ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

серия: Ядерные константы

выпуск **3** (42)

Государственный комитет по использованию атомной энергии СССР

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНФОРМАЦИИ И ТЕХНИКО-ЭКОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ ПО АТОМНОЙ НАУКЕ И ТЕХНИКЕ центр по ядерным данным

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

Серия: Ядерные константы

Выпуск 3 (42)	Научно-технический	сборник	Москва	1981

содержание

Комаров А.В., Лукьянов А.А.	
Метод анализа средних по энергии пропускания резонансных нейтронов	3
Виноградов В.Н., Гай Е.В., Работнов Н.С.	
Случаи аналитического учета аппаратурного разрешения при Паде-аппрок- симации резонансных кривых	9
Довбенко А.Г., Игнатюк А.В., Лунев В.П., Ловчикова Г.Н.	
Вклад прямых процессов в жесткую часть спектров реакции ¹¹³ In(n,n')	I2
Свирин М.И.	
Параметризация экспериментальных спектров нейтронов из (p,n),(n,n')- реакций на ядрах 115In, 181та	19
Бычков В.М., Пляскин В.И., Тошинская Э.Ф.	
Оценка сечений реакций (n,2n), (n,3n) для тяжелых ядер с учетом неравновесных процессов	26
Старостов Б.И., Кудряшов Л.Н.	
Средние сечения взаимодействия нуклидов с міновенными нейтронами деления ²³⁵ U+n _r , ²⁵⁹ Pu+n _r , ²⁵² Cf	39
Большов В.И., Володин К.Е., Нестеров В.Г., Турчин Ю.М.	
Спектры нейтронов вынужденного деления 233 ₀ , 235 ₀ , 239 _{Pu} тепловыми	
нейтронами и спонтанного деления ²²² С1	43
Гудков А.Н., Казанцев В.В., Коваленко В.В., Колдобский А.Б., Колобашкин В.М., Слюсаренко А.И.	
Определение абсолютных квантовых выходов Г -излучения короткоживу- щих продуктов деления г-спектрометрическим методом в циклическом режиме	47
Тудков А.Н., Казанцев В.В., Коваленко В.В., Колдобский А.Б., Колобашкин В.М., Слюсаренко А.И.	
Измерение выходов короткоживущих продуктов деления ²³³ 0 тепловыми нейтронами у -спектрометрическим методом в циклическом режиме	49
Лисичкин Ю.В., Новиков А.Г., Семенов В.А., Тихонова С.И.	
Получение обобщенного спектра частот колебаний атомов замедлителя из экспериментальных дважды дифференциальных сечений рассеяния медленных нейтронов	53
Бичков В.М., Золотарев К.И., Пащенко А.Б., Пляскин В.И.	
Организация машинной библиотеки оцененных сечений пороговых реакций БОСПОР-80 и ее тестировка по интегральным экспериментам	60

5-я ВСЕСОЮЗНАЯ КОНФЕРЕНЦИЯ ПО НЕЙТРОННОЙ ФИЗИКЕ

Blons J., Mazur C., Paya D., Ribrag M. and Weigmann H. Asymmetrically Deformed Third Minimum in the ²³¹ Th and ²³³ Th Fission Barriers	68
Cierjacks S., Schmalz G. and Hinterberger F., Rossen P. Experimental Study of Isospin Mixing in ¹² C+n - ¹³ C(T=3/2) and ¹⁶ O+n - ¹⁷ O(T=3/2) Resonances	69
К.Михай	
Анализ чувствительности к изменению групповых констант при расчетах биологической защити методом выведения — дийфузии	85
Куимджиева Н., Янева Н. Моделирование энергетической структуры сечений делящихся ядер в области неразрешенных резонансов	88
Качмарчик М., Пшитула М.	
Описание нейтронных резонансов в рамках экситонной модели	90
Михайлов М.Н., Трошев Т.М., Трифонов А.И., Христов В.И., Янев Т.Б., Фаломкин И.В., Щербаков Ю.А.	
Стримерный спектрометр для исследования редких реакций с нейтронами	93
Библиографический индекс работ научно-технического сборника "Вопросы атомной науки и техники. Серии: Ядерные константы", 1981 г., вып. 3(42) в Международной системе СИНДА	95

РЕЛАКЦИОННАЯ КОЛЛЕТИЯ

Главный редактор О.Д.КАЗАЧКОВСКИЙ

НЕЙТРОННЫЕ КОНСТАНТЫ И ПАРАМЕТРЫ

Зам. главного редактора Л.Н.УСАЧЕВ

П.П.Благоволин, В.П.Вертебний, В.Я.Головня, Ю.С.Замятнин, Ю.А.Казанский, С.С.Коваленко, В.Е.Колесов, В.А.Коньшин, Б.Д.Кузьминов, В.Н.Манохин, В.И.Матвеев, В.И.Мостовой, Г.В.Мурадян, М.Н.Николаев, Э.Е.Петров, Ю.П.Попов, Г.Я.Труханов, О.А.Сальников, С.И.Сухоручкин, Г.Е.Шаталов, Г.Б.Яньков, Г.Б.Ярына, М.С.Юткевич

> константы и параметры структуры ядра и ядерных реакций

Зам. главного редактора А.Г. ЗЕЛЕНКОВ

Б.Я.Гужовский, П.П.Дмитриев, Б.С.Ишханов, Е.Г.Копанец, D.B.Сергеенков, D.B.Хольнов, Н.П.Чижова, Ф.Е.Чукреев

Ответственный секретарь Д.А.КАРДАШЕВ

УДК 539.170.013 МЕТСЕ АНАЛИЗА СРЕДНИХ ПО ЭНЕРТИИ ПРОПУСКАНИЯ РЕЗОНАНСНЫХ НЕЙТРОНОВ А.В.Комаров, А.А.Лукьянов

ANALYSIS METHOD FOR AVERAGE TRANSMISSION ENERGY OF RESONANCE NEUTRONS. The energy averaged transmission of resonance neutrons through iron samples are investigated as a function of sample thickness. Parameters of our theoretical model for the transmission's analysis are found in a good agreement with corresponding values, evaluated from the average cross-sections.

Данные по пропусканию нейтронов различных энергий через образны исследуемого вещества в зависимости от топщины этих образцов определяют полные сечения взаимодействия и их энергетическую структуру. Принято считать, что, зная сечения на основе экспериментов по пропусканию нейтронов через тонкие образцы, можно непосредственно найти величину пропускания для произвольной толщины. Однако пряме измерения пропусканий нейтронов в зависимости от топщины образцов для относительно широких по энергии нейтронных пучков, как правило, существенно расходятся на больших топщинах с результатами соответствующих расчетов, в которых использованы наилучшие данные для сечений /1,2/. Причина такого расхожденыя заключается, очевидно, в недостаточной точности знания сечений, особено в интерференционных минимумах, к которым величины пропусканий наиболее чувствительны /3/. Если в области разрешенных резонансов необходима лишь соответствующая корректировка параметров, определяющих сечения в интерференционных минилумах (что требует привлечения весьма сложных методов многоуровневой параметризации /3/), то для плохо разрешенных и неразрешенных резонансов возникает принципиальная проблема моделирования энергетической структуры сечений так, чтобы с помощью минимального набора физических параметров воспроизвести пропускания во всем интервале толщин.

В настоящее время для анализа данных по пропусканию резонансных нейтронов на широких энергетических пучках обычно используется аппроксимация наблюдаемой зависимости от толщины суммой экспонент [2,4]. Параметры соответствующего разложения в определенных энергетических группах (так называемые подгрупповые константы) применяются непосредственно в реакторных расчетах [4,5].

В данной работе для анализа средних по группам пропусканий резонансных нейтронов в области неразрешенных уровней используется приближенная многоуровневая модель энергетической зависимости сечения /3/

$$\mathcal{O}(E) = \mathcal{O}_m + \mathcal{O}_0 - \frac{\left[s\cos\varphi - \sin\varphi \operatorname{tg} z(E)\right]^2}{s^2 + \operatorname{tg}^2 z(E)} , \qquad (1)$$

где $z(E) = E/\overline{D}(-\pi/2 \le z \le \pi/2)$, а параметры \mathcal{G}_m , \mathcal{G}_0 , s и φ характеризуют соответственно минимальное и максимальное сечения в группе, силовую функцию и фазу потенциального рассеяния. Такая модель соответствует элучаю одинаковых эквидистантных резонансов, интерферирующих между собой и с потенциальным сечением, т.е. качественно содержит все возможные интерференционные особенности энергетической структуры в интервале рассматриваемой группы.

Среднее по группе пропускание с использованием модельного сечения (I) определяется как

$$T = \langle exp(-n\sigma) \rangle = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} exp\left[-n\sigma_m - n\sigma_0 \frac{(s\cos\varphi - \sin\varphi \, tgz)^2}{s^2 + tg^2 z} \right] dz, \qquad (2)$$

где п характеризует толщину образца. Исследования математичноких свойств функции $T(\sigma_n, n\sigma_0, s, \varphi)$ подробно представлени в работе [6], где, в частности, получена асимптотика при больших значениях толцин ($n\sigma_0$):

$$T \xrightarrow{s} \frac{1}{n \sigma_0 \gg 1} \frac{s}{\sin^2 \varphi + s^2 \cos^2 \varphi} \frac{1}{\sqrt{\pi n \sigma_0}} \exp(-n \sigma_m).$$
(3)

Функции $T(\mathfrak{G}_m, \mathfrak{n}\mathfrak{G}_0, \mathfrak{s}, \varphi)$ предлагаются для параметризации наблюдаемых зависимостей пропускания от толщины образцов для широких по отношению к среднему расстоянию между уровнями \overline{D} энергетических пучков. В отличие от разложения по экспонентам параметри в этом случае имеют конкретный физический смысы и определяются через средние резонансные параметры, что позволяет установить закономерности их изменения при переходе от группы к группе.

<u>Шоменти функции пропускания</u>. Представляя в данной работе методику анализа средних по энергии пропускания резонансних нейтронов, ограничимся одной системой уровней для рассматриваемого элемента (s-нейтронами и четно-четным ядром-мишенью). Тогда наблюдаемые пропускания можно описывать непосретственно функцией т (2). Для анализа важное значение имеют также моменти функции т /6/. Первыи момент - среднее сечение в группе:

$$\langle \sigma \rangle = \sigma_m + \sigma_0 \frac{\sin^2 \varphi + s \cos^2 \varphi}{1+s}$$
; (4)

второй момент - средний квадрат сечения, определяющий дисперсию:

$$\stackrel{\bullet}{\langle} \mathscr{O}^2 \rangle = \langle \mathscr{O} \rangle^2 + \frac{\mathscr{O}_0^2}{2} \frac{S}{(1+S)^2} ;$$

обратные моменты:

$$\left\langle \frac{1}{6} \right\rangle = \frac{1}{\sqrt{6_m(6_m + 6_0)^2}} \frac{\sqrt{6_m(6_m + 6_0)^2(1 + s^2) + s(6_0 + 26_m)}}{6_m + 6_0 \sin^2 \varphi + 2s\sqrt{6_m(6_m + 6_0)^2} + s^2(6_m + 6_0 \cos^2 \varphi)}$$

(площадь под кривой пропускания [7]);

$$\left\langle \frac{1}{6^2} \right\rangle = -\frac{d}{d6_m} \left\langle \frac{1}{6} \right\rangle = -\frac{d}{d6_m} \frac{\Phi'}{\Phi}$$

 $\text{rge} \quad \Phi(\mathcal{G}_m) = \mathcal{G}_m + \mathcal{G}_0 \sin^2 \varphi + 2s \sqrt{\mathcal{G}_m(\mathcal{G}_m + \mathcal{G}_0)} + s^2(\mathcal{G}_m + \mathcal{G}_0 \cos^2 \varphi) \,.$

Значения обратных моментов, определяемые площадью под кривой пропускания, измеренной вплоть до больших толцин [до ослаблений плотности потока 10⁻²-10⁻³ нейтр./(см²·с)], характеризуют так называемый фактор резонансной блокировки [4]

$$f = \frac{1}{\langle \vec{\sigma} \rangle} \left[\left\langle \frac{1}{\vec{\sigma}} \right\rangle / \left\langle \frac{1}{\vec{\sigma}^2} \right\rangle \right]. \tag{5}$$

В описнваемой схеме анализа при параметризации экспериментальных данных по пропусканию предполагается также знать средние сечения, оцениваемые в настоящее время довольно точно. Определяемые параметри позволяют аппроксимировать данные в область больших толщин (больших ослаблений потока), пользуясь асимптотической зависимостью (3). Это дает возможность точнее вычислить интегралы от пропусканий за счет корректного учета асимптотик и соответственно коэффициенты блокировки (5).

Анализ экспериментальных данных. В качестве примера был проведен анализ данных по пропусканию нейтронов через образцы железа (естественная смесь изотопов), полученных в работе [8]. Пропускания для разных толдин образдов были получены в различных энергетических группах, охватывающих практически всю область резонанснут нейтронов в железе (рис.1).

В предположении, что экспериментальние данные можно непосредственно описывать функцией $T(\mathcal{G}_m, n\mathcal{G}_0, s, \varphi)$ (2), проведена подтонка параметров методом наименьших квадратов. Для этого на ЭЕМ БЭСМ-6 с помощью библиотечной подпрограммы FUMILI минимизировались разности

$$\chi^{2} = \sum_{i=1}^{N} \left[T(n_{i}) - T_{\text{skcn}}(n_{i}) \right]^{2} / \Theta_{i}^{2} ,$$

где Θ_i – среднеквадратичная ошибка в каждой точке; N – число экспериментальных точек. В результате находили параметры δ_m , δ_o , s и φ вместе с их погрешностями. Время обработки для одной группы (приблизительно 3 – 10 мин) определяется в основном временем вычисления интегралов (2) методом Гаусса. Для уменьшения времени счета можно воспользоваться аппроксимационными формулами для T, полученными в работе /6/.

Рис.1. Экспериментальные и расчетные значения функции пропускания в группах 4-9

Для удобства сравнения результатов анализа и их практического использования был осуществлен переход от энергетических интервалов, в которых проводили измерения, к стандартным энергетическим группам, введенным в 26-группоную систему констант для расчета реакторов /4/. В этом сдучае проводили усреднение по нескольким интервалам, попадающим в каждую из конкретных групп. Погрешности данных для отдельных групп предполагались такими же, как и для входящих в них энергетических интервалов, в которых проводили измерения, т.е. приблизительно от 2% для малых толщин до 10% для больших /8/. При независимой подгонке всех четырех параметров программа FUMILL дает слишком большие значения погрешностей. Поэтому возникла необходимость введения дополнительной информации – средних сечений, оцененных в группах в системе БНАЕ-78 /4/. Было рассмотрено несколько вариантов расчета.

Программа SUMB производит одновременную подгонку параметров для днух функционалов т (2) в $\langle \sigma \rangle (4)$. Программа SUM4 использует для подгонки функционал т с параметром $\delta_0 = (\langle \sigma \rangle - \delta_m)(1+s)/(\sin^2 \varphi + s \cos^2 \varphi)$. В последнем варианте определяются три параметра δ_m , s и φ . Программа SUM2 просчитивает пропускания на малых толщинах ($T \approx 1-n \langle \sigma \rangle$), что позволяет добавить ряд точек в начале экспериментальной кривой и улучнить точность определения параметров в предыдущих вариантах. Все это необходимо для контроля точности получаемых результатов и оценок погрешностей метода. Наклучшей оказалась программа SUM4.

Помяню <б> использовалась также априорная информация о б₀. Для железа в широком интервале энергий б₀ ≈ 4 π k⁻². Соответствующее значение задавалось как фиксированный параметр в программе FUNILI или как первое приолижение, когда этот параметр не фиксировался. Расчеты факторов олокировки с фиксированными б₀ в группах дают наиболее близкие к данным БНАБ-78 значения.

Результати анализа. Для рассмотренного примера – ядра железа – сечение в резонансной области определяется в основном вкладом в-волни, для которой параметри \mathcal{O}_0 , s и φ известны с какой-то точностью заранее. Несколько хуже представления о параметре \mathcal{O}_m – некотором эффективном для определенной группы минимальном сечения. Однако начиная с энертии в несколько сотен килоэлектронвольт становится заметным вклад р-волны. Включение р-волны приводит к появлению еще двух независимых систем резонансов с моментами 1/2 и 3/2 и отрицательной четностью. Среднее по резонансам пропускание в этом случае описнывается как произведение $T = T_8 T_{p1/2} T_{p3/2}$, где каждое T_1 параметризуется своим набором параметров (2). Очевидно, без задания дополнительной информации об этих параметрах соответствующий анализ данных по пропусканию не даст результата. Использун в настоящем случае лишь одну функцию T(2) даже в области, где существенна *p*-волна, получим набор параметров, именщих несколько более формальный смысл, чем в случае *s*-волны. Анализируемые данные по пропусканию были отнесены к семи энергетическим группам (4 – 10) системы БНАБ-78 /4/. Наиболее плохими для анализа оказались данные по группе 10, куда попадает широкий резонанс при 28 кэВ. В этой группе имеется лишь один резонанс и то частично, что не соответствует рассматриваемому подходу, основанному на усреднении по нескольким уровням. В группах 7-9, фиксировалось значение \mathcal{O}_0 , так как здесь преобладала *s*-волна. Ошибки в определении параметров \mathcal{O}_m , s и φ невелики. Погрешности параметров при одновременном поиске всех четырех параметров оказываится в 3-5 раз больше. Такая подгонка проводилась в группах 4-6, куда включалась *p*-волна.

Результати анализа представлени в табл. I и на рис.2-5. На рис.2 получению значения параметра \mathcal{G}_{m} в различных пруппах приведени иместе с опибками в соответствии с программой FUMILI. Значения \mathcal{G}_{m} отложени в занисимости от $\mathbb{E}=(\mathbb{E}_{i}+\mathbb{E}_{i+1})/2$, где \mathbb{E}_{i} и \mathbb{E}_{i+1} - верхняя и нижняя граници интервала группи. Параметр \mathcal{G}_{m} наиболее устойчив к использованию различных схем анализа экспериментальных данных, что свидетельствует о его слабой корреляции с остальными параметрами. Полученные значения качественно согласуются с физическими представлениями о возможных значениях интерференционных минимумов в группах и с данными по детальной энергетической зависимости сечения железа.

_							
Tanguamnu	divertiment and	DALEGROWHICH	ππσ	TOTOOO	ъ	OT TO TL DLIV	TINTOTITO
TCDOMCIDE	wy mount	Thomacoverna		were or	₽		TUATING

Таблица I

Номер группы	ć _m , ♂ [≭]	φ	S	б _о , с
4	I,043 <u>+</u> 0,060	0,567 <u>+</u> 0,097	0,069 <u>+</u> 0,027	6,608 <u>+</u> I,440
5	0,847 <u>+</u> 0,075	0,643 <u>+</u> 0,II0	0,146 <u>+</u> 0,069	4,767 <u>+</u> I,I80
6	0,67I <u>+</u> 0,059	0,609 <u>+</u> 0,090	0,226 <u>+</u> 0,093	6,230 <u>+</u> I,58I
7	0,426 <u>+</u> 0,033	0,524 <u>+</u> 0,0I0	0,163 <u>+</u> 0,015	7,989
8	0,445 <u>+</u> 0,027	0,424 <u>+</u> 0,007	0,II3 <u>+</u> 0,005	15,93
9	0,490 <u>+</u> 0,020	0,323 <u>+</u> 0,007	0,052 <u>+</u> 0,002	32,69
5 6 7 8 9	0,847±0,075 0,671±0,059 0,426±0,033 0,445±0,027 0,490±0,020	0,643±0,II0 0,609±0,090 0,524±0,010 0,424±0,007 0,323±0,007	0,146±0,069 0,226±0,093 0,163±0,015 0,113±0,005 0,052±0,002	4,767 <u>+</u> I,1 6,230 <u>+</u> I,5 7,989 15,93 32,69

H Eaph =
$$10^{-28}$$
 m².

Рис.2. Значения параметра б_т в различных энергетических группах Рис.3. Экспериментальные и расчетные значения сечения б_о в различных энергетических группах

Рис.4. Экспериментальные и расчетные значения параметра φ в различных энергетических группах: + - свободный параметр \mathfrak{S}_0 ; Δ - фиксированный параметр \mathfrak{S}_0 Рис.5. Экспериментальные и расчетные значения параметра s в различных энергетических группах: + - свободный параметр \mathfrak{S}_0 ; Δ - фиксированный параметр \mathfrak{S}_0

Данные расчета максимального сечения в группе \mathfrak{G}_0 представлены на рис.3. Кривая соответстнует выражению $\mathfrak{G}_0 = 4\pi k^{-2} \cdot 0.92$ (учтено процентное содержание основного изотопа), а крестиками отмечены результаты поиска со всеми свободными шараметрами и получающиеся в расчете погрешности $\Delta \mathfrak{G}_0$. Следует отметить, что в нижних группах соответствие хорошее. В верхних группах различие, очевидно, связано с вкладом р-волны. В группе 7 расчет с параметром \mathfrak{G}_0 , соответствующим кривой, приводит к значению среднего сечения 36 в группе, что несколько отличается от рекомендации ЕНАБ-78 (2,9 6) /47. В остальных группах значения средних сечений совпадают с рекомендованными.

