ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР

INDC(CCP)-157/G

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

серия: Ядерные константы

выпуск 4 (39)

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

Серия: Ядерные константы

Выпуск 4 (39)

.

4

Москва 1980

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНФОРМАЦИИ И ТЕХНИКО-ЭКОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ ПО АТОМНОЙ НАУКЕ И ТЕХНИКЕ

СОДЕРЖАНИЕ

Зеневич В.А., Клепацкий А.Б., Коньшин В.А., Суховицкий Е.Ш.
Радиационный захват нэйтронов с энергией до 3 МэВ делящимися ядрами З
Симаков С.П., Ловчикова Г.Н., Сальников О.А., Труфанов А.М., Пильц В., Фёрч Х., Штрайль Т.
Упругое и неупругое рассеяние нейтронов с энергиями от 5 до 8 Мав на природном молибдене 7
Казюла Б.Г., Козудин Э.М., Победоносцев Л.А., Немилов Ю.А., Сносева Л.Н., Тутин Г.А., Филатенков А.А.
Измерение функций возбуждения ряда уровней ²³⁸ 0 в реакции (п, п'л) I4
Савин М.В., Парамонова И.Н., Чиркин В.А., Лудин В.Н., Залялов Н.Н.
Полные сечения образования р-квантов при взаимодействии быстрых нейтронов с ядрами меди и молибдена I7
Бычков В.М., Карпов В.В., Пащенко А.Б., Пляскин В.И.
Сечения неупругого взаимодействия заряженных частиц с атомными ядрами 24
Вдовин А.И., Голиков И.Г., Лощаков И.И.
Расчет сечений ядерных реакций по результатам измерений в фотоэмульсионной камере 29
Матусевич В.А., Сулема В.Н., Черданцев Ю.П., Шадрин В.Н.
Угловые распределения ядер отдачи ^{1,2} н при упругом соударении с ионами ⁴ Н и ¹ Н 37
Гречухин Д.П., Солдатов А.А.
Электрон-позитронные факторы сечений возбуждения ядра при аннигиляции позитронов на К-оболочке тяжелых атомов
Библиограйический индекс работ, помещенных в настоящем выпуске, в Международной системе СИНДА 54

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор О.Д.КАЗАЧКОВСКИЙ

НЕЙТРОННЫЕ КОНСТАНТЫ И ПАРАМЕТРЫ

Зам.главного редактора Л.Н.УСАЧЕВ

П.П.Благоволин, В.П.Вертебный, В.Я.Головня, Ю.С.Замятнин, Ю.А.Казанский, С.С.Коваленко, В.Е.Колесов, В.А.Коньшин, Б.Д.Кузьминов, В.Н.Манохин, В.И.Матвеев, В.И.Мостовой, Г.В.Мурадян, М.Н.Николаев, Э.Е.Петров, Ю.П.Попов, Г.Я.Труханов, О.А.Сальников, С.И.Сухоручкин, Г.Е.Шаталов, Г.Б.Яньков, Г.Б.Ярына, М.С.Юткевич

КОНСТАНТЫ И ПАРАМЕТРЫ СТРУКТУРЫ ЯДРА И ЯДЕРНЫХ РЕАКЦИЙ

Зам.главного редактора А.Г.ЗЕЛЕНКОВ

Б.Я.Гужовский, П.П.Дмитриев, Б.С.Ишханов, Е.Г.Копанец, Ю.В.Сергеенков Ю.В.Хольнов, Н.П.Чижова, Ф.Е.Чукреев

Ответственный секретарь Д.А.КАРДАШЕВ

Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике (ЦНИИатоминформ), 1980 удк 539.173.4 Радиационный захват нейтронов с энергией до 3 мэв делящимися ядрами В.А. Зеневич, А.Б. Клепацкий, В.А. Коньшин, Е.Ш. Суховицкий

> **BADIATIVE CAPTURE CROSS-SECTIONS FOR FISSILE NUCLEI FOR NEUTRON ENERGIES UP** TO 3 MeV, Radiative capture crosssections for 238U, 239Pu and 240Pu are calculated using the following level density models: the fermi-gas model, the fermi-gas model involving collective modes and the superfluid nucleus model. The non-spherical potential with carefully adjusted parameters is used to calculate neutron transmission coefficients. It is concluded that the best agreement between the experimental and theoretical data can be obtained for the level density fermi-gas model involving collective modes.

В последнее время все большее значение приобретают оценка и предсказание нейтронных сечений тяжелых деляцихся ядер. В первую очередь это относится к наименее изученному экспериментально сечению радиационного захвата σ_{χ} . В настоящей работе на основе современных представлений о вероятностях различных процессов распада составного ядра предпринята попытка выяснить возможность предсказания σ_{χ} в области энергий до 3 МэВ.

Важнейшее влияние на расчет парциальных сечений оказывают нейтронные проницаемости, так как они определяют сечение образования составного ядра и конкуренцию реакций с вылетом нейтронов другим процессам. Наиболее корректно нейтронные проницаемости могут быть получены методом связанных каналов /1/, позволяющим учесть наличие в деформированных ядрах связи уровней основной ротационной полосы. Расчеты проводились для ²³⁸0, ²³⁹Pu и ²⁴⁰Pu, деформированный потенциал dб о

для которых оптимизировался по имеющимся экспериментальным данным: S_0 , S_1 , \mathcal{O}_p , $\mathcal{O}_t(E)$, $\frac{d\mathcal{O}_{el}}{d\Omega}$, $\frac{d\mathcal{O}_{in}}{d\Omega}$. Использованный потенциал имеет единые для всех трех ядер геометрические параметры, а изотопическая зависимость определяется выбранными величинами действительной и мнимой глубин потенциала и параметрами деформации ядер.

Делительные проницаемости задавались в виде, учитывающем опиновую зависимость:

$$T_{FJ}(E) = (2J + 1) exp \left[-\frac{(J + 1/2)^2}{2\sigma^2} \right] T_f(E),$$

где $T_f(E)$ определялась из подгонки расчетного сечения деления к экспериментальному. При расчетах ширин и сечения деления ²³⁹Ра использовались дискретный спектр переходных состояний и параметры барьеров деления из работы [2].

Проницаемости радиационного захвата рассчитывались в предположении, что основным механизмом радиационного захвата является разрядка составного ядра в результате испускания *п*-квантов. Энергетическая зависимость вероятности испускания *п*-квантов выбрана в виде поренцевской кривой с параметрами гигантского резонанса /3/. В расчетах принимались во внимание только электрические дипольные переходы. Конкуренция (*n*, *nf*)-и (*n*, *nn*)-реакций радиационному захвату учитывалась аналогично данным работы /4/. Проницаемости нормировались к экспериментальным величинам /5,6/. Спектральный фактор в форме Вайскопфа в наших расчетах б_л не использовался, так как он не может объяснить экспериментально обнаруженный гигантский резонанс в сечении фотопоглощения. Кроме того, эта зависимость не позволяет получить согласие с экспериментальными данными /7,8/ по (*n*, *nf*)-реакции (табл.1).

Таблица 1

Модель	$\langle \Gamma_{gf}^{0+} \rangle - \langle \Gamma_{gf}^{1+} \rangle$	$\langle \Gamma_{rf}^{i+} \rangle$
	мәВ	мэВ
Ферми-газ (Лоренц)	5,94	5,46
" (Вайсконф)	10,59	11,55
Ферми-газ с учетом коллективных мод (Лоренц) То же (Вайскопф)	3,62 7,25	3,11 7,28
Сверхтекучая модель (Лоренц) То же (Вайскопф) По ванчым работ /7.87	6,40 11,42 <4	6,23 13,37 4.1+0.9

Значения ширин (n, rf)-реакции для ²³⁹Ри при различных моделях плотности уровней и спектральных факторах

Таким образом, необходимые для расчетов по статистической модели величины, кроме плотности уровней, определены. Для предсказания энергетической зависимости плотности уровней, сказываюцей важное влияние на расчет нейтронных сечений. применяются различные физические модели. В расчетах по статистической модели широко используется модель ферми-газа. В последние годы появились указания на нессответствие этой модели как выводам микроскопической теории, так и некоторым экспериментальным данным (9/. Поэтому наряду со строгими, но очень трудоемкими микроскопическими моделями плотности уровней /10,11/ разрабатывались также методы статистического усреднения /12,13/, достаточно простне и удобные для практических расчетов, включающие в себя основные результаты микроскопической теории. Эти модели учитывают существование оболочечных неодно-

родностей в спектре одночастичных уровней, корреляционные эффекты сверхпроводящего типа и когерентные эффекты коллективной природы.

 ${
m T}$ радиционная модель ферми-газа дает следующее выражение для $ho(U,{
m J})$:

$$\rho_{\Phi,-C}(U,J) = \frac{2J+i}{24\sqrt{2}\sigma^3 a^{1/4}(U-\sigma)^{5/4}} \exp\left[2\sqrt{a(U-\sigma)} - \frac{(J+1/2)^2}{2\sigma^2}\right],$$
(1)

где

 $\mathcal{O}^2 = \frac{6}{\pi^2} \overline{m^2} \sqrt{a(U-\delta)}$; α - основной параметр плотности уровней, пропорциональный плотности одночастичных состояний на поверхности Ферми и определяемый из плотности нейтронных резонансов. Величина m² обычно выбирается на основе квазиклассической оценки (0,22-0,25 A^{2/3}). поправка в взята нами из работы /14/.

Учет оболочечных эффектов в модели ферми-газа осуществляется путем введения зависимости параметра α от энергии возбуждения и оболочечной поправки d'W в формуле масс /15/:

$$\alpha = \widetilde{\alpha} \left[\mathbf{i} + \mathbf{f}(\mathbf{U}) \delta \mathbf{W} / (\mathbf{U} - \delta) \right] ,$$

где $f(U) = 1 - \exp\left[-\gamma(U - \delta)\right]; \quad \widetilde{a}$ и γ - параметры, определяемые из систематики.

При учете коллективных эффектов формула (1) приобретает вид

$$\mathcal{P}(\mathbf{U},\mathbf{J}) = \mathbf{K}_{6p}(\mathbf{U})\mathbf{K}_{\kappa p \lambda}(\mathbf{U})\mathcal{P}_{m-r}(\mathbf{U},\mathbf{J}).$$

Вопрос об энергетической зависимости коэффициентов увеличения плотности уровней К 60(U) и К кол (U), обусловленных вращательными и колебательными модами, далеко не ясен. Особенно ненадежны оценки вклада этих состояний в промежуточной области энергий между дискретным спектром низколежащих состояний и энергией связи нейтрона. Модель постоянной температуры также не гарантирует адекватного воспроизведения плотности уровней на некотором удалении от экспериментально разрешенного дискретного спектра. В настоящей работе выражения для К_{бр}, К_{кол} и б² взяты из работ /13.167:

$$K_{\beta p}(U) = F_{\perp}t ;$$

$$K_{\kappa 0\Lambda}(U) = \exp(0.25a^{2/3}t^{4/3});$$

$$\mathscr{O}^{2} = F_{\perp}^{2/3}F_{\parallel}^{4/3}t ,$$
(2)

где F₁ и F₁₁ - перпендикулярный и параллельний моменты инерции, рассчитываемые по данным ра-боты [13]; t - температура возбужденного ядра.

Соотномения плотности уровней из сверхтекучей модели ядра взяты из работы (13). В отличие от этих данных коэффициент K_{KOA} взят в виде, представленном в выражении (2), а энергетическая зависимость параметра a, которой можно пренебречь при малых значениях δW , не учитывалась. Значения параметра aдля всех моделей выбирались из согласия расчета с экспэриментальными данными по величине $\langle D \rangle_{HaGA}$ (5, 6,17-19/ (табл.2).

Расчет нейтронных сечений проводили на основе формализма Хаузера — Фешбаха. До границы дискретного и непрерывного спектров уровней адра-мишени использовали модификацию формализма, учитывающую эффекти фликтуации нейтронных и делительных ширин и Значения (D) набл и (Гр) набл, использованные в расчетах

Составное ядро	⟨D⟩ _{набл} , аВ	<Г _у у _{набл} , мэВ
238 _y	2,5 [17]	-
²³⁹ u	24,8 [18]	23,5 (ENDF/B-IV)
239 Pa	9,5/19/	-
240 Pu	2,38 /5/	43,3 [5]
²⁴¹ Pu	13,5 [6]	30,7 [6]

Табляца 2

корреляции входного и выходного упругого каналов. В более высокой области энергий расчети проводили с использованием формализма работи [20]. Схема уровней ²³⁸и взята из работи [21], ²³⁹ Ра и ²⁴⁰ Ра – из работи [22].

Сравнение сечений радиационного захвата нейтронов ядрами ²³⁸U, ²³⁹Pa и ²⁴⁰Pa, рассчитанных с использованием спектрального фактора Доренца и плотности уровней из различных моделей, с экспериментальными данными в области 0,1 – 3,0 МэВ приведено на рис.1.

Рис.1. Сечение радиационного захвата ²³⁸U (a), ²³⁹Pu (б) и ²⁴⁰Pu (в) для различных моделей плотности уровней и спектрального фактора в форме Доренца: 1 - ферми-газ; 2 - модель сверхтекучего ядра; 3 - ферми-газ с учетом ксилективных мод (знаки - данные разных авторов)

Интересно сравнить рассчитиваемые значения ширин (n, pf)-реакции для ²³⁹ Ри с экспериментальными данными (см.табл.1). Как видно, наилучшее согласие по (n, pf)-ширинам достигается для спектрального фактора Лоренца и плотности уровней из модели ферми-газа с учетом коллективных мод. На расчет бу выше границы дискретного и непрерывного спектров уровней ядра-мишени наряду с плотностью уровней составного ядра оказывает влияние плотность уровней ядра-мишени, определяющая величину сечения неупругого рассеяния в непрерывный спектр. О правильности описания плотности уровней ядра-мишени при низких энергиях возбуждения можно также судить, анализируя сечения возбуждения дискретных уровней. Здесь в расчет входит только плотность уровней ядра-мишени в интервале энергий, непосредственно примыкающем к экспериментально разрешенному дискретному спектру. Сравнение рассчитанных сечений возбуждения дискретных уровней ²³⁹ Ри (с учетом прямого возбуждения низколежащих коллективных уровней) с экспериментом также свидетельствует в пользу модели ферми-газа с учетом коллективных мод (рис.2).

Таким образом, плотность уровней из модели ферми-газа с учетом коллективных мод позволяет получить наилучшее согласие с экспериментом для рассматриваемых ядер как по сечению б, , так и по сечениям возбуждения дискретных уровней. Проведенный анализ показывает, что в расчетах парциальных нейтронных сечений тяжелых делящихся ядер по статистической модели необходимо учитывать деформированность этих ядер в двух аспектах: при определении нейтронных проницаемостей и при определении плотности уровней.

Список литературы

- 1. Tamura T. Rev. Modern Phys., 1965, v.37, p.679-708.
- 2. Анципов Г.В., Зеневич В.А., Клепацкий А.Б. и др. Изв.АН БССР. Сер.физ.-энерг.н., 1979. вып.4, с. 13-19.
- . мучко В.Е., Остапенко D.Б., Смиренкин Г.Н. и др. Ядерная физика, 1978, т.28, вып.5(11), с.1170-1184.
- Суховицкий Е.Ш., Клепацкий А.Б., Коньшин В.А., Анципов Г.В. В кн.: Нейтронная физика (Материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, 18-22 апреля 1977 г.). М., ЦНИИатоминформ, 1977 г., ч.4, с.68-74.
- 5. Коньшин В.А., Мороговский Г.Б., Суховицкий Е.Ш. Изв.АН БССР. Сер. физ.-энерг.н., 1974, вып.2, с. 21-28.
- Анципов Г.В., Бендерский А.Р., Коньшин В.А., Суховицкий Е.Ш. В кн.: Нейтронная физика (Материалы 3-й Всесоюзной конференции по нейтронной физике, Киев, 9-13 июня 1975 г.). М., ЦНИИатоминформ, 1976, ч.2, с.34-37.
- 7. Зен Чан Бом, Пантелеев Ц., Тян Сан Хак. Изв. AH СССР, т.37, вып.1, с.82-85.

- 8. Ryabov Yu., Trochon J., Shackleton D. Nucl. Phys., 1973, v. A216, p.395-406.
- 9. Блохин А.И., Игнатюк А.В., Платонов В.П., Толстиков В.А. Вопросы атомной науки и техники. Сер. Адерные константы, 1976, вып.21, с.3-14.
- 10. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl. Phys., 1974, v. A224, p.411-428.
- 11. Воронов В.В., Комов А.Л., Малов Л.А., Соловьев В.Г. Адерная физика, 1976, т.24, с.504-507.
- 12. Игнатюк А.В., Соколов Б.В., Шубин Б.Н. Там же, 1973, т.18, с.989-998.
- 13. Игнатик А.В., Истеков К.К., Смиренкин Г.Н. Там же, 1979, т.29, с.875-883.
- 14. Nemirovsky P.E., Adamchuk Yu.V. Nucl.Phys., 1962, v.39, N 4, p.551-562.
- 15. Игнатюк А.В., Смиренкин Г.Н., Тишин А.С. Ядерная физика, 1975, т.21, с.485-490.
- 16. Игнаток А.В., Истеков К.К., Смиренкин Г.Н. См. [4], ч.1, с.60-65.
- 17. Lynn J.E. AERE-R7468, Harwell, 1974.
- 18. De Saussure G., Olsen D.K., Perez R.B., Difilippo F.C. Progr.Nucl.Emergy, 1979, v.3, p.87-124.
- 19. Mughabghab S.F., Garber D.I. BNL-325, 3-rd ed., 1973, v.1.
- 20. Tepel J.W., Hofmann H.M., Weidenmüller H.A. Phys.Letters, 1974, v.49B, p.1-4.
- 21. Lambropoulos P. Nucl. Sci. and Engng, 1971, v.46, p.356-365.
- 22. Nuclear Data Sheets. ORNL, 1969.

Статья поступила в редакцию 19 мая 1980 г.

刃底 539.171.017

УЛРУГОЕ И НЕУПРУГОЕ РАССЕЯНИЕ НЕЙТРОНОВ С ЭНЕРГИЯМИ ОТ 5 ДО 8 МЭВ НА ПРИРОДНОМ МОЛИБДЕНЕ

С.П. Симаков, Г.Н. Ловчикова, О.А. Сальников, А.Ш. Труфанов, В. Пильц, Х. Фёрч, Т. Штрайль

> ELASTIC AND INELASTIC SCATTERING OF NEUTRONS IN THE ENERGY RANGE FROM 5 TO 8 MeV BY NATURAL MOLYBDENUM. Differential cross-sections of elastic and inelastic scattering of neutrons by molybdenum have been measured for incedent neutron energies 4,91; 5,98; 6,98 and 8,01 MeV. The measurements were performed by time-of-flight method using the gas tritium target as the neutron source. The basic details of experimental arrangement and data redaction procedure are presented. Crosssections were compared to available data from another works and are listed in tables.

Настоящая работа является продолжением начатых исследований процессов неупругого рассеяния нейтронов на некоторых элементах в области энергий в несколько мегаэлектрон-вольт [1]. Эти исследования представляют интерес для теории ядерных реакций и имеют большое практическое значение. Так, в списке запросов на ядерные данзые WRENDA 79/80 [2] в рассматриваемой области энергий нейтронов требуются дифференциальные сечения упругого рассеяния на природном молибдене с точностью не хуже 10%, а также угловые и энергетические распределения неупруго рассеянных нейтронов с точностью 15%. Эти сечения необходимы для быстрых реакторов, расчета бланкетов и защиты термоядерных установок, а также для решения проблем, связанных с транспортировкой нейтронов в них.

<u>Эксперимент</u>. Измерение дифференциальных сечений упругого и неупругого рассеяния нейтронов молибденом проводилось на спектрометре по времени пролета <u>/</u>3/ с газовой тритиевой мишенью <u>/</u>4/ в качестве источника нейтронов. С подробным описанием экспериментальной установки можно ознакомиться в указанных работах. В настоящей работе дается лишь краткая сволка экспериментальных условий, в которых выполнены измерения.

Источник нейтронов – реакция T(p,n). Давление газообразного трития в мишени 1,8 атм; два входных окошка, между которыми циркулирует охлаждающий поток гелия при давлении 1 атм, выполнены из ⁵⁸мі-фольг толщиной по 8,7 мг/см². Мишень дает поток вылетающих вперед нейтронов около 10^8 нейтр./(ср.мкКл). Измерения выполнены при четырех начальных энергиях нейтронов, падающих на образец: 4,91±0,06; 5,98±0,07; 6,98±0,07 и 8,01±0,08 МэВ.

Источник протонов – перезарядный электростатический ускоритель ЭГП-10М, работающий в импульсном режиме. Энергия ускоренных протонов 6,5-9,5 МэВ, длительность сгустка протонов на мишени около 1 нс, частота их повторения 5 МГц, средний ток на мишени 1,5-2,5 мкА.

Исследуемый образец – металлический молибден (химическая чистота металла 99,8%), выполненный в виде полого цилиндра со следующими размерами: внешний диаметр 3,1 см, внутренний 1,6 см, высота 5,0 см. Образец, который располагали на расстоянии 15 см перед мишенью, содержал 2,94 моля ядер природного молибдена. Для привязки сечений рассеяния нейтронов исследуемым образцом к сечению (n, p)-рассеяния использовали водородсодержащий образец – полиэтиленовый цилиндр диаметром 1,0 см, высотой 5,0 см, содержащий 0,2573 моля ядер водорода и 0,5176 моля ядер углерода.

Рассеянные нейтроны регистрировались сцинтилляционным детектором (кристалл стильбена и ФЭУ-30) на пролетной базе 200 см. Детектор окружен защитой, которая, вращаясь вокруг образца, располагается под заданным углом к падающему на образец потоку нейтронов: 0° – при измерении потока нейтронов, летящих прямо из мишени; 30°, 45°, 60°, 90°, 120° и 150° – при измерении временны́х спектров упруго и неупруго рассеянных нейтронов образцом.

Мониторирование отдельных измерений на разных углах рассеяния проводили по показаниям дополнительного сцинтилляционного детектора, расположенного под углом 49° на расстоянии 410 см от мишени и измеряющего выход нейтронов из нее. Одновременно временные спектры нейтронов, зарегистрированные монитором и основным детектором, накапливались в памяти. Дополнительную информацию о нейтронном потоке, падающем на образец, получали из показаний двух других мониторов: всеволнового счетчика нейтронов, расположенного под углом 90° на расстоянии 300 см от мишени, и интегратора тока, измеряющего заряд (число) протонов, упавших на мишень во время замера.

Методика измерений сечений рассеяния нейтронов образцом состояла из следующей последовательности процедур. Прямой поток нейтронов из мишени измеряли детектором, расположенным под углом 0°. Затем измеряли спектры нейтронов с образцом ($N_{3+\phi}^{T}$) и без него (N_{ϕ}^{T}) последовательно под всеми перечисленными углами (под 45° дополнительно измеряли спектр нейтронов, рассеянных полиэтиленовым образцом), детектор возвращали на 0° и все процедуры повторяли сначала до набора необходимой статистики отсчетов в спектрах. В зависимости от начальной энергии нейтронов выполнями определенное число аналогичных проходов с вакуумированной мишенью (накапливались соответственно спектри $N_{0+\phi}^{\circ}$ и N_{ϕ}°).

<u>Обработка данных</u>. Первоначально для каждого угла рассеяния проводится сдвиг и суммирование временных спектров (детекторного и мониторного) из разных проходов. Из суммарного временного спектра монитора извлекается число нейтронов $N_{\rm M}$, вылетающих из мишени и зарегистрированных монитором. Из спектра нейтронов, рассеянных полиэтиленом, находится число нейтронов $N_{\rm np}$, провзаимодействовавших с водородом. Затем на основе измерений с тритием в мишени и без него находится чистый эффект упруго и неупруго рассеянных образцом на определенный угол нейтронов:

$$N(0,t) = \left(N_{9+\phi}^{T} - N_{\phi}^{T}\right) - \left(N_{9+\phi}^{0} - N_{\phi}^{0}\right).$$

Выражение, стоящее в первых скобках, соответствует суммарному эффекту ст рассеяния нейтронов с начальной энергией $\mathbf{E}_{\mathbf{0}}$ [образованных в реакции T(p,n)] и от рассеяния нейтронов со всеми другими энергиями (образованных в конструкционных материалах мишени под действием падающего пучка протонов). Вклад последних учитывается вычитанием эффекта, измеренного с вакуумированной мишенью (выражение, стоящее во вторых скобках). Вычитание спектров, измеренных с тритием и без трития, производится после их приведения к одному числу протонов, зарегистрированных интегратором тока в этих измерениях. Далее во временных спектрах проводится разделение процессов упруго и неупруго рассеянных нейтронов. В качестве формы пика упруго рассеянных нейтронов принимается пик нейтронов, измеренный детектором под углом 0°, в форму которого вносятся рассчитанные методом Монте-Карло поправки на эффекти конечных размеров образца и многократное упругое рассеяние в нем. Вершина полученного пика совмещается и нормируется с верштной упругого цика в спектре рассеянных нейтронов. В соответствии с его формой определяется вклад упруго рассеянных нейтронов в той части спектра, где процесси упругого и неупругого рассеяния плохо разделены из-за конечного разрешения спектрометра.

Полученные таким образом временные спектры двух процессов переводят в энергетические N(0,E) и находят соответствующие дифференциальные сечения (например, для неупругого рассеяния):

$$\mathcal{O}(\Theta, \mathbf{E}) = \mathcal{O}_{np}(45^{\circ}) \frac{\varepsilon_{\mathrm{D}}(\mathbf{E}_{np})}{\varepsilon_{\mathrm{D}}(\mathbf{E})} \frac{N(\Theta, \mathbf{E})}{N_{\mathrm{np}}} \frac{N_{\mathrm{M}}^{np}}{N_{\mathrm{M}}} \frac{\alpha_{np}}{\alpha} \frac{\beta}{\beta_{np}} \frac{M_{\mathrm{H}}}{M} .$$

отношение среднего нейтронного потока в образце $\langle I \rangle$ к потоку I_0 , создаваемому мишенью в его геометрическом центре (коэффициент α определяли как интеграл по всему объему образца), где Σ полное макроскопическое сечение взаимодействия нейтронов с ядрами образца, \overline{z} - радиус-вектор из центра мишени до точки интегрирования, $\overline{z'}$ - параллельный ему вектор до точки, лежащей на поверхности образца, $L_{\rm ST}$ - расстояние от центра мишени до геометрического центра образца; $\beta = \overline{\sigma} (\Theta, E)/\overline{\sigma}_{\rm M-K}(\Theta, E)$ - поправка на эффекты многократного взаимодействия нейтронов с

β = б(θ, E)/б_{M-K}(θ, E) - поправка на эффекты многократного взаимодействия нейтронов с ядрами рассеивателя, определяемая отношением истинного сечения неугругого рассеяния к сечению неупругого рассеяния на образце конечных размеров, рассчитываемого методом Монте-Карло (величину β находят в результате иттерационных процедур, где в качестве первого приближения к истинному сечению рассеяния берется экспериментальный спектр); $\alpha_{\rm np}$, $\beta_{\rm np}$ - соответствующие величины для полиэтиленового образца; $M_{\rm H}/M$ - отношение числа ядер водорода в полиэтиленовом рассеивателе к числу ядер исследуемого образца.

Абсолютные сечения рассеяния нейтронов можно также получить, используя измерения прямого потока нейтронов под углом 0⁰:

$$\mathcal{O}(\Theta, E) = \frac{\varepsilon_{\mathrm{D}}(E_{\mathrm{O}})}{\varepsilon_{\mathrm{D}}(E)} \frac{N(\Theta, E)}{N(O^{\circ}, E_{\mathrm{O}})} \frac{N_{\mathrm{M}}^{\circ}}{N_{\mathrm{M}}} \left(\frac{L_{\mathrm{ST}}}{L_{\mathrm{ST}}} \frac{L_{\mathrm{SD}}}{L_{\mathrm{ST}}}\right)^{2} \frac{\beta}{\alpha} \frac{1}{M} \cdot$$

Здесь $N(0^{\circ}, E_{0})$ и N_{M}° - числа отсчетов, зарегистрированных детектором и монитором при измерениях прямого потока; L_{SD} - расстояние от образца до детектора. Сечения рассеяния нейтронов, полученные обоими способами, согласуются в пределах нескольких процентов.

Представление сечений и сравнение с данными других авторов. Измеренные и обработанные описанными методами сечения неупругого рассеяния нейтронов на природном молибдене с начальными энергиями 4,91; 5,98; 6,98 и 8,01 МэВ помещены в табл.1-4. Сечения даются в лабораторной системе координат как функции угла и энергии рассеянных нейтронов. В таблицах помещены статистические ошибки сечений (2-10%); ошибки, связанные с переводом временных спектров в энергетические (3%), а также с разделением упругого и неупругого рассеяния, что имеет значение в основном в высокоэнергетической части спектров под углом 30° (10-20%); ошибки относительной эффективности детектора (2-5%); погрешности введения поправок на эффекты многократных соударений нейтронов в образце (2%) и неопределенность абсолютной привязки сечений к (n,p)-рассеянию (4%).

Таблица I

	Углы					
E, MƏB	30 ⁰	0 ⁰ 45 ⁰ 60 ⁰		90 ⁰	120 ⁰	150 ⁰
i .65 i .75 i .85 i .95 i 1.05 i 1.15 i 1.25 i 1.35 i .55	$\begin{bmatrix} 110.51 \pm 5.95 \\ 100.45 \pm 5.35 \\ 100.61 \pm 5.25 \\ 92.19 \pm 4.77 \\ 77.68 \pm 4.01 \\ 65.14 \pm 3.37 \\ 161.42 \pm 3.15 \\ 157.27 \pm 2.93 \\ 151 = 1.42 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
I 1.55 I 1.65 I 1.65 I 1.75 I 1.84 I 1.95 I 2.05 I 2.15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 39.46 \pm 1.99 \\ 39.74 \pm 1.99 \\ 38.26 \pm 1.91 \\ 33.55 \pm 1.68 \\ 29.08 \pm 1.46 \\ 26.11 \pm 1.34 \\ 23.53 \pm 1.21 \\ 23.64 \\ 23.64 \\ 24.12 \\ 23.64 \\ 24.12 \\ 23.54 \\ 24.12 $
1 2.25 1 2.34 1 2.44 1 2.54 1 2.65 1 2.65 1 2.85 1 2.85 1 2.95	$\begin{bmatrix} 25, 97 \pm 1.39\\ 25, 17 \pm 1.41\\ 21, 08 \pm 1.22\\ 1, 17, 23 \pm 1.06\\ 1, 15, 97 \pm .98\\ 1, 13, 63 \pm .98\\ 1, 10, 40 \pm .86\\ 1, 10, 08 \pm .82 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 23.36 \pm 2.24 \\ 20.95 \pm 1.11 \\ 18.53 \pm .99 \\ 16.59 \pm .89 \\ 14.99 \pm .81 \\ 13.76 \pm .81 \\ 10.93 \pm .69 \\ 10.93 \pm .69 \\ \end{bmatrix}$	$18,94 \pm 1,02 I I I I I I I I I I I I I I I I I I I$
I 3.05 I 3.15 I 3.24 I 3.34 I 3.45 I 3.55 I 3.65 I 3.74 I 3.84 I 3.94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I $R.63 \pm .65$ $.65$ I $9.93 \pm .87$ $.87$ I $1.13 \pm .73$ $.73$ I $2.16 \pm .93$ $.66$ I $7.28 \pm .75$ $.744 \pm .74$ I $8.79 \pm .80$ $.80$ I $1.97 \pm .94$ $.94$ I 14.08 ± 1.05 $.05$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 8.66 \pm .62\\ 9.64 \pm .80\\ 10.00 \pm .65\\ 9.53 \pm .77\\ 16.74 \pm .52\\ 15.00 \pm .61\\ 16.26 \pm .64\\ 17.39 \pm .79\\ 10.25 \pm .82\\ \end{bmatrix}$	9.12 \pm .60 19.95 \pm .75 19.95 \pm .62 18.44 \pm .69 15.82 \pm .45 15.69 \pm .56 15.41 \pm .57 16.03 \pm .58 17.84 \pm .67 19.33 \pm .74 19.33 \pm .74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
I 4.05 I 4.16 I 4.24	I 24.27 ± 3.37 I 25.97 ± 3.46 I 22.27 ± 3.51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.03 ± 1.30 12.72 ± 1.25 12.06 ± 1.33	1 9,02 ± .81 I 8,35 ± .79 I 6.01 ± .75	$7.70 \pm .68$ $5.94 \pm .64$ $3.52 \pm .61$	0,72 ± .74 I 7,16 ± .70 I 3,88 ± .65 I

Дифференциальные сечения неупругого рассеяния нейтронов (мб/ср·МаВ) с энергией 4,91±0,06 МаВ на молибдене

-

Таблица 4

•

Джфференциальные сечения неупругого рассеяния нейтронов (мо/ср. МэВ) с энергией 5,98±0,07 МзВ на молибдене

R MoP	·	•	у гли	······································		
, mod	30 ⁰	45 ⁰	60 ⁰	90 ⁰	120 ⁰	150 ⁰
1 .65 1	\$6.72 ± 5.65 ;	95.20 ± 5.55 ;	93.5° ± 5.40 1	93.80 ± 5.27 1	n9.13 ± 5.15 1	98.32 ± 5.18 1
			90.20 ± 5.11 g	A. 48 ± 4.67 [E5.13 ± 4.43 1	84.35 ± 4.80 I
1 .96.1		P6 64 6 6 75 -	77 26 4 . 24	3 87 4 4 6 j	78,74 ± 8,38 ±	
1 1.05 1	78.58 + 4.06	77.3 4.0	70.61 + 3.93	69 60 • 3 7a s		
1 1.15 1	75.35 4 4.53	72.57 + 3.00	66.64 ± 3.67	61.55 # 3.54 1	$e_{0,1} = 2 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	45 47 4 7 51 4
1 1.25 1	70.13 ± 3.72 1	69.00 ± 3.67 +	64.75 ± 3.42	61.32 ± 3.24 T	61.17 # 3.23 1	61 2 + 3,23 1
1 1.35 1	64.69 ± 3.43 1	60.5 2 3.11	50.20 ± 3.11	56.39 ± 2.96 1	54.55 ± 2.67 1	57.17 + 3.00 r
1 1.45 1	61.10 ± 3.19 1	58,37 ± 3.64 T	54.50 ± 1.83	51.97 ± 2.69 1	#1.18 ± 2.65 1	*1 51 + 2,68 T
J 1,55 I	56.09 # 2.91 1	5 53,3h ± 2,76 y	50.23 ± 1.58 j	48.34 \$ 2.48 1	47.05 ± 2.45 1	47.73 + 2.48
1 1.65 1	51.26 ± 2.66 ;		44.65 ±29	47.11 ± 2.21 I	42.71 ± 2.19 1	42.57 ± 2.23
1 1.75 1	43.34 + 2.18 1	43.7 ± 2.28 m	41.57 ± 2.13 1	- 39,26 ± 2.04 I	39,52 ± 2.03 1	38,91 ± 2,05 j
1 1.65 1	41.82 ± 2.1° :	41.20 ± 2.12 +	37.23 ± 1.90 1	35.03 ± 1.83 1	36,00 ± 1,03 1	37,90 ± 1,95 1
1 1.95 1	18.28 ± 1.57		54.08 ± 1.76 j	33.30 ± 1.6A [32,85 ± 1.66 1	32.60 ± 1.67 I
2.05	30 10 1 100	- 32,276 ± 1,75 p	20.75 ± 1.59 1	27.51 ± 1.51 I	28.78 ± 1.48 I	$28,34 \pm 1.49$ I
1 2.10	- 20.90 S 1404 I		2.07 ± .42	25.11 ± 1.54	25.68 4 1.33 I	27.92 ± 1.96 1
1 2.29 1	27,00 £ 1.01 1 26 26 4 1 40 T		27 58 4 5 58 1		24,25 2 1,36 1	24,08 ± 1,32]
	23.24 + 1.33 1	23.69 + 1.10	20.30 + 0.00		· · · · · · · · · · · · · · · · · · ·	22.0 ± 1.10
2.55 1	21.96 4 1.26 1	19.6	18.60 +	13 28 4 99	18 21 + .00 1	17 74 1 03 1
1 2.64 1	20.14 1.27 1	18.57 - 1.13	17.39 ±	$1^{-}.81 \neq 1.01$	7 36 4 1.00	16 30 . 96
1 2.75 1	20.09 1 1.15 1	19.7- ± 1.15	17.70 ± .94	17.15 ± .91 1	15.70 ± .86 1	16 37
1 2.84 1	19.50 # 1.20 :	17.75 ± 1.06 +	14.47 1 .95 1	15.15 ± .91 1	15.12 ± .88 1	14.91 + .83 1
1 2.96 1	18.47 ± 1.15 1	17.0/ ± 1.(1 +	14.89 ± .27	13.82 ± .8	13.99 ± .82 1	3.58
1 3.05 1	16.86 ± 1.70 I	16.1r ± 1.14 1	13.95 ± .98	12.57 ± .9 1	11.F2 ± .E7 1	12.68 + .81 1
1 3.14 1	15.81 ± 1.(1 I	13.78 ± .85 ;	12.79 # .77	11.94 ± .75 I	11.88 ± .71 I	11,23 ± .66 1
1 3.25 1	14.93 ± .56 I	12.6: ± .79 ;	11.51 ± .71 j	11.31 ± .70 I	11.75 ± .68 j	9,78 ± ,60 1
1 3+35 1	15.21 ± 1.16 [13.75 ± .98 +	$11.25 \pm .83$	13.94 ± .84 I	1.07 ± +79 I	9,33 ± .69 1
1 3.44 1	14.97 ± 1.13 I	11.8n ± -11 T	16.93 ± .82	11.45 ± .86 I	10.29 ± .75 1	8,30 ± .64 1
1 3.25 1	12.53 ± -85 1	16,90 ± -73 r	1(.41 ± .65]	1:.44 ± .67 [0.42 ± .50 I	7.35 ± .49 1
1 3.06 [14.17 ± .61 1	0,/1 ± .75 I	1".78 * .89 I	9.10 ± .60 I	6.24 ± -56 I
1 9 86 1		8.84 4 73 -	7 62 6 49	7 70 4 40 1	777 6 6 6	h. 29 ± . 36 [
1 3.94 1	9 43 4 .57 1	8.0. + 71 -		7 14 + 65	A 55 A 54 .	4 9 4 5 5 0 1
1 4.06 1	8.81 4 .64 1	7.1-+ .66 .	5.85 ± .62	5.91 + .4.	5 78 + .51 1	
1 4.15 1	9.07 # .84 1	6.4- + .14 .	5.54 ± .61	5.64 ± .61 +	5.04 4 .50 1	5 12 4 .51 1
1 4.23 1	10.03 ± 1.11 1	6.7 2 .65 1	6.17 ± .63	6.C7 ± .6. T	5.48 ± .51 1	5.03 + .51 1
1 4.35 1	11.04 ± 1.43 T	7.67 ± .68 +	6.06 ± .64	5.32 4 .54 1	5.24 ± .50 1	4.42 + .49 1
1 4.44 1	11.34 ± 14.67 I	6.9: ± .66 ;	6.22 ± .66	4.68 ± .58 I	4.80 ± .48 1	3.68 4.48
I 4.54 I	12.07 ± 1.99 1	6.25 2 .65 1	6.3C ± .67	4.41 ± .56 1	4.54 ± .47 j	3 31 ± .49
1 4.64 1	11.86 ± 2.45 1	6.8a ± .17 1	7.71 ± .73	3.14 2 .58 1	e'au # .ed 1	4.52 4 ,52 1
1 4.74 1	12.21 * 2.93 I	7.5/ ±2 ;	7.82 4 .76 ;	3.47 ± .61 I	5.20 2 .53 1	5,27 ± .55 j
I 4.85 I	15.99 ± 3.68 1	9,47 ± .51 ;	9.29 ± .84 1	7.19 ± .66 1	5.25 ± -55 I	5,72 ± ,57 1
1 4.96 1	17.15 ± 4.77 1	10,32 ± .50 t	10.17 ± .90 T	7,02 ± .67 1	5,13 ± -56 I	6.17 ± .59 1
1 5.07 1	19,96 ± 6,14 !	10.07 ± -12 1	9,38 ± .93 ;	7,09 ± -70 I	5.92 ± .61 I	6.33 ± .61 1
1 5.14 1	20.51 ± 7.22		9.79 ± .99 1	6.49 t .70 I	5.07 ± .63 I	2.25 T '00 I
1 2122 1	22.47 # 0.25	9+56 # +53 I	6.93 £ .95]	2.50 x .64 I	5'45 T '62 I	•,04 ± .56 I

.

