

INTERNATIONAL NUCLEAR DATA COMMITTEE

Evaluation of the ²³⁵U Fission Cross-Section in the

Energy Range 0.1 keV - 20 MeV

V.A. Kon'shin, V.F. Zharkov and E.Sh. Sukhovitskij

(Excerpt translation from USSR report Nuclear Constants, 3 (34) page 3, also distributed as INDC(CCP)-140/G)

> Translated by the IAEA June 1980

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria June 1980

80-3374

Evaluation of the ²³⁵U Fission Cross-Section in the

Energy Range 0.1 keV - 20 MeV

V.A. Kon'shin, V.F. Zharkov and E. Sh. Sukhovitskij

(Excerpt translation from USSR report Nuclear Constants, 3 (34) page 3, also distributed as INDC(CCP)-140/G)

Translated by the IAEA June 1980

L80-20030 Translated from Russian

UDC 621.173.4

EVALUATION OF THE ²³⁵U FISSION CROSS-SECTION IN THE ENERGY RANGE 0.1 keV-20 MeV

V.A. Kon'shin, V.F. Zharkov and E.Sh. Sukhovitskij

ABSTRACT

A method based on correlations between the errors in different experimental results is proposed for determining errors in evaluated In order to use these correlations, total experimental errors data. are divided up into partial errors. The way in which this method is linked with the least-squares method is demonstrated. Matrices of the correlations between experimental results for each type of partial. error and for different energy ranges are given as well as information on partial errors. The method is used in the paper for evaluating 235 U fission cross-sections in Soviet and foreign publications, and evaluated data are given. Comparison of the evaluated data with ENDF/B-V data shows that they agree to within 1-3%.

In recent years experimental measurements of the 235 U fission crosssection (σ_{f}) have been published showing a difference from those previously available as a result of the application of more up-to-date experimental techniques, entailing smaller errors [1-8]. In addition, the new data give lower figures for the cross-section. For this reason it has become necessary to perform a new evaluation of the 235 U fission cross-section on the basis of the new data as well as those obtained earlier. It should be mentioned that, when performing evaluations, special attention should be paid not only to fission cross-section values themselves, but also to the error in evaluation, since a fairly strong correlation can be found between the errors in many experimental studies due to the use of similar measurement methods and standards.

Reference [9] proposes a method of evaluation by means of which a detailed analysis of the correlations between the errors in different experiments can be performed. The method is based on the division of errors into different types of partial error, which are independent in each experiment, with a view to using the correlations between them. The total errors in different experiments are correlated with each other by means of the partial errors. Using this method an expression can be found for the estimated cross-section σ_{est} and the actual but unknown cross-section σ_{o} [9]:

$$\frac{1}{\left|\mathcal{G}_{esf}\mathcal{G}_{0}\right|^{2}} = \sum_{k=1}^{NS} \sum_{i=1}^{NA} \sum_{j=1}^{NA} a_{i} a_{j} K_{kij} \sqrt{\left|\Delta \mathcal{G}_{ik}\right|^{2}} \sqrt{\left|\Delta \mathcal{G}_{jk}\right|^{2}} , \qquad (1)$$

where the coefficient of correlation between the k partial errors of the i-th and j-th experiments

$$K_{kij} = \frac{\overline{\Delta \sigma_{ik}} \, \overline{\Delta \sigma_{jk}}}{\sqrt{\left|\Delta \sigma_{ik}\right|^2} \, \sqrt{\left|\Delta \sigma_{jk}\right|^2}} \, , \qquad (2)$$

 $\Delta \sigma$ is the k-th partial error of the i-th (j-th) experiment; NS is the number of partial errors; NA is the number of experiments involved in the evaluation; and a_{ij} is the statistical weight given to an experiment, where

$$\sum_{i=1}^{NA} a_i = i \ (a_i > 0).$$
 (3)

In the evaluation, experimental data are given weights which minimize that the error in the estimated value (1). Clearly, these weights depend on the partial experimental errors and on the coefficients of correlation between them, i.e. they reflect the actual situation and indicate the value of a given set of experimental results. We propose to show that in the case of a total lack of correlation this method is equivalent to the least-squares method with statistical weights in inverse proportion to the square of the error. Here, $K_{\text{kij}} = \sigma_{ij}$, and Eq. (1) has the form

$$\overline{\left| \underbrace{\mathcal{G}}_{\text{GST}} - \underbrace{\mathcal{G}}_{0} \right|^{2}} = \sum_{k}^{NS} \sum_{i}^{NA} a_{i}^{2} \overline{\left| \Delta \mathcal{G}_{ik} \right|^{2}} = \sum_{i}^{NA} a_{i}^{2} \overline{\left| \Delta \mathcal{G}_{i} \right|^{2}} . \tag{4}$$

The values of a which minimize $\overline{|\mathcal{G}_{st}\mathcal{G}_0|^2}$ can be found from the condition

$$\begin{cases} \frac{\partial}{\partial a_n} \overline{\left| \mathcal{C}_{est} \mathcal{G}_{0} \right|^2} = 0, \quad n \neq \ell; \\ \Sigma a_i = \ell. \end{cases}$$
(5)

Let us modify Eq. (4), taking the 1-th experiment, as follows:

$$\overline{\left| \frac{\mathcal{G}_{est} - \mathcal{G}_{o}}{est} \right|^{2}} = \sum_{i \neq \ell} a_{i}^{2} \overline{\left| \Delta \mathcal{G}_{i} \right|^{2}} + a_{\ell}^{2} \overline{\left| \Delta \mathcal{G}_{\ell} \right|^{2}}$$

and perform the substitution $a_{\ell} = 1 - \sum_{i \neq \ell} a_i$. Now

$$\overline{\left|\tilde{\mathcal{G}}_{est}^{\vec{o}}\bar{\mathcal{G}}_{o}\right|^{2}} = \sum_{i\neq\ell} a_{i}^{2} \overline{\left|\Delta \tilde{\mathcal{G}}_{i}\right|^{2}} + \sum_{i\neq\ell} \sum_{m\neq\ell} a_{i}a_{m} \overline{\left|\Delta \tilde{\mathcal{G}}_{\ell}\right|^{2}} - 2\sum_{i\neq\ell} a_{i} \overline{\left|\Delta \tilde{\mathcal{G}}_{\ell}\right|^{2}} + \overline{\left|\Delta \tilde{\mathcal{G}}_{\ell}\right|^{2}} \cdot$$
(6)

By differentiating Eq. (6) with respect to a_n , where $n = 1, \ldots, NA(n \neq 1)$, we obtain the NA - 1-th equation of the type

$$\frac{\partial \overline{\left[\sigma_{est} \sigma_{o}\right]^{2}}}{\partial a_{n,n\neq\ell}} = 2a_{n} \overline{\left[\Delta\sigma_{n}\right]^{2}} - 2\overline{\left[\Delta\sigma_{\ell}\right]^{2}} + 2\sum_{i\neq\ell} a_{i} \overline{\left[\Delta\sigma_{\ell}\right]^{2}}$$
(7)

or $a_n \overline{\left|\Delta \tilde{\sigma}_n\right|^2} = \left(1 - \sum_{i \neq \ell} a_i\right) \overline{\left|\Delta \tilde{\sigma}_\ell\right|^2}$,

from which, applying the condition $l - \sum_{i \neq \ell} a_i = a_\ell$, we obtain

$$\frac{\alpha_n}{\alpha_\ell} = \frac{\left|\Delta \overline{\sigma_\ell}\right|^2}{\left|\Delta \overline{\sigma_n}\right|^2}, \quad n \neq \ell, \ i = 1, \dots, NA.$$
(8)

Thus, where there are no correlations between errors in experiments, the weights are in inverse proportion to the squares of the errors.

Where correlations are found, Eq. (5) is reduced to a system of NA - 1 linear equations:

$$\frac{\partial \left| \mathcal{G}_{est} \tilde{\mathcal{G}}_{0} \right|^{2}}{\partial a_{n,n\neq\ell}} = 2 \sum_{k}^{NS} \sum_{i\neq\ell}^{NA} a_{i} \left(\kappa_{kin} \sqrt{\left| \Delta \mathcal{G}_{ik} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{nk} \right|^{2}} - \kappa_{ki\ell} \sqrt{\left| \Delta \mathcal{G}_{ik} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} - \kappa_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} - \kappa_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \kappa_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} + \epsilon_{k\ell\ell} \sqrt{\left| \Delta \mathcal{G}_{\ell k} \right|^{2}} \sqrt{\left| \Delta \mathcal{G}_{\ell$$

Eq. (1) gives the error in the estimated value for an individual point on the curve. We can determine the coefficient of correlation for the errors at any two evaluated points n and m as follows:

$$B_{nm} = \frac{\overline{\Delta \mathcal{G}_n \Delta \mathcal{G}_m}}{\sqrt{\left|\Delta \mathcal{G}_n\right|^2} \sqrt{\left|\Delta \mathcal{G}_m\right|^2}} , \qquad (10)$$

where $\Delta \sigma_n$ and $\Delta \sigma_m$ are the errors in estimated values at the points involved. These are determined as follows:

$$\Delta \sigma_n = \sum_{i}^{NA} \sum_{k}^{NS} \Delta \sigma_{ikn} \alpha_{in}$$
(11)

and

$$\Delta \sigma_m = \sum_{j}^{NA} \sum_{k}^{NS} \Delta \sigma_{jkm} \alpha_{jm} , \qquad (12)$$

where a_{jm} is the weight of the j-th experiment when it is used in the evaluation at the point m; $\Delta \sigma_{jkm}$ is the k-th partial error in the j-th experiment at the point m. Similarly, a_{in} and $\Delta \sigma_{ikn}$ are the weight and the k-th partial error in the i-th experiment when it is used in the evaluation at the point n. By introducing the coefficient of correlation for k errors in the i-th and j-th experiments at the points n and m (as previously, the partial errors in any one experiment are taken to be independent)

$$K_{kinjm} = \frac{\overline{\sqrt{G_{ikn}\Delta G_{jkm}}}}{\sqrt{\left|\Delta G_{ikn}\right|^2} \sqrt{\left|\Delta G_{jkm}\right|^2}}$$
(13)

and assuming it to be independent of the point chosen $(K_{kinjm} = K_{kij})$, we obtain the coefficient of correlation between errors in points on the curve for the energy dependence of the fission cross-section

$$B_{nm} = \frac{\sum_{k=1}^{NS} \sum_{j=1}^{NA} \alpha_{in} \alpha_{jm} K_{kij} \sqrt{\left|\Delta \mathcal{G}_{ikn}\right|^{2}} \sqrt{\left|\Delta \mathcal{G}_{jkm}\right|^{2}}}{\sqrt{\left|\Delta \mathcal{G}_{n}\right|^{2}} \sqrt{\left|\Delta \mathcal{G}_{m}\right|^{2}}}$$
(14)

The algorithm described was applied on a computer program which, on the basis of the partial errors and correlations between them, uses the iteration method to find the weights for the experimental data minimizing the error in the estimated value, and also the errors in the estimated values at various points, with the coefficients of correlation between them.

The 235 U fission cross-section was evaluated for two energy regions: 100 eV-100 keV, where the cross-section has a distinct structure, and 100 keV-20 MeV, where the fission cross-section can be represented by a smooth curve. The experimental data obtained for the thermal energy region need to be renormalized by a common method. Errors due to the shift in the energy scale and the difference in energy resolution can be minimized by normalization to a wide range of energies (100 eV-1 keV). Table 1 [1] shows fission integrals for 235 U.

The 235 U fission cross-section in the energy region below 1 eV was evaluated in Ref. [1], where at 0.0253 eV it was found to be (583.54 \pm 1.7) b. This value agrees with the one given in Ref. [2], where at 0.0253 eV the fission cross-section is (583.5 \pm 1.3) b.

In Ref. [10] the fission integral from 7.8 to 11 eV is proposed as a possible region for renormalization. The analysis performed in Ref. [1] showed that there is a systematic deviation of the results given in Ref. [10]from the evaluated curve. This may be due to the variation in channel width of the analyser in this region. Thus, normalization only to the data of Ref. [10] may not be advisable. However, there are other measurement data available for the thermal energy region [4, 7, 11-15]. By renormalizing them to a fission cross-section of 583.5 b at 0.0253 eV the fission integral from 7.8 to 11 eV can be calculated. Reference [1] gives a value of (241.24 + 6.75) b • eV, obtained as a mean-weighted value [4, 7, 10, 11] for the evaluated fission integral for 7.8-11 eV. Here, the data from Ref. [12] were used with a three-fold reduction in the weight as a result of the considerable deviation from other results. The data from Ref. [13] were not used since they were obtained only in the region up to 10 eV. The data in Refs [14, 15] were not used because of the considerable difference in the shape of the curves and the systematic difference in the results for the thermal region. The error in the fission integral -+2.8% - was obtained [1] on the assumption that this value in Ref. [4] is 50% likely to be correct.

Table 2 shows fission integrals in the range 0.1-1.0 keV. There are seven sets of experimental data in this energy region that can be considered absolute [4, 7, 8, 16-18], the first five of which cover the thermal region and can be renormalized to the fission integral for 7.8-11 eV, which is equal to 241.24 b • eV on the basis of data from Table 1. The concept of normalization used is the same one as in drawing up ENDF/B-V [23]. The coefficient of renormalization for these data is given in Table 2. Before normalization it was necessary to correct for the up-to-date cross-sections for the ${}^{10}B(n,a)$ and ${}^{6}Li(n,a)$ reactions [3]. The data from [17] and [18] were obtained by the underground explosion technique beginning at an energy of 20 eV, and thus cannot be renormalized in the region 7.8-11 eV. Since these data are absolute measurements and at low energies the correction for the angular distribution of the $^{\circ}$ Li(n,a) reaction which needs to be made to them is small, they were used to obtain the mean-weighted fission integral in the range 0.1-1.0 keV, even though their influence is small as a result of high error (approximately 8%). The mean-weighted fission integral in the region 0.1-1.0 keV is (11883 + 446) b • eV. The experimental data in Ref. [11] were assigned an error of 3.3%. After renormalization to

 (241.24 ± 6.75) b • eV (approximately 2.8%) the error rose to 4.31%. The most up-to-date experimental data [7, 8] may have an error of 2%. After renormalization the error rises to 3.8%. The mean-weighted integral has an error of approximately 3.8%. All the experimental data available agree to within the limits shown in Table 2. The remainder of the experimental data in this table were used as relative data and in the region 0.1-1.0 keV were renormalized to (11883 ± 446) b • eV. The coefficients of renormalization are shown in the same table.

