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L.N,Usachev

Abstract

An approach to development of the unique definition of
evaluated nucleur data accuracy suitable for reactor and
other applications 1s proposed. In this connection the nature
of experimental nuclear data errors is discussed and recom-
mendations for the representation of the error components in
pudblications are given,

A general algorithm is given for the calculation of the
funique® error important in applications - the error in the
integral under the curve and in 1ts general slope - on the
basis of the representation of errors by a covariance matrix
being obtained at the paremetrization of experimental data by
the least square method,

INTRODUCTION

Nuclear data the most important for fast reactors have
been repeatedly measured and evaluated for more than a quar-
ter of the century by many groups of authors but the measure-
ments and evaluations of these values are being continued up
to now and planned for the future,

This 1s caused by the dissatisfaction with the uncer-
tainty vazlue of obtained quantities. Besides, an increase in
the accuracy of an experiment demands an increase of costs
which are inversely proportional to the square of a tolerable
uncertainty according to some estimaztions. Therefore quanti-
tative determination of satisfactory accuracy 1is of great
importance., There exists also a mathematical apparatus -



- ®experiment planning® - which allows to f£ind quantitatively
the required data accuracy. To the problem being discussed
this apparatus is applied in [4], [2), [3], [4]. It is neces-
sary only to come to an agreement about the unique represen-
tation of the error based on the understanding of its struc-
ture, i.e. the nature of its components of various origin
which have a different effect on the accuracy of czalculated
reactor parameters.,

The great majority of reactor parameters depenrnds on wide
neutron spectra. Therefore the error components correlated
over wide energy ranges and over some isotopes in a reactor
are of great importance. Unlique representation of these error
components 1s of great concern because the most rigid requi-
rements deduced in [1] - (4] are imposed just on the accuracy
of these components. It is clear that all the considerations
mentioned above will be also valid for the blanket of 2 fu-
sion facility and in general for all cases when wide nevtron
spectra are important. .

The question being considered here arose in connection
with the discussion of the world-wide request list for neut-
ron data (WRENDA) [7] at INDC. In particular, the discussion
concerned the problem of reviews of state-of-the-art in the
knowledge of some definite values by the evaluators which
had performed corresponding evaluations. The point is that
the errors indicated by them and charzcterizing the attained
state of knowledge must be compared with the error value to-
lerated by users and shovn in the same document. Comparison
of attained and required accuracies must show if the efforts
in refinement of the wvalue under consideration should be con-
tinued or stopped. Naturally, this is possible only at the
unique definition of quantities being compared. Formulation
of the problem was discussed earlier in document [8].

ERROR STRUCTURE IN AN EXPERIMENT

An experimentator investigating the dependence of a
function on an argument measures it usually at the argument



values belng successlvely selected. In this oase the depen-
dence is obtained as a set of experimental points each of
which has an error. Now we consider components of this error.

The first error component - the statistical one - shows
itself directly in 2n experiment in the fact that the scat-
ter is observed in the results of various gets of measure-
ments.

This scatter 1s caused by the finiteness of the number
of registered events and perhaps by other random factors.

The experimentators consider that it is necessary to elimi-
nate these random factors and they are satisfied 1f the scat-
ter of some measurement sets is fully explained by the fini-
teness of the number of registered events, N, when the rela-
tive dispersion is equal to Vi .

Irrespective of whether the scatter of measurement re-
sults is caused by the finiteness of the events number or
not we denote this first error component by A statisti-
cal = A 4 -

The sccond error component goes over to the measured
value from the error of the standard used in measurements.
Let us denote it by A standard T Agq .

The third error component is connected with possible
disadvantages of the experimental set-up itself which results
in a shift of the value under measurement. If the e.perimen-
tator understands the causes of this shift or its part he
introduces a calculational correction and evaluates a possible
inaccuracy of this correction which is the third error compo-~
nent,

We denote it by A  systematic S A 3.

This error can not stochastically vary from point <to
point because it results from the cause remaining consvant or
varying very slightly. Thus, this error component.being corre-
lated characterizes the error not of each point, but of the
whole curve. The same considerations apparently can be atiri-
buted to A,; or at least to its part and also to the next
unknown error cowponent,



The unknown error component is connected with disadvanta-
ges of the experimental set-up itself which result in the
shift of the value under measurement what the experimentator
himself does not know, We denote this component by A un-
known systematic = A g -

The existence of A g is just the reason of frequent
discrepancies of the results of experiments performed with
the use of various methods by values exceeding the crrors
declared by the experimentators.

The existence of 43_3 and its order of megnitude are
revealed only when comparing the results in the process of
evaluation. An importart and a delicate tack of an cvaluator
when revealing these discrepancies is the zttribution of va-
rious values of A4 to the results of different authors.
Fortunately, in some experimental works several various me-~
thodes are used and in this case one can coansider that for
these works Qo is determined from the experiment,

The total error of an experimentzl point the authors of
neasurements usually calculate according to the formula

2 2 2 2
AfE€p= Af + Al"' Aj

because usually nothing is known about the last summand [343.
This representation is correct because three error components
are not correlated with one another and the error of one
point is characterized by this value correctly.