На рис.4 и 5 приведены параметры подтонки φ и в в группах. Кривыми обозначены соответстнующие теоретическим представлениям зависимости $\varphi = 0.034\sqrt{E}$ и в = $0.00025\sqrt{E}$, что эквивалентно выбору ридиуса ядра в $\approx 5 \cdot 10^{-13}$ см и приведенной силовой функции s^o = $2e/3t\sqrt{E} = 1.59 \cdot 10^{-4}$. Эти результаты весьма близки к обычно используемым в расчетах средних сечений (97. Из-за существенной корреляции параметров результаты подтонки оказались чувствительными к выбору того или иного типа вычисляющей программи. Для фиксированных значений \mathcal{O}_0 полученные результаты весьма близки к теоретическим оценкам. Результаты, полученные в других схемах, также приведены на рис.4 и 5. Несмотря на фликтуации в размерах параметров, значения вычисляемых пропусканий в группах, а так же средние моменты и факторы резонансной блокировки оказались близкими для разных наборов параметров φ и в

Рекоменнуемые значения параметров в различных группах (см.табл.I) наилучшим образом описнвают экспериментальные данные /8/, дают возможность рассчитать в приведенной схеме пропускания на любых толщинах и соответственно найти основные моменты и факторы резонансной блокировки в группах. Для проверки достоверности полученных параметров сравнивали результаты расчета при малых толщинах с экспериментальными: $T_{gkcn}(n) \approx i - n \langle \delta \rangle + n^2 \langle \delta^2 \rangle / 2$, а также асимптотическое поведение при больших толщинах (3). Оказалось, что даже при толщинах 50 см функции пропускания не описываются точно асимптотической зависимостью (3), котя и приближаются к ней.

<u>Сравнение с методом подгрупп</u>. Как уже отмечалось /6/, пропускание при больших толщинах не выражается суммой экспонент и погрешность описания в пределе может быть как угодно большой. В то же время представление экспонентами может быть весьма точным в конечном интервале толщин. Было проведено сравнение обработки экспериментальных данных по пропусканию в описываемой методике с методом подгрупп, в котором пропускание дается формулой $T = \sum a_i exp(-nd_i)$, где $\sum a_i = i$, a_i , $d_i - i$ подгрупповые константы /5/. Погрешносты параметров по программе FUMILL оказались существенно меньшими, чем погрешности подгрупповых констант. Кроме того, подгонка параметров метода подгрупп оказалась довольно неустойчивой: результат существенно зависел от начальных условий, в то время как в приведенной параметризации при дюбом внооре начального приближения параметры в программе FUMILL получали однозначно. В табл.2 приведени результати расчета моментов функции пропускания для различных групп. Как правило, основные расхождения с методом подгрупп наблидаются для $\langle \delta^2 \rangle$. Остальные моменты оказываются близкими по величине. Соответственно невелико и отличие в факторах блокировки (5): относительная погрешность не превышает 10%, т.е. одного порядка с точностью соответствующей обработки данных по пропусканию /8/.

Таблица 2

Номер группы	<6>, 0	<5²>, 5²	\$1/6>, 0 ^{-I}	<1 6 ² >, 6 ⁻²	ſ
4	3,I2(3,I2) [#]	II,O(9,93)	0,362(0,36)	0,151(0,15)	0,767(0,76)
5	2,73(2,73)	8,7(8,8)	0,443(0,45)	0,246(0,26)	0,661(0,62)
6	3,10(3,10)	12,5(19,3)	0,47I(0,50)	0,454(0,39)	0,455(0,4I)
7	2,98(2,91)	12,7(14,9)	0,558(0,55)	0,552(0,55)	0,340(0,35)
8	4,20(4,20)	29,I(24,6)	0,438(0,42)	0,379(0,38)	0,276(0,26)
9	5,05(5,05)	50,2(45,I)	0,336(0,3I)	0,212(0,18)	0,3I4(0,35)

Моменты и факторы блокировки в отдельных группах

* В скобках приведены результаты расчета методом подгрупп.

Из изложенного можно сделать вывод, что представленная методика анализа средних по группам пропусканий резонансных нейтронов в зависимости от толщины образцов позволяет находить средние по группам параметры резонансов \mathcal{G}_0 , s, φ и \mathcal{G}_m , имеющие очевидный физический смысл и определяемые методами теории средних сечений /37. Наиболее точно находится параметр \mathcal{G}_m , характеризумций минимальное сечение в группе. Таким образом, появляется возможность исследования интерференционных минимумов сечений в той области энергий, где они непосредственно в эксперименте не разрешены. Данные по пропусканию в зависимости от толщины могут служить также добавочной информацией для уточнения средних сечений и силовых функций, но особенно интересым данные по фазам потенциального рассеяния φ , которые из экспериментов на тонких образцах с широким разрешением практически не определяются.

Рассмотренная методика позволяет воспроизводить данные по пропусканиям на произвольных толщинах, а также моменты функции пропускания, пользуясь липь средними резонансными параметрами. Однако в этом случае необходим объем времени на ЭЕМ, больший, чем в методе подгрупп. Экономия мскет быть достигнута при использовании предложенных ранее анпроксимаций пропускания аналитическими функциями [6].

Список литературы

- I. Филиппов В.В. Оценка данных по полному сечению железа для быстрых нейтронов. Ядерные константы, 1972, вып.8, ч.І, с.39.
- 2. Николаев М.Н., Филиппов В.В. Измерения параметров резонансной структуры полных сечений некоторых элементов в области 0,3-2,7 МэВ. - Атомн. энергия, 1963, т.15, с.493.
- 3. Лукьянов А.А. Структура нейтронных сечений. М.: Атомиздат, 1978.
- Николаев М.Н., Игнатов А.А., Исаев Н.В., Хохлов В.Ф. Метод подгрупп для учета резонансиой структуры сечений в нейтронных расчетах. - Атомн. энергия, 1970, т.29, с.11; 1971, т.30, с. 416.
- 5. Абагин Л.П., Базазянц Н.О., Николаев М.Н., Цибуля А.М. Новая система групповых констант для расчета быстрых реакторов. Там же, 1980, т.48, с.117.
- Комаров А.В., Лукьянов А.А. Асимитотические свойства интеграла пропускания в области неразрешенных резонансов. - Вопросн атомной науки и техники. Сер. Ядерные константы, 1980, вып.3(38). с.10.
- 7. Комаров А.В., Лукьянов А.А. Вопросы теоретического анализа данных по пропусканию нейтронов в области неразрешенных резонансов. - Препринт ФЭИ-894. Обнинск, 1979.
- 8. Филишов В.В. Резонанская структура полного нейтронного сечения железа. В кн.: Радиационная безопасность и защита атомных станций. Вып.З. М.: Атомиздат, 1977, с.84.

9. Бичков В.М., Манохин В.Н., Возяков В.В. Оценка сечений конструкционных материалов. Полный файл нейтронных данных для естественного железа. Обнинск: ФЭИ, 1978.

Статья поступила в редакцию 2 марта 1981 г.

a de la

УДК 539.170:53.08

СЛУЧАИ АНАЛИТИЧЕСКОГО УЧЕТА АППАГАТУРНОГО РАЗРЕЛЕНИЯ ПРИ ПАДЕ-АППРОКСИМАЦИИ РЕЗОНАНСНЫХ КРИВЫХ

В.Н.Виноградов, Е.В.Гай, Н.С.Работнов

ANALITICALLY SOLVABLE EXAMPLES OF RESOLUTION FUNCTION'S ACCOUNTING WITH THE PADE-APPROXIMATION OF RESONANCE CURVE. Fredholm's integral equation of the first type with the difference kernel and a rational function without real poles in the right-hand side approximating a resonance curve is considered. The equation is solved analitically by Fourier transforms for three types of the resolution function: sharp exponential, smooth exponential, Lorentzian. The solution in all three cases is also a rational function.

Использование приближения Паде [1,2] для аппроксимации экспериментальных зависимостей рациональными функциями [3] является весьма удобным средством обработки данных в ядерной и нейтронной физике. Приближение обладает важным преимуществом: в отличие от других способов "сглахивания" (полиномиального, сплайнового и т.д.) Паде-аппроксимация с нарастанием числа опорных точек и увеличением точности обеспечивает в пределе аналитическое продолжение аппроксимируемой функции. Это особенно существенно в тех случаях, когда результат аппроксимации используется затем в качестве объекта математических операций, на результат (а иногда и на практическую осуществимость) которых сильно влияют аналитические свойства объекта. Это относится, например, к решению интегрального уравнения, в котором учитивается влияние аппаратурного разрешения и в правой части которого подставляется результат аппроксимации. Указанная задача относится к классу некорректных [4], в которых малость вариации исходных данных не гарантирует малости изменения решения. При использовании численных методов возникают принципиальные трудности, поэтому каждый случай аналитического решения задачи такого типа представляет интерес.

Ниже рассмотрены три примера разностных ядер, когда соответствующее интегральное уравнение Фредгольма первого рода, правой частью которого является рациональная функция, не имеющая действительных полюсов, аналитически решается с помощью преобразования Фурье. При резонансном анализе сечений ядерных реакций комплексные полюса аппроксимырующей рациональной функции описывают полюса 3-матрицы, чем и определяется практическое значение этого подхода. Один из рассматриваемых случаев (обобщенная линия Лоренца) известен (см., например, работу [5]).

Рассмотрим интегральное уравнение

$$\int_{-\infty}^{\infty} \varphi(y) K(x-y) dy = f(x), \qquad (1)$$

иде правая часть - рациональная функция, нолюсное разложение которой не содержит слагаемых, соответствующих действительным полюсам, т.е.

$$f(x) = \frac{P_N(x)}{Q_M(x)} = \sum_{k=1}^{\ell} \frac{\alpha_k (x - \varepsilon_k) + \beta_k}{\gamma_k^2 + (x - \varepsilon_k)^2} , \qquad (2)$$

где α_k, β_k, γ_k и ε_k – постоянные. Отсутствию целой (полиномиальной) части соответствует ограничение N<M, Ядро К назовем формой линии или просто линией. Хорошо известно формальное решение уравнения (I) путем разложения функций φ , К и f в интеграл Фурье. Соответствующие Фурье-образи обозначим $\Phi(s)$, K(s) и F(s). Тогда

$$\Phi(s) = F(s)/K(s) \tag{3}$$

И

$$\varphi(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F(s)}{K(s)} \exp(isy) ds .$$
(4)

Используя явный вид (2) и выполняя прямое Фурье-преобразование, получим

$$F(s) = \pi \sum_{k=1}^{\ell} \exp\left(-i\varepsilon_k s - \gamma_k |s|\right) \left[\frac{\beta_k}{\gamma_k} - i\alpha_k \operatorname{sign}(s)\right].$$
(5)

Приведем три случая, когда линии K(z) таковы, что при подстановке их Фурье-образов в правую часть выражения (4) с учетом формулы (5) интеграл сходится и вычисляется в явном виде (рис.I):

$$K_{i}(z) = \frac{\ln 2}{2\Gamma_{i}} \exp\left(\frac{\ln 2|z|}{\Gamma_{i}}\right); \qquad K_{i}(s) = \frac{\left(\ln 2/\Gamma_{i}\right)^{2}}{s^{2} + \left(\ln 2/\Gamma_{i}\right)^{2}}$$
(6)

(острая экспоненциальная линия);

$$K_{2}(z) = \frac{azch2}{\pi\Gamma_{2}} \frac{1}{ch\left(\frac{azch2}{\Gamma_{2}}z\right)}; \quad K_{2}(s) = \frac{1}{ch\left(\frac{s\pi\Gamma_{2}}{2azch2}\right)}$$
(7)

(гладкая экспоненциальная линия);

$$K_{3}(z) = \frac{\Gamma_{3}}{\Re} \frac{Az+i}{z^{2}+\Gamma_{3}^{2}}; \qquad K_{3}(s) = \exp(-\Gamma_{3}|s|) \left[i - iA\Gamma_{3} \operatorname{sign}(s)\right]$$
(8)

(обобщенная линия Лоренца).

Яцра (6) – (8) нормированы условием $\int_{-\infty}^{\infty} K_i(z) dz = i$; кроме того, по определению полуширины $\Gamma_i: K_i(\Gamma_i) = \frac{1}{2}K_i(0), \quad K_2(\Gamma_2) = \frac{1}{2}K_2(0), \quad \text{а } \Gamma_3 -$ полуширина Лоренца, т.е. $K_3(\Gamma_3) = \frac{1}{2}K_3(0)$ лишь при A = 0. Запишем результат восстановления одного резонансного слагаемого в правой части формулы (2), т.е. результат интегрирования, описываемый формулой (4), опуская индекс k в обозначениях резонансных параметров:

$$\varphi_{i}(y) = \frac{\alpha(y-\varepsilon)+\beta}{p^{2}+(y-\varepsilon)^{2}} + 2\left(\frac{\Gamma_{i}}{\ell n 2}\right)^{2} \frac{p^{2}\left[3\alpha(y-\varepsilon)+\beta\right]-(y-\varepsilon)^{2}\left[\alpha(y-\varepsilon)+3\beta\right]}{\left[(y-\varepsilon)^{2}+p^{2}\right]^{3}}; \qquad (9)$$

$$\varphi_{2}(y) = \frac{1}{2} \left[\frac{\alpha(y-\varepsilon) + \beta\left(1 - \frac{\pi\Gamma_{2}}{r^{2}\operatorname{azch}2}\right)}{(y-\varepsilon)^{2} + \left(r - \frac{\pi\Gamma_{2}}{r^{2}\operatorname{azch}2}\right)^{2}} + \frac{\alpha(y-\varepsilon) + \beta\left(1 + \frac{\pi\Gamma_{2}}{r^{2}\operatorname{azch}2}\right)}{(y-\varepsilon)^{2} + \left(r + \frac{\pi\Gamma_{2}}{r^{2}\operatorname{azch}2}\right)} \right];$$

$$\varphi_{3}(y) = \frac{1}{r(1+A^{2}\Gamma_{3}^{2})} \frac{(\alpha r - A_{\beta}\Gamma_{3})(y-\varepsilon) + (r-\Gamma)(\beta + \alpha A_{\beta}\Gamma_{3})}{(y-\varepsilon)^{2} + (r-\Gamma_{3})^{2}} \cdot$$

Во втором и третьем случаях для сходимости интеграла (4) необходимо, чтоби полуширина наблидаемого резонанса удовлетворяла неравенствам $p > \pi \Gamma_2/2arch2$, $p > \Gamma_3$. В первом случае подобного ограничения нет, интеграл (4) сходится всегда, но ограничение на Γ_4 можно получить при условик, что восстанавливаемая функция $\varphi(y)$ неотрицательна, если неотрицательна исходная функция. В случае одного резонанса функция f(x) всюду положительна лишь при $\alpha = 0$. Выдвитая для этого случая условие $\varphi_4(y) > 0$ при любом y и используя выражение (9), получаем

$$r > \frac{3}{\sqrt{8} \ln 2} \Gamma_1$$

На рис.2 приведен численный пример – результати восстановления формы резонанса, интерферирумщего с фоном,

$$f(x) = i + \frac{0.5x + i}{i + x^2} , \qquad (10)$$

когда полуширина каждой из линий $\Gamma_i = 0.5$. Рис. I и 2 показывают, что наименьшая эффективная ширина наблюдается у гладкой экспоненциальной линии [см.формулу (7)].

Рис. I. Форми аппаратурных линий $K_{i}(x)$, соответствущие формулам: -i = -(6); = - - -(7); = - -(8)

Рис.2. Результати восстановления резонанса (IO) для линий (6)-(8). [сплошная жирная кривая соответствует наслодаемой функции f(x)]: --- -(6); ---- -(7); _____ (8)

Список литературы

- I. Basdevant I.L. The Padé-approximations and its physical applications. Fortschr. Physik, 1972, Bd 20, S. 283-348.
- 2. Baker G.A., jr. Essentials of Padé-approximants. N.-Y.: Acad. Press, 1975.
- 3. Виноградов В.Н., Гай Е.В., Работнов Н.С. Применение приближения Паде второго рода для резонансного анализа нейтронных сечений. - Препринт ФЭИ-484. Обнинск, 1974.
- 4. Тихонов А.Н., Арсенин В.Я. Методи решения некорректных задач. М.: Наука, 1974.
- 5. Лукьянов А.А. Структура нейтронных сечений. М.: Атомиздат, 1978, с.60-62.

Статья поступила в редакцию 2 марта 1981 г.

11

YAK 539.171.017

нклад прямых процессов в жесткую часть спектров реакции ¹¹³In(n,n') А.Г.Довбенко, А.В.Игнаток, В.П.Лунев, Г.Н.Ловчикова

> DIRECT PROCESS CONTRIBUTION TO ¹¹³In(n,n')-REACTION SPECTRA HARD COMPONENT. The direct process contribution to ¹¹³In(n,n')spectrum is analysed in terms of the coupled-channels methods. The observed positive difference between neutron spectra from (n,n')- and (p,n)-reactions agrees with results of calculations, witch take into account the spectroscopic information on the lowest 2' and 3' collective levels of the neighbouring eveneven nuclei.

Несмотря на значительное число работ, посвященных исследованию прямых ядерных реакций, однозначную интерпретацию наблюдаемых дифференциальных сечений для средних и тяжелых ядер удается получить лишь для сравнительно небольшого числа состояний, находящихся при энертиях возбуждения ниже I-2 M3B /I/. Для более нысоких энергий экспоненциально растет число возбуждаемых уровней и столь же бистро усложняется их структура. Это создает значительные трудности как для экспериментального изучения механизма возбуждения уровней, так и для построения полного теоретического описания их природы. В такой ситуации естественным является переход к интегральному анализу сечений, в рамках которого рассматриваются уже не отдельные ядерные переходи, а их сумма по всем состояниям, возбуждаемым в заданном диацазоне энергий. Тем не менее вопросы о механизме реакции и природе доминирующих переходов остаются актуальными и при интегральном представлении сечений.

Особий интерес эти вопросы приобрели в связи с интенсивно развивающейся в последнее десятилетие моделью предравновесного распада ядра /2,3/. В настоящее нремя в рамках этой модели доститнуто сравнительно хорошее феноменологическое описание высокоэнергетической части наблюдаемых спектров и соответствующих участков интегральных функций возбуждения для широкого круга ядерных реакций. Однако при обсуждении полученных результатов остается неясным вопрос, в какой мере достигнутое описание свидетельствует о новом механизме ядерных реакций, отличающемся по свойствам от традиционного статистического механизма распада составного ядра и от хорошо изученного механизма прямых процессов. Чтобы ответить на этот вопрос, необходимо определить характерные признаки каждого из механизмов и проанализировать их проявление в рассматриваемых реакциях.

В экспериментах с высоким разрешением, когда хоропо разделены переходы на отдельные уровни остаточного ядра, прямой механизм реакции, как правило, достаточно надежно идентифицируется по характерной дифракционной структуре углового распределения вылетанцих частиц. При ухудшении разрешения, т.е. при переходе от линейчатых спектров испускаемых частиц к непрерывным, дифракционная структура сечений обично теряется и интерпретация механизма реакции становится более трудной. Качественные выводы о присутствии в данной части спектра прямых переходов можно сделать на основе анализа общей асимметрии углового распределения продуктов реакции. Однако для строгого количественного определения вызада различных механизмов реакции этого признака чаще всего оказывается недостаточно, особенно при невысоких энергиях налетанцих частиц, когда асимметрия угловых распределений сравнительно невелика.

В работах [4,5] показано, что для улучшения интегрального вклада прямых процессов в области средних энергий благоприятные возможности дает сравнительный анализ спектров (n,n')- и (n,p)реакций. Если ядра-мышени и энергии налетающих частиц в этих реакциях подобраны таким образом, что испарительный компонент спектров соответствует одному и тому же остаточному ядру, то проявляющиеся различия спектров естественно связывать с прямыми реакциями. В работах [4,5] измерены дважды диференциальные сечения неупругорассеянных нейтронов реакции ¹¹³In(n,a') при начальных энергиях нейтронов 5,34-8,53 МэВ и экнивалентные нейтронов реакции ¹¹³In(n,a') при начальных энергиях нейтронов 5,34-8,53 МэВ и экнивалентные нейтронные спектры реакции ¹¹³Cd(p,n). Набладаемне систематические превыления жесткого компонента спектров неупругорассеянных нейтронов над соответстнующими спектрами (p,n)-реакции позволяют определять как интегральную величину сечения прямого неупругого рассеяния нейтронов, так и основные черти спектрального распределения интенсивности прямых переходов. Асимиетрия углового распределения нейтронов, связанных с выделенным компонентом спектров, может служить дополнительным признаком для идентификации механизма перреходов. В данной работе авторы предполагали проенализировать, в какой мере полученная таким способом экспериментальная оценка интегрального вклада прямых процессов согласуется с теоретическими представлениями об интенсивности прямых переходов. Традиционным и широко распространенным методом описания прямых реакций является берновское приближение исканенных волн /1/. Для неупругого расселяния соответстнущее соотношение мажно предотавить в нише

$$\frac{d\delta_{i_f}^{\lambda}}{d\Omega} = \sum_{\mu} \left| \sum_{j_i j_f} C_{j_i j_f}^{\lambda,\mu}(\Theta) \int_{0}^{\infty} u_{j_i}^*(z) F_{\lambda}(z) u_{j_f}(z) z^2 dz \right|^2,$$

где $C_{jij_i}^{\lambda,\mu}(\theta)$ - кинематические коэффициенти, определяемые законами сложения угловых моментов; $u_{ji}(z)$ в $u_{i}(z)$ - радиальные волновые функции оптической модели для падающего и рассеянного нектронов; $F_{\lambda}^{i}(z)$ - форм-фактор возбуждаемого уровня ядра-мишени. При неупругом рассеянии в ядре возбуждаются главным образом когерентные коллективные степени свободы, и при феноменологическом подходе, основанном на соотношениях обобщенной модели ядра /6/, форм-фактор обычно записывается в виде

$$F_{\lambda}(z) = \frac{\beta_{\lambda} R_{0}}{(2\lambda + 1)^{4/2}} \frac{dV(z)}{dz},$$

где V(z) – потенциал оптической модели; R₀ = z₀A^{1/3} – радиус ядра; β_λ – параметр динамической деформации для соответствующих мультипольных возбуждений.