In the region above 10 keV it becomes necessary to renormalize relative data obtained for the region 2-100 keV [24] and the relative data of Refs [5, 25]. For renormalization the region 10-30 keV was chosen and the results from Refs [4, 7] were used. The mean fission integral in the region 10-30 keV according to these sets of data, which differ from each other by 2.3%, is 45580 b • eV. Data from Ref. [19], although agreeing well (to within 1%) with Refs [4, 7], were not used for normalization because of insufficient reliability in this region. The data from Ref. [5, 25] were renormalized to the fission integral in the region 10-30 keV, which is equal to 45580 b • eV. It appears that the error in this normalization integral is approximately 5% and is caused mainly by the error in normalization in the thermal region. The data from Ref. [24] in the region 2-10 keV were renormalized to those given in Ref. [11] (i.e. to the fission integral for the region 0.1-1.0 keV).

The evaluated data in the energy region 10-100 keV are determined from the results in [4, 5, 7, 17, 19, 24, 25], which in the region above 30 keV agree among themselves (with the exception of the data in [24]) to within $\pm 2.7\%$; in the region 80-90 keV they do not agree so well (to within $\pm 3.6\%$). On the average, the time-of-flight data obtained by renormalization in the low-energy region agree with absolute data [26] obtained from measurements with photoneutron sources to within $\pm 3\%$.

In the energy region 100-200 keV the data in Refs [4, 5, 25] were used in conjunction with measurements made on electrostatic generators at different values [27-31]. Comparison of the results of [24] with the new data obtained by I. Szabo [30] shows that, at energies below 100 keV, the former data agree with the results of Ref. [30] to within \pm 6%, the data of [4] and [31] to within \pm 2.5%, and those of [4] and [30] to within \pm 2.8%. In the region of 140 keV the data of [25] and [4] agree to within \pm 3.2%.

- 7 -

For the region 200 keV-1 MeV there are data available [26-30, 32, 33] which agree among themselves to within $\pm 3\%$. In addition, results have been obtained for hydrogen [25], and fission cross-sections have been measured for the ${}^{6}Li(n,a)$ reaction [7]. These last figures lie approximately 10% lower than the results of Refs [26-28, 30], and their uncertainty is due mainly to the fact that the ${}^{6}Li(n,a)$ reaction cross-section in the region above 100 keV is not accurately known. The renormalized data of [25] are also somewhat lower [5] (by approximately 5%) than the cross-sections given in Refs [26, 30]. The renormalized data of [5] agree comparatively well (to within 1%) with the results of [25] and, in the region above 800 keV, with the measurements of [26, 33]. A systematic discrepancy (of approximately $\pm 5\%$) is observed in the region 250-300 keV, where the cross-sections given in Refs [25] are lower than most other measurements. In the region 500-800 keV a discrepancy is found between the data of [34] and most other results where both the "shape" and the absolute value are concerned.

For the energy region above 1 MeV there are data available [26-28, 30], while for the region 1-6 MeV there are absolute measurements [32] and for the region 0.8-20 MeV there are relative measurements [33]. All these results can be taken to agree among themselves to within $\pm 3\%$.

For the region 1-1.3 MeV the cross-sections measured in Ref. [32] are 4% higher than those given in Refs [20, 30]. At the Specialists' Meeting on Fast Fission Cross-Sections [31] there was reference to the possibility of a shift in the energy measurement scale in [32] by about 100 keV relative to the data in [33] as being the cause of an error in the data of [32] of about 5% at 1 MeV and of 3% at 6 MeV. However, no conclusion was reached in the discussion.

At an energy of 5.4 MeV, the 235 U fission cross-sections of Ref. [18] are approximately 5% lower than those obtained in Refs [32, 33]. The reason for this may be that in Ref. [18] no correction was made for the angular distribution of protons in the (n,p) reaction, which amounts to approximately 2%. In particular, the ratio of the fission cross-section at 14 MeV to the cross-section at 5.4 MeV measured by P. White [18] does not agree with other relative measurements [33, 35]. For this reason, when performing the evaluation the error for this point increased by 5%. In the energy range 2-6 MeV a difference is found in the shape of the curves for I. Szabo's new data [30] and the results of [32, 33]. For the energy range around 14 MeV there are absolute measurements for the fission cross-section: 2.063 ± 0.039 b at 14.6 MeV [36], 2.17 ± 0.04 b and 14.1 MeV [29] and 2.192 ± 0.044 b at 14.8 MeV [37]. The mean-weighted value for these data after extrapolation to 14 MeV is 2.097 b; this agrees within the margins of error with the result in [33], to which the measurements of the 235 U fission cross-section for hydrogen in the range 1-20 MeV in Ref. [35] were renormalized.

In the region above 15 MeV the "shapes" of the experimental data show considerable differences, and the accuracy of the fission cross-section may be no more than 10%.

In order to analyse the total errors in the data from the experiments mentioned, use was made of the following types of partial error (Table 3):

- The error entailed in determining the number of 235 U nuclei (k = 1);
- The error entailed in extrapolation of the spectrum of fragments to a zero pulse height (k = 2);
- The error associated with absorption of fragments in the foil (k = 3);
- The error associated with scattering in the chamber walls, foil backing and target structure (k = 4);
- The error associated with attenuation of neutrons in the air (k = 5);
- The error involved in determination of neutron flux (k = 6);
- The error associated with the experimental background (k = 7);
- The error associated with the efficiency with which fission is recorded (k = 8);
- The error associated with uncertainty in the geometrical factor (k = 9);
- The error due to the hydrogen cross-section used as a standard (k = 10);

- The statistical error (k = 11);

- The error entailed in normalization (k = 12).

This division of the total error into partial components was made on the basis of information on the errors provided by the authors of the studies evaluated. Where no such information was available (which occurred mainly in the case of older studies), the division was made by analysing experimental methods in terms of the error inherent in them.

Use of the correlations for evaluating the 235 U fission cross-section was made possible by analysis of the experimental methods employed for the evaluation of the various studies. The following correlations between the experimental results were found (Table 4).

1. Error entailed in determining the number of 235 U nuclei (k = 1). In studies by I. Szabo [27] (17 keV-1 MeV) and P. White [29] (40 keV-14 MeV) use was made of the same foil, hence these experiments correlate entirely. Another set of results by I. Szabo [28] (17 keV-2.6 MeV) differs from those mentioned above through the use of an additional foil, hence in this case the measurements in [27] and [28] correlate only partially (see Table 4). The data obtained by Szabo in Ref. [30] (2.3 keV-5.5 MeV) do not differ from [27] in any way as far as this type of partial error is concerned, so these data correlate entirely.

We applied two rules in compiling the correlation table. According to Rule 1, if two sets of results correlate independently with a third, they correlate completely with each other. Therefore the data in Ref. [29] correlate completely with those in [30]. This is not at variance with the results obtained by studying this type of partial error from the physical point of view.

The results in Refs [28] and [29], and [28] and [30] may be correlated partially in accordance with Rule 2, which states that if one set of results [23] correlates partially with another [28] but completely with a third [29], the second and third sets ([28] and [29]) must also correlate partially.

The partial correlations shown in Table 4 between the data in Refs [29] and [35-37] with k = 0.3 were transposed to this type of partial error from k = 12 (error in normalization). This is because the cross-sections from [35] were normalized on the mean-weighted value of the data in Refs [29, 36, 37], but they do not have a partial normalization error since they are "absolute". A situation arises in which it is necessary to take into account the correlation between partial errors, i.e. the correlation obtained as a result of normalization needs to be introduced into the coefficients of correlation for all partial errors greater than zero. However, this approach considerably complicates the problem, especially when an additional correlation is needed for the one that is already being made for a given type of partial error. Clearly, in such cases correlations should not be used additively. As mentioned above, the correlation model applied by the authors of the present paper presupposes the absence of correlation between partial errors, which in most cases is true. In the few cases in which correlation between partial errors is artificially introduced (for example, as a result of normalization), this correlation can be used in the partial error making the greatest contribution to the total error in the experimental results. This approach is not at variance with the model chosen and enables one to make fuller use of the correlations found.

2. Error entailed in extrapolation of the fragment spectrum to a zero pulse height (k = 2). It can be assumed that in Refs [27, 29, 30] the errors entailed in extrapolating the spectrum of fragments to a zero pulse height correlate completely since the same foil was used. In addition, the data in [27] correlate partially with those in [28] because in the latter studies another foil was added to the foil mentioned. According to Rule 2 (see paragraph 1 above), the data of [28] correlate partially with those of [29] and [30] (see Table 4).

3. Error associated with absorption of fragments in the foil (k = 3). Refs [27, 29, 30] correlate entirely and [27, 28] partially. This is because in all three experiments the same foil was used, with the addition of another foil in Ref. [28]. For drawing up the table of correlations the same rules were applied as before (see paragraph 1 above).

4. Error associated with scattering in the chamber walls, foil backing and target structure (k = 4). In the studies by I. Szabo [27] (17 keV-1 MeV) and P. White [29] (40 keV-14 MeV) the same fission chamber was used, so these experimental results correlate entirely. From the information available it might have been assumed that the same chamber was used for Ref. [30] as for Ref. [29]. Since, however, this is known not to be the case, we shall assign partial correlation to the data in Refs [29] and [30]. In this case the data of [27] also correlate partially with those of [30].

5. Error associated with attenuation of neutrons in the air (k = 5). No correlations have been found in this type of partial error.

6. Error in determination of neutron flux (k = 6). The results in Refs [4-6, 11, 14, 15, 19, 22] intercorrelate completely, since in all of them a chamber with ¹⁰B was used for determining neutron flux. In the experiment described in Ref. [24] the neutron flux was determined using chambers with both ${}^{10}B$ and ${}^{6}Li$ at the same time. For this reason the data given above must correlate partially with the results in [24].

In another set of studies $[7, 8, 17, 18, 20]^{6}$ Li was used for the determination of neutron flux, hence these experiments correlate completely with each other and partially with the data in [24]. We assume that the group of results using 10 B and 6 Li do not correlate.

In a third set of studies [25, 29, 35] neutron flux was determined by 2 H. These experiments correlate entirely. In addition, in Ref. [27] two further methods were used for determining neutron flux in addition to the proton recoil method: the magnesium-sulphate bath method and the associated particle technique. This causes the data in [27] to correlate partially with those in [26, 29, 35].

The method used for determination of neutron flux in Refs [28, 30] was the same, and thus they correlate entirely. Two of the three methods used in these experiments for determining neutron flux (the magnesium-sulphate bath and associated-particle methods) are the same as those used in Ref. [27]. It can therefore be assumed that the data of [27] correlate with those of [28, 30] with a coefficient $K_{6,13,14} = K_{6,13,24} = 0.7$.

7. Error associated with the background of the experiment (k = 7). No correlations for this type of partial error were found.

8. Error associated with the efficiency with which fission is recorded (k = 8). No correlations were found.

9. Error associated with uncertainty in the geometrical factor (k = 9). No correlations were found.

10. Error due to the hydrogen cross-section used as a standard (k = 10). In Refs [25, 27, 29, 32-35, 39] the hydrogen cross-section was used as a standard. These results intercorrelate completely.

11. Statistical error (k = 11). There are no correlations.

12. Error in normalization (k = 12). The results in [4, 7, 8, 11] were renormalized to the fission integral in the energy region 0.1-1.0 keV and on the thermal value (see Tables 1 and 2). Errors in normalization of these values correlate completely. The experimental measurements in [17, 18] are absolute and correlate entirely, since they were normalized on the same

fission integral (from 0.1-1.0 keV). Relative measurements were performed in Refs [6, 14, 15, 19, 20, 22]. These data were also normalized on the fission integral from 0.1-1.0 keV and consequently correlate entirely. Above 10 keV the data from Ref. [24] were renormalized to the values in Ref. [11] for the region 2-10 keV. The results in [11] were also normalized to the fission integral in the range 0.1-1.0 keV. Thus the data in [24] correlate entirely with all the experiments mentioned. The results in [5, 25] were renormalized to the integral for 10-30 keV, which was obtained from the data in Refs [4, 7]. It follows from this that the results of [5, 25] are in the final analysis also normalized on the integral for 0.1-1.0 keV and the thermal As a result of this normalization, full correlation is found between value. Refs [4, 5, 7, 8, 11, 14, 15, 17-20, 22, 24, 25]. In addition, the experimental results in [26] correlate completely with those in Ref. [33], since the latter are normalized to the data in [26].

As mentioned above (see k = 1), correlations between [35] and the experimental data of [29, 36, 37] were transposed to k = 1. The correlation in this case occurs because the data of [35] were renormalized by the authors of the present article to a mean-weighted value [29, 36, 37]. This correlation with coefficients $K_{12,29,39} = K_{12,35,36} = K_{12,35,37} = 0.3$ can also be left for k = 12, since this partial error (the error in normalization for the "absolute" data of [29, 36, 37]) is equal to zero.

Calculations of optimized weights performed using the computer program for the cases: absence of correlation (K = 0), assigned correlation (K) and total correlation (K = 1) between the partial errors in experimental data for all the energy ranges examined are given in Annex 1, which also shows experimental ²³⁵U fission cross-sections for which normalizations have been used.

Annex 2 contains calculated coefficients of correlation between energy ranges for the cases: absence of correlation, assigned correlation and total correlation between errors.

Table 5 shows evaluated ²³⁵U fission cross-sections and errors in evaluation both using and not using correlations for optimum weights. The errors in the evaluated curve shown for energies above 30 keV are average values for the ranges considered.

When using non-optimized weights, which are the inverse squares of the error, the error in the evaluated 235 U fission cross-section for assigned

correlations in the region up to 100 keV is on average 10% greater than the errors shown in Table 5, while in the region up to 14 MeV it is 5% greater.

The error values given in Table 5 are of a tentative nature. In the region of 30 keV, where ranges are small, errors amount to 3-4%, which may be considered equivalent to the accuracy that can be attained experimentally. Above 30 keV the ranges are wide, with the result that many sets of results are evaluated for them and there may be incorrect evaluation of the error as a result of an uneven distribution of the experimental points given in individual studies within a range. Thus, errors for the region above 30 keV are of an illustrative character; they are, however, in process of being worked out more precisely. Nevertheless, in the region 30 keV-15 MeV the accuracy achieved may be $\pm 3\%$.

A comparison of the results of the evaluation with ENDF/B-V data (Figs 1-3) shows that they agree to within 1-3% in the energy region 0.1 keV-15 MeV.

