the zirconium layer and to differences in
the neutron escape angles caused by the finite dimensions of the source and

target - was about 0,3 MeV,

The induced beta activity was measured in a 4% proportional, methane-filled
flow counter, Particular attention was paid to the purity of the target, which
was controlled by checking that activities with other half-lives were not present.
Specific activity determinations were performed by irradiating aluminium samples
of different thicknesses simultaneously. The specific activity was determined

by extrapolaticn to zero thickness,
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The fast neutron flux was measured using an ionization fission chamber

with a 238U layer. The amount of uranium in the chamber was found by alpha-
countinge.

In determining the neutron flux, we introduced a correction for the neutron
background. For this purpose, a tungsten target with a zirconium layer not
saturated with deuterium was introduced into the beam. The correction varied
between 10% and 60%, depending on the angle of exposure of the sample., The
neutrons from the break-up of deuterons by deuterons — the reaction 2H(d,np)2H -
could not be taken into account in these measurements, so that the corresponding
correction had to be made by computational means. The neutrons from this
reaction are distributed over the energy range 1-3 MeV and do not participate
in the reaction 27Al(n,a)24Na, the threshold of which is 3.25 MeV, In this
27Mg (thresh-
0ld 1.87 MeV) are less than or of the order of 1 mbarn [4]. As - at the energies

energy region, the cross—-sections for the reaction 27Al(n,p)

in question -~ the number of neutrons from the deuterium break-up reaction is only
5% of the total number, it is safe to say that these neutrons do not make an

27

appreciable contribution to the activity of ~'Mg. When estimating the neutron

flux, however, it is necessary to introduce a correction for these neutrons,

238U fission events is proportional to the product of the fission

The number of
cross-section and the neutron intensity. The cross—section for fission by the
break-up neutrons has the following appearance:
6y = S b5 4%, np) i AE
o/ T G M2, rp) HE. A E

The correction to the fission event count to allow for the break-up neutrons is

found from the relation

£ = ST 6 ) 1. DE - 00
67 S 57 BHYd- np) H. AL 65 GHY A pHe”

(in %)

Using the results of Granberg et al. [5], we find that the correction was § + 1%
in the case under consideration., The overall mean expected error is made up of

the following measurement errors:

1. The inaccuracy in determining the weight of the 238U 1.5%
2, The uncertainty in the 238 cross—-section value 3%
3. The statistical error in the fission event count %
4, The inaccuracy in determining the efficiency of 3%

counting the activity of the 24Na and 27Hg in the

aluminium target
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Se The error introduced by the inaccuracy in determining 3%

the neutron background

6. The statistical error in determining the sample count 1%
rate
Te Errors associated with inaccuracies in taking into 1%

account the geometric conditions of the experiment

The mean square error is estimated by us at 6%; in certain less favourable

cases it is as high as 10%.

The measurement results, together with the corresponding errors, are
presented in Table 1, The excitation function curves obtained by us and those
known from the literature are shown in Figs 1 and 2. Our results for the

27A1(n,p)27Mg are in good agreement with the measurement results

reaction
. . . 27 24N .

reported in Ref. [4]. For the reaction Al(n,a) a, the cross—section values

found by us are close to the results of Butler et al, [3] and somewhat higher

than those of Lisken et al, {1] and Grundl et al, [6].

Table 1

E ona27A1(n,a)24Na onp(n,p)27Mg
(MeV) (mbarn) (mbarn)
9¢3 82 + 6 92 +

9.05 18 + 98 +

8.6 17 + 8 92 + 10
TeT 43 ‘_"_ 5 -
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POLARTZATION AND ANGULAR DISTRIBUTION OF RESONANT NEUTRONS

E.M, Saprykin, A.A. Lukyanov

l., Introduction

The polarization, or a definite orientation, of the spin of a neutron
relative to its direction of motion occurs in nuclear reactions as a result of
a strong dependence of the interaction potential on the spin state of the
colliding particles. Neutron polarization in nuclear reactions is usually
associated with the presence of a spin-orbital interaction. In this case, the
differential cross—section for the reaction depends on the orientation of the
spin vector relative to the orbital momentum vector, which leads to polarization
of the reaction products, for neutrons with one spin direction scatter more
readily through certain angles while those with another spin direction scatter

more readily through other angles.

In principle, study of the interaction of polarized particles with
oriented nuclei enables one to determine the corresponding nuclear reaction
parameters which characterize the interaction potential for the different spin
states of the colliding particles (or the reaction products), whereas the use

of unpolarized particles gives only averages over every kind of spin state.

Let us define the problem more precisely. A given bombarding particle a!
and a nucleus A' form an overall system in one of its possible states a's It
is assumed that the disintegration of this system leaves a particle a and a
residual nucleus A in one of the possible states a, For the sake of definiteness
we shall assume that in both cases the small letters denote the lighter particles,
The entire discussion will be conducted in the non-relativistic approximation,
although many conclusions can be applied without modification to the relativistic
case., This approximation is a valid one when the kinetic energy of the particles

is less than a few per cent of their potential energy.

Actual calculations are best performed for a fixed energy; accordingly, the
steady-state formalism of scattering theory is used. It is also assumed that the

law of parity conservation holds.,

Having made these assumptions, let us consider the following problem. If
the polarizations of the particles a' and A' are given, what will be the polariz-

atiors of the particles a and A? The usual formulation of a nuclear reaction
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problem consists in a comparison of the parameters characterizing the colliding
particles before the reaction with the corresponding parameters for the reaction
products. In classical mechanics, these parameters include the co-ordinates

and momenta of the particles before and after collision and certain variables
characterizing the internal state of the particles. In a quantum-mechanical
description, the states of a system of particles before and after interaction
are specified by corresponding sets of quantum numbers, In the steady-state
consideration of a reaction involving only two particles in the initial and
final states, the intensity of (or cross-section for) the reaction is character-
ized by the amplitude of the probability of transition from an initial state
(entrance channel) with a definite set of quantum numbers to some final state
(reaction channel) with corresponding quantum numbers. It is assumed that for
any pair of nuclei there is some final distance T, between the nuclei constitu-
ting the pair such that with greater distances neither nucleus is affected by
any polarized potential fields produced by the other nucleus. We shall apply
the word "channel" to every kind of two-particle system state characterized by
a definite set of quantum numbers in a situation where the particles are

separated by a distance exceeding T e What quantum numbers define a channel?

There are two ways of describing the relative motion of particles. One is
to use a representation in which states are represented by plane waves, each of
which propagates in a definite direction, usually characterized by the wave
vector ii In this case, the quantum numbers characterizing the relative motion
of the particles are the vector modulus-E,le = K (which is associated with the
energy of relative motion of the particles and is therefore included in the
agsembly of quantum numbers denoted by the single subscript a) and a unit vector

—
in the direction of propagation - Hk = K/K.

A plane wave contains all the moments of momentum of relative motion. This
representation is therefore more convenient when a large number of partial waves,
corresponding to specific moments of momentum of relative motion, play a part in
reactions in which only a small range of angles around the direction of an

incident beam is involved.

The other way is to use a representation in which a state has a specific
moment of relative motion £ and its projection myy but covers the entire range

of angles,

The first representation is normally used to describe the relative motion

of particles in the entrance channel of a reaction, Actually, experiments usually



involve particles of fixed energy which, moving along some axis from the

source, hit a target. Thus, the momentum of the particles is known, whereas

the orbital momentum is not determined.

The second representation is convenient for describing the relative motion
of particles in reaction channels, for only a small number of angular momenta
contribute to the reaction cross—-section if the energies of the incident

particles are relatively low.

If the colliding particles have non-zero spin (for example, particle a!
has spin i' and projection m{, while particle A' has spin I' and pro jection mi),
the spin state of such a system of particles can be characterized by a wave
function dependent on it, I, m{ and mi. It is sometimes convenient to use
another representation. Instead of i', I', m{ and mi, the channel spin s' and
its projection mé are introduced, so that the spin state of the gystem is
characterized in the new representation by wave functions dependent on s!
and mé. The channel spin s is a vector sum of the spins i' and I°', §'=-;' +-f'
and can assume values (I'-i') <s8'"<I'+ i', We shall use both these representa-

tions.

Thus, the entrance channels can be characterized by, for example, the

following subscripts:
a' - the type of particles in a pair and their internal state,

£' — the magnitude of the vector of the orbital momentum of relative

particle motion,
8! - the magnitude of the channel spin,

mk and mé — the projections of the corresponding momenta on the z axise.

For a reaction channel we use a set of subscripts without primes:

c = {“‘ZS%“‘S} or {C'JiIm.lmI}

Besides these quantum numbers, the system of colliding particles is
characterized, both in the entrance channel and in the exit channel of a reaction,
by those quantities which are conserved in the reaction (integrals of motion).
They are the total momentum of the system J = (J) = (3* + s*) = (Z+ 5), its

-

pro jection M, parity =n, the total energy E and the total linear momentum P of

»*
the syste .

j/ In some applications, isotopic spin is also used as an integral of motion,



-2] ~

Further discussion will be conducted in the centre—of-mass system., Thus,
the total linear momentum of the system is excluded from consideration as it is

by definition equal to zero in this system.

The cross-section for the process at£'s'— afs for given values of the
integrals of motion J,® and E is characterized by elements of the scattering
matrix Sa-@ (J,m,E), the general properties of which — symmetry and unitarity -
follow from basic physical principles (conservation of the probability flux, time

*
reversibility and causality)— .
A matrix element of the S(J,%,E) matrix can be represented in the form [1]:

~ L (,, N e e
. = b ! + L S 2% )
SC'Q e c'c 5 E.+A-F -i.l;/2 Q ) (1.1)

where the parameters of the formalism are: ¢C, and wc the phases of potential
scattering; ch' and ch — the widths of the A level for the {a',rs' } and
{ats} channels respectively; I, - the total width of the A level; E, - the
energy of the A level; and AA:- the displacement of the A level (the sum over A

includes levels only of a given set of J and n),

Another relation for the S-matrix elements is given by the R-matrix theory

of Wigner and Eisenbud [ 24 ;

[V
ST

C ‘-
~N 0 '_“ .L— ):; £
I S A AN

T,) . iz 14 /2 -{\(%
o2 R R]L P 6 / (1.2)

where

- ?( c' c
QC'C (‘1 “/E) - i‘ “b_/)f— (1.3)
A(35)

o)
Here, 2Pcyic is the partial width of decay of theA level in a channel with
(als), PC is the penetrability, LC = SC--bC + 1PC, and Sc—bC is the displacement

factor for the boundary condition bc.

:/ The S-matrix elements are a quantitive characteristic of the reaction
intensity and do not depend on the projections of the momenta; otherwise,
their magnitude would change when the system of co-ordinates was rotated.
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In the single-channel case, by representing R(J,n,E) in the form of the
sum R = RO + Rl (where RO includes the non-resonance part of the R-matrix and
R, includes the resonantly energy—dependent part), the function S(J,x,E) can

1
be reduced to the form:

. — ‘QiS(J,W,E) i__ Q(J'TuE}[*
j/ /E' = ¥ 1\, -
S ( I ) e - Qioﬂ_‘,E)L

(1.4)

where

= - orotq RR-(GWE)
g;—@i— (f?z. ;:’Q s {1~ (S~ & /R(ITE)

The general approach to analysing the polarization and the angular distri-
bution of reaction products consists primarily in expressing the corresponding
cross—sections in terms of S-matrix elements, without specifying their explicit
form; only in application to specific examples does the need arise to use a
parametric representation for the S-matrix. This one-to-one link between
cross—-sections and S-matrix elements characterizes the kinematics of a nuclear

reaction.

2. Wave functions in the external region

The wave function of a system of nucleons satisfies the Schr8dinger
equation, For a definite channel "C", the total wave function can be written

as the product of four wave functions:
q)dllmimx ("): Ve Y.(F) Xmi er, ) (2.1)

where

Qa is a wave function describing the internal state and the

type of the colliding particles (internal variable particles),

wya(;)is a wave function describing the relative motion of particles

in the centre-of-mass system,

xim and XI are wave functions describing the spin states of the
i
particles a and A respectively,
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The functions introduced above are orthonormalized. The orthonormality
of the Qa functions with respect to the subscripts a and a' in the event that
these subscripts correspond to different particle types is a consequence of
the spatial non—overlapping of the corresponding functions., When, on the other
hand, the subscripts a and a' correspond to different excited states of the same
particles, orthonormality is then a consequence of the usual orthonormality of
wave functions corresponding to different energy states of a specified system.
The Xim. wave functions are eigenfunctions of the operators 32 and Ez' They
are colimn matrices containing (2i + 1) elements and satisfy the following

orthonormality relation:

L ]

4
- <
Kim Li = Ovm ot (2.2)

The same applies to the xIm functions.
I
2.1l. Channel spin wave functions

In the channel C, the particle interaction potential is by definition
independent of the relative orientation of spins i and I of particles a and A,
so that there is degeneration with respect to their projections. For the same
reason it is possible to take & linear combination of the products of wave
functions describing the spin state of particles a and A as the wave function
describing the spin state of the channel., Such linear combinations are selected
in such a way that the wave function has a specified channel spin value as

guantum number:

Xswm, = > (AT w ] SM5) Xt Ky, - (2.3)

M, m,

The coefficients (iImimI Isms) are Clebsch—-Gordan coefficients (vector sum

coefficients; see Annex 1), The channel spin wave functions are orthonormalized:

+
X$'Mi' xsm: gs's gmls"’“s ’ (2.4)

This is a consequence of the unitarity of the vector sum coefficients (see
expression A.l.5), It should also be noted that, as there are no polarized
potentials in the channel, the channel spin s is an integral of motion in the

channel,

Under time reversal conditions, the wave functions considered by us behave

as follows:



~ S-wmg -
K XS\N\S = (- i) ‘XS"W's . (2.5)

The operator R is a time reversal operator [23]. The reversal property (2.5)
follows from expression (2.3) if ¥ @nd XImI behave in the same way as

. - i
Xsm under time reversal conditions,

2.2« Wave functions of relative motion

As the interaction in a channel is described only by central potentials
(the Coulomb potential plus the centrifugal potential), the orbital momentum £
is an integral of motion in the channel {azs }. Thus, the angular dependence
of the wave functions of relative motion is factorized in the form of the
functions i‘Yjm sy which are eigenfunctions of the operators of the orbital
momentum and of“%ts projection mye The Yﬁmz functions are ordinary normalized

spherical functions satisfying the relation:

* ™,
Yemt =0 Y, “We - (2.6)

Y/
Under time reversal conditions, the functions i Ylm behave like the Xsm

functions:
A -, .
K Yeu) = Yo, 150 2

The total wave functions of relative motion can be represented in the form:

W(F) = & Ul ((* Yeu),

where the functions U&z are a solution of Schr8dinger's radial equation. The
solutions of Schrbdinger's radial equation in the central potential, correspond—

ing to converging and diverging waves, have the form [24]:

