

INTERNATIONAL NUCLEAR DATA COMMITTEE

Table of Content Translations

of

Soviet Reports received by the

INDC Secretariat

April 1980

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria April 1980 80-1919 •

.

INDC(CCP)-144/L

Table of Content Translations

 \mathbf{of}

Soviet Reports received by the

INDC Secretariat

April 1980

Foreword

The INDC Secretariat receives a number of Soviet reports in Russian as part of the INDC document distribution system. Because of their large number and size most of them cannot be translated by the IAEA. The "Nuclear Physics Research in the USSR - Collected Abstracts" report series and occasional reports of interest to the nuclear data community are translated by the IAEA on a regular basis, and are normally given a "U" distribution.

The "Table of Content Translations" contain the translation of the table of contents, and abstracts when available, of those Soviet reports which the IAEA does not translate. The originals of these reports are normally available in limited quantities only and are given an INDC "G" distribution.

This issue contains the table of content translation of the following reports:

- Nuclear Constants, Number 2(33) Original distributed as INDC(CCP)-139/G
- Nuclear Constants, Number 3(34) Original distributed as INDC(CCP)-140/G
- Nuclear Constants, Number 4(35) Original distributed as INDC(CCP)-145/G

NUCLEAR CONSTANTS, Number 2(33)

INDC(CCP) = 139/G

ON THE THEORY OF NEUTRON-PHYSICS EXPERIMENTS

V.N. Dushin

Questions on obtaining nuclear constant values from experimental data are considered. The method is based on considering the problem of determining the exact nuclear constant values from differential experiments as inverse radiation transport problem is suggested. In this case there is no necessity to take into account corrections which arise in real experimental conditions. The possibility appears to estimate directly the covariance matrix - the significant part of the system of constants. Using the obtained correlational properties of the nuclear constants it now becomes possible to plan a number of differential experiments with the object to increase the accuracy of nuclear constants. To solve the inverse radiation transport problem, which is often incorrectly posed, stochastical quasigradient and statistical regularization methods are suggested. As an example, the determination of nuclear constant values from experimental data are given.

CORRECTION FOR A FINITE SAMPLE DIMENSION IN THE DOUBLE DIFFERENTIONAL SLOW NEUTRON SCATTERING CROSS-SECTION MEASUREMENTS

Yu.V. Lisitchkin, A.G. Dovbenko, B.A. Efimenko, A.G. Novikov, L.D. Smirenkina, S.I. Tikhonova

The procedure of experimental results using the three computer programs: FISC, SCATL and DDS is described. The results of the procedure mentioned as applied to the double differential cross-section of water measured by the DIN-IM spectrometer are given.

EFFECT OF ISOSPIN IMPURITY IN (p, n), (p, p) AND (n, n) REACTIONS

Ya. Tertychnyi, E.L. Yadrovskij

In the framework of the shell-model, the analysis of the isospin impurity was performed for the reactions (p,n), (p,p^*) , (n,n^*) . The direct and compound processes were considered. The isospin mixing parameters of the first IAR, μ , were found to be remarkably less than the experimental values, obtained at higher excitation energies. This difference may be due to a different isospin mixing mechanism for the high and low energies and to an inaccurate extraction of these values from the experiment.

ON THE INFORMATIONAL CONTENT OF THE EXPERIMENTAL CURVE WITH ERRORS

V.N. Vinogradov, E.V. Gai, N.S. Rabotnov

A set of interpolation points is considered as a set of general parameters for experimental functions approximation, with the whole number being equal to that of the parameters of the theoretical model. This makes it possible to introduce a common scale and a zero point for all coordinates in the space of parameters. Also it is possible with the use of the entropy of the joint probability distributions for interpolated points to calculate the amount of analytical information in the experimental data. A numerical example is considered.

ON SOME FEATURES OF THE PROMPT FISSION NEUTRON SPECTRUM

G.M. Akhmedov, V.S. Stavinskij

Expressions for the prompt fission neutron spectra in the centre of mass system and laboratory system within the framework of the Weisskopf theory have been derived. The cascade evaporation of neutrons and the initial excitation energy distribution of fragments is taken into account. The results are compared with the experimental data.