For the measurements to be performed in the future, it will be necessary to consider the ranges 0.25-0.7 and 14-20 MeV in order to clarify the discrepancies found in experimental data for those ranges.

Ref.	22006, b (obtained using the least squares method in Ref. [1])	$I_{f} = \int_{7,5 \text{ eV}} \delta_{f} dE, \text{ b eV}$ $I_{f} = \int_{7,5 \text{ eV}} \delta_{f} dE, \text{ b eV}$ $(\text{experimental} \text{ data})$	(ieV) $I_{f} = \int G_{f} dE_{f} \mathbf{b} \cdot \mathbf{eV}$ $7.8 \mathbf{eV}$ (renormalized to $2200 G_{f} = 583,5 \mathbf{b}$)	Were data from the evaluation of Ref. [1] used?
[4]	580,05 <u>+</u> 2,0	234,62	235,90 <u>+</u> 3,54	Тев
[1]	585,0 <u>+</u> 2,6	242,27	240,60 <u>-</u> 2,40	Тев
[8]	-	238,40	-	No Relative data were obtained by normalizing to data from Ref. []]
[10]	569,8 <u>+</u> 2,3	237,35	243,06 <u>-</u> 2,40	Тев
<i>[</i> 11 <i>]</i>	574,1 <u>+</u> 2,3	237,40	241,30 <u>+</u> 4.80	Тев
[12]	569,9 <u>+</u> 2,0	245,02	251,91 <u>+</u> 7,56	Because of the considerable deviation from other data, the weight was reduced
[13]	577,3 <u>+</u> 1,8	229,38	231,85	three-fold No, because data were obtained for the region up to 10 eV
[14]	591,4 <u>+</u> 2,6	232,80	229,70	No, because of the large difference in the shape of the curve from that of the curve found using other data
[15]	537,1 <u>+</u> 5,9	217,51	236,30	See [14] above
[16]	_	240,0	-	See [14] above

Fission integrals I_{f} for ^{235}U

*/ Obtained from the mean ratio of the fission integral for 7.8-11 eV to the fission integral for 7.4-10 eV, which is equal to 1.07533.

Table 1

Measure- ments	Ref.	$I_{i} = \int_{0,i\mathbf{k}\in\mathbf{N}}$	€, dE, b•eV ∀	Coefficient of	Renormalized I ₁ , b.eV
		Experimental data	ted for 10 _{B or} 6Li	renormalization	
Ø	[11] [V] [4] [8] [16]	12300 ± 492 11490 ± 229 11778 ± 235 (10380)*/ 11641,8 ± 233 12287	12203 ± 488 11451,7 ±286 11475,2 ± 286 (10410) */ 11675,4 ± 292 12141,3 ± 303	$\begin{array}{c} 1,016175\\ 0,995748\\ 1,028215\\ (1,011912)\\ 1,0011912\\ 1,005166 \end{array} \end{array} \begin{array}{c} \textbf{to} \ I_{f} = \\ = 241,24 \pm 6,75\\ \texttt{(1)} \\ \texttt{(1)} \\ \texttt{(1)} \\ \texttt{(1)} \end{array}$	12400 ± 607 11403 ± 428 11799 ± 442 $(10534)^{X}$ 11815 ± 473 12204 ± 458
osolute					11864 (mean-weighted)
Al	/17/ /18/	11866 <u>+</u> 949 12490 <u>+</u> 999	11782 <u>+</u> 940 12400 <u>+</u> 990	Not renormalized	
					11883+446 (mean-weighted data of [4,7,8,11, 16-18])
Relative	[10] [19] [20] [21] [15] [22] [6]	$12212 \pm 733 \\ 12377 \pm 495 \\ 12715 \pm 890 \\ 12405 \pm 1240 \\ 11866 \pm 1187 \\ 12377 \pm 495 \\ 12260 \pm 680$	$12115 \pm 727 \\ 12333 \pm 493 \\ 12625 \pm 885 \\ 12240 \pm 1224 \\ 11688 \pm 1187 \\ 12332 \pm 495 \\ 12216 \pm 670 \\ \end{array}$	C,980850 0,963512 0,941227 0,970833 1,016683 0,963590 0,972740	

Fission integrals for 235 U in the range 0.1-1.0 keV

Table 2

*/ The fission integral I_2 was calculated for the ranges 0.1-0.3 and 0.4-1 keV; I_1 was obtained from the ratio I_1/I_2 , which is equal to 1.12156.

Energy	Ref				Part	ial e	TOTI	3						Total
range	NG1 •	k= 1	k =2	k =3	k =4	k =5	k =6	k =7	k =8	k =9	k =10	k =11	k =12	error
0,1-0,3 keV (0,15 keV)*/	[11] [19] [17] [17] [14] [16] [20] [15] [22] [15] [22] [4] [6] [V] [8]	1,0 1,5 1,5 1,5 1,5 1,5 0,5 0,5 1,0 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,3 0,3	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,5 0,5 0,2	1,0 1,0 2,0 1,0 2,C 1,0 3,0 1,0 1,0 1,0 0,7 0,3	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	2,0 2,0 3,0 2,5 5,0 3,5 2,5 1,8 1,5 2,0 1,5 0,1	0,5 0,5 3,0 2,0 3,0 4,0 0,5 0,5 0,5 0,2	0,2 0,0 3,0 0,0 5,0 0,0 0,0 0,0 3,0 0,4 0,3	0,2 0,2 1,0 1,0 0,5 1,0 0,2 0,2 0,2 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	2,0 1,0 3,0 4,0 3,0 4,0 2,0 2,0 1,0 0,6 0,87	2,8 5,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 3,8 3,8 3,8 2,8 2,8 3,8 2,8 3,8 2,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3	4,31 4,71 7,16 6,74 8,22 6,57 8,09 4,86 4,75 5,56 3,45 3,31
U,3-0,4 keY (0,15 keY)	[11] [19] [17] [14] [18] [20] [15] [22] [4] [4] [7]	1,0 1,0 1,5 1,5 1,5 1,5 1,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	1,0 1,0 2,0 1,0 2,0 1,0 3,0 1,0 1,0 0,7	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	2,0 2,0 3,0 2,5 5,0 3,5 2,5 1,8 1,5 1,5	0,5 0,5 3,0 2,0 3,0 4,0 0,5 0,5 0,3	0,2 0,0 3,0 0,0 3,0 0,0 0,0 0,0 2,0 0,4	C,2 C,2 1,0 1,0 1,0 0,5 1,0 0,2 0,2 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	2,0 1,0 3,0 4,0 3,0 4,0 2,0 2,0 0,6	2,8 3,8 2,5 3,8 2,8 3,8 3,8 3,8 3,8 2,8 2,8	4,31 4,71 7,16 6,74 8,22 6,97 8,09 4,86 4,48 3,45
0,4-0,6 keV (0,65 keV)	[11] [19] [17] [14] [18] [20] [15] [22] [4] [2] [4] [7] [8]	1,0 1,0 1,5 1,5 1,5 1,5 0,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,3 0,3	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,5 0,2	1,0 1,0 2,0 1,0 2,0 1,0 3,0 1,0 1,0 0,7 0,3	0,3 0,3 0,5 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,2	2,0 2,0 3,0 2,5 5,0 3,5 2,5 1,8 1,5 1,5 0,7	0,5 3,0 2,0 3,0 3,0 4,0 0,5 0,5 0,2	0,2 0,0 3,0 0,0 3,0 0,0 0,0 0,0 2,0 0,4 0,3	0,2 0,2 1,0 1,0 0,5 1,0 0,2 0,2 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,3	2,0 1,0 3,0 4,0 3,0 4,0 2,0 2,0 0,6 1,55	2,8 3,8 2,8 3,8 3,8 3,8 3,8 3,8 2,8 2,8 2,8	4,31 4,71 7,18 6,74 8,22 6,97 8,09 4,86 4,48 3,45 3,61

Partial and total errors in experimental data for different energy ranges (in percent)

Table 3

*/ The energies at which errors assigned below to the whole energy range were taken are shown in brackets.

Table 3 (cont.)

Fnetov	Pof				Pa	rtial	erro)re						Motol
range	Nel.	k =1	k =2	k =3	k =4	k =5	k =6	k=7	k =8	k = 9	k =10	k =11	k -12	error
4	[1]J	1,0	0,5	0,3	1,0	0,3	2,0	0,5	0,2	0,2	0,0	2,0	2,8	4,31
ke	/19/	1,0	0,5	0,3	1,0	0,3	2,0	0,5	0,0	0,2	0.0	1,0	3,8	4,71
65	17	1,5	0,5	0,3	2,0	0,3	3,0	3.0	3,0	1,0	0,0	3,0	2,8	7,18
0	[14]	1,5	0,5	0,3	1,0	0,3	2,5	2.0	0,0	1,0	0,0	4,0	3,8	6,74
A	/18/	1,5	0,5	0,3	2,0	0,3	4,0	3,0	3,0	1,0	0,0	3,0	2,8	7,65
Ř	[20]	1,3	0,5	0,3	1,0	0,3	3,5	3,0	0,0	0,5	0,0	3,0	3,8	6,97
8	[15]	1,5	0,5	0,3	3.0	0,3	2,5	4,0	0,0	1,0	0,0	4,0	3,8	8,09
J.	[22]	0,5	0,5	0,3	1,0	0,3	1,8	0,5	0,0	0,2	0,0	2.0	3,8	4,86
0	[4]	0,5	0,5	0,5	1,0	0,3	1,5	0,5	2,0	0,2	0,0	2,0	2,8	4,48
-	[11]	1,0	0,5	0,3	1,0	0,3	2,0	0,5	0,2	0,2	0,0	2,0	2,8	4,31
Δe	[19]	1,0	0,5	0,3	1,0	0,3	2,0	0,5	0.0	0,2	0,0	1,0	3,8	4,71
2 K	17	1,5	0,5	0,3	2.0	0,3	3,0	3,0	5,0	1,0	0,0	4,0	2,8	7,65
н. Н	[14]	1,5	0,5	0,3	1,0	0,5	2,5	2,0	0,0	1,0	0,0	4,0	3,8	6,74
Þ	/18/	1,5	0,5	0,3	1,5	0,3	4,0	3,0	3,0	1,0	0,0	4,0	2,8	7,99
х Х	[20]	1,5	D,5	0,3	1,0	0,3	4,0	3,0	0,0	0,5	0,0	3,0	3,8	7,24
o,	[15]	1,5	0,5	0,3	3,0	0,3	2,5	4,0	0,0	1,0	0,0	5,0	3,8	8,62
ï	[22]	0,5	0,5	0,3	1,0	0,3	2,6	0,5	0,0	0,2	0,0	2,0	3,8	5,21
a . 0	[4]	0,5	0,5	0,3	1,0	0,5	1,5	0,5	2,0	0,2	0,0	2,0	2,8	4,48
	/11/	1.0	0.5	0.3	1.0	0.3	2.0	0.5	0.2	0.2	0.0	2.0	2.8	4.31
	/19/	1.0	0.5	0.3	1.0	0.3	2.0	0.5	0.0	0.2	0.0	1.0	3.8	4.71
	/17/	1.5	0.5	0.3	2.0	0.3	3.0	3.0	3.0	1.0	0.0	4.0	2.8	7.65
6	/14/	1.5	0.5	0.3	1.0	0.3	2.5	2.0	0.0	1.0	0.0	4.0	3.6	6,74
,ey	/16/	1,5	05	0,3	1,5	0,3	4,0	3,0	3.0	1,0	0,0	4.0	2,6	7,99
5.	[20]	1,5	0,5	0,3	1,0	0,3	4,0	3,0	0,0	0,5	0,0	5.0	3,8	7,24
1)	/15/	1,5	0,5	0,5	3,0	0,3	2,5	4,0	0,0	1,0	0,0	5,0	3,8	8,62
Δe	[22]	0,5	0,5	0,3	1,0	0,3	2,6	0,5	0,0	0,2	0,0	2,0	3 . 8	5,21
Ř	[4]	0,5	0,5	0,3	1,0	0,3	1,5	0,5	2,0	0,2	0,0	2,0	2,6	4,48
1	[5]	1,0	0,5	0,3	1,0	0,3	3,6	0,5	0,5	0,2	0,0	0,5	5,0	6,42
	[ō]	1,0	0,5	0,3	1,0	0,3	2,6	0,5	3,0	0,2	0,0	1,0	3,8	5,82
	[7]	0,5	0,3	0,5	0,7	0,3	1,5	0,3	0,4	0,0	0,0	0,7	2,8	3,46
	<i>ſ</i> ⊌∕	0,5	0,3	0,2	0,4	0,2	1,0	0,2	0,3	0,0	1,3	0,66	2,8	3,47
	<i>6</i> 7													
		1,0	0,5	0,5	1,0	0,3	2,0	0,5	0,2	0,2	0,0	2,0	2,8	4,31
	/19/	1,0	0,5	0,3	1,0	0,3	2,0	0,5	0,0	0,2	0,0	1,0	3,8	4,71
-	/10	1,5	0,5	0,3	2,0	0,3	3,0	3,0	3,0	1,0	0,0	4,0	2,8	7,65
5	/14/	1,5	0,5	0,3	1,0	0,3	2,5	2,0	0,0	1,0	0,0	4,0	3,8	6,74
, K	/18/	1,5	0,5	0,3	1,5	0,3	4,0	3,0	3,0	1,0	0,0	4,0	2,8	7,99
ц Ц	/20/	1,5	0,5	0,3	11,0	0,3	4,0	3,0	0,0	0,5	0.0	3,0	3,8	7,24
-	/15/	1,5		0,3	1.4	0,3	4,0	3,0	10,0	0,5	0,0	3,0	3,8	7,24
Cel	122	0,5		0,3	11,0	0,3	12,6	0,5	10,0	10,2	0.0	2,0	3,8	5,21
4	141	0,5		0,3	1,0	0,3	3,0	0,5	4,0	0,2	0,0	0,3	4,31	7,04
2-	14/	0,5		0,3	11,0	0,3	1,5	0,5	2,0	0,2	0,0	2,0	2,8	4,48
		1,0	0,5		1.0	0,3	13,0	0,5	0,5	0,2	10,0	0,5	15,0	6,42
	14	11.0	0,5	0,3	11,0	0,3	2,6	10,5	3,0	10,2	10,0	1,0	3,8	5,82
	L	L	L	i	ل	<u> </u>	L	J	I	L	L	J	J	<u> </u>