I,u_ = (C‘d( —LEtt)Q’XP .(\&)‘,(Q
CCZ¢Q.:: (:(;,:e. +C Fizt/) £1?<;7 ~ ¢ Wae

(2.8)

where F'mz and Ga.z are respectively the regular and singular solutions of

Schrédinger's radial egquation., Here and below we use the following notation:
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E - energy of relative motion of the particles constituting a pair,

3
|

= mamA/(ma + mA) - reduced mass,

A
n

'VEEGIE |/1[2 - wave number,
v = ﬁka/ma - relative velocity,

= ZaZAe%"a ~ Coulomb field parameter,

ﬂa =
O g = arg L1+ 2+ ih”) - Couloglb phase shift,
S A Y oy %o nZy 3rc te (ﬂa/n).
When there is no Coulomb field O1a = 0),
i Jk3 / )
' ns. Q
| - R \?-4. 7 = ____‘.‘) j_ - { St
lde _— (——(-\——) Jerk (gd) ; GAQ ( 2 3 l/z‘ (2-9)

the asymptotic form of the functions Ial and Oa ¢ corresponding to converging

and diverging spherical waves when Qa>> 1[24]:

Tae ~expli(Sa-me2)], O, ~ xpi(8a=Te/2). (2.10)

3, Amplitude of the reaction

In experiments, particles of a particular kind and with a fixed energy

usually hit the target as they move along the z axis, Thus the momentum of a

particle is assumed to be known., In view of the finite size of the source, it

is impossible to attribute a fixed orbital momentum to a particle. Consequently,
in the entrance channel it is best to select a wave function of relative motion
in the form of a plane wave, If the system of co-ordinates is selected in this
way, the scattering angles coincide with the angles determining the direction

of propagation of the scattered beam, To simplify the notation, when
characterizing the entrance and exit channels we shall omit ﬁk, and ﬂk,
remembering, however, that it is they which define the scattering angles., We

represent the total wave function in the entrance channel a's' in the form:

!
-

VK2
lesr = \pd' Q XS’M;' (3.1)

It should be noted that for the channel a's' it is possible to introduce one
particular spin orientation LY although all other orientations are possible

for the incoming particles This can be done because different values give
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independent non-coherent contributions to the cross-sections. The plane
1k !
wave elk % can be series—expanded in the Ylo functions, The asymptotic form

of this expansion (for Ry > 1) has the form [2]:

o 2

TR - ' —(Q-€Tf2) (S, +ET

o <T g@ Z.LQH(QG'_H.) {e (8, /-) e\(g.l e /Z)J}I;o E,{’ (3.2)
= ¢:o

where the exponential terms correspond to converging and diverging spherical
waves. As already mentioned, the total momentum J of the system, 'its projection
on the direction of the incident beam, and parity ® are conserved in the
reaction., When characterizing a reaction by the value of the total momentum J,

it is therefore convenient to go over to the operator eigenfunctions J2 and JZ,

which have the sense of generalized spherical functions:

GQSDH= Z (QSMCMJJM)('LQY-QM‘)XgMS/ (3.3)

eMy

where (lsmzms IJM) are vector sum coefficients. By virtue of the orthogonality

of these coefficients:
. € —
L ng%ws: 327: (¢s mcms,’jf})@w,,/ (3.4)

or, in our case,

.e! [ ol
¢ QIO },;Slh*;s': ?3:(6 S O‘Ms' )J Ms') G’e'g’g W, (3.5)

The sum over M has vanished, for the coefficient (l's'oms,l JM) is non-zero
only when Mo, = M. The wave function of the initial state in the channel can,

with allowance for expression (3.5), be reduced to the form:

f

@, =¥ i i f_is'a (22#1)'/2(2'3’0501 | Img) x

1 [ B~ S s

“s ~ 8,(' €0 J={¢-¢) (3.6)
- Sd:-eﬁvﬁ} i(gJ'*eHUQ/

X G-z’s’:ims- [ e ! - e ]

For some definite set J,M,® (in our case M = ms,), the fullest representation
of the wave function in the exit channel as can be written in the form of an

expansion in the functions GISJm :
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Imgr T I45 Ty -4 (8l2)

~Q 5
d)ois - \P.,L ~ LGQSjM;'{Axes e "_ ' (307)
€=13-s) Il (8 +Te/2)
BTN J

where the amplitudes of the converging and diverging waves are linked through

the scattering matrix

Uh‘lyn Img T
aags Z— €S ot'es’ Q..z'e's' . (3.8)

o'e's!

When the wave function is determined in this way, the coefficients A and B
correspond to the probability amplitudes in respect of the particle flux. It
should also be noted that the coefficients S Zs «t Brgr aTe independent of the

projection of the total momentum m_, [2].

Comparing the standard form of the wave function representation (3.7) with

the plane wave expansion (3.6), we determine the amplitude of the converging

wave:

T ’ t i:
Ajrn's :, =t ;T (26"”) z(elslom; ljms') S«U'gec'g;n
d’

o4 2SS (309)

It should be noted that A is determined by expression (3.9) for the entrance
channels (a's'£'), For the remaining channels (ats), A = 0, Thus, by substituting

expression (3,9) into expression (3.8), we obtain:

jM ,TT i — j+S Jn
o{Q: =t S Z <€ 5 OMS Ijms)(26+u 'st.(z'r' (3.10)
K.(' el: lj s/

The asymptotic part of the wave function qas(ﬁ,w), which is connected with
the diverging wave, is investigated experimentally. 1In order to obtain it, one

must separate out of ¢;s the part which corresponds to the initial state:

um{ﬁ
@-{S Z: Latg = q)[\..t_ + (b\‘uq;. (3.11)

where q&nc is the incident plane wave (3.6). Thus, we obtain the asymptotic

form q;eac in reaction channel as in the form:
[ ]
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@(“c (4 s) = JL BLILINSEE_ "( L (€ S O‘WS,IJW]S,}(ZQ,‘H),/Z- (3.12)

‘\J Jee’ Jn
¥ e/)(p 4 (ga:\— eTl/Z) [844'&2_’ gssl - ScLeS/-(”ZIS':) GESJM,‘" .

Expression (3.11) is a convenient one when the detector selects particles with
total momentum J and its projection M ye However, it is usually particles
moving at an angle (9,9) to the incident beam, the channel spin s and its

projection m which are recorded. In this case, the following form is more

convenient: - '
~ oL S
. XX g A ?
@.—lqc (o{ g): L "";P"'“’: o 2‘_ L2 wg XSMS ) (3-13)
r \’VIS:-S
where . oo J+s A
xs>M¢ ﬁ:* — (? ! j fo!
= — N Z ¢'+1) (€s0m fIme) x
r:le,w\s 2,_ : 5) (3.14)

J=o @:(1-s) e=13-s .
X (eg \Mc msljms') Iga..a' gee’gss' - S,.(és’.z'e’s"] yE‘M: (QI‘P/

The square of the wave function (3.13) gives the flux of particles with given
(ays); the wave function in the entrance channel is normalized to unit flux.

Thus, the reaction cross-—section is:

o S tgmy s = [q:’m((vi )| r*dSe dg (3.15)

where g represents internal variables of the particles,

Using expression (3,13) and taking into account the orthogonality of the
functions ¢a(g) and Xéms, we obtain:

L'y ?
ok g—o&'s'hw-’ols :2&‘ :E*%Ms / sz (3.16)

<

As terms with different m_ values make independent contributions to the cross-—
section, the quantity Fﬂ S Mgt _ expression (3.14) - may be termed the

Mg
"amplitude" of the reactlon ot s'm_, ~asm. The cross-section for the reaction

a's'ms,'* asms can be written in the form:
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o & = |Fir ] ds (317

L''m! > L Emg

The reaction amplitude F, and consequently the reaction cross-section, depends
on the angle ¢, since the m_, a3nd m_ directions are fixed, The cross-section
for the reaction a's' —as is obtained, without allowance for polarization, by
averaging over the initial spin directions LI and summing over the final spin

directions ms:

A <7 ~
C/{ E)\QL’S' el S - ‘2-’—5—/4’ i v\{:mslo{ bJ'S,W\SI ,_.,(S h’l._ . (3.18)

Obviously, the same result can be obtained by averaging over m_, in expression (316)e
Lastly, the cross—section for the reaction a'— a can be obtained, without allow-
ance for channel spin, by averaging over all possible s' states and summing over

all possible s states:

& S [
dew T L TGy T (3.19)

where I'(I) and i'(i) are the spins of the nucleus and the particle before and
after the reaction, and (2s' + 1) is the statistical weight of the channel,

a's'msq

The values of Fa for fixed a and a' constitute the matrix in the

Smg
channel spin representation

F: {(SVYISIE:IS’MS')} (3.20)

Taking expression (3.20) into account, one can write the cross—section (3.19) in

the form:

d& ., L Sp (FFY) 0152, (3.21)

= S
<=t T (g1lkg)(2i+y) TP
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where Sp(FF') is the sum of the diagonal elements of the matrix (FF').

In concluding this section, we would point out that the reaction amplitude
may be regarded as some operator converting the wave function of the
initial state into the wave function of the final state.

4. Scattering of partially polarized nucleons
unpolarized nuclei

We shall therefore consider the scattering of particles with a spin
of & by nuclei with a spin of 1. The problem includes obtaining the
differential cross-—section for the process and the polarization of the
scattered particles if the polarization of the incident particles is

specified.

The mean value of the spin operator is termed "polarization by
definition", It is obviously a vector quantity. If the wave function ‘gf‘
describing a given particle state is known, the polarization in this state

can be calculated as

(&> = LGV (4.1)

In a real situation, however, an experimentally prepared beam cannot

always be described by a definite wave function. In fact, when conducting
experiments one does not usually know the spin projection of each particle

or quantum numbers such as the chamnel spin and its projection. The quantum
nunmbers for particles in an experimentally obtained beam are distributed
with some probability. Moreover, the initial system may consist of several

non-coherent sub-beams which are represented in the beam with certain weights.

In this case, it is possible to introduce a Q-matrix such that the mean
value of any physical quantity f acting in the spin space of the system, in

a state corresponding to a mixed ensemble, is given by the expression

. S st
L= 22

Sp

(4.2)

1. It should be noted that the sum of the diagonal elements of the density
matrix gives the intensity of the particle beam. Assuming that the

intensity of the incident beam is unity, we obtain

SP .. =1 (4.3)
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for the density matrix of the incident beam, The density matrix
corresponding to the reaction products does not have a unit spur, for
the intensity of the diverging beam is not unity. In this case, the
spur of the density matrix gives the differential cross-section for the

reaction:

SP gout_ = dg/d‘Sl : (4.4)

2. It should also be noted that, when there is no coherence betweer
particle spin states, the total density matrix of the system can be
represented in the form of the product of the density matrixes for
incident particles and target nuclei. The structure of the density
matrix becomes clearest if it is expanded in base matrixes of spin space

satisfying the following orthogonality and normalization condition:
S
Sp W W= &y (23+4) (4.5)

In the case of particles with a spin of %3 the system of base matrixes
consists of a unit matrix and the Pauli two—dimensional matrixes ml =1,

(,|)2 = Ox’ (43 = Oy’ (1)4 = OZ:

fg: é‘h (4.6)

m:n
where the coefficients AM are defined as

Ac« 2] 1 SPS (4.7)

As a result, we have

3= L
where
o | 5p80°
Bl g (4.9)
L7 = S
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Thus, the density matrix is expressed directly in terms of the

. m .
experimentally measured mean values <w > of the base matrixes.

Accordingly, for particles with a spin of &

8= =3 S@ (1"'4 >6) (4.10)

2
where E) —
S > = __fs-%?— = P (4.11)
?

—15 being the M"polarization vector',

We would point out that Sp@ = 1 for incident particles, so that
knowledge of the polarization vector completely determines the density

matrix of the incident particles:

(i+ —ﬁé) (4.12)

The density matrix for the unpolarized nuclei of the target is

Q=L I (4.13)

21+4
Thus, the total density matrix of the system in the initial state is the
product
L (1+36) T
= .1
Eg 2 (21+4) &) T . (4.14)
As noted in section 2, for fixed a' and a the reaction amplitude Fass Mgt
s

may be regarded as an operator converting the pure spin state
(s'ms,) of the entrance chammel to the pure spin state (sms) of the exit
channel, The quentity FQincF+ can then be identified with the density

matrix of the spin states of the scattered beam:

Sei = F S F™ (4.15)

The differential cross-—section (4.4) is equal to

—_—
Rh

-

«S go..-t S Fg‘“‘F) 221 i)Z‘SPFF+ SPF—éF]z (4.16)

3
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In the case of an unpolarized beam of incident nucleons,—i’inc = 0,
MG)WOL g FF (4.17)
\dSl 2 (21+1) :

Thus, expression (4.16) may be rewritten in the form

;01—(5%: (%% e E.. g£<i§:7j (4.18)
f

The mean value of the polarization vector in the exit channel is determined

in accordance with expression (4.2) by the formula

In the case of unpolarized incident nucleons

(—P, )unpﬂl_ §_€<§FF+} . (4.20)
out - SP ’FF+

unpol.

The polarization vector (P of the scattered unpolarized nucleons

out)
is a pseudovector (the mean value of the Pauli vector matrix). In the

case of the scattering of an unpolarized beam of nucleons by unpolarized
nuclei, this vector may be only a function of the relative momenta in the

entrance (k') and exit (E) channels, One can therefore write

(P_Jr/ (QM) (4.21)
- [ ]

h = —! (4.22)

unpol

where
i

X

~i
X

/\l

Thus, with unpolarized nucleon scatiering by unpolarized nuclei, the

polarization vector is always non-perpendicular to the scattering plane.