SHAPE DETERMINATION OF THE NATURAL LINE IN THE SPECTRA OF QUASI-ELASTIC SLOW NEUTRON SCATTERING IN WATER

S.M. Iskenderov, A.A. Van[®]kov, A.G. Novikov

The efficiency of the Bayesian approach to derive the natural line form from the slow neutron quasielastic scattering spectra is demonstrated. The influence of the a priori information on the character of the solution is analysed.

CALCULATION CHARACTERISTICS OF THE (n,p) REACTION EXCITATION FUNCTIONS

Yu.N. Trofimov

An agreement of relationships, used by various authors for the calculation of reaction cross-sections is demonstrated in the framework of the evaporation approximation of the statistical theory. An empirical expression for the calculation of the neutron energy for the excitation function maximum of the (n,p) reaction is presented. Experimental and calculational data for 26 nuclides are tabulated.

THE (n, α) -REACTION CROSS-SECTIONS IN NEUTRON ENERGY RANGE FROM THRESHOLD UP TO 20 MEV

V.M. Bychkov, V.N. Manokhin, A.B. Pashchenko, V.I. Pliaskin

The (n,α) reaction cross-section compilation for nuclei with $Z \ge 20$ in the neutron energy range from threshold up to 20 MeV was made. The compilation results are presented on graphs. Recommended curves of excitation functions obtained as a result of analysis of experimental data and theoretical calculations are given for some nuclei. The numerical information on measurement results in the 14-15 MeV neutron energy range, and the evaluated value of (n,α) -reaction cross-section at $E_n = 14,5$ MeV are tabulated. Experimental data published up to 1977 were taken into account.

This article is to be translated in full by the IAEA, and will be published together with Parts 1, 2 and 4 of this article in INDC(CCP)-146/L.

THE LEVEL DENSITY PARAMETER RESULTING FROM THE ANALYSIS OF NEUTRON ENERGY DISTRIBUTIONS IN THE ¹⁸¹Ta(p,n) REACTION

M.I. Svirin

Analysis of neutron emission spectra from the 181 Ta(p,n) reaction at incident proton energies of 6-23 MeV has been done within the framework of the statistical theory and preequilibrium model. The level density parameter behaviour is obtained in a wide excitation energy range.

NIOBIUM DIFFERENTIAL CROSS-SECTIONS OF INELASTIC NEUTRON SCATTERING AT

INCIDENT ENERGIES 5,23; 6,22 AND 7,23 MEV

G.N. Lovchikova, G.V. Kotel'nikova, O.A. Salnikov, S.P. Simakov, A.M. Trufanov, N.I. Fetisov

The differential cross-sections of inelastic neutron scattering for niobium have been measured for incident neutron energies 5,23; 6,22 and 7,23 MeV. The measurements were performed by time - of - flight method using a tritium gas target as the neutron source. The cross-sections are tabulated.

ACCOUNT OF "TRANSPORT EFFECTS" IN DIFFUSION CALCULATIONS VIA TRANSPORT CROSS-SECTION CORRECTIONS

V.N. Gurin, A.M. Poplavko

A simple method is suggested for taking into account of "transport effect" in diffusion calculations via transport cross-section. The method is suitable for use in many types of one-dimensional calculations. Calculations are made for uranium-water homogeneous system with high enrichment uranium and show good agreement with exact calculations.

CORRELATION RELATIONS FOR CRITICAL PARAMETERS OF HOMOGENEOUS URANIUM-WATER

SYSTEMS

V.N. Gurin, A.M. Poplavko

Correlation relations for the determination of material buckling, extrapolation distance, water reflector savings, bare reactor radius and water reflector reactor radius are obtained. These relations are recommended for homogeneous URANIUM-system of any enrichment and concentration.