.

•

. •

•

Измерения сечений неупругого и упругого рассеяния нейтронов природным молибденом при начальной энергии нейтронов 5,0 МэВ опубликованы в работе [6]. В ней приведен интегральный спектр неупруго рассеянных нейтронов с энергиями 0,425-3,675 МэВ. На рис.1 этот спектр сравнивается с данными настоящей работы. Сечения представлены как функции энергии возбуждения конечного ядра, так как начальные энергии нейтронов в этих экспериментах различаются приблизительно на 100 кэВ. Обращает на себя внимание не только общее хорошее совпадение данных, но и повторение нерегулярностей в спектрах обоих экспериментов.

Рис.І. Сечения неупругого рассеяния нейтронов в зависимости от энергии возбуждения ядра молибдена. Данные: х - настоящей работы при Е₀=4,91 МэВ; • - работы /6/ при Е₀=5,0 МэВ

При начальной энергии 6,04 МэВ сечения упругого и неупругого рассеяния нейтронов измерены авторами работ [7]. К сожалению, они не приводят энергетических спектров рассеянных нейтронов, поэтому сравнение с их данными можно выполнить лишь косвенным образом. В диапазоне энергий рассеянных нейтронов 0,65-1,95 МэВ измеренный в настоящей работе спектр описывается максвелловским распределением с температурой T = 0,63 ± 0,05 МэВ (соответствующая величина, приводимая в работе С [7], составляет 0,53 ± 0,05 МэВ).

Для получения полных сечений неупругого рассеяния нейтронов необходима экстраполяция энергетических спектров рассеянных нейтронов в область энергий, лежащую ниже пороговой энергии эксперимента (E₁ = 0,6 МэВ). Для этого использовали распределение Максвелла $\mathcal{G}(E) = \exp(K) E \exp(-E/T)$, параметры которого К и Т определяли по экспериментальному спектру в диашазоне энергий от E_{I} до примерно 2 МэВ. После этого полное сечение находили согласно выражению

$$\mathcal{O}_{nn'} = \exp(K)T^2 \left\{ I - \left(I + \frac{E_1}{T}\right) \exp(-E_1/T) \right\} + \int_{E_1}^{E_0} \mathcal{O}(E)dE .$$

Полные сечения неупругого рассеяния нейтронов природным молибденом представлены в табл.5 и на рис.2, где для сравнения приводятся сечения, измеренные или оцененные другими авторами. В пределах погрешностей сечения хорошо согласуются друг с другом.

Таблица 5

Е _о , МэВ	б _{лл'} , б	Литература	Е ₀ , М э В	б _{пп'} , б	Литература
4,91	1,94 <u>+</u> 0,14 1,88 <u>+</u> 0,37 2,15	Настоящая работа $(6/, E_0 = 5,0 \text{ M})$ $(8/, E_0 = 5,0 \text{ M})$	6,98	2,10 <u>+</u> 0,15 2,05	Настоящая работа [8], Е ₀ = 7,0 МэВ
5,98	2,05 ± 0,14 2,20 ± 0,30 2,11	Hactomman padota $\sqrt{7}$, $E_0 = 6,04$ MaB $\sqrt{8}$, $E_0 = 6,0$ MaB	8,01	1,88 <u>+</u> 0,13 1,97	Настоящая работа /8/, Е _о = 8,0 МаВ

Полные сечения неупругого рассеяния нейтронов на молибдене

Таблица

.

Дифференциальные сечения неупругого рассеяния нейтронов (мо/ср·МэВ) с энеричей 6,98±0,07 МэВ на молиодене

	Углы					
Е, МәВ	30 ⁰	45 ⁰	√ 60 ⁰	90 ⁰	120 ⁰	150 ⁰
E, Mab	30^{0} I 100.92 ± 6.75 92.19 ± 5.83 86.38 ± 5.32 80.95 ± 4.89 78.21 ± 4.66 70.94 ± 4.15 68.48 ± 3.96 64.07 ± 3.63 61.34 ± 3.46 55.20 ± 3.13 47.96 ± 2.68 45.24 ± 2.56 40.91 ± 2.32 37.36 ± 2.10 53.33 ± 1.94 3 .82 ± 1.92 30.03 ± 1.73 27.22 ± 1.66 24.74 ± 1.49 23.63 ± 1.57 20.89 ± 1.44 18.57 ± 1.20 18.19 ± 1.63 15.82 ± 1.92 15.44 ± 1.15 15.5 ± 1.06 12.28 ± 1.90 10.74 ± 1.16 12.28 ± 1.30 10.63 ± 1.24 10.43 ± .90 10.74 ± 1.16 11.24 ± 1.15 11.65 ± 1.13 10.75 ± 1.07 9.81 ± 1.01 10.93 ± 1.02 9.24 ± .92 10.36 ± .92	45° 99.72 ± 6.32 90.51 ± 5.61 80.76 ± 4.92 78.76 ± 4.92 78.50 ± 4.71 75.60 ± 4.46 72.31 ± 4.19 68.16 ± 3.92 63.24 ± 3.58 57.74 ± 3.22 55.76 ± 3.12 47.60 ± 2.63 44.37 ± 2.48 38.58 ± 2.16 35.78 ± 1.99 33.38 ± 1.88 32.92 ± 1.90 30.44 ± 1.69 28.02 ± 1.61 24.21 ± 1.43 20.55 ± 1.32 17.28 ± 1.061 14.63 ± 1.35 14.90 ± 1.064 $12.43 \pm .93$ $12.76 \pm .93$ $10.66 \pm .92$ $7.82 \pm .78$ $8.36 \pm .79$ $8.98 \pm .78$ $8.73 \pm .77$ $8.73 \pm .77$ $8.73 \pm .77$ $8.73 \pm .77$ $8.47 \pm .74$	$\begin{array}{c} 60^{\circ} \\ \hline 73^{\circ} \\ 73^{\circ} \\ 72^{\circ} \\ \pm \\ 4.92 \\ \hline 73^{\circ} \\ 73^{\circ} \\ 72^{\circ} \\ \pm \\ 4.92 \\ \hline 73^{\circ} \\ 73^{\circ} \\ 72^{\circ} \\ \pm \\ 4.11 \\ \hline 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ \pm \\ 3.03 \\ \hline 54^{\circ} \\ 11^{\circ} \\ 54^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 10^{\circ} \\ 12^{\circ} \\ 10^{\circ} \\ 1$	90° 89.28 ± 5.59 79.90 ± 4.92 79.27 ± 4.78 72.21 ± 4.30 67.95 ± 3.98 62.38 ± 3.61 61.34 ± 3.51 51.34 ± 2.86 151.34 ± 2.86 141.17 ± 2.25 135.77 ± 1.95 135.77 ± 1.95 131.90 ± 1.73 1.36 ± 1.62 28.89 ± 1.62 124.23 ± 1.36 21.26 ± 1.22 19.66 ± 1.12 19.66 ± 1.12 19.66 ± 1.12 $15.54 \pm .90$ 14.45 ± 1.15 $15.54 \pm .90$ 14.45 ± 1.12 $15.54 \pm .90$ 14.45 ± 1.12 19.66 ± 1.12 $10.51 \pm .71$ $10.25 \pm .71$ $10.25 \pm .71$ $10.81 \pm .90$ $10.13 \pm .86$ $9.26 \pm .65$ $10.13 \pm .71$ $10.61 \pm .70$ $10.13 \pm .74$ $10.38 \pm .73$ $10.60 \pm .71$ $10.61 \pm .72$ $7.16 \pm .72$ $7.16 \pm .69$	$I20^{0}$ 85.05 ± 5.35 83.63 ± 5.13 76.18 ± 4.60 71.23 ± 4.25 67.17 ± 3.95 61.53 ± 3.56 57.14 ± 3.20 51.90 ± 2.94 47.24 ± 2.65 44.19 ± 2.48 40.90 ± 2.24 38.45 ± 2.12 34.08 ± 1.67 31.39 ± 1.70 1.57 ± 1.57 27.18 ± 1.57 27.18 ± 1.57 16.47 ± 1.06 15.17 ± 1.06 15.17 ± 1.06 15.17 ± 1.06 11.22 ± .79 10.03 ± .74 9.06 ± .68 8.23 ± .82 16.48 ± .67 16.48 ± .67 16.48 ± .67 16.42 ± .65 16.45 17.38 ± .71 17.32 ± .76 16.46 15.75 16.47 1.00 15.75 1.00 15.75 1.00 15.75 1.00 1.55 1.00 1.22 ± .70 1.00 1.22 ± .70 1.00 1.22 ± .70 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.0	150° 90.41 ± 5.69 I 83.30 ± 5.14 I 78.55 ± 4.75 I 74.45 ± 4.43 I 69.77 ± 4.69 I 64.52 ± 3.72 I 59.48 ± 3.41 I 56.55 ± 3.19 I 52.04 ± 2.90 I 45.66 ± 2.29 I 37.24 ± 2.09 I 32.47 ± 1.84 I 30.12 ± 1.74 I 28.76 ± 1.69 I 25.30 ± 1.41 I 23.41 ± 1.35 I 21.94 ± 1.26 I 19.89 ± 1.14 I 17.05 ± 1.08 I 16.40 ± 1.02 I 15.28 ± .87 I 13.66 ± 1.64 I 11.84 ± .76 I 10.14 ± .69 I 9.45 ± .64 I 8.33 ± .74 I 7.91 ± .71 I 7.51 ± .53 I 7.44 ± .65 I 7.63 ± .66 I 6.36 ± .58 I 5.72 ± .56 I 5.57 ± .54 I 5.61 ± .54 I
4,75 I 4,85 I 4,96 I 5,07 I 5,15 I 5,23 I 5,35 I 5,56 I 5,56 I 5,74 I 5,63 I 5,74 I 5,93 I 1,5,93 I 1,5,93 I 1,5,93 I 1,6,03 I 1,6,23 I 1,6,23 I	10.53 ± .92 1 10.86 ± .91 1 8.64 ± .85 1 9.42 ± .87 1 8.88 ± .85 1 10.90 ± .92 1 10.76 ± .93 1 11.47 ± .99 1 13.04 ± 1.07 1 14.67 ± 1.17 1 16.95 ± 1.31 1 19.35 ± 1.48 1 20.62 ± 1.61 1 21.99 ± 1.79 1 21.73 ± 1.53 1 18.77 ± 2.00 1	7.08 \pm .72 7.54 \pm .70 7.63 \pm .70 6.61 \pm .65 1 6.53 \pm .65 1 5.91 \pm .64 1 5.57 \pm .63 1 6.11 \pm .67 1 6.12 \pm .69 1 6.39 \pm .70 1 8.30 \pm .80 1 9.46 \pm .86 1 10.12 \pm .92 1 10.22 \pm .99 1 7.95 \pm .98 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5.55 \pm .55 I$ $5.98 \pm .55 I$ $5.24 \pm .53 I$ $4.42 \pm .50 I$ $3.98 \pm .48 I$ $3.66 \pm .47 I$ $3.75 \pm .47 I$ $4.15 \pm .49 I$ $4.36 \pm .50 I$ $4.15 \pm .49 I$ $5.09 \pm .54 I$ $5.28 \pm .57 I$ $4.63 \pm .59 I$ $3.58 \pm .59 I$ $2.39 \pm .61 I$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

a	2
_	

Дифференциальные сечения неупругого рассеяния нейтронов (мб/ср.МэВ) с энергией 8,01±0,08 МэВ на молибдене

		Углы					
	E, MoD		45 ⁰	60 ⁰	€0 [●]	130 0	150 0
	i . 65 i	i 60.42 ± 0.45	1 84.07 ± 4.19	1 70.96 ± 3.25	1 76.08 ± 5.15	1 /9.41 x 5.34 j	77,37 ±
	1.75 1	83.20 ± 5.73	1 80.26 ± 5.78	72.13 ± 4.79	70.22 ± 4.64	1 71.04 \$ 4.69 1	74,37 ±
•	1 .85 1	72.56 ± 4.82	72.93 ± 4.79	70.34 ± 4.57	$165,66 \pm 4.26$	I 64.65 ± 4.22]	68,40 <u>+</u>
		$[60.39 \pm 4.49]$	$1 69 \cdot 62 \pm 4 \cdot 51$	1 07.33 ± 3.99	59.07 ± 5.77	I 50.92 ± 3.04 I	011,18 ±
	1 1+921	59.90 ± 3.79	1 DE+E3 I 2+98	54.07 + 7.38	52.16 + 3.2	I 0™+2 44	53 46 4
	1,25	55.65 + 3.47	$1 54.65 \pm 3.40$	50.40 ± 3.10	48.35 ± 2.96	1 46.78 ± 2.86	51.66 +
	1 1.35	53.50 ± 3.27	51.5 ± 3.14	46,59 ± 2.82	46,86 ± 2,8;	1 45.64 ± 2.75	47,46 ±
	1 1.45 1	48.87 ± 2.95	1 47.43 ± 2.89	47.96 ± 2.63	45.98 ± 2.74	i 42.90 ▲ 2.56 j	43.63 ±
	1 1,55 1	1 45.67 ± 2.70	: 44.0; ± 2.(2	$7 41.19 \pm 2.44$	42,80 ± 2.51	I 40.69 ± 2.39 I	40.96 ±
1	1 1.65 1	42.65 ± 2.53	$1 40.20 \pm 2.79$	36.93 ± 2.17	33.48 ± 2.24	$1 76.40 \pm 2.13$	37,43 ±
1	I 1.75 I	35.66 ± 2.27	$1 30.66 \pm 2.15$	35.88 ± 2,09	36.12 ± 2.07	I, 35.06 ± 2.01 I	35,39 ±
		23.90 ± 2.01	$1 33.00 \pm 1.00$	3, 25 ± 1,92	32.08 ± 1.83	1 31.20 ± 1.70 I	51,87 ±
	1 1472 1	1 27.90 ± 1.00 79.80 ± 1.73	1 2 - 27 - 1 - 77	1 28.45 + 1.65	56.85 + 1.57	$1 20.07 \times 1.05 1$	
	1 2.04 1	27.82 ± 1.65	$1 28.76 \pm 1.68$	27.47 ± 1.58	25.31 ± 1.43	$1 20.07 \pm 1.39$	25 23 +
	1 2.25 1	25.47 ± 1.50	126.41 ± 1.54	27,94 ± 1,38	22.60 ± 1.27	1 22.44 ± 1.26 1	22 79
1	1 2.35 1	22.94 ± 1.42	22.97 ± 1.41	22.07 ± 1.31	21.43 ± 1.23	20.27 1 1.16	19.95 ±
3	1 2.45 I	21.82 ± 1.35	1 20.87 ± 1.29	20.94 ± 1.24	17.20 ± 1.10	1 18.67 ± 1.06 I	19.63 🛓
1	I 2.56 I	20.02 ± 1.25	$1 18.9 = \pm 1.19$	18.74 ± 1.12	17,23 ± .99	I 16.58 ± .95 I	$16.61 \pm$
1	1 2.65 1	18.66 ± 1.27	$1 17.84 \pm 1.23$	18.25 ± 1.15	16.44 ± 1.80	1 15.79 ± .96 1	16,11 🔺
1	1 2.74 1	16.64 ± 1.20	$1 12.70 \pm 1.14$	16.05 ± 1.07	$15.66 \pm .96$	I 15.05 ± .94 I	14.80 ±
1	1 2.04 1		$1 10.55 \pm 1.14$	16.22 ± 1.04	$12.04 \pm .06$		12,63 ±
1	1 2+75 1	14.04 ± 1.07	$1 1^{-1} 2^{-1}$	12 P7 + 88	$12,79 \pm 10$		10,20 ±
1	1 3.14 1	12.77 ± 1.00	1 12.90 + .05	12.60 ± .84	$1^{-}.78 \pm .78$	1 22 + 72 2 + 73 2	10.50 ±
	1 3.26 1	11.77 ± .95	1 11.83 ± .90	11.98 ± .80	10.18 ± .67	$10.01 \pm .65 $	9 44 +
1	I 3,36 I	10.51 ± 1.18	Î 10.45 ± 1.06	10.46 ± .92	0.25 ± .77	9.15 ± .76 I	8,51 ±
1	1 3,44 I	10.46 ± 1.15	I 8.90 ± 1.01	11.47 ± .90	0,14 ± .75	9.10 ± .74 1	8 <u>01 ±</u>
1	1 3.55 1	10.28 ± .85	$I = 9 + 5 2 \pm -76$	0.50 ± .67	7.72 ± .55	7.74 ± +55 I	7,08 ±
1	I 3.66 I	9.51 ± 1.08	1 8.4 <u>/</u> ± .02	8,17±,78	7.03 ± .66	[6,39 ± .63]	6,70 ±
1	3,76 1	8.48 ± 1.04	7 3	$7.01 \pm .75$	7.10 ± .05	5.99 ± +62 I	5,69 ±
1	1 3.05 1		$1 7 98 \pm 104$		0 + 15 = -01	[⊐+⊃() ± +⊃9 [5 22 ▲ .57 +	
4	1 4.06 I	6.70 + .92	$1 5_{1} 9_{2} + 161_{1}$	6.20 ± .64	5.35 ± .54	4 13 + .54 7	4,93 ±
j	I 4.15 I	6.91 ± .90	1 5.7 ₂ ± .73	5.61 ± .61	$4.47 \pm .54$	$4.05 \pm .54$	4 52 +
1	1 4.23 1	5.82 ± .86	1 5.80 ± .71	5.42 ± .59	4.87 ± .54	4.20 ± .52 1	3,31 ±
1	L 4.35 I	6.04 ± .84	1 5.8 _{8 ±} .68	4.98 ± .55	4,07 ± .51	3.94 ± .51 1	3 83 ±
1	L 4.44 I	5.42 ± .81	1 5.26 ± +65 1	5,31 ± ,56	4.08 ± .51 I	3,97 ± +50 I	2,90 ±
1	4.54 I	5.78 ± .80	I 5.07 ± .62 1	5.42 ± .54	3.87 ± .50 I	4.07 ± .40 I	4.02 ±
1	4.67 1	5.81 ± .78	1 - 2 + 2 - 3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	$5.12 \pm .53$	4.17 ± .50 I	4.06± .48 I	3,70 ±
		2.61 ± 10	$1 0.10 \pm .621$	6.07 ± .52]	5.97 ± .20 I	$3.65 \pm .47$	5.82 ±
1	L 4.04 [L 9.7		$1 - 6 \pm 61$	6 - 11 + 55	4,24 X ,2]] 5 20 + 57 .		3,81 4
	L 5.06 I	6.55 ± .76	1 6.26 + .60	6.41 ± .55	$4,57 \pm .51$	4.32 + .45 1	3 73
j	5.13 1	7.09 ± .76	1 5.44 ± .58	6,51 ± .55	5.11 ± .52 T	$3.71 \pm .43 $	3.01
1	5.25 1	7.28 ± .76	1 6.07 ± .50	6.03 ± .54 1	5,24 ± .53 I	3.98 ± .43 [3.60 ±
1	1 5 . 37 I	7.79 ± .76	1 6.20 ± .58 1	6.09 ± .54 I	5.01 ± .53 I	3.77 ± .42 I	3,80 ±
1	1 5.46 I	8.30 ± .85	1 0.36 ± .58 t	$6.70 \pm .56$	5.59 ± .55 1	3.44 ± .41 I	4.03 🛋
1	5.54 1	8.74 ± 1.14	1 0./2 ± .59 1	$6.95 \pm .57$	5,03 ± .54 I	3,68 ± +42 I	3,80 ±
1	5.03		$1 \frac{9}{1} \frac{7}{2} \frac{1}{2} \frac{9}{1} \frac{9}{1} \frac{1}{2} \frac{9}{1} \frac{9}{1} \frac{1}{2} \frac{9}{1} $	$7.05 \pm .00$	4.91 x +23 I		3.72 ±
1 T	i p+r∠ i I s.81 t	$8 \ 97 \ 4 \ 1,74$	$1 - 1 + 4 \pm 00 + 100 +$	7.18 + 58 r	4 98 ± .55 t	3 60 + .41 I	3,23 ±
i i	5,91 1	9.45 ± 1.41	1 6.7. ± .60	7.20 ± .59 +	4.30 ± .56 r	3,65 ± -40 t	···· + + + + + + + + + + + + + + + + +
i	6.00 1	9.08 ± 1.62	1 6.60 ± .60 1	6,36 ± ,57 T	4.81 ± .50 r	3.69 ± .39 1	3,11 +
1	6.10 1	9,37 ± 1,58	1 5.4c ± .56	6.38 ± .58 I	3.93 ± .47 1	3.52 ± .38 1	3.20 ±
1	6.20 1	10.09 ± 1.90	1 5.50 ± .57	6.21 ± .58 I	3.37 ± .45 I	2.87 ± .37 1	2 51 ±
1	6.30 1	10.81 ± 2.04	1 5.80 ± .59	$6.55 \pm .61$	3.30 ± .43 I	2.84 ± .37 1	2,56 ±
1	6.41 1	11.47 ± 1.95	I 2.10 ± .59 j	6.48 ± .62 I	2,50 ± .41 I	3.28 ± .38 I	2,38 ±
	5,72 I	15 of a 2+39	1	1 00, 1 UL , 00 0	5.20 £ .42 I	2,21 ± .37 1	2,37 ±
1		17.80 ± 2.88	1 - 76 ± +00 T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+40 x +43 [2 Rn + 4n -		2,34 ±
1		20.70 ± 3.16	1 7.2n + .78 +	7.98 ± .78 +	2.66 2 .42 1		ና, ሀሃ 🛓 ጋ ነል 🗉
i	6.99 1	22.54 ± 3.45	1 8,15 ± .85 1	8,66 ± .85 T	2.73 ± .44 T	3.12 ± .43 t	1.07 +
1	1 7.11 1	24.21 ± 3.50	1 7,15 ± .86 1	9,58 ± ,93 I	1.79 ± .43 1	1.87 \$.42 1	25 ±

Рис.2. Сравнение полных сечений неупругого рассеяния нейтронов на молибдене. Данные работ: х – настоящей; ● – [6]; ▼ – [7]; _____ - [8]

Дифференциальные сечения упругого рассеяния нейтронов молибденом в системе центра масс приведены в табл.6 и сравниваются с данными других авторов на рис.3. Из-за большой анизотропии упругого рассеяния нейтронов измерений на шести углах недостаточно для восстановления полной угловой зависимости упругого рассеяния и, следовательно, его интегрального сечения. Поэтому для введения поправок на эффекты многократного упругого рассеяния нейтронов в образце в настоящей работе использованы угловые распределения других авторов, а полное сечение упругого рассеяния не оценивалось.

Таблица	6
---------	---

Дифференциальные сечения упругого рассеяния нейтронов на молибдене

Coc 0	б(0 _{ц.м}), d/ср						
соз ^в ц.м	4,91 MəB	5,98 MəB	6,98 МэВ	8,01 МэВ			
0,863 0,702 0,492 -0,011 -0,509 -0,869	$\begin{array}{c} 0,390\pm0,027\\ 0,025\pm0,005\\ 0,101\pm0,007\\ 0,054\pm0,004\\ 0,034\pm0,002\\ 0,034\pm0,002\\ \end{array}$	$\begin{array}{c} 0,481\pm\!\!0,034\\ 0,013\pm\!\!0,003\\ 0,124\pm\!\!0,009\\ 0,042\pm\!\!0,003\\ 0,041\pm\!\!0,003\\ 0,027\pm\!\!0,002 \end{array}$	$\begin{array}{c} 0,445\pm0,031\\ 0,026\pm0,005\\ 0,119\pm0,008\\ 0,020\pm0,002\\ 0,033\pm0,002\\ 0,016\pm0,001\end{array}$	$\begin{array}{c} 0,385\pm0,027\\ 0,035\pm0,007\\ 0,098\pm0,007\\ 0,013\pm0,001\\ 0,023\pm0,002\\ 0,013\pm0,001\\ \end{array}$			

Рис.3. Дифференциальные сечения упругого рассеяния нейтронов на молибдене в системе центра масс при энергиях 4,91 МэВ (а), 5,98 МаВ (б), 6,98 МаВ (в), 8,01 МэВ (г). Данные работ: х – настоящей: а: • – /6/ при $E_0=5.0$ МэВ и $\nabla - /9/$ при $E_0=5.0$ МэВ; 6: • – /7/ при $E_0=6.04$ МэВ; в: — -/8/ при $E_0=7.0$ МэВ; г: • -/10/ при $E_0=8,05$ МэВ Список литературы

- 1. Ловчикова Г.Н., Котельникова Г.В., Сальников О.А. и др. Вопросы атомной науки и техники. Сер. Ядерные константы, 1979, вып. 2(33), с. 71; Ловчикова Г.Н., Сальников О.А., Симаков С.П. и др. Там же, вып. 3(34), с. 61.
- 2. Muir D.W. World Request List for Muclear Data .- INDC(SEC)-73/URSF. October 1979.
- 3. Труфанов А.М., Нестеренко В.С. и др. Приборы и техника эксперимента, 1979, # 2, с. 50.
- 4. Фетисов Н.И., Симаков С.П. и др. Там же, 1980, № 6.
- 5. Horsley A. Neutron Cross-Section of Hydrogen in the Energy Range 0.0001-20 MeV.-Nuclear Data, 1966, v. A2, N 3, p. 243.
- 6. Coles R.E., Porter D. Elastic and Inelastic Scattering of Neutrons in the Energy Range 1,0 to 5,0 MeV by Natural Molybdenum.-AWRE 089/70.
- 7. Wilenzick R.M., Seth K.K., Bevington P.R., Lewis H.W. Nucl. Phys., 1965, v. 62, p. 511; Seth K.K., Wilenzick R.M., Griffy T.A. Phys. Letters, 1964, v. 11, N 4, p. 308.
- 8. Langner I., Schmidt J.J., Woll D. Tables of Evaluated Neutron Cross-Sections for Fast Reactor Materials.-KFK-750, January 1968.
- 9. Hill R.W. Phys. Rev., 1958, v. 109, p. 2105.
- 10. Holmqvist B., Wiedling T. Optical Model Analysis of Experimental Fast Neutrons Elastic Scattering Data.-AE-430. September 1971.

Статья поступила в редакцию 25 апреля 1980 г.

УДК 539.170.012

измерение функции возбуждения ряда уровней ²³⁸и в реакции (n, n'r)

Б.Г. Казюла, Э.М. Козулин, Л.А. Победоносцев, Ю.А. Немилов, Л.Н. Сысоева, Г.А. Тутин, А.А. Филатенков

MEASUREMENT OF EXCITATION FUNCTIONS OF THE ²³⁸U LEVEL SE-RIES IN THE (n, n; r) REACTION. The excitation functions of a series of the ²⁵⁸U levels in the energy range of incident neutrons from 0,7 to 1,4 MeV have been obtained in this paper on the r-radiation accompanying the process of inelastic neutron scattering. The data on neutron inelastic scattering cross-sections for the energy levels of 680 and 732 keV coincide with the results of other authors, but for the levels of 930, 950, 1059, 1060 keV these data have been presented for the first time.

Данные о сечениях неупругого рассеяния нейтронов на ядрах ²³⁸и в связи с развитием техники ядерных реакторов на быстрых нейтронах представляют особый интерес. Однако работ, посвященных этому вопросу, имеется немного /1-37. В настоящей работе по р-излучению, сопровождающему процесс неупругого рассеяния нейтронов, определены функции возбуждения ряда уровней ²³⁸и в интервале энергий 0,7-1,4 МаВ. Работа является продолжением работы /47.

Измерения проводили на электростатическом ускорителе ЭГ-5, работавшем в непрерывном режиме (рис.1). Цилиндрический образец из металлического урана диаметром 21,5 мм, высотой 27 мм и массой 187,3 г располагали на расстоянии 120 мм от мишени. Источником нейтронов служила реакция $H(p,n)^{3}$ Не. Число нейтронов, попавших в образец за время измерений, определяли с помоцьк твердотельного слюдяного детектора по известному сечению деления 235 и. Слюду и слой 235 и, помещенные в тонкостенный кадмиевый контейнер, прикрепляли непосредственно к образцу.