Wolfenstein and Ashkin [25] have shown that, in the case of the elastic

scattering of nucleons by unpolarized nuclei, owing to the invariance of
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the scattering amplitude with respect to time reversal the following

equality is satisfied:
= —+ —~ +
S)" Fok = SPGFF (4.23)

Taking into account expressions (4.23) and (4.20), it is possible to

represent the differential cross-section expression (4.18) in the form

0, S\L ( unpol.( 'p;miml""“) (4.24)

From this it can be seen that the differential cross-section for the

scattering of polarized particles depends on the angle ¢, The coefficient
unpol" ‘ <1.

determining the aximuthal asymmetry is |P 1nc

When calculating the matrix elements of the matrixes F-C-I’F+, F?inch"'
and -ZJ’FT"inCoF"' entering into expressions (4.16) and (4.19) for the polarization
vector and differential cross-section respectively, it is convenient to

switch to quantities defined as follows:
“T(00)= Sp
-2 (4.25)
T(.'o) V3 <GJ> Spg),

where o, represents unreduced operators of the spin vector for particles with

a spin of 3:
Soe=C2, G =7 (S TiT/2

It can be seen from expression (4.25) that the quantities T(q V) -
q=0,1and v= -1, 0, 1 - can be used for describing the differential cross-
section and the polarization in nuclear reactions, Using the expression for
::::ﬁs', and also the fact that

S _XS\»«H - 2._ (1(21VY)L M, fSVm) X'/z ™, XIMI )

Mg (4.26)

-‘/2"(0 ‘ftgj)‘[z-y_‘)-\ ——‘,.y,,'}/-_--w,.,.i—)-’ 5\'\1[\"1_'/' (4.26)
i\):{l’l\,‘,l ((C)A;(“Lgb)}'\,l/ih') VF(—Z*:J( +h—1+i) Oh I,\"!I (XV;E—‘GJIV,N'):WSNL'}

it is possible to obtain a general formula combining expressions (4.18) and

.\

(4.19) and giving for the T(g v) value of the scattered beam an expression
in terms of T(q' v') for the incident beam [29]:
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AECHE S (39 m 5 (ST M, [SU\ZIMH[Ql )+ IfM] )
%zMWMmmuih%nwsm;uwu S [T )

t

3\ 4, !
! d\e_'_sl,-('e'f' -\[Q 1My, é-rn e’ 0 * ‘—Tu2€:+i (e’ g‘ mﬂ'f‘* “‘ (‘5)(5’19; m(:!‘(.ll’itb)x

q],uL
X ’L‘_\Q 5.0 {-Q Mz, m¢ 0 5(2{') (“;_“‘l '\"LM )T(% \))

Jiv - Jw

\yozes,.z.'e‘s' = gou' gee’gs' - Sdés ,<'e's! (4.28)

(4.27)

where

Here, summation is over Myy My Ml' M2, mi, mé, Mi, Mé, Sy1 St si, sé, Uie

Hay P-]'_r uér Jlr 211 8—11 MJv Ma s Myyp» J21 lz, zév MJ v Mgy Moy q' and V.
) 1

It is more convenient to calcﬁaaie the final t;isor'iome;is with respect
to the axes, which are oriented in a simple manner relative to the final
direction, We select a new z axis along the k direction and a new ¥y axis
along the EE' X'E] direction, where 27 and E are the initial and final linear
momenta respectively. The Buler angles for rotation of the co—ordinate
axes will be (o, $§ O), where 9 is the polar and ¢ the azimuthal angle of

scattering.

According to the definition (4.25), the T(q v) quantities are transformed
whenever the system is rotated by means of the Wigner matrixes qg'm [26].

Thus, T(q v) in the new axes is associated with T(q v) in the old axes by

%
T(av) = 2;2@ TOPR) -

the relation
(4.29)

The spherical harmonics entering into expression (4.27) should henceforth be

described in terms of Wigner D functions:

1/2

e (0:9) < () 35 Do (66,0,
(No(e0) = [ gw (80)),
2, NGW-P%J vYawwngnhww
[ Yo l8,9) = ™ [ 1" [0 ] " R (osg)e™

2£+l

(4.30)
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In this system of co-ordinates, expression (4.25) can be reduced to the form
e s ' 7
T(CW] = (zx') 24_ H(OVO/GV,‘)/ 8/"0/_’—(7/’0/ (4.31)
1
where '
A (“r.“';["/@‘f) =YB(C,S,*&S:0V3; €l6e/S, 4V Lmm!3,3,) -
Iy j_z—" . , L .
UM Reseels)) T (s, S,) D (4.32)

T4 5,-8)

- o D .
RB= 1_(2‘“")2(21'-#1)_} Z__ [i’/[Zi,ﬂ/[Z“ylﬂ/{f {) x
rW(F S £S:: 1y )wlts/ $s/1°g) ~ (4.33)

Gy (368,040,88,) Gy (305 19/ 3.05))

Here, the Gv function is given by the exiiession

"T/z
G (38,5,L9,720, 8, ) = [(204){ 270 0(28,31) Ry (z33)]

e' . s C;S;Jl
% {(-1)7 27 (2e+1)(€,€,00]€0/[ 8 63[1.0) X (2 %Lj)
e L eJe

(4.34)

The coefficients of B contain a series wummed over the magnetic quantum
numbers, It should be noted that the ' suantities contain all the information
about the spin directions before and afier tre rcaction, the B quantities
introduce all the geometric information relating to the entire multiplicity
of intermediate moments, and the A quantiiies yield all the information
about the dynamics of the problem which is <ontained in the elements of the
V-matrices. This convention was first used by Blatt and Biedenharn [2]
to describe the angular distributions wien unpoliarized targets are bombarded

by an unpolarized beam.

The resulting relations ~ reiatic~= (4.33 and (4.34) - contain the main

results of Simon [4] with allowance for nli the recognized phase and

nomalization errors. For the partieculzr case g = O, we obtain
. ’/2 Lfsn—ji
Go (J,0,5,103,2,8,)- {(23‘,4;_}@;:,_-:U(ze,~-~;,}(2s,+1}_] (1) Ses,”
i L+5,-J;
x(e,eloolLO) W(@,J,E.‘Jl;g'L,}z (\?i‘u) (53,52 (—l) x (4.35)

clre,-¢ . - &
i (e 2,3, 55L) .
For this case, the Racah coefficionts cnlzring into expression (4.33) have the

form
-I/2

R Y
w(Ls,L8,10)={-1) [2(25+1)] Sy, . (4.36)

PA
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For the case q' = O (unpolarized entrance beam), we obtain

e v

T(q0;= (2] REI) [2/@ar )] D (1) v el
200300, ) w(£8.45..15)G, (365,19 7:€:82) = (4.37)
L
> [U,*Uz F (DTG Y] 20 (96,0),

where the Dg\,quantities are expressed in terms of the spherical harmonics

(4.30).

For the case q = 0, the general relation (4.31) has the form

T(OO)_ a”_*(QK) [Z(ZIHJJZ‘( 1)3 lz +9,-5.-0,+L L‘U-e.-f,_

2025+ )] Z (63,67, S W(LS, +5.19) « (4.38)
' L

*Gy@e'sig' ges, f’a[U."w(-')“wz‘]zyo (0 8,0) T4,

and in the case q = q' = 0 (unpolarized entrance and exit beams) it has
the form

V
'el'-elfez’e !

(00)“ (Zz) * [2-(21+4)) Z(i) L |

(4.39)
*Z (E,J, €. 3. SL)Z(C,J,esz S L)é[’ul U, ijﬁ(‘%éﬂ,
(For the sake of simplicity, whenever 8, =8, 0r si = é, they are replaced by

s or s'),

Let us consider the case q = 1, gq' =
- T-%2 + %5, =3¢ .—e,’+€,f..1_
,r‘“z,3 Z(e'3,¢/7. 5 4/ W(Ls +5.1DG..85,L27:6:.5/)>  (4.40)
&
7 (V-3 U7) P (s 8)
As the definition of Gv contains (thv/L,v), it follows that

L-t+
G-, (7665,49%:6,8,)=(-)" ‘L@O(j,e,s,l‘f,],_élsz))
2:€,+6,+2n —[(£€00/0)]

e/+e,'=0+2n —[2(€/13,€/7,3)] (4.41)
€v8/v €+ =2 — (T)
The multiplier in expression (4.41) is therefore (—1)q and

G‘o (J,e'S,L.{jze;S;)':"C‘:o (j,e,S,Li jz Q.,,Sz)‘:_': O’ (4-42)
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Thus, T(10), which is determined by expression (4.40), is identically equal
to zero. This means that, provided that the law of parity conservation is
satisfied, there is no polarization along the direction of propagation of

the scattered beam if the initial beam was not polarized.

Let us consider T(11) and T(1-1), which -~ in accordance with
expression (4.25) ~ determine the "spiral polarization" of particles with

a spin of 3:

T(’i) T(i 1) L (QK) [2(21""1)] 1Z( i)I/ 1/2+S 5, J.rlee,
57 [6(a04) (26040) (2041)(26,/+4) (25,4125 4)]
(23 +1)£23, +i)(2€+')/’(<’ e/oo(tO)(¢&ooleo)(elotfL) «  (4.43)

*W (83,6, 7.8 w(Es.+s L)X (68, Te1L;68, j)jhvv-*[l_ﬂ*{}]’/e P! (Cos6)

It should be noted that £ can assume the values £4=L + 1, L and L ~ 1,
However, it follows from the condition for non-zero values of the coefficient
(4{15XHLO) and from the law of parity conservation that 4! + 4! + L is even

1 2
and zi + Zé + ll + 12 is even. From the condition for non-zero values of
(A%]%OO|£O) it follows that 31 + 32 +4 is even, Then, £+ L is even.
Consequently, 4= L. Thus,

"/3#5"51*6“’

Ta1)=Ta-= (k) ’—(21+1)Z( 1) P10

i (24)(29,02)[(200 1) (284 1)(2€ 4 1)(2€/+1) (2921) (22 1] F { ¢ q,00(L0) x  (4.44)

o 1
« (&' 6loojlo) w(e/3,e/3,s' )W (3 s LS, 1) X (768,%.8.5, u./)(f(féj_)”’,’g (1658)

In accordance with expression (4.25),

T()+ Z S, > (4.45)

and, in order to obtain agreement with the preceding formulas, we determine

the degree of polarization as follows:

2 2 1/2‘
D(8)= 2 [ 1601+ 1¢GSI+ 18> ] ()

Accordingly, a beam corresponding to a pure magnetic sub-state with a maximum

projection in some direction will have P = 1, It is now possible to write



B> ds Lfg T( 0)=0 (4.472)
< Sy dE = [TG)-TO-))=0 (4.47v)

e
s ;_(,?{ :m% [Te)+T0-1)] (4.47¢)

It can be seen from expression (4.47) that the scattered beam is
polarized along the y axis - i.e., along the vector;?=fzxzi/ﬂﬁ“xzjj. Thus,
we finally obtain

r\/q g{S - —
T/(l) — =- J..V6 T(.”) (4.48)

Expressions (4.44) and (4.47) have interesting implications:

1 If, in the initial or the final state, only the s wave is effective, then

T(11) =

Actually, in this case either 2' = lé = 0 or 21 = %2 = 0, One of the
coefficients (zizéoolLo) or (211200 |Lo) then gives L = O, from which it
follows that the coefficient (LlOlILl) is equal to zero, for L must be greater

than or equal to unity;

2. If only those levels of the compound nucleus are significant which have

J = %+ and a definite parity or J = O with any parity, then T(11) =

1781
Actually, if fcllows from the properties of ¥ J25233> that L = O
LL1

when J, = J, = O, which gives T(11) = 0. For Jpo=3, = 4%, L = 0 or 1.
However, if the levels possess the same parity, 31 +‘¢2 is even and it follows

from the requirement that the coefficient (31 2OO|LO) be non-zero (which
consists in Zl + 12 = L being even) that L = O, It should be noted that,
as follows from expression (4.39), the differential cross-section for the

reaction is isotropic in both these cases;
3. If, in the final state, only one channel with s = O is open, then T(11l) =

Actually, in this ca edthe triangle rule does not hold in the last
14151

column of the function J%f%éz .

4. When there is no spin-—orbit interaction, there is also no polarization

of the scattered beanm.
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This result is obtained if - using the fact that, when there is no
spin-orbit interaction, the V-matrix does not depend on the total momentum

J - summation is carried out over J1 and J2 in expression (4.44).

5e As follows from expression (4.47a), there is no polarization of the

scattered beam along the direction of propagation.

6. As follows from expression (4.470), if the choice of direction of the

y axis is taken into account, the incident beam polarization vector is normal

to the scattering plane.
T The angular distribution of the polarization is characterized by

1 ; max A
PL(cos 9), while L ‘S-ztmax’ 2 max’

expression (4.44). TIn many nuclear reactions, only the s-and p-waves are

2J - as can be seen from
max

significant, so that the angular dependence of the polarization will be
determined by Pi(cose ) and Pé(cos 9). In this case, therefore maximum

polarization is to be expected at 15° and 135° in the centre-of-mass system.

8. The V-matrix enters into expression (4.44) in the form V’l‘"V2 - vlvg, S0
that a severe limitation is imposed on the conditions under which it is

possible to achieve polarization. For example, if all the matrix elements
of the V-matrix have the same phase or if they are real (as they are in the

Born approximation), then polarization does not occur,
Polarization occurs in the following very simple cases:

1, The reaction passes with appreciable intensity through two

compound states with different J and

2. A contribution to the reaction is made by one resonance and
by the interfering amplitudes of potential scattering with

other J and ® (this case is limited to elastic scattering);

3. A contribution to the reaction is made by one resonance with
several possible initial and final spins or orbital momenta,
Unfortunately, this mechanism is very often suppressed owing
to the great difference in penetrability. The behaviour of
the differential cross-—-section and the polarization near the

resonance is considered for cases 2 and 3 in section 5.
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5. Scattering of partially polarized nucleons
by nuclei with zero spin

General relations

Let us consider in groater detail the case of elastic scattering of
L by particles with zero spin. In this case, the

spin of the entrance and exit chamnels is k. As parity and the total momentum

'73' {Z‘ +-T/2| = {Z +'T/21 are conserved during the reaction, it is obvious

that in this case the orbital momentum is also the integral of motion ‘2 = &'y,

particles with a spin of £

As already mentioned, for fixed a' and a, the reaction amplitude is a matrix

ot st aEn TSR o 40 G-

F—{(MWSIF s)} (4/2.-1/2}Fl’lz1/2)(112-1/21!-‘)4/2-1/24 (5.1)

Using the reaction amplitude definition (3.14), it is possible to write the

scattering matrix in the form -
(¢ '/z OV:!JVz)Yu, (Mz0-‘/2[3-/2)(672-15/2}3-%]%.1

'/23

z;(“*f) o |(ChOPIEh AR (eR0RITE Ve /. (5.2

In the case under consideration, two values of J correspond to any non-zero
value of 4: J = £ + 5 and J =2 ~ & Thus, it is possible to rewrite

expression (5.2) as a sum only over 4:

- [ e Yo o Yo ~EETYe]  (5.3)
K'& e Weer)Ye, (e“)Y“’ ¢ Wm € Yeo /

Here, we use

(efoedt)= (¢xo-3|
(eL1-3)etd)= (L3~ *H‘,
(¢f ozl€-‘L)‘*(¢”'° EANES ;
(P iz‘e‘zz =~(€5-12,£‘2L z)-[(

eiy)eevee,
i-4 [e/@f’“ﬂ
%)=—l€/(29+')J
e+1)/(2e+0]"

Let us present the part of expression (5 3) which is in square brackets in

the form of an expansion in the linearly 1ndependent matrices 1, c’x' Oy’ (2,

O-i
where 1 = ‘Ol) is a wnit matrix and o = (10), = (i O) and 9, = ( ) are

Pauli matrices:
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Ub}‘z 1N, Jetery Y, ¢ -1)s Neo @)Yy
ar
leles C+i ¢ —
\1({( ’)Ye:( )y-(o —\[e((*l}y;y QY@O

where

= [(€+1/U:”/Z+ ¢ U:.'IZJ\[(O (8%); b, = O, |
Gx-iby =< L6 M- ] Ie Yea (99) (5.5

Gx+ 8y =~ [ U Ve Yo (0)9).