Energy				P	artia	l erm	OTS							Total
range	Ref.	k =1	k =2	k =3	k =4	k=5	k =6	k =7	k =8	k =9	k=10	k=11	k =12	error
4-5 keV (I ,5 keV)	[11] [19] [17] [14] [18] [20] [15] [22] [24] [4] [5] [5] [6]	1,0 1,0 1,5 1,5 1,5 1,5 0,5 0,5 0,5 1,0 1,0	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	1,0 1,0 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	2,0 2,0 3,0 2,5 4,0 4,0 2,5 2,6 3,6 1,5 3,6 2,6	0,5 0,5 3,0 2,0 3,0 3,0 4,0 0,5 0,5 0,5 0,5	0,2 0,0 3,0 0,0 3,0 0,0 0,0 4,0 2,0 0,5 3,0	0,2 0,2 1,0 1,0 1,0 0,5 1,0 0,2 0,2 0,2 0,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	2,0 1,0 4,0 4,0 3,0 5,0 2,0 0,3 2,0 0,5 1,0	2,8 3,8 2,8 3,8 2,8 3,8 3,8 3,8 3,8 4,31 2,8 5,0 3,8	4,31 4,71 7,65 6,74 7,91 7,24 8,62 5,21 7,04 4,48 6,42 5,82
5-10 keV(9,5keV)	[V] [11] [17] [17] [14] [18] [20] [15] [22] [15] [22] [24] [15] [22] [24] [4] [5] [5] [2]	0,5 1,0 1,5 1,5 1,5 1,5 1,5 0,5 0,5 1,0 1,0 0,5	0,3 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	0,5 1,5 2,0 1,5 2,0 1,5 5,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3	1,0 2,5 2,5 3,5 3,0 5,0 4,0 3,0 2,6 3,6 2,0 2,8 2,6 1,3	0,2 0,5 3,0 2,0 3,0 3,0 4,0 0,5 0,5 0,5 0,5 0,2	0,3 0,2 0,0 3,0 0,0 3,0 0,0 0,0 0,0 4,0 2,0 0,5 3,0 0,3	0,0 0,2 0,2 1,0 1,0 1,0 0,5 1,0 0,2 0,2 0,2 0,2 0,0	1,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	1,77 2,0 2,0 4,0 5,0 3,0 5,0 2,0 0,8 2,0 0,5 1,0 1,01	2,8 2,8 3,8 2,8 3,8 2,8 3,8 3,8 3,8 3,8 4,31 2,8 5,0 3,8 5,0	3,80 4,70 5,35 7,85 7,64 8,63 7,32 9,85 5,21 7,08 4,67 6,00 5,82 5,39
10-20 keV (25 keV)	[19] [17] [20] [24] [4] [5] [7] [7] [25]	1,0 1,5 1,5 0,5 0,5 1,0 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,3 0,3	0,3 0,3 0,3 0,3 0,3 0,3 0,3	3 2,0 3 2,0 3 2,0 3 2,0 3 1,0 5 0,9 2 0,2	0 0,3 0 0,3 0 0,3 0 0,3 5 0,3 5 0,3 0 0,3 0 0,3 2 0,2	3,0 4,0 4,2 2,5 2,8 2,0 1,1	2,9 3,0 3,0 0,5 0,5 0,5 0,3 0,2	0,0 3,0 0,0 4,0 2,0 0,5 0,4 0,3	0,2 1,0 0,5 0,2 0,2 0,2 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0	3,0 4,0 3,0 0,4 2,0 0,5 1,0 0,4	3,8 2,8 3,8 4,31 2,8 5,0 2,8 5,0	6,81 8,09 7,44 7,37 5,03 6,00 3,82 5,25
20-30 keV (25 keV)	[19] [17] [20] [24] [4] [5] [7] [25]	1,0 1,5 1,5 1,5 0,5 1,0 1,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,3 0,3	0,: 0,: 0,: 0,: 0,: 0,: 0,: 0,:	3 2,0 3 2,0 3 2,0 3 1,0 3 1,0 5 0,0 2 0,0	0 0,3 0 0,3 0 0,3 0 0,3 5 0,3 0 0,3 9 0,3 9 0,3 2 0,2	3,0 4,0 4,2 2,5 2,8 2,0 1,1	2,9 3,0 3,0 0,5 0,5 0,5 0,3 0,2	0,0 3,0 0,0 4,0 2,0 0,5 0,4 0,3	0,2 1,0 0,5 0,2 0,2 0,2 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7	3,0 4,0 3,0 0,4 2,0 0,5 1,0 0,9	3,8 2,8 3,8 3,8 2,8 5,0 2,8 5,0	6,81 8,09 7,44 7,23 5,03 6,00 4,07 5,32

Table 3 (cont.)

Energy	Dee				Par	tial	error	8						Total
range	Rel.	k =1	k =2	k =0	k=4	k =5	k =ũ	k =7	k =8	k =9	k=10	k =11	k =12	error
ЗО-II0 keV (75 keV)	[17] [24] [4] [5] [27] [28] [28] [29] [29] [29] [29] [29] [29]	1,5 0,5 1,0 1,3 1,0 1,0 1,0 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,3 0,3	0,3 0,3 0,8 0,7 0,4 0,5 0,5 0,5 0,2	2,0 1,0 2,0 1,0 1,3 0,5 0,9 0,8 0,5 0,5	0,3 0,5 0,5 0,5 0,5 0,3 0,8 0,3 0,2	4,0 5,0 4,0 2,8 1,8 1,8 2,0 1,4 5,5 1,0	3,0 0,5 0,5 0,7 0,4 0,2 0,5 0,3 0,2	3,0 4,0 2,0 0,5 0,2 0,2 0,2 0,0 0,9 0,4 0,3	1,0 0,2 0,2 0,2 0,3 0,2 0,8 0,0 0,0	0,0 0,0 0,0 0,3 0,0 0,75 0,0 0,0 0,75	4,0 0,9 2,0 0,5 1,31 1,42 1,65 1,82 1,3 1,18	2,8 4,31 2,8 5,0 0,0 0,0 0,0 0,0 2,8 5,0	8,09 7,90 6,07 6,00 3,16 2,70 2,85 3,00 4,79 5,35
II0-350 keY (200 keY)	[] [2] [2] [2] [2] [2] [2] [2] [2] [38]	0,5 1,0 1,3 1,0 1,0 0,5 0,5 0,5 0,5	0,5 0,5 0,5 0,5 0,5 0,3 0,5 0,5 0,5	0,3 0,7 0,4 0,5 0,5 0,5 0,5 0,3	2,0 1,0 1,0 0,5 0,6 0,6 0,5 0,2 0,5	0,3 0,5 0,5 0,3 0,8 0,3 0,2 0,0	4,5 5,1 1,8 1,6 1,7 1,4 5,0 0,5 0,5	0,5 0,5 0,7 0,4 0,0 0,5 0,5 0,2 1,0	2,0 0,5 0,2 0,2 0,0 0,9 0,4 0,3 0,37	0,2 0,2 0,2 0,3 0,2 0,8 0,0 0,0 0,5	0,0 0,0 0,0 0,75 0,0 0,75 0,0 0,75 0,0	2,0 0,5 2,5 1,42 1,11 1,65 4,1 0,61 1,37	2,8 5,0 0,0 0,0 0,0 2,8 5,0 0,0	6,41 6,15 4,00 2,70 2,59 3,02 7,13 5,20 2,03
350-750 keV (500 keV)	[5] [27] [29] [29] [29] [29] [39] [39] [7] [25]	1,0 1,3 1,0 1,0 0,5 0,4 1,0 0,5 0,5	0,5 0,3 0,5 0,3 0,5 0,3 0,3 0,3 0,3	U,3 C,7 O,4 O,5 O,5 1,1 O,5 O,2	1,0 1,0 0,5 0,6 0,8 1,6 0,5 0,6 0,1	0,3 0,5 0,5 0,8 0,8 0,3 0,3 0,3 0,3 0,2	3,3 1,8 1,8 1,84 1,4 2,4 6,62 8,0 1,2	0,5 0,7 0,4 0,2 0,5 0,5 0,2 0,3 0,2	0,5 0,2 0,2 0,0 0,9 0,8 0,0 0,4 0,3	0,2 0,2 0,3 0,2 0,8 0,2 0,0 0,0 0,0	0,0 0,3 0,0 0,75 0,0 0,75 0,75 0,0 0,75	0,5 0.3 1,82 0,93 1,82 1,21 1,5 2,2 0,9	5,0 0,0 0,0 0,0 0,0 0,0 2,8 5,0	6,25 2,77 2,93 2,62 3,00 5,44 7,62 8,85 5,35
0,75-I,5 MeV (I MeV)	[5] [2] [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [3]	1,0 1,3 1,0 0,5 0,4 1,0 0,5 0,0 0,5 0,5 2,25	0,5 0,5 0,5 0,5 0,3 0,3 0,3 0,0 0,3 0,0 0,5	0,3 0,7 0,4 0,5 0,5 1,1 0,2 0,0 0,2 0,3 0,3	1,0 1,0 0,5 0,6 0,6 1,1 0,5 0,6 0,2 0,1 0,5 1,0	0,3 0,5 1,8 0,3 0,8 0,3 0,3 0,2 0,0 0,2 0,0 0,2	3,4 1,8 0,4 1,89 1,4 2,2 6,62 0,32 0,3 1,8 0,5 7,0	0,5 0,7 0,2 0,5 9,5 0,5 0,5 0,1 0,2 1,0 0,0	0,5 0,2 0,3 0,0 0,9 0,8 0,0 0,3 0,4 0,3 0,58 2,0	0,2 0,2 0,3 0,2 0,8 0,2 0,0 0,0 0,0 0,0 0,5 0,2	0,0 0,3 0,0 0,8 0,0 0,75 0,75 0,75 0,5 0,0 2,0	0,5 0,86 1,82 0,42 1,82 1,1 1,5 0,9 0,8 1,0 1,37 2,0	5,0 0,0 0,0 0,0 0,0 0,0 0,0 3,0 5,0 0,0	6,31 2,88 2,90 2,52 3,00 3,05 7,02 1,55 3,19 5,51 2,07 8,21

Energy					Parti	al e	TOTB							Total
range	Rei.	k =1	k =2	k =3	k =4	k =5	k =6	k =7	k =8	k =9	k =10	k=11	k =12	error
I,5-3.0 MeV(2MeV)	[28] [29] [26] [39] [39] [33] [34] [35]	1,0 1,0 0,5 1,0 0,5 0,0 1,0 2,25	0,3 0,5 0,3 0,3 0,3 0,0 0,5	0,4 0,5 0,5 1,1 0,2 0,0 0,4 0,3	0,5 0,7 0,8 0,5 0,45 0,2 0,5 1,0	0,5 0,3 0,8 0,3 0,2 0,0 0,5 0,2	1,8 2,5 1,4 6,62 0,32 0,3 1,84 5,0	0,4 0,2 0,5 0,2 0,3 0,1 2,6 0,0	0,2 0,0 0,9 0,0 0,3 0,4 0,2 2,0	0,3 0,2 0,8 0,0 0,0 0,0 0,3 0,2	0,0 0,75 0,0 0,75 0,75 0,5 0,0 2,0	0,55 1,02 1,82 1,5 0,5 1,0 0,55 2,0	0,0 0,0 0,0 0,0 0,0 5,0 0,0 0,0	2,36 3,16 5,00 7,02 1,31 3,25 3,51 6,59
3-5 МеV (4:МеV)	[26] [32] [33] [30] [35]	0,5 0,5 0,0 1,0 2,25	0,5 0,3 0,0 0,3 0,5	0,5 0,2 0,0 0,4 0,3	0,8 0,6 0,2 0,5 1,0	0,8 0,2 0,0 0,5 0,2	1,4 0,32 0,3 2,01 4,0	0,5 0,3 0,1 2,85 0,0	0,9 0,5 0,4 0,2 2,0	0,8 0,0 0,0 0,3 0,2	0,0 0,75 0,5 0,0 2,C	1,82 1,2 1,0 0,55 2,0	0,0 0,0 3,0 0,0 0,0	3,00 1,75 3,25 3,79 5,87
5-12 MeV (6MeV)	[29] [32] [33] [35] [35]	1,0 0,5 0,0 1,0 2,25	0,5 0,3 0,0 0,3 0,5	0,5 0,2 0,0 0,4 0,3	0,8 0,6 0,2 0,5 1,0	0,3 0,2 0,0 0,5 0,2	2,5 0,32 0,3 2,02 4,0	0,2 0,3 0,1 2,86 0,0	0,0 0,3 0,4 0,2 2,0	0,2 0,0 0,0 0,3 0,2	0,75 0,75 0,5 0,0 2,0	1,02 1,2 1,0 0,55 2,0	0,0 0,0 3,0 0,0 0,0	3,19 1,75 3,25 3,80 5,87
12-14 ΜeV (14 MeV)	[29] [33] [36] [37] [37] [35]	1,0 0,0 1,4 1,19 2,25	0,5 0,0 0,6 0,4 0,5	0,5 0,0 0,47 0,3 0,3	1,0 0,2 0,0 0,0 1,0	0,3 0,0 0,0 0,0 0,2	1,5 0,3 0,48 1,0 4,0	0,2 0,1 0,0 0,2 0,0	0,0 0,4 0,2 0,2 2,0	0,2 0,0 0,0 0,2 0,2	0,75 0,5 0,0 0,0 2,0	0,2 1,0 0,9 1,11 2,0	0,0 3,0 0,0 0,0 0,0	2,35 3,25 1,90 2,00 5,87
14,1-15 MeV (14 MeV)	[29] [36] [31]	1,0 1,4 1,19	0,5 0,6 0,4	0,5 0,47 0,3	1,0 0,0 0,0	0,3 0,0 0,0	1,5 0,48 1,0	0,2 0,0 0,2	0,0 0,2 0,2	0,2 0,0 0,2	0,75 0,0 0,0	0,2 0,9 1,11	0,0 0,0 0,0	2,35 1,90 2,00
15-20 MeV (14 MeV)	[33] [35]	0,0 2,25	0,0 0,5	0,0 0,3	0,4 1,0	0,0 0,2	0,5 8,0	0,1 0,0	0,4 2,0	0,0 0,2	0,5 2,0	1,9 2,0	3,0 0,0	3,67 9,08

Coefficients of	correlation I	K.i.i	between	partial	errors
in experimental	measurements	of the	235U ci	ross-sec	tion