Z=4I, COCTORHNE 1S1/2 (EI = I.89475 + 04 9B), EPS =0.0010

		EO	EI	E2		MI			M2	
۳. ۲	<u> </u>	ξ	ξ A ₂	ξ A ₂	A4	Ę	A ₂	Ę	A ₂	^A 4
-+ 0.55 0.63 0.71 0.79 0.87 0.95 1.03 1.11 1.19 1.27 1.35 1.43 1.51 1.79 2.23 2.47 2.71	$1 \cdot 9 4206 + 90 1 1 \\ 1 \cdot 12206 + 00 1 1 \\ 1 \cdot 20206 + 00 1 1 \\ 28206 + 00 1 1 \\ 28206 + 00 1 1 \\ 36206 + 00 1 1 \\ 36206 + 00 1 1 \\ 60206 + 00 1 1 \\ 60206 + 00 1 1 \\ 68206 + 00 1 1 \\ 84206 + 00 1 1 \\ 2.00206 + 00 1 1 \\ 2.48206 + 00 1 1 \\ 2.48206 + 00 1 1 \\ 2.48206 + 00 1 1 \\ 2.72206 + 00 1 1 \\ 2.96206 + 00 1 1 \\ 1.96206 + 00 1 $	ξ 5,65+02 1 2,32+03 1 3,67+03 1 4,69+03 1 5,49+03 1 6,12+03 1 6,63+03 1 7,06+03 1 7,06+03 1 7,2+03 1 7,98+03 1 8,21+03 1 8,21+03 1 8,21+03 1 9,21+03 1 9,65+03 1 9,65+03 1 9,89+03 1 9,89+03 1 9,89+03 1 9,89+03 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} A_4 \\ 1 & -1 & .73 - 02 \\ 1 & -4 & .81 - 02 \\ 1 & -7 & .53 - 02 \\ 1 & -7 & .53 - 02 \\ 1 & -7 & .53 - 02 \\ 1 & -1 & .21 - 01 \\ 1 & -1 & .21 - 01 \\ 1 & -1 & .21 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -1 & .57 - 01 \\ 1 & -2 & .29 - 01 \\ 1 & -2 & .51 - 01 \\ 1 & -2 & .52 - 01 \\ 1 & -2 & .52 - 01 \\ 1 & -2 & .53 - 01 \\ 1 & -2 & .53 - 01 \\ 1 & -3 & .01 - 01 \\ 1 & -3 & .01 - 01 \\ \end{array}$	ξ 1.64-02 6.80-02 1.09-01 1.40-01 1.64-01 1.64-01 2.01-01 2.14-01 2.26-01 2.36-01 2.36-01 2.53-01 2.60-01 2.76-01 2.88-01 2.98-01 3.05-01 3.11-01	A_2 2.56-01 I 2.64-01 I 2.71-01 I 2.75-01 I 2.79-01 I 2.83-01 I 2.85-01 I 2.85-01 I 2.90-01 I 2.92-01 I 2.95-01 I 2.96-01 I 2.99-01 I 3.05-01 I 3.05-01 I 3.05-01 I	<pre> 2.12*00 2.59*01 7.25*01 1.38*02 2.22*02 3.22*02 3.22*02 4.38*02 5.68*02 7.14*02 8.74*02 1.05*03 1.24*03 1.24*03 1.44*03 2.13*03 2.95*03 3.90*03 4.96*03 6.15*03 </pre>	A_2 = 2.87-01 = 2.87-01 = 2.85-01 = 2.83-01 = 2.82-01 = 2.82-01 = 2.79-01 = 2.79-01 = 2.76-01 = 2.76-01 = 2.75-01 = 2.75-01 = 2.75-01 = 2.73-01 = 2.72-01 = 2.72-01	A_{4} $-2.89-01$ $-2.97-01$ $-3.03-01$ $-3.07-01$ $-3.15-01$ $-3.16-01$ $-3.26-01$ $-3.26-01$ $-3.26-01$ $-3.36-01$ $-3.36-01$ $-3.36-01$ $-3.39-01$ $-3.41-01$ $-3.42-01$
2 95 3 437 3 691 4 36 4 36 4 36 4 36 5 36 5 807 5 807 6 35 6 55	3.44206+00 3.58206+00 4.16206+00 4.16206+00 4.40206+00 4.64206+00 4.88206+00 5.12206+00 5.60206+00 5.60206+00 5.84206+00 6.98206+00 6.56206+00 7.94206+00 1	9,92+03 I 1,01+04 I 1,02+04 I 1,02+04 I 1,02+04 I 1,03+04 I 1,04+04 I 1,04+04 I 1,04+04 I 1,05+04 I 1,05+04 I 1,05+04 I 1,05+04 I 1,05+04 I 1,05+04 I	$\begin{array}{c} 8.48-01 & 2.78-01 \\ 8.36-01 & 2.82-01 \\ 8.25-01 & 2.86-01 \\ 8.17-01 & 2.90-01 \\ 8.08-01 & 2.92-01 \\ 8.01-01 & 2.95-01 \\ 7.96-01 & 2.97-01 \\ 7.89-01 & 2.97-01 \\ 7.89-01 & 2.99-01 \\ 7.85-01 & 3.00-01 \\ 7.86-01 & 3.02-01 \\ 7.77-01 & 3.03-01 \\ 7.73-01 & 3.04-01 \\ 7.70-01 & 3.05-01 \\ 7.65-01 & 3.06-01 \\ 7.62-01 & 3.07-01 \end{array}$	$\begin{array}{c} 1.58 + 04 - 2.82 - 0\\ 1.83 + 04 - 2.80 - 0\\ 1.83 + 04 - 2.80 - 0\\ 1.2.09 + 04 - 2.79 - 0\\ 1.2.38 + 04 - 2.77 - 0\\ 1.2.99 + 04 - 2.75 - 0\\ 1.2.99 + 04 - 2.75 - 0\\ 1.3.32 + 04 - 2.75 - 0\\ 1.3.68 + 04 - 2.75 - 0\\ 1.3.68 + 04 - 2.75 - 0\\ 1.4.04 + 04 - 2.73 - 0\\ 1.4.84 + 04 - 2.73 - 0\\ 1.4.84 + 04 - 2.73 - 0\\ 1.4.84 + 04 - 2.72 - 0\\ 1.5.70 + 04 - 2.72 - 0\\ 1.5.70 + 04 - 2.72 - 0\\ 1.5.70 + 04 - 2.72 - 0\\ 1.6.63 + 04 - 2.71 - 0\\ 1.7.12 + 04 - 2.71 - 0\\ 1.7.12 + 04 - 2.71 - 0\\ 1.8.84 - 04 - 04 - 0\\ 1.8.84 - 04 - 0\\ 1.8.84 - 04 - $	1 - 3, 08 - 01 $1 - 3, 14 - 01$ $1 - 3, 19 - 01$ $1 - 3, 23 - 01$ $1 - 3, 26 - 01$ $1 - 3, 29 - 01$ $1 - 3, 32 - 01$ $1 - 3, 34 - 01$ $1 - 3, 36 - 01$ $1 - 3, 37 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$ $1 - 3, 49 - 01$	$\begin{array}{c} 3.16 - 01 \\ 3.20 - 01 \\ 3.24 - 01 \\ 3.27 - 01 \\ 3.29 - 01 \\ 3.31 - 01 \\ 3.35 - 01 \\ 3.35 - 01 \\ 3.36 - 01 \\ 3.38 - 01 \\ 3.38 - 01 \\ 3.40 - 01 \\ 3.42 - 01 \\ 3.43 - 01 \\ 3.44 - 01 \\ 3.44 - 01 \end{array}$	3.07-01 1 3.08-01 1 3.09-01 1 3.09-01 1 3.10-01 1 3.10+01 1 3.11-01 1 3.12-01 1 3.12-01 1 3.12-01 1 3.13-01 1 3.1	7,46+03 8,89+03 1,04+04 1,21+04 1,39+04 1,58+04 1,79+04 2,00+04 2,23+04 2,47+04 2,72+04 2,99+04 3,26+04 3,85+04 4,16+04	$\begin{array}{c} -2.71 \div 01 \\ -2.71 - 01 \\ -2.71 - 01 \\ -2.70 - 01 \\ -2.70 - 01 \\ -2.70 - 01 \\ -2.70 - 01 \\ -2.70 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \\ -2.69 - 01 \end{array}$	-3.43-01 $-3.45-01$ $-3.46-01$ $-3.46-01$ $-3.46-01$ $-3.48-01$ $-3.49-01$ $-3.49-01$ $-3.50-01$ $-3.50-01$ $-3.50-01$ $-3.51-01$ $-3.51-01$ $-3.51-01$ $-3.51-01$

•

~ .

Приложение Таблица I

•

म	ज म ज - ¥ ज	EO	E			E2			MI			M2
	- ¹ + ⁻ ¹ -	٤	Ę	A ₂	Ę	A ₂	^A 4	Ę	A2	٤	A ₂	A4
0,55	1.03309+00 1	8.75+02 t	6.39-71	1.37-02 1	1.09+02	-3.69-01	-1.77-02 I	1.99-02	2,31-01 I	2,60+00	-2,96-01	-2.61-01
6.53	1.11309+00	4.25+03 1	1.39+10	4.37-02 1	6.12+02	-3.60-01	-4.89-02 I	9.82-02	2.43-01 I	3,65*01	-2,93-01	-2.72-01
6.71	1.19309+00 1	7,03+03 1	1,83+00	6.98-02 J	1.15+03	-3.51-01	-7,62-02	1.64-01	2,51-01 1	1.07+02	-2,90-01	-2.80-01
0.79	1,27309+00	9,15+03 I	1,87+00	9.27-02 1	1.68+03	-3.44-01	-1.00-01 I	2.16-31	2.58-01 I	2.08+02	-2.88-01	-2.86-01
0.87	1,35309+30	1.08+04 1	1.84+00	1.13701 !	2.21+03	-3,38-01	-1.22-01 I	2.57-01	2,63-01 1	3,37+02	-2.87-01	-2.92-01
0.95	1,43309+00	1,21+04 1	1.80+00	1.31-01 1	2,74+03	-3,32-01	-1.41-01 y	2,90-01	2,68-01 1	4,93+92	-2.85-01	-2.97-01
1.03	1,51309+00 1	1.31+04 1	1,75+00	1,46-01 1	3,20+03	-3,27-01	<u>~1.58-01 1</u>	3.17-01	2,72-01 1	6.73+02	-2.84-01	-3.01-01
1.11	1,59309+30 I	1.40+04 I	1,71+00	1.60-01 !	3.86+03	-3.22-01	-1,73-01 I	3,40-01	2,75-01 I	8.78+02	-2,83-01	-3.05-01
1,19	1.67309+00 1	1.47+04 !	1,67+00	1,73-01 1	4.45+03	-3.18-01	-1.87-01 I	3,59-01	2,78-01 1	1,11+03	-2.82-01	-3.09-01
1.2?	1,75309+00 1	1,53+84 1	1,83+00	1.84-01 1	5.06+03	-3,14-01	-1.99-01 1	3,76-01	2.81-01 1	1,36+03	-2.81-01	-3 + 11 - 01
1.35	1,83309+00	1.53+04 1	1,58+00	1,94-01	5.69+03	-3.11-01	-2.10-01 1	3.90-01	2.33-01 I	1.63+03	-2+80-01	-3 + 13 = 01
1.43	1.91309+00	1,63+04 I	1,56+00	2.02-01 1	6,34+ ₀ 3	-3.08-01	-2.20-n1 1	4.03-01	2.35-01 1	1.93+ _C 3	-2.79-n1	-3.16-01
1,51	1,99309+00	1,67+04 I	1.53+00	2,10-01 1	7.03+03	-3.05-01	-2.30-n1 1	4.14-01	2,37-01 I	2.25 ⁺ 03	-2.79-01	-3.18-01
1,75	2,23309+00	1,75+04 1	1.46+00	2,30-01 1	9,24+03	-2.99-01	- 2,52-g1 I	4 • 4 0 ~ 0 1	2.91-01 1	3,34+03	-2.77-01	-3,23-01
1.99	2.47309+00	1,81+04 I	1.41+00	2 45-01 !	1,17+04	-2.93-01	-2.69-01 1	4.60-01	2,95-01 [4.62*03	-2,76-01	-3.27-01
2,23	2.71309+00 1	1,86+04 1	1,37+00	2.56-01 1	1.44+04	-2.89-01	-2.83-01 !	4.74-01	2,28-01 1	6,10+03	-2.75-01	-3.31-01
2.47	2.95309+00	1,89+04 I	1,33+00	2.65-01	1.74+04	-2.86-01	-2,93-01 I	4.86-01	3.00-01 1	7,77+03	-2.74-01	-3.33-01
2.71	3.19309+on 1	1.91+04 I	1,31+00	2,72-01 1	2.06+04	-2,84-01	-3.02-01 I	4,95-01	3.02-01 1	9.64+ ₀ 3	-2.73-01	-3.36-01
2.95	3,43309+30	1,93+04 I	1,29+00	2,78-01	2.42+04	-2.82-91	-3.08-n1 I	5.02-01	3.03-01 I	1.17+04	-2.73-01	-3.37-01
3,19	3,67309+jn	1.94+04 1	1.27+00	2.83-01	2.80+04	-2.80-01	-3.14-n1 I	5,08-01	3.04-01 I	1.39+04	-2,72-01	-3.39-01
3.43	3.91309+00	1,96+04	1,25+90	2.87 - 01	3.20+04	-2.79-01	-3.19-n1 1	5.13-01	3,05-01 1	1.64+04	-2.72-01	-3-41-01
3.67	4,15309+00	1,97+04 1	1,24+00	2.90-01	1 3.64+04	-2,77-01	-3,23-01 1	5.18-01	3.96 - 91 1	1.90+04	-2.72-01	-3.42-01
3.91	4.39309+gn	l <u>1,97+</u> 64 !	1.23+00	2.93-01	4.10+04	-2.76-01	-3.26-01 1	5,22-01	-3.97 - 91 I	2.18+04	-2.71-01	-3-43-01
4.15	4.63309+ <u>0</u> 0	1 1,98+84 I	1.22+00	2.95-01	4.58+14	-2.75-01	- <u>3,29-01</u> 1	5.24-01	3.08-01 J	2,48+04	-2,71-01	-3.44-01
4,39	4.87309+00	1,98+04 I	1,21+00	-2.97-01 !	5.10+04	-2.75-01	-3,32-01 I	5.27-01	€,98-91 I	2.80+04	-2.71-01	-3.45-01
4.53	5.11309+00	L 1,99+04 I	1,20+00	2.99-01 1	5.64+04	-2.74-01	-3.34-n1 1	5.29-01	3.09-01 I	3.14+04	-2.71-01	-3.45-01
4 37	5.35309+00	l 1,99+04 I	1.20+00	3.00-01	6.21+04	-2.73-01	-3,36-n1 1	5,32-01	3,09-01 I	3.49+04	-2.70-01	-3.46-01
5,11	5,59309+0a	1,99+04 I	1,19+00	3.02-01	6,80+04	-2.73-01	-3,37-01 1	5.33-01	3.20-01 I	3,87+04	-2,70-01	-3.47-01
5,35	5,83309+jn	1 2,00+04 I	1.19+00	3.03-01	7.43+n4	-2.72-01	-3.39-01 1	5.35-01	3,10-01 I	4.26+04	-2.70-01	-3.47-01
5.59	6,07309+00	2,00+04	1,18+00	3.04-01	8.08+04	-2.72-01	-3,40-01 1	5,36-01	3.10-01 I	4.68+04	-2.70-01	-3.48-01
5.83	5.31309+on	2,00+04 I	1.18+00	3.05-01	8.76+04	-2.72-01	-3.41-01 !	5.38-01	3.11-01 1	5.11+04	-2.70-01	-3.48-01
6,07	6.55309+00	1 2,00+04 ¹	1.17+00	3.06-01	9.46+04	-2.71-01	- 73.42~01 1	5,39-01	3,11-01 1	5,56+04	-2,70-01	-3+48-01
6.31	6,79309+00	2,00+04 1	1.17+90	3.07-01	1.02+05	-2.71-01	- 3,43-01 1	5,40-01	3,11-01 I	6.02+04	-2.70-01	-3 + 49 - 01
6.55	7, <u>0</u> 3309+ <u>0</u> 0	2.01+04	1.12+00	3.07-01	1.10+05	-2.71-01	-73.44-n1 1	5.41-01	3,12-01 1	6.51*04	-2.69-11	-3,49-01

z=49, coctosinge 1S1/2 (EI = 2.79204 + 04 aB), EPS = 0.0010

•

Таблица 2

z = 60, coctosinge 1S1/2 (EI = 4.35969 + 04 ab), EPS = 0.0010

Ε.	$\mathbf{E}^{\mathbf{x}} = \mathbf{E} + \mathbf{E}$	EO	EI			Pic Ci		M	I	14 Л	Ĉ	
+	+ -	Ę	Ę	A ₂	Ę	A ₂	A4	Ę	A2	Ę	A ₂	Å4
6 55	1 .1761+00 .	1 854.57 1	8: 4 - mo 1	1 27- 2 1	1	-1 69-0.		2 19-19		3 .0+		2.18-01
0.63		9.44+n3 t	1.8=+00	4 29 - 2 1	7.70+02	-3.59-01	T+07=02 I	1.49-01	- 1.72401 1 - 2 08-01 1	5.28+01		
0 71	1.17741+00 1	1 65+04 1	2 36+00	6 93-n2 1	1.56+03	-3.51-01	-7.78-02 1	2.65-01	2.20-01 1	1.63+02	+3. a2- a1	
0 79	1.25741+00 1	2 21+04 !	2.57+00	9.26 n2 t	2.36+03	-3,43-01	"1.02=01 T	3,58-01	2.29-01 1	3,27+n2	-2.99-n1	-2.51-01
0 87	1.33741+00 1	2 63+04 I	2.62+00	1.13=n1 t	3,18+03	-3.37-01	-1.24-n1 r	4.32-01	2.37-01 1	5,39+n2	-2.96-n1	-2.59-01
0.95	1.41741+00 1	2 97+04 1	2.61+00	1,31-01 1	4.03+03	-3,31-01	-1.43-01 T	4,92-01	2.44-01 1	7,95+02	-2,94-01	-2.66-01
1,03	1,49741+00 1	3 23+34 1	2,58+00	1,47=01 I	4,89+03	-3,26-01	-1.60-01 I	5.41-01	2,49-01 1	1.09+03	-2.92-01	-2.72-01
1.11	1.57741+00 1	3,44+04 1	2,54+00	1.61-01 I	5.79+03	-3,22-01	-1.75-01 1	5,82-01	2,54-01 1	1.43+03	-2,91-01	~2.78-01
1,19	1.65741+00 I	3 62+04 1	2,5 ₀ +00	1.73-01 I	6.72+03	-3,18-01	-1.89-01 I	6,17-01	2,58-01 1	1,81+03	-2,89-01	-2.83-01
1,27	1,73741+00 I	3 76+04 1	2,48+00	1,84-01 1	7.69+03	-3.14-01	"2.01-01 I	6,46-01	2.62-01 I	2,23+03	-2,88-01	-2,87-01
1,35	1.81741+00 I	3 88+U4 I	2,42+00	1,94-01 I	8.69+03	*3,11-01	-2,12-01 I	6.72-01	2.66-01 1	2,69+03	-2.87-01	-2,91-01
1,43	1.89741+00 1	3,98+04 I	2,38+00	2.03~01 I	9.74*03	-3,08-01	-2.22-01 1	6,94-01	2,69-01 I	3,18+03	-2,86-01	-2.94-01
1,51	1,97741+00 1	4,07+04 1	2.3 ₄ +00	2,11-u1 I	1,08+04	-3,05-01	-2,31-01 I	7,13-01	2,71-01 1	3,72+03	-2,85-01	-2.97-01
1.75	2.21741+00 I	4 20+04 1	2,25+00	2,31-01 1	1.44+04	~2,98-01	-2,53-01 I	7.50-01	2,78-01 1	5,54+03	-2,83-01	-3+05+01
1.99	2,45741+00 1	4.37+04 1	2,19+00	2.46 - 01 I	1,83*04	-2,93-01	-2,70-01 1	7.90-01	2,83-01 1	7.68+03	~2,81-01	-3.12+01
2.23	2.69741+00 I	4,45+04 I	2,13+00	2.57 - 01 [2,27 04	=2,89=01	-2.83-91 I	8,14-01	2,87-01 1	1.02*04	-2.79-01	-3.17-01
2,47	2,93741+00 I	4.51+04 I	2.09*00	2.66-01 [2.75+04	-2,86-01	-2,94-n1 I	8,32-01	2,91-01 1	1,29+04	-2.78-01	-3.21-01
2,(1	3,17741+00 I	4,54+04 I	2,05+00	2,73-01 I	3.2(*04	-2,84-01	-3.02-01 1	8.40-01	2,93-01 1	1,00704	-2.71-01	-3.24-01
2,95	5.41/41+00 I	4,20 84 1	2.02 00	2,79 01 1	2.04-04	-2.82-01	-3.09-01 [0,5/-01	2,90-01		-2.70-01	
2,13		4,50+04	2.09-00	2.84 ⁻ 01 I	4,42704		-3,19-01 I	0.6/-01	2.9/-01			
3,43		4,07-04	1.98+10	2.80-01	5 8 4 4 7 4	-2,70-01	-7 23 01 1	0,/>+)1 8 79-01	2.99-01	. ∠		
7 01		4, 3, 4, 1	1.96-00		5 5 4 5 A			8.84-01		3 43404		-3.16-01
4 18		4,37444	1 94 - 10	2 94 91 1	7 33444	-2 78-01	+7 29 ol 1	8 89-41	3.02-01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-3:37-01
4 39		4, 3, 4, 1	1 9 4 1 0		8.16+04	#2 75-01	-3:32-01 1	8 02=41				-3.38-01
4 63		4,2004 L	1 9 2 + 0 0		9.03404	+2 74-01		8 08-41	3 05-01 1	5.22+04	2,77=01	-3.30-01
4 87	5.33741+00 1	4 58+64 1	1 9 + 0 0	-3 01 = 01 1	9.95+04	-2.73-01		8 97-01	3 05-01 1	5,81+04	-2.72-01	-3.40+01
5,11	5.57741+00 I	4.58+n4 T	1.80+00	3,02-01 1	1.09+05	-2.73-01	-3.38-n1 T	9.00 ± 01	3 06-01 1	6.43+04	-2.72-01	-3.41=01
5 35	5.81741+00 1	4 58+n4 I	1.88+00	3.04°01 f	1.19*05	-2.72-01	=3.39-n1 r	9.01-01	3.07-01 1	7.n8+n4	-2.72-01	-3-42-01
5 59	6,05741+00 1	4 57+14 1	1,87+00	3.05-01 I	1.30+05	-2.72-01		9.03-n1	3.07+01 1	7.77+04	-2.71-n1	-3.43-01
5 8 3	6,29741+00 1	4 57+04 1	1,87+00	3,05=01 I	1.41+05	-2.72-01	-3,41-01 r	9.04-01	3.08-01 1	8,48+04	-2,71-01	-3.43-01
5_07	6,53741+00 1	4,56+04 1	1,86+00	3.06-01 1	1.52+05	-2.71-01	-3.42-n1 i	9.06-01	3.08-01 I	9,23+04	-2,71-01	-3.44-01
6.31	6.77741+00 I	4 56+04 1	1,86+00	3.07-01 1	1.64+05	-2.71-01	-3.43-01 I	9.07-01	3.08-01 1	1.00+05	-2.71-01	-3.45-01
6,55	7.01741+00 I	4,56+04 1	1.85+00	3.08-01 1	1.76+05	-2.71-01	-3,44-01 I	9.08-01	3.09-01 I	1.08+05	-2.71-01	-3,45-01

Таблина З

	T	EO	El			E2		M	I		M2	
E ₊	$\mathbf{E}^{\mathbf{x}} = \mathbf{E}_{+} + \mathbf{E}_{-}$	Ę	Ę	A ₂	Ę	A ₂	A4	Ę	A ₂	Ę	A ₂	A4
0.553197 0.79753197 1.197531.197 1.2341 1.2341 1.2223333344445 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3937 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.3959 1.5559 1.3559 1.5599 1.5559 1.5599 1.5559 1.5599 1.5559 1.55999 1.55999 1.5599 1.5599 1.5599 1.5599 1.5599 1.5599 1.5599 1.5599	9.99566-01 I 1.07957+00 I 1.15957+00 I 1.31957+00 I 1.31957+00 I 1.39957+00 I 1.39957+00 I 1.47957+00 I 1.55957+00 I 1.79957+00 I 1.79957+00 I 1.79957+00 I 2.19957+00 I 2.19957+00 I 2.43957+00 I 2.43957+00 I 2.91957+00 I 3.15957+00 I 3.39957+00 I 3.39957+00 I 3.63957+00 I 3.63957+00 I 3.63957+00 I 4.59957+00 I 4.59957+00 I 4.59957+00 I 4.59957+00 I 5.31957+00 I 5.31957+00 I 5.31957+00 I 5.35957+00 I 5.55957+00 I 5	2,67+03 I $1,97+04 I$ $3,63+04 I$ $4,94+04 I$ $5,95+04 I$ $6,72+04 I$ $7,33+04 I$ $7,33+04 I$ $8,20+04 I$ $8,76+04 I$ $8,76+04 I$ $9,13+04 I$ $9,47+04 I$ $9,47+04 I$ $9,47+04 I$ $9,85+04 I$ $9,82+04 I$ $9,80+04 I$ $9,77+04 I$ $9,77+04 I$ $9,77+04 I$ $9,77+04 I$ $9,77+04 I$ $9,77+04 I$ $9,56+04 I$ $9,59+04 I$ $9,53+04 I$	$4 \cdot 3 4 - 0 1$ $1 \cdot 99 + 00$ $2 \cdot 7 \cdot 8 + 00$ $3 \cdot 14 + 00$ $3 \cdot 2 \cdot 8 + 00$ $3 \cdot 3 \cdot 4 + 00$ $3 \cdot 3 \cdot 4 + 00$ $3 \cdot 3 \cdot 5 + 00$ $3 \cdot 3 \cdot 5 + 00$ $3 \cdot 3 \cdot 5 + 00$ $3 \cdot 2 \cdot 3 + 00$ $3 \cdot 2 \cdot 3 + 00$ $3 \cdot 16 + 00$ $3 \cdot 16 + 00$ $2 \cdot 93 + 00$ $2 \cdot 8 \cdot 8 + 00$ $2 \cdot 8 \cdot 4 + 00$ $2 \cdot 7 \cdot 5 + 00$ $2 \cdot 6 \cdot 8 + 00$ $2 \cdot 6 \cdot 4 + 00$	$ \begin{array}{c} 1 & 08 = 02 \\ 4 & 19 = 02 \\ 5 & 88 = 02 \\ 9 & 24 = 02 \\ 1 & 13 = 01 \\ 1 & 31 = 01 \\ 1 & 31 = 01 \\ 1 & 47 = 01 \\ 1 & 47 = 01 \\ 1 & 55 = 01 \\ 1 & 95 = 01 \\ 1 & 95 = 01 \\ 2 & 04 = 01 \\ 1 & 95 = 01 \\ 2 & 32 = 01 \\ 2 & 32 = 01 \\ 2 & 58 = 01 \\ 2 & 85 = 01 \\ 2 & 85 = 01 \\ 2 & 85 = 01 \\ 2 & 92 = 01 \\ 2 & 97 = 01 \\ 2 & 97 = 01 \\ 3 & 04 \\$	9.65*01 8.63*02 1.87* $n3$ 2.94*03 5.21* $n3$ 6.41* 03 7.66* 03 8.96* 03 1.03* 04 1.17* 04 1.32* 04 1.97* 04 1.97* 04 2.53* 04 3.15* 04 3.83* 04 4.58* 04 5.38* 04 6.25* 04 7.18* 04 8.18* 04 9.23* 04 1.05* $15*05$ 1.28* 05 1.41* 05 1.55* 05 1.69* 05 1.	$\begin{array}{c} -3.68 - 01 \\ -3.59 - 01 \\ -3.59 - 01 \\ -3.50 - 01 \\ -3.31 - 01 \\ -3.31 - 01 \\ -3.26 - 01 \\ -3.21 - 01 \\ -3.21 - 01 \\ -3.13 - 01 \\ -3.13 - 01 \\ -3.13 - 01 \\ -3.10 - 01 \\ -3.07 - 01 \\ -3.07 - 01 \\ -2.98 - 01 \\ -2.98 - 01 \\ -2.98 - 01 \\ -2.86 - 01 \\ -2.86 - 01 \\ -2.86 - 01 \\ -2.86 - 01 \\ -2.76 - 01 \\ -2.75 - 01 \\ -2.75 - 01 \\ -2.75 - 01 \\ -2.75 - 01 \\ -2.73 - 01 \\ -2.72 - 01 \\ -2.72 - 01 \\ -2.72 - 01 \end{array}$	$\begin{array}{c} -1,92-02 \\ r\\ -5,17-02 \\ r\\ -7,98-02 \\ r\\ -7,98-02 \\ r\\ -1,04-01 \\ r\\ -1,26-01 \\ r\\ -1,26-01 \\ r\\ -1,45-01 \\ r\\ -1,62-01 \\ r\\ -1,77-01 \\ r\\ -1,91-01 \\ r\\ -2,14-01 \\ r\\ -2,24-01 \\ r\\ -2,32-01 \\ r\\ -2,32-01 \\ r\\ -2,54-01 \\ r\\ -2,94-01 \\ r\\ -2,94-01 \\ r\\ -3,02-01 \\ r\\ -3,09-01 \\ r\\ -3,27-01 \\ r\\ -3,27-01 \\ r\\ -3,27-01 \\ r\\ -3,32-01 \\ r\\ -3,34-01 \\ r\\ -3,38-01 \\ r\\ -3,39-01 \\ r\\ -3,39-01 \\ r\\ -3,39-01 \\ r\\ -3,39-01 \\ r\\ -3,40-01 $	2.75-02 $2.08-01$ $3.91=01$ $5.41=01$ $6.61=01$ $7.58=01$ $8.37-01$ $9.57-01$ $1.00+00$ $1.04+00$ $1.08+00$ $1.11+00$ $1.25+00$ $1.25+00$ $1.25+00$ $1.32+00$ $1.31+00$ $1.34+00$ $1.34+00$ $1.35+00$ 1.35	1.54-01 I 1.73-01 I 1.73-01 I 1.87-01 I 2.09-01 I 2.09-01 I 2.17-01 I 2.25-01 I 2.31-01 I 2.37-01 I 2.42-01 I 2.46-01 I 2.54-01 I 2.54-01 I 2.54-01 I 2.54-01 I 2.54-01 I 2.80-01 I 2.84-01 I 2.84-01 I 2.87-01 I 2.89-01 I 2.95-01 I 3.01-01 I 3.01-01 I 3.02-01 I	3.46+00 6.95+01 2.25+02 4.63+02 7.73+02 1.15+03 2.59+03 2.10+03 2.66+03 3.29+03 3.97+03 4.70+03 5.49+03 3.97+03 4.70+03 5.49+03 1.14+04 1.51+04 1.51+04 1.92+04 2.38+04 2.89+04 3.44+04 4.69+04 5.38+04 5.52+04 5.52+04 1.05+05 1.05+05	$\begin{array}{c} -3 \cdot 24 - 01 \\ -3 \cdot 18 - 01 \\ -3 \cdot 14 - 01 \\ -3 \cdot 14 - 01 \\ -3 \cdot 07 - 01 \\ -3 \cdot 07 - 01 \\ -3 \cdot 07 - 01 \\ -3 \cdot 02 - 01 \\ -3 \cdot 02 - 01 \\ -3 \cdot 02 - 01 \\ -2 \cdot 98 - 01 \\ -2 \cdot 98 - 01 \\ -2 \cdot 98 - 01 \\ -2 \cdot 95 - 01 \\ -2 \cdot 89 - 01 \\ -2 \cdot 80 - 01 \\ -2 \cdot 80 - 01 \\ -2 \cdot 78 - 01 \\ -2 \cdot 78 - 01 \\ -2 \cdot 76 - 01 \\ -2 \cdot 75 - 01 \\ -2 \cdot 74 - 01 \\$	$ \begin{array}{c} -1 & 6 & 7 & -0 & 1 \\ -1 & 8 & 6 & -0 & 1 \\ -2 & 0 & 1 & -0 & 1 \\ -2 & 0 & 1 & -0 & 1 \\ -2 & 2 & 4 & -0 & 1 \\ -2 & 2 & 4 & -0 & 1 \\ -2 & 2 & 4 & -0 & 1 \\ -2 & 4 & 5 & -0 & 1 \\ -2 & 4 & 5 & -0 & 1 \\ -2 & 5 & 5 & -0 & 1 \\ -2 & 6 & 5 & -0 & 1 \\ -2 & 6 & 5 & -0 & 1 \\ -2 & 6 & 5 & -0 & 1 \\ -2 & 6 & 5 & -0 & 1 \\ -2 & 6 & 5 & -0 & 1 \\ -2 & 7 & 4 & -0 & 1 \\ -2 & 7 & 4 & -0 & 1 \\ -2 & 7 & 4 & -0 & 1 \\ -2 & 7 & 4 & -0 & 1 \\ -2 & 7 & 4 & -0 & 1 \\ -3 & 0 & 1 & -0 & 1 \\ -3 & 0 & 1 & -0 & 1 \\ -3 & 0 & 1 & -0 & 1 \\ -3 & 0 & 1 & -0 & 1 \\ -3 & 0 & 1 & -0 & 1 \\ -3 & 2 & 4 & -0 & 1 \\ -3 & 2 & 4 & -0 & 1 \\ -3 & 3 & 2 & -0 & 1 \\ -3 & 3 & 3 & -0 & 1 \\ -3 & 3 & -0 & 1 \\ -3 & -0 & 1 & -0 & 1 \\ -3 & -0 & 1 & -0 & 1 \\ -3 & -0 & 1 & -0 & 1 \\ -3 & -0 & 1 & -0 & 1 $
3,91 4,15 4,39 4,63 4,63 4,63 4,63 5,11 5,55 5,83 6,31 6,55	4.35957+00 I 4.59957+00 I 4.83957+00 I 5.07957+00 I 5.31957+00 I 5.55957+00 I 5.79957+00 I 5.03957+00 I 5.27957+00 I 6.51957+00 I 6.75957+00 I 6.99957+00 I	9.73+04 I 9.70+04 $\frac{1}{5}$ 9.66+04 I 9.63+04 I 9.59+04 I 9.56+04 I 9.56+04 I 9.53+04 I 9.49+04 I 9.46+04 I 9.43+04 I 9.40+04 I 9.37+04 I	$2,7_{1}+00$ $2,69+00$ $2,68+00$ $2,67+00$ $2,66+00$ $2,65+00$ $2,64+00$ $2,63+00$ $2,62+00$ $2,61+00$ $2,61+00$ $2,61+00$ $2,61+00$	2.94-01 $2.97-01$ $2.99-01$ $3.02-01$ $3.02-01$ $3.03+01$ $3.04-01$ $3.05-01$ $3.06+01$ $3.06+01$ $3.06+01$ $3.07-01$ $3.07-01$ $3.08+01$	9.23*04 1.04*05 1.15*05 1.28*05 1.41*05 1.55*05 1.69*05 1.84*05 2.00*05 2.16*05 2.33*05 2.50*05	$\begin{array}{c} -2.76-0.2 \\ -2.75-0.1 \\ -2.75-0.1 \\ -2.75-0.1 \\ -2.73-0.1 \\ -2.73-0.1 \\ -2.72-0.1 \\ -2.72-0.1 \\ -2.72-0.1 \\ -2.72-0.1 \\ -2.72-0.1 \\ -2.71-0.1 \\ -2.71-0.1 \\ -2.71-0.1 \end{array}$	$\begin{array}{c} -3 \cdot 27 - 01 & I \\ \hline 3 \cdot 29 - 01 & I \\ \hline 3 \cdot 32 - 01 & I \\ \hline 3 \cdot 32 - 01 & I \\ \hline 3 \cdot 34 - 01 & I \\ \hline 3 \cdot 36 - 01 & I \\ \hline 3 \cdot 39 - 01 & I \\ \hline 3 \cdot 40 - 01 & I \\ \hline 3 \cdot 41 - 01 & I \\ \hline 3 \cdot 42 - 01 & I \\ \hline 3 \cdot 43 - 01 & I \\ \hline 3 \cdot 43 - 01 & I \\ \hline \end{array}$	1.34+00 1.35+00 1.35+00 1.35+00 1.35+00 1.35+00 1.35+00 1.36+00 1.36+00 1.36+00 1.36+00 1.36+00 1.36+00 1.36+00 1.36+00	2.95-01 $2.97-01$ $2.98-01$ $2.99-01$ $3.00-01$ $3.01-01$ $3.02-01$ $3.02-01$ $3.04-01$ $3.04-01$ $3.05-01$ $3.05-01$	5,38+04 6,12+04 6,90+04 7,73+04 8,60+04 9,52+04 1,05+05 1,15+05 1,25+05 1,36+05 1,48+05	$\begin{array}{c} -2,76-01\\ -2,76-01\\ -2,75-01\\ -2,75-01\\ -2,74-01\\ -2,74-01\\ -2,74-01\\ -2,73-01\\ -2,73-01\\ -2,73-01\\ -2,73-01\\ -2,72-01\\$	-3.26 -3.28 -3.30 -3.32 -3.33 -3.34 -3.35 -3.37 -3.38 -3.38 -3.38 -3.39 -3.39