Solving the system of equations for b and b , we obtain
e+, -7

X< =t [Uc - Ue J P (®) sy (26”/)/1”
@.7: [0 '“/1 U-Z/J P\ (8) ea\f ( LCH)/ZHI

As 9 and ¢ are scattering angles, the right-hand side of expression (5.4)

can be written in the form

al+ & (8W) (5.6)

where

= L (ﬂe*/l (/1)

) (2 641}/411 (5.7)
and the unit vector_; is determined by the equality

W= [K'xRY/|R'xK3 (5.8)

Taking into account expressions (5.5) and (5.7), we obtain an expression for

the reaction amplitude:

F=A(®)1 +B(6)(§W), (5.9)
where
A= 50 T ()" + CUTFIR(=6), o)
(0/1

Z[Ue UZJ p (s ©) . (5.11)

Using expression (5 9), one can reduce the differential scattering
cross-section (4.16) to the form

AS - (1ar'sef) [1+ 28 BB (.MY\)}

dSL T lal*+]81" (5.12)

=0146:6, 45,2445,

< (5.4)
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where_i;inc is the incident particle polarization vector. If the incident
particles are unpolarized, then the differential cross-section is

( QS- unpol,

IAI + |8l (5.13)

In accordance with definition (4.19), the scattered particle polarization

vector can be obtained in the following form using the amplitude (5.9):

(5.14)

p 2QQQB H‘*(lm \BUP..g 2!8,(_’{) )_ﬁtﬁ_?l-,AB hPM]_
u‘l’ lAl +'8 QPﬂAB (.‘ u‘c)

If the incident particles are unpolarized, then the scattered particle

polarization vector is equal to

B el QQ.;HB* —
(P"“‘) REE (5.15)

Taking into account expressions (5.12) and (5.15), we obtain for the

differential cross-section for polarized neutron scattering

unpol. — noo
42 - (45) [+ @®REXY)

Another useful relation for the value of the polarization vector can be

(5.16)

obtained using expressions (5.14) and (5.15):

i BB - - ey R

““unpo{) (5.17)

i ( R\u. out

P

oaf

unpol.

-
As can be seen from this fonnula,lP | =1 if P, =1lorP 1.
out inc out
6. Scattering of neutrons by 7Li nuclei
7

In the total neutron cross-section of the 'Li isotope there is a strong
p-resonance at E = 225 keV; +this corresponds to the 2,26 MeV 1level in the
8L1 compound nucleus, which is characterized by J = 3+. As the ground
state of 7L1 has a spin of g, the reaction through the 3+ resonance occurs
with a channel spin of 2, Elwyn and Lane [11] have pointed out that s
scattering occurs also with a channel spin of 2, This means that there is

n -
a broad s-resonance J = 2 at an energy of somewhat higher than 2,26 MNeV,



- 44 -

In all further calculations, it is assumed that there is a 8Li level at

2.26 MeV with & = 3% and some level with J° = 27 at a higher energy

(EA s 3 MeV). In the energy region around the 2,26 MeV resonance, it is
sufficient to consider these two levels in order to describe the existing
experimental data on the differential cross-section and the polarization,

In the energy region En > 0.5 MeV, no sharp resonances are observed. Little
is known about the 8Li level structure in this region, so that additional
postulated levels are introduced for the purpose of describing the

differential cross—section and the polarization in this energy region.

It is assumed that the postulated levels are broad and give only a
slightly varying phase shift, for the differential cross—section and the

polarization are almost constant in this region,
The following assumptions are made:

1. At the energy in question, only one level with defined
J and © is significant. This makes it possible to use

the single-level approximation for the scattering matrix;

2. The terms corresponding to incoming and outgoing particles
with 4 > 2 are negligible.  As the ground state of TLi
n
is characterized by J = % s in the reaction involving the 3+

and 2~ levels the channel spin is conserved: s' = s = 2,

The single-level approximation is based on the fact that there are
usually no overlapping levels in light nuclei and interference phenomena are
not observed in the total cross-section, The resonance parameters must

be chosen in such a way that one obtains:
1, The true non-resonance background below 0.5 MeV;

2 The correct energy dependence of the differential cross-
section and the polarization around the 3+ resonance
(En = 0,255 MeV);

3e A smooth variation of the differential cross-—section and

the polarization above the 3+ resonance.,

As has been shown experimentally, in the energy region En ~ 0,5 MeV
the polarization is determined mainly by an angular dependence of the
form const x sin 29; this leads to predominance of the coefficient C

2
in the polarization expression P(8)do/dQ = ZcLPi. As can be seen from
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formula (4.44), the terms corresponding to even values of L occur as

a result of the interference of partial waves of the same parity. Such
terms may therefore be expected to occur in this energy range either das

a result of interference of p waves or as a result of interference of

s and 4 waves, At such energies, the d wave is not at all pronounced, so
that the interference of the d waves is negligible by comparison with

that of the s and 4 waves, In the first case, one can pnstulate levels
with J* = O+, 1+, 2+, 3*,  The sets of levels 1+, ot (cace A) and

O+, ot (case B) are introduced here, Other sets give worse results,

The second case - i.,e. the interference of s and d waves - may come
about owing to the presence of 0, 1, 2, 3 or 4 1levels. Only in the
case of the level with Jn = 3 is there reasonable agreement with
experiment, It should be noted that in this case only the process of
transition from a state with a channel spin of 2 to a state with a channel
spin of 1 contributes to the polarization, A process which occurs without
spin mixing of the channels does not contribute to the polarization, for
the X coefficients entering into formula (4.44) vanish for the quantum
numbers under consideration. The 3~ level must be extremely broad in

order to give a smoothly varying differential cross-section and polarization

in the region under consideration.

Lare [12] has suggested describing the contribution of the J" = 37 level

by means cf a two—channel scattering matrix:

deie = expit (Qcc+ i bee) (6.1)
From an analysis of the angular distribution, the same author obtained the

phases a and bc'c presented in Fig, 3.

c'c
The subscripts c' and ¢ relate to the s =1 and s = 2 channels, Thus,

calculations of the differential cross-section and the polarization were

performed using formulas (4.39) and (4.44) and the following three sets

of resonance parameters. The interaction radius is assumed to be 4f.

The sign of the ( [ s)% quantities entering into the scattering matrix is

ab
assumed to be positive,



NS i ! YE(MeV) '
En(MeV;lab.)J: Wi ¥ £ i S r‘s‘;'i'”"g('*g—):—°--§ E(MeV;c.m.s,)
0,25 3t I 2 1) 0,307 - 0,043

g 3.4 2" 0 2 0 2,28 3,0
1,5 It 1 1,2 1,5 1,5 0,2
3,0 2t I I __3.0 0 1,55 ___
0,25 3t I 2 0 0,307 - 0,043
B 2.4 2" 0 2 0 2,28 2,0
1,0 ot I I 3,0 0 - 0,7
3.0 30 1 I 30 ____ 0 1,55
c 0,25 3t I 2 0 0,307 - 0,043
3,4 2 0 2 0 2,28 3,0
3.4 3 2 1,2 Phase shift (Fig. 8)

_——— S

The results of the calculations together with experimental data from
Ref. [12] are presented in Figs 9-13. In Figs 9 and 10, we present the
coefficients of the expansion of the differential cross-section and the

polarization in Legendre polynomials:

j§=ZL: B, P (ws6) (6.2)
P(e)(%%—‘: /Z‘jclpj(c%e). (6.3)

The dotted, dashed and continuous lines represent the results of

calculations based on sets A, B and C respectively.

In Figs 11-13, we present the angular dependence of the differential
cross—section and the polarization in the energy region 0,226-2 MeV, which

is calculated on the basis of resonance parameter set C,

We would point out in conclusion that the data on neutron scattering
by 7Li nuclei in the energy region En s 0,25 MeV can be described fairly
well y considering the Jn = 3+ resonance which is formed by the p wave and
the J° = 2~ resonance which is formed by the s wave and which lies at a

lower energy and gives a constant background,

When calculating the polarization in the energy region 0,5-2 MeV it is
necessary to take into account the additional levels, The best agreement
with experiment is observed if one includes the Jn = 37 level with the phase
shift indicated. One of the most difficult problems at higher energies is
associated with the fact that the differential cross-section and the
polarization vary slowly with energy - i.e. there are no predominant resonance
like, for example, the resonance at E - 0,25 Mey, This situation can be
ascribed to the presence of a large number of overlapping resonances in this

region.
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7. The reaction 7Li(p,n)7Be

T1i(p,n) TBe,

Macklin and Gibbons [13] found that 8Be has two resonances in the energy

range extending from the reaction threshold (Ep = 1,88 MeV) to 2,3 MeV:

From data on the total cross-section for the reaction

3+

#

an s-resonance with J' = 27 at Ep = 1,9 MeV and a p-resonance with T
at 2.25 MeV, From the fact that the ground state of the 7Li nucleus is
characterized by J" < 3/2_ it is clear that the reaction 7Li(p,n)7Be through
the s and p levels of the 8Be compound nucleus (with JII = 2 and Jn = 3+
respectively) occurs with a channel spin of 2, Austin et al. [14] tried

to interpret differential cross-section and polarization data using the set
of levels proposed in Ref. [13]. It was found that the calculations based
on this set of levels were in poor agreement with the observed angular
distributions and polarization, Level schemeg of 8Be are given in Refs [15]
and [16]. It can be seen from the schemes that the levels corresponding to
£ <2 (a reaction involving a channel spin of 2) are the levels with j‘ =17

*
and J* = 2% at B = 3.0 MeV—/.

In this section we attempt to interpret data on the differential
cross—-section and the polarization in the energy region extending from the
threshold to 3 MeV using the levels with T - 27, 3% and 27 at 1.9 MeV,
2.25 MeV and 3.0 MeV respectively,

The differential cross-section and the polarization were calculated
using formulas (4.39) and (4.44). We made assumptions similar to those

made in the preceding section - namely,

1. At the energy in question, only one level with definite J
and ® is significant (this enables one to use the single-

level approximation for the scattering matrix);

2. The terms corresponding to incoming and outgoing particles

with 4 > 1 are negligible;

3. Owing to parity conservation, the orbital momenta of the
incoming and outgoing particles are the same (£=4'), As
n -
7Li and 7Be have J = 3/27, in

a reaction passing through the 2~ and 3+ levels the channel

the ground states of

spin is conserved (and s' = s = 2), Neglect of orbital
angular momenta greater than I' is justified by the fact

that, in the energy region 1.88-3.,0 MeV, the penetrability

*/ It follows from the general polarization formula (4.44) that, if the
levels interfere and contribute to the polarization, then each of them
must be formed by a wave with a channel spin which is the same as that
of at least one of the remaining levels,
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of the Coulomb barrier is at least an order of magnitude
greater for an s-wave than for a d-wave (for a p-wave
than for an f-wave). In the same energy region, the
penetrability for a p-wave is greater than the

penetrability for a d-wave by a factor of at least 5.

In the case under consideration - i.e. that of the reaction 7Li(p,n)7Be -
Jﬁ
a £ a' and  qv = 0+ Then Vo s

Jr o
l I*lS' (12 ) Sind (7.1)
R 7 ™™ = R §177 57 Tes g™
S % l“l gjl“l . g zll; me , 0 T
X Sin ce( 3 ZeT™) (1.2)

E AT Jz”r. #.‘J,u v AT .7,u, Ty
Jh‘ ’l:y?. 'U I‘M 7.7"$ ‘ .7= -( Jf : u—
X Sind 'Sw\g L.Sth( oL @)L (1.3)

Here — 3 ;
il -€ 14
W= G0.-G, —0-9, (7.4)
. £ b/
(where 0, is the Coulomb phase, and <I>n and@p are the phases of scattering
by a solid sphere for neutrons and protons respectively),

- o i T b7
‘[3":__ L 20 Fl_j 87': q,rc‘tg r

wif) v T om (7.5)

where Pin and T ‘;n are partial widths of neutron and proton emis;ion from

I J-uls the sum of

a Be compound state characterized by definite J and %;
the partial widths of decay of the 8Be compound nucleus over all other open
channels; Er is the resonance energy; Ep is the energy of the incoming

protons.

The interaction radius was calculated from the formula

=14 (A'/3+i>)7£ (7.6)
and assumed to be equal to 4f,

The + in the expression for fJu is there because the scattering
amplitude phases are determined experimentally to within %, Here, the
signs for fJTt are chosen so as to obtain the correct sign for the Bl—co—
efficient with Pl(cos 9) in the expansion of the differential cross-

section in Legendre polynomials.
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The calculations were performed using the following level parameters:

n i f oy ? 2 '
B v, 1ab) I | S PUEETTIN/Yp | Y Grevinan)f (et (wev)
I,9 2~ 2 - 5,0 4,3 0
2,25 3t 2 + 5,2 0,83 0
3,0 2t 2 - 1,0 0,28 0,57

For the phases of scattering by a solid sphere for neutrons near the
threshold we chose the same values as would be obtained in the case of
scattering by a solid sphere having a radius d 12f and then the same values
as would be obtained if the interaction radius decreased smoothly by
a linear law to 4f at 2.3 MeV, This was done without an adequate theoretical
basis for fitting a computed curve to polarization data. It is kmown,
however, that distant resonances can influence a phase shift through the
constant diagonal terms in the R-matrix and the corresponding energy

dependence of the phases may quite well be linear,

The results of the calculations are presented in Figs 14 and 15, together
with experimental data taken from Ref. [14]. As can be seen from these
figures, the set of parameters listed above satisfactorily describes the
experimental data on the total cross-section for and the polarization of
neutrons in the reaction 7Li(p,n)7Be at 50° for proton energies in the
range extending from the threshold to 3 MeV, Less satisfactory agreement
is observed in the case of the angular distribution of the polarization,
especially for Ep = 2.6 MeV, However, the experimental data are not
completely reliable, For example, the measurements of the differential
7Li(p,n)7Be for E_ = 2.7 MeV presented in
Ref. [17] differ from the data presented in Ref.p[18] by more than 50%,

cross—section for the reaction

8, Scattering of neutrons by 4He nuclei

This example was first considered in detail by Lepore [5]. It is
assumed that contributions to the scattering process are made simultaneously
by the resonances of two odd states (P3/2 and Pl/z) of the 5He compound
nucleus. It is also assumed that all the contributing partial waves have
total momenta of 3/2 and 1/2 - i.e. in polarization calculations based on
formula (7.15), with A and B determined in accordance with expressions
(5.10) and (5.11), in the elements Vi = 1-exp(-2ibz) the phases 51 for
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the 51/2, P1/ov P3/2 and d3/2 waves introduced in expression (1.4) were
assumed to be non-vanishing. The contribution of the other momenta is
insignificant at energies below 10 MeV, The dependence of the polarization
on neutron energy, which was calculated from the phase shifts presented in
Ref. [6], is shown in Fig. 1, where the scattering angle is given for each
curve (the first number indicates the angle in the centre—of-mass system

of co-ordinates and the number in parentheses indicates the angle in the
laboratory system). For high neutron energies, the results are in good
agreement with the calculations of Levintov et al. [7]; however, around

1 MeV Levintov's results differ somewhat from those obtained by us. It

can be seen from Fig, 1 that helium is an excellent polarization analyser,
Owing to the considerable width of the two P states which appear here, the
polarization varies relatively slowly with energy; the polarization value
is very significant, At neutron energies above 0.4 MeV, by a suitable
choice of scattering angle it is possible to find a polarization value
exceeding 0.75. The maximum polarization angle increases from ¥ = 90°

at a neutron energy of 1 MeV to 8 = 135° for neutron energies of 4 MeV or
more, Little is known about the uncertainty associated with the calculated

polarization.

