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Abstract

An approach to development of the unique definition of

evaluated nuclear data accuracy suitable for reactor and

other applications is proposed. In this connection the nature

of experimental nuclear data errors is discussed and recom-

mendations for the representation of the error components in

publications are given.

A general algorithm is given for the calculation of the

"unique" error important in applications - the error in the

integral under the curve and in its general slope - on the

basis of the representation of errors by a covariance matrix

being obtained at the paranetrization of experimental data by

the least square method.

INTRODUCTION

Nuclear data the most important for fast reactors have

been repeatedly measured and evaluated for more than a quar-

ter of the century by many groups of authors but the measure-

ments and evaluations of these values are being continued up

to now and planned for the future.

This is caused by the dissatisfaction with the uncer-

tainty value of obtained quantities. Besides, an increase in

the accuracy of an experiment demands an increase of costs

which are inversely proportional to the square of a tolerable

uncertainty according to some estimations. Therefore quanti-

tative determination of satisfactory accuracy is of great

importance. There exists also a mathematical apparatus -
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- "experiment planning" - which allows to find quantitatively

the required data accuracy. To the problem being discussed

this apparatus is applied in £fl , [21, [3l , 14l. It is neces-

sary only to come to an agreement about the unique represen-

tation of the error based on the understanding of its struc-

ture, i.e. the nature of its components of various origin

which have a different effect on the accuracy of calculated

reactor parameters.

The great majority of reactor parameters depends on wide

neutron spectra. Therefore the error components correlated

over wide energy ranges and over some isotopes in a reactor

are of great importance. Unique representation of these error

components is of great concern because the most rigid requi-

rements deduced in fi] - Oil are imposed just on the accuracy

of these components. It is clear that all the considerations

mentioned above will be also valid for the blanket of a fu-

sion facility and in general for all cases when wide neutron

spectra are important.

The question being considered here arose in connection

with the discussion of the world-wide request list for neut-

ron data (WRENDA) 111 at IFDC. In particular, the discussion

concerned the problem of reviews of state-of-the-art in the

knowledge of some definite values by the evaluators which

had performed corresponding evaluations. The point is that

the errors indicated by them and characterizing the attained

state of knowledge must be compared with the error value to-

lerated by users and shown in the same document. Comparison

of attained and required accuracies must show if the efforts

in refinement of the value under consideration should be con-

tinued or stopped. Naturally, this is possible only at the

unique definition of quantities being compared. Formulation

of the problem was discussed earlier in document [&'].

ERROR STRUCTURE Hf AN EXPERIMENT

An experimentator investigating the dependence of a

function on an argument measures it usually at the argument
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values being successively selected* In this oase the depen-

dence is obtained as a set of experimental points each of

which has an error. Now we consider components of this error.

The first error component - the statistical one - shows

itself directly in an experiment in the fact that the scat-

ter is observed in the results of various sets of measure-

ments.

This scatter is caused by the finiteness of the number

of registered events and perhaps by oth^r random factors.

The experimentators consider that it is necessary to elimi-

nate these random factors and they are satisfied if the scat-

ter of some measurement sets is fully explained, by the fini-

teness of the number of registered events, IT, when the rela-

tive dispersion is equal to ~

Irrespective of whether the scatter of measurement re-

sults is caused by the finiteness of the events number or

not we denote this first error component by A statisti-

cal — /\ -f .

The second error component goes over to the measured

value from the error of the standard used in measurements.

Let us denote it by Z\ standard = A j ,

The third error component is connected with possible

disadvantages of the experimental set-up itself which results

in a shift of the value under measurement. If the e^perimen-

tator understands the causes of this shift or its part he

introduces a calculational correction and evaluates a possible

inaccuracy of this correction which is the third error compo-

nent.

We denote it by &. systematic = A j .

This error can not stochastically vary from point to

point because it results from the cause remaining constant or

varying very slightly. Thus, this error component being corre-

lated characterizes the error not of each point, but of the

whole curve. The same considerations apparently can be attri-

buted to <^2 °r a t least to its part and also to the next

unknown error component.



The unknown error component is connected with disadvanta-

ges of the experimental set-up itself which result in the

shift of the value under measurement what the experimentator

himself does not know. We denote this* component by /\ un-

known systematic ^ ^ x '

The existence of A x is just the reason of frequent

discrepancies of the results of experiments performed with

the use of various methods by values exceed ins the errors

declared by the experimentators.