1

Z = 70, coctosing 1S1/2 (EI = 6.14404 + 04 B), EPS = 0.0010

Таблица 4

Z=82, COCTORHE 1S1/2 (EI = 8.82855 + 04 9B), EPS = 0.0010

	91. 91 <u>-</u> 3 97	EO	E	I		E2		N	Ω		M2	· · · · · · · · · · · · · · · · · · ·
*+	<u> </u>	بلار	Ę	A 2	Ę	A ₂	A ₄	Ę	A ₂	٤	A2	A4
	0 -072		•	ð (a								
0.77	9,72,20-01	5.45 03	3.11-01	0,49-03 1	7.81-01	-3.68-01	-2,00-02 1	3,25-02	1,06-01 1	3.81+00	-3,43-01	-1.05-01
0.03	1.052 2+00		1,96700	4.03702 1	9.02.02		-5.42-02 1	1 3.08-01	1,27=01 [9,26+01	-3,36-01	-1.28-01
0,11			3,06700	9 3 2 I	3 5 4 4 7	-3,49-01	-8,20-02		1,44+01 I	2+19-02	-3,30-01	
0.87	1 29272+00 1	. <u>1 654</u> .8 1	2,06+90	7,21-02 1		-3,42-01		8,74-01	1,58,01 1	0.12102	-3,20-01	-1.61-01
0 0 e	1 77272+00 1		3,97+00		4.70°03			1.00+00	1.70+01	1,14+03	-3.22-01	+1,75+01
1 n 3	1.45272+00 1		4 2.+00	1 48=01 1	8,16+03	-3 25-01	-1,40-01		1,81-01		-3,10-01	-1.80-01
1.11	1.53272+00 I	2 17+05 1	4 2 + 0 0	1 62-01 1	9.86+03	-3 20-01	- <u>1:00-01</u>			3 1 4 4 - 3	-3,19-01	
1.19	1.51272+00 I	2 26+ns I	4.2=+00	1 75=n1 1	1,17+04	=3.16=01	= 1,94=01 1	1 58+00		4 53453	-3,14-01	-2.14-01
1.27	1.69272+00 1	2,34+n5 I	4.2.+00	1 87-n1 I	1.35+04	-3.12-01	-72 - 06 = 01 - 1			4 98+43		-2:22-01
1.35	1.77272+00 1	2,40+05 1	4.22+00	1.97-n1 I	1.55+04	-3.09-01	$=2.16 \pm 0.1$	1.72+00	2 + 2 = 0 + 1	6 03+03	-3 -6-01	-2.29-01
1.43	1,85272+00 I	2,45+05 1	4.2a + 30	2.06-01 I	1.76+04	-3.06-01	= 2 26 - 01 I	1.77+00	2.23-01	7,16+03	-3,00-01	-2-29-01
1,51	1,93272+00 1	2.48+05 I	4.18+00	2.14 - 01 1	1.97+04	-3.04-01	-2.35-n1 I	1.82+00	2 28-01 I	8.37+03	-3 02-01	-2.41-01
1,75	2,17272+00 I	2.54+05 I	4.1n+00	2.34~n1 !	2.67+04	-2.97-01	-2.56-01 I	1.92+an	2,40-01 1	1.25+04	72 98-01	-2.55-01
1.99	2.41272+00 1	2.57+n5 I	4.04+90	2.49-01 I	3.46+04	-2.92-01	-2.72-n1 1	1.99+00	2.50-01 I	1.74+04	-2.94-n1	-2.67-01
2.23	2.65272+00 1	2.57+15 1	3.90+00	2.60-01 I	4.34+04	-2.89-01	-2.85+n1 T	2.03+00	2.57-01 1	2.30+04	#2.91-01	-2.74-01
2.47	2,89272+00 1	2,56+05 1	3,9x+00	2.69-01	5.31+n4	-2.86-01		2.06+00	2.63 - 01	2.94*04	#2.89=01	-2.84-01
2.71	3,13272+00 1	2.54+n5	3.80+00	2.76-01 1	6.37+14	-2.83-01	-3.03-01 I	2.08+00	2.69 - 01 I	3.64+04	-2.87-01	-2.91-01
2 95	3.37272+00	2.52+n5 I	3.85+00	2.81-01 1	7.52+14	-2.81-01	-3.10-01 J	2,10+00	2.73_n1 t	4.42+04	-2.85-01	-2.96-01
3,19	3.61272+00	2,49+05 1	3,85+00	2.86-01	8.77+04	-2.80-01	-3.15-n1 1	2.11+00	2.77-01 I	5.26+14	-2.84-01	-3.01-01
3,43	3,85272+00 1	2.47+05	3.79+00	2.90-01 1	1.01+05	-2.78-01	-3,20-01 1	2.11+00	2.80-01 I	6.17+04	-2.83-01	-3.05-01
3,67	4.09272+00 1	2,45+05 1	3.77+00	2.93-01 I	1.15+05	-2.77-01	-3.23-n1 I	2.12+00	2.83-01 I	7.15+04	-2.82-01	-3.09-01
3 91	4.33272+00	2.43+05 I	3,75+00	2.95-01 I	1.30+05	-2.76-D1	-3.27-n1 1	2.12+00	2.85-01 I	8.20+04	-2.81-01	-3.12+01
4.15	4.57272+90 1	2,40+05 I	3,73+00	2.98-01 I	1.47+05	-2.75-01	-3.29-n1 I	2.12+00	2.87-01 I	9,32+04	-2.80-01	-3.15-01
4,39	4,81272+00 1	2,38+05 I	3,72+00	3.00-01 I	1.63+05	-2.75-01	-3.32-01 1	2.12+00	2.89-01 1	1.05+05	-2.79-01	-3+17-01
4 63	5.05272+00 i	2.36+05 I	3.71+00	3.01-01 1	1.81+05	-2.74-01	-3.34-n1 I	2.12+00	2.91-01 I	1.18+15	-2.78-n1	-3.20-01
4,87	5.29272+00 1	2,35+05 I	3.69+00	3, 13=01 I	2.00+05	-2.73-01	-3.36-01 I	2.11+00	2.92-01 1	1.31+05	-2.78-01	-3.22-01
5.11	5.53272+00 1	2,33+05 1	3.68+00	3.94-01 !	2.20+05	-2.73-01	-3.37-01 I	2.11+00	2.94-01 1	1.44+05	-2.77-01	-3.24-01
5,35	5.77272+00 I	2,31+05 1	3.67+00	3.05-01 1	2.41+05	-2,73-01	-3,39-01 I	2.11+nn	2,95_01 I	1.59+n5	-2.77-01	-3.25-01
5,59	6.01272+00	2,29+05 I	3.66+00	3.06-01 I	2.62+05	-2.72-01	-3.40-n1 I	2,10+00	2,96-01 I	1.74+05	-2.76-01	-3.27-01
5.83	6.25272+00 1	2_228+05 I	3,65+00	3.07-01 1	2.84+05	-2.72-01	-3.41-01 I	2.10+00	2.97-01 1	1.90+05	-2,76-01	-3.28-01
5.07	6,492 ⁷ 2+00 I	2,27+05 1	3.64+00	3.07-01 1	3.08+05	-2.71-01	-3.42-01 I	2.10+00	2.98-01 I	2.06+05	-2.75-01	-3.30-01
6.31	6,73272+01	2,25+05 1	3.64+00	3.08-01 I	3,32+05	-2.71-01	-3,43-01 I	2,09+00	2.99-01 I	2,23+05	-2.75-01	-3.31-01
0.55	0,97212+00 I	2.24+05 I	3.63+00	3.09-01 I	3.57+05	-2.71-01	-3.44-01 I	2.09+00	3.00-01 I	2,41+05	-2,75-01	-3.32-01

Таблица 5

Z = 92, cocrossnue 1S1/2 (EI = I.16096 + 05 B), EPS = 0.0010

		EO	E	I		E2			MI		M2	
^в +	$E = E_{+} + E_{-}$	٤	Ę	A2	ش	A2	A4	برج	.A ₂	Ę	A2	A4
0.55 0.63 0.71 0.79 0.95 1.03 1.11 1.19 1.27 1.43 1.51 1.51	9.44910-01 1.02491+00 1.10491+00 1.18491+00 1.26491+00 1.34491+00 1.34491+00 1.34491+00 1.50491+00 1.58491+00 1.58491+00 1.74491+00 1.82491+00 1.90491+0000000000000000000000000000000000	1.06+04 I I 1.17+05 I 2.38+05 I 3.35+05 I 4.09+05 I 4.63+05 I 5.03+05 I 5.33+05 I 5.55+05 I 5.71+05 I 5.91+05 I 5.97+05 I 6.04+05 I 6.04+05 I 5.04+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.04+05 I 5.04+05 I 5.05+05 I 5.04+05 I 5.04+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.05+05 I 5.04+05 I 5.05+05 I 5.05+05+05+05 I 5.05+05+05+05+05+05+05+05+05+05+05+05+05+0	$2 \cdot 26^{-01}$ $1 \cdot 83^{+00}$ $3 \cdot 13^{+00}$ $3 \cdot 92^{+00}$ $4 \cdot 38^{+00}$ $4 \cdot 65^{+00}$ $4 \cdot 82^{+00}$ $4 \cdot 91^{+00}$ $4 \cdot 97^{+00}$ $5 \cdot 01^{+00}$ $5 \cdot 01^{+00}$ $5 \cdot 01^{+00}$ $4 \cdot 97^{+00}$	$\begin{array}{c} 6.04-03 \\ 3.87-02 \\ 6.70-02 \\ 9.17-02 \\ 1.13-01 \\ 1.32-01 \\ 1.49-01 \\ 1.63-01 \\ 1.63-01 \\ 1.88-01 \\ 1.98-01 \\ 1.98-01 \\ 1.98-01 \\ 1.98-01 \\ 1.36-01 \\ 1.36-01 \\ 1.56-01 \\$	$6 \cdot 12^+ 01$ $8 \cdot 74^+ 02$ $2 \cdot 22^+ 03$ $3 \cdot 81^+ 03$ $5 \cdot 55^+ 03$ $7 \cdot 43^+ 03$ $9 \cdot 42^+ 03$ $1 \cdot 15^+ 04$ $1 \cdot 38^+ 04$ $1 \cdot 61^+ 04$ $1 \cdot 86^+ 04$ $2 \cdot 12^+ 04$ $2 \cdot 39^+ 04$ $3 \cdot 28^+ 04$	$\begin{array}{c} -3.67 - 0 \\ 1 \\ -3.57 - 01 \\ -3.48 - 01 \\ -3.41 - 51 \\ -3.34 - 01 \\ -3.29 - 01 \\ -3.29 - 01 \\ -3.29 - 01 \\ -3.19 - 01 \\ -3.15 - 01 \\ -3.15 - 01 \\ -3.09 - 01 \\ -3.06 - 01 \\ -3.03 - 01 \\ -2.97 - 01 \end{array}$	$\begin{array}{c} -2.23 - 0.2 \\ -5.71 + 0.2 \\ -8.62 - 0.2 \\ -1.11 - 0.1 \\ -1.33 - 0.1 \\ -1.33 - 0.1 \\ -1.52 - 0.1 \\ -1.69 - 0.1 \\ -1.69 - 0.1 \\ -1.97 - 0.1 \\ -2.08 - 0.1 \\ -2.28 - 0.1 \\ -2.37 - 0.1 \\ -2.58 - 0$	3.85-02 4.37+01 9.15-01 1.32+00 1.65+00 1.91+00 2.12+00 2.29+00 2.42+00 2.53+00 2.62+00 2.70+00 2.76+00 2.90+00	6.73-02 $8.80-02$ $1.06-01$ $1.21-01$ $1.35-01$ $1.46-01$ $1.57-01$ $1.66-01$ $1.75-01$ $1.83-01$ $1.90+01$ $1.96-01$ $2.02-01$ $2.16-01$	$4 \cdot 10^{+} 00$ $1 \cdot 16^{+} 02$ $4 \cdot 19^{+} 02$ $9 \cdot 04^{+} 02$ $1 \cdot 55^{+} 03$ $2 \cdot 36^{+} 03$ $3 \cdot 30^{+} 03$ $4 \cdot 38^{+} 03$ $5 \cdot 60^{+} 03$ $6 \cdot 93^{+} 03$ $8 \cdot 40^{+} 03$ $9 \cdot 98^{+} 03$ $1 \cdot 17^{+} 04$ $1 \cdot 75^{+} 04$	$\begin{array}{c} -3.59 - 01 \\ -3.51 - 02 \\ -3.45 - 01 \\ -3.45 - 01 \\ -3.35 - 01 \\ -3.35 - 01 \\ -3.28 - 01 \\ -3.28 - 01 \\ -3.24 - 01 \\ -3.22 - 01 \\ -3.16 - 01 \\ -3.16 - 01 \\ -3.12 - 01 \\ -3.07 - 01 \end{array}$	$-5 \cdot 22 - 02$ $-7 \cdot 63 - 02$ $-9 \cdot 64 - 02$ $-1 \cdot 14 - 01$ $-1 \cdot 29 - 01$ $-1 \cdot 43 - 01$ $-1 \cdot 55 - 01$ $-1 \cdot 66 - 01$ $-1 \cdot 75 - 01$ $-1 \cdot 84 - 01$ $-1 \cdot 93 - 01$ $-2 \cdot 00 - 01$ $-2 \cdot 07 - 01$ $-2 \cdot 25 - 01$
1,99 2,27 2,71 2,99 3,47 2,99 3,47 3,91 4,39 4,39 4,19 4,67 1 1,99 3,67 1,99 3,67 1,99 3,99 3,99 3,99 3,99 3,99 3,99 3,99	2.38491+00 I 2.62491+00 I 2.86491+00 I 3.10491+00 I 3.34491+00 I 3.58491+00 I 3.82491+00 I 4.06491+00 I 4.30491+00 I 4.78491+00 I 5.26491+00 I 5.26491+00 I 5.26491+00 I	$\begin{array}{c} 6 & 0^{2} + 0^{5} \\ 5 & 9^{5} + 0^{5} \\ 5 & 8^{7} + 0^{5} \\ 5 & 7^{8} + 0^{5} \\ 5 & 7^{8} + 0^{5} \\ 1 \\ 5 & 6^{9} + 0^{5} \\ 1 \\ 5 & 5^{9} + 0^{5} \\ 1 \\ 5 & 5^{9} + 0^{5} \\ 1 \\ 5 & 4^{2} + 0^{5} \\ 1 \\ 1 \\ 5 & 4^{2} + 0^{5} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	4.93+00 $4.88+00$ $4.88+00$ $4.81+00$ $4.78+00$ $4.75+00$ $4.73+00$ $4.71+00$ $4.68+00$ $4.65+00$ $4.64+90$ $4.63+00$	2.50 - 01 $2.62 - 01$ $2.70 - 01$ $2.77 - 01$ $2.33 - 01$ $2.97 - 01$ $2.94 - 01$ $2.97 - 01$ $2.97 - 01$ $2.97 - 01$ $3.01 - 01$ $3.02 - 01$ $3.04 - 01$ $3.05 - 01$	4.30+04 5.43+04 6.68+04 9.53+04 1.11+05 1.29+05 1.67+05 1.88+05 2.10+05 2.33+05 2.58+05 2.83+05	$\begin{array}{r} -2.92 \\ -2.88 \\ -01 \\ -2.85 \\ -01 \\ -2.85 \\ -01 \\ -2.85 \\ -01 \\ -2.81 \\ -01 \\ -2.78 \\ -01 \\ -2.76 \\ -01 \\ -2.75 \\ -01 \\ -2.75 \\ -01 \\ -2.75 \\ -01 \\ -2.73 \\ -01 \\ -2.73 \\ -01 \\ -2.73 \\ -01 \end{array}$	-2.73-01 -2.86-01 -2.96-01 -3.03+01 -3.10-01 -3.15-01 -3.20-01 -3.20-01 -3.26-01 -3.32-01 -3.32-01 -3.34-01 -3.36-01 -3.37-01	2.98+00 3.05+00 3.07+00 3.07+00 3.07+00 3.07+00 3.07+00 3.07+00 3.07+00 3.06+00 3.05+00 3.05+00 3.05+00 3.02+00 3.01+00	2.28 - 01 $2.38 - 01 $ $2.45 - 01 $ $2.52 - 01 $ $2.58 - 01 $ $2.58 - 01 $ $2.66 - 01 $ $2.70 - 01 $ $2.73 - 01 $ $2.76 - 01 $ $2.76 - 01 $ $2.81 - 01 $ $2.83 - 01 $ $2.85 - 01$	2,43+04 3,22+04 4,10+04 5,08+04 6,15+04 7,32+04 8,59+04 9,94+04 1,14+05 1,29+05 1,63+05 1,81+05 2,00+05	$\begin{array}{c} -3 & 0 & 2 & -0 \\ -2 & 9 & 9 & -0 & 1 \\ -2 & 9 & 9 & -0 & 1 \\ -2 & 9 & 3 & -0 & 1 \\ -2 & 9 & 3 & -0 & 1 \\ -2 & 8 & 9 & -0 & 1 \\ -2 & 8 & 8 & -0 & 1 \\ -2 & 8 & 8 & -0 & 1 \\ -2 & 8 & 8 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \\ -2 & 8 & 3 & -0 & 1 \end{array}$	$\begin{array}{c} -2 \cdot 39 - 01 \\ -2 \cdot 51 - 01 \\ -2 \cdot 61 - 01 \\ -2 \cdot 69 - 01 \\ -2 \cdot 76 - 01 \\ -2 \cdot 82 - 01 \\ -2 \cdot 82 - 01 \\ -2 \cdot 92 - 01 \\ -2 \cdot 92 - 01 \\ -3 \cdot 92 - 01 \\ -3 \cdot 09 - 01 \\ -3 \cdot 09 - 01 \\ -3 \cdot 12 - 01 \end{array}$
5,35 5,59 5,83 6,07 6,31 6,55	5.74491+001 $5.98491+001$ $6.22491+001$ $5.46491+001$ $6.70491+001$ $6.94491+001$	4,95+05 1 4,90+05 1 4,85+05 1 4,80+05 1 4,76+05 1 4,72+05 1	4.62+00 4.61+00 4.61+00 4.60+00 4.59+00 4.58+00	$\begin{array}{c} 3.06 - 01 \\ 3.07 - 01 \\ 3.07 - 01 \\ 3.08 - 01 \\ 3.08 - 01 \\ 3.09 - 01 \\ 3.09 - 01 \\ 3.09 - 01 \\ \end{array}$	3.10+05 3.38+05 3.67+05 3.98+05 4.29+05 4.62+05	$\begin{array}{r} -2.73 - 01 \\ -2.72 - 01 \\ -2.72 - 01 \\ -2.72 - 01 \\ -2.71 - 01 \\ -2.71 - 01 \end{array}$	$\begin{array}{c} -3 \cdot 39 - 01 \\ -3 \cdot 40 - 01 \\ -3 \cdot 41 - 01 \\ -3 \cdot 42 - 01 \\ -3 \cdot 43 - 01 \\ -3 \cdot 43 - 01 \\ -3 \cdot 44 - 01 \end{array}$	3.00+00 2.99+00 2.97+00 2.96+00 2.95+00 2.94+00	$\begin{array}{c} 2,86-01 \\ 2,88-01 \\ 2,89-01 \\ 2,90-01 \\ 2,92-01 \\ 2,92-01 \\ 2,93-01 \end{array}$	2,20+05 2,40+05 2,62+05 2,85+05 3,08+05 3,32+05	$\begin{array}{r} -2.80-01 \\ -2.79-01 \\ -2.79-01 \\ -2.78-01 \\ -2.78-01 \\ -2.78-01 \\ -2.77-01 \end{array}$	$ \begin{array}{r} -3 \cdot 14 - 01 \\ -3 \cdot 16 - 01 \\ -3 \cdot 18 - 01 \\ -3 \cdot 19 - 01 \\ -3 \cdot 21 - 01 \\ -3 \cdot 22 - 01 \\ -3 \cdot 22 - 01 \\ \end{array} $

Таблица 6

,

F.		<u>()</u>	<u>19</u>	-		F?			MI		M2	
¹⁰ +	+	Ę	Ę	A ₂	ξ	A2	Å ₄	Ę	A2	Ę	A2	A4
0,55	1,04516+00 I	8,44+02 1	4,74-02	7.66-03 1	1.21+01	-3.68-01	-2.00-02 1	4 48-03	9, 38 -02 I	5,35-01	-3,48-01	-8,74-02
0, 63	1,12516+00 I	7,77+03 1	2.96-01	3,78=92 I	1.39+02	-3.58-01	-5.31-02 I	4,24-02	1,15,01 1	1,30+01	-3,41-01	-1,12-01
0 70	1 28#14+00 1	2 10+04 1	4,59-01	8 74 - 02 1	3,24702	-3.20-01		0,40-02	1,22,01 1	4,44°01	=3,35-01	-1.51-01
0.87	1 14816+00 1	2 8540/ 1	5 844701 5 844701		7 44+03	-3,42-01		1,20=01		7,34°01	*3,5U*01	-1.42-01
n 95	1 44516+00 1			1 - 26 - 61 - 1	9.69+02	-3.30-0.	-1.20-01	1 71-01		3 37443	-3,20-01	-1.02-01
1 0 3	1, 52516+00 f	3 15+04 1		1 42 - 01 1	1.20+03	=3 25=01	71 64-01 1	1 89-01	1 82 01 1	3 30+02	-3,22-01	
1 11	1.60516+00 1	3 35+04 1	6, 1 = 01	1.57-01 1	1.45+03	-3.21-01	-1 79_01 t	2 04-01	1 90 01 1	4 36+02	-3 15-01	-1.96-01
1 19	1,68516+00 I	3 50+04 1	6.1g = 01	1.69-01 1	1.70+03	-3.17-01	-1.92-n1 i	2.16-01	1.98_01 1	5.54+02	-3.13-n1	-2.05-01
1 27	1,76516+00 1	3 62+04 1	6.11-01	1.81-01 1	1.97+03	-3,13-01	-2.04-01 1	2,26-01	2.05.01 1	6.85+02	-3,10-01	_2,13-01
1 35	1,84516+08 1	3 71+04 1	6,07-01	1.91-01 1	2.24+03	-3,10-01	-2.15-01 1	2 34-01	2,11.01 1	8,27+02	-3,08-01	-2,20-01
1,43	1,92516+0N I	3 78+04 1	6.01-01	2.00-01 1	2.53+03	-3.07-01	-2.24-01 1	2.41-01	2.17-01 1	9 80+02	-3.06-01	-2,27-01
1_51	2.00516+00 I	3 84+04 1	5,96-01	2.08-01 7	2.83+03	-3.04-01	-2.33-01 1	2,47=01	2,22-01 1	1,15+03	-3,04-01	-2.33-01
1,75	2,24516+00 1	3,94+04 1	5,80-01	2,29-01 1	3.80+03	-2,98-01	-2.55-01 1	2,61-01	2,35-01 1	1,71+03	+3.00+01	-2,48-01
1,99	2.48516+00 1	3,97+04 1	5.67-01	2.44-01 T	4.89+03	-2,93-01	-2.71-01 1	2.69-01	2,45-01 1	2,37+03	-2,96-01	-2.61-01
2,23	2,72516+00 1	3,97+04 1	5.55-01	2.56-01 1	6.09+03	-2.89-01	-2.84-01 1	2,75-01	2,53,01 1	3,13+03	-2,93-01	-2.71-01
2,47	2,96516+00 1	3 95+04 1	5.46-01	2.65-01 1	7.42+03	-2.86-01	-2,94-01 I	2,79-01	2,60-01 1	3,98+03	-2,90-01	-2,79-01
2,71	3,20516+00 1	3 93+04 1	5,38-01	2.72-01 1	8.86+03	-2.84 - 01	~3,02,01 I	2,81-01	2,65,01 1	4,92+03	-2,88-01	-2,86-01
2,95	3,44516+00 1	3 89+04	5,31-01	2.78-01 1	1,04+04	-2,82-01	-3,09-01 i	2.83-01	2,70-01 1	5,96+03	-2,87-01	-2,92-01
7 47		3 80+04 1	5,25-01	2.83-g1 J	1.21+04	-2.80-01	-3,14-01 I	2.84-01	2,74-01 I	7,09+03	-2,85-01	-2,97-01
2,42	5,92516+0U I	3,84+04	5,20-01	2.87=01 T	1.39+04	-2.79-01	-3,19-01 I	2,84-01	2.77-01 1	8,31+03	-2,84-01	+3.01=01
· · · · · ·	$4_{10} > 10 > 10 + 00 1$	3,79+04	5,16-11	2.91-01 1	1.58-04	-2.77-01	-3.23-01 [2,85=01	2,80,01 1	9,63+03	-2,83-01	-3+05-01
4 15	4 40540400 1 4 44814400 1	3 72+04	5.13-01	2.95 - 01	2 00+04	-2.70-01	-3.20-01 1	2,85-01	2,83,01 1	1,10+04	-2,82-01	-3,09-01
4 30	4 80514101 1 4 80514101 1		5.09-01		2 23+0/	-2.10-01	-3,27-01 [6,82701	2,85-01 1	1.25-04	=2,81-01	-3.12-01
-4 63	5 12516.00 t	3 66+04 1		3 00-01 1	2 47 + 04	-2.75-01	-3,31+01 I	2.85-01		1.41-04	-2,80-01	-3,15-01
4 87	5.36516+00 T	3 63+04 1		3 n1=n1 t	2.73+04	-2.74-01				1 78+04		
5 11	5.60516+00 1	3 60+04	4 90-n1	3 n2*n1 1	2.99 + n4	-2.73-01	+3 37-01 +	2 83-01	292 nl	1 9 / 4 / 4		3 21 - 01
5 35	5,84516+00 1	3 58+04 1	4.97-01	3.04-01 1	3.27+14	-2.73-01	73.38-01 t	2 83-n1	2 93 01 1	2 13+04	-2.70-01	-3.23-01
5 59	6,08516+00 1	3 55+04	4.9=01	3.05-01 1	3.56+04	-2.72-01	-3.40-n1 +	2,82-n1	2.94-01 1	2.33+04	-2.77-01	-3.24-01
5 83	6.32516+00 1	3 53+04	4,93-01	3.06-01 I	3.86+04	-2.72-01	-3,41-01 1	2 82-01	2,95_01 T	2.54+04	-2.75-01	-3,26-01
6,07	6,56516+00 1	3 51+04 1	4.92-01	3.06-01 1	4.17+04	-2,72-01	-3,42-01 1	2.81-01	2,96-01 1	2.76+04	-2.76-01	-3,27-01
6 31	6.80516+00 1	3 48+04 1	4.91-01	3,07-01 1	4.49+04	-2.71-01	-3,43-01 1	2,81-01	2 97-01 1	2,99+04	-2.76-01	-3.29-01
6.55	7.04516+00 1	3.46+04 1	4.89-01	3,08-01 1	4.83+04	-2,71-01	-3,44-01 1	2.80-01	2.98-01 1	3,23+04	-2,75-01	-3,30-01

Z=82, coctosine 2S1/2 (EI = I.58458 + 0.4)aB), EPS = 0.0010

-

Таблица 7

Z = 82, coctoshine 2P1/2 (EI = I.52504 + 04 SB), EPS = 0.0010

.

	न्न, न _ ऋँग	EO	E	I	and a second	E2		M	-		M2	
ш+	D = D ⁺ +D ⁻	٤	Ę	A ₂	Ę	A ₂	Å ₄	£	A ₂	Ę	A2	A ₄
6,33	1.04576+00 1	4.63+02	2,23-05	-4.44-01 !	8.65-93	-2,79-01	-3.19-n1 r	2,16=03	7 71-03 1	1,16+00	-3.74-01	-1.49-05
53	1,12575+00	2,91+03	2 0 5 - 0 4	-4.25-01 1	1.75-01	-2°77≈01	-3.24-01 1	1,21-02	8.76-03 1	1,18+01	-3,75-01	3.77-03
0,71	1,20576+00 1	4 50+03 1	3.92-04	-3,26-01 1	5.84-01	-2.76-01	-3,27-01 1	1,69-02	8 85 03 1	2,46+01	-3.77-01	7.94-03
0 79	1,28576+30 1	5 32+03	5,51-04	-3.62-01 1	9.03-01	-2,75-01	-3,29-01 1	1,82-02	8.84-03 1	3,61+01	-3,78-01	1,20-02
0,87	1,36576+30 1	5 71+03 1	5,71-04	-3,23-01 1	1.32+00	=2,75~01	-3,31-01 I	1.79-02	9 04-03 1	4,58+01	-3,79-01	1,59~02
0.95	1,44576+00 1	5 88+03 1	7,6g-84	-2,84-01 !	1.74+00	-2.74-01	-3,32-01 I	1,70-02	9.61.03 1	5,41+01	-3,80-01	1,96-02
1_03	1,52576+60	5 92+07 1	8,55-84	-2.43-01	2,15+00	-2,74-91	-3.33-01 I	1,59-02	1.03.02 1	6,11+61	-3,81-01	2,29-02
1,11	1.60576+00	5,89+03 1	0,26-04	-2,04-01 1	2,56+00	-2,74-01	-3,35-01 I	1,47-02	1,16_02 1	6,72+01	-3,82-01	2.62-02
1,19	1,63576+00	5,83+03 !	9,92-04	-1 67-01 1	2,98+00	-2,73-01	-3.36-01 j	1,36-02	1,32-02 1	7,24+01	-3,83-01	2,91-02
1.27	1,765/6+00 1	5,74+03 !	1,0 ₅ -03	-1.32 - 01	3.40+00	-2,73-01	~3,37-n1 [1,26-02	1.51_02 1	7,70+01	-3,84-01	3,17-02
1,35	1.845/6+00 1	3,65+03 1	1,11-03	-1.00-01 1	3.85+00	-2.73-01	-3,38-01 I	1.17-02	1,74-02 1	8,11+01	-3,84-01	3.40-02
43	1,925/6+00 1	5,55+03	1,19-03	-7,05-02 1	4.34+00	-2.72-01	-3,39-01 1	1.09-02	2,00-02 1	8,48+01	-3,85-01	3.59-02
1,51	2.005(6+00 1	5,45+03 1	1,22-03	-4.30-02	4.86+00	-2.72-01	-3.41 - 01 I	1.02-02	2,28,02 1	8,82+01	-3,85-01	3,76-02
1 75	2,24376+09	5,17+03 1	1,36-03	2.54-02	6.75+00	-2,71-01	-3,44-01 1	8,52-03	3,29-02 1	9,69+01	-3,86-01	4.07-02
	2,485/6+01	4 92+03 1	1.50-03	7.70-02 1	9.26+00	-2,79-01	-3.46-01 I	7.31-03	4.47-02 1	1,05+02	-3,86-01	4.08-02
2,23	2,72575+30	4 70+03 J	1.62 - 03	1.17-01 1	1.25+31	-2.70-01	-3,49-n1 I	6.41-03	5.75-02 1	1,12+02	-3,86-01	3,82-02
2,41	2,965(6+01)	4,51+03	1,73-03	1.47-01 1	1,65+91	-2.69-01	~3,50-91 1	5,75-03	7.09-02 1	1,19+02	-3,84-01	3,31-02
2.1	2.205(6+00)	4_35+p3 1	1,83-03	1.71-01 /	2.15+01	-2,69-01	-3,52-g1 I	5.24-03	8,42 <u>02</u>	1,26402	-3,82-01	2.59-02
2,95	3,445/6+00	21+03	1,92-03	1.90-01 1	2.74+91	-2.68-01	-3,53-01 I	4,85-03	9,73-02 <u>1</u>	1,34+02	-3,79-01	1.68-02
	5,605/6+00	4 08+03 1	2.01-03	2.05-01	3,43+01	-2.68-01	-3.53-01 I	4.53-03	1,10_01 I	1,42+02	-3.76-01	6.29-03
 	3,925/6+01	3,97+03	2,08-03	2.18-01	4.21+01	-2,68-01	<u>=3.54-01 t</u>	4,28-03	1,22.01 [1,51+02	-3,73-01	-5,50-03
3,57	4.165/6+00	3.8/+03	2,1 ₅ -03	2.28-01	5.09*01	-2.68-01	-3.54-91 1	4,07-03	1.33-01 1	1,60+02	-3,69-01	-1,76-02
2,37	4.40576+00	3,79+03	2,22-03	2.37-01 1	6.07+01	-2.68-01	-3,55-01 I	3,90-03	1,44_01 1	1,70+02	-3,65-01	-3.03-02
4,15	4,64576+011	3,70+03 1	2.28-03	2,44-01	7.20+01	-2.68-01	-3,55-01 I	3,76-03	1.54-01 1	1,82+02	-3,61-01	-4.39-02
4 59	4.835/6+00	3,63+03 1	2.34-03	2.51-01	8.40+01	-2.68-01	-3.55- <u>01</u> !	3.64-03	1.63-01 1	1,93+02	-3,5?-01	-5,71-02
4 63	5,125/5+00	3,5/+03 1	2,39-03	2,56-01	9.71+01	-2,68-01	-3,55-01 I	3 54-03	1.71-01 1	2,06+02	-3,53-01	-7.01-02
4.87	5,365/6+00	3,51+03	2,44-03	2,61-01	1.11+02	-2.68-01	-3,55-01 I	3.45-03	1,79-01 1	2,19+02	-3.49-01	-8,27-02
2,11	2,60576+00	3,45+03	2,49=03	12.65-01	1.26+02	-2.68-01	-3,55~n1 1	3,37-03	1,86-01 1	2.33+02	-3,46-01	+9.50-02
2 35	5.845(6+00	3,40+03	2,53-03	2.69-01	1.43+02	-2,67-01	-3,56- <u>01</u> 1	3.30-03	1,93-01 1	2,48+02	-3,42-01	-1,07-01
	0 0 8 5 7 6 + 0 0 1 5 7 0 8 7 6 + 0 0 1	5 30+03	2.57-03	2.72-01	1.60+02	-2.67-01	-3,56-01 1	3.24-03	1,99-01 1	2,64*02	-3,39-01	-1.18 - 01
ັງ ດຸ ເຄັ່ງ	0,52516+39 6 46e74 an		L 2.60-03	2.75-01	1.78+02	-2.67-01	"3,56- <u>n</u> l <u>r</u>	3.19-03	2,05-01 1	2,81+02	-3,35-01	-1,29-01
() (27+03	2.64-03	2.7-31	1.98+02	-2.67-01	-3,56-01 I	3,14-03	2,10-01 1	2,98+92	-3,32-01	-1.39-01
0,21 6 = =	2 37276+BH 2 37677-33		2,67=83	2.79-01	2.19*92	72.67-01	-3,56- <u>91</u> 1	3,10-03	2,15-01	3,17+02	-3,29-01	-1.49 - 01
v. วา	J+D10+US	: > 21+03 1	z 70-03	2,82 - 91	L 40*92	-2.67-91	-3,50-01 1	5.05-03	2,20.01 1	3,36+02	+3,2 ⁷ -01	-1.58-01

Таблица 8

Рис.1. Схема эксперимента: 1 — ионопровод; 2 — рассемватель; 3 — $H_00 + Na_2B_4O_7$; 4 — поглотитель; 5 — свинец; 6² — детектор; 7 — борированный полиэтилен

Излучение *г*-квантов регистрировалось Ge(Li)-детектором объемом 40 см³ и с энергетическим разрешением 4 кэВ при энергии E_r = 1 МэВ. Детектор был заключен в защиту из свинца и водородсодержащих материалов с добавками бора (см.рис.1). Гамма-спектрометр калибровали по энергии и эффективности с помощью источников ²²⁶ ка и ¹³⁷Св, которые во время калибровок помещали на место уранового образца. Спектры *г*-излучения, один из которых представлен на рис.2, обрабатывались на ЭВМ "Минск-22" по программе ПРОСПЕКТ, разработанной в ЛИЯФ им.Б.П.Константинова.

Рис. 2. Спектр р-излучения при энергии нейтронов 1300 кэВ

Для определения сечений возбуждения определенного уровня ²³⁸0 вычислялась разность между количествами у-переходов, разряжающих и заселяющих этот уровень. При этом принимались во внимание следующие источники ошибок:

1. Погрешность в вычислении площадей у-линий, связанная со статистической погрешностью и с неточностью анпроксимации формы линия и фона; эта погрешность менялась от 2 до 10%.