But it would be incorrect to form the table: argument,
function, A teep®

The fact is that at this representation one would like
to dr- a curve through the points with errors by the least
square method but this assumes the erroxs of ncighbouring
points to be non-correlated. Dut in reality there is no cor-
relation between neighbouring points only for the component

[N . On the contrary, for 211 remsining crroyr compo-

nents taking into account their origin one zeeume in the
firgt zpproximation that there exists the total correlation
between the points. In other words, all the componenis with



the exception of Ay shift the whole curve completely
upwards or dovmwards and A 4 affects its form., If we
draw the curve by the least square method using A teep
the form of this curve will be smoothed because some its pecu-
liarities will be wrong treated as statistically unstipulated,
It would not take place when using A, instead of A teep®
On the other hand, the error of aa integral under the curve

at a great numdber of points. Can be highly lowered because

the total error is considered as the staltistical one, decrea-
sed by Vﬁ. times with the increcase of the "N" ~ number -
points on the curve. At the correct treatment only the contri-
bution to the integral from A4 will be decreased with the
increase of points number. The growth of the experimental
points number In the given experiment can not affect other
error components but A 4 .

RECOMMENDATION FOR REPRESENTATION
OF ZERRORS OF HXPERIMENTAL VALUES

The error component Ay non-correiated in various
points and following dircctly fZrom the mcasurements should be
represented point by point. All other error components obtaln-
ed as a result of the analysis of the experimental set-up and
corresponding calculation or irom literature should be repre-
sented separately with the specification of correlative pro-
perties, either with the help of formulze, either by algo-
rithms description or in the table form. The total error of
an experimental point can e pregented in sonme characteristic
points.

UNIQUE DEFINITION OF PRROR AND THIE HVALUATION
ALGORITHM AT WHICH IT IS RBALIZED

The unique definition of error is necessary for estab-
lishing a common Tanguage betweean users, evaluators and mea-
surers of nuclear data in the process of planning the work
or data refinement,



When the user is speaking about a tolerable value of er-
ror, the evaluator - about a decrease of error achieved in
the last experiments, and the experimentator - about his abi-
lity of measuring a value to a certain error, it is necessary
that the same word "error®™ have the same mezning. Search of
this meaning should be started from considering the aim of ac~
tivitiers, i.e. ensuring an assigned accuracy of reactor calcu-~
lation. From general considerations on the breadth of neutron
spectra in fast reactors it is clear that the error compo-
nents correlated over a broad energy range, i.e. affecting
the integral under the cross-section curve and, may be, the
general slope of this curve, should affect the calculation
accuracy. And, on the contrary, the error component determin-
ing the inaccurzcy c¢f the curve detailed trend cannot influ-
ence significantly,

In accordance with this, for a unique definition of er-
ror ol a function we take the errors of several functionals
of this function which would characterize its normalization,
gencral large~scale trend, etc. In the simplest case such
functionzls are the integral for characterizing the norrali-
zetion end {he Tirst moment for characterizing the siope.

What are the requirements to the evaluatlon procedure

.to detcrmine corrcetly the crrors of the evaluated data and,
specifically, of the above functionzls?

First of all, the following remark should be made.

The commonly used programs of the least-squares method,
for example, the program of the curve reprecseuntation with
the use of polynoms, assume the errors to be non-correlated,
statistically independent. Therefore, with the use of +these
programs it is quite Jjustified to draw a curve through the
points of 2 single experiment assigning to thase points the
error Ai_ . Dut an attractive poseibility to draw a curve
througb the points of severzl works at once, with assigning
a total error to eazch poinv, should be rejeceted as an incor-
rect ove.let us explain this.There are two groups of experimen—
t2) points froir two works carried oul by diffcrent wmethods