K _{1.27.28} =∪,5	$K_{6.15.4} = 1.0$	K _{6.27.28} =0,7	$K_{12,4,5} = 1,0$	$K_{12,11,17}=1,0$	K12.17.24=1.0
K _{1.27.29} =1,0	$K_{6,15,5} = 1,0$	$K_{6,27,29} = 0.3$	$K_{12,4,6} = 1.0$	$K_{12,11,18}=1,0$	$R_{12,17,25}=1,0$
$K_{1,27,30}=1,0$	$K_{6,15,6} = 1,0$	$K_{6,27,35} = 0.3$	$K_{12,4,7} = 1.0$	$K_{12,11,20}=1,0$	$K_{12.16.4} = 1.0$
K _{1,28,29} =0.5	$K_{6.15.22}=1.0$	$K_{6.27.30} = 0.7$	$K_{12,4,8} = 1.0$	$K_{12,11,22}=1,0$	K _{12.16.5} =1.0
$K_{1,28,30} = 0.5$	$K_{6,15,24}=0.5$	$K_{6,28,30} = 1,0$	$K_{12,4,25} = 1.0$	$K_{12.11.24} = 1.0$	$K_{12,16,6} = 1.0$
K _{1,29,35} =0,3	$K_{6,17,7} = 1.0$	$K_{6,29,25} = 1.0$	$K_{12,5,6} = 1.0$	$K_{12,11,25}=1,0$	K _{12.16.7} =1.0
$K_{1,29,30}=1,0$	$K_{6.17.8} = 1.0$	K _{6.29.35} =1.0	K _{12.5.7} =1.0	$K_{12,14,4} = 1,0$	K _{12.18.6} =1.0
$K_{1,36,35}=0.3$	K _{6.17.18} =1.0	$K_{10,25,35}=1.0$	K ₁₂ 5.8 =1.0	$K_{12,14,5} = 1.0$	K _{12.16.15} =1.0
K _{1.37.26} =0.3	$K_{6.17,20}=1.0$	$K_{10,27,25}=1,0$	$K_{12,5,25} = 1.0$	$K_{12,14,6} = 1,0$	K12.16.20 ^{=1,0}
K _{3.27.28} =0.5	$K_{6.17.24} = 0.5$	^K 10 27 29 ^{=1 0}	$K_{12,6,7} = 1,0$	$K_{12,14,7} = 1.0$	K ₁₂ .18.22 ^{=1,0}
K _{3.27.29} =1.0	$K_{6,18,7} = 1.0$	$K_{10,27,34} = 1.0$	K _{12.6.8} =1.0	$K_{12,14,8} = 1.0$	K ₁₂ 18 24 ⁼¹ 0
$K_{3,27,30}=1.0$	$K_{6,18,8} = 1.0$	$K_{10,27,39}=1,0$	$K_{12,6,25} = 1.0$	$K_{12,14,15} = 1,0$	K ₁₂ .18.25 ^{=1,0}
K _{3.28.29} =0.5	$K_{6.18,20}=1,0$	$K_{10,27,32}=1,0$	$K_{12,7,8} = 1.0$	$K_{12,14,18}=1,0$	K _{12,22,4} =1,0
K _{3.28.30} =0.5	$K_{6,18,24}=0.5$	$K_{10,27,33}=1,0$	$K_{12,7,25} = 1.0$	$K_{12,14,20}=1,0$	$K_{12,22,5} = 1.0$
$K_{3,29,30}=1.0$	$K_{6,19,4} = 1.0$	$K_{10,27,35}=1,0$	$K_{12,9,4} = 1.0$	$K_{12,14,22}=1,0$	K ₁₂ ,22,6 =1,0
$K_{4,27,30}=0.5$	$K_{6,19,5} = 1.0$	$K_{10,29,25}=1,0$	$K_{12,9,5} = 1.0$	$K_{12,14,24}=1,0$	$K_{12,22,7} = 1.0$
K _{4.29.30} =0.5	$K_{6,19,6} = 1.0$	$K_{10,29,34}=1,0$	$K_{12,9,6} = 1,0$	$K_{12,14,25}=1,0$	$K_{12,22,8} = 1,0$
$K_{6,4,5} = 1.0$	$K_{6,19,14}=1,0$	^K 10,29,39 ^{=1,0}	$K_{12,9,7} = 1,0$	$E_{12,15,4} = 1,0$	K _{12,22,24} =1,0
$K_{6.4.6} = 1.0$	$K_{6,19,15}=1,0$	$K_{10,29,32}=1,0$	$K_{12,9,8} = 1.0$	$K_{12,15,5} = 1,0$	K ₁₂ 22 25 ⁼¹ 0
$K_{6,5,6} = 1,0$	$K_{6,19,22}=1,0$	$K_{10,29,33}=1,0$	$K_{12,9,14} = 1,0$	$K_{12,15,6} = 1,0$	$K_{12,24,4} = 1,0$
$K_{6,7,8} = 1.0$	$K_{6,19,24}=0.5$	^K 10,29,35 ^{=1,0}	$K_{12,9,15} = 1,0$	$K_{12,15,7} = 1,0$	$K_{12,24,5} = 1.0$
$K_{6,11,4} = 1.0$	$K_{6,20,7} = 1.0$	$K_{10,34,25}=1,0$	$K_{12,9,17} = 1.0$	$K_{12,15,8} = 1,0$	$K_{12,24,6} = 1,0$
$K_{6,11,5} = 1,0$	$K_{6,20,8} = 1,0$	$^{\rm K}$ IU, 30, 31 ⁼¹ ,0	$K_{12,9,18} = 1,0$	$^{\text{K}}$ 12,15,22 ^{=1,0}	$K_{12,24,7} = 1,0$
$K_{6.11.6} = 1.0$	$K_{6,20,24}=0.5$	^K 10,30,32 ^{=1,0}	$K_{12,9,20} = 1,0$	$K_{12,15,24}=1,0$	K12,24,8 =1,0
$K_{6.11.14}=1.0$	$K_{6,22,4} = 1,0$	^K I0,30,33 ^{=1,0}	$K_{12,9,22} = 1,0$	$^{\rm K}$ 12,15,25 ^{=1,0}	^K 12,24,25 ^{=1,0}
$K_{6,11,15}^{=1,0}$	$K_{6,22,5} = 1,0$	10,30,34 ^{=1,0}	⁴ 12,9,24 ⁻¹ ,0	$K_{12,17,4} = 1.0$	^K 12,33,26 ^{=1,0}
K ₆ .11 19 ^{=1 0}	$K_{6,22,6} = 10$	$^{\rm K}$ 10,31,25 ^{=1,0}	$K_{12,9,25} = 1,0$	$K_{12,17,5} = 10$	
$K_{6.11,22}^{=1,0}$	^K 6,22,24 ^{=0,5}	$^{\rm K}$ 10,31,32 ^{=1,0}	$K_{12,11,4} = 1,0$	$^{\rm K}$ 12,17,6 =1,0	
$K_{6,11,24}=0.5$	^K 6,24,4 ^{=0,5}	^K 10,31,33 ^{=1,0}	$K_{12,11,5} = 1,0$	$K_{12,17,7} = 1,0$	
$E_{6,14,4} = 1.0$	^K 6,24,5 ^{=0,5}	$^{\rm K}$ 10,31,34 ^{=1,0}	$K_{12,11,6} = 1,0$	$K_{12,17,8} = 1,0$	
$K_{6,14,5} = 1.0$	^K 6,24,6 ^{=0,5}	^K 10,32,25 ⁼¹ ,0	$K_{12,11,7} = 1,0$	^K 12,17,14 ^{=1,0}	
$K_{6,14,6} = 1,0$	^K 6,24,7 ^{=0,5}	^K 10,32,33 ^{=1,0}	R 12.11.8 $^{-1}$.0	^K 12,17,15 ^{=1,0}	
$K_{6,14,15}=1,0$	^K 6,24,8 ^{=0,5}	^10,32,34 ^{=1,0}	^h I2,II,9 ^{=1,0}	$^{\rm K}$ 12,17,18 ^{=1,0}	
$K_{6,14,22}^{=1,0}$	ⁿ 6,25,34 ^{=1,0}	ⁿ 10,33,25 ^{=1,0}	^K 12,11,14 ^{=1,0}	^h 12,17,20 ^{=1,0}	
^K 6,14,24 ^{=1,0}	ⁿ 6,27,25 ^{=0,3}	^10,33,34 ^{=1,0}	ⁿ 12,11,15 ^{=1,0}	ⁿ 12,17,22 ^{=1,0}	

Notes: 1. For all values of $i = j_{k_{kii}} = 1.0$; 2. $K_{k,i,j} = K_{k,j,i}$ 3. Values of $K_{k,i,j} = 0$ are not shown in the table.

Evaluated ²³⁵U cross-sections and errors in evaluation both using and not using correlations for optimum weights

Range	Energy,	K,D	Error ua	s in e tion,	eval- %	Range	Energy,	К,Ъ	Erron ua	rs in e ation,	eval- %
No.	keV		К=О	K	K=I	No.	keV	1	К=О	К	K=I
1	0,1-0,2	20,71	h	2 00	2.00	3	ù,4-0,5	13,54	1	2.1	2 30
	0,2-0,3	20,19	} 1,41	5,08	3,22		0,5-0,6	14,69	J 1,50	3,10	3,39
2	0.3-0.4	12.88	1,68	5,24	3.44	4	0,6-0,7	11,20	1.87	3.70	4.27
-			1 1	-	· · · ·		0,7-0,8	10,80	۱ ۲۰۰	••••	

Table 5

Range	Energy,	K,b	Errors uat	in e ion,	val- %	Range	Energy,	K,b	Error	s in e ion,	val- %
No.	keV		K=0	ĸ	K=1	No.	keV		к=0	K	K=1
5	0,8-0,9 0,9-1,0	7,92 7,34	}1,91	3,71	4,27	13	Z35 240	1,318 1,311			
_6	1,0-2,0	7,10	1,42	3,15	3,39		245	1,306		ļ	
7	2,0-3,0 3,0-4,0	5,27 4,73	}1,68	3,71	4,27		255 260	1,294			
£	-,0-5,0	4,15	1,55	3,35	3,80		265	1,284			
9	5,0-6,0 6,0-7,0 7,0-8,0 8,0-9,0 9,0-10,0	3,70 3,31 3,26 2,89 3,03	1,69	3,94	4,58		270 275 280 285 290	1,279 1,275 1,270 1,266 1,262		T 25	1 99
10	10,0-20,0	2,4:	2,02	3,56	3,82		295	1,256		- ,	1,00
11	20,0-30,0	2,10	2,05	3,70	4,07		300	1,250			
12	30,0-40,0 40,0-50,0 50,0-60,0 60,0-70,0 70,0-80,0 80,0-90,0 90,0-100	2,000 1,845 1,825 1,749 1,677 1,617 1,575	} 1,25	1,57	2,65		305 310 315 320 325 330 335	1,245 1,240 1,237 1,233 1,230 1,228 1,224			
13	100 105 110	1,555 1,550 1,545					340 345 350	1,221 1,220 1,219			
	$ \begin{array}{r} 113 \\ 120 \\ 125 \\ 130 \\ 135 \\ 140 \\ 145 \\ 150 \\ 155 \\ 160 \\ 165 \\ 170 \\ 175 \\ 180 \\ 185 \\ 190 \\ 195 \\ 200 \\ 205 \\ 210 \\ 215 \\ 220 \\ 225 \\ 230 \\ \end{array} $	1,332 1,522 1,511 1,501 1,489 1,478 1,468 1,458 1,458 1,458 1,429 1,492 1,492 1,399 1,399 1,390 1,360 1,350 1		I ,2 5	1.99	14	355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 455 460 465 470	1,217 1,215 1,215 1,215 1,215 1,214 1,214 1,213 1,213 1,213 1,213 1,212 1,211 1,209 1,207 1,206 1,205 1,203 1,200 1,196 1,194 1,188 1,183 1,181	1.21	I,45	2,57

Table 5 (cont.

Range	Energy,	K,b	Erro	rs in ation,	eval- %	Range	Energy,	K,b	Erro	rs in ation	eval.
No.	keV	ļ	K=0	: K	: K=I	No.	keV		K=0	: K	: K=I
14	475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 650 650 650 650 650 650 65	1,178 1,176 1,173 1,170 1,168 1,166 1,163 1,160 1,158 1,157 1,155 1,155 1,155 1,155 1,151 1,149 1,148 1,146 1,143 1,141 1,130 1,128 1,131 1,120 1,124 1,122 1,121 1,120 1,128 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1,120 1,121 1,120 1,121 1,120 1,120 1,120 1,121 1,120 1,120 1,120 1,121 1,120 1,120 1,120 1,120 1,120 1,120 1,120 1,121 1,120 1,121 1,120 1,121 1,120 1	1,21	I,45	2,57	15	$\begin{array}{c} 750\\ 760\\ 760\\ 770\\ 780\\ 790\\ 800\\ 810\\ 820\\ 836\\ 840\\ 850\\ 850\\ 850\\ 850\\ 870\\ 880\\ 890\\ 900\\ 910\\ 920\\ 930\\ 940\\ 950\\ 930\\ 940\\ 950\\ 960\\ 970\\ 960\\ 1000\\ 1050\\ 1000\\ 1050\\ 1100\\ 1050\\ 1250\\ 1300\\ 1350\\ 1400\\ 1450\\ 1550\\ 1500\\ 1550\\ 1500\\ 1550\\ 1500\\ 1550\\ 1500\\ 1550\\ 100\\ 1500\\ 1000\\ 1000\\ 100\\ 1$	1,104 $1,106$ $1,109$ $1,111$ $1,115$ $1,117$ $1,122$ $1,127$ $1,122$ $1,137$ $1,144$ $1,150$ $1,159$ $1,165$ $1,172$ $1,165$ $1,172$ $1,165$ $1,172$ $1,165$ $1,172$ $1,180$ $1,185$ $1,200$ $1,204$ $1,206$ $1,210$ $1,204$ $1,206$ $1,210$ $1,215$ $1,216$ $1,215$ $1,216$ $1,215$ $1,216$ $1,215$ $1,216$ $1,215$ $1,216$ $1,215$ $1,216$ $1,220$ $1,225$ $1,235$ $1,239$ $1,244$ $1,248$ $1,252$	0,83	1, ∞	1,53
	680 690 700 710 720 730 740 745	1,107 1,106 1,105 1,102 1,101 1,100 1,100 1,102				16	1600 1650 1700 1750 1800 1850 1900 1950 2000	1,256 1,265 1,271 1,274 1,276 1,278 1,281 1,282 1,284	0.92	1,02	1,3)

Range Energy,		к,ъ	Errors in eval- uation, %		val- %	Range	Energy,	К,Ъ	Errors in eval- uation, %		
No.	keV		К=О :	K	K=I	No.	keV		K=0	к	K=I
16	2050 2100 2150 2200 2250 2500 2500 2500	1,284 1,284 1,281 1,278 1,273 1,268 1,263				17	4650 470 0 4750 4800 4850 4900 5000	1,108 1,105 1,102 1,099 1,096 1,093 1,087	1,26	1,31	1,71
	2400 2450 2550 2550 2650 2650 2750 2750 2800 2900 5000	1,258 1,253 1,248 1,242 1,237 1,233 1,230 1,225 1,221 1,213 1,205	0.92	1,Ů2	1,30	16	5050 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000	1,083 1,080 1,073 1,067 1,060 1,052 1,050 1,055 1,075 1,103 1,139			
17	 \$100 \$150 \$200 \$250 \$300 \$350 \$400 \$350 \$600 \$350 \$600 \$350 \$600 \$350 \$600 \$350 \$600 \$650 \$900 \$4000 \$4000 \$4000 \$4000 \$4000 \$4200 \$450 \$4500 \$4000 \$4	1,201 1,197 1,195 1,192 1,189 1,163 1,163 1,163 1,163 1,163 1,177 1,174 1,171 1,156 1,165 1,162 1,122 1,129 1,125 1,122 1,119 1,117 1,114	1,26	1,31	1,71		6100 6200 6300 6400 6500 6600 6700 6800 7000 7100 7200 7200 7200 7200 7200 72	1,162 1,231 1,282 1,334 1,366 1,435 1,462 1,564 1,600 1,634 1,600 1,634 1,667 1,698 1,728 1,755 1,775 1,775 1,775 1,775 1,815 1,820 1,823 1,825 1,826 1,826 1,824 1,827 1,820 1,817 1,814	1,27	1,39	1,71

Table 5 (cont.)