Eleu	ent :	<u></u>	Telema	Energy, eV		Page	:		
s	A	tity	tory	type	min	пах	rage	: Comments	
MG	024	NP	RT	EXPT		+ 7	47	TROPINOV. FNEXCIT, SIG. TH.	
AL	027	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT.SIG.TBL	
SI	028	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT.SIG.THL	
 P	031	NP	RI	EXPT		+7	47	TRØFIMØV.FNEXCIT.SIG.TBL	
S	032	NP	RI	EXPT	ļ	+ 7	47	TRØPINØV.FNEXCIT, SIG.TBL	
CA	040	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT.SIG.TBL	
CA	042	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT,SIG,TBL	
CA	044	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT,SIG,TBL	
SC	045	NA	FEI	EVAL	1.4+7	1.5+ 7	5I	BYCHKØV+.SIG(NEUT-E),TBL	
TI	046	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT,SIG,TBL	
TI	048	NP	RI	EXPT		+ 7	47	TRØF1MØV.FNEXCIT,SIG,TBL	
TI	043	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+,SIG(NEUT-E),TBL	
TI	050	NA	FEI	EVAL	1.4+7	1.5+7	5I	BYCHKØV+.SIG(NEUT-E),TBL	
v	051	NP	RI	EXPT		+ 7	47	TRØFIMØV.FNEXCIT,SIG,TBL	
V	051	NA	FEI	EVAL	1.4+7	1.5+ 7	5I	BYCHKØV+.S1G(NEUT-E),TBL	
CR	050	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
CR	052	NP	RI	TTX5		+ 7	47	TRØFIMØV.FNEXCIT, SIG, TBL	
CR	052	NA	FEI	EVAL	1.4+7	1.5+7	5 I	BYCHKØV+.SIG(NEUT-E),TBL	
CR	053	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
CR	354	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
MN	055	NP	RI	EXPT	+7	}	47	TRØFIMØV.FNEXCIT,SIG,TBL	
MON	055	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
FE	054	NA	FEI	EVAL	1.4+7	1.5+7	5I	BYCHKØV+.SIG(NEUT-E), TBL	
FE	056	NA	FEI	EVAL	1.4+7	1.5+ 7	5I	BYCHKØV+.SIG(NEUT-E),TBL	
FE	056	NP	RI	EXPT	+7		47	TRØFIM.V.FNEXCIT,SIG,TBL	
FE	057	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
FE	058	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL	
СØ	059	NA	FEI	EVAL	1•4+7	1.5+ 7	51	BYCHKØV+.SIG(NEUT-E), TBL	
NI	058	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL,GRAPH	
NI	060	NA	FEI	EVAL	1.4+7	1.5+ 7		BYCHKØV+.SIG(NEUT-E),TBL,GRAFH	
NI	060	NP	RL	EXPT	+7		47	TROFILOV.FNEXCIT, SIG, TBL	
NI	062	NA	FEI	EVAL	1.4+7	1.5+7	10 51	BYCHKØV+.SIG(NEUT-E), TBL, GRAPH	
NI .	064	NA	FEI	EVAL	1.4+7	1.5+7	51	BICHKØV +. SIG(NEUT-E), TBL, GRAPH	
CV	063	NA	I EI	EVAL	1.4+7	1.5+ 7	101	BICHKØV+.SIG(NEUT-E), TEL, GRAPH	
CU	065	NP	RI	ELPT	+/		47	TROFILDOV.FNEXCIT, SIG, TEL	
ZN		NP	RI	ELFT	+1	1 5 . 7	41/ 5T	TROFINDV.FNEACLT, SIG, TEL	
ZN	068	NA	I I I I	EVAL	1.4+1	1.5+7	51 5T	BICHKOV +. SIG(NEUT-E), TBL, GRAPH	
2N Ct	0/0		PT PT	EVAL	1+4+1	1.07	47	TEADINGY TASIG (NEUT-S), TEL, GRAPH	
GA	069	NP		PYDD	+1			TRATINOV FREATLY, SIG, TEL	
GA	071	ND		DATE	+1	. 7	47	TRAFINAN 2NRYCIM SIG MDI	
GA GA	071	NP WA	PET	RUAT	1 4+7	1.5+7	51	RYCHK WY SIG (NEUM_P) MBT. CDADU	
GA CE	070	ND	141 70	PYDM	1 • 4 7 1		47	TRAFTMAN ENERCIA STO ART. COADO	
ч ь	070	nr.		JEAR 1				TAPT DEPTERDATE, SIG, IDD, GRAFT	