The differences between results obtained in determining the pl/z—phase
shift at 2.6 MeV were discussed in Ref, [8]. The value of the d-phase is
still very uncertain., This is the reason for the considerable uncertainty
associated with calculations of the polarization at neutron energies above
10 MeV; however, no quantitative estimates of the error have been made so
far. From the available information we estimate that below 6 MeV the
uncertainty associated with the polarization is 10% near the angular
distribution maximum and about 20% where the polarization varies rapidly

with the angle,
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9, Elastic scattering of neutrons by 120 nuclei

In the case of neutrons with energies up to 4 MeV and 120 nuclei, only
elastic scattering is possible. As 120 has zero spin, the entrance and
exit channel spin is 1/2. It has been reliably established that there
are two d3/2—resonances - at En = 2,95 MeV and En = 3.5 MeV - which interre
strongly with each other, as can be seen from total cross-section experiments [9].
The extent of such interference between "resolved" states with the same J and =
is unusual in fast neutron spectroscopy and requires the use of at least

a two-level collision matrix when these states are being described, ‘which is

important for polarization at energies below 2 MeV,

From angular distribution data, Lane [10] obtained the parameters of
R-function (1.3) presented in Table 1.

Table 1

12C

R-function parameters for neutron scattering by
nuclei in the case of an interaction radius
r = 3.72f and with a boundary condition 25
such that E, » E for the resonances

at energiggsup to 4 MeV

B4 o S s i T e b P B Bt S A T S At o Y - B . o i S o K0 1 ® . 8 B e B B B8 G e St i S s 8 T e @ S S o o P S G e = =

! A=1 ! ) =2 0 !
eJ !-","\;';;“"T'T? """""" ;’ """"" L T : R, % @e;
B Y mevt  y Bes [ Aes b - L
01/2 - 1,86 4,0 - - D - 1,035
I11/2 - - - - 0,1 0
I 3/2 - - - 0,25 0
2 3/2 2,734 0,22 3,372 1,742 0,107 - 1,368
2 5/2 - - 1,922 0,030 - 0,558 - 1,541

In Figs 2-T, we give — together with the experimental results reported
in Ref. [10] - the results of calculations performed on the basis of the
resonance parameters presented in Table 1 and of formulas (4.39) and (4.44),
where relation (1.4) is used for V. In Figs 2-4, we present the angular
dependence of the polarization of neutrons scattered by 120 nuclei for the
energy range 0,5-2 MeV, The neutron energy is given in the laboratory
system of co-ordinates and the angles in the centre-of-mass system, In

Figs 5-T, we present the corresponding energy dependence of the coefficients
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of the expansion of the differential cross—section and the polarization in

Legendre polynomials:

S(0)= 2% = 2 B.(E)P (10), (9.3)

@)S'TS%:{:CL () P (wos6) (9.4)

As can be seen from these figures, the resonance parameters selected
(Table 1) satisfactorily describe all the data on the angular distribution

and the polarization for energies up to 2 MeV,
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Amnex 1

We present below some properties of the vector sum coefficients used

in this work,

1. Clebsch-Gordan coefficients

Clebsch-Gordan coefficients are used here for expanding the wave
function in the representation of the total momentum in wave functions

in the representations of the orbital momentum and the spin:

Goion =0 (25 mMem1IM) (ecfony

W, (A.1.1)

The squares of the Clebsch-Gordan coefficients(l(egvncvnSIjﬁﬁz)give

a probability that, on being added, the orbital momentum £ with projection m,
and the spin s with projection m will yield the total momentum J and its
rrojection M, Clebsch-Gordan coefficients possess the following symmetry,

orthogonality and normalization properties:

a) M, +m= M (A.1.2)

v) (abplcy) = €C«- -t | Coy)= (8.1.3)
:( )O\u‘,ft(éafuka) (,) (QCJ [SIC h’)_
= ()% [eceloe )] (acet-y [6-p) = (7 Ploctfzasn)] (cf -ypla-=).

C) (Q% OOICC): C (q+€,f-c-2n*a.) / (A.1.4)
a) Z(a&aip,)c 3;)(&@«74[3l€2f) bec! gn' ; (A.1.5)
(a%«-z p'ley)(abatpley) = du Epp! (A.1.6)
Z(a% B lex) (e bplen)= 253 B, (a1

2. Racah coefficients

In analyses of the angular distribution and the polarization in
nuclear reactions, use is made of Racah coefficients determined by the
following relation [25]:
5~ (abMwwm JEM-mem ) {(Ecdm, vo-wn, | ) C«{H-mmlcﬁ)"
M, M (A.1.8)

x(ldH iy Mot |CM) S J—C+I)(2«F+i} W(ong ef)
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Racah coefficients possess the following symmetry properties:

w(abed;ef)=w(badc;ef)-wlcdabief) = W(ackd;fe)

ef-foc (A.1.9)
=(- )( f-a-d W(ebef;ad) = (1) F6<\wlaepd; bc)

Moreover, Racah coefficients satisfy the following orthonormality
conditions:

5 (204 L)(2f+1)w(abed; ef)w(abed i e'p)=Beer;

£ (A.1.10a)

%(26,"{"}(?(*:{')»\/(96Cd;C{JW(QCCd;cf}:gi{, ; (A.1.10Y)
and also'possess the following properties:

0«3(6 cJ} & ey(- ') W (abcd;ef}w(bacd; eq) (A.1.11a)
Z(zeux( ) € fs ?W abed ; fe)wladcB; 3e} (l) wQécd {?3) (A;l_nb)
W(Q*@p,cz)w &o(ép,c y)= ?(?/\*;)W(a,\o(c ac') x

xW(GI\PC'ig’C)W(Q'M’e}QQI) (A.1.12)

The following relations are extremely useful when one is summing over

magnetic quantum numbers:

(qea\fg [ €A+p)(Ed A+pE[CatiptE) =) [(2@+;)(2{+1)J'/z(€d;aé§/f"p+8)x

x (et prE[Carped) W(ald; ef) (.1.13)
Z(aéo&ﬁlmp)(eww i-P 1Y) (BB Y--Pl{72) -
= [@er)(2t+ L))" (apay-alcy) W abed ; ef) (A.1.12)

3., Z coefficients

The final expressions for the angular distributions contain Blatt-

Biedenharn coefficients defined as follows [28]:

Yz -
Z(Qécd,‘ Gf) = L{-qm[(?q+p)(2g+1)(2c+i)(2d+i)_] x
» (acoo|fo) wlabed ; ef) -

From this it is clear that Z(abcd; ef) is non-vanishing only when a + ¢ +

(A.1.15)

is even and that Z (abecd; ef) is real. 7 coefficients satisfy the following

symmetry and orthogonality corditions:

Z (CJ,fzjz,‘SL)“(ﬁ) Z(GL(’J.; SL) | (A.1.16)

ZZ(Q@(G‘ ef)Z(abc'd; C(/ Scc! (2a+))(2d+y) x (A.1. 17)
x [(aco0l{p)’]
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Lastly, we give values of Z when either £ or f is zero:

n a.c I2
Z(abed; 0f) < Bugbea (1) 1 [earilzcn] (@00l fC) (h1 12)
Z(abed; €0) = Bac g (1) (204" (1.1.19)

4. X coefficients

X coefficients have been used by Fano and Racah in the following

manner [27]:

X{ %;f) X (abe,def, ghi) = ()’ L 2zet)W(Edey; 2a) »
xWldgthize) W (gchfizi),

S=046+crdrecfryth+o .
Fano and Racah have shown that X is multiplied by (—1)s if two columns

(A.1.20)

where

change places and that the transpositicn of X relative to the main diagonal
leaves X unchanged. It should be noted that the elements of each row and
each column should form a triangle. The following relation is useful in

practical applications:

X(abe,dec ,990) = (- ) —%/\/(qé'de,-cgj,
x [(2(+;}(23+1)J

(A.1.21)
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Annex 2
Polarization at isolated resonances

As indicated in section 6, the polarization in nuclear reactions occurs

in the following very simple cases:

1. The reaction proceeds with appreciable intensity through
two compound states with differing total momenta or

parity;

2. A contribution is made to the reaction by one resonance
and the interfering amplitudes of potential scattering
with other J and =n (this case is confined to elastic

scattering);

3. A contribution is made to the reaction by one resonarnce
with several possible initial and final channel spins

or orbital momenta.

Let us consider the last two cases in greater detail.

In accordance with expression (1.1), a matrix element of the P-matrix

has the form

I i _ 1

- =My - ey [ae = Wats
‘\L(S,"’('S' - gJJ'gN’ gss’ - Q (Eou'gﬂ'gss' + =2

l(E-—E'"J-'Tr-/? (A.2.1)

Thus, L
pA X Jally . |
gt r - - — — 2‘\E’N.S. fz”ﬁcs‘
Vst Uels' atys,” Our O/ Beyl 85,5085,5 (1€ )¢ S
- . _ .
‘ ' y S 2.2
* Bt By 8,0 Tt et t(‘f—msx“ﬁ'e:s)( 1-67“&9-‘)»( (a.2.2)

-

‘ UE;E;) +if;/2 .
+ U Bas By s Tads, (I/z SACAXRLIIRY: 1—6'2“’%s,

'C'S'
1_[("‘ Lt -E'/' - T.I?. e -{('ﬁ‘g.s.‘f‘f_‘rflsc-\p p -\P, ,9
é,S, r;'t.'s’ EC.S- E'(,’s’) /(E'Ez*'irn/?)(E-E. ,”—'/2)] e s . o .s;* <'6'S
Using expression (A.2.2), we calculate the quantities V,V, + VqV, and

* *
V1V2 - V1V2 entering into expressions for the differential cross—section

and the polarization:

1—
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' - * - . .
.2-_ (b'Uz*+ U.Ul) = A' 6—1&' 6(.(,' c (2(: 6_5'5' &‘S' S\\q\PJ('g' Swn \ﬁ‘ezsx X
% %
s Lo (\?a\t.s,‘ \Qels l) + 2 5.,'\." 5(,6,’ Ss,s' M&L_
) (E‘EJ*'EVZ
% Sw \\&e,s,{(E{E )%(fa(,S,—\f-(CIS,- \P.(’(l's') +irz St (\pd@.'\p.d’,st’\f.('gas')} + (A.2.3)
2 Y2

-+ 26:.(.1' gezel' (O_.ng' %E%E‘f%ﬁs;hkpdesz [(E'.E)Oaé(‘\ﬁg,s.’\'&e.sf\ﬁ'e,’# +

¥ Ji (S (\?od;S; ~ Ve 45, ” \P_,Ie"s')J + é- (rd.e.‘-n r:l"(p'S' E{CzSz E'C "5')’,a x

X Q.XP‘.(‘{;(E;,S:'*' q'(: 5"—\3,4(.5,‘ ke,('l,'s') _’_Slpi(qd(-5|+w-('(.'s" dc.s:\ﬂ'e.';')
(E-E,+iR/2) (E-E,~i/2) (E-E,-iR/f2)(E-E +if2)] .

_‘_ *_ * _ . . .
2 (IJ'U;_ U! UZ) - 4 ¢ 6;«!' 6}.0:' &191’ 6—5,5' 'S;zS' Sth\‘u"‘e'S'SLhkp"‘elgux

. L , fa
X Sin (LpdeLSz'—\pale,S.)’*‘Ql\a_ 'Oe,f' gSS' ._,:‘{i*: Elf}.,i
. . ' ! E" F3 2
¥ S \'Pd€'5| [(E_Ez)Slh(\Q(('S"‘\{;(asz" %’C:S' ("' EZ) * rl /L’

1
i Ces/(\m,s,—\Pde,s‘—wd'e;sy] 205, See Eay x
42 12 ) ¢
r«c,s, CI(ISI . .
(5 €)%+ ;%4 St Vs, [(E’E')S“'l(‘p«f,si\f'ie.s."ﬁ‘e.'s') *

. I/z
v 3 [ Cos (Waes, = Pac s, =Pl )} 4 Tes, G Taense o) *

R =

X - (A.2.4)

(€-€,+10/2) (E-E,-ih/2) (E-E,-in/2)(E-Erin/2) | .

As can be seen from expressions (A.2.3) and (A.2.4), from the product
of the V-matrices it is possible to separate out terms corresponding to
purely potential scattering, resonance scattering and interference between
potential and resonance scattering. After the substitution of expressions
(A.2.3) and (A.2.4) into expressions (4,39) and (4.44), the sums corresponding
to interference scattering can be combined. When there is only one
resonance with definite Jono and EO, the expressions for T(00) and T(ll) are
given by expressions (A.2.5) and (A.2.6). The quantities 3, and. bL entering
into these expressions are the corresponding products of the vector sum

coefficients in expressions (6.24b) and (6.29):
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T(00) 1{4 Zg"-" OL(IJZ €€ ¢ ¢ SS} Sth Lpoce.s 5(h.\€-<?_zs M(Wge,s“@m)+
4800 ) 0 (3086665950 e s [(E5E) Cos (Haes = Waersuers) 45T »

S (Bt B Yoz ) 208 Trets (1.2.5)
ZG( eaes .:'es)}rE to)+[_2/q +
+ (33.6,6,.8/6/ss') Laes ety Taeys Mute!
) (E e ) . r’-/:, -—.t_}. (,0")("@((5""{;('4- dﬁS .4( 5')} wsg}

Th)= {4 8.4.42—{ JILLE (¢, 35'95'"%95'&*7%48, Sin (l&es \&es)'*

452 £ (076065 s/sw,\&e [EE)th(\&eg—L&glgt “Page) ¢

+'L|-C,s‘> Yees -\, —-\PH "‘(‘51 r'ts
(Ms \Fes, vadle! )](E et (h.2.6)

FUTE(..6,6,66!5,5,5) [es, ey Do, vas)
(E- Eo)+r’/q o

¥ Sin (\p,(tls *‘\'p.lt 5! \'Pa.efs -('9,3)} p‘_(uosé)

Using the fact that the potential scattering phases oaﬂs and the partial
widths T
ats
follow the energy dependence of T(00), T(1l) and the degree of polarization

P(8) ~ i?(11)/T(00).

vary only slightly in the resonance region, it is possible to

Let us rewrite expressions (A.2.5) and (A,2.6) in the form

, A, {E Eo)*‘A; 2.
LACALE *ou (E-E)* T4 N (E E) iy ! (#.2.1)
T =8B +5,, LB | Bs ) (1.2.8)

(E-EoJ+ ¥4 (E-€,)+(Y4
Plo)- Bus BJ(E-Eo)+1/4] + €. [Ba(E-Eo) + B,]+8,
O ALJ(E-Eo) 4 T74] +Er [A(E-E+AS] + A,

where Al and Bl correspond to purely potential scattering, A3, A2, B2 and }33

correspond to interference between potential and resonance scattering and

(A.2.9)

A4 and B4 correspond to purely resonance scattering. It should be noted
that Al’ A B,, B, and B, are constants in the resonance region.