2. Погрешность в определении эффективности регистрации у-квантов, которая составила 3,7%.

3. Поправки на конверсионные электроны и невыделенные в данном эксперименте, но известные из других работ р-переходы. Они составили соответственно для 680 кэВ 1,2%, 732 кэВ 0,7%, 930 кэВ 13%, 950 кэВ 87%, 997 кэВ 10% и для уровней 1059-1060 кэВ 6%.

4. Попревки на анизотропию углового распределения у-квантов. Обычно в ядерных реакциях угловое распределение у-квантов можно представить в виде разложения в ряд лишь по четным польномам Лежандра. Для измерений был выбран угол 125°, при котором обращается в нуль второй полином Лежандра. При этом для дипольного излучения точно выполняется соотношение

$$\tilde{0}_0 = 4\pi \frac{d\tilde{0}}{d\Omega}$$

где б_о - полное сечение реакции; <u>dб</u> - дифференциальное сечение под углом 125⁰.

При расчетах в данной работе всёгда использовалась эта формула в предположении малости вклада квадрупольного излучения. Это предположение оправдывалось тем, что в эксперименте регистрировались у-переходы между уровнями, спины которых отличались не более чем на единицу.

5. Поправки на поглощение у-квантов и нейтронов в образце и на многократное расселние нейтронов. В настоящей работе вычислялось лишь ослабление потока у квантов, вылетающих из образца. Предполагалось, что, согласно данным работы (5/, ослабление потока нейтронов в образце с точностью 3-4% компенсируется многократным расселнием нейтронов. Суммарная погрешность в определении этих поправок составила в среднем 6%.

6. Погрешность определения потока нейтронов, падающих на образец, составила 5, С%. Полная погрешность определения сечений неупругого рассеяния нейтронов составила 9-15%.

Полученные данные приведены в таблице. В скобках указаны ошибки. Для уровней 680 и 732 кэВ данные близки к оценкам, приведенным в работе [3], для остальных уровней сведения получены впервые.

Энергия			Уровень 2	³⁸ и, кэВ		
кэр	680	732	930	950	997	1059 - 1060
780	86(11)	-	-	-	-	_
840	260(23)	20(13)	-	-	~	-
890	350(28)	75(10)	-	-	-	-
980	375(34)	182(21)	-	-	-	-
1100	450(40)	259(28)	147(15)	-	-	-
1200	442(36)	266(29)	215(20)	112(17)	141(13)	79(10)
1300	415(33)	261(27)	245(24)	138(20)	155(14)	162(15)
1400	388(31)	220(24)	244(24)	140(20)	174(18)	230(22)
					<u> </u>	L

Сечения неупругого рассеяния нейтронов, мб

Список литературы

- 1. Barnard E. e.a. Nucl. phys., 1966, v.80, p.46.
- 2. Smith A. e.a. Ibid., 1963, v.46, p.639.
- Воротников П.Е., Вуколов В.А., Колтыпин Е.А. и др. В кн.: Нейтронная физика (Материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, 18-22 апреля 1977 г.). М., ЦНИИатоминформ, 1977, ч.2, с.119-124.
- 4. Козулин Э.М., Лебедев Л.С., Немилов Ю.А. и др. Ядерная физика, 1979, т.29, вып.3, с.589.
- 5. Стрижак В.И., Гуртовой М.Е., Лещенко Б.Е. и др. Физика быстрых нейтронов. М., Атомиздат, 1977, с. 180.

Статья поступила в редакцию 27 марта 1980 г.

удк 539.17.02 ПОЛНЫЕ СЕЧЕНИЯ ОБРАЗОВАНИЯ Г-КВАНТОВ ПРИ ВЗАИМОДЕЙСТВИИ ЕНСТРЫХ НЕЙТРОНОВ С ЯДРАМИ МЕДИ И МОЛИБДЕНА

М.В. Савин, И.Н. Парамонова, В.А. Чиркин, В.Н. Лудин, Н.Н. Залялов

> TOTAL GAMMA-RAY PRODUCTION CROSS-SECTIONS UNDER INTERACTIONS OF FAST NEUTRONS WITH COPPER AND MOLIEDENUM NUCLEI. The measurement results of the total gamma-ray production cross-section with the energy $E_n = 1-5$ MeV for the (n, x,r)-reactions in natural copper and moliedenum in the interval neutron energy $E_n = 1-10$ MeV are described.

На линейном ускорителе электронов в диапазоне энергий $E_n = 1 - 10$ МаВ выполнены измерения полных сечений образования p-квантов с использованием танталбериллиевой сборки в качестве источника нейтронов. Методика измерений описана в работах $(1,2)^7$. Гамма-излучение регистрировалось в кольцевой геометрии под углом 125° к направлению потока нейтронов. Детектором служил безводородный жидкий сцинтилятор на основе гексафторбензола (C_6F_6), залитый в цилиндрическую тонкостенную алюминиевую кювету (D = 54 мм, H = 38 мм). Функции чувствительности детектора определялись на основе измерений с использованием калиброванных гаммаисточников и расчетов методом Монте-Карло (37. Образцы из меди и молибдена естественного изотопного состава имели форму полого усеченного конуса с толщиной стенок 5 мм для меди и 6 мм для молибдена. Диаметр нижнего основания конуса равен 170 мм, верхнего 85 мм.

Поток нейтронов на образец и их энергетическое распределение измеряли с помощью калиброванного сцинтилляционного детектора с использованием метода времени пролета. Порог регистрации нейтронов устанавливали по пику полного поглощения *г*-квантов ²⁴¹ ан .

При обработке результатов измерений учитывали ослабление потока нейтронов и Γ -квантов в образце. Поправки на многократное рассеяние нейтронов и на изменение спектра Γ -квантов в результато комптоновских взаимодействий в образце определяли по расчетам методом Монте-Карло. Полученные значения полных сечений образования Γ -квантов при неупругом взаимодействии нейтронов с адрами меди и молибдена с указанием полной ошибки измерений ($\Delta \sigma$) и статистической ошибки ($\Delta \sigma_{\rm CT}$) приведены в табл.1 и 2 соответственно. В полнур ошибку измерений включены статистическая ошибка и систематические погрешности определения потока нейтронов на образец (около 5%), калибровки детектора Γ -квантов (около 3%) и метода обработки аппаратурных распределений (около 15%). Кроме того, в систематическую погрешность вошли ошибки, связанные с неопределенностью относительного смещения временных шкая ($\Delta \tau = \pm 5$ нс) в каналах детектора Γ -квантов и детектора нейтронов. Эта неопределенность отражается на точности определения потока нейтронов в энергетическом интервале $E_{-}(E + \Delta E)$, соответствующем временному интервалу $t - (t + \Delta t)$. Систематическая ошибка в определении сечения из-за возможного смещения шкая существенна только в области больших энергий нейтронов (t -мало): для спектра нейтронов, выходящего из тантал-бериллиевой мишени, величина этой ошибки при $E_n = 9$ Мав составляла $\delta = 4\%$, а при $E_n < 5$ Мав

Статистическая ошибка определялась из разброса результатов отдельных серий измерений. Дополнительно в нее были включены статистические ошибки измерений потока нейтронов на образец.

Таблици I и 2 🖬

Таблица I

Энергия	Сечение						Энерги	ия г -к	BAHTOB,	МэВ		·····					
нейтронов, МэВ	и пог- решность	I.0- I,25	I.25- I.5	1,50- 1,75	1, 75 -	12,0- 12,25	12,25 12,5	2,5- 2,75	12,75- 3,0	13,0- 13,25	13,25- 13,5	3,5- 3,75	13,75- 4,0	4,0- 4,25	14,25- 14,5	4,5- 4,75	4,75 5,0
10,32-	б	594	625	296	216	160	107	95	58	IOI	115	79	107	91	80	62	66
9,17	۵6 _{CT}	99	103	49	36	48	33	29	.2I	36	4 I	28	48	4 0	35	27	29
		I37	I 44	68	50	55	37	32	23	40	45	31	51	4 I	38	29	31
9,17-	б	610	57 9	290	217	I66	159	İ17	97	96	56	97	89	50	60	53	48
8,14	∆6 _{CT}	96	92	4 5	34	33	32	23	26	26	15	26	32	18	22	19	17
	<u></u>	137	130	65	4 9	42	4 0		30	30	18	30	35	I9	24	21	19
8,14-	ଟ	62I	554	388	227	157	168	1554	71	89	62	85	.57	90	70	59	47
7,27	∆6 _{CT}	76	6 8	48	28	26	28	25	15	19	13	18	I5	25	19	16	13
	<u>∆</u> 6	125	III	78	4 6	36	39	35	19	24	16	22	I8	29	22	18	15
7.27-	б	669	6 3 8	333	264	179	132	I47	88	87	87	76	88	64	58	63	36
6,5I	∆6 _{cT}	74	71	37	29	20	20	22	18	18	18	22	25	18	I7	18	10
	<u></u>		I24	65	51	35	29	32	23	22	23	25	29	21	19	21	12
6,5I-	б	673	620	3 01	280	205	137	101	69	102	55	 68	82	62	56	56	43
5,90	∆6 _{CT}	74	68	32	30	22	23	17	12	18	12	15	18	14	12	12	9
	<u>۵</u> б	131	150	58	54	40	-32	23	I6	24	15	18	22	I7	15	15	II
5,90-	б	612	634	312	269	I6 4	I33	90	88	75	58	38	76	38	54	56	16
5,34	$\Delta \mathcal{O}_{CT}$	64	67	33	28	I7	I4	14	14	12	· 9	6	12	6	8	9	3
	<u></u>	117	122	60	51	3I	26	20	20	17	13	9	17	12	I7	18	5
5,34-	б	622	604	309	294	I34	98	95	104	45	50	41	68	33	33	24	II
4,85	∆ପ _{CT}	58	56	28	27	13	15	I 4	I5	9	10	II	18	9	8	6	3
- <u></u>	∆õ	115	112	58	55	25	21	21	23	12	13	13	21	I0	10	7	3
4,85-	б	59 6	59I	319	244	I29	137	64	89	49	48	45	4 I	23	28	IO	
4,43	۵б _{ст}	55	54	29	22	II	22	10	I 4	8	14	13	12	7	8	3	
	<u> ಎರ್</u>	110	109	59	45	24	31	14	20	II	16	15	14	8	10	3	
4,43-	б	606	547	295	212	158	90	78	43	60	32	55	19	16			
4,07	AGCT	50	45	24	17	22	13	10	6	8	8	13	5	4			
	∆ຕັ່	109	99	53	38	33	19	16	9	13	IO	16	6	5			

Полные сечения образования r-квангов в реакции (n, x, r) на ядрах меди, $4\pi\sigma$ (125°) Мо·МэВ^{-I} ΔE_r

	4,07-	Ø	553	519	277	195 12	126	90 TO	63	73	39 TA	26	12	23			
		దర్	95	90	48	34	26	12	13	15	<u>I6</u>	10	5	9			
	3,72-	б	502	482	227	217	100	6 3	67	54	23	20	21				
	3,43	дб _{ст} дб	36 88	35 85	I6 39	15 38	12 21	8 13	18 21	14 17	6 7	5 6	6 7				
	3,43-	б	409	465	204	I 54	74	49	68	23	16	 I3		-			
	3,15	മര് _{ст}	32 73	37 83	16 37	20 32	9 15	17 18	23 25	8 9	6 6	4 5					
	3.15-	<u>40</u>	411	405	 I84	 I46	 81	43	33	22	8						
	2,9Ĭ	лб _{ст}	45	45	20	I6	16 22	8	7	4	2						
		<u> </u>	80	79	35	28	20		9	6	2	-					
	2,91- 2,70	б ^б	372 33	40I 37	197 18	II3 IO	75 25	22 7	27 9	9							
		<u>م</u> ور	68	74	36	21	26	8	10	3	_						
	2,70-	ଗ	375	397	175	110	45	30	15								
19	2,50	∆б _{ст} ∆б	34 69	36 73	16 3 3	10 20	8 II	6 8	3 4								
	2,50-	б	219	316	I 4 5	83	4 0	10		_							
	2,32	∆б _{ст} ∆б	17 39	23 55	11 26	18 19	6 8	2 2									
	2.32-	<u></u> б	254	253	129	72	21										
	2,16	∆6 _{CT}	16	16	15	9 TC	2	· •									
		<u></u>	44	4.3	20	15											
	2,16- 2,01	6 ∆б⊶	219 16	217 I6	122 9	59 5	14 I										
	<u> </u>	<u></u>	38	38	22	II	2										
	2,0I-	ଟ	I88	205	103	34											
	1,01	۵७ _{ст} ۵ б	13 33	15 36	8 18	26											
	I.87-	б	I63	I6 4	62	41											
	T 7Å		TC	TC		5											

•

· -...

e-- =

Окончание табл. І

Энергия	Сечение	a						Энерги	я Л-ква	нтов,	МэВ						
нейтронов, МэВ	погреш- ность	I.0- I.25	I,25- I,5	I,5- I,75	1,75- 2,0	2,0- 2,25	2,25 2,5	-2,5- 2,75	2,75- 3,0	3,0- 3,25	3,25- 3,5	3,5- 3,75	3,75- 4,0	4,0- 4,25	4,25- 4,5	4,5- 4,75	4.75- 5,0
I, 74- I,62	б Δб _{ст}	126 14	7 0 8	30 3													
	<u></u> ∆ਗ਼	25	I3	5													
I,62- I,5I	ර රු _{ст} 	96 7 17	48 3 8														
I,51- I,40	ර ∆б _{ст} ∆ර	96 7 17	12 2 2														
I,40- I,3I	ର୍ଚ ଦର୍ତ _{୦୮} ଦର୍ତ	71 3 12															
I,3I- I,23	б Δб _{ст} Δб	57 5 11															

Полные сечения образования r-квантов в реакции (n,x,p) на ядрах молибдена, $4\pi\sigma(125^{\circ})$ Мо·МэВ^{-I}- ΔE_{r}

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		нергия Сечение	гия	Сечение							
9,34-8,72 6 1026 913 566 387 387 326 225 $\Delta \delta_{CT}$ 175 156 142 106 226 190 131 $\Delta \delta^{-}_{CT}$ 240 213 168 114 235 198 136 8,72-8,07 6 1164 928 672 393 289 459 313 $\Delta \delta_{CT}$ 174 139 168 146 143 225 129 $\Delta \delta^{-}_{CT}$ 229 187 123 151 81 144 136 $\Delta \delta_{CT}$ 229 187 123 151 81 144 136 $\Delta \delta_{CT}$ 229 187 123 151 81 144 136 $\Delta \delta_{CT}$ 221 153 106 161 118 112 126 $\Delta \delta_{CT}$ 221 153 106 161 118 112 126 $\Delta \delta_{CT}$ 156 79 121 157 210 132 6,91-6,45 σ 1243 1195 476 528 408 262 182 $\Delta \delta_{CT}$ 156 79 121 150 113 138 69 $\Delta \delta_{CT}$ 156 79 121 150 113 138 69 $\Delta \delta_{CT}$ 156 79 121 150 113 138 69 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 102 78 89 93 79 112 51 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 102 78 89 93 79 112 51 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 102 78 89 93 79 112 51 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 120 116 74 111 86 87 83 $\Delta \delta_{CT}$ 102 78 89 93 79 112 51 $\Delta \delta_{CT}$ 102 176 528 402 340 505 141 $\Delta \delta_{CT}$ 91 75 68 101 102 66 47 $\Delta \delta_{CT}$ 36 74 79 101 82 84 36 $\Delta \delta_{CT}$ 36 74 79 50 146 34 $\Delta \delta_{CT}$ 36 74 79 50 177 146 34 $\Delta \delta_{CT}$ 36 74 79 50 177 146 34 $\Delta \delta_{CT}$ 36 74 79 70 17	1,	мэВ грешност	роно: эВ	1,5-2,0	и по- грешность	2,0-2,5	2,5-3,0	3,0-3,5	3,5-4,0	4,0-4,5	4,5-5,0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10),34-8,72 6	-8,7	913	б	566	387	387	326	225	259
$ \Delta \mathfrak{s}^{5} = 240 = 213 = 168 = 114 = 235 = 198 = 136 \\ \mathfrak{s}, 72-\mathfrak{s}, 07 = \mathfrak{s} = \frac{174}{\Delta \mathfrak{s}_{CT}} = 174 = 139 = 168 = 146 = 143 = 226 = 129 \\ \Delta \mathfrak{s} = 255 = 203 = 199 = 159 = 149 = 237 = 138 \\ \mathfrak{s}, 07-7, 49 = \mathfrak{s} = 1285 = 1053 = 581 = 508 = 322 = 407 = 299 \\ \Delta \mathfrak{s}_{CT} = 223 = 187 = 123 = 151 = 81 = 144 = 136 \\ \Delta \mathfrak{s} = 307 = 252 = 154 = 179 = 95 = 158 = 144 \\ 7, 49-\mathfrak{s}, 91 = \mathfrak{s} = 1400 = 984 = 640 = 576 = 437 = 290 = 242 \\ \Delta \mathfrak{s}_{CT} = 221 = 153 = 106 = 181 = 118 = 112 = 126 \\ \Delta \mathfrak{s} = 315 = 219 = 155 = 211 = 137 = 120 = 132 \\ \mathfrak{s} = \mathfrak{s} = 315 = 219 = 155 = 211 = 137 = 120 = 132 \\ \mathfrak{s} = \mathfrak{s} = 315 = 219 = 155 = 211 = 137 = 120 = 132 \\ \mathfrak{s} = \mathfrak{s} = 280 = 180 = 153 = 169 = 127 = 151 = 95 \\ \mathfrak{s}, 46 = 230 = 180 = 153 = 169 = 127 = 151 = 95 \\ \mathfrak{s}, 46 = 232 = 223 = 105 = 140 = 108 = 97 = 87 \\ \mathfrak{s}, 98-5, 56 = \mathfrak{s} = 1362 = 1040 = 583 = 402 = 340 = 306 = 121 \\ \mathfrak{s}, \mathfrak{s} = 232 = 223 = 105 = 140 = 108 = 97 = 87 \\ \mathfrak{s}, 98-5, 56 = \mathfrak{s} = 1362 = 1040 = 583 = 402 = 340 = 306 = 122 = 56 \\ \mathfrak{s}, 56-5, 52 = \mathfrak{s} = 1217 = 997 = 432 = 423 = 327 = 206 = 127 \\ \Delta \mathfrak{s} = 241 = 184 = 128 = 113 = 96 = 122 = 56 \\ \mathfrak{s}, 56-5, 22 = \mathfrak{s} = 1217 = 997 = 432 = 423 = 327 = 206 = 127 \\ \Delta \mathfrak{s} = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1776 = 97 = 121 = 123 = 71 = 51 \\ \mathfrak{s}, 26 = 215 = 1774 = 106 = 115 = 93 = 91 = 39 \\ \mathfrak{s}, 4, 64 = 4, 57 = 64 = 70 = 65 = 56 = 66 = 16 \\ \mathfrak{s}, 46 = 198 = 165 = 91 = 112 = 79 = 70 = 17 \\ \mathfrak{s}, 4, 64 = 198 = 165 = 91 = 112 =$	1	∆ర _{cా}		156	∆б _{ст}	142	106	226	1 9 0	131	151
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 2			213	∆0ັ′	168	114	235	198	136	157
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	3,72-8,07 6	8,72-8,07	928	б	672	393	289	459	313	248
	1	∆ố _{cT}		139	∆ố _{cT}	168	146	143	226	129	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<u>م</u> ور		203	<u>_</u>	199	159	149	237	138	111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	3,07_7,49 б	8,07_7,49	1053	б	581	508	322	407	299	1'79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ьб _{ст}		187	ьб _{ст}	123	151	81	144	136	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3			252	<u>ک</u> و	154	179	95	158	144	87
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	7 ,49_6,91 б	7.49-6.91	984	б	640	576	437	290	242	102
$ \underbrace{ AG^{\circ}}_{\mathbf{A},\mathbf{C},\mathbf{T}} = \underbrace{ \begin{array}{cccccccccccccccccccccccccccccccccc$	2	۵5 _{CT}		153	۵6 _{CT}	108	181	118	112	126	53
	3			219	 	155	211	137	120	132	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	6 .91-6.45 o	6 91_6 45	1002	б	580	484	364	384	213	126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	∧ຕ	, -	79	۸Ő	121	150	113	138	89	52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<u></u>		180	ΔŐ	153	169	127	151	95	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	6.45 - 5.98 റ	6 45 5 98	1195	ศ	476	528	408	262	182	116
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ν,	,.	116	ر م∂	74	111	86	87	83	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	۵۵ ۵۵		223	лб	105	140	108	97	87	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	5 .98- 5.56 r	5 98 5 56	1040	ଗ	583	402	340	505	141	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	, o, ∖.ნ	-,-	78	م ة	89	93	79	112	51	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<u>کې د</u>		184	<u>5</u>	128	113	96	122	56	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	5.56 - 5.22 б	5 56 5 22	997	б	432	423	327	206	127	63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		د. ۸б		75	- ۸б	68	101	102	66	47	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<u>کے در</u> کو		176	<u>کور</u>	97	121	123	71	51	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	5 22_4 84 6	2_4 F	985	ፍ	434	347	280	217	94	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		¢ ∧б~	0,22-2,04	74	∧	79	101	82	84	36	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	<u>ک</u> کر ا		174	<u>ک</u> ور	106	115	93	91	39	11
$\Delta \mathcal{E}_{CT} = \begin{array}{ccccccccccccccccccccccccccccccccccc$	1 :	4.84-4.57 б	4,84-4,57	941	б	403	385	270	146	34	
Δ6 198 165 91 112 79 70 17		.,-: ,,o: ల గర్		70	م م	65	95	66	66	16	
	_1			165	Δ ⁶	91	112	79	70	17	
4 57-4 28 of 1114 806 491 340 253 122 55	11	4 57_4 28 <i>K</i>	4,57-4,28	806	<u> </u>	<u>4</u> Q1	340	253	122	55	
. 95 68 65 44 47 37 17	11	1,07-1,00 U		68	÷	65	44	47	37	17	
Δ6 201 146 102 59 62 42 19	2	∆ ⁰ ст ∆б		146	ь0 _{ст} Дб	102	59	62	42	19	
4 28 4 06 6 1046 978 348 353 229 78	1(4 28 4 06 6	3 1 1	 978	б	348	353	229	78		
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,	1	τ,ω−τ,ω υ ⊾რ	,, (127	ا	45	74	66	23		
AG 215 201 72 92 76 26	5	ACT AR		201	AD CT	72	92	76	26		

.

Продолжение табл.2

Энергия	Сечение	:		Энергия	у-ква	нтов		
неитронов, МэВ	и погреш- ность	1,0-1,5	1,5-2,0	2,0-2,5	2,5_3,0	3,0_3,5	3,5-4,0	4,0-4,5 4,5-5,0
4 06 3 85	б	1094	1013	 199	286	103		
4,00-0,00	0 • 6	120	120	50	14	720	10	
-	CT	204	201	30	- 	10	13	
	<u>40</u>		201	04	50	40		
3,85-3,57	б	971	754	34 2	237	170	37	
	∆ର୍ଟ _{୧୮}	77	60	59	64	46	10	
	∆б	173	135	81	74	54	12	
3,57-3,43	б	927	749	290	198	124		
	<u>۵</u> 6	78	62	25	39	24		
_	∆రో	168	135	53	51	31	_	
3,43-3,20	б	924	739	226	172	65	-	
-,,	×. ۲	89	72	44	50	21		
	до _{ст} До	173	138	57	58	23		
	<u>-</u>				100			
3,20-3,01	o ۳	900	000	1622	193			
	ΔΘ _{CT}	71	48	62	51			
	<u>Δ0</u>	173	116	-72	60			
3,01-2,87	б	865	688	190	111			
	⊿ര് _{c⊤}	68	55	46	27			
	<u></u> дб	154	122	55	32			
2,87-2,70	б	737	535	128	61			
	۵۵۰	67	48	23	11			
	∆రో	125	91	31	15			
2 70-2 58	 ه	683	474	100				
~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠ ٢	62	43	100				
	∆0 _{CT} ∧б	125	87	18				
2,58-2,45	б	742	448	113				
	∆ರ್ _{c⊤}	118	71	18				
~	∆ರ	168	101	25				
2,45-2,32	- б	642	361	55				
	∆б	73	41	· 9				
	∆0 ∆0	126	71	12				
2,32-2,20	б	557	315	38				
	.6	64	37	8				
	∆ ⁰ ст ∆б	109	62	1				
		500	061					
<i>к,Ф</i> -2,10	о С	000	20I					
	ADCT	K/ .	GT					
_	<u>۵</u> ۵	84	44					

Окончание табл.2

Энергия	Сечение	Энергия Т-квантов							
неитронов, МэВ	и погреш- ность	1,0-1,5	1,5-2,0	2,0-2,5	2,5-3,0	3,0-3,5	3,5-4,0	4,0-4,5	4,5-5,0
2,10-1,99	б	402	264						
	ΔŐCT	39	26						
		74	49					•	
1,99-1,89	б	377	234		·				
	∆6്ന	35	22						
	∆రో	70	43						
1,89-1,80	б	304	155						
	Δ6 _{cτ}	18	9						
		52	27						
1,80-1,70	б	227	85						
	∆0 _{CT}	16	6						
	<u>ک</u> و	40	14						
1,70-1,60	б	215							
	ചര് _{റെ}	20							
	۵٥	40	-						
1,60-1,54	б	155							
	ΔŐcT	16							
<u></u>	∆0 ັ	30	-						
1,54–1,46	б	89							
	۵٥٠	5							
	 کرت	16	_						
1.46-1.38	б	47							
	ΔG_{ar}	1							
	<u>⊿</u> б	7							

Список литературы

- 1. Савин М.В., Парамонова М.Н., Чиркин В.А. и др. В кн.: Нейтронная физика (Материалы 2-й Всесоюзной конференции по нейтронной физике, Киев, 28 мая – 1 июня 1973 г.). Обнинск, ФЭИ, 1974, ч.З., с.115-119.
- Савин М.В., Хохлов D.А., Заляхов Н.Н. и др. В кн.: Нейтронная физика (Материалы 3-й Всесоюзной конференции по нейтронной физике, Киев, 9-13 июня, 1975 г.). М., ЦНИИатоминформ, 1976, ч.4, с.191-195.
- 3. Савин М.В., Донской Е.Н., Парамонова И.Н. и др. Приборы и техника эксперимента, 1977, № 4, с.79-82.

Статья поступила в редакцию 6 августа 1980 г.

УДК 539.172

сечения неупругого Взаимодействия заряженных частиц с атомными ядрами В.М. Бычков, В.В. Карпов, А.Б. Пащенко, В.И. Пляскин

> **CROSS-SECTIONS OF CHARGED PARTICLES INELASTIC INTERACTION** WITH NUCLEI. In this paper the analysis of various optical model parameters systematics has been done with the purpose to provide the best description of available experimental information on charged particles interaction with nuclei. Optimum sets of optical potential parameters has been choosen for wide intervals of nuclei and energies of incident protons and α -particles. Absorption crosssections and nuclear penetrability coefficients has been calculated for nuclei with $Z \ge 20$. A simple analytical formulas are given for nucleons an α -particles absorption cross-sections calculations.

Сечения взаимодействия частиц с атомными ядрами необходимо знать при решении многих задач ядерной физики. Для расчета сечений образования составного ядра и коэффициентов проницаемости ядерной поверхности налетающими частицами давно и довольно успешно применяется оптическая модель [1]. Вопросы взаимодействия нейтронов с ядрами в рамках оптической модели достаточно подробно рассмотрены в работе [2], где приведены таблицы результатов расчета. Аналогичной информации для заряженных частиц мало.

Цель данной работы:

- выбрать оптимальный набор параметров оптического потенциала из условия наилучшего описания имеющейся экспериментальной информации в широких диапазонах ядер и энергий;

- рассчитать на основе оптической модели (с оптимальным набором параметров) сечения поглощения и коэффициенты проницаемости для протонов и *«частиц*;

- получить простые аналитические выражения, описывающие сечения поглощения ядрами нуклонов и *«*-частиц.

Оптимальный набор параметров оптического потенциала. В данной работе наиболее важный вопрос – выбор оптимального набора параметров оптического потенциала.

Были рассмотрены наиболее известные систематики параметров для описания взаимодействия нуклонов с ядрами, часто применяемые в расчетах. Систематика Бечетти – Гринлиса [3] получена на основе описания угловых распределений упругого рассеяния, поляризации нейтронов и протонов, полного сечения нейтронов и сечения поглощения протонов ядрами с A > 40 в области энергий до 50 МэВ. В работе [4] оптимальные параметры потенциала получены при изучении поляризации, сечения поглощения и угловых распределений упругого рассеяния протонов с энергией 9-22 МэВ на большом числе ядер. Рекомендованный набор параметров для группы ядер хрома, железа, никеля получен в работе [5] на основе анализа нейтронных сечений в области энергий 1-15 МэВ. Параметры Ф.Бъёрклунда и С.Фернбаха [6] получены при исследовании рассеяния протонов с энергиями вплоть до 300 МэВ для многих ядер. Вычисления в рамках оптической модели проводились по программе КОП [7].

В расчетах использовали оптическую модель со сферическим комплексным потенциалом вида

 $U(z)=V(z)+\operatorname{i} W(z)\,.$

Здесь $V(z) = -V_R f(z, R_R, a_R) + V_{so} \hat{\delta} \hat{\ell} \lambda_{\pi}^2 (1/z) (d/dz) [f(z, R_{so}, a_{so})] +$

+
$$\begin{cases} \left[Z_{1}Z_{2}\ell^{2}/(2R_{c})\right] \left[3-(z^{2}/R_{c}^{2})\right] & \text{для} & z \leq R_{c}, \\ Z_{1}Z\ell^{2}/z & \text{для} & z \geq R_{c}; \\ \hat{\mathcal{O}}\hat{\ell} &= \begin{cases} \ell & \text{для} & j = \ell + \frac{1}{2}, \\ -(\ell+1) & \text{для} & j = \ell - \frac{1}{2} > 0; \end{cases}$$

 j, ℓ – квантовые числа полного и орбитального угловых моментов для падающей частицы; $\hat{\pi}_{\pi}^2$ – комптоновская длина волны π -мезона; Z_i и Z_2 – заряды мишени и падающей частицы;
$$W(z) = -W_{vf}(z, R'_{I}, a'_{I}) + W_{sF} 4a_{I}(d/dz) [f(z, R_{I}, a_{I})] ,$$

где $f(z, R, \alpha) = \left\{ i + \exp[(z-R)/\alpha] \right\}^{-1}; R = zA^{1/3}; A$ - массовое число мишени.

На рис.1 приведено сравнение экспериментальных данных с результатами расчета сечений поглощения протонов различными ядрами с параметрами потенциала из перечисленных выше систематик. Расчеты с использованием параметров Ф.Бъёрклунда и С.Фернбаха взяты из работы /8/.

Рис.1. Сравнение результатов расчета сечений реакций протонов с ядрами для различных оптических потенциалов с экспериментальными данными в зависимости от энергии с использованием: _____ нейтронного потенциала работы /5/; ____ протонного потенциала Бечетти – Гринлиса /3/; ____ расчетов Г.Мани и М.Мелканова /8/ (знаки – данные разных авторов)

На рис.2 приведены результаты расчетов изотопической зависимости сечения поглощения протонов при энергии 14,5 МэВ с теми же параметрами оптического потенциала.

На рис.З показано, как совпадают расчеты угловых распределений упругого рассеяния протонов на изотопах олова (по отношению к резерфордовскому рассеянию) по программе КОП с оптическим потенциалом Бечетти – Гринлиса с экспериментальными данными работы (9/. Эти эксперименты не использовались в процедуре поиска оптимальных параметров оптического потенциала.

Из проведенного анализа можно заключить, что рассмотренные систематики параметров оптического потенциала позволяют описать экспериментальные данные по рассеянию протонов с точностью около 20%. Наилучшее согласие расчета с экспериментом для ядер с $Z \leq 32$ получено с параметрами оптического потенциала из работы /5/. Для более тяжелых элементов (Z > 32) в расчетах рекомендуется использовать параметры оптического потенциала из работы /3/.

В литературе систематики параметров оптического потенциала, аналогичные систематикам /3-6/ для рассеяния нуклонов, при описании рассеяния α' -частиц ядрами не приводятся.

Рис.2. Сравнение результатов расчета сечений реакций протонов при энергии 14,5 МаВ с ядрами изотопов одного элемента для различных оптических потенциалов в зависимости от массового числа с использованисм: 1 – нейтронного потенциала работы /5/; 2 – протонного потенциала Бечетти – Гринлиса /3/; 3 – нейтронкого потенциала Бечетти – Гринлиса /3/; 4 – протонного потенциала Ф.Пери /4/; 5 – расчетов Г мани и М. мелканова /8/

В работе /IQ/ изучалось упругое рассеяние «-частиц на большом числе ядер и приводятся рекомендованные значения параметров оптического потенциала для каждого ядра. В данной работе рассмотрена изотопическая зависимость мнимой части этих потенциалов. Оказалось, что она достаточно хорошо аппроксимируется прямой линией (рис.4). Расчеты сечений поглощения и коэффициентов проницаемости для «-частиц выполнены с параметрами оптического потенциала, взятыми из работы /IQ/ с учетом указанной выше изотопической зависимости.

Аналитические формулы для расчета сечений поглощения нуклонов и α -частиц ядрами. Часто удобно иметь простые аналитические выражения, достаточно хорошо описывающие результаты расчетов на основе оптической модели с оптимальными параметрами сечений поглощения ядрами нуклонов и α -частиц. Далее приводятся формулы, которые позволяют рассчитать названные сечения: 1. Сечение поглощения нейтронов ядрами (в миллибарнах):

 $\mathcal{G}(Z) = \{1000 + 7,5 \text{ A} + \text{B}(1_{2} - Z)\},\$

где А – массовое число ядра-мишени; Е – энергия налетающих нейтронов, мэВ; В = $\begin{cases} 7 & \text{при } E > 14, \\ 13 & \text{при } E < 14. \end{cases}$

Рис.3. Угловые распределения упругого рассеяния протонов на изотопах слова (по отношению к резербордовскому рассеянию) для энергий Е, равных 7,45 МэВ (а), 8,5 МэВ (б), 9,0 МэВ (в), 5,8 МэВ (г), 6,6 МэВ (д): —— расчеты по программе КОП с оптическим потенциалом Бечетти – Гринциса /3/; • – экспериментальные данные работы /9/

Рис.З. Окончание

Формула (1) дает результаты, совпадающие с данными работы /11/ в пределах около 3% для ядер с А > 20 и энергий 3≤ Е≤50.

2. Сечение поглощения протонов ядрами (в миллибарнах):

$$\mathcal{O}(E) = \mathcal{B}\left\{1 - \exp\left[-\frac{(E-D)}{C}\right]\right\} \left\{(E-D)\right\},\tag{2}$$

где

где Z – порядковый номер (заряд) ядра-мишени; Е – энергия налетающих протонов, МэВ; D = (0,1Z + 0,8) - эффективный порог взаимодействия; C = 1,5D = (0,15 + 1,2); $B = \begin{cases} 8,5 (A + 100) \text{ при } Z \leq 70, \quad 1(E - D) - единичная функция, 1(E - D) = \begin{cases} 1 \text{ при } E > 0, \\ 0 \text{ при } E < 0. \end{cases}$

Рис.4. Зависимость мнимой части оптического потенциала от параметра N-Z для описания упругого рассеяния «-частиц: • - рекомен-дованные в работе /10/ глубины мнимой части потенциала; --- - линей-ная интерполяция по методу наименьших квадратов

Формула (2) дает результаты, совпадающие с рассчитанными по оптической модели сечениями поглощения протонов, в пределах около 5%.