		<u>v, eV</u>	: Ener	: Work-	:Labora-	: Quan-	Element		
omments	Comm	Page	min max		: type :	:tory	: tity :	A	s :
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	072	GE
-SIG(NEUT-E).	BYCHKØV+.SI	5I	1.5+7	1.4+7	EVAL	FEI	NA	074	GE
STG(NEUT-E).	BYCHKØV+.ST	5 I	1.5+7	1.4+7	EVAL	FEI	NA	075	AS
'. FNEXCIT. SIG.	TROFTMOV . FN	47		+7	EXPT	RT	NP	075	AS
SIG(NEUT-E)	BYCHKØV+.ST	51	1.5+7	1.4+7	EVAL	FET	NA NA	078	SE
-SIC(NEUT-E) /	BYCHKOV+.ST	51	1.5+7	1.4+7	EVAL.	T.T.	RA	080	SR
STG(NEUT-E)	BYCHKØV+ ST	51	1.5+7	1.4+7	EVAL.	FET	NA NA		פפ
SIG(NEUT-E),	BYCHKØV+.ST	51	1.5+7	1.4+7	EVAL	WET	NA NA	081	BD
SIG(NEUT-E) (BYCHKØV+ ST	স	1.5+7	1.4.7	FVAL	FET	NA NA	085	חת
SIG(NEUM-E) (BYCHKØV+ ST	51	1 5 +7	1 4.7	WVAT.	PD.	NA NA	087	מפ ספ
BIG(NLOI-L),		47	1.211	1.4+1	1 DTAD	DT	ND	007	стр (тр
·FNEXCIP SIC (TREFINEV FM	47		+7	EYD	PT	nr nr	000	v
ENERGIA STO	THEFINE VOIN	A77		7	EXPR	DT	NT ND	005	1 7 D
- CIC(NENDED) (TRUTINU ST	51	1 5+7	1 4.7	EMAT	UPT	NE	09	2n 7n
SIG(MEUTE))	DICHNOV - SI	51	1 5.7	1 4.7	EVAL	FDI	NA NA	092	2R 7D
SIG(NEUT-L),	DICHKWY+.SI	51	1 5.7	1 4 . 7	EVAL	FBI	NA	094	2R 7D
SIG(NEULE),	DICHKDV+.51	5T	1 5 7	1 4.7	EVAL	FLI	NA NA	096	2R 170
NAL MAR DIRRO	DICULOV+.DI	DI DT	7 0 6	5 0.6	BYAL	FEI	NA	1 093	NB
WAtoryF, DIFFS.	DYOUR dU. ST.	71 51	1 5 .7	2.2+0	BAPT	FBI	DIN	0.00	NB
· BIG(NEOT-E),:	BICHKØV+.51	ATI	1.0+1	1.4+1	EVAL	FEI	NA	092	мø
.FNEAULT, SIG,	TROFIMOV.FN	47 5T	4 5 .7	+/	EAPT	RI	NP	095	MØ
SIG(NEUT-E),	BICHKØV+.SI	DI.	1.5+7	1.4+7	EVAL	FEI	NA	098	MØ
SIG(NEUT-E),	BICHKØV+.SI	51	1.5+7	1.4+1	EVAL	FEI	NA	100	щø
SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	102	RU
SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	104	RU
SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	103	RH
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1•4+7	EVAL	FEI	NA	106	PD
.SIG(NEUT-E),	BYCHKØV+.SI	1 51	1.5+7	1.4+7	EVAL	FEI	NA	108	PD
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	109	AG
SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	106	CD
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	112	CD
.SIG(NEUT-E),	BYCHXØV+.SI	51	1.5+7	1 • 4 +7	EVAL	FEI	NA	114	CD
-SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	116	CD
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	115	IN
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	118	SN
.SIG(NEUT-E),	BYCHKØV+.SI	ភ	1.5+7	1.4+7	EVAL	FEI	NA	099	TZ
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	PEI	NA	124	TE
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	126	TE
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	128	TE
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	1 30	TE
.SIG(NEUT-E),	BYCHKØV+.SI	্য	1.5+7	1.4+7	EVAL	FEI	NA	139	CS
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	138	BA
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	139	LA
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	140	CE
.SIG(NEUT-E),	BYCHKØV+.SI	গ্র	1.5+7	1.4+7	EVAL	FEI	NA	142	CE
.SIG(NEUT-E),	BYCHKØV+.SI	চা	1.5+7	1.4+7	EVAL	FEI	NA	142	ND
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	144	ND
.SIG(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	146	ND
.SIC(NEUT-E),	BYCHKØV+.SI	51	1.5+7	1.4+7	EVAL	FEI	NA	148	ND

.