Range	Energy,	K,b	Error ua	s in e tion,	val- %	Range	Energy,	K, b	Error	s in e tion,	val-
No.	keV		K=0	К	K=I	No.	keV		К=О	K	K=1
18	9100 9200 9300	1,610 1,608 1,805				19	13800 13900 14000	2,043 2,054 2,0 63	1,10	1,13	1,73
	9400 9500 9600 9700 9800 9900 10000 10100 10200 10300 10500	1,800 1,797 1,794 1,792 1,789 1,789 1,786 1,764 1,762 1,780				20 */	14100 14200 14300 14400 14500 14500 14500 14600 14700 14800 14900 15000	2,071 2,079 2,085 2,091 2,095 2,099 2,103 2,105 2,107 2,108	1,19	-	1,86
	10500 10500 10600 10700 10900 11000 11000 11200 11300 11400 11500 11600 11700 11800 11900 12000	1,776 1,776 1,774 1,773 1,772 1,777 1,770 1,770 1,770 1,769 1,769 1,769 1,769 1,768 1,768 1,768	>1,27	1,39	1,71	21	15100 15200 15200 15300 15400 15500 15500 15800 15900 15900 16000 16100 16200 16300 16500 16500	2,108 2,108 2,107 2,106 2,104 2,101 2,099 2,095 2,091 2,067 2,065 2,075 2,075 2,073 2,068 2,058 2,056	3,4~	3,43	3,64
15	12100 12200 12200 12500 12500 12500 12500 12500 12900 15000 13100 13200 13300 13400 13500 13600 13700	1,777 1,765 1,796 1,813 1,633 1,857 1,880 1,902 1,922 1,941 1,955 1,980 1,990 2,006 2,020 2,032	1,10	1,13	1,73		18800 16700 16800 16900 17000 17100 17200 17300 17400 17500 17600 17600 17700 17800 17900 18000 18100 18200 18300	2,038 2,051 2,045 2,039 2,052 2,026 2,020 2,014 2,008 2,003 1,997 1,992 1,986 1,981 1,977 1,973 1,969 1,965			

*/ The range shown in this box is the same as No. 21, but with modified errors.

Table 5 (cont.)

Range No.	Energy,	Energy, K,b	Error ua	s in e tion,	eval-	Range	Energy, K, b		Errors in eval- uation, %		
	keV	keV	K=0	K	K=I	No.	keV		K=0	K	K=I
21	18400 18500 18600 18700 18800 18900 19000 19100 19200	1,962 1,960 1,958 1,956 1,956 1,956 1,955 1,957 1,959	3,40	3,43	3,64	21	19300 19400 19500 19600 19700 19800 19800 19900 20000	1,962 1,966 1,970 1,976 1,982 1,989 1,989 2,015	3,40	3,43	3,64

Fig. 1: Evaluated ²³⁵U fission cross-section curves in the energy range 0.1-1.0 MeV. Data: ---- ENDF/B-IV; ----- ENDF/B-V; ----- present paper.

----- ENDF/B-V;

----- present paper.

ANNEXES

In Annexes 1 and 2 the following key is used for the different energy ranges (n,m):

1 0,1-0,3 keV	1230,0-110,0 keV
2 0,3-0,4 keV	13110,0-350,0 keV
3 0,4–0,6 keV	14
4 0,6-0,8 keV	150,75 - 1,50 MeV
5 0,8-1,0 keV	16
6 I,0-2,0 keV	17
7 2,0-4,0 keV	18
8 4,0-5,0 keV	1912,00-14,00 MeV
9 5,0-10,0 keV	20
1010,0-20,0 keV	21
11	

ANNEX 1

Optimized weights for experimental data with absence of correlation, assigned correlation and total correlation, and experimental ^{235}U fission cross-sections for different energy ranges[#]/

n, n = 1								
Ref.				б	<i>б_f</i> , Ъ			
	К=0	К	K=1	0,1-0,2	0.2-0,3			
/11/	0,111	0,150)	20,33	20,16			
[19]	0,093	0,000		20,13	20,09			
17	0,040	0,039		20,93	20,23			
[14]	0,045	0,000	1	20,66	19,85			
[18]	0,031	0,001		20,51	20,69			
[2]]	0,042	1	10,000	21,10	20,00			
<u>/</u> 15/	0,032	1		19,80	19,96			
[22]	0,087	0,000		20,19	20,08			
[4]	0,091	1	1	20,65	19,92			
[6]	0,066	J		20,38	20,33			
\mathcal{N}	0,174	0,267	J0,378	20,89	19,96			
[8]	0,186	0,543	0,622	20,72	20,31			

	<u> </u>			
Ref.	K = C	к	K = 1	<i>5</i> , b
[1]	0,151	0,206)	12,72
/197	0,127	ן		12,89
[17]	0,055	1		12,82
[14]	0,062	{		13,91
[18]	0,009	0,000	0,000	12,57
[20]	0,058	Į		12,89
<u>/15</u> /	0,043	1		12,55
[22]	0,119			12,81
[4]	0,140	⁷ 0,110	J	12,86
[V]	0,236	0,684	1,000	12,93

n,= = 3

Ref.	K=0	к	K=1	6 0,4-0,5	, b 0,5-0,6			
(1V	0,121	0,223	}	13,30	14,83			
[19]	0,102	0,000		13,17	14,88			
[17]	0,044	0,010	(13,67	14,76			
[14]	0,050	1		12,75	14,08			
/187	0,033		0,000	13,98	14,68			
[20]	0,046	0,000	1	13,36	14,59			
<u>/</u> 157	0,034			12,92	14,25			
[22]	0,095	J		13,39	14,95			
[4]	0,112	0,026	J	13,24	14,79			
[V]	0,190	0,396	0,666	13,34	14,69			
[8]	0,173	0,345	0,334	13,37	14,60			

 $n_{\mu} = 4$

D. C		к		б _f , b		
ReI.	K =0		v =1	0,6-0,7	0,7-0,8	
[11]	0,188	0,380	0,705	11,21	10,89	
<u>/</u> 197	0,158	0,000)	11,25	10,85	
[17]	0,068	0,098	1	11,28	10,57	
[14]	0,077	0,000	0,000	11,29	10,46	
<u>/18</u> 7	0,060	0,062	1	10,92	10,46	
[20]	0,072	b m	1	11,08	10,66	
/15/	0,054	μ	- - -	11,28	10,98	
[22]	0,148	0,109	j	11,25	10,83	
[4]	0,175	0,351	0,295	11,21	10,81	

*/ Energy units coincide with those given for the whole energy range (see above).

n.n = 5

Ref	K-0	U U	¥_1	<i>б_f</i> , b		
Ner.	1.20	n	n#1	0,6-0,9	0,9-1,0.	
/11/	0.197	0.432	0.705	8.00	7.39	
197	0,165	0,000	່	8,23	7,41	
[17]	0,063	0,098		7,46	6,98	
[14]	0,081	0,000		8,27	7,57	
<u>/</u> 187	0,057	0,064	0,000	7,44	7,54	
[20]	0,070	000.00	{	7,88	7,28	
[1,]	0,049	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	8,75	E,30	
[22]	U,135	0,004		7,98	7,35	
[4]	0,183	0,402	0,295	8,01	7,34	
	1			<u> </u>		

Ref.	K=0	к	K=1	\mathcal{G}_{f} , d
[1]]	0,109	,0,202		7.26
[19]	0,091			7,25
[17]	0,035			6,70
[14]	0,045			7,22
[18]	0,032	0,000		7,25
[2]]	0,039		0.00	ē,9 9
[15]	0,027	ŀ		7,33
[22]	0,075			7,25
[4]	0,101	0,118		7,14
[5]	0,049	1		7,649
[\$]	0,050	10,000	J	7,22
[7]	0,169	6,340	0,500	7,10
[6]	0,168	0,340	0,500	7.00

Annex 1 (cont.)

Ref.	К=0	ĸ	·i=1	6, 2-3	, b					
[117 [197 [197 [197 [197 [187 [207 [157 [227 [227 [227 [227 [227 [227 [227 [2	0,152 0,048 0,048 0,054 0,054 0,054 0,104 0,057 0,141 0,059 0,066	0,415 0,013 0,097 0,006 0,065 0,007 0,000 0,000 0,000	0,705 0,000 0,295 0,000	5,41 5,28 5,07 5,49 5,19 5,04 5,37 5,25 5,365 5,18 5,602 5,35	4,92 4,74 4,53 4,65 4,49 4,49 4,49 4,67 4,900 4,67 4,900 4,62 4,897 4,59					

D,D =	n,n = 8									
Ref.	к=0	к	n=1	δ_{f} , b						
[11] [19] [17] [14] [18] [20] [15] [22] [22] [22] [22] [22] [22] [22] [2	0,129 0,108 0,041 0,053 0,038 0,046 0,032 0,088 0,048 0,120 0,058 0,071	0,253 0,000 0,015 0,000 0,037 0,000 0,224	0,000	4,41 4,30 4,03 4,28 3,82 4,08 4,27 4,19 4,376 4,12 4,343 4,26						
<u>[87</u>	0,168	0,471	1,000	4,05						

Ref.	<u>к-0</u>	R	K-T	σ _f , b				
		<u> </u>		5-6 6-7		7_8	<u>ს-</u> 9	9-10
[11]	0,129	0,353	0,425	3,69	3,53	3,61	2,60	3,00
[19]	0,100	0,000		3,64	3,40	3,15	2,95	2,99
[17]	0,046	0,121		3,66	3,09	3,05	2,79	3,02
<u>[14]</u>	0,049	0,000		4,04	3,57	3,35	3,30	3,23
<u>/</u> 187	0,038	0,051	0,000	3,29	3,00	2,63	2,88	3,09
[20]	0,053	0,006	1	3,99	3,08	3,06	2,90	2,98
[15]	0,031	0,000		3,64	3,27	3,23	3,05	3,15
[22]	0,105	0,072		3,62	3,52	3,09	3,04	2,99
[24]	0,057	0,000]	3,934	3 ,3 3ō	3,307	3,044	3,166
[4]	0,131	0,342	0,544	3,75	3,17	3,09	2,91	3,04
[5]	0,079			3,929	3,28	3,184	2,981	3,06
[2]	0,084	10,000	10,000	3,72	3,35	3,12	2,88	3,19
[25]	0,098	0,055	0,031	3,93	3,25	3,21	2,92	3,12

n.n = 7

n.= = 10	
----------	--

Ref.	К = 0	К	K = 1	<i>6</i> _f , b
(197	0,088	0,004	}	2,447
17	0,062)	j	2,34
/201	0,074	0,000		2,33
[24]	0,075		{0,000	2,511
[4]	0,161	0,274	1	2,48
<u>[</u> 5]	0,113	0,000	1	2,456
[7]	0,279	0,722	1,000	2,42
[25]	0,148	0,000	0,000	2,46

Ref.	K = 0	к	K = 1	<i>5</i> _f , b
(197	0,091	, 0,640	1	2,12
[17]	0,064			2,10
[20]	0,076	0,000	0,000	2,00
[21]	0,081	4	í	2,162
[4]	0,167	0,306		2,13
[5]	0,117	0,000	J	2,102
[7]	0,254	0,654	1,000	2,085
[25]	0,150	0,000	0,000	2,095
_				ł

D,Z = 12

Ref.	K=0	K	R=I	б _у , Ъ
[17] [24] [4] [5] [27] [28]	0,024 0,025 0,043 0,044 0,158 0,216	0,000 0,026 0,005 0,013 0,315	000,0	$I,9(30-40)^{X}I,8I3(40-50) I,77(50-60) I,7I(60-70) I,62(70-80) I,59(80-90) I,55(90-100)$ 2,052(30-40) I,939(40-50) I,894(50-60) I,849(60-70) I,77(70-80) I,694(80-90) I,645(90-100) 1,96(30-40) I,84(40-50) I,84(50-60) I,78(60-70) I,73(70-80) I,60(80-90) I,57(90-100) 1,92(30-40) I,837(40-50) I,81I(50-60) I,762(60-70) I,682(70-80) I,565(80-90) I,54I(90-100) 1,80(42) I,765(68) I,74(72,5) I,54(95) I,975(38) 2,047(40) I,849(51) I,822(55) I,71(71) I,707(75) I,556(88) 2,02(33) I,85(46) I,83(58) I,7(78) I,65(83,5) I,55(93) I,53(103,5)
[29] [26] [1] [25]	0,193 0,175 0,068 0,054	0,282 0,255 0,100 0,004	0,100 0,003 0,000 0,096	2,IO(40) I,786(67,5) $2,UO6(35) I,93I(40) I,856(45) I,8I8(5I) I,794(55) I,772(60) I,7I(7I) I,647(80) I,588(90) I,555(100)$ $I,79(40-50) I,77(50-60) I,76(60-70) I,53(80-90) I,30(165-195)$ $I,93(30-40) I,77(40-50) I,74(50-60) I,69(60-70) I,6I(70-80) I,57(80-90) I,57(90-100)$

 \pm / Here and below the energy or energy range at which the fission cross-section was measured is shown in brackets.

n, m = 13

Annex 1 (cont.)