0 T

4
and presenting the same function, They differ frow  one



another by some value characterlzing the systematic error
value &, , Now by assigning total errors to the points of
both experiments according to the formula A‘teep ~al+ of
and drawing a curve through them by the least-squares method
we obtain an error in the integral of thls curve equal on its
order of magnitude to Ateef/ﬁﬂﬁr , where N is the number of
points in both experiments. But it 1Is obviously an erroneous
conclusion because this error is determined by 4, and
cannot decrease wlith the number of points on the curve. ’
Therefore, taking into account this remark, the evalua~
tion process should consist of the following stages: 1) Re-
duction of results to one standard, introduction of correc-
tions for systematic errors found out by the time of evalua-
tion, rejection of works not satisfying some criteria or as-
signing a considerable systematic error 4, 4o them.
2) Parametrization by the least-squares method of experimen-
tal curves o? separate works or groups of works performed by
the same method, In this case information zbout uncertainties
resulting from statistical uncertainties c¢f each experimental
work is presented, in corresponding covariance matrices.
The a2lgorithm for obtaining the error of the functional of
the parametrized curve from the covariance matrix 1s descri-
bed in Appendix. Let us denote these errors by dyp .
3) The procedure of obtaining a single evaluated function
from several parametrized curves will not be discusscsed here.
If such a method keeping information about errors exist,then
it would be sufficient to apply the 2lgorithm described in
Appendix to 2 correspondingly parametrizcd function and <o
its covariance matrix to obtain a "unique" error. But lrres-
pective of the method used for obtaining the evaluated curve
the information on uncertainties of its functionzls can be
obtained by considering a chtatistical ensemble of functionals
of the curves taken from separate works., Vhen considering
this ensemble we con consider it ag an encemble of measuring
nethods, systomatic errors of cach method being now ¢ .side-
red as rondom cnes. herefore, Lo obiain the mean functional
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and its dispersion let us use the formulae of the least-
squares method:

1 z: F-:' / ALL‘F . Az - 1

F’: 7 Z‘I/Az,.'; ? F Z '1/Al,;,.- (a)

In this case the condition of £ Y(F-F)J/a% = 1 (b) will not

be satisfied if we take A,. = 8,,, » It is necessary +to
include in 4, the known systematic errors A;,. and,
may be, to assign the unkmnown 4., . Assuming all the
curves to be reduced to one standard, we do not take into ac-
count the component Bage at this stage. Thus,
z 2 2

Air = b B5uc Bxir

Strictly speaking, Avip should be asgigned in =zccordance

with the quality of methods but so that the condition (b) is
satisfied.

From the point of view of applications the correctness
of the evaluated curves should be verified by comparison of
their functionzals with the values obiained by formulae (a).
As for the "unique" errors, they are also determined by the
latter formulae (a) and (b).

In conclusion it should be noted that for the functionals
considered we may take not the integrzl and the first moment
but, for some important reactor parameter, the integral of
the product of a cross-section by flux and importance of
neutrons. In some cases it may prove that important is not
an error within a broad energy range, as it has been szid
above, but an error in parameters of some resonance, for
example, of the 3 keV sodium resornance. Functionals determi-
ning blocking coefficients, i.e. sensitive to the detailed
trend of 2 curve can bc also considered,

From the above it is clezr that the preposed approach
to the unique definition of the errcr is a sufficienily gene-
ral one.



APPENDIZX

The Irror of the Parametrized Curve Functional

Let £(x, ag, 3y ees an) be a function the parameters of
which are determined from the condition of the best, in the
sense of the least-squares method, description of the experi-
mental points set. F(ao, 3y e an) is the functional of the
"f" function, and D, 1is the covariance matrix characterizing
dispersions - squares of parameter errors (diagonal terms)
and covarisnces of parameter errors (non-diagonal terms).

To calculate the functional F dispersion it is necessary,
first of all, to find the sensitivity coefflcients of the
functional to parameter variation, i.,e., partial derivatives
of the functional over the parameters PF/da, :=04,...h
the set of which forms the vector{ap/i)a.'} .

The dispersion of the functicnal P, i,e. the square of
its error, is ezpressed by the formula:

’

DL Ty 2F Dy, ... Do,||2F
aao %. .. D?“ F t'Dt.)o [-X] Oon Da. ( 1)
2 :D\O Dll ... . -D|n .D__F P.
4, - [f %
oF
"D'\O 'Dhl « s ’Dﬂm ‘ba‘

where the sign "x" denotes matrixz multiplication. Thus, this
algorithm extracts from the detailed information about the
crror the component we are interested in, '

A5 a gimple example let us consider a function presented
by a szrics over the legendre polynomials in the range of ar-
gusents from -1 to +1, i.e., in the range of orthogonality of
these polynonials. In case of the energy dependence of the
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functions in the interval E1 to Ee, by transformation of the

argument :
_E-FE | E-F
£ ~&4 E;-&;
we will get into the above mentioned interval of arguments.
So, let h
.i(l’,apla:-'- G,,} = Z 02' p[ /x}
(=0

then 4

4

- 2
F1l o= [l 6.,. 0,)dx = 2a. £ = /xf(x/c,...a,.)- 22,

X =

2/l _ S. . ¢=p01...m dFy _ e s, . i:94...h
faab- - 2 (- X3 qu - 3 1L

2 O

84n, = 4 Doo 84p¢ ° 5 Do

If the polvnomials were not orthogomzal,; or the functionals
had weight, or parametrization were more complicated; e.z.,
presentation of the resonance curve by a multilevel formula,
then such simplification of the algorithm would not take
place and calculations should be carried out by the general
formula (p.1).
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