Element		: : Quan-	: Labora-	: Work-	: Energ	y , eV	Page	Comments				
5	A	: tity :	: tory	type	min	mar	}					
BU	153	NA	FEI	BVAL	1.4+7	1.5+7	51	BYCHK#V+.SIG(NEUT-E), TBL, GRAPH				
GD	158	NA	FEI	EVAL	1.4+7	1.5+7	5I	EYCHE #V+.SIG(NEUT-E), TEL, GRAPH				
GD	160	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-B).TBL.GRAPH				
TB	159	MA	FEI	BYAL	1.4+7	1.5+7	51	BYCHKOV+.SIG(NEUT-E).TBL.GRAPH				
DY	162	NA	FBI	BYAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E), TEL, GRAPH				
DY	164	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(HEUT-E), TBL. GRAPH				
₽Ø	165	NA	PBI	BVAL	1.4+7	1.5+7	SI	BYCHKØV+.SIG(NEUT-E), TBL, GRAFH				
BR	168	RA	FEI	EVAL	1.4+7	1.5+7	5I.	BYCHEØV+.SIG(NEUT-E), TBL, GRAPH				
KR	170	NA	FEI	BVAL	1.4+7	1.5+7	51	BYCHROV+.SIG(NEUT-E), TBL.GRAPH				
TE-	174	NA	FBI	BVAL	1.4+7	1.5+7	51	BYCHEØV+. STG(NEUT-E). TEL, CRAPH				
ra	176	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHEØV+.SIG(NEUZ-E), TBL.GEAN				
HP	178	NA	FEI	BAYT	1.4+7	1.5+7	51	FICHKOV+.SIG(NEUT-E), TEL, GRAPE				
HP	180	B A	FEI	EVAL	1.4+7	1.5+7	51	BICHEOV+.SIG(NEUT-E), TBL. GRAPE				
TA	181	MA	FEI	EVAL	1.4+7	1.5+7	51	BYCHE OV+. SIG(NEUT-E), TBL, GEAPH				
¥	184	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHERV+.SIG(NEUT-E), TBL, GRAPE				
¥	186	NA	FEI	EVAL	1.4+7	1.5+7	5I	BYCHKØ7+.SIG(NEUT-E), TEL, GRAPE				
R B	187	NA	FEI	EVAL	1.4+7	1.5+7	5I	BYCHKØV+.SIG(NEUT-E), TBL. GRAPH				
øs	190	NA	FEI	EVAL	1.4+7	1.5+7	51.	BYCHEØV+.SIG(NEUT-E), TBL, GRAPH				
IB	191	ΠA	FEI	EVAL	1.4+7	1.5+7	51	BYCHERY SIG (NBUT-B), TBL, GRAPH				
FT .	194	NA	FEI	BVAL	1.4+7	1.5+7	51	BYCHEØ7+, SIC (AEUT-B), TBL, GRAPH				
PT	196	NA	FEI	EVAL	1.4+7	1.5+7	5I	BYCHKØV+.SIG(NEUT-E), TBL, GHAPH				
PT	198	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E), TBL, GRAPH				
AU -	197	NA	Z EI.	BVA.I.	1 1 . 4+7	1.5+7	51	BYCHE OV+.SIG(NEUT-E).TEL, GRAPH				
HG I	200	NA-	FEI	EVAL	1.4+7	1.5+7	51	BYCHRØV+.SIG(NEUT-E), TBL, GHAPH				
д а (202	B A	FEI	BVAL	1.4+7	1.5+7	EI	BYCHRØV+.SIG(NEUT-E), TBL, GRAPH				
TL	203	N A	FEI	SVAL	1.4+7	1.5+7	EI	BYCHKØV+.SIG(NEUT-E), TEL, GRAPH				
TI.	205	NA	PBI	BVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E), TBL, GRAPH				
PB	206	NA	FEI	EVAI.	1.4+7	1.5+7	5I	BYCHKØV +. SIG (NEUT-E), TBL, GRAFE				
Pb	207	NA	PRI	EVA L	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E), TEL, GRAPH				
PB	208	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHRØV+.SIG(NEUT-S), TBL, GRAPR				
рв	209	NA	ye i	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E), TEL, CRAPH				
BI	209	NA	FEI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL,GRAPH				
TH	230	NA	PEI	RAVT	1.4+7	1.5+7	151	BYCHKØV+.SIG(NEUT-E), TBL, GRAPH				
U	238	NA	PBI	EVAL	1.4+7	1.5+7	51	BYCHKØV+.SIG(NEUT-E),TBL,GRAPH				
·				······································			·					

NUCLEAR CONSTANTS, Number 3(34)

INDC(CCP)-140/G

THE σ_f ²³⁵U-FISSION CROSS-SECTION EVALUATION IN THE ENERGY REGION FROM 0,1 KEV TO 20 MEV

V.A. Konshin, V.F. Zharkov, E.Sh. Sukhovitskij

A method for determining evaluated data errors, taking into account the correlation between experimental errors is suggested. The total experimental errors are split into partial ones. The relationship of the present method with the least squares method is shown. The experimental correlation coefficient matrices for each partial error, as well as for different energy intervals are given. The method is used for the σ_f ²³⁵U evaluation taking into consideration 28 works. A comparison of the evaluated data obtained with the ENDF/B-V data shows their agreement within 1 to 3 %.