Ref.	X=U	К	K=1	δ_j , b
TAT	0.030	0.000]	1,50(100-200)
/\$J	0.033	J. 001		1,402(100-200) 1,229(200-300)
[27]	0,077	0,003	4,000	1,53(110) 1,57(120) 1,5(125) 1,5(145) 1,45(150) 1,44(152)(154) 1,45(156)
			1	1,365(195) 1,325(215) 1,295(227) 1,285(251) 1,275(257) 1,27(286) 1,285(313)
	l	Ì		1,19(320) 1,21(331)
[26]	J 169	0,187	1	1,58(124) 1,52(116) 1,42(135) 1,46(150)(172) 1,42(199)
[29]	U,184	U,203	0,158	1,54(127) 1,52(160) 1,38(207) 1,30(312)
[26]	0,136	U,150	10.000	1,493(120) 1,437(140) 1,387(170) 1,357(200) 1,307(251) 1,268(300) 1,228(350
[7]	0,024	J.027	,	1,23(210-230) 1,23(230-250) 1,225(250-270) 1,205(275-295) 1,165(295-315)
			J	1,175(315-335) 1,145(335-355)
[25]	0,046	U 050	0,034	1,45(100-150) 1,36(150-200) 1,22(200-300)
[38]	0,301	p.379	0,808	1,471(140) 1,271(265)

n,m = 14

Ref.	K=0	К	K=1	G _f , b
[5]	U,037	U,050	0,000	1,16(300-400) 1,119(400-500) 1,1(500-600) 1,089(600-700)
[27]	U 191	U,U48	J,304	1,215(369) 1,205(407) 1,16(506)(540) 1,14(665)
[26]	U,17I	0,213	υ,000	1,14(730)
[29]	U 214	J 268	U,5I8	1,22(404) 1,17(505)
[26]	J 163	0,203	U,I32	1,201(400) 1,16(506) 1,125(600) 1,11(700)
[34]	U,I24	U,154	וֹ	1,207(546) 1,215(662) 1,164(758)
/397	(ນ,03ປ	J.J.37	1	I,28(404) I,24(5I3) I,27(562) I,17(673)
โป	U, UI 9	U,Ú23	ໄ ດ້ ເປັນ ເປັນ	I,155(355-370) I,095(400-450) I,06(450-500) I,07(500-550)
				I,075(550-580) I,035(600-650) I,015(650-680)
[25]	JU ,05I	0,004	J	I,I6(300-400) I,I3(400-500) I,I0(500-600) I,09(600-700)

n,m = 15

Ref.	K=0	K	K=I	\mathcal{O}_{f} , b
/57	0.017	0.015	Ĵ	1,089(700-800) 1,122(800-900) 1,180(900-1,0)
1277	0.083	0.025	1	1,135(810) 1,205(1,01)
/28/	0.082	0.087		1.14(880) 1.188(920) 1.187(1.02) 1.207(1.28)
	1			1,229(1,405) 1,255(1,485)
[29]	0,109	Ú.116	1	1,22(1,0)
[26]	U,077	0.082	}0,000	I,II(800) I,I2(840) I,I35(860) I,I6I(890)
				1,185(920) 1,214(950) 1,209(980) 1,207(1,0)
				1,204(1,2) $1,213(1,4)$ $1,226(1,5)$
[34]	0,074	υ,079		1,193(908) 1,248(1,057) 1,256(1,125) 1,221(1,18)
<u>/</u> 397	0,014	0,015		1,19(770) 1,23(869) 1,27(950)
[32]	0,283	0,302	ົບ,899	1,229(1,0) 1,252(1,1) 1,245(1,2) 1,241(1,3)
	4	i		1,224(1,4) 1,26(1,5)
<u>/</u> 33/	0,068	0,072	Ú,IOI	I,08(754) I,10(786) I,09(819) I,12(855)
				1,16(894) 1,17(935) 1,21(979) 1,22(1,026)
				1,2(1,077) 1,22(1,132) 1,24(1,191) 1,24(1,479)
		1		1,23(1,398) 1,22(1,323) 1,21(1,254)
[25]	0,023	0,024)	1,07(700-800)
<u>/</u> 387	0,160	0,171	ļ0,000	1,161(770) 1,210(964)
/3 57	0,010	0,012		1,229(1,224) 1,189(1,274) 1,255(1,324) 1,241(1,374)
			J	1,210(1,424) 1,268(1,474)

Annex 1 (cont.)

- 33 -

n.m = 16

Ref.	R-1)	K.	lie1	б _f , Ъ
[28]	0,150	0,165	·/	1,252(1,58) $1.272(1,7)$ $1,306(1,8)$ $1,353(1,915)$ $1,315(2,0)$
				I,33(2,04) 1,3IB(2,I) I,294(2.I8) I,303(2,I9) I,304(2,28) I,293(2,3) I,275(2,38) I,27(2.6I)
[29]	0,064	0,092	10,000	1,31(2,25)
[26]	0,093	\$01,0		$\begin{array}{c} \mathbf{1,279(1,8)} \ \mathbf{1,29(1,9)} \ \mathbf{1,294(2,0)} \ \mathbf{1,292(2,1)} \ \mathbf{1,285(2,2)} \\ \mathbf{1,266(2,4)} \ \mathbf{1,253(2,6)} \ \mathbf{1,22A(3,0)} \end{array}$
/39/	0,017	0,019		1,3(1,515) 1,31(1,62)
[32]	0,489	0,536	⁷ 0,948	$\begin{array}{c} 1,232(1,58) 1,285(1,7) 1,267(1,8) 1,266(1.9) 1.262(2,0) \\ 1,265(2,2) 1,245(2,4) 1,242(2,5) \\ 1,210(2,6) 1,216(2,7) 1,201(2,8) \\ 1,185(2,9) 1,201(3,0) \end{array}$
[33]	0,080,0	0,077	0,052	$\begin{array}{c} 1,25(1,568) \ 1,27(1,66) \ 1,26(1,77) \ 1,28(1,887) \ 1,3(2,015) \\ I,28(2,157) \ I,27(2,315) \ 1,26(2,49) \\ I,25(2,99) \ I,24(3,05) \end{array}$
/307 /35/	830,0 9,019	0,009 0,000]0 ,000	I,256(2,35) I,219(2,6) I,206(2,78) I,203(2,85) I,27(I,524) I,268(I,6)
				I,221(1,625) I,252(1,674) I,284(1,726) I,257(1,775) I,267(1,824) I,25(1,872) I,263(1,923) I,284(I,973) I,251(2,047) I,30I(2,I47) 1,253(2,248) I,267(2,349) I,222(2,450) I,234(2,549) 1,18I(2,647) I,224(2,75) I,215(2,849) I,24I(2,95) I,184(3,05)

 $n_{1}n = 17$

Ref.	К=0	K	K=I	б _у , Ъ
[26]	0,176	0,183	0,000	I,192(3,5)
[32]	0,517	0,538	0,876	1,206(3,2) 1,175(3,4) 1,160(3,5) 1,173(3,6) 1,147(3,7) 1,156(3,8) 1,129(4,0) 1,135(4,2)
				I,II(4,4) I,09(4,6) I,I(4,8) I,08I(4,5)
[33]	0,150	0,156	0,120	1,24(3,12) 1,21(3,18)(3,24) 1,19(3,32)(3,4) 1,2(3,47) 1,19(3,55) 1,18(3,53) 1,2(3,71)
				I,I8(3,8) I,I9(3,89) I,I5(3,98)(4,07) I,I7(4,I7)(4,27) I,I5(4,38) I,I4(4,49)(4,6)
				I,I2(4,7) I,II(4,8)(5,0)
/307	0,111	0,115	0,004	I,167(3,09) I,156(3,23) I,13(3,36) I,137(3,55) I,1(3,8) I,098(3,92) I,1(4,47)
/357	0.04s	0,008	0,000	I,196(3,15) I,162(3,25) I,163(3,349) 1,146(3,446) I,156(3,547) J,143(3,647) I,125(3,75)
				I,19(3,85) I,164(3,95) I,166(4,05) I,155(4,144) I,128(4,24) I,096(4,35) I,122(4,446) I,167(4,55) I,148(4,643)
				I,I3I(4,742) I,I5I(4,843) I,I2T(4,949) I,058(5,046)

Annex 1 (cont.)

- ¥-

n.m = 18

Ref.	K=0	К	K=I	ട് _f , b
<u></u>	0,159	0,133	0,000	I,00(5,4)
[32]	J,528	0,575	0,876	I,077(5,I) I,082(5,2) I,077(5,3) I,059(5,4) I,055(5,5) I,04I(5,6) I,06(5,7) I,084(5,8) I,II3(5,9) I,I37(6,0)
[33]	0,153	0,167	0,120	I,09(5,II)(5,25)(5,39) I,07(5,54) I,06(5,7) I,07(5,87) 1,14(6,04) I,23(6,22) I,34(6,4) I,44(6,6) I,54(6,8I) I,6(7,02) I,69(7,25) 1,75(7,48) I,79(7,73) I,82(7,99) I,83(8,27) I,82(8,55) I,8I(8,86) I,79(9,I8) I,78(9,52) I,82(9,88) I,8I(I0,25) I,77(I0,66) I,78(II,08) I,75(II,53) I,78(I2,0I)
<u>/</u> 30/	0,112	0,122	0,004	I,0(5,0I5) I,03(5,53)
<u>/</u> 357	0,048	0,003	0,000	I,058(5,146) I,07C(5,25) I,03I(5,344) I,054(5,442) I,058(5,54I) I,099(5,644) I,05(5,75) I,018(5,844) I,088(5,956) I,078(6,056) I,152(6,143) I,169(6,248) I,13(6,34) I,262(6,45) I,28(6,547) I,398(6,645) I,372(6,746) I,53(6,85) I,47(6,94) I,434(7,045) I,566(7,155) I,574(7,249) I,62(7,345) I,658(7,442) I,699(7,542) I,67(7,644) I,673(7,748) I,739(7,853) I,68I(7,94) I,6(8,05) I,713(8,139) I,742(8,253) I,686(8,346) I,718(8,441) I,093(8,54) I,786(8,635) I,719(8,734) I,758(8,836) I,709(8,94) I,675(9,044) I,7(9,15) I,666(9,232) I,704(9,342) I,773(9,454) I,709(9,539) I,707(9,655) I,686(9,743) I,686(9,833) I,695(9,954) I,669(10,05) I,714(10,14) I,707(10,235) I,691(10,364) I,601(10,462) I,645(10,562) I,657(10,663) I,709(10,765) I,64(10,834) I,692(10,94) I,689(11,046) I,674(11,154) I,667(11,227) I,692(11,337) I,708(11,45) I,727(11,526) I,716(11,641) 1,688(11,758) I,639(11,837) I,727(11,957)

n,m = 19

Ref.	<u>К=</u> О	K	K=I	_{ഗ്} ,
[29] [33] [36] [37] [35]	0,218 0,114 0,333 0,300 0,035	0,226 0,II8 0,345 0,31I 0,000	0,179 0,210 0,210 0,000	$\begin{array}{c} 2,17(14,1) \\ 1,83(12,52) 1,91(13,06) 2,01(13,64) 2,07(14,26) \\ 2,063(14,6) \\ 2,192(14,8) \\ 1,741(12,04) 1,751(12,16) 1,762(12,37) 1,789(12,59) 1,889(12,607) 1,919(13,03) 1,977(13,266) \\ 2,003(13,505) 2,091(13,75) 2,097(14,003) \end{array}$

Annex 1 (concluded)

n, n = 21

n.m = 20

Ref.	K=O	K	K=I	۶, b					
/33/	0,860	0,875	0,95F	2,08(14,93)(15,64) 1,99(16,4) 1,95(17,22) 1,94(18,11) 1,96(19,07) 2,03(20,10)					
<i>[</i> 35]	0,140	0,125	0,044	2,173(14,803) 2,2(15,086) 2,232(15,376) 2,235(15,675) 2,27(15,983) 2,18(16,3)(16,627) 2,171(16,964) 2,125(17,311) 2,126(17,67) 2,119(18,039) 2,08(18,42) 2,041(18,814) 1,989(19,22) 1,912(19,64) 1,912(20,075)					

Ref.	R=O	K	K=I	<i>б</i> , b
[297	0,256	0,256	0,220	2,I7(I4,I)
[367	0,391	0,391	0,753	2,O63(I4,6)
[377	0,353	0,353	0,027	2,I92(I4,8)

ANNEX 2

- 35 -

Annex 2 (cont.)