Для четно-четных ядер-миленей при прямом неупругом рассеянии наиболее интенсивно возбуждаштся первые 2⁺- и 3⁻-уровни. Именинеся для ядер в области с 90≤А≤I30 экспериментальные данные о энергии этих уровней и величине соответствущих нараметров деформации β_{2^+} и β_{3^-} , полученные в реакциях с протонами или нейтронами, показаны на рис.I /7/. Для параметров деформации определены также величины, полученные из анализа приведенной вероятности соответствущих γ -переходов В(E_{λ}) /8/. Совокупность представленных на рис.I данных демонстрирует основные закономерности изменения характеристик когерентных мультипольных возбуждений ядер в зависимости от нуклонного состава. Различия параметров динамической деформации при возбуждении ядер протонами, нейтронами или γ -квантами определяют вклад изоскалярной и изовекторной ветвей когерентных колебаний в рассматриваемые возбуждения /9/. Наиболее сильно такие различия должны проявляться в ядрах с заполненной протонной или нейтронной оболочкой. При удалении от магических чисел различия в параметрах динамической деформации для нижайших коллективных уровней должны убывать, и их, по-видимому, нельзя выделить на фоне имениихся погрешностей экспериментальных данных.

Рис.І. Параметри динамической деформации $\beta_{2\frac{1}{4}}$ и $\beta_{3\frac{1}{4}}$, полученные из вероятности *п*-переходов (х), из (л, л')-реакции (о), (р,р')-реакции (•), и положение $2\frac{1}{4}$ и $3\frac{1}{4}$ -уровней четночетных ядер в области с $90 \le A \le 130$

В нечетном ядре когерентные мультипольные возбуждения могут оказаться фрагментированными по многим уровням. Простейшая схема фрагментации соответствует модели слабой связи коллективно-го возбуждения $\lambda^{\mathfrak{A}}$ с нечетной частицей $j^{\mathfrak{A}^{1}}$. В этом случае сечение прямого возбуждения любого из уровней мультиплета ($j^{\mathfrak{A}^{1}} \otimes \lambda^{\mathfrak{A}}$) будет определяться соотношением

$$\frac{d\sigma^{\lambda}(I_{i} - I_{f})}{d\Omega} = \frac{2I_{f} + i}{(2I_{i} + i)(2\lambda + i)} \frac{d\sigma^{\lambda}(0 - \lambda)}{d\Omega}$$

и при суммировании по всем членам мультиплета должна получиться в первом приближении та же величина сечения прямой реакции, что и при возбуждении коллективного уровня λ^{\Re} в четно-четном ядре /10/. Имекщиеся экспериментальные данные по рассеянию протонов на низколежащих уровнях нечетных ядер позволяют, с одной стороны, продемонстрировать справедливость основных приближений модели слабой связи, с другой, - проследить отклонения от указанного выле правила сумм, обусловленные энергетическим сдвигом уровней мультиплета в нечетном ядре /11/.

Спектр низколежацих уровней ядра ¹¹³In приведен на рис.2 вместе со спектрами уровней близлежащих четно-четных ядер ¹¹²Cd и ¹¹⁴Sn /I2/. Хотя идентификация спектроскопических характеристик многих уровней ¹¹³In еще далеко не однозначна, тем не менее область концентрации компонентов мультиплета ($2^+ \otimes 9/2^+$) фиксируется достаточно надеяно. Положение центра тяжести мультиплета соответствует энергия I,3-I,4 МэВ, которая оказывается близкой к энергии коллективного 2^+ уровня четно-четного ядра ¹¹⁴Sn. Представленная на рис.I систематика энергий и параметров деформации β_2 -квадрупольных возбуждений ядер позволяет предположить, что при совпадения энергий коллективных переходов можно ожидать также приближенного совпадения и соответствуицих параметров деформации. Аналогичные аргументы, по-видимому, справедливы и для октупольных возбуждений. Таким образом, в качестве эмпирической оценки параметров мультипольной деформации для ядра 13 In оледовало бы использовать значения $\beta_{2+} \approx 0, I2$ и $\beta_{3-} \approx 0, I7$, а для центра тяжести октупольных возбуждений при неупругом рассеянии нейтронов со значительной интенсивностью могут возбуравться двухфононных квадрупольных возбуждений в ядре 113 In принимается энергия эквивалентных двухфононных уровней 0⁺, 2⁺, 4⁺ в ядре 114 Sn.

На результати расчетов интенсивности прямых переходов наряду с рассмотренными выше спектроскопическими характеристиками мультипольных возбуждений существенное влияние оказывают параметри используемого оптического потенциала. На основе анализа нейтронных силовых функций, а также полных нейтронных сечений до энергий 8 МэВ для обсуждаемой области ядер в работе /13/ были рекомендованы параметры оптического потенциала:

$$\nabla_{0} = 50,8 - 17 \frac{N-Z}{A} - 0,22E_{n}; \quad r_{V} = 1,24; \quad a_{V} = 0,62;$$

$$W_{D} = 4,8 - 7 \frac{N-Z}{A} + 0,45E_{n}; \quad r_{W} = 1,26; \quad a_{W} = 0,58;$$

$$V_{e0} = 6,2; \quad r_{e0} = 1,12; \quad a_{e0} = 0,47,$$
(1)

где глубины объемного V_o, поверхностного W_D и спин-орбитального V_{so} компонентов потенциала выражены в мегаэлектронвольтах, а соответствующие геометрические шараметры - в единицах фермих Несколько иной набор параметров был получен в работе /I4/ на основе анализа дифференциальных сечений упругого рассеяния нейтронов с энергией до II МэВ на изотопах олова:

$$\nabla_{0} = 54, 2 - 22 \frac{N-Z}{A} - 0,32E_{n}; r_{V} = 1,20; a_{V} = 0,70;$$

$$W_{D} = 3, 0 - 14 \frac{N-Z}{A} + 0,51E_{n}; r_{W} = 1,25; a_{W} = 0,65;$$

$$\nabla_{s0} = 6,2; r_{s0} = 1,01; a_{s0} = 0,76.$$
(2)

Наиболее существенно в наборах параметров (I) и (2) различается глубина мнимой части оптического потенциала W_D. Это различие весьма заметно отражается на расчетах сечений неупругого рассеяния нейтронов.

14

х Современное обозначение – фемтометр; соотношение с единицей СИ: І фм=10⁻¹⁵м.

Для налетаниях нейтронов с энергией 5,3 МэВ результати расчетов интегральных сечений наиболее интенсивных прямых переходов представлены в таблице. Для вычисления сечений возбуждения уровней деухфононного мультиплета (2*8 2*8 9/2*) онли использованы соотношения метода связанных каналов и принята простейшая гармоническая схема двухфононных возбуждений /15/. Для однофононных переходов расчети в методе связанных каналов и в сорновском прислижении искаженных волн дают врактически совпадающие величины интегральных сечений, хотя диракционная структура диреренциальных сечений рассеяния при этом может несколько различаться. При имеющихся погрешностях в исходных параметрах расчетов нет смысла обсуждать мелкие детали поведения дифференциальных сечений. Чтоби продемонстрировать зависимость полученных сечений от выбора параметров деформации, для мультиплетов квадрупольных переходов в таблице приведены результаты вычислений, соответствумщих двум значениям параметра β_2 (первое из этих значений соответствует экспериментальной величине β_2 в ядре ¹¹⁴Sa, а второе – в близлежащем ядре ¹¹²Cd). Аналогичные изменения сечений при вариациях параметров β_{λ} наблидаются и для других переходов.Отметим, что приведенные в таблице результать расчетов сечений несколько отличаются от аналогичных результатов предварительного анализа сечений прямых переходов в данном ядре, приведенных в работе /16/. Эти различия могут служить дополнительной демонстрацией зависимости результатов расчета от параметров оптической модели и используемых характеристик возбуждаемых уровней.

Мультиплет возбуждаемых уровней	Средняя энергия, МэВ	Параметр ди- намической деформации	Расчеты с потенци- алом по формулам		Интеграл по наблю- даемому спектру
		J* X	(I) !	(2)	
	Эн	ергия нейтроно	в 5,3 М	эB	
(2 +& 9/2 +)	I,3 I,3	0,I2 0,I8	6I I42	96 221	}II4 <u>+</u> I5(U <i,75 mab)<="" td=""></i,75>
(3-89/2+)	2,I	0,17	28	44	ĥ
(2 ⁺ ⊗2 ⁺ ⊗9/2 ⁺)	2,2	(0,18 🛛 0,18)	30	6I	<pre> 75±I5(v>I,75 MaB)</pre>
	2,2	(0,12 & 0,12)	6	IO	J
1	Эн	ергия нейтроноі	3 8,5 Ma	∍B	
(2+⊗9/2+)	I,3	0,12	47	60	1
	I, 3	0,18	98	I53	∫II9 <u>+</u> I5(U <i,75 mab)<="" td=""></i,75>
(3⁻⊗ 9/2⁺)	2 , I	0,17	32	4I	ון
(2 ⁺ ⊗2 ⁺ ⊗9/2 ⁺)	2,2	$(0,18 \otimes 0,18)$	20	38	}I07 <u>+</u> I5(I,75 <u<2,75 m9b)<="" td=""></u<2,75>
	2,2	(0,12 ⊗ 0,12)	3,5	4,4	4J

Интегральные сечения прямого неупругого рассеяния нейтронов на низколежащих уровнях ядра ¹¹³In

Полученное в работах [4,5] превышение жесткого компонента нейтронных спектров реакции ¹¹³In(n,n') над спектрами реакции ¹¹³cd(p,n) показано на рис.3. Так как разрешение нейтронного спектрометра в этих экспериментах било недостаточным для разделения переходов на определенные ядерные уровни, в качестве экспериментальной оценки сечений прямых переходов в **таблице** приведены величины, найденные при интегрировании в указанных энергетических интервалах наблюдаемого превышения дифференциальных сечений (n,n')-реакции над сечениями (p,n)-реакции. Несмотря на весьма упроценный характер такого сопоставления экспериментальных спектров с расчетными линейчатыми спектрами, из представленных в таблице данных можно сделать вывод, что при соответствующем выборе параметров оптического потенциала теоретические и экспериментальные оценки интегрального сечения прямых переходов оказываются в неплохом согласии. Из приведенных на рис.4 результатов расчета угловых распределений неупругорассеянных нейтронов видно, что согласие с экспериментом имеется и в описании асимметрии дважды дифференциальных сечений рассеяния нейтронов.

Чтобы проследить зависимость интенсивности прямых переходов от энергии налетающего нейтрона, были проведены расчеты, аналогичные описанным выше, для энергии нейтронов 8,5 МэВ. Подученные интегральные сечения неупругого рассеяния приведены в таблице. Так как с ростом энергии нейтронов экспериментальное разрешение спектрометра ухудшается, соответствие энергетических интервалов в наблюдаемых непрерывных спектрах с расчетными линейчатыми спектрами для нейтронов с энергией 8,5 МэВ является менее однозначным, чем для нейтронов с энергией 5,3 МэВ (см.рис.3). Ввиду этого при сопоставлении теории с экспериментом целесообразно обсуждать лишь общие качественные особенности достигнутого описания данных. Для более строгого количественного анализа интенсивности прямых переходов необходимо иметь экспериментальные данные с существенно улучшенным спектральным разрешением.

Полученная в расчетах интегральная величина сечений прямых переходов несколько уменьшается с ростом энергии налетакщих нейтронов (см.таблицу). В то же время для экспериментальных спектров интегральная величина сечения неупругого рассеяния остается практически постоянной для наиболее жесткого участка спектра и растет с увеличением энергии начальных нейтронов для более мнгних участков спектра. По-видимому, этот рост обусловлен главным образом вкладом прямых переходов, не включанных в проведенные расчети. Подобные переходы частично известны, например из экспериментов по рассеянию протонов на близлежащих изотопах кадмия /II/. Хотя интенсивность каждого из таких переходов заметно ниже интенсивности рассмотренных авторами данной работы коллективных переходов, общее число ожидаемых переходов на неколлективные уровни может быть достаточно большим и их интегральная интенсивность соизмеримой с сечениями анализируемых квадрупольных и октуполь-

Рис.3. Превышение жесткого компонента спектров неупругорасседных нейтронов (n, n')реакции кад соответствущими спектрами (p, n)-реакции для энергий налетащих нейтронов 8,53 МэВ (a) и 5,34 МэВ (б)

Рис.4. Угловне распределения неупругорассеянных нейтронов с начальной энергией 5,34 МэВ и результати расчетов вклада прямых процессов, соответствущих энергиям возбуждения меньше 1,75 МэВ (а) и 1,75 « U « 2,75 МэВ (б): — – мультиплет (2* 89/2*); ---- мультиплет (3~89/2*); ---- двухфононные состояния (2* 82* 89/2*); -х-х- – их сумма

ных коллективных возбуждений. Теоретическое моделирование спектральных характеристик соответстнуищих переходов в настоящее время можно успешно реализовать для четно-четных околомагических ядер /17/, но распространение аналогичного подхода на нечетные ядра является весьма сложной задачей, выходящей за рамки данной работы. Для критической проверки такого моделирования значительный интерес представляли бы исследования с более высоким энергетическим разрешением нейтронных спектров на близлежащих четно-четных ядрах. На основе подобных экспериментов можно было бы более полно проанализировать вклады переходов различной природы, а также лучше понять роль одноступенчатых и многоступенчатых прямых переходов. Кроме того, с помощью подобных данных можно было бы устранить отмеченные выше неоднозначности расчетов, связанные с выбором параметров оптического потенциала.

Подводя итоги проведенного анализа вклада прямых переходов в спектры неупругорассеянных нейтронов на ядре ¹¹³ in, можно сделать вывод, что в рамках теории прямых реакций удается удовлетворительно объяснить большую часть наблюдаемого превышения жесткого компонента спектров реакции (n,n') над испарительными спектрами (p,n)-реакции. Таким образом, заключение о доминирурщей роли прямых процессов в формировании наблюдаемых "нестатистических" компонентов спектров неупругого рассеяния, сделанное в работах [4,5] на основе феноменологического анализа спектров неупругого рассеяния, сделанное в работах [4,5] на основе феноменологического анализа спектров (п,n') и (p,n)-реакций, получает подтверждение и при более строгом теоретическом анализе сечений прямых переходов. Неизбежным следствием этого является вывод о роли предравновесного механизма испарения жестких частиц. Если такой механизм и сущестнует, то его вклад в спектры неупругого рассеяния нейтронов должен быть значительно ниже, чем вклад, указанный в других работах [2,3]. Справедливость аналогичного заключения для неупругого рассеяния протонов доказана также в работах [17].

Список литературы

- 1. Austern N. Direct Nuclear Reaction Theories. N.Y.: Wiley-Interscience, 1969.
- 2. Griffin J.J. Statistical model of intermediate gtructure.~ Phys. Rev. Letters, 1966, v.17, p.478.
- 3. Kolbach C. Preequilibrium models in general. The Griffin model in particular.- Acta Phys. Slov., 1975, v.25, p.100; Blann M. Annual Rev. Nucl. Sci., 1975, v.25, p.123.
- 4. CARLHINGE O.A., JOBUMEOBE F.H., CHMAROB C.H. M AD. In: Proc. of IX International Symposium on Interaction of fast Neutron with Nuclei (Gaussing, 1979). Dresden, 1980. p.46.
- on Interaction of fast Neutron with Nuclei (Gaussing, 1979). Dresden, 1980, р.46. 5. Сальников О.А., Ловчикова Г.Н., Симаков С.П., Труфенов А.М. Сравнительний анализ механизма реакций ¹¹³In(n,n')¹¹³In и ¹¹³Cd(p,n)¹¹³In, идущих через одинаковые составные ядра.- В ки.: Нейтронная физика(Материали 5-й Всесовзной конференции по нейтронной физике, Киев, 15-19 сентября 1980 г.). М.: ШИМатоминформ, 1980, ч.2, с.144.
- 6. Бор О., Моттельсон Б. Структура атомного ядра. Т.2. М.: Мир, 1977.
- 7. Baron N., Leonard R.F., Need J.L. e.a. Inelastic alpha-particle exitation in the even tin isotopes.- Phys. Rev., 1966, v.146, p.861; Bingham C.R., Halbert W.L., Quinton A.R. Scattering of 65-Mev alpha-particles from ³⁹Y, ⁹²Zr, ⁹⁶Zr, ¹¹⁶Sn.- Phys. Rev., 1969, v.180,p.1197; Lutz H.F., Bartolini W., Curtis T.H. Inelastic scattering of 14-Mev protons by the even isotopes of cadmium.- Phys.Rev., 1969, v.178, p.1911; Haouat G. Neutron induced reactions.- In: Proc. of the Second international symposium in Smolenice, June, 1979 . Bratislava, Ed.I.Ribansky and E. Betak, 1980, p.333.
- 8. Stelson P.H., Grodzins L. Nuclear transitions probability B(E2) for 0⁺- 2⁺₁.- Nucl. Data, 1965, V.1, p.21.
- 9. Brown V.R., Madsen V.A. Core polarisation in inelastic scattering and effective charges.-Phys. Rev., 1975, v.C11, p.1294.
- 10. Deshalit A. Core exitation in Nondeformed.- Ibid., 1961, v.122, p.1530.
- 11. Koike M. Elastic and inelastic scattering of 14-Mev protons from ¹¹¹Cd, ¹¹²Cd and ¹¹³Cd.-Nucl. Phys., 1967, v.498, p.209.
- 12. Lederer C.M., Shirley V. Tables of Isotopes. N.Y.: Wiley Press, 1978.
- 13. Lagrange Ch., Delaroche J.P.- In: Proc. of International Conference on Neutron Physics and Nuclear Data. Harwell, 1978, p.355.
- 14. Rapaport J., Mirzaa M., Hadizaden H. e.a. Neutron elastic scattering from ^{116,118,120,122} Sn, ¹²⁴ Sn.- Nucl. Phys., 1980, **v.A3**41, p.56.
- 15. Tamura T. Analyses of the scattering of nuclear particles by collective nuclei in terms of the Coupled Channel calculation Rev. Mod. Phys., 1965, v.37, p.679.
- 16. Игнаток А.В., Ловчикова Г.Н., Лунев В.П. и др. In:[4], р.44.
- 17. Бложин А.И., Проняев В.Г. Полумикроскопический анализ вклада прямых процессов в сцектры неупругого рассеяния протонов.- Ядерная физика, 1979, т.30, с.1258; см. также /7/, с.245.

Статья поступила в редакцию 16 марта 1981 г.

УДК 539.172.1

НАРАМЕТРИЗАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ СПЕКТРОВ НЕЙТРОНОВ ИЗ(р, n), (n, n')-реакций НА ЯДРАХ ¹¹⁵In, ¹⁸¹Ta

М. И. Свирин

PARAMETRIZATION OF NEUTRON EXPERIMENTAL SPECTRA FROM (p,n), (n,n')-REACTIONS ON THE NUCLEI 115_{In} , 181_{Ta} . Analisis of neutron emission spectra is done within the framework of the cascade evaparation model. The contribution of the nonstatistical neutron emission is taken into account the obtained date are compared with the results of ref.

В данной статье предложен метод параметризации экспериментальных спектров эмиссии нейтронов из высоковозбужденных ядер в рамках многокаскадной модели испарения с использованием точных выражений статистической теории Вайскопфа и с учетом вклада неравновесных эффектов. В расчетах, выполненных для реакции (p,n) на ядре ¹⁸¹та, исследовано влияние конкуренции

В расчетах, выполненных для реакции (p,n) на ядре ¹⁰¹Та, исследовано влияние конкуренции *п*-квантов на вероятность излучения нейтрона в каскадах.