This article is being translated in full by the IAEA.

FISSION AND RADIATIVE CAPTURE GROUP NEUTRON CROSS SECTIONS FOR TRANSACTINIDES

A.I. Voropaev, A.A. Van[®]kov, V.V. Voziakov, A.C. Krivtsov, V.N. Manokhin, A.G. Tsykunov

The comparison of evaluated radiative capture and fission cross-sections for the 236U, 237Np, 238Pu, 241Am, 243Am, 242Cm, 244Cm isotopes is made, recommendations on choice of group-averaged cross-sections for fast reactors are given. For many isotopes only single evaluations exist, so for 9 other isotopes the group cross-sections obtained from HEDL data (evaluations for ENDF/B-V Library) are given, and the group cross-sections calculated from the ENDL-76 Library are listed for 32 isotopes. In recommending the crosssections, the criteria used were: consistency with experimental data (if available), documentation and completeness of calculations on the basis of theoretical models. The reliability of evaluations is discussed. Effort is made to estimate the uncertainties of one-group cross-sections averaged over a typical fast reactor spectrum. Conclusions were drawn after studying the experimental and calculational status and the disagreement between different evaluations of transactinide cross-sections. The integral experiments available for the adjustment of transactinide cross-sections are briefly discussed.

This article is being translated in full by the IAEA.

DIFFERENTIAL CROSS-SECTIONS OF INELASTICALLY SCATTERED NEUTRONS WITH AN ENERGY OF 5, 34 \pm 0,05 MEV FROM ¹¹³In

G.N. Lovchikova, O.A. Sal*nikov, S.P. Simakov, A.M. Trufanov

The differential cross-sections of inelastic neutron scattering by 113In have been measured for an incident neutron energy $5,34\pm0,05$ MeV. The measurements were performed by time-of-flight method using a tritium gas target as the neutron source. The cross-sections are listed.

COLLAPSING OF BROAD GROUP CONSTANTS FOR SHIELDING CALCULATIONS

V.F. Khokhlov, I.N. Sheino, V.D. Tkatchev

An approximate method of taking space and angular dependence of a neutron flux into account is suggested for the generation of broad group cross-sections used in a shielding problem. Illustrative calculations for typical compositions show a satisfactory agreement between results obtained by using the suggested method and that of 21-group calculations.

CORRECTIONS TO THE DETAILED ENERGY DEPENDENCE OF THE TOTAL NEUTRON CROSS-

SECTION

V.N. Vinogradov, E.V. Gai, N.S. Rabotnov, V.V. Filippov

A method of taking into account the energy resolution based on rational approximation is applied to correct the detailed energy dependence of the total neutron cross-section with chromium nuclei taken as an example. The influence of the resolution on the calculated values of the transition functions for chromium samples of various thicknesses is discussed.

THE SPECTRA OF UNSCATTERED NEUTRONS AND THE TOTAL NEUTRON CROSS-SECTION PROBABILITY DISTRIBUTION

A.N. Glukhovets, G.A. Miakishev, M.Z. Tarasko, V.V. Filippov

The results of neutron transmission function T(t) measurements under "good geometry" conditions for Fe, Ni and Ti are discussed. Values of T(t)obtained by neutron time-of-flight on the LUE-25 linac and by using continuous neutron beam transmission through hydrogen are compared with results measured using neutrons from the T(p,n) reaction. Examples of total neutron crosssection probability distributions $P(\sigma)$ obtained from measured transmission T(t) are presented.

NUCLEAR CONSTANTS FOR SOLVING HIGH ENERGY RADIATION PHYSICS PROBLEMS

B.S. Sytchev

The generation of a system of constants with consideration to experimental data published in recent years, for high energy radiation physics is discussed. Information on double differential distributions is given.