5 6 7 8 9 IO II I2 I3 I4 I5 I6 I7 I8 I9 20 2I n.m I 2 3 4 I I.0 0.92 0.98 0.83 0.80 0.97 0.8I 0.94 0.82 0.85 0.83 0.29 0.27 0.25 0.I8 0.00 0.00 0.00 0.00 0.00 0.00 2 I.0 0.96 0.87 0.86 0.97 0.86 0.89 0.87 0.96 0.95 0.34 0.28 0.27 0.18 0.00 0.00 0.00 0.00 0.00 0.00 I.O 0.86 0.84 0.99 0.84 0.95 0.85 0.90 0.88 0.3I 0.28 0.26 0.I8 0.00 0.00 0.00 0.00 0.00 0.00 3 4 I,0 I,0 0,89 I,0 0,9I 0,99 0,83 0,83 0,28 0,23 0,24 0,I7 0,00 0,00 0,00 0,00 0,00 0,00 5 I,0 0,88 I,0 0,90 0,99 0,82 0,82 0,27 0,22 0,24 0,17 0,00 0,00 0,00 0,00 0,00 0,00 6 I,0 0,88 0,96 0,88 0,92 0,9I 0,32 0,28 0,26 0,I8 0,00 0,00 0,00 0,00 0,00 0,00 7 I,0 0,9I 0,99 0,83 0,83 0,28 0,22 0,24 0,17 0,00 0 00 0,00 0,00 0,00 0,00 8 1,0 0,90 0,84 0,83 0,29 0,25 0,24 0,18 0,00 0,00 0,00 0,00 0,00 0,00 9 I,0 0,83 0,83 0,29 0,23 0,26 0,18 0,0I 0,00 0,00 0,00 0,00 0,00 10 I,0 0,98 0,35 0,28 0,27 0,16 0,00 0,00 0,00 0,00 0,00 0,00 II I,0 0,34 0,27 0,26 0,16 0,00 0,00 0,00 0,00 0,00 0,00 I,0 0,77 0,89 0,59 0,60 0,37 0,33 0,27 0,28 0,14 12 I,0 0,7I 0,7I 0,48 0,30 0,28 0,22 0,23 0,I2 13 14 I,0 0,70 0,62 0,37 0,36 0,29 0,30 0,16 15 I,0 0,82 0,68 0,73 0,37 0,28 0,4I 16 I,0 0,84 0,84 0,32 0,23 0,39 17 I,0 0,87 0,25 0,10 0,43 18 1.0 0.37 0.24 0.51 Matrix of coefficients of correlation 19 I.0 0.94 0.45 211,0 0,15 between energy ranges n.m for 20 assigned correlations between errors. Ι.0

- 36 -

Annex 2 (concluded)

IO II I2 I3 I4 I5 I6 I7 I8 I9 20 21 6789 n, n I 2 3 4 5 I I.0 0.93 0.98 0.88 0.88 0.98 0.88 0.96 0.86 0.90 0.88 0.56 0.47 0.5I 0.64 0.58 0.64 0.64 0.70 0.39 0.93 2 1.0 0.98 0.94 0.94 0.98 0.94 0.87 0.93 0.99 0.96 0.68 0.52 0.62 0.55 0.50 0.55 0.55 0.72 0.44 0.88 3 I,0 0,95 0,95 I,0 0,95 0,95 0,93 0,97 0,95 0,68 0,55 0,62 0,64 0,57 0,64 0,64 0,75 0,46 0,94 4 I,0 I,0 0,93 I,0 0,9I 0,99 0,96 0,95 0,83 0,74 0,74 0,73 0,64 0,75 0,75 0,83 0,60 0,92 5 I.0 0.93 I.0 0.9I 0.99 0.96 0.95 0.83 0.74 0.73 0.64 0.75 0.75 0.83 0.60 0.92 6 I.0 0.93 0.95 0.92 0.96 0.94 0.66 0.52 0.6I 0.64 0.59 0.64 0.64 0.74 0.44 0.93 7 I,0 0,9I 0,99 0,96 0,95 0,83 0,74 0,74 0,73 0,64 0,75 0,75 0,83 0,60 0,92 8 I.0 0.89 0.88 0.86 0.68 0.61 0.60 0.77 0.69 0.79 0.79 0.76 0.48 0.97 9 I.0 0.96 0.94 0.83 0.73 0.74 0.72 0.64 0.74 0.74 0.8I 0.58 0.90 1,0 0,97 0,77 0,59 0,70 0,61 0,54 0,61 0,61 0,75 0,50 0,88 10 TT I,0 0,8I 0,63 0,75 0,64 0,59 0,63 0,63 0,85 0,64 0,83 12 1,0 0,87 0,96 0,77 0,74 0,78 0,78 0,87 0,84 0,62 I3 I.0 0.8I 0.83 0.76 0.85 0.85 0.76 0.73 0.57 14 I,0 0,79 0.8I 0,76 0.76 0.85 0.86 0.49 15 1,0 0,97 0,99 0,99 0,81 0,72 0,66 I,0 0,93 0,93 0,79 0,74 0,54 16 17 I,0 I,0' 0,8I 0,70 0,70 **I8** I.0 0.8I 0.70 0.70 19 I,0 0,92 0,88 Matrix of coefficients of correlation 20 1.0 0.36 between energy ranges n.m for total 2I I.0 correlation between errors.

REFERENCES

- Leonsrd B.R., Jr. Common Normalization of Several ²³⁵D Pission Data Jets in the Thermal and Resonance Region. In: Proceedings of the NEAND/REACEP Specialists Neeting on Fast Pission Cross-Section of ²³⁵U, ²³³U, ²³⁸U and ²³⁹Pu (June 28-30, 1976). ARL, p. 221-305.
- [2] Lemmellen. The Third LAEA Evaluation of the 2200 m/s and 20°C Marwellian Kentron Deta for 2370, 2350, 239Pu and 241Pu. - In: Proceedings of the Conference on Nuclear Cross-Section: and Technology. Wishington, 1975, v. 1, p. 286-292.
- [3] E s l e G.K., S t e w b r t L., Y o u n g P.G. Light Elements Standard Cross-Ser ior for ENDF/E Version IV. - LA-6518-MS. 1976, p. 1-36.
- [4] Gwin R., Silver E.G., İngle R.W., Wesver R. Messurement of the Neutron Cepture and Pission Cross-Section of ²³⁹Pu and ²³⁵U, C.O2 eV to 200 keV, the Neutron Cepture Cross-Section of ¹⁹⁷Au, 10 to 50 keV, and Keutron Pission Cross-Sections of ²³⁵C, 5 to 200 keV. Nucl. Sci. and Engng, 1976, v. 59, p. 79-105.
- [5] Gayther D.B., Boyce D.A., Brisland J.B. Measurement of the ²³⁵U Pissicz Cross-Section in the Energy Range 1 keV to 1 MeV. - In: Proceedings of the ILEA Function Reutron Standard Reference Data. Vienna, 1972, p. 201-209.
- [6] MOSTOVAYA, T.A., MOSTOVOJ, V.I., PERECUDOV, V.N., "The ²³⁵U fission cross-section in the neutron energy range 0.01-10 keV", Nejtronnaya Fizika (Neutron Physics), Proc. Third All-Union Conference on Neutron Physics, Kiev, 1975, TsNIIatominform, 6 Moscow (1976) 76-80 [in Russian].
- [7] CzirrJ.B., SidhuG.S. A Leasurement of the Fission Cross-Section of Uranium-235 from 100 eV to 680 keV. - Nucl. Sci. and Engng, 1976, v. 60, p. 363-389.
- [8] Wasson C.L. The ²³⁵U Neutron Fission Cross-Section Measurement at the NRS LINC. -CM./1/, p. 183-205.
- [9] SUKHOVITSKIJ, E.Sh., KON'SHIN, V.A., The use of correlations for determining errors in evaluated data. Izv. Akad. Nauk BSSR, Seriya fiziko-ehnergeticheskikh nauk 3 (1976) 19-23 [in Russian].
- [10] DeruytterA.J., KegemansC. L'easurement and Normalization of the Relative 235U Pission Cross-Section in the Low Resonance Region. - J. Nucl. Energy, 1971, v. 25, p. 263-272.
- [11] De Saussure G., Weston L.W., Gwin E. C.S. Measurement of the Neutron Cajture and Fission Cross-Sections and of Their Ratio Alpha for ²³³0, ²³⁵0 and ²³⁵Pu. - In: Proceedings of the Conference on Nuclear Dats for Leastors. Faris, 1956, v. 2, p. 233-245.
- [12] BOWERDC.D. In: Proceedings of the Conference of Neutron Cross-Section Technology. 1966, v. 2, p. 1004-1013.
- [13] Shore F.S., Seilor V.L. Slow Newtron Resonances in ²³⁵U. Phys. Rev., 1956, v. 112, p. 191.
- [14] MICHAUDON, A., DERRIEN, H., RIBON, P., SANCHE, M., Statistical properties of levels of ²³⁶U induced in ²³⁵U by slow neutrons. Nucl. Phys. <u>69</u> (1965) 545 [in French].

- [15] VAN SHI-DI, VAN YUN-CHAN, DERMENDZHIEV, E., RYABOV, Yu.V., "Interaction of neutrons with ²³⁵U nuclei in the energy range 2 eV-30 keV", Proc. Symposium on Physics and Chemistry of Fission, IAEA <u>1</u> Vienna (1965) 287-305 [in Russian].
- [16] W a g e m a n B C., D e r u y t t e r A.J. The Neutron Induced Fission Cross-Section of ²³⁵ in the Energy Region from 0,008 eV to 30 keV. - Ann. Rucl. Margy, 1976, v. 5, p. 437-445.
- [17] Lemley J.R., Keyworth G.A., Diven B.C. Eigh Resolution Pission Cross-Section of ²³⁵U from 20 eV to 100 keV. - Nucl. Sci. and Eugng, 1971, v, 43, p. 281-291.
- [18] Brown W.K., Bergen B.W., Cramer S.D. In: Froceedings of the Conference on _____ Meutron Cross-Sections and Technology. Washington, 1966, p. 971.
- [19] Blons J. Righ Resolution Measurements of Neutron Induced Fission Cross-Sections for
- 2330, 2350, 239Pu and 241Pu Below 30 keV. Nucl. Sci. and Engng, 1973, v. 51, p. 130-147. [20] Patrick B.H., 5 owerby M.G., 5 chomberg M.G. Structure in the Fission Cross-
- [20] Patrick B.H., Sowerby M.G., Schonberg M.G. Structure in the Fission Cross-Section of 2350. - J. Nucl. Energy, 1970, v. 24, p. 269-274.
- [21] HYABOV, Yu.V., OIYaI proprint RZ-5113, Joint Nuclear Research Institute, Dubna, USSR (1970) [in Russian].
- [22] J. C. T. E. J.J., CE. D. E. E. D. E. E. L. P. G., D. J. V. E. T.G. R.E. Simultaneous less investe of the Neutron Pission and Capture Cross-Sections for Dramium-235 for Neutron December from E. eT. to 10 heT.-Nucl. Sci. and Engm6, 1973, v. 52, p. 45-71.
- [23] F L & t K.R. Evaluation of the ²³/U Plesion Cross-Section from 100 eV to 20 MeV. Ox. [1], p. 307-329.
- [24] P & r & e z h.B., de S & u & E u r & G., 5 i] v & r E.G. e.a. Measurement of the Fiscion Cross-Section of Uranium-235 for Incident Neutrons with Emergies Between 2 and 100 keV. Nucl. Sci. and Lugng, 1974, v. 55, p. 203-218.
 [25] V & e & s o n O.L.The ²³⁵U Neutron Fiscion Cross-Section Measurement at the NES LINAC. -
- [25] * 2 5 5 0 D O.L.The """ Reutron Pission Cross-Section Measurement at the NPS LINAC. -Ou. /1/, p. 183-205.
- [26] F & L i t r N.F. Relative and Absolute Reasurements of the Pest-Neutron Pission Cross-Section of Transm-235. - Nucl. Sci. and Engag, 1974, V. 53, p. 370; E n o 1 1 G.P., F & n i t z N.F. A Newsurement of the ²³⁵D Pission Cross-Section at 30 and 64 keV. -J. Nucl. Energy, 1967, V. 21, p. 643-652.
- [27] S I B D D L., F I L I P P B G., H u e t J.L. E.E. New Absolute Netsurement of the Neutron Induced Pission Cross-Sections of ²³⁵C, ²³⁹Pu and ²⁴¹Pu from 17 keV to 1 keV. - In: Froceedings of the ELENC Symposium on Neutron Stendard and Flux Normalization. USA, Argonne, 1970, p. 257-273.
- [28] SZABO, I., FILIPPS, G., HUET, J.L., et al., "²³⁵U fission cross-section from 10 keV to 200 keV", Proc. Third Conference on Neutron Cross-Sections and Technology, Knoxville, USA, <u>2</u> 573-583;

SZABO, I., LEROY, J.L., MARRHETTE, J.P., "Absolute measurement of the 235_U, ²³⁹Pu and ²⁴¹Pu cross-sections between 10 keV and 2.6 MeV", Nejtronnaya Fizika (Neutron Physics), Proc. Second All-Union Conference on Neutron Physics, Kiev, 28 May-1 June 1973, part <u>3</u>, Physics and Energetics Institute (FEI), Obninsk (1974) 27-45 [in French].

- [29] Thite F.E. Measurements of the ^{23;}U Neutron Pission Cross-Section in the Emergy Range 0,04-14 MeT. - J. Kucl. Inergy, 1965, v, 19, p. 325.
- [30] Szebol., Kerquette S.F. Kessurement of the Neutron Induced Fission Cross-Sections of Transm-235 and Flutonium-235 in the NeT Emergy Range. - Ibid., p. 205-223.
- [31] Diven B. Additional Hanarks Concerning the Sugrested Energy Smift between the LASL and LLL Data. - Ck. [1], p. 176-176.
- [32] Barton D.K., Diven B.C., Easter G.E. e.e. Versurement of the Transum-235 Pission Cross-Section Over the Neutron Energy Range 7 to i KeV. - Nucl. Sci. and Engle, 1976, v. 60, p. 369-382.
- [33] C 1 i r r J.B., S 1 d h D G.S. ²³⁵C Pission Cross-Section Resourcest Relative to Reutron-Proton Scattering. - CR. [2], V. 2, p. 615-619.
- [34] KāppelerF. Measurement of the Neutron Pission Cross-Section of ²³⁵U Between 0.5 and 1.2 MeV. - In: Proceedings of the IAEs Panel on Neutron Standard Beference Data. Vienna, Nov. 1972, p. 213-224.
- [35] Lengers B., Cierjacks S., Erotz P. The ²³⁵U and ²³⁸U Feutron Induced
- Fission Cross-Sections Belative to the H(L, p) Cross-Section. Ox. 11, p. 246-254.
- [36] Cance M., Grenier G. Absolute Measurement of 14,6 MeV Neutron Fission Cross-Section of ²³⁵U and ²³⁸U. - Ibid., p. 237-244.
- [37] ALKHAZOV, I.D., KASATKIN, V.P., KOSTOCHKIN, O.I., et al., "Absolute measurements of ²³⁵U fission cross-sections with 14.8 MeV neutrons" in Nejtronnaya Fizika (Neutron Physics), Proc. Third All-Union Conference on Neutron Physics, Kiev, 9-13 June 1975, <u>6</u>, TsNIIatominform, Moscow (1976) 9-12 [in Russian].
- [38] D & v i s M.C., K n o l l G.F., R o b e r t s o n J.C. Absolute Measurements of ²³⁵U and ²³⁹Pu Pission Cross-Sections with Photoneutron Sources. CM. /V, p. 225-229.
- [39] Diven B.C. Fission Cross-Section of ²³⁵U for Past Neutrons. Phys. Rev., 1957, v.105, p. 1350.