 Сечение поглощения α-частиц ядрами (Z≥10) рассчитывается по соотношению, аналогичному (2), только с другими коэффициентами:

$$\begin{array}{c} D = 0,21Z + 2,5; \\ C = 0,315 (Z - 5); \\ B = 840 + 12,5 \text{ A.} \end{array}$$

$$(3)$$

Результаты, полученные по формуле (2) с параметрами (3), совпадают с оптическими сечениями поглощения α -частиц в пределах 10%.

4. Широко используемое /12-147 для расчета сечений поглощения протонов и \propto -частиц ядрами соотношение $\mathscr{O}(E) = B (1 - \frac{D}{E}) 1 (E - D)$ дает результаты, совпадающие с расчетами по формуле (2) в интервале энергий вблизи порога D, но несколько заниженные (около 15%) при $E \ge 2D$. Вычисления по формуле (2) лучше согласуются с расчетами сечений по оптической модели в широком диапазоне энергий.

<u>Рекомендованные сечения поглощения протонов и α' -частиц атомными ядрами.</u> Выполнены расчети сечений образования составного ядра протонами для широкой области ядер ($Z \ge 20$) и энергий налетающих протонов ($E \le 50$ МэВ) с использованием оптимальных параметров оптического потенциала (для элементов с $Z \le 32$ использование параметры работы /5/, а для ядер с Z > 32 параметры Бечетти – Гринлиса /3/). Расчеты сечений поглощения α' -частиц ядрами с $Z \ge 19$ проводили с ис-пользованием параметров потенциала работы /10/.

Из-за большого объема информации не представилось возможным включить в работу таблицы сечений поглощения и проницаемостей ядерной поверхности протонами и α -частицами, необходимыми, например, для расчетов сечений ядерных реакций в рамках статистической модели Хаузера – Фешбаха. Эти данные в виде таблиц находятся в Центре по ядерным данным в Обнинске.

Список литературы

- 1. Ходгсон П.Е. Оптическая модель рассеяния. М., Атомиздат, 1966.
- 2. Марчук Г.И., Колесов В.Е. Применение численных методов для расчета нейтронных сечений. М., Атомиздат, 1970.
- 3. Becchetti F.D., Greenlees G.W. Phys. Rev., 1969, v. 182, p. 1190.
- 4. Perey F.G. Phys. Rev., 1963, v. 131, p. 745.
- 5. Бычков В.М., Манохин В.Н., Проняев В.Г. и др. В кн.: Нейтронная физика (Материалы 3-й Всесоюзной конференции по нейтронной физике, Киев, 9-13 июня 1975 г.). М., ШНИМатоминформ, 1976, ч.1, с.160.
- 6. Bjorklund F., Fernbach S. Proceedings of the International conference on the nuclear optical model (The Florida State University Studies). Tallahassee, 1959.
- 7. Пащенко А.Б. В кн.: Ядерно-физические исследования в СССР. М., Атомиздат, 1973, смп. 20, с. 39.
- 8. Mani G.S., Melkanoff M.A., Iori I. Proton Penetrabilities using an optical model potencial. -Report CEA, 1963, N 2379.
- 9. Gyarmati B. e.a. J. Phys., 1979, v. 5, p. 1225.
- 10. Huizenga J.R., Igo G. Nucl. Phys., 1962, v. 29(3), p. 462.
- 11. Mani G.S., Melkanoff M.A., Iori I. Comissariat a l'Energie Atomique Report, 1963, N 2379 and 2380.
- 12. Блатт Д., Вайскопф В. Теоретическая ядерная физика. М., Изд-во иностр.лит., 1954.
- 13. Dostrovski I., Fraenkel Z., Friedlander G. Phys. Rev., 1959, v. 116, p. 683.
- 14. Gadioli E., Gadioli-Erba E. Phys. Rev., 1977, v. C16, p. 1404.

Статья поступила в редакцию 23 мая 1980 г.

УДС 539.172.12 РАСЧЕТ СЕЧЕНИЙ ЯДЕРНЫХ РЕАКЦИЙ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ В ФОТОЭМУЛЬСИОННОЙ КАМЕРЕ А.И. В д о в и н, И.Г. Г о л и к о в, И.И. Л о цако в

> CALCULATION OF REACTION CROSS-SECTIONS FROM MEASUREMENT RESULTS OBTAINED IN PHOTOEMULSION CHAMBER. The description and analysis of the ^{12}C , ^{14}N , ^{16}O reaction crosssections measurement methods under the action of protons with energy of 50 MeV using the information from International library of nuclear data is given.

В работах /1,27 опубликованы сведения о сечениях реакций на ядрах ¹² с, ¹⁴ л, ¹⁶ о под действием протонов с энергией 50 МэВ. Использование этих результатов в Международной библиотеке ядерных данных требует подробного описания экспериментальной методики. Рассмотрению этих вопросов посвящена настоящая работа.

<u>Идентификация реакций</u>. Изучение ядерных реакций проводилось фотоэмульсионным методом. Камера из 26 слоев эмульсии Я-2 площадью 5х10 см³ и толщиной стенок 400 мкм облучена протонами с энергией 56,0<u>+</u>0,5 МэВ на ускорителе в Институте теоретической и экспериментальной физики. Предварительный замер толщин слоев эмульсии, фотообработка и нанесение координатной сетки выполнены в Лаборатории высоких энергий ОИЯ.

Проведены измерения реакций с тремя, четырымя и пятью выходными треками, в статистику включены также данные по трех- и четырехлучевым расщеплениям работы 37. В состав ядерной фотоэмульсии входит несколько различных ядер-мишеней, в том числе три легких ядра: 12 с, 14 м, 16 о. Поэтому идентификация конкретных каналов реакций представляет известные трудности. Положение усугубляется тем, что использование метода ионизационных потерь для идентификации коротких треков оказывается неэффективным. Тем не менее применение статистических методов позволяет получить удовлетворительные результаты с помощью законов сохранения энергии и импульса [4].

Каждое измеренное событие проверялось на соответствие всем возможным реакциям на ядрах ¹²С, **14 К**, ¹⁶ О С числом заряженных частиц, равным числу треков. Анализ справедливости гипотезы о конкретном канале реакции проводился методом наименьших квадратов /5/. Метод сводился к определению кинематических параметров реакции, удовлетворяющих законам сохранения энергии и импульса и наиболее близких к величинам, полученным на основе измерений.

Математически задача формулируется следующим образом. Требуется найти вектор \overline{C} , который минимизирует функционал $\chi^2 = C^T G \overline{C}$ и удовлетворяет уравнениям связи

$$\mathbf{f}(m+\vec{C})=0, \qquad (1)$$

где m - экспериментально замеренные параметры; C - вектор поправок для них; G - матрица весов; f - законы сохранения импульса и энергии. В связи с нелинейностью уравнений связи (1) минимизация функционала χ^2 сопряжена с труднос-

В'связи с нелинейностью уравнений связи (1) минимизация функционала $\chi^{-\epsilon}$ сопряжена с трудностями вычислительного характера. Обычно решение определяется следующим образом [4]. Составляется функционал

$$\Phi = C^{\mathsf{T}} G \widetilde{C} + 2\lambda_{\mathsf{f}} , \qquad (2)$$

где λ – неопределенные множители Лагранжа. Функции f раскладываются в ряд Тейлора в окрестности C (нулевое приближение для C) с точностью до линейных членов относительно поправок:

$$f(C) = f(\overline{C}) + B(\overline{C} - \overline{C}) ,$$

где **В** – матрица производных от уравнений связи. Далее вектор поправок получается из условия минимума функционала (2) итерационным методом.

В настоящей работе использован иной алгоритм решения поставленной задачи. В качестве искомых параметров выбраны проекции импульсов частиц. В развернутом виде уравнение для χ^2 и законы сохранения примут вид

$$\chi^{2} = \sum_{i=0}^{k} \sum_{j=1}^{3} \frac{(P_{ij} - \bar{P}_{ij})^{2}}{\sigma_{ij}^{2}};$$

$$P_{0j} - \sum_{i=1}^{k} P_{ij} = 0; \qquad \sum_{i=1}^{k} \frac{\sum_{j=1}^{3} P_{ij}^{2}}{2m_{i}} - \frac{\sum_{j=1}^{3} P_{0j}^{2}}{2m_{0}} - Q = 0$$

$$(\text{ IIPM } j = 1, 2, 3),$$

$$(3)$$

где k - число частиц, участвующих в реакции; P_{ij} - проекция импульса частицы i на ось j; \overline{P}_{ij} - значение проекция, полученное на основе эксперимента со среднеквадратичной ошибкой сечения δ_{ij} ; m_i - масса частицы i; Q - порог реакции; индекс нуль относится к налетающему протону.

Поиск условного минимума функционала (3) можно аналитически свести к решению нелинейного уравнения. Для этого исключим из уравнения (3) импульс падающей частицы с помощью законов сохранения импульса, а для учета закона сохранения энергии применим метод неопределенных множителей Лагранжа, т.е. составим функционал

$$F = \sum_{j=1}^{3} \left\{ \left(\sum_{i=1}^{k} P_{ij} - P_{0j} \right)^{2} / \mathcal{O}_{ij}^{2} + \sum_{j=1}^{k} (P_{ij} - \overline{P}_{ij})^{2} / \mathcal{O}_{ij}^{2} + \lambda \left[\sum_{i=1}^{k} P_{ij}^{2} / (2m_{i}) - \left(\sum_{i=1}^{k} P_{ij} \right)^{2} / (2m_{0}) \right] \right\} + \lambda Q.$$
(4)

Из условия равенства нулю первой производной получим систему 3k линейных относительно величин P_{ij} уравнений

$$\frac{\partial F}{\partial P_{i\ell}} = \frac{2\left(\sum_{i=1}^{k} P_{i\ell} + \overline{P}_{o\ell}\right)}{\sigma_{o\ell}^{2}} + \frac{2\left(P_{j\ell} - \overline{P}_{j\ell}\right)}{\sigma_{j\ell}^{2}} + \lambda\left(\frac{P_{j\ell}}{m_{j}} - \frac{\sum_{i=1}^{3} P_{i\ell}}{m_{0}}\right) = 0$$
(5)

(npn j = 1, 2, ..., k ; l = 1, 2, 3).

 \check{C} истема (5) решается аналитически. В результате получим $P_{i\ell}$ как функцию λ . Подставив $P_{j\ell}$ в уравнение сохранения энергии, приходим к нелинейному относительно множителя Лагранжа λ уравнению

$$\sum_{i=1}^{3} \left\{ \sum_{j=1}^{k} \frac{P_{j\ell}^{2}(\lambda)}{m_{j}} - \frac{\left[\sum_{j=1}^{k} P_{ji}(\lambda)\right]^{2}}{m_{0}} \right\} - 2Q = 0.$$
 (6)

Это уравнение имеет в общем случае несколько действительных корней, каждый из которых соответствует локальному минимуму функционала (4). Для найденных корней вычисляются проекции импульсов и значения χ^2 . Наименьшее из этих значений соответствует абсолютному минимуму функционала F при выполнении законов сохранения. Однако ясно, что абсолютный минимум достигается при корне уравнения (6), наиболее близком к нуло, так как в этом случае отличие вычисленных значений $P_{i,j}$ от измеренных $\overline{P}_{i,j}$ минимально. Таким образом, достаточно найти лишь один корень уравнения (6) $|\lambda|_{мин}$. Аналогично итерационный метод (4) позволяет найти только один из локальных экстремумов функционала (2), но, так как в качестве нулевого приближения выбираются экспериментальные значения параметров, этот экстремум является глобальным минимумом.

Для использованного нами алгоритма нет необходимости организовывать итерационный процесс, при котором требуется задание дополнительных величин типа максимального числа итераций, числа дроблений шага и т.п. Известно /5', что в случае линейных уравнений связи и нормального распределения \overline{P}_{ij} с дисперсией G_{ij} величина (3) имеет распределение χ^2_n с числом степеней свободы n, равным числу уравнений связи. Нелинейность закона сохранения энергии, а также отличие распределения величин \overline{P}_{ij} от нормального могут изменить распределение функционала (3). Для проверки правильности алгоритма проводилось моделирование реакции ${}^{16}_0(p, p \alpha) {}^{12}_c$ с внесением экспериментальных ошибок. Полученное в результате расчета распределение функционала приведено на рис.1.

Отличие от теоретического значения χ_4^2 не превышает статистических ошибок. При анализе гипотез отбрасывались случаи с величиной $\chi^2 > 9,5$. В результате из 400 смоделированных событий 381 удовлетворило этому критерию, что согласуется с выбранным уровнем значимости 5%.

Рис.1 Распределение χ^2 , полученное при моделировании событий реакции ¹⁶⁰(р, р. α)¹²с

Таким образом, для анализа гипотез можно использовать распределение χ_4^2 . Если вычисленное для данной гипотезы значение χ^2 больше χ_{Makc}^2 , заданного по выбранному уровню значимости, то гипотеза отвергается как не прошедшая кинематического отбора.

В эмульсии изучались события, имеющие от двух до пяти видимых треков. Расщепления с бо́лышим числом частиц не исследовались, так как они недостаточны для статистической обрабстки. Измерялись следующие характеристики каждого трека: проекция пробега на плоскость эмульсии ℓ_i , вертикальная составляющая пробега Z_i , угол в плоскости эмульсии с падающим протоном φ_i , а также Z_{i5} – вертикальная составляющая на выбранной базе ℓ_{i5} . Для входящего трека измерялась его длина ℓ_0 от точки входа в эмульсию. На основе этих измерений вычисляли пробег R_i и косинус угла с нормалью к плоскости эмульсии $\cos \theta_i$. Далее в соответствии с рассматриваемой гипотезой канала реакции определяли энергию частицы из уравнения /6/

$$\mathbf{R} = \rho \left[(M/Z^2) \lambda(\beta) + MZ^{2/3} C_z(\beta/Z) \right] ,$$

где R - пробег частицы с зарядом Z, массой M и со скоростью β; λ(β) - пробег протона со скоростью β; C_Z(β/Z) - член, учитывающий перезарядку иона при прохождении фотоэмульсиж; ρ - поправка тормозной способности данной фотоэмульсии по отношению к стандартной (ρ ≈ 1). И.Хаузер показал /7/, что соотношение пробег - энергия протонов в эмульсии Я-2 совпадает

и. Хаузер показал ///, что соотношение просег – энергия протонов в эмульсии л-2 совпадает в пределах нескольких процентов с пробегом, полученным для эмульсии Ilford G-2 /8/. Поэтому в настоящей работе были использованы зависимости $\lambda(\beta)$ и $C_Z(\beta/Z)$ эмульсии Ilford G-2 /6/. Нормировку тормозной способности нашей эмульсии проводяли по измерению пробегов α -частиц радийториевых звезд /3/.

После определения энергии каждой частицы T_i вычисляли проекции импульсов P_{ii}:

$$\overline{P}_{01} = 0; \quad \overline{P}_{02} = \sqrt{2m_0 T_0} \sin \theta_c; \quad \overline{P}_{03} = \sqrt{2m_0 T_0} \cos \theta_0;$$

$$\overline{P}_{11} = \sqrt{2m_1 T_1} \sin \theta_1 \sin \phi_1; \quad \overline{P}_{12} = \sqrt{2m_1 T_1} \sin \theta_1 \cos \phi_1; \quad (7)$$

$$\overline{P}_{13} = \sqrt{2m_1 T_1} \cos \theta_1 \quad (\mathbf{npr} \ i = I, 2, \dots, k).$$

Для оценки дисперсии определяли ошибки экспериментально измеряемых величин φ_i , Θ_i , а также энергии T_i . Наиболее существенной является ошибка в определении энергии падающего протона, обусловленная размытием пучка ускорителя. Спектр протонов ускорителя определяли двумя методами (3/: по полному поглощению в эмульсии и измерением пробегов протонов после рассеяния на водороде (рис.2). Наиболее вероятная энергия, полученная этими методами, совпадает, а большее

размытие при измерении полного поглощения объясняется страгилингом. За ошибку $\mathcal{G}^2(T_0)$ взята дисперсия спектра протонов, полученная по данным (p-p)рассеяния Стандартное отклонение $\mathcal{G}(T_0)$ оказалось равным 1 МэВ. При вычислении ошибок энергии частиц учитывали страгилинг и ошибки измерения пробега (9).

Так как точность измерения углов зависит от длины трека, последние были разбиты на три группы: l > 10 мкм, $2.5 < l \leq 10$ мкм, $l \leq 2.5$ ккм. Дисперсия угловых измерений для длинных следов (l > 10 мкм) определена по измерениям упругого (p-p)-рассеяния (рис.За). В качестве значения $\mathcal{G}(\varphi)$ для следов с l < 10 мкм использованы результаты работы (3), полученные из реакций рассеяния протонов на ядрах 12с, 14, 16о(рис.З.б.в.). Ошибка измерения нормальной составляющей трека $\Delta Z = 0.5$ к, где К – коэффициент усадки.

Рис.3. Распределение ошибок измерения углов в плоскости эмульсии в зависимости от длины трека: а – $\ell > 10$ мкм; б – 2,5 < $\ell \leq 10$ мкм; в – $\ell \leq 2,5$ мкм

Дисперсию начального пучка, а также величину $\mathcal{O}(\varphi)$ для треков с $\ell < 10$ мкм уточняли путем построения зависимости числа "прошедших" звезд от ошибок, заданных в программе анализа реакций (рис.4,5). Полученные значения среднеквадратичных ошибок согласуются с данными работы /3/.

гис.4. Выход реакций в зависимости от заданной в программе ошибки определения энергии налотающего протона

Рис.5. Выход реакций в зависимости от ошибки измерения углов, заданной в программе для треков длизой: а – $2.5 < \ell \leq 10$ мкм; б – $\ell \leq 2,5$ мкм

величины \mathcal{G}_{ij} вычислены с помощью разложения выражений (7) в ряд Тейлора с точностью до первой производной. Учет членов второго порядка показал, что, как правило, они не вносят существенного искажения в значения \mathcal{G}_{ij} . Вычисление дисперсий проекций импульсов частиц проверено с помощью построения распределения величин χ^2 измеренных событий для реакции 16 0 (p,p α) 12 С (рис.0). Полученное распределение и среднее значение $<\chi^2>$ согласуются с теоретическими величинами. Это полтверждает выбранные экспериментальные ошибки и правильность внуисления дисперсий \mathcal{G}_{ij}^2 .

Вичисление сечений. Все измеренные события были подвергнуты кинематическому отбору по описанному алгоритму. Так как при анализе каждой гипотезы необходимо учитывать все уровни возбуждения остаточных ядер, одна звезда может удовлетворить одновременно несколько каналов. Чтобы получить истичное число взаимодействий $N_{\rm Hj}$ по каналу ј, необходимо оценить вероятность того, что событие, стносящееся к реакции і, может ложно удовлетворить также и гипотезу ј. Если матрица W из элементов ω_{ij} известна, можно составить систему уравнений

$$WN_{h} = N_{p} , \qquad (8)$$

где N_{μ} - вектор истинного числа событий по каналам; N_{μ} - вектор полного числа событий, разрешенных для данного канала (его компсиенты $N_{\mu i}$ равны числу звезд, проделях по каналу i).

Рис.6. Распределение величин χ^2 измеренных событий

Коэффициенты матрицы W найдены с помощью моделирования звезд. Моделирование проводилось по фазовому объему /10⁷ и в соответствии с экспериментальными распределениями. Оказалось, что отличие импульсных и угловых распределений вторичных частиц от фазовых незначительно влияет на величины ω_{ij} . Сконструированное таким образом событие представлялось в виде набора параметров, измеряемых экспериментально (т.е. пробегов, углов, проекций Z). Значения этих параметров изменялись по нормальному закону в соответствии с экспериментальными ошибками. В результате анализа смоделированных событий по всем рассматриваемым гипотезам были вычислены элементы матрицы W. Эти коэффициенты, а также значения N_n известные методы /11⁷, можно найти вектор N_N и его ошибки.

Для звезд с пятью треками система уравнений (8) не составлялась из-за незначительного числа неоднозначно идентифицированных событий для реакций ^{I2}C (p, 2pt2 α), ^{I2}C (p, p 2d2 α), ^{I4}N (p, pd3 α), ^{I6}O (p, p4 α) и малого числа случаев, отнесенных к остальным каналам. Поэтому определяли сечения только для указанных четырех реакций, для остальных каналов приведены лишь верхние границы.

Сечения четырех- и пятилучевых реакций определяли по формуле

$$\sigma_i = \frac{N_i}{\varepsilon \phi V_k n_i} ,$$

где N_i - число звезд, отнесенных к реакции і ; є - эффективность поиска звезд; ф - поток падающих протонов; V_k - просмотренный объем камеры; n_i - концентрация ядер данного типа в эмульсии.

Поток измеряли двумя методами: путем счета следов частиц первичного пучка и по известному сечению (p-p)-рассеяния. Оба способа дали одинаковое значение $\Phi = (7, 6\pm 0, 7).10^5$ см⁻².

При вычислении сечений трехлучевых реакций сделано предположение о равенстве эффективности поиска таких расщеплений и случаев расселния протонов на водороде. Тогда величину \mathcal{G}_i можно выразить через известное сечение $\mathcal{G}_{DD} = 52$ мб /12/:

Рис. 7. Распределение по энергии протонов, вызывающих реакции

$$\sigma_i = \frac{n_i n_H \sigma_{pp}}{N_{pp} n_i}$$

Полученные результаты приведены в работе [2]. Так как просмотр слоев эмульски проведен в полосе шириной 2-3 мм, энергия начальных протонов находится в пределах 45-55 МэВ (среднее значение 50 МэВ). Таким образом, вычисленные сечения являются усредненными по этому спектру (рис.7).

Анализ спибок. В связи с трудностью регистрации очень коротких треков возможны потери части событий. Достоверно регистрируются частицы с пробегом более I мкм. Таким образом, при малой энергии одной из частиц п-лучевая звезда может быть отнесена к реакции с (n-I)-частицей в выходном канале. При Z = I порога регистрации практически не существует, так как протон с энергией О.І МЭВ уже имеет пробег в эмульсии І мим. Для более тяжелых частыц опасность потеря событый становытся реальной. Чтобы оценить вероятность образования фрагментов низкой энергия, построени импульсние распределения элементов - продуктов реакций (рис.8). Все распределения еще при энергии, превншанией порог, спалают с уменьнением импульса. Поэтому можно считать, что потеря событий, вызванная указанными причинами, незначительна. Для проверки возможного возрастания распределений в области энергий ниже порога регистрации оня проведен анализ 300 событий с двумя видимыми выходин-

Рис.8. липульсное распределение продуктов реакций, визванных протонами с энергией 50 МэВ на ядрах 12 с, 14 н, 15 о

ми треками на соответствие кинематике трехлучевых реакций с пробегом ядра этдачи менее I мкм. Полученный вклад таких каналов в сечения трехлучевых реакций не превышает статистических ошибок.

лак указывалось выше, анализ гипотез проводили толькс для реакций на здрах ¹²с, ¹⁴N, ¹⁶о с заряженными частицами в выходном канале. Среди измеренных событий, конечно, имеются реакции с вылетом нейтронов, а также взаимодействия на изотопах серебра и брома. Такие звездн могут быть ложно отнесены к анализируемым гипотезам, что приводит к завышению получаемых сечений.

Несмотря на достаточно высокую концентрацию ядер серебра и брома в фотоэмульсии, ошибка в сечениях из-за наличия этих ядер не должна быть большой. Значительное различие в соотнешении пробег – импульс для тяжелых и легких ядер приводит к тому, что реакция на серебре или броме не может удовлетворить гипотезы на ядрах ¹²с, ¹⁴N, ¹⁶О вследствие невыполнения закона сохранения импульса. Вопрос о ложной идентификации реакций на серебре и броме изучали авторы работы /13/. В ней приведены результаты анализа реакций на ядрах ¹²с, ¹⁴N, ¹⁶O для двух сортов фотоэмульсии с различной концентрацией серебра и брома. Согласно полученным данным, часть реакций на тяжелых ядрах составляет около 4%.

Более существенное искажение результатов могут вызвать реакции с испусканием нейтронов. Если в выходном канале не более одного нейтрона, то можно провести кинематический анализ такой гипотезы. В отличие от уже описанного алгоритма минимум функционала (3) в данном случае находится при одном уравнении связи, так как закон сохранения импульса используется для исключения импульса нейтрона из уравнения сохранения энергии. Следовательно, величина (3) будет распределена по закону χ^2 с одной степенью свободы. На рис.9 приведено распределение функционала (3), полученное путем моделирования реакции 14 м (p,2pn) 12 с. Расхождение с теоретическим распределением χ^2_{+} не превышает статистических ошибок.

Все измеренные события были проанализированы на соответствие гипотезам с вылетом нейтрона. Эти каналы включены в систему уравнений (8). Коэффициенты ω_{ii} , как и раньше, определялись пу-

тем моделирования событий. Из-за отсутствия информации об угловых и импульсных распределениях частиц моделирование реакций с нейтроном проводилось по фазовому объему. В результате этих расчетов сечения некоторых каналов, приведенных в работе /I/, уменьшались. В табл. I приведены исправленные значения сечений для реакций, в которых это уменьшение наиболее существенно.

Таблица 1

Исправленные сечения некоторых реакций

Реакции	Сечение, мб
¹² C(p, 2p) ¹¹ B	38 <u>+</u> 11
$^{12}C(p, pd)^{10}B$	23 <u>+</u> 8
14 H(p, 2p) 13 C	51 <u>+</u> 20
¹⁴ N(p, pd) ¹² C	57 <u>+</u> 20
$16_{0(p, 2p)} 15_{N}$	49 ± 13

Дополнительным источником ошибок могут являться реакции с двумя и более нейтронами в выходном канале. Эти ошибки явно определить нельзя из-за невозможности кинематического анализа таких событий. Тем не менее

Рис.9. Распределение χ^2 , полученное при моделировании реакции ¹⁴N(p, 2pn)¹²c (< χ^2 > = 0,73 ± 0,07)

искажение результатов вследствие многонейтронных процессов не может быть большим, так как пороги этих реакций, как правило, высоки.

<u>Сравнение результатов</u>. Как следует из рассмотренной выше методики, определение сечений конкретных реакций представляет собой трудно разрешимую задачу. Другие методы исследования имеют ограниченную область применения. Так, радиохимический метод требует радиоактивного ядра в конечном состоянии и, как правило, определяет сечения выхода изобар. По этой причине из числа изученных реакций известны сечения трех каналов: ${}^{12}\text{C}(p,2p){}^{11}\text{B}$, ${}^{12}\text{C}(p,3\alpha)$, ${}^{16}\text{O}(p,3p){}^{14}\text{C}$ (14-19). Сравнение их значений с результатами настоящей работы приведено в табл.2.

Таблица 2

Сравнительные данные по сечению некоторых реакций

Реакции	7 17 17	Сечение, мб				
·······	^ь о, ^{мэв}	Данные разных авторов	Данные настоящей работы			
$12_{C(p,2p)}11_{B}$	50-70	19,1 <u>+</u> 1,2 /14/	38 <u>+</u> 11			
$\frac{12_{C(p,2p)}11_{B+}}{12_{C(p,pn)}11_{C}}$	49	98 <u>+</u> 20 /15/	-			
$\frac{12_{C(p,2p)}^{11}B_{+}}{12_{C(p,pn)}^{12}}$	45	104,6 <u>+</u> 2,4 [16]	-			
¹² C(p,pn) ¹¹ C	50,7	85 ± 3 /17/	-			
$12_{C(p,p3\alpha)}$	60	45 <u>+</u> 15 /18/	37 <u>+</u> 2			
$16_{0(p,3p)}14_{C}$	4460	2,2 <u>+</u> 0,6 [19]	2,6 <u>+</u> 1,9			

Данные работы /147 согласуются с настоящими в пределах двух стандартных отклонений. Сечение реакции ¹²C(p,2p)¹¹В можно получить также сравнением выхода изобар (A=11 в работах /15,16/) с величиной сечения реакции ${}^{12}C(p,pn){}^{11}C$ из работы /17/. Результат такого сравнения (см. табл. 2) показывает, что значение сечения реакции ${}^{12}C(p,2p){}^{11}B$ в пределах ошибок совпадает с нашим значением. Сечения реакций ${}^{12}C(p,p3\alpha)$ и ${}^{16}O(p,3p){}^{14}C$ работы /18/ также согласуются с данными настоящей работы.

Список литературы

- 1. Голиков И.Г., Жуков М.Н., Лощаков И.И., Остроумов В.И. Ядерная физика, 1978, т.27, с.?,
- 2. Вдовин А.И., Голиков И.Г., муков М.Н. и др. Изв. АН СССР. Сер. физ., 1979, т.43, с.146.
- З. Лощаков И.И. Исследование некоторых реакций на ядрах ¹²С, ¹⁴N, ¹⁶О под действием протонов с энергией 50 МэВ. Автореферат дис. на соиск. учен. степ. Л., 1971.
- 4. Заикина А.Г., Лукьянцев А.Ф. Программа кинематической идентификации событий на ЭВМ БЭС№-6. Сообщение № 11-5965. Дубна, ОИЯИ, 1971.
- 5. Линник J.B. Петод наименьших квадратов и основы теории обработки наблюдений. М., Физматгиз, 1962.
- 6. H.H.Heckman e.a, Phys. Rev., 1960, v. 117, p. 544.
- 7. Хаузер И. Приборы и техника эксперимента, 1963, т.6, с.168.
- 8. Barkas W.H. Nuovo cin., 1958, v. 8, p. 201.
- 9. Бонетти А. и др. Ядерные эмульсии. М., Физматгиз, 1961.
- 10. Боклинг Е., Каянти К. Кинематика элементарных частиц. М., Мир, 1975.
- 11. Тихонов А.М., Арсенин В.Н. Методы решения некорректных задач. М., Наука, 1966.
- 12. Варашенков В.С. Сечения взаимодействия элементарных частиц. М., Наука, 1966.
- 13. Jung M. e.a. Phys. Rev. C., 1972. v. 5, N 2.
- 14. Yasa T., Hourany E. Ruel. Phys., 1967, v. A103, p. 577.
- 15. Pierro Pontes. Phys. Rev. C., 1977, v. 15, p. 2159.
- 16. Roche C.T. e.a. Phys. Rev. C., 1975, v. 14, p. 410.
- 17. Measday D.F. Nucl. Phys., 1966, v. 78, p. 476.
- 18. Güer P. e.a. J. Phys. (Paris), 1966, v. 270, p. 1.
- 19. Tamers M.H.A., Delibrias G. Compt.rand. (Paris), 1961, V. 253, p. 1202.

Статья поступила в редакцию 4 августа 1980 г.

JAK 539.171.015

УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ЯДЕР ОТДАЧИ ^{1,2}Н ПРИ УПРУТОМ СОУДАРЕНИИ С ИОНАМИ ⁴Не и ^IН В.А. матусевич, В.Н. Сулема, Ю.П. Черданцев, В.Н. Шадрин

ANGULAR DISTRIBUTIONS OF ^{1,2}H BECOIL NUCLEI DURING BLASTIC COLLIDE WITH IONS OF ⁴He and ¹H. The angular distributions of recoil protons in the process of interacting with ions oh ⁴He and recoil denterous with ions of ⁴He are given.

Упругое рассеяние – одно из наиболее вероятных каналов реакций, вызываемых ионами малых и средних энергий. Благодаря большой величине сечений процесс упругого рассеяния широко применяется в прикладных исследованиях /1/. В частности, для определения содержания легчайших элементов предлагалось регистрировать ядра отдачи, вылетающие из образца в результате упругого соударения с налетающими ионами /2/. Для выбора оптимальных условий анализа таким методом необходимо знать угловые распределения ядер отдачи в лабораторной системе координат (л.с.к.). Многочисленные работы по исследованию упругого рассеяния содержат дифференциальные сечения для бомбардирующих ионов в системе центра инерции. Получение дифференциальных сечений для ядер отдачи ^{1,2}Н в лабораторной системе координат при малых и средних энергиях – цель настоящей работы.

Обозначим через dб/dΩ (а,в) сечение реакции A(а,б)Б; для упругого рассеяния a=б, A=Б и в системе центра инерции действительны соотношения

$$d\mathfrak{G}/d\Omega(\theta)(a,a) = d\mathfrak{G}/d\Omega(\theta)(A,A); \qquad (1)$$

$$d\mathbf{b}/d\Omega(\mathbf{0})(\mathbf{a},\mathbf{A}) = d\mathbf{b}/d\Omega(\mathbf{n}-\mathbf{0})(\mathbf{a},\mathbf{a}) .$$
⁽²⁾

Следовательно, получение сечений рассеяния для ядер отдачи $d\mathcal{G}/d\Omega(a,A)$ из стандартных сечений $d\mathcal{G}/d\Omega(a,a)$ заключается в замене угла рассеяния Θ на $\pi - \Theta$ и переводе углов и сечений из системы центра инерции в лабораторную систему координат по формулам

$$\Theta_{\Lambda.C.K.} = \Theta_{\mu}/2 ; \qquad (3)$$

$$(d\mathfrak{G}/d\Omega)_{\Lambda,C,K} = 4\cos\theta_{\Lambda,C,K} (d\mathfrak{G}/d\Omega)_{\mu} , \qquad (4)$$

где Θ_{ii} - угол вылета ядра отдачи в системе центра инерции.

Экспериментальные сечения рассеяния взяты из работ /3-12/, в которых имеются табличные данные. Относительные ошибки сечений, приведенные в этих данных, будут равны, как нетрудно видеть, относительным ошибкам сечений для ядер отдачи. Угловые распределения протонов отдачи при взаимодействии с ионами ⁴не приведены в приложении 1 (табл.1-8), угловые распределения дейтронов отдачи при взаимодействии с протонами - в приложении 2 (табл.9-14), а данные об угловых распределениях дейтронов отдачи при взаимодействии с ионами ⁴Не - в приложении 3 (табл. 15-19). Все величины приведены к лабораторной системе координат. Следует заметить, что в настоящей работе использованы экспериментальные результаты, приведенные в табличной форме. Помимо таких данных в литературе имеется много работ, в которых сечения по интересующим реакциям представлены в графической форме. При этом экспериментальные результаты проанализированы в рамках параметризации фаз или по оптической модели. Теория достаточно хорошо воспроизводит экспериментальные данные (особенно в области малых углов), поэтому наборы фаз или параметров потенциала можно с успехом использовать для получения надежных (с погрешностью в несколько процентов) данных об угловых распределениях ядер отдачи. Учитывая, что энергетическая зависимость угловых распределений достаточно плавная, можно вывести сценочные данные и для промежуточных энергий, экстраполируя величины параметров, полученных из анализа экспериментальных данных.