THE NUCLEUS_NUCLEUS INTERACTION CONSTANTS AT ENERGIES OF 0.1 - 1.0 GEV/

NUCLEON

V.E. Dudkin, I.I. Pianov, V.D. Stepnov

A method to calculate the differential and average distributions of secondary particles in nucleus-nucleus interactions, using a cascade model, is presented.

Bibliographic CINDA index of works described in

"Nuclear Constants 3 (34)" (1979)

Eles	nent	Qoan-	Labo-	Work-	Energ	y (eV)	De	CONFERENCE
S	A	tity	rato- ry	type	min	max	Page	COMMENTS
IN	113	DIN	FEI	EXPT		5,3+6		LØVCHIKØVA+.TØF,SIG(NEUT-E),TEL
TH	231	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
TH	231	NG	PEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
ប	235	NF	TMO	EVAL	1,0+2	2,0+7		KØN'SHIN+.SIG(NEUT-E),TBL.CFD OTHERS
U	236	NP	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
U	236	NG	FEI	EVAL	1	+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
NP	237	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
NP	237	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
NP	237	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
PU	238	NP	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
PU	238	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
PU	238	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
PU	239	NG	PEI	EVAL		+7		VØRØPAEV+.TØP,SIG(NEUT-E),TBL
PU	240	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TEL
PU	241	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TEL
PU	242	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TEL
PU	243	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
AM	241	NP	FEI	EVAL		+7 ·		VØRØPAEV+.TØP,SIG(NEUT-B),TBL
AM	241	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
AM	243	NG	FEI	EVAL		+7	•	VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CM	241	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CM	242	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
СM	244	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
СM	245	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CM	245	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
С₩	246	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CM	246	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
СЖ	247	NP	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
СМ	247	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CM	248	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CF	249	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TEL
CF	249	NG	FBI	EVAL		+7	•	VØRØPAEV+.TØF,SIG(NEUT-E),TBL
C₽	250	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-B),TBL
CF	250	NG	FEI	BVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
CF	251	NF	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-B),TBL
C₽	251	NG	FBI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TBL
C₽	252	NP	FBI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-B),TBL
C₽	252	NG	FEI	EVAL		+7		VØRØPAEV+.TØF,SIG(NEUT-E),TEL

NUCLEAR CONSTANTS, Number 4(35)

INDC(CCP)-145/G

ROLE OF THE COMPOUND NUCLEUS MECHANISM IN THE LOW ENERGY (d,p) REACTION

V.E. Kolessov, N.N. Titarenko

The dependence of angular distribution and (d,p) reaction spectroscopic factors in the distorted wave methods and in statistical theory were investigated. It was shown that spectroscopic factors strongly depend on model parameters for deuteron energy less than 10 MeV.

MEASUREMENT OF THE Pu-240 FISSION CROSS-SECTION IN THE NEAR THRESHOLD REGION

F.E. Fomushkin, G.F. Novosselov, Yu.I. Vinodragov, V.V. Gavrilov

The ²⁴⁰Pu fission cross-section in the energy region $0,01 \le E_n \le 4$ MeV were measured with nuclear explosion neutrons. The fragment detectors were of dielectrical types. The electromechanical system measured the transit time scanning. Measurement results are shown for 17 neutron energy intervals.

RELATIVE YIELDS OF DELAYED NEUTRONS AS NUCLEAR-PHYSICS CONSTANTS

B.P. Maksyutenko, A.A. Shimanskij, Yu.F. Balakshev, S.F. Gritskevitch

A new method of analysis and estimation of the relative yield of delayed neutrons based on the physical relations between fission process and delayed neutrons is considered. A good correlation is observed for uranium isotopes and large differences are shown for plutonium isotopes.

<u>A</u> _	(n,	2n)	REAC	NOL	CR	DSS-SI	ECTION	COM	PIL	ATIC)N	FOR	NUCLEI	WITH	Z≥20	IN	THE
NE	UTF	NON	ENERG	r RAI	IGE	FROM	THRES	HOLD	UP	TO	20	MEV					
v.	Μ.	Byc	hkov.	V.N.	Ma	anokhi	in. A.	B. Pa	ascl	nenk		V.I	• Plias	skin			

The compilation results are presented on graphs. Recommended curves of excitation functions obtained as a result of analysis of experimental data and theoretical calculations are given for some nuclei. The numerical information on measurement results into 14-15 MeV neutron energy range and the evaluated value of (n, 2n) reaction cross-section at $E_n = 14,5$ MeV are given. Experimental data published up to 1977 were taken into account.