Основные положения

Статистическая интерпретация ядерных реакций дана в работе [1]. Следуя концепции составного ядра, дифференциальное сечение реакции A(a,b)В можно записать в виде

$$\frac{d\mathfrak{G}^{(6)}}{dE}dE = \mathfrak{G}_{a}p_{6}(E)dE,$$

где \tilde{G}_a – сечение образования ядра частицей а; $\rho_b(E)dE$ – вероятность распада составного ядра с испусканием частици в в диапазоне энергий от Е до Е + dE. Для описания вероятности вводится понятие дифференциальной ширины канала d Γ_b , которая может быть найдена с помощью принципа детального баланса

$$d\Gamma_{g} = \frac{G_{g}}{2\pi^{2}} k_{g}^{2}(E) \sigma_{inv}^{(g)}(E,U) \frac{\rho_{B}(U)}{\rho_{c}(E^{*})} dE, \qquad (1)$$

а ширина канала

$$\Gamma_{\rm g} = \int_{0}^{\varepsilon_{\rm Maxc}^{(6)}} d\Gamma_{\rm g} \, .$$

Здесь $G_b = 2s_b + 1$, где $s_b -$ спин частици b; $k_b(E) -$ волновое число частици b; $E_{MARC}^{(b)} = \frac{M_A}{m_B + M_A} E_a + B_a - B_b -$ максимальная энергия вылетающей частици b, где B_a и B_b - энергии связи частиц a и b в составном ядре; $\rho_c(E^*)$, $\rho_B(U)$ - плотности уровней составного (С) и остаточного (В) ядер соответственно при энергиях возбуждения $E^*=E_a+B_a$ и $U=U_{MARC}^{(b)}-E$, где $U_{MARC}^{(b)} = E_{MARC}^{(b)}$; $\delta_{inv}^{(b)}(E,U)$ - сечение обратной реакции или сечение образования составного ядра, когда консечное ядре (В) при энергии возбуждения U бомбардируется частицей b с энергией E. Сечение $\delta_{inv}^{(b)}(E,U)$ нельзя непосредственно измерить, но можно предположить, что оно равно примерно $\delta_{inv}^{(b)}(E,O)$, Для параметризации плотности уровней $\rho(U)$ используется зависимость, полученная в мо-дели ферми-газа /2/:

$$\rho(\mathbf{U}) = \operatorname{const}(\mathbf{U}^*)^{-H} \exp(2\sqrt{a\mathbf{U}^*}), \qquad (2)$$

где U^{*}=U- б - эффективная энергия возбуждения ядра; б - сдвиг энергии, объяснящий четно-нечетные различия в плотности уровней; В равно 5/4, 3/2 или 2 в зависимости от предположений, сделанных при выводе этой формулы; а - параметр плотности уровней, который в модели ферми-газа не зависит от энергии возбуждения.

При расчете р_b(E)dE учитивается конкуренция всех открытых каналов реакции

$$P_{b}(E)dE = \frac{d\Gamma_{b}}{\sum \Gamma_{s}}.$$
(3)

Выражение (3) в развернутом виде с учетом формулы (I) имеет вид

$$P_{b}(\mathbf{E})d\mathbf{E} = \frac{G_{b}k_{b}^{2}(\mathbf{E}) \mathcal{O}_{inv}^{(b)} \rho_{B}(\mathbf{U})d\mathbf{E}}{\sum_{s} \int_{0}^{E_{Makc}^{(s)}} G_{s}k_{s}^{2}(\mathbf{E}') \mathcal{O}_{inv}^{(s)} \rho_{s}(\mathbf{U}')d\mathbf{E}'}$$
(4)

Вероятность распада составного ядра С. с образованием остаточного ядра В. с энергией возбуждения от U до U+dU имеет аналогичный выражению (4) вид

$$\mathbf{p}_{\mathbf{B}}(\mathbf{U})\mathbf{dU} = -\frac{\mathbf{G}_{\mathbf{b}}\mathbf{k}_{\mathbf{b}}^{2}(\mathbf{E}) \mathbf{G}_{\mathbf{inv}}^{(\mathbf{b})} \boldsymbol{\rho}_{\mathbf{B}}(\mathbf{U})\mathbf{dU}}{\sum_{\mathbf{S}} \int_{0}^{U_{\mathrm{MAKC}}} \mathbf{G}_{\mathbf{g}}\mathbf{k}_{\mathbf{g}}^{2}(\mathbf{E}^{*}) \mathbf{G}_{\mathbf{inv}}^{(\mathbf{s})} \boldsymbol{\rho}_{\mathbf{g}}(\mathbf{U}^{*})\mathbf{dU}^{*}}$$
(5)

В предположении о последовательном или каскадном испускании частиц возо́ужденным ядром можно записать рекуррентное соотношение для вероятности р¹_b(E)dE излучения частицы b 1-го каскада с энергией от E до E+dE:

$$\mathbf{p}_{\mathbf{b}}^{\mathbf{i}}(\mathbf{E})d\mathbf{E} = \left[\sum_{\mathbf{C}} \int_{\mathbf{E}+\mathsf{B}_{g}^{\mathbf{i}}}^{\mathsf{U}_{\mathsf{MCKC}}} \mathbf{p}_{\mathbf{C}}^{\mathbf{i}-1}(\mathsf{U}_{\mathbf{i}-1})\mathbf{p}_{\mathbf{b}}(\mathbf{E})d\mathsf{U}_{\mathbf{i}-1}\right] d\mathbf{E}.$$
 (6)

Здесь $U_{i-1} = U_i + E + B_b^i$, где $B_b^i -$ энергия связи частици b i-го каскада в ядре C; $U_i -$ энергия возбуждения остаточного ядра после вылета частици b i-го каскада с энергией E из ядра C с энергией возбуждения U_{i-1} ; $p_C^{i-1}(U_{i-1})dU_{i-1}$ - вероятность того, что образовавшееся ядро C после излучения частици (i-1)-го каскада будет иметь энергию возбуждения от U_{i-1} до $U_{i-1}+dU_{i-1}$; $p_b(E)dE$ определяется выражением (4); $U_{MARC}^{(C)} = E_a + B_a \sum_{m=1}^{i+1} B_m$ - максимально возможная энергия возбуждения

ядра с. Дифференциальное и интегральное сечения реакции с испусканием частипы в многокаскалном статистическом процессе испарения определяются выражениями

$$\frac{d \, \mathcal{G}_{b}^{c \text{TAT}}}{dE} = \mathcal{G}_{a} \sum_{i=1}^{N} P_{b}^{1}(E) dE;$$

$$\mathcal{G}_{b}^{c \text{TAT}} = \mathcal{G}_{a} \sum_{i=1}^{N} P_{1}(b),$$

где \mathbb{N} — максимальное число каскадов; $P_1(b) = \int_{0}^{E_{Makc}} p_b^1(E) dE$ — вероятность излучения частици b i-ro каскада.

Экспериментальные данные свидетельствуют о том, что в большинстве случаев ядерные реакции в основном проходят через составные состояния, обладающие статистическими свойствами.Но для некоторой доли продуктов реакции энергии и угловые распределения свидетельствуют о нестатистических процессах распада, которые необходимо учитывать даже при небольшой энергии налетающей частицы.

Для описания жесткого компонента спектров широкое распространение получила экситонная модель предравновесного распада, впервые предложенная в работе /3/ и получившая дальнейшее развитие в работах /4,5/. В рамках этой модели можно записать вероятность испускания нуклона х с энергией от в до E+dE:

$$\mathbf{N}_{\mathbf{x}}(\mathbf{E})\mathbf{d\mathbf{E}} = \sum_{\substack{n=n_{0}\\\Delta n=+2}}^{n} \mathbf{W}_{\mathbf{x}}(\mathbf{E},\mathbf{n}) - \frac{\mathbf{n}^{D}\mathbf{x}}{\mathbf{d}\mathbf{E}} \mathbf{d\mathbf{E}} \cdot \mathbf{E}^{\mathbf{E}} \mathbf{B}_{\mathbf{i}} \cdot \mathbf{B}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \cdot \mathbf{B}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}$$

Здесь $\mathbf{w}_{\mathbf{x}}(\mathbf{E},\mathbf{n})\mathbf{d}\mathbf{E} = \frac{\mathbf{G}_{\mathbf{x}}}{2n^{2}h} \mathbf{k}_{\mathbf{x}}^{2}(\mathbf{E}) \mathbf{G}_{\mathbf{inv}}^{(\mathbf{x})} \frac{\beta_{\mathbf{n}-1}(\mathbf{U})}{\beta_{\mathbf{n}}(\mathbf{E}^{*})} \mathbf{d}\mathbf{E}$ - спектральная вероятность издучения нуклона в непрерывный спектр с энергией от E до E+dE из возбужденного ядра в n-экситонном состоянии; $\beta_{\mathbf{n}}(\mathbf{E}^{*}) = \frac{\mathbf{E}(\mathbf{g}\mathbf{E}^{*})^{\mathbf{n}-1}}{p!\mathbf{h}!(\mathbf{n}-1)!}$ - плотность экситонных состояний системы n-квазичастиц с полной энергией возбуждения E*, где g - плотность одночастичных состояний; p,h - число частиц и дырок в состоянии с n экситонами (n = p+h); $\lambda_{+} = \frac{2\pi}{\hbar} \langle |\mathbf{M}_{3\mathbf{Q}}|^{2} \rangle \frac{\mathbf{g}^{3}\mathbf{E}^{*2}}{\mathbf{p}+\mathbf{h}+1}$ - скорость внутриядерных переходов из состояния n в состояние n+2, где $\langle |\mathbf{M}_{3\mathbf{Q}}| \rangle^{2}$ - средний матричный элемент двухчастичного взаимодействия; $\mathbf{n}^{D}\mathbf{x}$ - вероятность появления возбужденных частиц типа x в n - экситонном состояния; \mathbf{n}_{0} - первоначальное число экситонов после первого взаимодействия. При $\lambda_{+} >> \sum_{0}^{\mathbf{E}^{*}-\mathbf{B}_{i}} W_{i}(\mathbf{E},\mathbf{n})d\mathbf{E}$ и некоторых других предположениях из соотношения (6) следуют выражения, полученные в работах [4,5]. Для параметризации сечения предравновесного процесса излучения нуклона использовалось выражение

$$\frac{d\sigma^{npe\partial}}{dE} dE = \sigma^{npe\partial} = \frac{E \sum_{n=n_0}^{\overline{n}} \left(\frac{\underline{U}}{E^*}\right)^{n-2} (n-1)n(n+1)dE}{\int_{n=n_0}^{\overline{E}_{nan_0}} \sum_{n=n_0}^{\overline{n}} \left(\frac{\underline{U}}{E^*}\right)^{n-2} (n-1)n(n+1)dE^*}$$
(8)

Соотношения, полученные в рамках теории прямых процессов /6-87, также позволяют интерпретировать жесткую часть в практическом анализе спектров. Для параметризации вклада прямого процесса можно воспользоваться выражением

$$\frac{d \mathcal{G}^{\Pi P \Im M}}{dE} \quad dE = \mathcal{G}^{\Pi P \Im M} \quad \left(\underbrace{\frac{E}{Ba}}_{0} \right)^{1/2} \omega(U) dE \\ \int_{0}^{E} Makc} \left(\underbrace{\frac{E^{\dagger}}{Ea}}_{0} \right) \omega(U^{\dagger}) dE^{\dagger} \qquad (9)$$

где $\omega(U)$ – средняя плотность прямых переходов при энергии возбуждения U; E_a – энергия налетамщей частипи. Плотность прямых переходов, как показал анализ некоторых экспериментальных данных, пропорциональна U, что соответствует плотности простейших $[\rho_n(U)$ при n=2], частично дырочных возбуждений в модели ферми-газа. В общем энергетическая зависимость $\omega(U)$ может быть более сложной $[\omega(U) \sim U^{n-1}, n>2]$. Для ее исследования достаточно провести анализ спектров нейтронов, где вклад прямого процесса характеризуется непосредственно функцией $\omega(U)$.

Анализ реакций (p,n), (n,n')

С учетом вклада нестатистических процессов для параметризации данных по спектрам использовалась формула

$$\frac{\mathbf{d}\,\mathbf{G}_{\mathbf{n}}}{\mathbf{d}\mathbf{E}} = \mathbf{G}^{\mathsf{CTAT}} \sum_{i=1}^{\mathsf{N}} \mathbf{p}_{\mathbf{n}}^{i}(\mathbf{E}) + \frac{\mathbf{d}\mathbf{G}^{\mathsf{HeCTAT}}}{\mathbf{d}\mathbf{E}}, \qquad (10)$$

где $p_n^i(E)$ определяется выражением (6), а риментальные данные обрабатывались методом наименьших квадратов. Минимизировалась сумма квадратов отклонений

$$\chi_{k}^{2}(\mathbf{a}, \mathcal{G}^{CTAT}, \mathcal{G}^{HeCTAT}) = \sum_{i=1}^{n} \frac{d \mathcal{G}_{n}^{9KCI}}{d\mathbf{E}_{1}} - \frac{d \mathcal{G}_{n}}{d\mathbf{E}_{1}} (\mathbf{a}, \mathcal{G}^{CTAT}, \mathcal{G}^{HeCTAT})$$
(II)

по трем подбираемии нараметрам: с, $\mathcal{G}^{\text{стат}}$, $\mathcal{G}^{\text{нестат}}$. Здесь $d \mathcal{G}_n^{\text{эксн}}/dE_i$ и $d \mathcal{G}_n/dE_i$ – экспериментальные к расчетные значения в точках E_i ; ∂_i – ошиски экспериментальных значений $d \mathcal{G}_n^{\text{эксн}}/dE_i$ в точках E_1 . Выражение (10) линейно зависит от б^{стат} и б^{нестат}, а нелинейно – только от одного нараметра а, что позволяет методом простой итерации определить значения параметров, при которых выражение (11) принимает минимальное значение. Следует иметь в виду, что при определенных энергиях возбуждение остаточных ядер, образовавшихся после излучения нуклонов в результате нестатистического механизма распада, может оказаться достаточным для образования каскадов нейтронов, вклад которых необходимо учитивать. В первом приближении определялись оптимальние параметры без учета этого вклада, а затем уточнялись с учетом такого вклада в последущих приближениях. На рис.1 приведен пример поведения χ_k^2/k в зависимости от значений подбираемого параметра а в первом (кривая I), во втором (кривая 2) и в третьем (кривая 3) приближениях при анализе спектра нейтронов реакции ¹⁸¹ та(р, n) для $E_p = 23$ МэВ с учетом вклада нестатистических нейтронов в виде выражения (9) с $\omega(U) \sim U^2$. Зпесь для каждого из исшитиваемых значений с χ_k^2 минимизировано по линейным параметрам б^{стат} и б^{нестат}.

Алгоритм расчета многокаскадных спектров и находдения оптимальных параметров был реализован на ЭВМ БЭСМ-6. В выражениях (4)-(6) учитывалась конкуренция каналов с испусканием нейтронов, протонов и р-квантов. Сечения обратных реакций для нуклонов вычислялись по оптической модели /9/. Сечение обратной реакции для р-квантов (в барнах) определялось по формуле П.Акселя /10/

$$\mathcal{O}_{\gamma} = \frac{O_{\bullet}O13A}{\Gamma_{R}} \quad \frac{\mathbb{B}^{2} \Gamma_{R}^{2}}{(\mathbb{B}^{2} - \mathbb{B}_{R}^{2})^{2} + \mathbb{B}^{2} \Gamma_{R}^{2}}$$

с параметрами гигантского резонанса $\Gamma_{\rm R} = 5$ МэВ, $E_{\rm R} = 80/{\rm A}^{1/3}$ МэВ.

Влияние конкуренции *p*-квантов на вероятность излучения нейтронов в каскадах исследовалось на примере реакции ¹⁸¹Ta(p,n) при возбуждениях выше норога реакции (p,3n). Вычислялись вероятности P_i(n, p) и P₁(n) вылета нейтрона для каздого каскада соответственно с учетом конкуренции *p*-квантов и без учета этой конкуренции. На рис.2 приведено отношение $\beta = P_1(n, p)/P_1(n)$ для трех каскадов в зависимости от энергии падахщих протонов выше порога реакции (p,3n).Видно, что конкуренция *p*-квантов существенно влинет на выход нейтронов в околопороговой области в последнем каскаде (что отмечалось и в работе /II/) и её влияние заметно уменьшается вдали от порога.

Рис. I. Зависимость χ_k^2/k от подбираемого параметра а при анализе спектра нейтронов реакции ¹⁸¹Та(р, п) при энергии протона E_{D} = 23 МаВ с учетом нестатистического вклада в виде выражения (9) с $\omega(U) \sim U^2$

Рис.2. Отношение $\beta = P_1(n, \gamma)/P_1(n)$ для нервого (кривая I), второго (кривая 2) и третьего (кривая 3) каскадов при энергиях протонов Ер внше порога реакции ¹⁸¹Та(р, 32)

Результаты анадиза экспериментальных спектров нейтронов, измеренных в реакциях (n,n'), (p,n)' на ядрах ¹¹⁵In и ¹⁸¹та при E_n , равных I4,4 /127, I8 /137 и 23 МэВ /147, в рамках модели последовательного испарения с учетом вклада нейтронов от нестатистического распада в виде выражений (8), (9), представлены в табл. I, 2. Сравнительно высокие ошибки используемых экспериментальных данных (n,n')-реакций в жестких частях спектров затрудняют выбор конкретных форм нестатистического вклада согласно критерию χ^2 . Распределения (8) с $n_{02} = 5 \text{ и}$ (9) с $\omega(U) \sim U^2$ предпочтительнее при описании спектра реакции ¹¹⁵In(p,n), а с $n_0 = 4 \text{ и } \omega(U) \sim U^2$ – соответственно при описании спектра реакции ¹⁸¹та(p,n) для $E_p = I8$ МэВ. Если считать, что параметры плотности уровней сосседних ядер практически равны, то при H = 5/4 в формуле (2), как видно из табл. I,2, значения параметра а (n,n')-реакций ниже значений а (p,n)-реакций с H = 2 приводит к согласию получаемых значений а с данными (p,n)-реакций для H = 5/4 и резонансными значениями /15,167. Значения параметра а из анализа спектров (n,n') - и (р,n) -реакций на ¹⁸¹та оказались достаточно близкими к значению I9,99 МэВ^{-I}, определенному в работе /177 по известному значению D₀ и числу низколежащих уровней N₀ = 17 до энергии возбуж-дения 0,78 МзВ.

Таблица 1	•
-----------	---

Вид нестатисти- ческого распре-	Реакция	(n,n')	при Е _п =	Peakuua E-18.3	apes -		
деления	H=5	5/4	1	H=2	р_10,0 I Н=	/15,16/	
	%×2/k (k=42)	8	χ ² /k (k=42)	a	,x ² /k (k=57)	8	
Выражение (8) с n _o =3	0,6I	II ,4	0,40	$(\alpha=0,34)$	2,77	12,3	
To me c n _o =4	0,9I	12,4	0,66	15,4	I ,I 6	I4 , 5	
То же с п _о =5	I,23	II,9	0,97	I5,6	0,77	$[\alpha = 0, 148)$	
Выражение (9) с ω(U)~U	0,49	II,O	0,41	$(\alpha = 0, 27)$	3,26	II,5	I5,78
Το me c ω(U)~U ²	0,80	II , 3	0,56	15	1,32	13,8	0,07
$To me c \omega(v) \sim v^3$	I,I5	II,3	0,88	15,1	0,73	$(\alpha = 0, 141)$]

Результаты анализа экспериментальных спектров нейтронов на 1451л

Результати анализа экспериментальных спектров нейтронов на 181 та

```
Таблица 2
```

Вид нестатисти- ческого распре-	Реакция (n,n') при E _n =14,4 МэВ				Реакция (р,п) при н= 5/4				<mark>8</mark> 7e3 ∕15,167	
цемения	H = 5/4		$\mathbf{H}=2$		Е_р =I8 МэВ		E _p =23 MəB			
	χ ² /κ (k=41)	a	χ <mark>2</mark> /k (k=41)	a	x <mark>≩</mark> /k (k=57)	a	χ _k /k (k=68)	a		
Buparenze (8) c $n_{o}=3$	0,15	16,5	0,22	19,4	0,94	I8,8	0,76	22 ; I)	
To me c n _o =4	0,28	16,9	0,23	19,9 ($\alpha = 0,251$)	0,65	20,6	0,67	22,8		
Тожес л _о =5	0,84	17,5	0,73	20,6	I,43	2I,8	0,6I	24,I		
Buparenne (9) c $\omega(0) \sim 0$	0,55	15,5	0,84	18,3	I,43	17,3	I,I6	19,9	2I,18 + I,21	
To me c $\omega(U) \sim U^2$	0,17	16,4	0,21	I9,I (α=0,2I5)	0,5	I9,8 (∝=0,II2	0,85	2I,3 (x=0,148		
To me c $\omega(v) \sim v^3$	0,64	17	0,55	19,9	I,24	2I,I	0,66	22,5	J	

² Значение а_{рез} приведено для ближайцего атомного числя.