The existence of Aj; and its order of magnitude are

revealed only when comparing the results in the process of

evaluation. An impor*ar* and a delicate task of an evaluator

when revealing these discrepancies is the attribution of va-

rious values of A x to the results of different .-authors.

Fortunately, in some experimental works several various me-

thods are used and in this case one can consider that for

these works &x. is determined from the experiment.

The total error of an experimental point the authors of

measurements usually calculate according to the formula

because usually nothing is known about the last summand A cc- •

This representation is correct because three error components

are not correlated with one another and the error of one

point is characterized by this value correctly.

But it would be incorrect to form the table: argument,

function, A teep«

The fact is that at this representation one would like

to drr."-' a curve through the points with errors by the least

square method but this assumes the errors of neighbouring

points to be non-correlated. But in reality thero is no cor-

relation between neighbouring points only for the component

C\ 1 .On the contrary, for all remaining error compo-

nents taking into account their origin one assume in the

first approximation that there exists the total correlation

between the points. In other words, all the components with
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the exception of A y shift the whole curve completely

upwards or downwards and A y affects its form. If we

draw the curve by the least square method using A +

the form of this curve will be smoothed because some its pecu-

liarities will be wrong treated as statistically unstipulated.

It would not take place when using A y instead of /\ .

On the other hand, the error of an integral under the curve

at a great number of points. Can be highly lov/ered because

the total error is considered as the statistical one, decrea-

sed by \fH times with the increase of the "IT" - number -

points on the curve. At the correct treatment only the contri-

bution to the integral from A y will be decreased with the

increase of points number. The growth of the experimental

points number in the given experiment can not affect other

error components but A y .

RECOHHEHDATIOH FOR REPRESENTATION

OP ERRORS 0? EXPERIMENTAL VALUES

The error component A y non-correiated in various

points and following directly from the measurements should be

represented point by point. All other error components obtain-

ed as a result of the analysis of the experimental sot-up and

corresponding calculation or from literature should be repre-

sented separately with the specification of correlative pro-

perties, either with the help of formulae, either by algo-

rithms description or in the table form. The total error of

an experimental point can be presented in sorie characteristic

points.

UNIQUE DEFINITION 07 V?\l\On AND THE EVALUATION

ALGORITHM AT WHICH IT IS REALIZED

The unique definition of error is neeescary for estab-

lishing a common "* anguage between users, ©valuators and mea-

surers of nuclear data in the process of planning the work

on data refinement.
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When the user is speaking about a tolerable value of er-

ror, the evaluator - about a decrease of error achieved in

the last experiments, and the experimentator - about his abi-

lity of measuring a value to a certain error, it is necessary

that the same word "error" have the same meaning. Search of

this meaning should be started from considering the aim of ac-

tivities, i.e. ensuring an assigned accuracy of reactor calcu-

lation. From general considerations on the breadth of neutron

spectra in fast reactors it is clear that the error compo-

nents correlated over a broad energy range, i.e. affecting

the integral under the cross-section curve and, may be, the

general slope of this curve, should affect the calculation

accuracy. And, on the contrary, the error component determin-

ing the inaccuracy of the curve detailed trend cannot influ-

ence significantly.

In accordance with this, for a unique definition of er-

ror of a function we talce the errors of several functionals

of this function which would characterise its normalisation,

general large-scale trend, etc. In the simplest case such

functionals are the integral for characterising the normali-

zation and the first moment for characterizing the slope.

What are the requirements to the evaluation procedure

.to determine correctly the errors of the evaluated data and,

specifically, of the above functionals?

First of all, the following remark should be made.

The commonly used programs of the least-squares method,

for example, the program of the curve representation with

the use of polynomn, assume the errors to be non-correlated,

statistically independent. Therefore, with the use of these

programs it is quite justified to draw a curve through the

points of a single experiment assigning to these points the

error A^ . But an attractive possibility to draw a curve

through the points of several works at once, with assigning

a total error to each point, should be rejected as an incor-

rect one.Let us explain this.There are two groups of experimen-

tal points froiP. two works carried out by different rasth

and presenting the same function. They differ from one
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another by some value characterizing the systematic error

value & „ , flow by assigning total errors to the points of

both experiments according to the formula A £ed/> ̂  &± f ^»

and drawing a curve through them by the least-squares method

we obtain an error in the integral of this curve equal on its

order of magnitude to 4£ce/, /Jw , where N is the number of

points in both experiments. But it is obviously an erroneous

conclusion because this error is determined by dx and

cannot decrease with the number of points on the curve.