This article is to be translated in full by the IAEA, and will be published together with Parts 1, 2 and 3 of this article in INDC(CCP)=146/L.

THE TRANSMISSION FUNCTIONS OF U-235 FOR THE TOTAL AND FISSION CROSS-SECTIONS

HAVE BEEN MEASURED ON THE TOP SPECTROMETER IN THE NEUTRON ENERGY RANGE

0.002 - 20 KEV

A.A. Van'kov, Yu.V. Grogor'ev, V.F. Ukrantsev, T. Bakalov, G. Il'tchev, S. Toshkov, Tchan Chan Mai

The sub-group parameters of total and fission cross-sections and also self-shielding factors of these cross-sections were obtained.

SIMULATION OF EXPERIMENTAL MEASUREMENTS OF EFFECTIVE RESONANCE ²³⁸U INTEGRAL BY MONTE-CARLO METHOD

V.V. Korobeinikov, A.G. Sboev, V.V. Tebin

Hellstrand simulation of the effective ²³⁸U resonance integral by Monte-Carlo method is given. It is shown, that the used neutron cross-sections give good agreement with results of integral experiments. The present work gives calculation results comparing ²³⁸U resonance integrals at different approximations in cross-section representations.

KERMA FACTORS FOR NEUTRON INTERACTIONS IN BERYLLIUM OXIDE

I.M. Bondarenko

Heat generation by neutrons in beryllium oxide is calculated in the present work. Kerma factors (kerma = kinetic energy released in materials) were calculated for neutron energies between 1 eV and 20 MeV. No major simplifying assumptions are introduced and the accuracy of the calculated kerma factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-IV data and recent experimental information are used for the calculation of kerma factors. Plots of these kerma factors are presented in units of (eV.b/atom) as a function of neutron energy.

ON THE ROLE OF THE HEAVY ATOM BINDING ENERGY IN A LATTICE FOR THE DETERMINATION OF THE ATOMIC DISPLACEMENT CROSS-SECTION AND THE REMOVAL CROSS-SECTION IN NEUTRON RESONANCE SCATTERING

A.A. Van*kov

The process of resonance neutron scattering by heavy nuclei has a compound-state life-time comparable with an atomic displacement time in a lattice. In neutron kinetics this effect leads to additional energy loss equivalent to the atom-lattice binding energy, contrary to the instant collision picture. In some cases the effect has to be taken into account in determination of atomic displacement cross-section and neutron removal cross-section.

Bibliographic CINDA index of works described in

"Nuclear Constants 4(35)" (1979)

Element		Quan-	Labo-	Compi-	Work-	Ener	ʒy, eV	Referen-	Da-			
S	A	tity	rato- ry	ler	type	min	: Max	- ce	te	Comments		
RB	093	NUD	FEI	ø	E	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
I	137	DUN	FEI	ø	B	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
I	1 38	NUD	FEI	ø	Е	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
U	233	NUD	FEI	ø	B	6	1	YK 35	79	MAKSJUTENKØ+.YLD DBLAYD NEUTS		
U	235	סטא	FEI	ø	B	6.		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
ប	235	DUN	FEI	ø	E	6		YK 35	79	MAKSJUTENKØ+.YLD DBLAYD NEUTS		
U	235	TØT	FEI	ø	B	2.0+0	2.0+4	YK 35	79	VAN'KØV+.TØF, TBL		
ប	235	NF	FEI	ø	B	2.0+0	2.0+4	YK 35	79	VAN'KØV+.TØF, TBL		
U	238	NUD	FBI	ø	E	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
U	238	NUD	FEI	ø	B	6		YTK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
PU	240	NF	CCP	ø	B	2.0+3	2.0+5	YK 35	79	FØMUSHKIN+.SIG(E), TBL		
PU	239	NUD	FEI	ø	B	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
BR	088	NUD	FEI	ø.	B	6		YK 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
BR	0 89	NUD	FEI	ø	Е	6		YX 35	79	MAKSJUTENKØ+.YLD DELAYD NEUTS		
MANY		N2N	FBI	ø	B	1.4+7	1.5+7	YK '35	79	BYCHKØV+.SIG(NEUT-E),TEL		