В работе /197 исследовались спектри нейтронов в реакции (р,п) на некоторых элементах, в частности ¹¹⁵In, ¹⁸¹та при E_p = 22,2 МэВ. Информация о параметре плотности уровней получена на основе анализа спектров нейтронов, оставшихся после вычитания из экспериментальных спектров асимметричного компонента, в рамках статистической теории равновесного распада. Указанные спектри описывались формулой Лекутера /187

$$N(E)dE = \operatorname{const} \mathcal{O}_{\operatorname{inv}} E^{5/11} \exp\left(-\frac{12}{11} \frac{E}{r}\right).$$

Значения параметра плотности уровней по модели ферми-газа определялись по известним формулам

$$\mathbf{a} = \left(\frac{1}{T} + \frac{5}{4 \langle \mathbf{U} \rangle}\right)^2 \langle \mathbf{U} \rangle \text{ для H} = 5/4; \qquad \mathbf{a'} = \left(\frac{1}{T} + \frac{2}{\langle \mathbf{U} \rangle}\right)^2 \langle \mathbf{U} \rangle \text{ для H} = 2$$

 $r\pi e \langle U \rangle = E_p + B_p - B_n - \langle E \rangle - \delta.$

В работе /197 получени следующие результати анализа экспериментальных спектров: для реакции ¹¹⁵In(p,n) параметри a=12,7±0,3, a'=14±0,33; для реакции ¹⁸¹Ta(p,n) параметри a=20,01±0,63, a' =21,6±0,68.

Такое упроценное описание многокаскадных спектров приводит к согласию полученных значений параметров а с результатами данной работи и резонансными данными.

На рис.3 и 4 представлены экспериментальные спектры с учетом неравновесного вклада в виде выражения (9), где $\omega(U) \sim U^2$ для ¹⁸¹Ta(p,n) и ¹⁸¹Ta(n,n'), $\omega(U) \sim U^3$ для ¹¹⁵In(p,n) и $\omega(U) \sim U$, U^2 U^3 для ¹¹⁵In(n,n').

Рис.3. Спектры нейтронов (•) реакций (р,п) и (п,п') на ядре ¹¹⁵In при энергиях $E_p=18,3$ МэВ (кривая I), $E_n=14,4$ МэВ (кривая 2) и их параметризация с учетом вклада нестатистической эмиссии в виде выражения (9) с $\omega(U) \sim U^3$ для (р,п)-спектра, а также для (п,п')-спектра с $\omega(U) \sim U$ (a), $\omega(U) \sim U^2$ (b).

Рис.4. Спектры нейтронов (•) реакций (p,n) и (n,n') на ядре ¹⁸¹та при энергиях E_p=23 МэВ (кривая I), E_p =18 МэВ (кривая 2), E_n =14,4 МэВ (кривая 3) и их параметризация с учетом вклада нестатистической эмиссии в виде выражения (9) с ω(U)~U². Для спектра 3: а,б - спектры первого и второго нейтронов, в - вклад нестатистической эмиссии Доля нестатистических нейтронов в первом каскаде определяется соотношением

$$\alpha = \frac{\sigma^{\text{HeCTAT}}}{\sigma^{\text{HeCTAT}} + \sigma^{\text{CTAT}} p_1}$$

В табл. І и 2 для некоторых форм неравновесной части приведены значения α . Соотношения испарительной модели, использованные для анализа экспериментальных распределений, не являются достаточно точными, так как в них не учитываются законы сохранения момента количества движения и четности в ядерной реакции. Расчет сечений для многокаскадных реакций в рамках теории Хаузера – Фешбаха (207, в которой учитываются указанные законы, является сложной задачей, для решения которой требуется ЭВМ с высоким быстродействием. В работах (21,227 проведен сравнительный анализ расчетов первого каскада реакций по испарительной модели и по теории Хаузера – Фешбаха. Оказалось, что переход к приближенным формулам испарительной модели в области непрерывного спектра энергий испускаемых частиц приводит к меньшей неопределенности, чем ошибка, вызванная неточным знанием параметра плотности уровней. Такой же вывод был сделан в работе (23).

Из изложенного выше можно сделать следукщие выводы:

I. Параметри плотности ядерных уровней, определенные цутем анализа спектров эмиссии нейтронов, находятся в согласии с данными по нейтронным резонансам [15,16] и результатами работи [17], если в формуле (2) принять н =5/4 для (p,n)-реакций и н=2 для (n,n')-реакций.

2. Выбор конкретной формы нестатистического вклада (8) или (9) затруднителен из-за недостаточной точности экспериментальных данных.

3. Следует провести сравнение расчетов многокаскадных спектров по теории Хаузера - Фешбаха с расчетани по испарительной модели Вайскопфа, чтобы установить степень согласия этих подходов при описании экспериментальных распределений нейтронов.

Список литературы

- I. Блатт Дж., Вайскопф В. Теоретическая ядерная физика. М.: Изд-во иностр. лит., 1954.
- 2. Бор О., Моттельсон Б. Структура атомного ядра. Т.І. М.: Мир, 1971.
- 3. Griffin J.J. Phys. Rev. Letters, 1966, v.17, p.478.
- 4. Williams F.C. Phys. Letters, 1970, v.31B, N 4, p.184.
- 5. Blann M. Phys. Rev. Letters, 1970, v.21, N 18, p.1357.
- 6. Salnikov O.A., Lukyanov A.A. Direct Interactions in Neutron Inelastic Scattering Spectra. -In: Proc. of Internat. Conf. on Interactions of Neutrons with Nuclei. V.2. Technical Information Centre ERDA, 1976, p.1311.
- 7. Дукьянов А.А., Сапрыкин Е.М. Вопросы атомной науки и техники. Сер. Ядерные константи, 1975, вып.19, с.143.
- 8. Лукьянов А.А. Структура нейтронных сечений. М.: Атомиздат, 1978.
- 9. Бычков В.М., Пащенко А.Б., Пляскин В.И. Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.4(39), с.40.
- IO. Axel F. Phys. Rev., 1962, v.126, p.671.
- II. Бычков В.М., Манохин В.Н., Пащенко А.Б., Пляскин В.И. Вопросы атомной науки и техники. Сер. Ядерные константы, 1979, вып.1(32), с.27.
- 12. Сальников О.А., Ануфриенко В.Б., Девкин Б.В. и др. Там же, 1974, вып.15, с.129.
- I3. Verbinski V.V., Burrus W.R. Phys.Rev., 1969, v.177, p.1671.
- I4. Свирин М.И., Казанский С.А., Матусевич Е.С., Прохоров С.С. Ядерная физика, 1978, т.28, с.286.
- I5. Gilbert A., Cameron A.G.W. Can J.Phys., 1965, v.43, p.1446.
- I6. Baba H. Nucl. Phys., 1970, v. A159, p.625.
- 17. Dilg W., Schantl W., Vonach H. e.a. Nucl. Phys., 1973, v.A217, p.269.
- 18. Le Couteur K.J., Leng D.W. Ibid., 1959, V.13, p.32.
- 19. Бириков Н.С., Туравлев Б.В., Руденко А.П. и др. Ядерная физика, 1980, т.31, вып.3, с.561.
- 20. Hauser W., Feshbach H. Phys. Rev., 1952, v.87, p.366.
- 21. Бичков В.М., Пащенко А.Б. Препринт ФЭИ-699. Обнинск, 1976.

- 22. Бычков В.М., Пляскин В.И. Вопросы атомной науки и техники. Сер. Ядерные константы, 1976, вып.23, с.20.
- 23. Hansen L.F., Grimes S.M., Howerton R.J., Anderson J.D. Nucl. Sci. and Engng, 1976, v.61, p.201.

Статья поступила в редакцию 2 марта 1981 г.

УДК 539. 172.4 ОЦЕНКА СЕЧЕНИЙ РЕАКЦИЙ (п.2п), (п.3п) ДЛЯ ТЯХЕЛЫХ ЯДЕР С УЧЕТОМ НЕРАВНОВЕСНЫХ ПРОЦЕССОВ

В.М.Бычков, В.И.Пляскин, Э.Ф.Тошинская

EVALUATION OF THE (n, 2n), (n, 3n) CROSS-SECTIONS ON HEAVY NUCLEI WITH ACCOUNT OF NONEQUILIBRIUM PROCESSES. A method for evaluation of the (n, 2n), (n, 3n) excitation functions on heavy nuclei has been done in the initial neutrons energy range up to the (n, 4n)-reaction threshold. Formulas are given for the absolute cross-sections calculation, with are deduced from the simple variants of the statistical and exciton models. The fission channel is described by the systematics of experimental values Γ_n/Γ_f . An evaluation

of the (n,2n) and (n,3n) cross-sections has been done for 20 fissionable isotopes. The results have been compared with of the evaluations.

роблема переработки ядерного горючего для внешнего топливного цикла реакторов, а также другие проблемы ядерной энергетики требуют знания сечений реакций (n,2n), (n,3n) на делящихся изотопах. Экспериментальное изучение этих реакций – задача очень сложная. Поэтому для оценки функций возбуждения таких реакций практически по всем делящимся ядрам (за исключением ²³⁸U и ²³²Th) имеющейся экспериментальной информации недостаточно.

Основная трудность теоретического предсказания сечений, представляющих интерес, состоит в правильном учете конкуренции деления. В большинстве работ эта трудность устраняется привязкой расчета к экспериментальным данным путем вариации параметров используемых теоретических моделей. По-видимому, этим объясняется тот факт, что предсказания различных методик /I-6/, совпадая при описании экспериментальных данных по ядру ²³⁸0, в случае отсутствия экспериментальной информации по другим ядрам значительно расходятся.

Важным условием адекватного эписания сечений делящихся ядер является также учет эмиссии нейтронов в результате прямых и предравновесных процессов. Этот процесс подробно обсуждался при анализе спектров неупругого рассеяния нейтронов ядром ²³⁸U [7].

В настоящей работе для оценки функций возбуждения реакций (n,2n), (n,3n) использована методика теоретического расчета [8], основанного на применении упроценных вариантов статистической и экситонной моделей. Методика дает возможность достаточно просто рассчитать абсолютные значения сечений для ядер с относительной атомной массой A>100 без привязки к экспериментальным данным по реакциям (n,2n), (n,3n). Предложенный способ расчета применен для оценки функций возбуждения указанных реакций для 20 делящихся изотопов. Проведено сравнение с результатами других оценок и показана важность учета неравновесных процессов в нейтронном канале.

Вывод формул и описание методики расчетов. Как показано в работе [9], спектры эмиссии нейтронов и сечения реакции (n,2n) для неделящихся ядер с хорошей точностью описываются в рамках статистической теории ядерных реакций и экситонной модели предравновесного распада. Это выполняется для широкого диапазона масс ядер и энергий налетающих нейтронов с единым набором параметров моделей. Для рисчета сечений реакций (n,2n), (n,3n) на тяжелых ядрах (A≥100), в которых эмиссисзаряженных частиц можно пренебречь, соотношения, применявшиеся в работе /9/,можно существенно упростить. По-прежнему будем разделять равновесный и неравновесный механизм ядерной реакции. К неравновесному процессу отнесем все взаимодействия, не триводящие к равновесной стации компаундядра. Интегральный вклад таких процессов достатсчно хоробо описывается экситонной моделью предравновесного распада /10/. Считая, что компаундные и неравновесные процессы значительно разнесены во времени (поэтому независимы), сечение ядерной реакции можно записать как сумму равновесного и предравновесного компонентов:

$$\boldsymbol{\sigma}_{n,2n}(\mathbf{E}_n) = \boldsymbol{\sigma}_{n,2n}^{eq}(\mathbf{E}_n) + \boldsymbol{\sigma}_{n,2n}^{pze}(\mathbf{E}_n), \qquad (1)$$

где E_n - энерган падающего нейтрона; $d_{n,2n}^{eq,,pre}$ - равновесный и предравновесный компоненты сеченки реальния (n,2n).

Под предравновесным компонентом реакции (n, 2n) понимается вероятность такого процесса, когда неупругое рассеяние падаищего на ядро-мишень нейтрона происходит в результате прямого взанмодействия, а второй нейтро:: испаряется из остаточного ядра, находящегося в термодинамическом равновесии. Этот компонент можно оценить, просуммировав все случаи предравновесной эмиссии нейтронов, после которых энергетически возможен вылет второго нейтрона:

$$\mathcal{G}_{n,2n}^{pre}(\mathbf{E}_n) = \mathcal{G}_{a}(\mathbf{E}_n) \int_{0}^{\mathbf{E}_n + \mathbf{Q}_{2n}} \mathbf{P}^{pre}(\mathbf{E}_n, \mathbf{E}) d\mathbf{E} , \qquad (2)$$

где Q_{2n} - энергия реакции (n, 2n); $\mathfrak{S}_{a}(E_{n})$ - сечение поглощения нейтрона; $P^{pre}(E_{n},E)dE - B_{n}$ роятность предравновесной эмиссии нейтрона с энергией от E до E + dE.

Аппроксимируя форму спектра предравновесной эмиссии прямоугольником, упростик формулу (2):

$$\mathcal{O}_{n,2n}^{pre}(E_n) \approx \mathcal{O}_{a}(E_n) P^{pre}(E_n)(E_n + Q_{2n}). \tag{3}$$

Равновесный коллонент сечения запилем с учетом эёдективного уменьшения вероятности обрановония компаунд-ядра в результате предравновесного распада. Используем приближение постоянной темисратуры и постоянства сечения обратной реакции для нейтрона:

$$\mathcal{G}_{n,2n}^{eq}(2n) = \mathcal{G}_{a}(E_{n}) \left[1 - P^{pre}(E_{n})E_{n} \right] \frac{1}{T_{1}^{2}} \int_{0}^{E_{n}+Q_{2n}} E \exp(-E/T_{1}) dE .$$
⁽⁴⁾

Здесь Т₁ – термодинамическая температура ядра, связанная с параметром плотности уровней в модели ферми-газа соотношением T₁ ≈ $\sqrt{\frac{E_n}{\alpha}}$, где α – параметр плотности уровней в модели ферми-газа. Зормулы (3), (4) справедливн при энергии нейтрона ниже порога реакции (**n**, **3n**). Равномесный

и предравновесный компоненты сечения реакции (n,3n) записываются следунщих образом:

где Q_{3n} - энергия реакции (n, 3n); $T_2 = T_1 \sqrt{1+Q_{2n}/E_n}$.

Формулы (5) справедливы до энергии порога реакции (n,4n). При энергии нейтрона $E_n > Q_{3n}$ сечение реакции (n,2n), определенное выше, следует представить как $G'_{n,2n}(E_n > Q_{3n}) = G_{n,2n}(E_n) - G_{n,3n}(E_n)$. Чтос: правильно описать сечение реакции (n,2n) волизи порога, на тяжелых ядрах необходимо учитывать конкуренцию р-квантов из реакции (n,n'p) /9/. В настоящей работе эффект конкуренции р-квантов учитывался приближенно, путем эффективного увеличения порога реакции

$$E_{nop} = -Q_{2n} + \Delta Q . \tag{6}$$

Здесь сдвиг порога реакции ΔQ (в мегаэлектронвольтах) вычислялся по полуэмпирической формуле

$$\Delta Q = \frac{T^2}{4S_n} \left[ln \frac{\sigma_a A exp(-2S_n/T) 10^8}{4S_n^2} \right]^2,$$
(7)

где S_n - энергия отделения второго нейтрона ($S_n = -Q_{2n}$); $T = \sqrt{\frac{10E_n}{A}}$ - ядерная температура при энергии возбуждения E_n ; \mathcal{G}_a - сечение поглощения нейтрона (в барнах), которое аппроксимировалось простым выражением $\mathcal{G}_a = (I + 7, 5 \cdot A \cdot 10^{-3})$.

Анализ формулы (7) показывает, что сдвит порога реакции уменьшается с увеличением энергии нейтрона и увеличивается с ростом значений А и S_n. Влияние поправки на конкуренцию р-квантов волизи порога реакции ¹⁹⁷Au(n,2n)¹⁹⁶Au видно из рис. I.

Рис. I. Функция возбуждения реакции ¹⁹⁷Au(n,2n)¹⁹⁶Au, вычисленная в данной работе (сплошная кривая), по сравнению с имеющимися экспериментальными данными разных авторов (точки). Пунктирная кривая - вариант расчета, не учитывающий конкуренции χ -квантов

Учет конкуренции канала деления для делящихся ядер можно выполнить с трощью известных из эксперимента отношений нейтронной и делительной ширин Γ_n/Γ_f . Для проверки правильности учета делительного канала полезно вычислить также сечение деления. Запишем соотношения для сечений реакций (n,f), (n,nf) и (n,2nf), считая, что деление происходит только из равновесного состояния коншаунд-ядра:

где K_A^f – коэфрициент, определяющий долю случаев предравновесной эмиссии, после которых деление ядра A энергетически невозможно; $K_A = \frac{1}{1 + (\Gamma_n / \Gamma_f)_A}$ – вероятность деления ядра A. Сомножитель

 $[[-exp(-r_A)]$ введен для описания пороговой зависимости сечения деления; $r_A = (E_n - B_A^f)C$, где B_A^f – энергетический порог деления ядра A, C – коэффициент диффузии. Порог деления находится по полуэмпирическим формулам работы /II/. Для реакций (n,nf) и (n,2nf) величина B_A^f возрастает соответственно на T_n и $2T_n$, где T_n – температура испускаемых перед делением нейтронов. Предполагается, что отношение Γ_n/Γ_f слабо зависит от энергии возбуждения ядра. Считая это отношение постоянным для данного ядра, на основе соотношений (I) – (5) можно получить следующие аналитические формулы для расчета сечений реакций (n,2n) и (n,3n) с учетом канала деления:

$$\begin{split} & \delta_{n,2n}(E_{n}) = \delta_{\alpha}(E_{n})F_{1} \left\{ B_{2}P^{pze}(E_{n}) + \left[i - P^{pze}(E_{n})E_{n} - \frac{\delta_{n,f}(E_{n})}{\delta_{\alpha}(E_{n})} \right] \times \\ & \times \left[i - (i + B_{2}/T_{1})exp(-B_{2}/T_{1}) \right] \right\} - \delta_{n,2nf} - \delta_{n,3n}; \\ & \delta_{n,3n} = \delta_{\alpha}(E_{n})F_{2}A_{1} \frac{A_{2} - A_{3}}{A_{2}}; \\ & A_{i} = B_{3}P^{pze}(E_{n}) + \left[i - P^{pze}(E_{n})E_{n} - \frac{\delta_{n,f}(E_{n})}{\delta_{\alpha}} - \frac{\delta_{n,nf}(E_{n})}{\delta_{\alpha}} \right] \left[i - (i + B_{3}/T_{1})exp(-B_{3}/T_{1}) \right]; \end{split}$$
(9)
$$& A_{2} = i - (B_{3}/T_{1} + i)exp(-B_{3}/T_{1}); \\ & A_{3} = (T_{3}/T_{1})^{2}exp(-B_{3}/T_{1}) \left\langle (B_{3}/T_{2} + i) \left[(B_{3}/T_{3} - i)exp(B_{3}/T_{3}) + i \right] - \\ & - \left\{ \left[\frac{B_{3}}{T_{5}} \frac{B_{3}}{T_{2}} - 2\frac{T_{3}}{T_{2}} (B_{3}/T_{3} - i) \right] exp(B_{5}/T_{3}) - 2\frac{T_{3}}{T_{2}} \right\} \right\}. \end{split}$$

Здесь B_2 и B_3 - пороги реакций (n,2n) и (n,3n) соответственно; $T_3 = (T_1 - T_2)/T_1 T_2$; $F_1 = \beta_1/(1+\beta_1)$; $F_2 = \beta_2/(1+\beta_2)$; $\beta_1 = (\Gamma_n/\Gamma_f)_A$, $\beta_2 = (\Gamma_n/\Gamma_f)_{A-1}$. Величину $P^{Pre}(E_n)$ можно андроксимировать вн-ражением [8] $P^{Pre}(E_n) = 5 \cdot 10^{-2} \, G_a/A \, E_0 (E_n/E_0)^2$, где $E_0 = E_n + S_n$ - энергия возбуждения составного ядра.

Таким образом, для расчета сечений реакций (n,2n) и (n,3n) по формулам (9) и сечений реакций (n,f) (n,nf) и (n,2nf) по формулам (8) нужно знать то́лько три параметра: сечение поглощения нейтрона $\mathcal{G}_{a}(E_{n})$, параметр плотности уровней с и отношение Γ_{n}/Γ_{f} для ядер A+i, A и A-i. В качестве этих параметров могут быть использованы экспериментальные данные, полученные в независимых измерениях, или теоретические оценки. Следовательно, формулы (8),(9) могут применяться и для предсказания сечений при отсутствии экспериментальных данных по реакциям (n,f) и (n,2n). Хотя перечисленные параметры могут выбираться индивидуально для каждого ядра, для массовых расчетов целесообразно воспользоваться их систематиками. В настоящей работе для расчетов использовали Следующие систематики параметров:

I. Сечение поглощения нейтронов (в миллибарнах) ашироксимировалось формулой б_с =(1000+7,5А). Внчисления по этой формуле хорошо согласуются с расчетами по оптической модели.