Приложение 1

Угловые распределения протонов отдачи из реакции ${}^{1}H({}^{4}He, {}^{4}He){}^{1}H$ (6 < 1%)

Tac	i i i i i i i i i i i i i i i i i i i	1	[3]
-----	---------------------------------------	---	-----

		E _c , , MəB										
о, град.	7,98	12,02	16,02	20,04	24,06	31,87	35,84					
			dб/ с	iΩ, w6/c	p							
7,8	-	1110	622	499	448	388	366					
10,0	1702	1068	595	469	421	361	335					
12,6	1628	1000	566	441	387	326	299					
15,3	1516	918	509	405	347	289	261					
17,5	1385	847	465	367	320	255	227					
19,6	1266	761	430	338	284	226	199					
24,6	1168	611	346	273	223	-	-					
28,6	920	5Ò6	302	234	-	121	102					
29,7	754	483	300	228	176	120	95					
32,4	-	-	-	214	168	-	-					
35.0	697	406	270	214	168	104	82					

Окончание	табл. І
OKOHANHNA	TRON 1

			Ε _α ,	МэВ						
0, град.	7,98	12,02	16,02	20,04	24,06	3I,87	35,84			
	dG/dΩ, wo/cp									
36,4	-	- 1	-	217	170	-	_			
36,5	517	389	276	218	- 1	108	84			
40,0	460	383	287	236	192	127	106			
43,0	-	-	-	-	-	155	130			
44,6	-	-	-	291	240	-	-			
45,0	376	438	342	294	245	183	153			
47,5	-	470	389	-	-	-	-			
49,0	-	-	-	349	309	-	-			
50,0	347	527	427	375	324	257	236			
55,0	365	616	510	453	402	333	312			
57,5	376	664	-	-	442	-	-			
60,0	386	716	590	524	470	406	376			
62,7	-	748	617	548	494	430	402			
65,5	382	777	637	566	508	441	408			
67,5	372	793	647	566	514	-	-			
70,0	348	789	641	566	-	-	-			
72,5	325	765	629	547	488	427	- 1			
74,6	338	776	639	545	497	424	388			
77,2	-	791	646	514	469	392	355			
77,5	435	799	638	533	465	385	353			

Таблица 2 [4]

0, град	dб/dΩ, мб/ср	δ, %	ө,град	dơ/dΩ, mơ/cp	o, %	0, град	dб/dΩ, мб/ср	δ, %
12,9	399,2	2,1	37,3	181,9	1,8	65,5	492,0	1,8
14,9	363,3	2,1	42,3	216,4	1,8	68,4	497,1	1,9
17,4	323,7	2,1	47,3	283,3	1,7	72,6	494,0	1,9
19,0	287,4	2,1	49,8	322,0	1,6	74,5	486,5	1,9
22,9	246,9	1,9	53,8	384,7	1,6	75,8	478,5	1,9
24,9	225,7	1,8	56,7	400,1	1,6	77,6	466,0	2,0
27,4	202,8	1,7	59,5	456,3	1,8	79,2	471,1	2,1
32.4	173,7	1,8	62,5	476,2	1,9	80,7	502,6	2,1
-	-	-	-	-	-	81,9	567,9	2,1
П	римеч	ание	$E_{\alpha} =$	23,12 MaE	3.	· · · · · · · · · · · · · · · · · · ·	, <u> </u>	

Таблица 3 /5/

0,	dб/dΩ,	0,	dб/dΩ,	0,	dб/dΩ,	0,	dб/dΩ,	0,	dб/dΩ,
град	мб/ср	град	мб/ср	град	мб/ср	град	мб/ср	град	мб/ср
7,8 10,0 12,6 15,3 19,6 24,6	420 394 356 313 257 193	28,6 29,7 35,1 36,4 36,6 39,8	151 146 132 137 133 156	40,0 44,6 45,0 49,0 50,0 55,0	161 207 213 270 285 368	57,9 60,0 62,7 65,5 67,5 70,0	410 440 459 483 482 476	72,5 74,6 77,2 77,5 -	462 453 430 421 -

Примечание. E_d = 27,91 МаВ (d < 1%).

Таблица 4 [6]

0, град	d6/ dΩ, м6 /ср	o, %	0, град	dб/dΩ, мб/ср	5,%	0, град	do/dΩ, ₩0/cp	S, %
2,8	419	2,0 •	22,6	194	3,4	52, 3	309	2,3
3,8	439	2,3	25,9	155	2,2	55,1	366	3,7
4,8	419	2,4	27,5	136	2,4	56,5	366	2,4
7,5	387	2,4	29,3	138	3,9	60,9	411	3,5
9,5	378	2,2	30,0	123	2,3	65,3	470	2,4
10,0	352	2,1	32,8	115	4,0	69,8	478	2,2
10,4	368	2,3	35,0	103	2,2	74,4	431	3,6
13,4	330	2,4	36,5	121	3,8	77,5	397	2,2
15,0	313	2,4	37,5	105	2,2	79,0	378	2,2
16,4	275	2,3	40,2	137	3,6	80,6	391	2,4
17,5	256	3,1	44,1	187	2,3	82,2	401	2,4
19,4	254	2,1	45,4	195	2,0	83,7	573	2,4
20,0	244	2,2	48,1	241	3,8	-	~	-

Примечание. Е_«= 30,0 МэВ.

Таблица 5 [6]

0, град	d5/d ଯ, ଜ୍ଞ୍ଚ/cp	0, град	dб/dΩ, мб/ср	0, град	dσ/dΩ, мб/cp	0, град	dб/dΩ, мб/ ср
29	387	23,6	145	48,0	192	76,1	359
3,7	369	25,8	121	50,8	207	77,4	351
6,6	346	28,1	96,7	58,1	349	79,2	329
7,5	340	31,7	78,6	59,3	347	80,5	314
10,5	319	32,7	74,7	64,0	404	80,8	320
11,3	317	34,1	76,6	65,2	398	82,1	323
14,4	266	36,5	81,0	68,2	414	82,3	329
15,3	260	37,6	88,5	70,0	416	83,6	412
17,3	217	40,1	98,8	71,3	393	83,9	451
19,3	200	42,7	127	73,0	392	-	-
22,7	157	46,9	179	74,3	388	-	_

Примечание. Е_с= 37,92 МэВ (*б* < 3%).

Таблица 6 [7]

0,	dơ/dΩ,	0,	0,	dб/dΩ,	б,	0,	dб/dΩ,	か,
град	mơ/cp	%	град	мб/ср	%	град	мб/ср	だ
2,8	337	4,2	11,4	299	5,0	35,0	67,8	5,0
3,8	347	3,9	14,9	253	5,8	36,5	82,3	5,0
4,7	326	5,0	15,4	250	5,0	41,6	111	3,9
5,7	341	4,6	18,5	202	5,0	46,9	183	5,0
6,6	323	4,8	19,4	194	5,1	52,3	257	5,0
7,6	299	4,9	22,5	155	5,1	58,0	324	2,6
8,5	301	4,9	30,0	70,0	4,9	63,9	387	5,0
9,5	308	5,9	31,7	75,9	5,0	65,4	387	4,9
10,4	285	3,9	32,5	66,5	5,0	68,4	347,9	5,0

Примечание. Е_«= 38,96 МэВ.

Таблица 7 /3/

0, град	d6/dΩ, ₩6/cp	0, град	d6/dΩ, ₩6/cp	О, град	dG/dΩ, MG/cp	0, град	dő/dΩ, м б/ср
7,8	336	22,6	140	36,6	70,7	60,0	352
10,0	309	24,6	121	38,9	81,5	63,0	372,7
12,6	275	24,9	116	43,0	114	65,5	385
15,3	238	28,6	86,0	45,0	139	72,5	368
17,5	206	29,7	79,9	50,0	211	74,6	361
19,6	178	35,1	68 , 8	55,0	285	77,5	323
Пр	имеч	ание.	$E_{\alpha} = 3$	9,82 MəB	(S<1%)	•	·

Таблица 8 /3/

0, град	dб/dΩ, мб/ср	0, град	d6/dΩ, ₩6/cp	0, град	d6/dΩ, ₩6/cp	0, град	d6/dΩ, м6/cp
7,8	311	25,0	104	45,0	123	72,5	360
10,0	284	28,6	74,1	45,1	127	74,6	339
12,6	253	30,0	64,3	50,0	188	77,2	298
15,3	219	35,1	55,0	55,0	283	77,5	296
17,5	180	36,6	59,1	60,0	340	-	-
19,6	160	40,0	76,3	62,7	360] –	-
22,6	123	43,0	101	65,5	375	-	

Примечание. Е_х = 44,63 МэВ (б<1%).

Приложение 2

Угловые распределения дейтронов отдачи из реакции ${}^{2}\!\mathrm{H}(\mathrm{p},\mathrm{p}){}^{2}\!\mathrm{H}$

Таблица 9 /8/

		Е _р , МәВ										
о, град	1,9	93	2,995		3,9	98	5,002					
	d6/dΩ. м6/cp	5, %	dб/dΩ, мб/ср	S, %	d6/dΩ, ⊯6/cp	δ, %	dб/dΩ, мб/ср	S, Z				
7,0	1583	0,8	1387	1,2	1238	0,9	1095	0,85				
10,0	1462	0,61	1244	0,38	1083	0,63	928,5	0,56				
11,0	-	-	1171	0,55	-	-	-	-				
13,0	1279	0,59	1087	0,59	914,0	0,55	762,7	0,59				
14,0	-	-	1047	0,72	-	-	-	-				
15,0	_	-	980,2	0,55	-	-	-	- ·				
16,0	1142	0,50	917,0	0,54	754,0	0,57	604,8	0,61				

Окончание табл.9

				E _p , 1	МәВ			
о, град	Ι,9	993	2,9	995	3,	998	5,	002
	d <i>б/dΩ</i> , м⁄/cp	S, %	d6/dΩ, м6/cp	8, %	dб/dΩ, мб/ср	δ, %	dб/dΩ, мб/ср	8, %
19,0	981,1	0,48	761,0	0,56	592,3	0,62	491,7	0,64
22,0	845,6	0,50	630,5	0,63	468,0	0,77	357,5	0,66
24,0	-	-	546,7	0,60	-	-	-	-
25,0	728,7	0,54	515,9	0,62	368,7	0,67	276,2	0,73
27,0	658,6	0,58	454,8	0,72		-	-	_
. 28,0	622,3	0,52	420,3	0,59	298,4	0,73	221,8	0,69
31,0	534,9	0,52	360,4	0,59	256,8	0,62	189,3	0,65
34,0	466,3	0,58	317,0	0,60	232,5	0,55	175,4	0,62
35,0	450,9	0,55	308,7	0,62	-	-	· _	
39,0	393,9	0,58	284,1	0,61	223,5	0,55	181,2	0,56
44,0	356,2	0,58	283,4	0,64	241,4	0,52	206,3	0,54
49,0	341,1	0,60	296,7	0,56	267,7	0,53	236,2	0,52
53,0	337,5	0,76	311,3	1,10	287,4	0,52	257,6	0,52
54,4	334,3	0,51	-	-	293,6	0,47	263,3	0,50
57,8	333,7	0,49	320,1	0,55	303,2	0,47	273,6	0,49
61,3	-	-	321,7	0,48	304,4	0,46	277,2	0,47
62,0	323,0	1,80	314,6	3,20		~	-	-
64,9	320,5	0,50	313,2	0,48	298,1	0,47	270,4	0,46
67,0	315,9	0,44	304,0	0,56	286,7	0,46	261,3	0,46
68,5	314,0	0,56	-	-	-	-	~	-
69,2	308,2	0,47	291,6	0,58	269,0	0,48	250,6	0,46
71,4	301,7	0,48	277,2	0,62	253,3	0,49	233,3	0,47
72,1	- }	-	269,5	0,52	-	-	- ·	-
73,6	308,0	0,58	263,3	0,60	235,4	0,52	214,1	0,48
74,8	319,8	0,99	259,4	0,68	-	-	-	_
75,8	328,8	0,71	255,6	0,56	218,3	0,51	193,1	0,51
78,0	398,9	0,92	261,4	0,71	209,6	0,84	175,4	0,77
79,4	498,0	1,60	286,6	1,60	-	-	-	-
80,3	604,4	1,50	322,7	1,20	223,6	1,60	169,7	0,89
82,5	1216	1,70	550,1	1,40	329,0	1,50	211,8	1,60
84,8	3484	1,40	1516	2,10	838,2	1,50	534,0	2,50

Таблица 10 /8/

		Ер, МэВ								
0,	6,	007	8,0	25	10,04					
град	dб/dΩ, мб/ср	S, %	dб/dΩ, мб/ср	δ, %	dố/dΩ, Mố/cp	δ, %				
7,0	947,3	0,73	731,3	0,96	589,6	1,50				
10,0	800,1	0,62	606,2	0,75	463,3	1,30				
13,0	638,8	0,62	462,2	0,76	337,5	1,00				
16,0	494,5	0,66	341,4	0,83	226,5	3,70				
19,0	369,5	0,68	237,9	1,10	151,3	2,70				

Окончание табл. 10

			E _p , Ma	B		
Θ,	6,0	007	8,02	25	IO,	,04
град	d6/dΩ, мб/ср	S. 7	dб/dΩ, мб/ср	δ, %	d6/dΩ, ™0/cp	δ, %
22,0 25,0 28,0 31,0 34,0 39,0 44,0	275,9 208,8 166,7 145,4 139,6 153,3 181,6 210 ~	0,86 0,73 0,71 0,67 0,67 0,58 0,55	169,1 123,6 98,5 89,8 92,5 113,2 143,0	1,40 1,20 1,20 1,50 1,70 1,10 0,85	101,2 73,2 62,2 59,0 67,0 88,9 115,7	2,30 1,60 1,90 2,00 1,10 0,93 0,89
49,0 51,7	210,7	0,60 0,52	171,1 185,4	0,74 0,54	141,7 155,9	0,68 0,80
53,0 54,4 57,8 51,3 64,9 67,0	232,8 238,4 250,0 252,4 247,3 240,3	0,90 0,50 0,48 0,49 0,47 0,46	- 199,5 207,8 212,1 209,4 203,7	- 0,54 0,52 0,50 0,50 0,53	- 167,6 177,6 185,2 182,6 178,1	0,57 0,53 0,50 0,52 0,56
69,2 71,4 73,6 75,8 78,0 80,3 82,5	229,2 213,4 195,5 174,9 154,0 140,5 163,8	0,48 0,50 0,50 0,50 0,51 0,80 1,50	194,5 183,8 167,0 149,3 128,9 108,9 105,4	0,51 0,52 0,54 0,80 0,69 0,80 1,20	171,2 161,6 147,9 128,7 110,4 89,0 79,2	0,60 0,58 0,52 0,90 1,10 1,90 1,90
84,8	356,1	1,60	199,7	1,50	117,9	3,30

Таблица 11 /9/

•

.

0, град	dб/дΩ, мб/ср	8,%	0, град	dб/dΩ, мб∕ср	S. %
10,0	938	5 , C	44,5	207	5,0
12,5	808	5,0	46,0	227	з,0
15,0	684	5,0	48,0	220	3,0
17,5	626	5,0	50,0	237	3,0
20,0	405	3,0	52,5	248	3,0
21,8	315	3,0	55,0	264	3,0
25,3	268	3,0	57,5	273	З,О
27,0	218	3,0	60,0	2 80	З,О
30,6	198	3,0	62,5	2 83	З,0
32,1	178	3,0	65,0	274	3,0
35,7	176	3,0	67,5	268	3,0
37,5	178	3.0	68,8	257	з,0
40,0	182	3,0	72,5	248	5,0
42,5	201	3,0	75,0	218	5,0

Примечание. Е_р = 5,18 МэВ.

Таблица 12 /9/

0, град	dб/dΩ, мб/ср	6,%	0, град	dб/dΩ, мб/ср	5,%	0, град	do/dΩ, mo/cp	8,%		
10,0	792	3,5	37,5	154	3,5	60,6	275	3,0		
12,5	746	3,5	38,0	169	3,0	62,7	268	3,0		
15,0	610	3,5	40,0	179	3,5	64,2	258	3,0		
17,5	496	3,5	41,0	186	3,0	66,0	268	3,0		
20,0	425	3,5	44,0	199	3,0	67,8	265	3,0		
22,5	305	3,5	45,0	207	3,5	69,6	240	3,0		
25,0	261	3,5	45,6	212	3,0	71,4	225,8	3,0		
27,5	213	з,0	47,1	213	3,0	73,2	215	3,0		
30,0	186	3,0	50,4	242	3,0	75,0	195	3,0		
32,0	167	3,0	53,6	240	3,0	77,0	170	3,0		
35,2	171	3,0	57,1	272	3,0	80,7	165	3,0		
						82,5	188	3,0		
<u>д П</u>	Примечание. Е _р = 5,6 МаВ.									

Таблица 13 /9/

				E _p , Ma	В			
0, град	4,4	15	5,4	5	6,5	j	7,4	6
-	d6/dΩ,		$d6/d\Omega$,		$d \sigma / d \Omega,$		$d6/d\Omega$,	
	мб∕ср	5,%	мб/ср	8,%	мб/ср	8.%	мб/ср	δ,%
20,0	491	3,0	372 •	3,0	297	3,0	233	3,0
21,8	431	3,0	306	3,0	247	3,0	197	3,0
23,7	352	3,0	265	3,0	203	3,0	166	3,0
25,3	313	3,0	226	3,0	172	3,0	137	3,0
27,0	282	З,О	196	3,0	155	3,0	119	3,0
28,8	244	4,0	176	4,0	137	4,0	105	З,О
30,6	222	4,0	161	4,0	133	4,0	96,5	4,0
32,1	215	4,0	154	4,0	124	4,0	94,9	4,0
34,0	197	4,0	146	4,0	118	4,0	94,5	4,0
35,7	192	4,0	146	4,0	-	-	117	4,0
37,5	192	з,0	154	3,0	135	3,0	105	2,5
38,5	193	3,0	1ô1	з,0	141	3,0	116	2,5
40,0	196	3,0	-	-	144	3,0	116	2,5
41,0	201	3,0	167	3,0	152	3,0	124	2,5
42,5	209	з,0	174	3,0	155	3,0	133	2,5
43,5	212	3,0	184	3,0	160	3,0	148	2,5
44,5	224	3,0	195	з,0	173	3,0	163	2,5
46,0	231	з,0	203	з,0	185	з,0	156	2,5
48,0	244	3,0	219	3,0	189	3,0	169	2,5
50,0	244	3,0	226	3,0	201	3,0	182	2,5
51,2	265	з,0	230	2,9	210	3,0	189	2,5
52,5	265	з,0	233	З,О	212	3,0	189	2,5
53,7	2 70	3,0	-		218	3,0	192	2,5
55,0	278	з,0	236	3,0	225	з,0	198	2,5

Окончание табл. 13

			Ē _p ,	МәВ				
0. грал	4,4	5	5 ,	45	ö,	5	7,4	ŝ
, 1 (1	$d\sigma/d\Omega$,		d6/dΩ,		d6/dΩ,		$d\sigma/d\Omega$,	
	мб/ср	5,%	мб/зр	δ,3	мб/ср	δ,%	мб∕ср	8,%
56,2	2'78	3,0	240	3,0	229	3,0	200	2,5
57,5	284	3,0	242	3,0	228	3,0	203	2,5
58,7	285	4,0	-	-	228	4,0	198	3,3
60, 0	287	4,0	239	4,0	230	4,0	2 02	3,3
61,2	283	4,0	241	4,0	229	4,0	202	3,3
62,5	28 ô	3,3 -	242	3,3	229	3,3	201	3,3
63,7	2 90	3,3	236	3,3	228	3,3	198	з,З
65,0	278	3,3	235	3,3	225	3,3	198	2,5
66,2	278	3,3	234	3,3	222	3,3	195	2,5
67,5	268	2,5	231	2,5	214	2,5	191	2,5
68,7	262	2,5	223	2,5	212	2,5	187	2,5
70,0	252	2,5	215	2,5	200	2,5	185	2,5
71,2	243	2,5	207	2,5	189	2,5	177	2,5
72,5	240	2,5	194	2,5	186	2,5	171	2,5
73,7	223	2,5	186	2,5	175	2,5	160	2,5
'75,0	211	2,5	183	2,5	161	2,5	151	2,5

δ,%	dб/dΩ, мб/ср	0, град	δ,%	dб/dΩ, мб/ср	0, град	δ,%	dб/dΩ, мб/ср	0,гр а д
0,85	202	71,4	1,0	166	25,5	1,0	778	9,0
0,85	197	72,1	1,0	151	26,5	1,0	750	9,5
0,85	193	72,9	1,0	141	27,5	1,0	704	10,5
0 ,8 5	186	73,6	1,0	132	28,5	1,0	649	11,5
0,85	181	74,3	4,0	122	30,0	1,0	597	12,5
0,85	175	75,1	3,0	117	33,1	1,0	543	13,5
0,85	1'70	75,8	2,4	130	38,1	1,0	499	14, 5
0,85	162	76,6	2,2	148	41,6	1,0	452	15,5
0,85	15 6	77,3	2,2	175	45,3	1,0	410	16,5
0,85	149	78,0	2,1	196	49,1	1,0	372	17,5
0.9	144	78,8	1,3	220	53,8	1,0	335	18,5
1,0	141	'79,5	2,0	233	59,2	1,0	230	19,5
1,5	139	80,3	2,0	198	68,5	1,0	272	20,5
2,0	140	81,0	0,85	220	68,9	1,0	241	21,5
4,0	144	81,8	0,85	217	69,2	1,0	220	22,5
5,5	159	82,5	0,85	211	69,9	1,0	199	23,5
7,0	218	83,3	0,85	208	70.7	1.0	180	24.5

Примечание. Е_р = 6,78 М**э**В.

٠

		Ex.	МәВ		· · · · · · · · · · · · · · · · · · ·	ſ	E _N ,	M9B	
	9,	1	11,3	4		9	,I		II,34
0, град	d6/dΩ, м6/cp	5,%	dơ/dΩ, мơ/cp	δ, %	е, град	dб/dΩ, мб/ср	δ, %	dб/dΩ, мб/ср	8, %
16,0 17,5 20,5 22,5 25,0 27,4 30,0 32,5 33,5 35,1 35,7	• мб/ ср 1084 - 783 665 540 433 - - - - 244	0, <u>%</u> 1,0 - 1,0 1,5 1,5 3,0 - - - - 1,7	819 729 588 488 406 345 288 256 243 239 227	0, % 1,0 1,2 1,4 1,5 2,3 2,3 3,0 1,8 4,5 1,8	50,4 52,0 53,7 55,4 57,1 58,8 60,6 62,4 64,1 65,9 67,7	148 143 140 148 154 164 177 197 220 243 263	1,4 1,3 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5	138 118 116 109 113 120 128 143 161 178 206	1,6 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,6
37,9 38,0 40,3 42,7 45,0 47,8	- 214 192 176 161 153	- 1,7 1,6 1,6 1,5 1,5	211 - 192 182 170 145	1,7 - 1,7 1,6 1,6 1,6	69,6 71,4 73,2 74,7 76,9 78,0	287 306 323 337 368 368	0,5 0,4 0,3 0,3 0,3 0,3	234 255 275 300 325 349	0,5 0,5 0,4 0,4 0,3 0,2

Угловые распределения дейтронов отдачи из реакции 2 H(4 He, 4 He) 2 H

Таблица 15 /11/

Таблица 16 /12/

		Ĕα	, МэВ				E_{α} ,	МаВ	
•	12	;	14,2		6	I	5	I4,2	
0,град	dб/dΩ, мб/ср	6,%	d6/dΩ, ≤6/cp	5, %	, , ,	dG/dΩ, MO/cp	δ, %	d6/dΩ, м0/ср	J, \$
10,0	1000	3,0	780	3,0	32,6	251	3,0	200	3,5
12,5	914	3,0	656	3,0	43,0	-	-	194	3,0
15,0	815	3,0	572	3,0	48,9	138	3,5	144	3,5
17,5	671	3,0	458	3,0	54,0	112	3,0	94	3,5
20,1	553	3,0	368	3,0	58,6	116	3,0	73	3,0
22,6	465	3,0	295	3,0	63,0	-	-	89	3,0
25,1	384	3,0	251	3,0	67,0	170	З,О	142	з,0
27,6	321	3,0	211	3,5	71,0	224	3,0	202	3,5
30,1	272	3,0	199	3,5	75,0	315	3,0	266	3,5

46

Таблица 17 /12/

		E_{α} , Ma	В			E _a , MaB				
0, град	17			20	Aman	17		20		
	dő/dΩ, мб/cp	δ,%	d6/dΩ, м6/cp	ઈ, %	О,Град	dơ/dΩ, м⁄/cp	ô, %	dб/dΩ, мб∕ср	δ, %	
10,0 12,6 13,0 13,5 15,1 16,1 17,6 19,5 20,1 22,6 25,1 27,6	520 - 401 397 361 319 270 230 219 172 163 159	3,0 - 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	371 303 - - 231 - 197 - 145 120 119 128	3,5 3,5 - 3,5 - 3,5 - 4,0 3,5 4,0 3,5	32,6 42,9 48,9 50,3 54,0 58,6 60,6 62,9 67,0 71,0 74,9 78,8	1777 193 136 109 72 43 - 49 100 148 206 -	3,0 3,5 3,0 3,0 3,0 3,0 3,0 3,0 3,5 3,5 -	1 <i>8</i> 9 - - 109 64 26 19 28 69 130 - 261	4,5 - 3,5 3,5 3,5 5,5 3,5 4,0 3,5 - 3,5	
30,1	153	3,0	150	3,5	82,5	-	-	333	4,0	

Таблица 18 /12/

	E _≪ , M∋B								
	12	,ô	15	·	17,6				
	$d \mathcal{G} / d \Omega,$		$d\delta/d\Omega$,		$d\sigma/d\Omega$,				
О, град	мб/ср	δ, %	мб∕ср	δ, %	мб∕ср	δ,%			
20,0	501	3,0	334	3,0	203	3,5			
22,5	415	3,0	269	3,5	181	3,0			
25,0	339	4,0	208	4,5	156	4,0			
27,5	294	5,0	191	4,5	153	3,5			
30,0	265	3,5	195	3,5	157	3,5			
32,5	235	3,5	201	3,5	163	4,0			
33,7	220	3,5	197	3,5	180	4,0			
35,0	228	3,5	200	3,5	193	З,О			
35,1	233	3,5	207	З,О	178	4,0			
36,5	213	4,0	205	З,5	195	3,5			
-37,5	-	-	213	3,5	193	4,0			
38,0	201	3,5	208	3,0	209	3,0			
39,4	196	3,0	202	3,0	195	3,5			
40,0	-	- (215	3,5	208	3,5			
41,0	202	3,0	196	3,5	208	3,0			
42,4	184	3,0	197	3,5	194	З,О			
42,5	-	-	195	3,0	188	3,5			
43,9	175	3,0	189	3,0	191	3,0			
45,0	-	-	-	-	176	3,0			
45,5	162	3,0	170	3,0	174	3,0			
47,1	154	3,0	155	3,5	145	3,5			

Окончание	табл.18
OTOH JUNIO	1001.10

	12	2,6	15	5	17,6	3 3
0,град	dб/d Ω , мб/ср	δ, %	dб/dΩ, мб/ср	δ, %	dб/dΩ, мб/ср	δ, %
47,5	_	_	-	_	137	4,0
48,7	134	3,5	140	3,0	136	3,0
50,0	-	 .	-	-	119	3,5
50,3	125	3,0	127	3,0	115	3,0
52,0	114	З,О	107	З,О	93	3,5
53,7	102	3,0	89	3,0	76	4,0
55,3	96	3,5	83	3,0	54	4,5
57,1	98	3,0	71	3,0	47	3,5
58,8	98	3,0	65	З,О	36	4,0
60,6	111	4,5	71	З,0	38	4,0
62,3	127	4,0	74	3,5	42	3,5
64,1	147	3,5	91	4,0	55	4,0
66,0	167	3,5	115	4,0	74	3,5
67,7	185	3,5	140	3,5	97	3,5
69 , 5	207	4,0	172	4,0	125	3,5
71,4	237	4,0	193	3,5	156	3,5
73,2	265	3,0	228	3,0	186	3,5
75,1	295	з,0	251	3,5	213	3,0
76,8	-	-	265	3,5	233	3,5
78,8	350	3,5	298	3,5	255	3,5
80,6	368	4,0	334	3,5	289	4,5
82,5	543	4,5	480	4,0	398	4,0

Таблица 19 /12/

Ә, град	<i>dб/dΩ</i> , мб/ср	δ, %	0,град	dб/dΩ, мб/ср	δ, %	0,град	dб/dΩ, мб∕ср	δ, %
1,9	275	4,5	25,1	84	4,0	52,0	75	8,0
4,4	254	4,5	27,5	95	3,5	54,0	57	3,5
6,4	222	5,0	29,9	107	4,5	58,6	22	4,5
8,4	217	4,0	32,4	128	4,0	62,9	15	3,5
10,6	191	5,0	35,0	134	4,0	67,0	40	3,0
11,4	180	3,5	37,5	155	3,5	69,5	69	8,0
13,0	152	4,5	40,0	167	3,0	71,0	92	3,5
13,5	144	4,0	42,4	154	4,5	73,2	145	4,0
15,3	113	6,5	42,5	148	3,5	75,0	190	4,0
16,1	115	3,5	45,0	145	З,0	76,9	228	3,5
18,0	99	5,5	47,1	128	5,0	78,8	263	4,0
20,0	89	3,5	48,9	109	3,5	80,6	270	4,0
22,5	75	4,5	50,3	95	5,5	82,5	305	4,0

Примечание. E_X = 27,4 МэВ.

Список литературы

1. Cohen B., Pink C., Deghan J. J. Appl. Phys., 1972, v. 43, H 1, p. 19.

2. Чернов И.П., Козырь В.В., Матусевич В.А. Атомная энергия, 1976, т. 41, с. 51.

3. Barnard A.C.L., Jones C.M., Weit J.L. Mucl. Phys., 1964, v. 50, p. 604.

4. Kreger W.B., Jentschke W., Kruger P.G. Phys. Rev., 1954, v. 93, N 4, p. 837.

5. Satchler G.R., Owen L.W. Mucl. Phys., 1968, v. A112, p. 1.

6. Putnam T.M., Brolley J.R., Rosen L. Phys. Rev., 1956, v. 104, H 5, p. 1303.

7. Williams J.H., Rasmussen S.W. Ibid., 1953, v. 98, H 1, p. 56.

8. Kocher D.C., Glegg T.B. Mucl. Phys., 1969, v. A132, p. 455.

9. Wilson A.S., Taylor M.C., Legg J.S., Phillips G.C. Ibid., 1969, v. Al., p. 624.

10. Grötzscher R., Kühn B., Möller K., Mönner J. Ibid., 1971, v. A174, p. 301.

(). Ohlsen G.G., Young P.J., Kumpf H. Ibid., 1964, v. 52, p. 134.

12. Stewart L., Brolley J.E., Rosen L. Phys. Rev., 1962, v. 128, N 2, p. 707.

Статья поступила в редакцию 4 августа 1980 г.

154 - 10,770 112

ОЛЕКТРОН-ВОСЛІРОННЫЕ ЗАКТОРЫ СЕЧЕНИЙ ВОЗБУЖДЕНИЯ ЯДРА ПРИ АННИТИЛЯЦИИ ПОЗИТРОНОВ НА К-ОГОЛОЧКЕ ТИХЕЛЫХ АТОМОЕ

Д.Ш. Гречухин, А.А. Солдатов

ELECTRON-POSITRON FACTORS OF NUCLEUS EXCITATION CROSS-SEC-TIONS DURING ANNIHILATION OF POSITRONS ON THE K-SHELL OF HEAVY ATOMS. The electron-positron factors of nucleus excitation cross-sections during annihilation of positron on atomic shell as well as the factors determining an excited nucleus orientation have been calculated in this paper.

В процессе аннигиляции позитрона на атомной оболочке высвоботцарынаяся энергия может быть передана как электромагнитному поло (одно- и двухфотонная аннигиляция), так и атомному ядру. Таким образом, одним из результатов рассеяния позитронов на атоме будет образование ядра в возбужденном состоянии с энергией $E^{\#} = E_{+} + E_{n\ellj}$. Здесь E_{+} - энергия позитрона (для электронов и позитронов используются полные релятивистские энергии); $E_{n\ell j}$ энергия ($n\ell j$)-электрона, где n - главное квантовое число, ℓ - орбитальный, а j - полный угловой моменты электрона. Существенно, что энергии возбуждения ядра находятся в интервале, практически равном разбросу энергии позитронов в падающем пучке.

Так как в пространстве имеется выделенное направление – вектор импульса падающих позитронов, ядро в возбужденном состоянии будет ориентировано относительно этого направления. Тем самым последующий распад этого возбужденного ядерного состояния будет иметь угловое распределение, отличное от изотропного.

Процесс возбуждения ядра при аннигиляции позитрона на атомной оболочке во многом подобен процессу внутренней конверсии. В частности, сечение этого процесса также факторизуется на ядерную и электрон-позитронную части при не слишком больших энергиях позитрона. В настоящей работе представлены результаты численных расчетов электрон-позитронных факторов сечений возбуждения ядра при аннигиляции позитрона на атомной оболочке, а также факторы, определяющие ориентацию возбужденного ядра. Расчеты выполнены для энергий позитрона $E_{+} \leq 6,5$ МвВ, когда еще справедливо длинноволновое приближение для ядерных переходов.

Впервые этот процесс рассмотрен в работе (1), где сечение возбуждения внчислено в борновском приближении и без учета конечной ширины К-дырки в атомной оболочие. В работах (2-4) экспе-

49

риментально исследовалось возбуждение ядра при аннигиляции позитронов на атомной оболочке с использованием сплошного спектра β_+ . Подробное изложение теории этого процесса, а также обсуждение возможных применений его как метода исследований структуры ядра приведено в работах $\sqrt{5-107}$.

<u>Расчетные формулы.</u> Зафиксируем определения используемых и вычисленных далее величин. Пусть состояние атомного ядра с угловым моментом I задано суперпозицией по магнитной проекции момента М на выделенную в пространстве ось квантования:

$$\Psi_{I} = \sum_{M} \alpha_{M}(I) \Psi_{TM} ,$$

где амплитуды чормированы обычным условием

$$\sum_{M} \left| a_{M}(I) \right|^{2} = 1.$$

Для описания ориентации ядра вводим систему спин-тензоров ранга Q согласно определению

$$\mathcal{P}_{\mathbf{Q}\nu}(\mathbf{I}) = \sum_{\mathbf{M}\mathbf{M}'} (\mathbf{I}\mathbf{Q}\mathbf{M}\nu \mid \mathbf{I}\mathbf{Q}\mathbf{I}\mathbf{M}') a_{\mathbf{M}'}^{*}(\mathbf{I})a_{\mathbf{M}}(\mathbf{I}),$$

где (IQMv/IQIM') - коэффициент Алебша - Гордана в обозначениях работы [11].