o1 A3r A47 Bll 2 73 4
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Expression (A.3.9) can be reduced to the form

P(s) = +

I

+ ( ~A:B./A, )(t €o)o..' +(B;-B, A fa)our +(Bl. 8 4.‘31&}— (4.2.10)
[, (604 L20) - Bafan, + )50 + A,

The first tem in expression (A.2.10) gives the constant background, while
the second gives the asymmetric resonance peak shifted relative to the
resonance in the differential cross-section and having another width,

Thus, in the case of elastic scattering (a = a'), the percentage polarization
varies considerably at the resonance and has the form of an asymmetric

resonance peak., In the case of inelastic scattering or ofan a % a' reaction,

6aa‘ = 0 and - as can be seen from expression (A.2.10) — the polarization is
constant at the resonance: B4
P(®) ~ A— (A.2.11)
4

Let us now consider in greater detail the case of inelastic scattering
when the potential scattering phases do not depend on the total momentum
and there are one entrance - (a#s) - and two exit - (a 18 ) and (a,2

222)'
channels.,

In this case,

Taes
By ot -2 (e fzs) in (Y e s, (A.2.12)
Y4 2 o, €S, Tu,€,3,
(E-€,)" + r/4

The resonance polarization will be significant if P r; 5 are
SRR 1 %%
comparable and if o £ o . .

lglsl alzzs2 From the phase inequality requirement
it follows that 31 % 22, for the potential scattering phases depend only
slightly (or not at all) on the channel spin s. It follows from the law
of parity conservation that 21 and 32 must differ by at least a factor of
two; hence, if the energy of the outgoing particles is low, it is difficult
to find a case where T 2 and Pa 4 s are comparable. Thus, the most
interesting cases from %he point of view of obtaining significant polarization
are those where the outgoing particles have an energy which is so high that
the penetrabilities for the s and d waves are of the same order of

magnitude.
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Fig, 1 Polarization in neutron scattering by 4He at neutron energies
below 10 MeV, The scattering angle is indicated for each
curve (the first number indicates the angle in the centre-
of-mass system of co-ordinates, while the number in parentheses
indicates the angle in the laboratory system).
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Fig, 2 Polarization of neutrons scattered by 120. The neutron energy

(in MeV) is given in the laboratory system of co-—ordinates and the
scattering angles in the centre-of-mass system. The continuous
curve is the result of calculations based on R-matrix theory and
performed using the parameters in Table 1.
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using the parameters in Table 1,
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Coefficients of the expansion of the differential cross-section

in Legendre polynomials,

The differential cross—section and

the angles are given in the centre-of-mass system of co-ordinates

and the neutron energy in the laboratory system.

The continuous

curve is the result of calculations performed using the

parameters in Table 1.
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Fig, 6 Coefficients of the exggnsion of the differential cross-section for
neutron scattering by ““C in Legendre polynomials in the region of
the resonance at 2,08 MeV, The differential cross-section and the
angles are given in the centre-of-mass system of co-ordinates and
the neutron energy in the laboratory system. The continuous curve
is the result of calculations performed using the parameters in

Table 1.
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Fig., 7 Coefficients of the expansion of the cross—section for polarization
in neutron scattering by 12¢ in associated Legendre polynomials.
The polarization cross—section and the angles are given in the
centre—of-mass system of co-ordinates and the neutron energy in
the laboratory system. The continuous curve is the result of

calculations performed using the parameters in Table 1.
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Fig. 8 The energy dependence of the phases used in calculating C.

Coefficients of the expansion of the differential cross-section for
neutron scattering by 'Li in Legendre polynomials, The differential
cross—-section and the angles are given in the centre-of-mass system
of co-ordinates and the neutron energy in the laboratory system. The
dotted, dashed and continuous curves are the results of calculations
performed using the parameter sets A, B and C respectively. The
values of BL with L > 3 are small and are not presented here.
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Fig, 10 Coefficients of the expansion of the cross-section for the
polarization of neutrons scattered by TLi in associated
Legendre polynomials. The polarization cross-section and
the angles are given in the centre-of-mass system of
co-ordinates and the neutron energy in the laboratory
system. The dotted, dashed and continuous curves are
the results of calculations performed using the parameter
sets A, B and C respectively. Values of CL with L > 3
are small and are not presented here.

Fig. 11 Angular distribution o(9) and polarization P(9) of neutrons in
scattering by Tri, The angles are given in the centre-of-mass
system of co-ordinates and the neutron energy (in MeV) in the
laboratory system. The continuous curves are the results of
calculations performed using parameter set C.
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Figs 12 and 13 Angular distribution o(9) and polarization P(9) of
neutrons in scattering by T14. The angles are given
in the centre-of-mass system of co-ordinates and the
neutron energy (in MeV) in the laboratory system.

The continuous curves are the results & calculations
performed using parameter set C. '
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Fig, 14 Cross-section for the reaction 7Li(p,n)7Be and the polarization of
neutrons from this reaction, calculated using the parameter set
indicated in the text. The angles are given in the centre-of-mass
system of co-ordinates and the proton energy in the laboratory system.
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Fig, 15 Angular distribution of the polarization of neutrons from the
reaction 7Li(p,n)7Be calculated using the parameter set
indicated in the text. The angles are given in the centre-
of-mass system and the proton energy in the laboratory system.



[1]
[2]
(3]
[4]
(5]
(6]
(7]
(8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]

[24]

- 69 -

REFERENCES

HUMBLET, J. and ROSENFELD, B.L., Nuclear Physics, 26 519 (1961).
BLATT, J.M. and BIEDENHARN, L.C., Rev. Mod. Phys., 24 258 (1951).
SATCHLER, G.R., Nuclear Physics, 8 65 (1958).

SIMON, A., Phys. Rev., 92 1050 (1953).

LEPORE, J.V., Phys. Rev., 79 137 (1950).

SEAGRAVE, J.D., Phys. Rev., 92 1222 (1953).

LEVINTOV et al., Nuclear Physics, 3 221 (1957).

WILLARD, H.B. et al., in Fizika bystryh nejtronov (Physics of
fast neutrons), Vol. 2, Atomizdat, Moscow (1966) 162.

BOCHELMAN et al., Phys. Rev., 84 69 (1951).

LANE, R.O. et al., Phys. Rev., 188 1618 (1969).

ELWYN, A.J. and LANE, R.O., Nuclear Physics, 31 78 (1962).

LANE, R.0. et al., Phys. Rev., 3136 B1710 (1964).

MACKLIN, R.L. and GIBBONS, J.H., Phys. Rev., 109 105 (1958).
AUSTIN et al., Nuclear Physics, 22 451 (1961).

MINZATU, I. et al., Nuclear Physics, 40 347 (1963).

BUCCINO, S.G. et al., Nuclear Physics, 53 375 (1964).

GABBARD, F., et al., Phys. Rev., 114 201 (1959).

TASCHER, R. and HEMMENDINGER, A., Phys. Rev., 74 373 (1948).
GALONSKY A, et al., Phys. Rev, Letters 2 349 (1959).

GOLDFARB, L.J., Nuclear Physics, 12 657 (1959).

BROWN, L., CHRIST, H.A., RUDIN, H., Nuclear Physics, 79 459 (1966).
McINTURE, L.C. and HAEBERLI, W., Nuclear Physics, A91 369 (1967).

CONDON, E.U., and SHORTLEY, G.H., The theory of atomic spectra,
Cambridge University Press (1967).

LANE, A, and THOMAS, R., Teorija jadernyh reakcij pri nizkih
energijah (Theory of nuclear reactions at low energies),

a Russian translation published by Inostrammaja Literatura, Moscow,

(1960).



[25]

[26]

[27]
[28]

[29]

- 70 -

DAVYDOV, A.S., Teorija atomnogo jadra (Theory of the atomic

nucleus), Fizmatgiz, Moscow (1958).

ROSE, M.E., Elementary theory of angular momentum, Wiley,
New York, 1957.

FANO, U.. National Bureau of Standards Report, No. 1214 (1952).

BALDIN, A.M. et al,, Kinematika jadernyh reakcij (Kinematics of

nuclear reactions), Atomizdat, Moscow (1968).

WELTON, T.A., in Fizika bystryh nejtronov (Physics of fast neutrons),
Vol. 2, Atomizdat, Moscow (1966) 239.



- T1 -
(Vol. 9, pp 146-175)

MUF - A PROGRAMME FOR THE MULTILEVEL CALCULATION OF THE
CROSS—-SECTIONS OF NON-FISSIONABLE NUCLEI FROM
RESONANCE PARAMETERS

L.P. Abagyan, M.N. Nikolaev, V.V. Sinitsa

Introduction

In the region of resolved resonances, the energy dependence of cross-
sections can be reproduced on the basis of known resonance parameters. In
the case of isolated resonances, when the widths of the levels awe less than
the distances between them (I’ << D), the neutron cross—sections are
satisfactorily described by the single-level Breit-Wigner formula under-
lying the URAN programme [1,2]. The URAN programme is intended for
calculating the cross-sections of heavy non-fissionable nuclei, for which
the condition [ <<D is usually satisfied. The cross-sections of such
nuclei are greatly influenced by the Doppler effect, so that the temperature
of the medium is taken into account when the cross-sections are calculated
by the URAN programme, The interference of potential and resonance
scattering is also itaken into account. For light nuclei and nuclei of
intermediate atomic weight (in fact, for all nuclei at sufficiently high
energies), the isolated resonance condition may break down. In such
cases, in cross-section calculations it becomes necessary to take into

account the effect of inter-resonance interference.

In this paper, we describe the MUF (Mnogafgrovnevaja Formula. = Multi-
Level Formula) programme, which enables one to calculate the energy
dependence of the cross-sections of non-fissionable nuclei with allowance
for the effects of inter-resonance interference and interference between
resonance and potential scattering. In the MUF programme, as in the URAN
programme, there is provision for calculating mean-group cross-sections,
self-shielding coefficients and transmission functions, In cross-section
calculations, the MUF programme does not make it possible to take into
account the temperature of the medium, so that it can be used for calculating
only the cross-sections of light nuclei and nuclei of intermediate weight,
for which the Doppler effect is negligible (in the temperature range of
practical importance, the resonance widths for these nuclei greatly exceed

the Doppler width).
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Description of the formula for calculating the
energy dependence of the cross-sections

The MUF programme is based on a multilevel formula derived by
A.A, Lukyanov [3] within the framework of the Wigner-Eisenbud formalism
with a number of assumptions. For each compound nucleus level system
(v) characterized by definite total momentum (J) and parity (%) values,

the following assumptions are made:

1. In view of the large number of independent radiation

channels, the radiation width may be written

R
rr,x,. = ‘v'aqu (1)

where Ap represents resonances from the system v and —I:'Y

is the mean radiation width;

2, For a neutron width Pn s the single-channel approximation -
whereby only specific orbital momentum (£) and channel spin
(j) values correspond to each of the independent compound

nucleus level systems - is valid,

As a rule, these assumptions hold good for various non-fissionable
nuclei in the energy region where there is no inelastic neutron scattering
and where the contribution of waves with high orbital momenta (£ > 2) is
insignificant.

\Y
With these assumptions, the collision matrix element u o may be

represented in the form

IRV P
~diy, {?LX(C)

u) ()= R 5
w ()2 € (- X2 (2)
vhere

A T fLLE Su—

“ 2w S CE-esf (3)

™~

E, being the energy of the A —th level from the system v (the sum is taken
over all levels (A)).
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The total cross-section (o) and the capture cross-section (oc) are

expressed in terms of collision matrix elements in the following manner:

Gle) = 2rA X0, Rl - (D), (4.1)
¢

. 2 v 2

s.e) = 72 g (1-Tuncel), (4.2)

Here X is the neutron wavelength and g, the statistical weight of a state
with given J, .
By substituting expressions (2) and (3) into expressions (4.1) and

(4.2), it is possible to obtain the following expressions for the cross-

sections:

) | 42 Biy +BrptBs,) 0520, - B,,5in 24,
6(E) = 4ri\’2 Sule, +41x°3 (Bur 781,18, > L . .1
e v y e 9, (18,7 + &2, (5.1)

B
. - - 4 )2 l)u’
Cjc(t) 4 % j" (‘/+B"’)4 +B§" (5.2)
Gs(F) = B - G (E) | (5.3)
where
I /T,
B - 5U4 - —-’_1_'1‘\’___
“ ?%z) 1*[9%;)2
_ [na /75 (2525
bz'y = 5U2 ‘-'-Z (E).Er,z (6.2)

a1+ (2 e

If it is assumed that ¢, is the phase of scattering by a reflecting

sphere, then
Cstoy = % (1.1)

Tottn = x - aueigr
(7.2)

R = (7.3)

» = kR
(8)

(6.1)
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Here k is the wave number of a neutron outside a nucleus; it is
associated with the kinetic energy of the neutron outside the nucleus by

the relation

k= 02097 (A) 16" VE@v) (9)

where A is the mass of the nucleus in neutron mass units and R is the
interaction radius. Weisskopf [4] has stated that R depends on atomic

weight as follows:
~ IR ; 12
R~ tod(A3 +055) e} rtod~t3+45207" (10)

In the MUF programme, the parameter rad is introduced together with other
input data. In some specific cases, rad can be determined more precisely
on the basis of total cross-—section or potential scattering cross—-section

measurements already performed.

The energy dependence of the neutron widths is computed from the

formulas

) & TE (11)
(E) = T(E) —5 =
( ) u( ) UZ(E,) *EA ’
v = -:_,L?l- W = ———-5—"————“ = K
. =1, Taxz 0 U Y PIICEE X = kR (12)

The introduction of the quantity o, (formulas (7.1)=(7.3)) enables

us to calculate the potential scattering cross-section:
Z . 2

E.(F) = 4uA* $in2P, = 4z2e 3 (20+1) 3n"Te .

P ) £ % é’p (fu z (13)
There is also provision in the MUF programme for introducing the non-resonance
part of the total cross-section (op) as a function of energy. The array of
specified potential scattering cross—sections is designated as SPOT and the
array of energies at which they are specified as ESP, At the calculated

energy points, the values ofop are determined by linear interpolation.

In calculations of the cross-sections of a mixture of isotopes, the
level system (V) is also characterized by A, - the atomic weight of the
isotope to which it belongs.
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The cross-section calculation formulas (5.1)—(5.3) have an advantage
over other multilevel formulas, for when using them to restore the energy
dependence of the cross-sections, there is no need to specify any
additional parameters characterizing the multilevel state. In
formulas (5.1)-(5.3), the cross-sections are functions of the single-level
resonance parameters which are used in calculations based on the Breit-
Wigner formula, It is this set of parameters which, as a rule, is
determined by experimentalists when analysing data obtained near each

resonance (by the "method of squares" or the "method of shape"),

In Ref, [5], Garrison presents curves of the total cross-section
of two interfering resonances calculated using multilevel formulas,
The positions of the resonances were fixed (1000 eV and 1010 eV), while the
widths varied within a wide range (1 eV-50 eV). It was assumed that
there was no capture, These data were used as a basis for total cross-
section calculations by the MUF programme which made it possible to
reproduce completely the shape of the total cross-section curves. In
Fig. 1 we present the results of the total cross-section calculations
using the MUF programme (continuous curves). The results of cross-
section calculations performed with the URAN programme are represented
by broken curves. It can be seen from the Figure that the URAN programme
can be used for restoring the energy dependence of the total cross-section
only if I'/D< 0.1,

Description of the MUF programme

The programme is written in ALGOL-60. It is translated into M-20
computer language by a TA-2 translator. The comments below relate to

some of the blocks and compound statements constituting the MUF programme.