2. Параметр плотности уровней выбран из условия наилучшего описания йункций возбуждения реакций (n,2n) и (n,3n) в широком диапазоне ядер (100≤А≤200) и определяется из соотношения

$$a = \frac{A}{I^2} - \frac{400}{36 + (A - 208)^2}.$$

Второй член этой формулы введен для описания резкого уменьшения параметра а в районе ядер, близких к дважды магическому ядру свинца. Такая зависимость хорошо согласуется с систематикой параметра плотности уровней, учитывающей влияние коллективных эффектов на тяхелых ядрах /12/.

3. Параметри Г_∩ /Г_f взяти из систематик работи /13/, где использованы как экспериментальные, так и расчетные величини, соответствущие энергии падащих нейтронов 3-4 МэВ, или энергии возбуждения составного ядра 8-10 МэВ. Отношение ширин предполагалось независящим от энергии возбуждения и ашироксимировалось экспоненциальной функцией параметра делимости z^2/A :

$$\Gamma_n / \Gamma_f = \exp\left[-\alpha (Z^2 / \mathbf{A} - \beta)\right]. \tag{10}$$

Значения коэўфициентов α и β для различных элементов приведены в табл. І.

Таблица I

Параметры зависимо**сти** (IO) отношения нейтронной и делительной ширин для различных изотопов

Изотоп	Пара	метр	Изотоп	Параметр		
	α	ß		α!ß		
91 _{Pa} 92 _U 93 _{NP}	4,I2 2,37 2,44	35,82 36 36,34	94 _{Pu} 95 _{▲m} 96 _{Cm}	2,0 36,6 I,47 37 I,I2 37,3		

Как показано в работах /13/, простая зависимость типа (10), являющаяся отражением свойств модели жидкой капли, может применяться только к ограниченному кругу ядер, где невелики оболочечные эффекты в структуре барьера деления. Для ядер с числом протонов и нейтронов соответственно **z** и **N** вне области 90 ≤ **z** ≤ 95 и 140≤N≤146 зависимость Γ_n/Γ_f от **z** и **N** может значительно отличаться от соотношения (10) из-за оболочечной поправки. Для таких ядер можно ожидать также более заметную зависимость Γ_n/Γ_f от

энергии, связанную с перестройкой оболочечной структуры ядра. Следует отметить, однако, что эти эффекты могут быть достаточно просто учтены в данном случае путем задания калдому ядру соответствукщего значения Γ_n/Γ_f . Использованная в настоящей работе методика позволяет учесть и энергетическую зависимость Γ_n/Γ_f , что приведет к более сложным выражениям для сечений, которые должны будут определяться численными методами.

<u>Обсуждение результатов расчета</u>. Для расчета сечений по приведенным выше соотношениям была написана программа SIMPL на языке ФОРТРАН-IУ. Вариант расчета по этой программе сечения реакции $197_{Au(n,2n)} 196_{Au}$ вместе с имеющимися экспериментальными данными приведен на рис.I. Пунктирной кривой обозначен расчет, не учитывающий конкуренции g-квантов [$\Delta Q = 0$ по формуле (6)]. Сравнение расчетов с экспериментальными данными для ядер с $100 \leq A \leq 200$ показывает, что точность предсказания сечения реакции (n,2n) по данной методике не менее 15%.

Учет канала деления уменьшает точность предсказания сечения (n,2n). которая оценивается не менее 30% для ядер с параметром делимости $\Gamma_f/(\Gamma_n + \Gamma_f) \leq 0.5$; для изотопов с большим параметром делимости точность предсказания уменьшается. Для контроля надежности оценок целесообразно сравнить расчетные сечения деления с экспериментальными. Как видно из рис.2, согласие расчета с оценкой библиотеки EMDF/B /14/, основанной на экспериментальных данных, в среднем не менее 10%. Монотонное уменьшение парциального вклада (n,f) объясняется влиянием предравновесной эмиссии. На рис.3 приведены функции возбуждения реакций (n,2n) и (n,3n) для изотопов ²³²ть и ²³⁸U. Сечения этих изотопов изучены экспериментально лучше других. Совпадение расчетных результатов с экспериментальными хорошее, причем согласуются как абсолютные значения, так и форма кривых функций возбуждения.

Для ядра ²³⁸у показан также вариант расчета без учета предравновесной эмиссии нейтронов, в ражах одной липь статистической модели. Как видно из рис.3, учет предравновесной эмиссии понижает сечение реакции (**n.2n**) в максимуме функции возбуждения и увеличивает его в области

энергий падающего нейтрона выше порога реакции (n,3n). Соответственно уменьшается сечение реакции (n,3n), причем получаемый эффект довольно значителен.

Рис.2. Сечения реакции (n,f) на ядрах ²³⁹Ри (a), ²³⁸U (d) и ²³²Th (b): - - расчет по формулам (8) настоящей работи; - оценка библиотеки ENDF/B; - - - вычисленные в настоящей работе парциальные вклады процессов (n,f) и (n,nf)

Попытка описать экспериментальные данные по сечениям реакций (**n**,2**n**) и (**n**,3**n**) в рамках одной только статистической теории приводит к необходимости значительного уменьшения параметра плотности уровней а и сечения поглощения нейтрона б_а. Например, в работах /1,6/ для описания сечений реакции (**n**,2**n**) потребовалось вноирать параметр а, равный A/22, что примерно в два раза меньше реального значения этого параметра, получаемого из других денных.

Функции возбуждения реакций (n,2n) и (n,3n), внчисленные для ядра ²³⁹Pa, приведены на рис.3,в. Согласие расчетной кривой с результатами прямого измерения Мазера, взятными из работы /6/, не удовлетворительное. На рисунке приведены также данные работы /15/, оценочные по результатам измерения сечений реакций (d,1), (d,2n) и (t,1), (t,2n). Ядра-мишени в этой работе были подобраны таким образом, чтобы получалось то же составное ядро, что и в реакции, вызываемой нейтронами. Сечения реакции (n,2n) определялись с помощью известных величин б_{л.f}; при этом предполагалась независимость вероятности распада составного ядра от способа его образования. Другими словами, данные работы /15/ получены в предположении, что прямой механизм реакции неупругого рассеяния отсутствует.Это очевидно также из сревнения данных работы /15/ с пунктирной кривой рис.3,в, вычисленной в рамках статистической модели без учета предравновесной эмиссии. Совпадение пунктирной кривой с данными работы /15/ является косвенным подтверждением правильности выбранных параметров статистической теории. Включение же неравновесных процессов в механизм неупругого рассеяния приводит к функции возбуждения, изображенной на рисунке сплошной линией. Доцолнительные измерения сечения реакции (n,2n) для этого ядра были бы очень полезны.

На рис.4 приведены вычисленные в настоящей работе сечения деления и сечения реакций (n,2n) и (n,3n) для ²³⁷мр в сравнении с имекщимися экспериментальными данными и оценкой библиотек ENDF/B и ENDL /167. Расчет функции возбуждения реакции (n,2n), выполненный в настоящей работе, хорошо согласуется с экспериментальными данными работ /177 и /187. Некоторое превышение данных работы /157 над расчетной кривой связано, как и в случае ²³⁹Pu, с неучетом неравновесных процессов в их работе. Различие сечений реакций (n,2n), рекомендованных в настоящей работе и в библиотеке ENDF/B, по-видимому, связано с несовпадением соответствующих оценок сечения деления (кривая оценки библиотеки ENDF/B проходит значительно выше рекомендаций настоящей работы и библиотеки ENDL, которые неплохо согласуются между собой).

Таблица 2

Сечения реакций (n,2n) и (n,3n), усредненные по спектру деления

Изотоп	<i>< 6_{n,2}</i>	n>, мб	<i><</i> 0 _{n,}	_{3n} >, мо
	Настоящая работа	Работа _[1]	Настоящая работа	Работа _[1]
232 _{Th}	15,4	I6	II8	210
233 _U	4,48	3,3	2,04	6
234 _U	3,30	7,0	4,92	42
235 _U	16,2	15	12,8	45
238 ₀	14,I	İ5	71,3	I 4 0
231 _{Pa}	5,44	-	7,68	-
233 _{Pa}	II,O	-	27,7	- 1
237 _{Np}	3,5	I,3	6,7	9,0
239 _{Pu}	5,72	I,9	3,9	5,5
240 _{Pu}	4,25	-	9,4	-
241 _{Pu}	12,0	-	I4	-
242 _{Pu}	9,0	-	22,8	-
241 _{Cm}	2,16	-	I,0	-
242 _{Cm}	I,65	-	2,I	-
243 _{Cm}	5,45	-	4,4	-
244 _{Cm}	3,02	-	7,0	
245 _{Cm}	7,32	-	7,2	<u> </u>
246 _{Cm}	6,57	-	I3,0	-
247 _{Cm}	17,6	-	28,0	-
248 _{Cm}	8,55	-	35,4	
•.	•			

Рис.4. Сечения деления (а) и реакций (n,2n) и (n,3n) на ядре ²³⁷Np (б); — расчет, выполненный в настоящей работе; — оценка библиотеки ENDF/B; ---- оценка библиотеки ENDL; \check{Q} – данные работы /15/; \check{A} – /18/; $\check{\Phi}$ – /17/

На рис.5 приведены сечения деления и функции возбуждения реакций (n,2n) и (n,3n) иля изотопов 2330, 2340,2350 и 242ра. Из приведенных функций возбуждения реакции (n,2n) лише для 255 и имеются экспериментальные данные. Кривая, вычисленная в настоящей работе, удовлетворительно (примерно на 30%) согласуется с ними (за исключением точки по данным работы /6/ при E = I4 МэВ). Для реакции 2330(n,2n)2320 имеется результат измерения на спектре нейтронов деления, опубликованный в работе /21/. Величина сечения, полученного в этой работе ($\langle 6_{n,2n} \rangle^3 = 4,08\pm0,3$ мб), удовлетворительно согласуется с результатом интегрирования по спектру вычисленной в настоящей работе функции возбуждения $\langle 6_{n,2n} \rangle^T = 4,48$ мб (табл.2). Для остальных двух изотопов 2340 и

Рис. 5. Сечения деления и функции возбуждения реакций (n, 2n) и (n, 3n) для изотонов 2330, 2340, 2350, 242pu: — – расчет, винолненный в настоящей работе; – – – оценка библиотеки ЕНДР/В; •, 0 – оценка работи /19/; Д – экспериментальные данные Мазера, взятие из работи /6/; • – экспериментальные данные работи /20/

²⁴²Pu, рассматриваемых на рис.5, какой-либо экспериментальной информации, позволяющей оценить надежность оценки функций возбуждения реакций (**n**,2**n**) и (**n**,3**n**), нет. Рассчитанное сечение деления ²³⁴U удовлетворительно согласуется с оценкой ENDF/B, в то время как сечение реакции (**n**,2**n**) выше данных этой библиотеки. Для ²⁴²Pu результат расчета сечения деления несколько ниже результата, приведенного в работе /19/, библиотеке ENDF/B и рекомендованного на основе экспериментальных данных. Это, возможно, объясняется неудачной ашпроксимацией величины Γ_n/Г_f для ядра 242Pu в расчетах настоящей работы. Поэтому при оценке функции возбуждения реакции ²⁴²Pu(**n**,2**n**)²⁴¹Pu использовано сечение деления, перенормированное на рекомендацию библиотеки ENDF/B.

На рис.6 приведены результаты, полученные для изотопов 240_{Pu}, 241_{Pu}, 231_{Pa}, 233_{Pa}, по сравнению с другими оценками. Расчет сечения реакции 241_{Pu}(n,2n)²⁴⁰Pu, выполненный в работе [22], в области энергий до II МэВ проходит значительно выше результата настоящей работы; сечение реакции (n,3n) также выше нашей оценки.

Вычисленное в настоящей работе сечение деления ²³¹ра неплохо согласуется с оценкой ENDF/B, однако сечение реакции (n,2n) значительно ниже. На ядре ²³³ра экспериментальных данных по сечению деления в области энергий, представляющей интерес, нет, поэтому все приведенные оценки основаны на расчетах. Можно отметить большое расхождение между приведенными на рис.6 кривным. Сечение реакции (n,2n), оцененное в работе [22], ближе к рекомендации настоящей работы, хотя оценка сечения деления значительно выше. Это, по-видимому, вызвано тем, что в работе [22] неравновесные эффекти не учтены.

На рис.7,а,б приведени результати различных оценок для изотонов кюрия. Как видно, результаты значительно различаются, что, в частности, вызвано отсутствием достаточно надежных экспериментальных данных. Другой важной причиной расхождения в оценках сечений деления и реакций (n,2n) и (y3n) может быть различие в методиках. Так, учет неравновесных процессов на ядрах с большим параметром делимости существенно изменяет результат расчета сечений. Например, в сечение реакции (n,2n) на изотопах ²⁴¹ Cm, ²⁴² Cm большой вклад вносит неравновесный компонент, поэтому нейтронный канал не подавляется полностью делением, как это было бы при чисто статистическом механизме реакции. Вероятно, этим вызвано различие в сечениях реакций (n,f), (n,2n) и (n,3n), рекомендованных в данной работе и в библиотеке ENDF/B. Вычисленные в настоящей работе сечения реакций (n,2n) и (n,3n), усредненные по спектру нейтронов деления, в сравнении с результатами оценки работы /1/ приведены в табл.2.

Таким образом, учет нестатистических эффектов в нейтронном канале при взаимодействии быстрых нейтронов с делящимися ядрами существенно влияет на абсолютную величину и энергетическую зависимость нейтронных сечений. В методике расчета сечений, предлагаемой в настоящей работе, используются единые наборы параметров и не проводится подгонка к конкретному экспериментальному результату. Хорошее описание экспериментальных данных на ядрах с относительной атомной массой IO < A < 200 позволяет надеяться, что предсказание в рамках этой методики для делящихся ядер в области, для которой нет экспериментальных данных, также достаточно надежное.

Для оценки функций возбуждения реакций (n,2n) и (n,3n) на делящихся ядрах был использован общий подход с единой систематикой расчетных параметров, что позволяет предсказывать сечение для ядер с параметром деления $\Gamma_f/\Gamma \lesssim 0,5$ с точностые примерно 30%.

Точность оценки функций возбуждения в рамках описанного подхода можно улучшить,если, вопервых, выбирать точные значения отношений Γ_n/Γ_f для индивидуальных ядер и, во-вторых, учесть возможную зависимость этого отношения от энергии возбуждения составного ядра.

Список литературы

- I. Pearlstein S. Analysis of (n,2n) cross-sections for medium and heavy mass nuclei. Nucl. Sci. and Engng, 1965, v.23, p.238.
- 2. Prince A. Nuclear Data for Reactors. 1970, v.2, p.825.
- 3. Суховицкий Е.Ш., Коньшин В.А. Изв. АН.БССР. Сер. физ.-энерг. н., 1974, № 3, с.23.

Рис.6. Сечения деления и функции возбуждения реакций (n,2n) и (n,3n) для изотопов 241 Pu, ²⁴⁰ Pu, ²³³ Pa, ²³¹ Pa: — расчет, выполненный в настоящей работе; - - оценка биолиотеки ENDF/B; •, 0 - оценка работи / 19/; - x - x - - результат оценки работи/22/

Рис.7, а. Сечения деления и функции возбуждения реакций (n, 2n) и (n, 3n) на изотопах ²⁴¹сm, 242_{сm}, ²⁴³_{сm}, ²⁴⁴_{cm}: — - расчет, выполненный в настоящей работе; ---- оценка библиотеки ENDF/B; ---- - оценка библиотеки ENDL

Рис.7, б. Сечения деления в функции возбуждения реакций (n,2n) и (n,3n) на изотопах ²⁴⁵См, 246_{См.} 247_{См.} 248_{См:} — расчет, нимполненный в настоящей работе; — – – оценка библиотеки ENDF/B; — – – оценка библиотеки ENDL

- 4. Jary J. Evaluation par un modele statistique des sections efficases (n, χ n) et (n, χ nf) sur des noyaux lourds. - B κн.: Нейтронная физика (Материали 3-й Всесовзной конференции по нейтронной физике, Киев, 9-I3 июня 1975 г.). М.: ЦНИИатоминформ, 1976, ч.I, с.239.
- 5. Красин А.К., Читринов С.Е., Коньшин В.А. Расчет сечений реакций (n,n'), (n,2n), (n,3n),(n,n'f), (n,2nf),(n,3nf) на основе экситонной модели предравновесного распада ядра. – В кн.: Нейтронная физика (Материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, I8-22 апреля 1977 г.). М.: ЦНИИатоминформ, 1977, ч.4, с.59-66.
- 6. Segev M., Caner M. A new formalism for (n,2n) and (n,3n) cross-sections of heavy mass nuclei. Ann. Nucl. Energy, 1978, v.5, p.239.
- 7. Корнилов Н.В., Пляскин В.И., Трыкова В.И. и др. Оценка спектров вторичных нейтронов при бомоардировке ²³⁸U нейтронами в интервале энергий 5-I4 Мав. - Вопросн атомной науки и техники. Сер. Ядерные константы, 1976, вып.21, с.58; Бычков В.М., Пащенко А.Б., Пляскин В.И. Спектры вторичных нейтронов, испускаемых при взаимодействии нейтронов с ядрами ²³⁸U. - Там же, 1978, вып.3(30), с.24.
- 8. Бычков В.М., Пляскин В.И. Оценка функций возбуждения реакций (n,2n) и (n,3n) на делящихся ядрах. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1981, вып. I(40), с.5; Простие соотношения для расчета функций возбуждения реакций (n,2n), (n,3n) и спектров нейтронов. – В кн.: Нейтронная физика (Материалы 5-й Всесоюзной конференции по нейтронной физике, Киев, I5-I9 сентября 1980 г.). М.: ШНИМатоминформ, 1980, ч.3, с.277.
- Бычков В.М., Пащенко А.Б., Пляскин В.И. Расчеты сечений реакции (n,2n) и спектров неупругого рассеяния нейтронов в области массовых чисел 50-200. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1978, вып.2(29), с.7.
- IO. Criffin J.J. Phys. Rev. Letters, 1966, v.17, p.478; Blann M. Ibit., 1968, v.21, p.1957.
- II. Хайд Э., Перлман И., Сиборг Г. Деление ядер. М.: Атомиздат, 1969, с.49.
- 12. Елохин А.И., Игнатик А.В., Платонов В.П., Толстиков В.А. Влияние коллективных эффектов в плотности уровней на энергетическую зависимость сечений радиационного захвата быстрых нейтронов. - Препринт ФЭИ-655. Обнинск, 1976; Игнатик А.В., Истеков К.К., Смиренкин Г.Н. Ядерная физика, 1979, т.29, с.875.
- IЗ. Истеков К.К., Куприянов В.М., Фурсов Б.И., Смиренкин Г.Н. Там же, вып.5, с.II56; Истеков К.К., Куприянов В.М., Фурсов Б.И., Смиренкин Г.Н. Зависимость вероятности деления тяжелых ядер от нуклонного состава. – Препринт ФЭИ-655, ч.I,П. Обнинск, 1979.
- I4. Garber D. ENDF/B Summary Documentation. Report BNL-17541, 1975.
- 15. Андреев М.Ф., Серов В.И. Оценка поперечного сечения реакции (n,2n) для тяжелых ядер по результатам исследований с заряженными частицами. – В кн.: Нейтронная физика (Материалы 5-й Всесоюзной конференции по нейтронной физике, Киев, 15-19 сентября 1980 г.). М.: ЩНИИатоминформ, 1980, ч.3, с.301.
- I6. Howerton R.J., McGregor M.G. Lawrence Livermore Laboratory. Report UCRL-50400, v.15, 1978.
- 17. Landrum J.H., Nagle R.J., Lindner M. Phys. Rev., 1975, v.C8, p.1938.
- I8. Nishi T., Fujiwara I., Imanishi N. Transactinium isotope nuclear data. Vienna: IAEA, 1976, v.III, p.48.
- 19. Анцинов Г.В., Баханович Л.А., Коньшин В.П. и др. Оценка ядерных данных для ²⁴²Рu в области энергий нейтронов 10⁻⁵ эВ - 15 МэВ. Минск, 1979.
- 20. Frehaut J., Bertin A., Bois R. Nucl. Sci. and Engng, 1980, v.74, p.29.
- 21. Kobayashi K., Hashimoto T., Kimura I. J.Nucl. Sci. and Technol., 1973, v.10, p.668.
- 22. Vasiliu G., Matescu S., Rapeanu S. e.a. Nuclear data evaluation for ²³³Pa. Vienna: IAEA, 1980.
- 23. Коньшин В.А., Анцинов Г.В., Суховицкий Е.М. и др. Оценка ядерных данных для ²⁴¹Ри в области энергий нейтронов 10⁻³ эВ - 15 МэВ. Минск, 1979.

Статья поступила в редакцию 27 апреля 1981 г.