Therefore, taking into account this remark, the evalua-

tion process should consist of the following stages: 1) Re-

duction of results to one standard, introduction of correc-

tions for systematic errors found out by the time of evalua-

tion, reSection of works not satisfying some criteria or as-

signing a considerable systematic error A* to them,

2) Parametrisation by the leaist-squares method of experimen-

tal curves of separate works or groups of works performed by

the same method. In this case information about uncertainties

resulting from statistical uncertainties cf each experimental

work is presented , in corresponding covariar.ee matrices.

The algorithm for obtaining the error of the functional of

the parametrised curve from the covariancc matrix is descri-

bed in Appendix. Let us denote these errors by A ^ .

3) The procedure of obtaining a single evaluated function

from several parametrized curves v/ill not be discussed here.

If such a method keeping information about errors exist,then

it would be sufficient to apply the algorithm described in

Appendix to a correspondingly parametrised function and to

its covariance matrix to obtain a "unique" error. But irres-

pective of the method used for obtaining the evaluated curve

the information on uncertainties of its functionals can be

obtained by considering a statistical ensemble of functionals

of the curves taken from separate v.'orks. V/htn considering

thin ensemble v/e ccm consider it as r.n encoiable of measuring

methods, systematic errors of each method being no7/ c>/.side-

red as random ones, therefore, to obtain the mean functional
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and its dispersion let us use the formulae of the least-

squares method:

In this case the condition of jfZ(P-F;)*/&*, = 1 (b) will not

be satisfied if we take &,.> r &itfr • It is necessary to

include in &cF the known systematic errors ^3t/C and,

may be, to assign the unknown &XCF * Assuming all the

curves to be reduced to one standard, we do not take into ac

count the component ^ / f at this stage. Thus,

Strictly speaking, &*ip should be assigned in accordance

with the quality of methods but so that the condition (b) is

satisfied.

Prom the point of view of applications the correctness

of the evaluated curves should be verified by comparison of

their functionals with tha values obtained by formulae (a).

As for the "unique" errors, they are also determined by the

latter formulae (a) and (b)»

In conclusion it should be noted that for the functionals

considered we may take not the integral and the first moment

but, for some important reactor parameter, the integral of

the product of a cross-section by flux and importance of

neutrons. In some cases it may prove that important is not

an error within a broad energy range, as it has been said

above, but an error in parameters of some resonance, for

example, of the 3 keV sodium resonance. Functionals determi-

ning blocking coefficients, i.e. sensitive to the detailed

trend of a curve can be also considered.

From the above it is clear that the proposed approach

to the unique definition of the error is a sufficiently gene-

ral one.
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i P P B I D I I

The Error of the Parametrized Curve Functional

Let f(x, aQ, â  ... aQ) be a function the parameters of

which are determined from the condition of the best, in the

sense of the least-squares method, description of the experi-

n:ontal points set. F(a , a. ... a ) is the functional of the

"f" function, and D •. i's the covariance matrix characterizing

dispersions - squares of parameter errors (diagonal terms)

and eovariances of parameter errors (non-diagonal terms).

To calculate the functional P dispersion it is necessary,

first of all, to find the sensitivity coefficients of the

functional to parameter variation, i.e., partial derivatives

of the functional over the parameters TiP/dOi L- 0,1, ... n f

the set of which forms the veotorfdP/DQ.J .

The dispersion of the functional P, i.e. the square of

its error, is expressed by the formulas

if ... ^f L
(p.1)

where the sign "x" denotes matrix: multiplication. Thus, this

algorithm extracts from the detailed information about the

error the component we are interested in.

An a simple example let us consider a function presented

by a Goriei.; ov<;r the legendre polynomials in the x'ange of ar-

guments from -1 to +1, i.e. in the rango of orthogonality of

thccc; polynomials. In case of the energy dependence of the
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functions in the interval E. to E_, by transformation of the

argument:

we will get into the above mentioned interval of arguments.

So» l e t

then f

If the polynomials were not orthogonal, or the functionals

had weight, or parametrization were more complicated, e.g.,

presentation of the resonance curve by a multilevel formula,

then such simplification of the algorithm would not take

place and calculations should be carried out by the general

formula (p.1).
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