1. Next energy point selection statement (VYTOEKA). This governs

the size of the next energy step. For the i-th resonance, the first
step is Pi/32; it then doubles, provided that the total cross-section
at two neighbouring points differs by less than 5%. Doubling of

the step proceeds until dE does not exceed Pi' The step then becomes
constant and equal to Pi, but only if the total number of points on
the resonance wing in question does not exceed 100 (otherwise, the
step is selected in such a way that the number of points on the

resonance wing is 100),
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2. Determination of inter-resonance points. This is somewhat modified

in relation to the URAN programme [1,2]. For each i-th resonance, the
inter-resonance energy is determined on the right (Ei 1 i) and on the left
s |

(E.

. .) of the resonance:
i,i+1

£5., 0 ¢ o€ E-(£;4
e Y A (14)

L-1 st 3 +

In those cases where

3 < EN <€, (15)

-1, (-t

the energy region from EN to Ei— was regarded in the URAN programme

1,1
as the "left wing" of the i~th resonance (i.e. the cross-section
calculations were performed from the i-th resonance peak to an energy

of EN). Similarly, when

Eiu,io.t éEV)Ei.,L.: ’ (16)

the energy region from E. to EV was regarded as the "right wing"

1,141
of the i-th resonance., As was shown in Ref. [2], with this approach
to the selection of inter-resonance points it is not always possible

to achieve the required precision in integrating the energy dependence

of the cross-sections.,

Accordingly, alterations were introduced into the inter-resonance

energy selection statement. For EN < Ei .y the energy region EN—Ei

1,1

- -1,1i
is calculated by means of the "WVYTOCKA" algorithm from EN to the right

with an initial energy step I', ./32. For EV> E. . ., the energy
i-1 1,141

region E. —Ev is calculated by means of the "yYTOCKA" algorithm from

i,i+1
EV to the left with an initial energy step Pi+1/32. In the remaining
cases, the calculations are performed from the i-resonance peak energy
Ez, with a step ofI‘i/32, first for the left and then for the right wing

of the resonance.

This way of selecting inter-resonance points enables one to describe
in detail the energy dependence of the cross—sections in the case where
the resonance lies near the boundary of the group and outside the group
interval. The algorithm enables one to calculate the group cross-sections
in the case where the energy interval of the group falls into the region

between the resonance peaks.
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Owing to the advantages of this way of determining the inter-resonance

energies, the algorithm in question has also been introduced into the

URAN programme,

3. Calculation of resonance integrals. In the group, such calculations

are performed using the fomula

Jr = A AU = Z - S E ’
ICOI
(17)
i I
J: = Ave-all = 76 Erilli-Fy )
T
£ t <
where yR - AV&A'U: ]R —‘712
G = 433t fg L6 (18)

is the cross-section at the resonance peak. Those levels (i) are summed

whose energies EOi satisfy the inequality EN < EOi < EV.

4, Calculation of guantities averaged over the energy group (SUM block).

In the MUF programme there is provision for obtaining:

(a) unblocked cross-sections -

6> = Af r,,u j@[’:/{ z —‘Z;—-(G[E]f fe:[gm,_m)
B = A _-Au) G, E*dlE ’ ZZN(G[FJ +G[ElEe) ‘_f s (19)

K0

(B> = As = Lf(@ -G )E%E = "ZZL(“LEJ Gl DEN (EEen)- 6L ] WJoc_.

(b) blocked cross-sections and self—shleldlng coefficients -

~ - NG - +’o"o>

<(6 ¢6.J>

G ~6. i (20)
E = 25..‘{@‘1_2 < Gol
= . ; D
‘ Z@“sc) ’
7

J . f= &,
R Gr ’ c <60 . ( )
21

e =
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(¢) transmission functions

-CEM pai t'.’f--ut S{Exer !
T = L e E LT (e g lElipy )t

{ Kedh 2 "'

- / - F)t" n T [El - Kot

n(f)—mJGJUe £l = — Y (lede ]E .6, [c,“,]em: )tf ~..

. <CE7: fxan K2

(22)
- KEL

T (t) = "’Z‘E} (fﬁ\é 0. (& )J e E"o“f =

ol -Gt N .
_526—)%: :"[(rr - ':\Cb ¢4 Lo (C [Eun} G [E;.J) [&"Jt K:I)J—(!éa’

The set of thicknesses iti} for calculating the transmission functions

can be calculated by the programme using the following relations:

c - .
tz s ~— [T . t( O"r‘ ¢ + =2t‘:_2 s L: :5,‘7"-115\7-
<

Je/au +Gp(E%, ENcER<EV )’ s (23)

In the programme, we take the coefficient C to be 571, There is also
provision for introducing the set of thicknesses on punched cards,

The array of specified thicknesses is denoted by TOL.

Examples of cross-section calculations
using the MUF programme

Total cross-section calculations were performed for the elements Ti,
V and Mn. These elements were chosen because, in the energy ranges
considered, the condition I'/D < 0,1 breaks down for some resonances,
As a result, inter-resonance interference is very prominent in the total
cross-section curves and the energy dependence of the cross-sections

cannot be restored using the URAN programme.

In the cross-section calculations using the MUF programme, the

resonance parameters recommended in Ref, [6] were first taken as a basis,

In Table 1 we present the resonance parameters of titanium.
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Table 1

Resonance parameters of 22Ti (6]

b (keV) Iy (eV) A B
10.51 60 47 0.08
i2.12 bu 47 g.uo
12.8¢ 80 47 U.uB
I16.40 185 4y 0.08
17.34 7530 48 0.73%
18.1 54 4 .06
20.86 122 : 49 U, 26
22,1 Ly | 49 0. J6
22.¢ SUU 45 U dt
26.% 41¢ i b R
27.0 TIO 47 Joob
25.1 79 47 U.JE
¢9.2 160 42 0.0
31.2 925 4y 0.d%
32.3 530 47 0.08
35.8 142 49 0.06
36.1 202 47 0.08
37.0 2J0 &7 0.08
37.J | 111 48 0.73

| 7.9 ; 1bed 49 0.06
L—‘ 3a.I : 370 47 J.o8

In Fig. 2 we show the calculated curve of the energy dependence of the
total cross-section of titanium in the energy range 15-30 keV. The

experimental results of Garg et al. (Open dots) are taken from Ref., [6].

The resonance parameters for vanadium were taken from Ref, [7].

We succeeded in describing the energy dependence of the total cross-

sections only after varying the neutron widths and resonance positions

several times.,

parameters of vanadium,

In Table 2 we present the initial and modified resonance
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Table 2

Resonance parameters of 23V [7]

{
E (keV) L (eV) J

% 4017 (4.16) 508 (450) 4

i 6.59 (G.84) 1280 (II00) 3

% I1.81 (il.3) 5500  (43J0) 3

§ 16,60 (§5.4) 350 (304) 4

; 17,40 (17.9) 350 (2uQ) 4

? 21,65 (21.6) 793 (390) 3
29.45 (29.6) 191 (IS0) 4
39,30 570 3
48,15 150 4
49,55 630 30

| 51.95 115 b
53.0 960 3
62,5 3800 3 J

The cross—section of vanadium was considered in the energy range 2-30 keV,
The results of calculations of the total cross-section of vanadium based on
the initial (broken line) and modified (continuous line) resonance
parameters are presented in Fig, 3. The experimental points were taken
from Ref. [6].

The cross-—section of manganese was considered in the energy range
0.1-10 keV, In order to describe the total cross—section curve, the
neutron widths of two levels had to be modified somewhat relative to those
recommended in Ref. [6]. The resonance parameters of manganese taken by

us are given in Table 3,
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Table 3

Resonance parameters of 25Mn L6]

E (keV) ~T Ty (ev J mw
-2.83 26.9 2
-0.u78 0.14 3

0.537 22 2
1.098 I4.6 3
2.375 400 3
7.170 425 (440) 2
8.870 404 (385) 3
17.8 15.0 2
18.0 45,0 3
21.0 860 3
23,7 380 2
25.9 7.0 3
26.4 Ic 2
27.0 ‘ 380 3

The numbers in brackets are the modified neutron width values. In Fig. 4

we present the results of manganese total cross—section calculations.

In the cases considered, we succeeded in describing satisfactorily
the energy dependences of the cross-sections. For this we had to vary
the resonance parameters somewhat by hand. A programme for the automatic
fitting of resonance parameters, written on the basis of the given multi-~

level formula, will have to be devised.

Besides the detailed energy dependence of the cross-sections, the MUF
programme permits us to calculate transmission functions, resonance self-
shielding coefficients and mean-group cross-—sections. Some of these
quantities are presented by way of illustration in Tables 4 and 5 and in
Fig. 5.

It did not take more than 10-15 minutes to calculate any of the

variants on the M-220 computer.



Resonance self-screening factors and mean-group cross-sections of >

Table 4

3V

Boundaries

Resonance self-shielding factors of cross-sections

o e e B

Group Mean-group
No. of groups | FR cross—sections for o (b%rn) 3 4 .1
(BNAB) (keV) (barn) =0 10 10 10 10 ;
<G> 50,u4 FT | 0,23%  0,4237 0,772 L9856 0,%534 :
1| 10-21,5 0758 |¢6>] o8 |AC | o,7588 0,797 0,9182  0,9873 0,998 ‘
i
(B> | 56,91 £S 0,5558 0,6818 0,883 0,9827  0,%932 |
i
— {
{67 | 6y,3I F7 0, [222 0,2492  0,6624 C,94If 00,9535 "
12 | 4,65~ 10 |0,7658 |(G.>| 0,086 Fc 0,6935 0,751  0,8870 0,9785 0,9978 {
(B> 69,78 £S 0,3708 0,5400  0,8205 0.2702 0,938 i
|
o |
B | 78,74 F7 U, 1753 0,2048  0,3700 0,791 §,9730 §
I3 {2,15 - 4,65|0,7718 { (6. )| 0,13 £C L2891 0,345I  ©,5784 0,8908  0,3867 i
{Bs>| 78,61 L 0,2750 0,3339 0,664 C,8280 0,554 I
L !




Table 5

Resonance self-screening factors and mean—group cross-sections of __Mn

25

Group !Boundaries % Mean-group Resonance self—shi%ldigg %ctoys of cross-sections
No. :of groups | ER | cross—sections or 9o \barn 3 4
(BNAB) | (keV) (varn) | =0 10 10 10 10
) B> 36,12 £T 0,I1435  0,2234  0,5397 0,90i3 0,928z
12 4,65 - I0 10,76501®) 0,039 FC ' 0,0263 0,476 Q,7334 0,250¢ 0,545
<650 26,08 £3 0,2592  C,A0I3  G,7183 0,9488  ,99414
<6 157,7 FT C,00039 0,143 0,392 0.673%1  G,0008
I3 2,15 - 4,6510,77151 <G> 0,18 FC ) Q,1514 0,395  0,4dG7 0,632 0,9737
{Ds7|167,5 [ 0,I5853 0,2577 0,4453 0,8I80 0,975

_€8_
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Fig. 1 Results of calculations of the total cross-
sections of two interfering resonances with energies
E, = 1keVand E, = 1,01 keV, Continuous curves -
calculations pergomed using the MUF programme;
broken curves - calculations performed using the
URAN programme.,
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Pig, 2 Total cross—section of titanium

e,
ey 1 S

!.1:,.

Vil

.1?Empv| .

Total cross—section of vanadium

Fig, 3

a

3

HE

<t

mmmm N

8
«
-
v

>

e

RO

il
[

~ (keV)

E

Fig. 4 Total cross—section of manganese



T, TC, TS

i functions

ission

Transm

R

s M " 14

3
i

AR

e e e It

PR A6 LY

w N oagan

F

1

Transmission functions TT, TC and TS as functions of thickness T
in the energy range 15-30 keV for 22‘I’i



- 87

ANNEX

Text of MUF programme in ALGOL-60

001 BEGIN RESL EN, EV,aT,AT1,AC,AC1, R85, AVK.AVL,AVS,

go2; R,A81,071,B12,ER,ERY,RAD;

363%: lNTEGEQ HB oMb, UM, SM,O,NBT,HBZ,1,3,K,KH,4HK,

O04% M, D S, ASH,NU, BUMK, ISP, P,PM,1,4B;

005: tottl'rie~2",Kka);

00o: FO:COL(*RID-2',ABY,R,NB,MH,UM,SM,PM,NUNM,RAD),

o

8o BEGIN ARKAY EGLV:42S{OMI I ,ED,GHN,GAG AAKDL Y ABS NG §,

00d: TILU1:8B85(SM)),EWSIT,S1Cl~-100:100),CKT,»SKT,
009: SKT2(1:ABSUISM)],RKTI1:ABS{SM),1:AB5{mnm)],
010: SP,AB,GC,5U1,5U2(1:aBS{NUMYT,

c11: COMMENT CO tEG'26'ED’ ‘CHAN'GAG *KARD 100 TIL 7

012: ‘'CKRT’"*SKT''SKT2'7'RrT'42°'SP’'ag’*Cc’'suy’*sy2’sg;

013; ascxw INTEGER ARRAY MNUL1:ABS(NB)),LI1:ABS{NUM)]);

—_—— . e vm e e

014 COMMENT co fMNUY Y00 'L’ 50,

915: CoO(‘R10~2',EC,EO0,GAN,GAG,MNU,ab,6,L,TIL);

s16: FOR NU:=1 STEP I UNTIL HBS(NUM) 00 BEGIN

8017: SPINUl:=a8I[NUl;ABINU]:=A8S(ABINVU]) END ;0:=1;

018: F5:p:=0; FOR NU:=0+1 STEP 1 UNTIL ABS(NUM]) Do

- - ——— ———

019: BECIN lF SPINUL#0 THEN BECIN

———— ——— o ———

g20:; lF Ag(nUY2AlD] THEN BEGIN p:=pe+1;

021 IF P=1 THEN MI=NU END ELSE SP{NUl:=u END -END

(=]
]
=

g22: IF P>0 HEN GOTO F5;

023: COoD(’p2-10',a81,NB,NUM,MM,SM,R);

"24; PIz0, FOQR NU:=1 STEP 1 UNT]L ABS(NUM) DO

—— - —— - -

025 IF SPp{NUJ<0 THEN p:.=p+1;

026 IF PM<G THEN PM:I=-50;

————
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te?: BEGIN &RMAY £%,00-1:1),85pl130,5k0TiViP, Y00,

028 TOL,TY,TC, 75012 ¥F ppel THEN 50 ELSE Pml;

hd

c30: 1F Px0 TarKN JHUUT(‘BID-2" ,ESP,S5507);