УДК 539.125.516.4 СРЕДНИЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ НУКЛИДОВ С МГНОВЕННЫМИ НЕЙТРОНАМИ ДЕЛЕНИЯ ²³⁵U+n_T,²³⁹Pu+n_T,²⁵²Cf Б.И.С таростов, І.Н.Кудряшов

> NEUTRON CROSS-SECTION NUCLEI FOR PROMPT NEUTRON SPECTRA FISSION $^{235}\text{U}_{+n_{T}}$, $^{239}\text{Pu}_{+n_{T}}$, $^{252}\text{Cf.}$ The possibility is shown of $\pm 2\%$ agreement between calculated and experimental $^{235}\text{U}(n,f)$, $^{239}\text{Pu}(n,f)$, $^{238}\text{U}(n,f)$, $^{237}\text{Np}(n,f)$, $^{27}\text{Al}(n,\infty)$, $^{27}\text{Al}(n,p)$, $^{115}\text{In}(n,n^{\circ})$, $^{56}\text{Fe}(n,p)$, $^{46}\text{Ti}(n,p)$, $^{197}\text{Au}(n,p)$ reaction cross-sections averaged over prompt neutron spectra from ^{235}U , ^{239}Pu thermal fission and ^{252}Cf spontaneous fission.

> > Таблица I

Для расчета ядерных реакторов и решения многих задач в области ядерной технологии представляют интерес данные о сечениях деления и сечениях пороговых реакций, усредненных по спектрам мгновенных нейтронов деления. С помощью энергетических занисимостей сечений /1-3/, новых оцененных данных по спектрам мгновенных нейтронов деления 235 U, 239 Pu тепловыми нейтронами ($n_{\rm T}$) и спонтанного деления 252 cf /4/ рассчитаны средние сечения взаимодействия некоторых нуклидов с нейтронами деления, проведено их сравнение с экспериментальными результатами работ /5-I3/ и представлены рекомендуемые средние сечения, которые рассчитывали по формуле $\vec{6} = \int 6'(E)n(E)dE / \int n(E)dE$,

где $\mathcal{O}(E)$ - сечение взаимодействия нуклида с нейтронами с энергией E; n(E) - спектр мгновенных нейтронов деления. Численное интетрирование выполнялось методом трапеций в области 0,000I-20 МэВ. Предполагалось, что спектры нейтронов деления в области 0,000I-0,0I МэВ описываются максвелловскими распределениями, а в области IO-20 МэВ - экстранолированной зависимостью n(E), построенной по данным из области 6-IO МэВ.

Сечения деления для нуклидов ²³⁸0 и ²³⁹Ри взяти из библиотеки ядерных данных ЕНАБ-78 /1/. для нуклидов ²³⁵0 и ²³⁷мр – из работ /2,3/, а сечения других реакций – из работи /3/, причем в расчети включени все данные по сечениям. Точность расчетов средних сечений деления и средних сечений других реакций составляет около 0,5 и 2% соответственно. Результати расчетов средних сечений деления представлены в табл. I.

Спектр нейтронов деления	235 _{U(n,f)}	239 _{Pu(n,1})	237 _{Np(n,f)}	2 38 U(n,f)				
235 _{U+n}	<u> </u>	<u> </u>	<u>1314</u> 1370 <u>+</u> 75 <i>[</i> 5,6] ⁷	295 328 <u>+</u> I0 /5,67				
239 _{Pu+n}	<u>1226</u>	<u>1806</u>	<u>1350</u>	317				
252 _{Cf}	<u> </u>	<u> </u>	<u>1342</u> 1332 <u>+</u> 37 <i>[</i> 8 <i>]</i>	<u>316,4</u> 320 <u>+</u> 9 /8/				

Абсолютные значения средних сечений деления, мб

<u>Примечание</u>. Числитель - расчетные, знаменатель - экспериментальные значений сечений.

В этой таблице расчетные и экспериментальные величины средних сечений деления согласуртся в пределах ошибок. Однако можно отметить, что расчетные средние сечения деления ²³⁵U и ²³⁹Pu практически не зависят от формы спектров нейтронов деления и в случае ²⁵²Cf согласуртся с экспериментальными сечениями в пределах 0, I-I, 7%. Следовательно, в случае усреднения по спектру мтновенных нейтронов деления ²³⁵U+n₁ их величины, рекомендуемые в работах /5,6/, можно считать несколько завышенными. В работах /5,6/ завышены также сечения ²³⁷Np, n_U(E) и ²³⁸U, n_U(E). (Здесь на первом месте указан нуклид, для которого приведено сечение, на втором - спектр мгновенных нейтронов деления, по которому усреднено это сечение.) Действительно, средняя энергия спектра нейтронов деления ²³⁵U+n_T на 8% меньше этой же величины в случае ²⁵²Cf [4], а сечения деления нуклидов ²³⁷Np и ²³⁸U в среднем уменьшаются с уменьшением энергии нейтронов. Тогда средние сечения деления ²³⁷Np,n_U(E), ²³⁸U, n_U(E) должны быть меньше расчетных сечений ²³⁷Np,n_{Cf}(E) и ²³⁸U,n_{Cf}(E), которые согласуются с экспериментальными в пределах 1%.

В табл.2 представлены экспериментальные в расчетные отношения сечений деления, усредненных по спектру нейтронов деления ²⁵²cf. Различия между ними находятся почти в пределах ошибок, но их можно уменьшить, если принять расчетное сечение ²³⁵U, n_{cf}(E) равным I200 мб. Это значение сечения хорошо согласуется с результатами работи [7]. В расчетах замечена большая чувствительность значения сечения ²³⁸U, n_{cf}(E) к принятым значениям n_{cf}(E) и б_f(E) для ²³⁸U. Если изменить б_f(E) в области 2,5-5 МэВ на 3%, то среднее сечение изменится на 5%.

Таблица 2

Отношения средних сечений деления трех нуклидов к среднему сечению деления ²³⁵U.(Сечения усреднены по спектру мгновенных нейтронов спонтанного деления ²⁵²Cf)

Нуклид æ	$\left[\bar{\vec{c}}_{f}\left[\boldsymbol{x},\boldsymbol{n}_{C_{f}}(\mathbf{E})\right]/\bar{\vec{c}}_{f}\left[\boldsymbol{x},\boldsymbol{n}_{C_{f}}(\mathbf{E})\right]\right]$	δ	Оценка	გ≖	
•	Экспериментальные /8/				
238 _U 239 _{Pu} 237 _{Np}	0,266 <u>+</u> I,7 I,500 <u>+</u> I,6 I,I05 <u>+</u> 2,2	0,258 I,474 I,096	3 I,7 0,8	0,263 I,500 I,II5	I O O , 9

<u>Примечание</u>. В табл.2,3.5,7 приняти обозначения: $\delta = [(\vec{b}_{3KC\Pi} - \vec{b}_{pac4})/\vec{b}_{3KC\Pi}], \%;$ графа "Оценка" – оценка отношений сечений по рекомендуемым данным табл.8 (см.с.42); $\delta^* = [(\vec{b}_{3KC\Pi} - \vec{b}_{peKOM})/\vec{b}_{3KC\Pi}], \%$.

Отношения сечения деления некоторых нуклидов, усредненных по спектру мгновенных нейтронов деления ²³⁵U + n_T, представлены в табл.3. В этой таблице только в отношении сечений ²³⁵U/²³⁸U наблюдается различие, превышающее ошибки измерений. Это различие можно уменьшить до 3%, если принять, что сечение ²³⁵U, n_I(E) равно I200 мб.

Таблица З

Отношения средних сечений деления трех нуклидов к среднему сечению деления ²³⁸u. (Сечения усреднены по спектру миновенных нейтронов деления ²³⁵U+n_m)

Нуклид æ	$\bar{\vec{o}}_{f}\left[\boldsymbol{x},\boldsymbol{n}_{U}^{(\mathrm{E})}\right]/\bar{\vec{o}}_{f}\left[\boldsymbol{z}^{38}\right]$	8	Оценка	δ¥	
•	Экспериментальные [9]				
235 _U 239 _{Pu} 237 _{Np}	3,94 <u>+</u> 0,08 5,93 <u>+</u> 0,I3 4,35 <u>+</u> 0,I3	4,15 6,09 4,45	5,3 2,7 2,3	3,974 5,957 4,37	0,9 0,5 0,5

Итоги анализа показывают, что расчетные и экспериментальные средние сечения деления нуклидов мгновенными нейтронами деления ²³⁵U+n_т и ²⁵²Cf согласуются в пределах $\leq 3\%$. В большинстве случаев согласие улучшается до 0,5-I%, если принять $\tilde{G}_{f} \begin{bmatrix} 235 \mathrm{U}, \mathrm{n}_{U}(\mathbf{E}) \end{bmatrix} \simeq \tilde{G}_{f} \begin{bmatrix} 235 \mathrm{U}, \mathrm{n}_{Gf}(\mathbf{E}) \end{bmatrix} \simeq 1200$ мб. Расчетные и экспериментальные средние сечения пороговых реакций даны в табл.4. В этой таб-

Расчетные и экспериментальные средние сечения пороговых реакции даны в таш.4. В этом таслице большинство расчетных средних сечений согласуется с экспериментальными данными в пределах описок измерений.

В табл.5 представлены результаты измерений и расчетов отношений сечений взаимодействия нуклидов с нейтронами деления ²³⁵U+n_m. Из данных этой таблицы следует согласие расчетных и экспериментальных значений в пределах 3% при средней ошибке измерений около 3%.

Спектр нейтронов деления	$27_{\texttt{al}(n,\alpha)}^{24}$ Na	27 _{Al(n,p)} 27 _{Mg}	¹¹⁵ In(n,n') ^{115m} In	⁵⁶ Fe(n,p) ⁵⁶ Mn	⁴⁶ Ti(n,p) ⁴⁶ Sc
235 _{0+n}	0,672 0,725 <u>+</u> 0,020 <i>[</i> 5 <i>]</i>	<u>4</u> 4,0 <u>+</u> 0,4 <i>[</i> 5 <i>]</i>	<u>_ 179</u> 188 <u>+</u> 4 <i>[</i> 5]	<u> </u>	<u>12,5</u> 12,3 <u>+</u> 0,5 <i>[</i> 57
239 _{Pu+n}	<u>0,791</u>	<u>5.03</u>	<u>190</u>	<u>1,26</u>	<u>15,8</u>
252 ₀₁	<u> </u>	<u>5,47</u> 5,II <u>+</u> 0,43 /II7	 .	<u> </u>	<u>15.8</u> 14.0 <u>+</u> 0,3 /10/

Абсолютные значения средних сечений пороговых реакций, мо

Примечание. Числитель - расчетные, знаменатель - экспериментальные значения средних сечений.

таблица 5

Отношения средних сечений взаимодействия нуклидов с нейтронами деления ²³⁵0-и_т

Реакции	Эксперименталь- ные	Расчетные	δ	Оценка	δ [¥] ,
$\frac{27_{A1}(n,\alpha)^{115}In(n,n^{\circ})}{27_{A1}(n,p)^{115}In(n,n^{\circ})}$ $\frac{27_{A1}(n,\alpha)^{27}In(n,n^{\circ})}{115_{In}(n,n^{\circ})^{278}U(n,f)}$ $\frac{197_{AU}(n,\gamma)^{238}U(n,f)}{197_{AU}(n,\gamma)^{238}U(n,f)}$	0,0036±3 /12/ 0,0241±2 /12/ 0,149 ±2 /12/ 0,620 ±0,019 0,287 ±0,014 /9/	0,0037 0,0240 0,156 0,607 0,276	3 0,4 4,7 2,I 3,8	0,00367 0,02403 0,153 0,609 0,284	2 0,I 2,6 I,8 I

По средним сечениям взаимодействия нуклидов с нейтронами деления ²³⁹Рина_т имеется мало информации. Экспериментальные и расчетные данные по этим сечениям представлены в табл.6,7.

Таблица 6

Отношения средних сечений взаимодействия нуклидов с нейтронами деления ²³⁹Рини_т

Реакции	Экспериментальные /12/	Расчетные	δ
$27_{Al(n,\alpha)}/115_{In(n,n')}$ $27_{Al(n,p)}/115_{In(n,n')}$	$0,00423\pm 2$ $0,0265\pm 2$ (10,6-340 THURN)	0,00416 0,0264	I,6 0,38
²⁷ Al(n, ~)/ ²⁷ Al(n, p)	0,158 ±1,5	0,157	0,38

Таблица 7

Отношения сечений реакций, усредненных по спектру миновенных нейтронов деления ²³⁹Рина, к сечениям тех же реакций, усредненным по спектру миновенных нейтронов деления ²³⁵U-на.

Реакции	Экспериментальные /12/	Расчетные	δ	Оценка	** ئ
$\frac{27_{\text{Al}(n,p)}/^{115}\text{In}(n,n')}{27_{\text{Al}(n,\alpha)}/^{115}\text{In}(n,n')}$ $\frac{27_{\text{Al}(n,\alpha)}/^{27}\text{Al}(n,p)}{27_{\text{Al}(n,p)}}$	I,095 <u>+</u> 0,020	I,I02	0,65	I,099	0,33
	I,I7 <u>+</u> 0,4	I,II	5,3	I,I34	3,2
	I,060 <u>+</u> 0,026	I,006	5	I,026	3,3

Дж.А.Грюндл /137 экспериментально определил величину

$$\frac{\overline{c_f}\left[{}^{235}\mathbf{U}, \mathbf{n_{Pu}}(\mathbf{E})\right]}{\overline{c_f}\left[{}^{238}\mathbf{U}, \mathbf{n_{Pu}}(\mathbf{E})\right]} = 0,970\pm0,012.$$

$$\frac{\overline{c_f}\left[{}^{235}\mathbf{U}, \mathbf{n_{U}}(\mathbf{E})\right]}{\overline{c_f}\left[{}^{238}\mathbf{U}, \mathbf{n_{U}}(\mathbf{E})\right]} = 0,970\pm0,012.$$

Эта же величина по оценкам равна 0,92±0,02 и 0,960±0,005 в случае измерений дийференциальными и интегральными методами соответственно /I37. Ее значение из расчета равно 0,93. По данным табл.8 она равна 0,956. На основе анализа и усреднения соответствующих расчетных и экспериментальных данных предлагаются величины средних сечений, представленные в табл.8. Их использование позволяет получить удовлетворительное согласие всех экспериментальных данных работ /7-I37 как между собой, так и с расчетными оценками. Расхождения не превышают 2 для сечений, усредненных по одному из указанных спектров миновенных нейтронов деления, и 3,3% для отношений сечений, усредненных по разным спектрам.

Таблица 8

Спектр нейтронов деления	²³⁵ U(n,f)	²³⁹ Pu(n,f)	237 _{Np(n,f)}	²³⁸ U(n,f)	27 _{Al(n,a})	²⁷ Al(n,p)	¹¹⁵ In(n,n')	⁵⁶ Fe(n,p)	46 _{Ti(n,p)}	¹⁹⁷ Au(n,p)
235 _{U+nr}	1200	1799	1320	302	0,676	4,42	183,9	I,07	12,4	85,7
239 _{Pu+n}	1204	1805	1350	317	0,79I	5,03	190	I,26	15	-
252 _{C1}	1204	1805	1342	317	I,0I	5,47	-	I,5	15	-

Рекомендуемые данные по средним сечениям, мо

Список литературы

- I. Абагян Л.П., Базазянц Н.О., Николаев М.Н., Цибуля А.М. Атомн. энергия, 1980, т.48, вып.2, с.117.
- 2. Анцинов Г.В., Бендерский А.Р., Коньшин В.А. и др. Вопросы атомной науки и техники. Сер. Ядерные константы. Ч.2, вып.20. М.: ЦНИИатоминформ, 1975. с.3.
- Schett A., Okamoto K., Lesca L. e.a. Compilation of Threshold Reaction Neutron Cross-Sections. - EANDC 95 "U", 1974.
- 4. Стеростов Б.И., Семенов А.Ф., Нефедов В.Н. Анализ и оценка экспериментальных данных по спектрам мгновенных нейтронов деления. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.2 (37), с.3.
- 5. Fabry A. Evaluation of microscopic integral cross-sections averaged in the ²³³U thermal fission neutron spectrum (for 29 nuclear reactions relevant to neutron dosimetry and fast reactor technology). BLG 465, 1972.
- 6. Calamand A. Cross-sections for fission neutron spectrum induced reactions. Handbook on Nuclear Activation Cross-sections. Technical reports series. Vienna: IAEA, 1974.
- 7. Heaton II H.T., Grundl J.A., Spiegel V. Proc. Int. Conf. on Nuclear Cross-Sections and Technology. V.1. Washington, 1975, p.266.
- 8. Gilliam D.M., Eisenhauer G., Heaton H.T., Grundl J.A. Ibid., p. 270.
- 9. Fabry A., Grundl J.A., Eisenhauer G. Ibid., p.254.
- IO. Alberts W.G., Bortfeldt J., Gunther E. e.a. Ibid., p.273.
- II. Dezso Z., Csikai J. Average cross-sections for the ²⁵²Cf neutron spectrum.-B кн.: Нейтронная физика (Материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, 18-22 апреля 1977 г.). М.: ШНИМатоминформ, 1977, ч.3, с.32.
- I2. Fabry A. Prompt Fission Neutron Spectra. Vienna: IAEA, 1972, p.97.
- I3. Grundl J.A. Ibid., p.107.

Статья поступила в редакцию 2 сентября 1980 г.

спектры нейтронов вынукденного деления ²³³и, ²³⁵и, ²³⁹ри телловили нейтронами и спонтанного деления ²⁵²ст

В.И.Большов, К.Е.Володин, В.Г.Нестеров, Ю.М.Турчин

THE THERMAL NEUTRON-INDUCED FISSION NEUTRON SPECTRA OF 233 U, 235 U, 239 Pu AND SPONTANEOUS FISSION OF 252 Cf. The results of measurements of 233 U, 235 U, 239 Pu fission neutron spectra by thermal neutron flux of the reactor EP-IO and spontane-ous fission of 252 Cf by scintillation method with crystals of stilbene and anthracene are presented. The value of parameters Θ of maxwellian distribution used for the approximation of the results of measurements are determined. The accordance with the results of the earlier measurements of the same experimental groop and last evaluation data is demonstrated.

По мере уточнения потребностей атомной энергетики в ядерных данных и увеличения возможностей для более совершенных расчетов реакторов все более высокие требования предъявляются к ядерным константам, входящим в расчеты, в частности к значению энергетического спектра нейтронов деления основных делящихся изотопов. Это обстоятельство определило увеличение числа методических рекомендаций экспериментальных работ, результаты которых, однако, еще обнаруживают значительный разброс, обусловленный известными трудностями измерения нейтронных распределений и скрытыми систематическими ошибками.

Эксперимент и обработка данных. В настоящей работе описываются измерения спектров нейтронов деления ²³³U, ²³⁵U, ²³⁹Pu тепловыми нейтронами и спонтанного деления ²⁵²Cf, выполненные с помощью однокристального сцинтилляционного спектрометра с дискриминацией *у*-излучения по форме импульса. О результатах аналогичных измерений для ²³⁵U и ²³⁹Pu сообщалось ранее /I/. Исспедования осуществляли на нейтронном генераторе с использованием в качестве первичных нейтронов реакции **f**(**p**,**n**) со средней энергией около 80 кэВ. При этом возникла необходимость исключить фон жестких нейтронов, существенный при энергиях выше IO МэВ, поэтому эксперименты решили продолжить на тепловом пучке реактора EP-IO.

Одним из главных источников погрешностей метода однокристального спектрометра нейтронов неточная градуировка энергетической шкалы. Погрешность возникает при измерении кривой световыход - энергия. Чтоон контролировать и уменьшить величину погрешности, в настоящем эксперименте использовали два разных сцинтиллятора (стильбен и антрацен), имеющих заметно различающиеся энергетические занисимости световыхода (рис.1). Через экспериментальные точки, полученные на нейтронном генераторе, была проведена кривая вида

$$\mathbf{E}_{\mathbf{D}} = \mathbf{A} \mathbf{E}_{\mathbf{D}}^{\mathbf{D}} \exp(\mathbf{C} \mathbf{E}_{\mathbf{D}}),$$

УДК 539.185

где **к**_р - максимальная энергия протонов отдачи, возниканцих в результате рассеяния моноэнергетических нейтронов известной энергии; **с**_е максимальная энергия комптоновских электронов. Параметры кривой находили методом наименьших квадратов. Отклонение экспериментальных точек от аналитической кривой по шкале энергии протонов отдачи не пренышало 30-40 кэВ, или 0,5% при энергиях 6-8 МэВ, при которых наблюдались наибольшие отклонения.

Рис. I. Зависимость световихода от энергии протонов Е_р: • - кристалл стильбена со шкалой IO MsB (кривая I) и более IO MsB (кривая 2); • - антраден

Неточность определения кривой световихода наиболее наглядно проявлялась при обработке столообразных распределений протонов отдачи. На рис.2 показаны результати обработки таких распределений от нейтронов с энертиями 17; 6,5 и 2,675 МэВ для кристалла стильбена и с энертией 6 МэВ для кристалла антрацена. Как видно из рисунка, максимумы получающихся нейтронных распределений с достаточной точностью совпадают с заданной энергией мононейтронов, а точки ниже монолинии располатаются вблизи нуля в соответствии с процессом многократного рассеяния и поверхностным эффектом. Кроме того, при обработке распределения от нейтронов с энергией 17 МэВ появляется примесь нейтронов из реакции (d,d) с дейтронами, набитыми в деталях ионопровода вблизи мишени, а при обработке распределения от нейтронов с энергиями 6 и 6,5 МэВ видна примесь нейтронов из реакции (d, ¹²с).