В начальном состоянии ансамбль ядер-мишеней, находящихся на уровне E_1 с моментом I_1 , полагается неориентированным, т.е. $\beta_{QV}(I_1) = \delta_{QO} \delta_{VO}$. В акте возбуждения $E_1I_1 \rightarrow E_2I_2$ ядра в процессе аннигиляции падающего неполяризованного пучка позитронов на атомах мишени в пространстве выделена ось вдоль вектора импульса \vec{p} - пучка. В этом случае все нечетные спин-тензоры возбужденного ядра $\rho_{QV}(Q = 1, 3, 5...)$ равны нулю с точностью около 10^{-3} , определяемой несохранением четности в ядрах. Для неисчезающих спин-тензоров имеем ограничение осевой симметрии:

$$\rho_{QV}(\mathbf{I}_2) = \rho_{QO}(\mathbf{I}_2) \delta_{VO} \qquad (Q = 0, 2, 4 \dots) .$$

Возбуждение ядра в переходе $E_1I_1 \longrightarrow E_2I_2$ мультипольности $\Lambda L\,(EL$ или ML), вызванное аннигиляцией неполяризованного позитрона на электроне (nlj)-оболочки атома, будем характеризовать системой сечений для строго монохроматического пучка позитронов $E_+\, \vec{p}$, причем сечений, отнесенных на один электрон – В (nlj)-оболочки:

$$\mathcal{O}(\Lambda L, [nlj]^{l}, E_{+}\vec{p}, I_{1} \longrightarrow I_{2}M).$$

Вводим спин-тензори-сечения б (ΛL , $[n\ell j]^{4}$, $E_{+}p$, $I_{1} \rightarrow I_{2}$) и нормированные к единице спин-тензоры-ориентации, совпадающие с определенными выше \mathcal{P}_{Q0} :

$$\begin{split} & \sigma_{\mathbf{Q}}\left(\Lambda \mathbf{L}, \left[nlj\right]^{\dagger}, \ \mathbf{E}_{+}\mathbf{p}, \ \mathbf{I}_{1} \rightarrow \mathbf{I}_{2}\right) = \\ & = \sum_{\mathbf{M}_{2}} \left(\mathbf{I}_{2} Q \mathbf{M}_{2} 0 \mid \mathbf{I}_{2} Q \mathbf{I}_{2} \mathbf{M}_{2}\right) \mathcal{O}\left(\Lambda \mathbf{L}, \left[nlj\right]^{\dagger}, \ \mathbf{E}_{+} \vec{p}, \ \mathbf{I}_{1} \rightarrow \mathbf{I}_{2} \mathbf{M}_{2}\right); \\ & \mathcal{P}_{\mathbf{Q}0}(\mathbf{I}_{2}) = \frac{\sigma_{\mathbf{Q}}\left(\Lambda \mathbf{L} \left[nlj\right]^{\dagger}, \ \mathbf{E}_{+}\mathbf{p}, \ \mathbf{I}_{1} \rightarrow \mathbf{I}_{2}\right)}{\sigma\left(\Lambda \mathbf{L} \left[nlj\right]^{\dagger}, \ \mathbf{E}_{+}, \ \mathbf{I}_{1} \rightarrow \mathbf{I}_{2}\right)} \end{split}, \end{split}$$

причем $\mathcal{G}(\Lambda L, [nlj]^{\dagger}, E_{+}, I_{+} \rightarrow I_{2})$ есть полное сечение возбуждения ядра на уровень I_{2} , или, что то же самое, спин-тензор-сечение \mathcal{G}_{Q} ранга нуль (Q = 0), но в этом случае индекс \tilde{U} будем опускать.

Введенные таким образом спин-тензоры-сечения можно записать в факторизованном виде

$$\begin{split} & \mathcal{G}_{Q} \Big(\Lambda L \left[n \ell j \right]^{1} E_{+} p, \ I_{1} - I_{2} \Big) = a_{0}^{N(L)} D (E_{2} - E_{1} - E_{n \ell j} - E_{+}) \times \\ & \times \xi_{Q} \Big(\Lambda L \left[n \ell j \right]^{1} E_{+} \Big) u (I_{1} L I_{2} \Theta, I_{2} L) \Big(\frac{2I_{2} + 1}{2I_{1} + 1} \Big) \Big| \leq I_{2} E_{2} \left\| \Lambda L \right\| I_{1} E_{1} > \Big|^{2} . \end{split}$$

Здесь используется резонансная функция

$$D(x) = \frac{e^2}{a_0} \frac{1}{2\pi} \frac{\Gamma}{x^2 + (\Gamma/2)^2} ,$$

где Г - полная ширина конечного состояния системы, т.е. возбужденного ядра и атомной оболочки с дыркой (nlj);

$$a_0 = \frac{\hbar^2}{me^2} = 0,529 \cdot 10^{-8} \text{ cm};$$
 $\frac{e^2}{a_0} = 27,2 \text{ B}; u(a \text{ b} cd, ef) -$

нормированная функция Рака, введенная в работе /12/:

$$N(L) = \begin{cases} -2 & \text{для } E0; \\ 2 - 2L & \text{для } ML & \text{ } EL & (L \neq 0). \end{cases}$$

Ядерные матричные элементы ЛГ-мультиполей связаны с широко используемыми в литературе [13] приведенными вероятностями радиационных переходов соотношениями (L ≠ 0)

$$e^{2} \frac{2I_{2}+1}{2I_{1}+1} \left| \langle I_{1}E_{1} || EL || I_{2}E_{2} \rangle \right|^{2} = B(EL, I_{1}-I_{2});$$
(1)

$$e^{2} \frac{L}{L+1} \frac{2I_{2}+1}{2I_{1}+1} \left| \langle I_{1}E_{1} \| ML \| I_{2}E_{2} \rangle \right|^{2} = B(ML, I_{1}-I_{2}).$$
(2)

Матричный элемент EO-перехода определен равенством

$$e \left\langle I_{1}E_{1} \| E0 \| I_{2}E_{2} \right\rangle = \delta_{I_{1}I_{2}} \left\langle I_{2}M_{2} \right| \int d\vec{z}z^{2} Y_{00} \hat{\rho}_{N}(\vec{z}) | I_{1}M_{1} \right\rangle, \tag{3}$$

где

က်_N(င်) – оператор плотности заряда ядра^х. Электрон-позитронные факторы နိ_ရ можно представить в виде двойной суммы:

$$\begin{split} \xi_{Q}(\Lambda L | n\ell_{j} | {}^{t}, E_{+}) &= 32\pi^{4} \frac{1}{2j+1} \frac{1}{2L+1} \frac{(ka_{0})^{2L+2}}{[(2L+1)!!]^{2}} \frac{E_{+} - mc^{2}}{mc^{2}} \frac{1}{(pa_{0})^{3}} \times \\ &\times \sum_{j_{2}\ell_{2}} \sum_{\tilde{j}_{2}\tilde{\ell}_{2}} i^{\ell_{2}-\tilde{\ell}_{2}} exp\left[i\left(\delta_{j_{2}\ell_{2}} - \delta_{\tilde{j}_{2}\tilde{\ell}_{2}}\right)\right] (2j_{2}+1) \left(\frac{2\tilde{\ell}_{2}+1}{2\ell_{2}+1}\right)^{1/2} \times \\ &\times (\tilde{\ell}_{2}Q00 | \tilde{\ell}_{2}Q\ell_{2}0) u(1/2, \tilde{\ell}_{2}j_{2}Q; \tilde{j}_{2}\ell_{2}) u(QLj_{2}j; L\tilde{j}_{2}) \mathbb{R}^{\Lambda L}(j_{2}\ell_{2}) \mathbb{R}^{\Lambda L}^{*}(\tilde{j}_{2}\tilde{\ell}_{2}). \end{split}$$

Здесь k = ω/c – волновое число перехода $\hbar\omega$ = E₊ + E_{nlj}; p – волновое число позитрона; δ_{jl} - фаза рассеяния позитрона на среднем атомном поле.

Радиальные интегралы EL - и ML -мультиполей определены равенствами (L ≠ 0):

$$\begin{split} \mathbb{R}^{\mathsf{ML}}(j_{2}\ell_{2}) &= -i\langle j_{2}\ell_{2} \| \mathsf{MLL} \| j\ell' \rangle \int_{0}^{\infty} dx h_{\mathsf{L}}^{(i)}(\mathsf{ka}_{0}x) \left({}^{\mathsf{G}}_{j_{2}}\ell_{2}f_{j}\ell + {}^{\mathsf{F}}_{j_{2}}\ell_{2}g_{j}\ell \right); \\ \mathbb{R}^{\mathsf{EL}}(j_{2}\ell_{2}) &= \langle j_{2}\ell_{2} \| \mathsf{EL} \| j\ell \rangle \bigg[\int_{0}^{\infty} dx h_{\mathsf{L}}^{(i)}(\mathsf{ka}_{0}x) \times \\ & \times \left(\mathsf{G}_{j_{2}}\ell_{2}g_{j\ell} + {}^{\mathsf{F}}_{j_{2}}\ell_{2}f_{j\ell} \right) + \int_{0}^{\infty} dx h_{\mathsf{L}-1}^{(i)}(\mathsf{ka}_{0}x) \left({}^{\mathsf{F}}_{j_{2}}\ell_{2}g_{j\ell} - {}^{\mathsf{G}}_{j_{2}}\ell_{2}f_{j\ell} \right) \bigg] - \\ & - \sqrt{\frac{\mathsf{L}+i}{\mathsf{L}}} \langle j_{2}\ell_{2} \| \mathsf{MLL} \| j\ell \rangle \int_{0}^{\infty} dx h_{\mathsf{L}-1}^{(i)}(\mathsf{ka}_{0}x) \left(\mathsf{G}_{j_{2}}\ell_{2}f_{j\ell} + {}^{\mathsf{F}}_{j_{2}}\ell_{2}g_{j\ell} \right), \end{split}$$

где $\ell'_2 = 2j_2 - \ell_2$.

Х Видимая неравноправность формул (1) и (2) для EL – и ML-переходов обусловлена несколько неудачным исходным выбором определения факторов ξ , которые затем были численно табулированы в такой форме.

Для ЕО-монополя

$$R^{E0}(j_{2}\ell_{2}) = i \frac{1}{6k\sqrt{4\pi}} \delta_{j_{2}j} \delta_{\ell_{2}\ell} \left(\frac{G_{j_{2}\ell_{2}}g_{j\ell} + F_{j_{2}\ell_{2}}f_{j\ell}}{x^{2}} \right)_{x=0},$$

где $x = z/a_0; h_{\ell}^{(1)}(z)$ - сферическая функция Ганкеля первого рода.

Все выражения получены в приближении, в котором состояние электронной оболочки атома и нелетающего позитрона описывается в рамках релятивистского варианта метода Хартри – Фока – Слэтера, т.е. считается, что все электроны двигаются в едином атомном поле с центральной симметрией. Соответственно полевые операторы электронно-позитронного поля записываются в виде разложения по собственным функциям уравнения Дирака с этим средним полем, которое вычислялось по поограммам и.М.Банд и М.Б.Тржасковской /14/ для фиксированной конфигурации атомной оболочки.

Радиальные компоненты волновых функций электрона (nlj)-оболочки атома (см./15/)

$$\Psi_{n\ell jm}(x) = \frac{1}{x} \begin{pmatrix} ig_{j\ell}(x) \Omega_{j\ell m}(\vec{n}) \\ -f_{j\ell}(x) \Omega_{j\ell' m}(\vec{n}) \end{pmatrix}$$

нормированы обычным условием

$$\int_{0}^{\infty} dx \left(q_{j\ell}^{2} + f_{j\ell}^{2}\right) = 1$$

Радиальные функции позитрона определены асимптотикой (для большой компоненты)

$$G_{j_2 \ell_2} \longrightarrow \sin(pa_0 x - \ell_2 \pi/2 + \delta_{j_2 \ell_2})$$
 upn $x \longrightarrow \infty$,

где $G_{j_2\ell_2}$, $F_{j_2\ell_2}$ - решения уравнения Дирака со средним атомным потенциалом с энергией $E = -E_+$, принято G(0) > 0.

В выражение (4) введены обозначения угловых интегралов от шаровых спиноров $\Omega_{j\ell m}$ электронных состояний:

$$\begin{split} \left\langle j_{2}\ell_{2} \| \mathrm{EL} \| j\ell \right\rangle &= \left[\frac{(2L+1)(2\ell+1)}{4\pi(2\ell_{2}+1)} \right]^{1/2} (\mathrm{L}\ell \mathrm{OO} | \mathrm{L}\ell\ell_{2}\mathrm{O}) u (\mathrm{L}\ell j_{2} 1/2; \ell_{2} j); \\ \left\langle j_{2}\ell_{2} \| \mathrm{MLL} \| j\ell \right\rangle &= \frac{j_{2}(j_{2}+1) - j(j+1) + \ell(\ell+1) - \ell_{2}(\ell_{2}+1)}{\sqrt{\mathrm{L}(\mathrm{L}+1)}} \left\langle j_{2}\ell_{2} \| \mathrm{EL} \| j\ell \right\rangle . \end{split}$$

<u>Описание таблиц.</u> 1. Удобно для оценок переопределить факторы ξ_Q (Q = 2, 4...) через фактор сечения ξ_O (индекс О далее опускаем) и ввести ориентационные коэффициенты согласно равенству

$$\xi_{\mathbf{Q}}(\Lambda L[n\ell j]^{\dagger}, \mathbf{E}_{+}) = \xi(\Lambda L[n\ell j]^{\dagger}, \mathbf{E}_{+}) A_{\mathbf{Q}}(\Lambda L[n\ell j]^{\dagger}, \mathbf{E}_{+}) \quad \text{при} \quad \mathbf{Q} = 2, 4 \dots$$

Факторы & и коэффициенты A_Q приведены в приложении (табл.1-9). Все вычисления осуществлены с релятивистскими функциями электрона оболочки и позитрона, получаемыми путем численного интегрирования уравнения Дирака с единым для электрона оболочки и позитрона средним атомным потенциалом Хартри – Фока – Слэтера. Для нахождения потенциалов использована программа работы /147.

2. Первая строка таблиц содержит информацию об оболочке, с электроном которой происходит аннигиляция позитрона; Z – заряд ядра атома; EI – теоретическое значение энергий связи для этой оболочки; EPS – относительная точность расчетов. Отметим, что приводится точность математических расчетов, которая не имеет ничего общего с теоретической точностью используемых приближений (метод Хартри – Фока – Слэтера и т.д.); точность последнего в этих задачах, по-видимому, порядка нескольких процентов (см.данные работы /10/).

		,
z =82, состояние	2P3/2	(EI = I.30382 + 04.9B), EPS = 0.0010

<u></u>	.स. स. - Ж न	EC	EI			E2		MI			N/2	
** +	- u+u-	Ę	E,	A ₂	Ę	A ₂	A ₄	Ę	A ₂	٤	A2	A4
0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	1. $04797+00$ 1. $12797+00$ 1. $20797+00$ 1. $28797+00$ 1. $36797+00$ 1. $36797+00$ 1. $44797+00$ 1. $60797+00$ 1. $68797+00$ 1. $68797+00$ 1. $68797+00$ 1. $68797+00$ 1. $92797+00$ 1. $92797+00$ 2. $24797+00$ 2. $24797+00$ 2. $24797+00$ 2. $24797+00$ 3. $20797+00$ 3. $20797+00$ 3. $20797+00$ 3. $44797+00$ 3. $68797+00$ 3. $68797+00$ 3. $68797+00$ 4. $16797+00$ 4. $64797+00$ 5. $36797+00$ 5. $3797+00$ 5. 37	I 00+00.0 I 000+00.0 I 0000000 I 000000000000000000000000	$\begin{array}{c} 6 & 0 & 4 - 0 & 5 \\ 6 & 0 & 5 - 0 & 4 \\ 1 & 2 & 5 - 0 & 3 \\ 1 & 8 & 3 - 0 & 3 \\ 2 & 5 & - 0 & 3 \\ 3 & 1 & - 0 & 3 \\ 2 & 7 & 3 - 0 & 3 \\ 3 & 0 & 8 & - 0 & 3 \\ 3 & 0 & 5 & - 0 & 3 \\ 3 & 8 & 9 - 0 & 3 \\ 3 & 6 & 5 - 0 & 3 \\ 3 & 8 & 9 - 0 & 3 \\ 4 & 2 & 9 - 0 & 3 \\ 4 & 2 & 9 - 0 & 3 \\ 4 & 2 & 9 - 0 & 3 \\ 4 & 2 & 9 - 0 & 3 \\ 4 & 4 & 6 - 0 & 3 \\ 4 & 2 & 9 - 0 & 3 \\ 5 & 4 & 8 & - 0 & 3 \\ 5 & 4 &$	$ \begin{array}{c} 1 & 77 - 51 \\ 1 & 95 - 01 \\ 2 & 99 - 01 \\ 2 & 20 - 01 \\ 2 & 20 - 01 \\ 2 & 30 - 01 \\ 2 & 30 - 01 \\ 2 & 39 - 01 \\ 2 & 59 - 01 \\ 2 & 59 - 01 \\ 2 & 59 - 01 \\ 2 & 59 - 01 \\ 2 & 59 - 01 \\ 2 & 64 - 01 \\ 2 & 72 - 01 \\ 2 & 75 - 01 \\ 2 & 90 - 01 \\ 1 & 2 & 90 - 01 \\ 2 & 94 - 01 \\ 1 & 2 & 94 - 01 \\ 1 & 2 & 94 - 01 \\ 1 & 2 & 94 - 01 \\ 1 & 2 & 94 - 01 \\ 1 & 3 & 04 - 01 \\ 3 & 04 - 01 \\ 3 & 04 - 01 \\ 1 & 3 & 04 - 01 \\ 3 & 04 - 01 \\ 1 & 3 & 04 - 01 \\ 3 & 06 - 01 \\ 1 & 3 & 09 - 01 \\ 3 & 10 - 01 \\ 3 & 10 - 01 \\ 3 & 11 - 01 \\ 3 & 12 - 01 \\ $	$2 \cdot 2 \circ 0 + 0 \circ 0 \\ 1 \cdot 4 5 + 0 \circ 1 \\ 2 \cdot 3 & 8 + 0 \circ 1 \\ 3 \cdot 0 & 1 + 0 \circ 1 \\ 3 \cdot 4 & 8 + 0 \circ 1 \\ 3 \cdot 4 & 8 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 4 \cdot 2 5 + 0 \circ 1 \\ 5 \cdot 3 & 3 + 0 \circ 1 \\ 5 \cdot 3 & 3 + 0 \circ 1 \\ 5 \cdot 3 & 3 + 0 \circ 1 \\ 1 \cdot 3 & 3 + 0 \circ 2 \\ 1 \cdot 3 & 3 + 0 \circ 2 \\ 1 \cdot 5 & 5 + 0 \circ 2 \\ 2 \cdot 3 & 4 + 0 \circ 2 \\ 3 \cdot 3 & 1 + 0 \circ 2 \\ 3 \cdot 5 & 4 + 0 \circ 2 \\ 4 \cdot 4 & 7 + 0 \circ 2 \\ 5 \cdot 8 & 1 + 0 \circ 2 \\ 5 \cdot 8 & 1 + 0 \circ 2 \\ 5 \cdot 8 & 1 + 0 \circ 2 \\ 6 \cdot 3 & 0 + 0 \circ 2 \\ 5 \cdot 8 & 1 + 0 \circ 2 \\ 6 \cdot 3 & 0 + 0 \circ 2 \\ $	$\begin{array}{c} 4 & 51 - 0 \\ 4 & 6 & 75 - 0 \\ 4 & -5 & 85 - 0 \\ 3 & -1 & 39 - 0 \\ -2 & 45 - 0 \\ -3 & 60 - 0 \\ 2 \\ -3 & 60 - 0 \\ 2 \\ -4 & 82 - 0 \\ 2 \\ -5 & -0 \\ -3 \\ -0 \\ -6 \\ -8 \\ -0 \\ -2 \\ -6 \\ -8 \\ -0 \\ -1 \\ -3 \\ -0 \\ -2 \\ -6 \\ -0 \\ -2 \\ -3 \\ -0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -8 \\ -0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -8 \\ -0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	$\begin{array}{c} -1 & 26 & -03 \\ -7 & 54 & -03 \\ -7 & 54 & -03 \\ -1 & 81 & -02 \\ -3 & 16 & -02 \\ -3 & 16 & -02 \\ -3 & 16 & -02 \\ -4 & 70 & -02 \\ -4 & 70 & -02 \\ -4 & 70 & -02 \\ -3 & -01 & -02 \\ -6 & 33 & -01 \\ -7 & -02 \\ -8 & -01 \\ -9 & 67 & -02 \\ -1 & -3 & -01 \\ -1 & -3 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -2 & -01 \\ -3 & $	$1 \cdot 1 \cdot 0 - 0 \cdot 4$ $7 \cdot 1 \cdot 2 - 0 \cdot 4$ $1 \cdot 1 \cdot 5 - 0 \cdot 3$ $1 \cdot 4 \cdot 3 - 0 \cdot 3$ $1 \cdot 6 \cdot 3 - 0 \cdot 3$ $1 \cdot 6 \cdot 3 - 0 \cdot 3$ $1 \cdot 6 \cdot 3 - 0 \cdot 3$ $1 \cdot 9 \cdot 9 - 0 \cdot 3$ $2 \cdot 0 \cdot 6 - 0 \cdot 3$ $2 \cdot 0 \cdot 6 - 0 \cdot 3$ $2 \cdot 3 \cdot 6 - 0 \cdot 3$ $2 \cdot 3 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $2 \cdot 5 \cdot 6 - 0 \cdot 3$ $3 \cdot 1 \cdot 6 - 0 \cdot 3$ $3 \cdot 1 \cdot 6 - 0 \cdot 3$ $3 \cdot 1 \cdot 6 - 0 \cdot 3$ $3 \cdot 1 \cdot 6 - 0 \cdot 3$ $3 \cdot 2 \cdot 7 - 0 \cdot 3$ $3 \cdot 5 \cdot 6 - 0 \cdot 3$ $3 \cdot 4 \cdot 5 - 0 \cdot 3$ $3 \cdot 4 \cdot 5 - 0 \cdot 3$ $3 \cdot 4 \cdot 5 - 0 \cdot 3$ $3 \cdot 5 \cdot 6 - 0 \cdot 3$ $3 \cdot 5 - 0 \cdot 3$ $5 - 0 \cdot $	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 4 & 19 - 01 \\ 4 & 16 + 00 \\ 8 & 73 + 00 \\ 1 & 30 + 01 \\ 1 & 70 + 01 \\ 2 & 08 + 01 \\ 2 & 08 + 01 \\ 2 & 43 + 01 \\ 2 & 77 + 01 \\ 3 & 11 + 01 \\ 3 & 45 + 01 \\ 3 & 79 + 01 \\ 4 & 13 + 01 \\ 4 & 48 + 01 \\ 5 & 58 + 01 \\ 6 & 78 + 01 \\ 8 & 08 + 01 \\ 9 & 50 + 01 \\ 1 & 11 + 02 \\ 1 & 45 + 02 \\ 1 & 45 + 02 \\ 1 & 45 + 02 \\ 1 & 65 + 02 \\ 2 & 08 + 02 \\ 2 & 08 + 02 \\ 2 & 31 + 02 \\ 2 & 56 + 02 \\ 2 & 82 + 02 \\ 3 & 09 + 02 \\ 3 & 99 + 02 \\ 4 & 32 + 02 \\ \end{array}$	$\begin{array}{c} & -7 & \cdot & 89 & - & 03 \\ & -2 & \cdot & 05 & - & 02 \\ & -3 & \cdot & 28 & - & 02 \\ & -3 & \cdot & 28 & - & 02 \\ & -3 & \cdot & 28 & - & 02 \\ & -5 & \cdot & 66 & - & 02 \\ & -5 & \cdot & 66 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -7 & \cdot & 89 & - & 02 \\ & -1 & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 43 & - & 01 \\ & -2 & \cdot & 49 & - & 01 \\ & -2 & \cdot & 52 & - & 01 \end{array}$	-1.06-02 $-2.58-02$ $-4.08-02$ $-5.59-02$ $-7.07-02$ $-8.54-02$ $-9.96-02$ $-1.13-01$ $-1.26-01$ $-1.39-01$ $-1.51-01$ $-1.62-01$ $-1.72-01$ $-2.24-01$ $-2.43-01$ $-2.43-01$ $-2.58-01$ $-2.99-01$ $-2.99-01$ $-2.99-01$ $-3.05-01$ $-3.15-01$ $-3.28-01$ $-3.28-01$ $-3.28-01$ $-3.35-01$ $-3.35-01$
6,07 6,31 6,55	6,56797+00 1 6,80797+00 1 7,04797+00 1	1 0,00+00 1 0,00+00 1 1 0,00+00 1	7,10-03 7,14-03 7,18-03	3.13-01 ! 3.13-01 ! 3.13-01 !	6.81+02 7.34+02 7.89+02	-2,54-01 -2,55-01 -2,56-01	-3.39-01 -3.40-01 -3.41-01	3,54-03 3,56-03 3,58-03 3,58-03	3,13_01 1 3,13_01 1 3,13_01 1	4,66+02 5,02+02 5,39+02	-2.53-01 -2.54-01 -2.55-01	-3,36-01 -3,38-01 -3,39-01

Таблица 9

Первая колонка таблиц содержит энергию позитрона E_+ в мегаэлектрон-вольтах; вторая – энергию возбуждения ядра $E^* = E_+ + E_-$ в мегаэлектрон-вольтах, где E_- – полная энергия ($n\ell_j$)-электрона. Далее для каждой мультипольности приведены возможные (не нулевые) электрон-позитронные факторы ξ и A_Q , вычисленные при этой энергии позитрона E_+ . Принятая запись чисел соответствует печати по E-формату языка ФОРТРАН, т.е. последние три символа означают знак и величину десятичного порядка числа. Так, запись 4.56 + 04 соответствует 4,56 \pm 10⁴, а 2.71-01 означает 2,71.10⁻¹.

<u>Пример</u>. Для атома с номером 60 (т.е. Nd) энергия связи состояния (S1/2 есть 4,35969.10⁴эВ. При энергии E₊ = 2,47 МаВ, что соответствует энергии возбуждения ядра, равной 2,9374I МаВ, имеем для E2-мультиполя факторы

> $\xi(E2[151/2]^{1}; 2,47 \text{ MaB}) = 2,75.10^{4};$ $A_{2}(E2[151/2]^{1}; 2,47 \text{ MaB}) = -2,86.10^{-1};$ $A_{4}(E2[151/2]^{1}; 2,47 \text{ MaB}) = -2,94.10^{-1}.$

Эти величины рассчитаны с точностью 0,1%.

Список литературы

- 1. Present R.D., Chen S.C. Phys. Rev., 1952, v. 85, p. 447.
- 2. MuKoyama T., Shimizu S. Ibid., 1972, v. 05, p. 92.
- 3. Вишневский И.Н., Желтоножский В.А., Свято В.П., Тришин В.В. Тезисы докладов XX1X совещания по ядерной спектроскопии и структуре атомного ядра. Рига, Наука, 1970, с.239.
- 4. Watanabe Y., MuKoyama T., Shimizu S. Phys. Rev., 1979, v. C19, p. 32.
- 5. Гречухин Д.П., Солдатов А.А. Ж. Эксперим. и теор.физ., 1978, т.74, с.13.
- о. Те же. Препринт ИАЭ 2896, М., 1977.
- 7. Те же. Препрянт ИАЭ 3097, M., 1979.
- 8. Те же. Ядерная физика, 1979, № 29, с.296.
- 9. Те же. Ж.Эксперим. и теор.физ., 1979, т.76, с.399.
- 10. Те же. Ядерная физика, 1979, № 9, с.29.
- 11. Кондон Е., Шортли Т. Теория атомных спектров. М., Изд-во иностр.лит., 1949.
- 12. Jahn H.A. Proc. Roy. Soc., 1951, v. A205, p. 192.
- 13. Бор О., Маттельсон Б. Структура атомного ядра. М., Мир, 1972.
- 14. Банд И.М., Тржасковская М.Б. Препринт ЛИЯФ-92. Л., 1974.
- 15. Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. М., Физматгиз, 1959.

Статья поступила в редакцию 26 февраля 1980 г.

ri le	nor	t	: Quan- : tity	: Labo- : rsto-	dork-	ne	rgy	(eV)		Poce	Jo: wente
- 3	:	À		27		win	1	max		1469 	
CU			Gبالد	RUR	щ. РТ	1.0	6	5.U	j.	17	SAVIN+ BIG(GALLA-2), DED
1.16			NI N	FLI	تا غريند	∲ . 0	6	3.0	€	7	SIEAKØV+ SIG(E-KEUT),TBLS
\mathbb{L}			ىلەر	КыI	Bar P.	5.0	S	9 . 0	ů.	7	SIMAKØV+ SIG(E-HEUT), FEDS
1¥			DaG	h.UR	EXPT	1.0	E	5.0	6	17	SAVIN+ SIG(GAmma-n),TBL
¥			Silv	FAI	3XPT	5.0	6	0.8	6	7	SIMAKØV+ SIG(E-meUr), TBL
U		238	liG	PLØ	CHEO	3.0	ε			3	ZENSVICH+ CALCULATION
U		238	ы:G	RI	$\Delta \mathbf{PT}$	7.0	6	1.4	6	14	KAZJUJA+ FN MACIE,SIG(HEUT-A),IBL
FU		239	щG	1	тHьo	3.0	6			3	LENSVICH+ CALCULATIØ.S
ЪŨ		240	ŵС	<u>т</u> . 4	THEC	3.0	6			3	2_HEVICH+ C.LCULATIØNS

БИБЛИОГРАФИЧЕСКИЙ ИНДЕКС РАБОТ, ПОМЕЩЕННЫХ В НАСТОЯЩЕМ ВЫПУСКЕ, В МЕЖДУНАРОДНОЙ СИСТЕМЕ СИНДА

Редактор Г.В.Зубова Технический редактор С.И.Халиллулина Корректор Г.С.Платонова

Подписано в печать	25.II.80.	Т21407.	Формат 60х84 1/8.
Офсетная печать.	Усл.печ.л.	6,97. Учизд.л.	8,0. Тираж 330 экз.
За̂к. тип. № 1198	8 0	статей	Индекс 3645.

Отпечатано в ЦНИИатоминформе 119146, Москва, Г-146, аб/ящ 584 YER 539.173.4

РАДЛАЦИОННЫХ ЗАХВАТ НЕЛТРОНОВ С ЭНЕРГИЕЙ ДО З МЭВ ДЕЛЯЦИМИСЯ ЯЦ-РАМИ / В.А.Зеневич, А.Б.Клепацкий, В.А.Коньшин, Е.Ш.Суховицкий. -Вопроснатомной науки и техники. Сер. Адерные константы, 1980, вып. 4(39), с. 3-7.

Рассчитаны сечения радиационного захвата нейтронов ядрами ²³⁸U, 239_{Pu} и ²⁴⁰_{Pu} в области энергий нейтронов до 3 мэд при использовании различных моделей плотности уровней: ферми-газа, берми-газа с учетом коллективных мод, модели сверхтекучего ядра. Коэбрициенты нейтронных проницаемостей рассчитывались методом связанных каналов. Наилучшее согласие расчетных величин с экспериментальными данными по ширинам Гог и сечения: бо получено для плотности уровней из модели йерми-газа с учетом коллективных мод (рис.2, табл.2, список лит. - 22 назв.).

JAC 539.171.017

ЛЕУТОЕ И НЕЛЕУТОЕ РАССАНИЕ НЕПТРОНОВ С ЭНЕРГИЗМ ОТ 5 ДО 8 МЭВ НА ПРИРОДНОМ МОЛБДЕНЕ / С.П.Симаков, Г.Н.Ловчикова, О.А.Сальников л др. – Вопросы атомной науки и техники. Сер.Ядерные константы, 1980, вып.4(39), с.7-I4.

измерены дији еренциальные сечения упругого и неупругого рассеяния нейтронов с энергиями 4,91; 5,98; 6,98 и 8,01 мэВ на природном молибдене. Эксперимент выполнен методом времени пролета на электрочт статическом ускорителе ЭГЛ-10м с использованием газовой тритиевой мишени в качестве источника моноэнергетических нейтронов. Подробно описывается методика проведения измерений и обработки экспериментальной информации. Полученные сечения хорошо согласуются с доступными данными других авторов. Сечения упругого и неупругого рассеяния нейтронов для шести углов рассеяния приводятся в виде таблиц (рис.с., табл.5, список лит. - 10 назв.).

JAN 539.170.012

измерение функций возвущения ряда уровней ²³⁸о в реакции (п, п'у), Б.Г.Казюла, Э.М.Козулин, Л.А.Победоносцев и др. – Вопросы атомной науки и техники. Сер. Адерные константы, 1980, вып.4(39), с.14–16.

По 1-излучению, сопровождающему процесс неупругого рассеяния нейтронов, получены функции возбуждения ряда уровней ²³⁸0 в интервале энергий падающих нейтронов 0,7-1,4 мэВ. Данные о сечениях неупругого рассеяния нейтронов на уровнях 580 и 732 кэВ совпадают с результатами других авторов, а для уровней 930, 950, 1059 и 1060 кэВ приводятся впервые (рис.2, табл.1, список лит. – 5 назв.).

УДК 539.17.02

ПОЛНЫЕ СЕЧЕНИН ОВРАЗОВАНИЯ 17-КВАНТОВ ПРИ ВЗАИМОДЕЙСТВИИ БЫСТРЫХ НЫИТРОНОВ С НДРАМИ МЕДИ И МОЛИБДЕНА / М.В.Савин, И.Н. Парамонова, В.А.Чиркин и др. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.4(39), с.17-23.

Описываются результаты измерений полных (сплошная часть спектра + отдельные линии) сечений образования *Г*-квантов с энергией 1-5 МэВ в реакциях (п,х, *f*) с ядрами меди и молибдена естественного изотопного состава в диапазоне энергий нейтронов 1-10 МэВ. Измерения выполнены на линейном ускорителе электронов с использованием метода времени пролета. Приведены таблицы цифровых данных (табл.2, список лит. - 3 назв.).

УДК 539.172

СЕЧЕНИЛ НЕЭПРИТОГО ВЗАИМОДЕЙСТВИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ С АТОМНЫМИ ЛДРАЛИ / В.М.Бычков, В.В.Карпов, А.Б.Пащенко, В.И.Пляскин. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.4(39), с.24-28.

Выполнен анализ различных систематик параметров оптической модели из условия наилучшего описания экспериментальной информации по взаимодействию заряжен: и частиц с ядрами. Выбраны оптимальные наборы параметров оптического потенциала для широкого диапазона ядер и энергий налетающих частиц. С использованием этих параметров рассчитаны сечения поглощения и коэффициенты проницаемости ядер с $z \ge 20$. Предложены аналитические формулы для аппроксимации рассчитанных сечений поглощения (рис.4, список лит. - 14 назв.).

YHK 539.172.12

РАСЧЕТ СЕЧЕНИЙ АДЕРНЫХ РЕАКЦИЙ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ В ФОТО-ЭМУЛЬСИСННОЙ КАМЕРЕ / А.И.Вдовин, И.Г.Голиков, И.И.Лощаков. - Вопросы атомной науки и техники. Сер. Адерные константы, 1980, вып.4(39), с.29-37.

Анализируется методика измерения сечений реакций на ядрах ¹²С, ¹⁴N,¹⁶O под действием изотопов с энергией 50 МэВ с привлечением сведении из международной библиотеки ядерных данных (рис.9, табл.2, список лит. - 19 назв.).

УДК 539.171.015

УГЛОВЫЕ РАСПРЕЛЕЛЕНИЯ ЯДЕР ОТЛАЧИ ^{1,2}Н ПРИ УПРУГОМ СОУДАРЕНИИ С ИОНАМИ ⁴Не И ¹Н / В.А.Матусевич, В.Н.Сулема, Ю.П.Чорданцев, В.Н.Шаприн. – Вопросн атомной науки и техники. Сер. Ядерные конс – танты, 1980, вып.4(39), с.37-49.

Приведены угловые распределения протонов отдачи при взаимодействии с ионами ⁴Не, дейтронов отдачи при взаимодействии с протонами и ионами ⁴Не (табл.19, список лит. - 12 назв.).

УДК 539.170.012

ЭлЕКТРОН-ПОЗИТРОННЫЕ ФАКТОРЫ СЕЧЕНИЙ ВОЗБУЛДЕНИЯ НДРА ПРИ АННИГИ-Ляцый ПОЗИТРОНОВ НА К-ОБОЛОЧКЕ ТИЕЛИХ АТОМОВ / Д.П.Гречухин, А.А. Солдатов. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.4(59), с.49-53.

В работе рассчитаны электрон-позитронные факторы сечений возбуждения ядра при аннигиляции позитронов на атомной оболочке, а также такторы, определяющие ориентацию возбужденного ядра (табл.9, список лит. - 15 назв.).

I pyó.

Индекс 3645

Вопросы атомной науке и техники. Серия: Ядерные константы, 1980, вып. 4(39), 1-59.

.