33V IF Prer2d TuHEM COD('RIC=-2',TOL)

332 Bl1:22.1987wu~%«RAD; FOR 1:T1 STeP» 1 UNTIL &B5(NB) DO

——-— -_———— - -

£33 BECIN NU:=MNULL)Y;0:=ERTIER(AS[LULY;

08547 KARO(T1:2811e5GRT{ALS(EVITI)Y ) (,55+p8, 3333)
335 /01«17 Aapti=KARDLTIT2,

336 IF LINLI=Y THEM KARUIIJi=KAROLI Jeanl1/7(1+AGT);

037 IF LINUT=? THWEN

gla: AARO{ ) =KARDI])eRp182/(¥+3a02B1¢A43112) END

039: nwB2:=150(1):=eC{ V)

240 FOR D=1 5TErF 1 UNTIL AHS(ECM)~1 DD

041 BEGIN EN:=eG{D);AVR:=AVC I =AVS :=AY /i 2RS ¢k =D;

042 1F DM>0 THEN BEGIN ASMI=ABS(SMm):

043 FOR Siz1 STFP 1 UNTIL ASM DO BEGIN

- ——— - - —— oy

044: CKTIS):=5«T{S):=%nT2(8):=C

D45 FOR M:ic= STEP 1 UNTIL ABS{MM) DO

- - -~ -

Deb: RKYLIS,M)}:=0 END END

- o~

047 FOR P:=1 STEP 1 UNTIL 2aBS{eM) DO

048: TTIp):zTClp):=T7SI{PYi=0;
049 1ENB2~1EX[B)i==);
g50; FOR P:=P+1 WHILE EO[{PI<EC{D+1] DO BEGIN

- ——— - - -

351 iz u>a6$(ns)'1552 Eg:g F3,;

852 17 EQ[PI>EN ThEN BEGIN NU=uNuiP)]

353: ISPI=ENTIER{AbINU)Y;B1VI=(ABINU)-13P)e 10
0S4: Bl2:zpgliec{hU)sCANIPIZEDIP)T2; AVRI=AVR*BI2;

88S: avio:zgveesl2/(i+Canipl/szGac{Pl) eND end
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056: FI:NE1:=K827 Fur J:SNPZ,1%1 WHILE EV<EGIL+1) C¢n

257 BEGIN KEAL GN,GR,SU,SIT1 ., KEL,SFO,S8pT;

058: B8lt:=(As{muul1)l-enTIER{NLIMNGLII])))e10;

C:89: 01=-1):=501): IF l<aosi{nNB) THEN BEGIR

De9:  GCAzCAN[{I]eGAGII ;anI=CAN{T+T)sCAL]ie1]])
JEY: BI2:=(gplrmnU{1*1))-eNTIER(ABIMNUITI+T1]1))*10;
062: EViz(Ed{l+1lecAeplie=gll)egNegi2)s

t63: (Gasgli1eGrepr12) ENT ELSE EVIZEC{D+1]);

U6 4 1F BV >EG{2+1]) THEN EVizEs{U+1T];

c65: 3 EveClY) THEN FEGIN NL2:=NB2+1;, 5070 F3 END

366 2l 1):=gvinp2icl ) zay =0 Rz Ef0) =005 );0=-19;

se? 1F ol-12>70[00) THEN BEGIN ElO):=Ol-1)};C:=1 END

ceé: PF Ol1)<El0) THEN RELIN E[O0):r0l1]ixv:=0 ENU ;

069: Fl1. FUR NU:=1 STEP 1 UNTIL ABS{XU~) 0O

-_—— ———— —————

3?73 BEGIN 5U1[NU]::Su2[NUI:=G ERD ;

071: B11:z22,197n-4*RAabBesunTiEIR));

072 FOR J:=1 5TEpPp Y UKETIL ABS(NB) 0O

- ———— —— e~

973 BEGCIN NU:smNUIJ) P :=ENTIER(RBINUV]});

074 KAR:=B11%(.55«pt, . 33333Y7(1+1/7p) ABY:=RRY2;

0?75 IF LiNul=1 THEN KAR:=ABY/llegel)ekan:

— - ——

076 ; I ttnul=2 1352 KAR:SAB1t2/(9+¢2efigleddlt2)eKAR;
C77: GN:=UAN[I)eraR/KARB(J) KAR:=(EOIJ)-E[K))e2/CACLI):
878: SU:z=gN/{GCAClI)e{14KAaRT2));

679: SUTLMNULI]):=su+suiimnUlll}];

gagt: SU2luNUIJ]1:=su-KAR~suleNulJ)]_ENE_-



081
2
083:
084:

065

%e7:
088
3189:
090
091
0gz2:
093
094 ;

095

097:
098
099:
100
101
102;
103
104
105
166
107:

108
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SITIRY:=SIclKY =0 e 21,0812 =2008nS/E0KY;

FOR NU:=1 STEP 1 unyllL #B6S(HyY DO

BEGIN P:=ENTIER(ARI{NV]);

ABY:=(ABluUl-p)e10 ;5317 :=B]2+ap1e(i~1/p)te;

KAR:=p11¢(.55+p¢t,33333)7{1+1/p});

SPOI=KAKR-SRCTYAN(KAR) ;SPIIonAR-GRCTAN(Se N/ {3-xaRt2) )

SPINUY =51 T1e(SIN(KAGR)IE2+3e85IN(5P0) 245651 y(sSpT)e2);

IF SpINUY<0 THEN geciN SPINU}:=0]

FOR P:=2 STEP 1 UnTIL 10 00 BEGIH

- - a——— —— —— -

Selnuli=((rsSe{pr)-EfK))Y*SPCTIISP,P-1)
*{ETKI-ESPIFE-13)esSpuTI1IS5E,P]))

/(espP{p-1)-gSpIPY)ean1+SP{NUY £ND EHND

ISp:=1Spel END

-

1F LINUI=1 THEN KAR:=SPO;

1F Linul=z2 THEN Kar:=5P1;
KAQ:=2«kAR;SITI:=51T1eCINV];
SITY:=SIT1/{(1+s5U1[nul)t2e502(NUIT2);
SITIw):=SITIK]I*SITIe((SULTINUTesSUI[RU]t2"
SU2INULt2)ecaS{KAR)~SURTHULSSINIKARY )

SICIK):=SICIK)+S5ITtesUTINU) END

S5PO:=0; FOR NU:=1 STEP 1 UNTIL ABS(Num} DO

——— ———— -——— e -

Spo:=a8s{splnul)+spo;islvik)i=siTIk]lespo;

Exl{0):24.0982u6/7/LN{ECID+*1]/EG(D])}

AVR:=AVReEx[D);AVC:=AVC+EX[0]);AVSi=AVR-AV(;

COD(‘P2-1D",AVR,AVC ,AVS);EX(0):=1/(3276ReAVR+SPC) ‘END



103: 1F K€ THEN BEGIN RCIL €R2,aT2,4C2,0E,

t1g: TOT!,TOT2,551,852,TT1,TT12

111 fF ABS(K)=1 THEK BEGIN

112 ER1ISE[CIMR; AT 1:=SITLO0JeER1:ACT S (01 +ERY;
113: [F Pumcg THEN EEGIN

114 EX[(-1}i=EXP(=SIT[o)etX[p)e.TE);

1150 EX[1):=exP(-S1T(c)Ex[C)YsTnl1) =y -1)eCRY;
116: TOL'2JI=EX[1])%€RY;S:=-1;

117 FO? P:=3 STEP | UNTIL 5¢ DPc BEGIN

1e: TOLIDI5=TUL[P'2]-£X[51;PXYS]:=;X(S]12;s:=—5

116 END END END

120:  DEI=(E[K)}-C(F-Q))eQ/Z ERD:zE(K]TR;

129 AT2:=SIT[K}«ER2;AT2:=51CIF)etR2;

122 ATI=(AT1.AT2)e0E«aT;aC =(AC1.AC2) 0L eAC;

123: ASI=(AT1-AC1+PAT2-AC2)eDE+AS;ER:=(FR1+ERD)aDESER]
124 1F Pu<p THEH BECIN

125 EXI=~1)icEXP(-SIT{K)sEX[C)e.?5);

126: EXD1)I=EXP{-8IT{r]eEX{Q}); ;S tx=-1;

127 POB Pizs] STEP  UNTIL 55 e BEGIN

1287 TYIPYI=TTIF)«{TOL{PeEXISYaFun2)eDE;

126: TC[P?):=TCIPY«(TOL{P)oSICIV~-C)»EX[S)eSIC[KI=Ea)aDE;
136 TSEPYII=TSIP)«lTCL{PYa(SIT !t -a)-5IC{r-0])+

1310 EX[S)e(SIT{K)-SIC[KI)*ER2}e0E;TOL{PY:=EY[S)ecR2;

132: EXIS)i=EY([S)*2;5:=~5 END EHD 3

- o ———
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133: IF Pu>p THEMN DEGIM

- e

134 PZR Pizy STEP 3 UNTIL Pn 70 EBEGIN

- — - e e n - " oo e g

1350 TY1i=EXP(-SITIK-C)aTOLIP))elLl;

136% TV2:=EXP{~SITIK]-TOL[P))at iD;

1372 TT{P) i=(TT1«TT2)e0E-TYT(];

136: TC{P)}:=(SICIr~G)eTT1«SIC[FleTT2)eDE+TC[F);
139: IS(PY:z((SITVT[K~-Q)-SIC[K=Q))~TT 1+

140: (SIT{K)-SIC[KE})eTT2)eDE-TSIP) END END

—— e

141: tF OM>3 THEN BEGIH

-~ oo B e

142 PCR Si=1 STFP 1 UNTIL 651" Do BEGTN

- ~— - - — —— e va

143¢  TOT1;=SIT(K-Q)}eTILIS);TCYo:=S T [KI-TIL]S]);
144  S$S51:=(AT1-ACY1)/70CT1,;S852:=(A72z~ACL)/TOT2;
145 CKTLS):={AC1/TCT1+AC2/TYCTZ)sDE+CKT[S];
166: SKT[S5]:={SS1+4582)=DE~SKT[S};

147:  SKT2[S) ;=(SS1/T0T1+552/70T2)«0E+SKT2(5]]
1487 SS1:1=S8S82:=1;

149 ISP =ABS (MM} IF TOT1«TCT2<n=-3 TREN 15P:=2;

150: FOR Mi=1 STEP 1 UNTIL ISF Lo

1312 BEZIN S51:1=851/T071,;582:=552/T072;

Py - -

152: RKT[S,M)I={ERT1«SS1+ER2e552)eDECRKTIS, M) END

-

133: END END ER1IzER2;AT1:=AT2:AC1:2AC2 END
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154: Fif:=Ken; IF Ap&(K)=1 THEM grhIN

1551 0§01:26a/32; TF (3eE[0}-C{C))>0(C)en THEMN

156 BESIN E{K):=nlQ); GCTO F1y FuD ;

157 ElX}:=E{c)eO[D}eli; GECTO FY END ;

158 IF ABS{SIT{r=-2e0)/SIT{K=C)=3)c. 1 THEN

156 BEZIN !Fr Zenle)<i{0{2)-Ef{¥~C))ed THEN

e agzxu ;Ic)::?occh; 17 ctz1>Ga TH;H

1h1: BEGCIN [F Qe(N(C)-Elk=2)}/06(100-385(K)) TKER
1627 002371:2CA4 ELSE Cle):=Co(ClU)-E({K=G))/7(100-BS(F))
163 END END FHL

104 BF (Qec{K-03en[C]))<0l0)e0 THEN

188 aszxu E(K):=E[{K-C)eGoOlG); GOTC Fy :ND ;

16t IF L[K-2])20(N) THEN BEZIFP F(K):;C[n;; GCTS F1 gNO
167 IF Q<0 THEN scu;; n:=1;;::=n~\;

16€ IF KM>g THEN ;[;IN

16g: x!=3; CpTO F E;U—;K:=\ END JKMIzK=1;

17¢¢ bF Nb<eg THER o B

171 BEZIN INTEGEP BG; ARRAY FOMIKNIKM];

172: cozgswr oc 'apn"201;

173" FPOR 80?:Kﬂ STEP | UNTIL ¥t NO @ON[FO]:=E[BO];
174; COD(*P2-10",50N);

175 FOR BO:=xn STEP 1 UNTIL ¥r 1O BCN{§ 0} =SIT{ECY;
17¢: COD(*P2-10",EON);

177; :OR BO: =K STEP { UNTIL ¥I DO BCN[RO):=S51C[gr],;
178 coo('Pz-zo',;n;) END END ;

— e COwm e
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17¢: BESIN A4RRAY BOT{1:101;

18g:  EOT[31)i=EN;BOT[2):=EV;EOTII)  =ER;BaT(4)=LKN(EV/EN);
181 BOTVIS)i=AT/ER;BCTY(7):=AC/ER;E0T(G); maS/LR;
182: BOTI{el}:=pOT[RY:=BOT(1C)=0;

183: IF PH<p THEN BEGIN TOL[1):i=cX([0]e,?75;TNLI2]:=EX(0];

-~ - - ey

FOR Pi!=3 STEP 1 UNTIL 52 00

- —— P

185: TOL{P):!=2eTOLIP-Z] ERD ;

184

18¢ ¢ IF Pmze THER BEGIN

- ———— o . s

187 FOR Pizy STEP § UNTIL AES(Fw) LC 3E01IN

- - —— e - - -

188 TY(P):i=TTIr)/eR;TCIP)I=YC[FY/AC

189: Tt5([(P):=7s{Pl,sAas END ;

19g: £DPD('P2-1p',KNT,TOL,TT,TC,TS) END ;

191 EF DM>p THEH EEGIN

190: RRRAY C5,%6,56%,TRB,FC,Ie,F52, FTlrasMy;

-—————

133 COMMENT DC fCE'*SBY"!SHo*f"RL " *FCrIFS*HIFSD?erTry,;

—————— e v o

194 FC Si=1 STEP 1 UNTIL A5 0o

—— ———— P e -

195 BESIN CBISY:=CKT[S)/RKT[S,11];,

- — o ——

19¢; SBI3):=SKTISI/RKY(S,41);

1977 S82[5):=SKT2[S)/RKT[S5,2);

1%8: TRB{S):=[KT[S5,1)/RKT(S,2])-"1LI(S]);

199: FY[S5):sTRB[S)}/GLOT[S5);FCI5):=CBIS)/u0TI?Y:

000: FS[S):=SE[SI/ROT[9);FS2(5):=5B2{s)secTle]) END ;

001: BOT[6):=FTI1)eBOTI[S];
002: @80TIBl:!=FCl1)*ROT[?);
008: BOT[10):=FS5(1)}e50T09};

034: COU{*P2-10°',enT,TIL,FC,Fs5,FS2,FT,RKT) END END ;

B e

9085 END ;CobD('P2~1¢’,EG,EQ,Cn%,GAG,NNY,a8,6G,L,RaA0)

80e: END END jKB!=KE-1}

coz: IF K8>p THEH GOTO Fo

- oy - . gy

poe; END END ;

e EmEnagy
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