Рис.2. Результаты дифференцирования столообразных распределений поотонов отдачи для кристаллов: а - стильбена (▼ - E_n = 2,675 МэВ; х - E_n = 6,5 МэВ) и антрацена (● - E_n = 6 МэВ); б - стильбена (● - E_n = 17 МэВ) (Детектор располагался под углом 60° к направлению пучка дейтронов)

Неточность определения положения комптоновского спада во время измерений составляла $\pm 1/2$ канала амплитудного анализатора, что накладывало ограничение на чувствительность к возможной нестабильности электронной аппаратуры и могло привести к ошибке, бо́льшей, чем ошибка, связанная с неопределенностью световыхода. В связи с этим можно было оценить величину систематической ошибки параметра максвелловского распределения Θ , варьируя при обработке положения реперных энергий в пределах одного канала. В таблице приведена полученная таким образом систематическая ошибка $\delta \Theta_{сист}$, которая суммировалась со статистической $\delta \Theta_{стат}$ благодаря их незанистио природе.

Кристалли стильбена и антрацена имели форму палиндра размером 30х30 и 30х20 мм соответственно. В качестве делящихся мишеней использовали металлические диски диаметром 40 мм и толщиной I мм, заключенные в оболочку из нержавеющей стали толщиной 0, I мм. Изотопный состав их был таков, что вкладом делений посторонних ядер можно было пренебречь. Диски располагали на пути пучка под углом 45° к его направлению. Детектор помещали на расстоянии I м от оси пучка и центра дисков. Для снижения фона мяткого слизлучения он бил защищен свинцовым стаканом толщиной 15 мм, что, как показали измерения, не вносило заметных искажений в изучаемые спектры. Для внчитания фонов, связанных с рассеянными нейтровами и наложениями импульсов в электронной скеме, на место исследуемых образцов ставили диск из природного урана такого же размера.

Наряду со спектрами вынужденного деления в той же геометрии в экспериментальном зале реактора измеряли спектр нейтронов спонтанного деления ²⁵²сг, который ранее был измерен в более благоприятных экспериментальных условиях и в данном случае мог служить в качестве контрольного при настройке аппаратуры и измерениях.

Спектры исследовали попеременно отдельными сериями. Суммированные по сериям аппаратурные распределения подвергали сначала стандартной математической обработке, в которой для перевода в шкалу знергий протонов использовали показанные на рис. I кривне световыход - энергия /2/.

Выше порога в схеме дискриминации у-излучения пропускание импульсов от протонов не являлось полным, в связи с чем на низкоэнергетическом участке вводили поправку, зависящую от настройки схеми, величины и стабильности порога дискриминации. С этой целью перед началом эксперимента проводили специальные измерения в условиях низкого фона у-излучения, позволяющего значительно уменьшить порог дискриминатора и определить долю нерегистрируемых импульсов, которую необходимо учесть при восстановлении спектра протонов отдачи из аппаратурного распределения. Полученные таким образом распределения протонов отдачи, изученные с помощью криоталнов антрацена до энергии примерно 6,5 МаВ и иристаллов стильбена до энергии II МаВ, показани не рис.3.

Puc.3. Annpokenmanna chektpob hootohob otdavn makebennobekum pachpedenehuem heätpohob denehus dis konctannob eturbdeha (I) n antpaneha (2): $o - \frac{252}{2}$ cf, \bullet - to me c hapametpom $\Theta = I,4I$ MaB; $\nabla - \frac{239}{29}$ Pu, Ψ - to me c $\Theta = I,37$ MaB; $\Delta - \frac{235}{20}$, \blacktriangle - to me c $\Theta = I,33$ MaB; $\Diamond - \frac{235}{20}$, \blacklozenge - to me c $\Theta = I,30$ MaB

Дальнейший анализ экспериментальных данных проводили в предположении, что спектр нейтронов описывается максвелловским распределением

$$\mathbb{M}(\mathbb{E}_{n},\Theta) = \frac{2}{\sqrt{3}} \left(\frac{\mathbb{E}}{\Theta^{5}}\right)^{1/2} \exp\left(-\frac{\mathbb{E}}{\Theta}\right),$$

единственный параметр которого можно найти непосредственно из спектра протонов отдачи

 $N(E_{p}) = C \int_{E_{p}}^{\infty} N(E_{n}, \theta) \frac{1 - \exp\left[-\sum (E_{n})h\right]}{E_{n}} dE_{n}$ (1)

(где h – толщина кристалла), не прибегая к решению данного интегрального уравнения для отискания м(E_n, O). Для этого воспользовались методом максимального правдоподобия, применение которого к задаче, представляющей интерес, было рассмотрено в работах /3,47. Сечение рассеяния на водороде (в барнах) описывалось гладкой зависимостью

$$\delta_{\rm H} (E_{\rm n}) = \frac{4.85}{\sqrt{E_{\rm n}}} - 0,598.$$
(2)

Численные значения интеграла (I) для всех энергий Е_р, соответствующих положению экспериментальных точек, находили до E^{MAKC} = 25 МэВ с шагом разбиения энергетического интервала около 0,I МэВ. Дальнейшее дробление шага существенного увеличения точности не давало. Результаты такого описания приведены на рис.3 и в таблице. Статистическую ошибку рассчитывали согласно данным работн /4/.

Целя-						Стильбен				Антрацен						
Щиисн ИЗО-	изо— $\Delta \mathbf{E}_n = \mathbf{I} - \mathbf{II} \mathrm{Max}$					ΔE _n = 3-II M∋B			$\Delta \mathbf{E}_{\mathbf{n}} = \mathbf{I} - 6, 5 \text{MaB}$			$\Delta \mathbf{E}_{\mathbf{n}} = \mathbf{I} - 6, 5 \text{ MaB}$				
топ	0	δθ _{стат}	б0 _{сист}	дө ^{сүм}	0	δθ _{стат}	бө _{сист}	б _{осум}	0	δθ _{стат}	бо _{сист}	ა მ	0	δθ _{стат}	ზმ _{сист}	бө _{сум}
233 _U 235 _U 239 _{Pu} 252 _{Cf}	I,336 I,303 I,371 I,4I3	0,012 0,009 0,008 0,008	0,009 0,009 0,009 0,009	0,021 0,018 0,017 0,017	I,33I I,296 I,368 I,407	0,0I3 0,0II 0,0I0 0,0I0	0,009 0,009 0,009 0,009	0,022 0,020 0,019 0,019	I,339 I,307 I,375 I,417	0,0I5 0,0I3 0,0I2 0,0I3	0,008 0,009 0,009 0,009	0,023 0,022 0,021 0,022	I,342 I,303 I,376 I,406	0,0I3 0,0I2 0,0II 0,0II	0,008 0,008 0,008 0,008	0,02I 0,020 0,0I9 0,020

Температурные параметры спектров по энергетическим диапазонам для двух кристаллов

<u>Результати эксцеримента</u>. Данные рис.З показивают, что начиная с энергии нейтронов примерно 7 МэВ спектры смягчаются по сравнению с максвелловской формулой в соответствии с результатами работы /5/. Как видно из таблицы, систематическая ошибка сравнима со статистической. Найденные значения параметра для всех делящихся изотопов в измерениях с кристаллами стильбена и антрацена хорошо согласуются между собой, подтверждают в пределах ошибок более ранние измерения /I/ и совпадают с оценочными параметрами работы /5/.

Список литературы

- I. Александрова З.А., Большов В.И., Кузнецов В.Ф. и др. Атомн. энергия, 1975, т.38, с.108.
- Дулин В.А., Казанский Ю.А., Кузнецов В.Ф., Смиренкин Г.Н. Приборы и техника эксперимента, 1961, № 2, с.35.
- 3. Большов Б.И., Гордеева Л.Д., Кузнецов В.Ф., Смиренкин Г.Н. В кн.: Физика деления ядер. М.: Госатомиздат, 1962, с.127.
- 4. Золотухин В.А. В кн.: Теория и методы расчета ядерных реакторов. М.: Госатомиздат, 1962, с. 223.
- Старостов Б.И., Семенов А.Ф., Нефедов В.Н. Анализ и оценка экспериментальных данных по спектрам мгновенных нейтронов деления. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вып.2(37), с.3.

Статья поступила в редакцию 2 марта 1981 г.

УДК 539.173.4

ОПРЕДЕЛЕНИЕ АБСОЛЮТНЫХ КВАНТОВЫХ ВЫХОДОВ Г-ИЗЛУЧЕНИН КОРОТКОВИВУЩИХ ПРОДУКТОВ ДЕЛЕНИН Г-СПЕКТРОМЕТРИЧЕСКИМ МЕТОДОМ В ЦИКЛИЧЕСКОМ РЕЖИМЕ

А.Н.Гудков, В.В.Казанцев, В.В.Коваленко, А.Б.Колдобский, В.М.Колобашкин, А.И.Слюсаренко

> SHORT-LIVED FISSION PRODUCTS p-RAYS ABSOLUTE INTENCITIES DETERMINATION BY p-RAY SPECTROSCOPY IN CIRCLE IRRADIATION. The modified method for analysis of time-dependent p-ray spectra of gross fission products obtained in circle irradiation is used for measurements of 13 fission products p-rays absolute intencities. The results are compared with compilated p-radiation data. Previously unknown absolute intencities of p-rays following decay of 10 Nb, 102Nb and 144Ba are obtained.

Абсолютные квантовые выходы у-излучения (особенно наиболее интенсивных линий) радионуклидов, в частности продуктов деления, являются важнейшими ядерными константами, характеризующими распад данного ядра. Их значения необходимо знать как для идентификации и измерения рассматринаемого нуклида, так и для изучения и прогнозирования существенных при использованим в прикладных задачах ядерно-физических характеристик отдельных нуклидов и их смесей. В то же время значения абсолютных квантовых выходов основных у-линий даже хорошо изученных радионуклидов осколочного происхождения, приведенные в различных литературных источниках, в некоторых случаях существенно различаются /1/. Для короткоживущих продуктов деления эти различия встречаются значительно чаще, что подтверждается аналкзом некоторых компиляций /2-4/.

Причина указанных несогласованностей заключается в ограниченности экспериментальных возможностей исследования характеристик *у*-излучения многокомпонентных смесей короткоживущах радионуклидов. Традиционные радиохимические методы изотопного анализа в этих случаях часто неприменимы из-за необходимости провести нужные сепарирующие процедуры в течение ограниченного (несколькс секунд) времени. Информация же, полученная на современных масс-сепараторах, обычно не может быть проверена другими методами, что не позволяет выявить и скорректировать возможные систематические погрещности измерений.

Изложенные обстоятельства свидетельстнуют о необходимости как дальнейшего накопления информации об абсолютных квантовых выходах *п*-излучения короткожинущих продуктов деления, так и разработки для этой цели новых экспериментальных методов. В настоящей работе описываются методика и результаты измерений абсолютных квантовых выходов *п*-излучения короткоживущих осколоч. Эх ядер с использованием полупроводниковой *п*-спектрометрии облученного образца делящегося материала в циклическом режиме без предварительной химической сепарации /5/. Абсолютный квантовый выход исследуемых *п*-линий определяли следующим образом:

$$\eta\left[(E_{\mathfrak{f}})_{\mathfrak{X}}\right] = \frac{A\left[(E_{\mathfrak{f}})_{\mathfrak{X}}\right]}{A\left[(E_{\mathfrak{f}})_{\mathfrak{Z}}\right]} \frac{\beta\left[(E_{\mathfrak{f}})_{\mathfrak{Z}}\right]}{\beta\left[(E_{\mathfrak{f}})_{\mathfrak{X}}\right]} \frac{\varepsilon\left[(E_{\mathfrak{f}})_{\mathfrak{Z}}\right]}{\varepsilon\left[(E_{\mathfrak{f}})_{\mathfrak{X}}\right]} \frac{Y_{\mathfrak{c}}^{(c)}}{Y_{\mathfrak{x}}^{(c)}} \eta\left[(E_{\mathfrak{f}})_{\mathfrak{c}}\right],$$

где индекс х описывает осколочный нуклид с хорошо известным кумулятивным выходом, при распаде которого возникает исследуемая р-линия; z – реперный нуклид, для которого с высокой надежностью известны выход при делении и абсолитный квантовый выход сопровождающей его распад и удобной для детектирования р-линии. При наличии у реперного нуклида нескольких удобных для регистрации г-линий или же нескольких реперных нуклидов искомую величину $\eta \left[(E_{p})_{x} \right]$ находили усреднением с учетом статистического веса.

В проведенных измерениях отношение $\beta[(E_{g})_{z}]/\beta[(E_{g})_{x}]$ принималось равным единице, так как в исследуемом интервале энергий *г*-излучения самопоглощением в небольшом по размерам образце можно пренебречь. Калибровка спектрометра по относительной фотоэффективности производилась в геометрии измерения образцов с помощью источника ²²⁶ ка в равновессии с дочерними продуктами раснада по методике, описанной в работе /6/. В качестве делящегося материала целесообразно использовать ²³⁵ и, выходы осколочных ядер при деления которого тепловыми нейтронами известны лучше, чем для других процессов деления. Облучение проводили на реакторе ИРТ-2000(МИФИ) в потоке нейтронов плотностью около 2·10¹⁰ нейтр./(см²·с). Время облучения и число измерений в каждом цикле онли выбраны равными 10 и 30с соответственно при длительности каждого измерения по "живому" времени 2 с. Число циклов составило 41.

Необходимые характеристики реперных продуктов деления представлены в табл. I, а результаты измерения в сравнении с имеющейся экспериментальной информацией – в табл.2. Значения кумулятив-ных выходов продуктов деления ²³⁵ и тепловыми нейтронами выбраны в соответствии с данными работы /77.

Характеристики	реперных	нуклидов	

Таблица I

Нуклид	T _{I/2} ,c	$_{\mathrm{K} \ni \mathrm{B}}^{E} r$,	$\eta\left[\left(E_{r}\right)_{z}\right], \%$	Y _z ^(c) [7]
⁸⁹ Kr	I90,8	220,9	22,5	4,66 <u>+</u> 0,28
137 _{Xe}	205,8	455,45	3I,8	6,17 <u>+</u> 0,37

Полученные результаты свидетельствуют, на наш взгляд, о широких возможностях, которые открывает использование метода АТ-анализа в циклическом режиме для исследования ядерно-физических характеристик короткоживущих продуктов деления.

Таблица 2

Нуклид	Τ _{Ι/2} , c	Y ^(C) [7]	Е _Г , кэВ	η [(Ε _γ)] (компиляционные данные)	η [(Ε _γ)] (результати настоящей работи)
⁸⁸ Br	I6 , 3	2,25 <u>+</u> 0,I3	775,2	77 [2],[3]	39,4 <u>+</u> 4,7
90 _{Kr}	32,32	4,94 <u>+</u> 0,30	121,82	3,349 /27; 33,5 /3/; 58,0 /4/	57,8 <u>+</u> 5,4
⁹⁹ zr	2,4	5,43 <u>+</u> 0,32	469,2	56 [3]; 50 [4]	40,3 <u>+</u> 4,6
99 _{N1}	I5,0	3,93 <u>+</u> 0,3I	137,2	7I /37; 92 /4/	87,5 <u>+</u> 8,9
100 _{Zr}	7,I	5,60 <u>+</u> 0,II [#]	504,3	57,4I <u>/</u> 2/	24,I <u>+</u> 2,0
101 _{Ni}	7,I	4,99 <u>+</u> 0,I7 [≇]	276,4	-	I6,7 <u>+</u> I,6
102 _{N1}	4,5	4,08 <u>+</u> 0,38	296,4; 551,9	-	36,7+3,9; II,7 <u>+</u> I,3
103 _{Tc}	54,2	3,I6 <u>+</u> 0,I9 [≭]	210,3	17,928 /27; 6,9 /3/	19,9 <u>+</u> 2,3
			346,2	27,201/27; 14,0 /3/	30,3 <u>+</u> 3,5
¹³⁹ Xe	39,7	5 ,3 I <u>+</u> 0,32	174,92	2I,027_/2/; I7,8_/3/; I9,6_/4/	I4,7 <u>+</u> I,4
		-	218,59	56,83 /27; 50,2 /3/; 55,0 /4/	39,8 <u>+</u> 4,2
140 _{Xe}	I3 , 6	3,75 <u>+</u> 0,23	62I , 98	8,4 /3/	10,7 <u>+</u> 2,0
143 _{Ba}	I2,0	5,23 <u>+</u> 0,36	2II,5	IO / 3/	I7,6 <u>+</u> 2,5
¹⁴⁴ B a	IO,7	4,28 <u>+</u> 0,34	388,0 430,4	••••••••••••••••••••••••••••••••••••••	9,I±I,4 25,8±3,0
¹⁴⁴ La	42,4	5,35 <u>+</u> 0,06 [×]	* 397,3	90,33 [2]	90,9 <u>+</u> 6,I

Абсолютные	KBAHTOBH	Э ВЫХОД	ы ү-излу	чения
RODOLKOMAR	лих прод	тктов д	еления	

х Значения кумулятивных выходов получены суммированием относительных независимых выходов предшественников изучаемого ядра с последущим умноже-нием на рекомендованное значение выхода данной масси. xx Значение кумулятивного выхода ¹⁴⁴Le получено вычитанием из кумуля-тивного выхода ¹⁴⁴Се независимого выхода ¹⁴⁴Се.

Список литературы

- I. Гудков А.Н., Живун В.М., Коваленко В.В. и др. Определение абсолютного квантового выхода гамма-излучения с энергией 196, I кэВ криптона-88 методом амплитудно-временного анализа спектра гамма-излучения несепарированной смеси продуктов деления. – В кн.: Экспериментальные методн ядерной физики. Вып.5. М.: Атомиздат, 1979, с.109-112.
- Blacot J., Fiche Ch. Gamma-Ray and Half-Life Data for the Fission Products. Atom. Data Nucl. Data Tabl., 1977, v.20, p.241-310.
- 3. Reus V., Westmeier I., Warnecke I. Gamma-Ray Catalog. Report GSI-79-2, 1979.
- 4. Tobias A. An Ordered Table of Gamma Radiation Derived from an ENDF/B-IV Fission Product Data File.- Report ENL-RD/B/N 4053, 1977.
- 6. Бялко А.А., Гудков А.Н., Живун В.М. и др. Выходы продуктов урана-235 и плутония-239 нейтронами спектра быстрого реактора БР-I. - См. /I/, вып.3, с.82-95.
- 7. Meek M.E., Rider B.F. Compilation of Fission Product Yields. Report NEDO-12154-2, 1977.

Статья поступила в редакцию II декабря 1980 г.

удх 539.173.4 измерение выходов короткоживущих продуктов деления ²³³u тепловыми нейтронами *у*-спектрометрическим методом в циклическом режиме А.Н.Гудков, В.В.Казанцев, В.В.Коваленко, А.Б.Колдобский, В.М.Колобашкин, А.И.Слосаренко

SHORT-LIVED FISSION PRODUCTS YIELD MEASUREMENTS FOR THERMAL NEUTRON INDUCED FISSION OF 233 U BY $_{D}$ -RAY SPECTROSCOPY OF GROSS FISSION PRODUCTS IN CIRCLE IRRADIATION. The medified method for analysis of time-dependent $_{D}$ -ray spectra of gross fission products obtained in circle irradiation developed for measuring of fission products yields is described. The results of determination of cumulative yields for thermal neutron induced fission of 233 U are presented.

Дальнейшее накопление и систематизация экспериментальной информации о выходах находящихся вдали от линии β-стабильности продуктов деления тяжелых ядер нейтронами связаны с необходимостью развития методов изотопного анализа многокомпонентных смесей короткоживущих радионуклидов. В этих случаях применение традиционных методов изотопного анализа, таких, как радиохимия и массспектрометрия, сопряжено с серьезными трудностями. Использование же с этой целью масс-сепараторов ядер отдачи также имеет существенные ограничения: к настоящему времени эти установки могут быть использованы для анализа выходов продуктов деления лишь в легком пике массовых распределений; все опубликованные результати исследований на масс-сепараторах получены при исследовании выходов продуктов деления ²³⁵0 тепловыми нейтронами и не охватывают иных реакций деления; экспериментальные комплексы на основе масс-сепараторов ядер отдачи чрезвычайно сложны и дороги в проектировании, постройке и эксплуатации, что делает их широкое использование различными научными группами невозможным.

Изложенные обстоятельства указывают на актуальность как разработки новых методов измерения выходов короткоживущих продуктов деления, так и исследований массовых и зарядовых распределений осколочных нуклидов при протекании реакций деления, отличных от деления ²³⁵0 тепловыми нейтронами. В настоящей работе описываются методика и основные результаты измерений кумулятивных выходов короткоживущих продуктов деления ²³³U тепловыми нейтронами с использованием полупроводниковой *р*-спектрометрии облученного образца в циклическом режиме без предварительной химической сепарации.

Эксперимент проводили следующим образом. Исследуемые образцы - герметичные навески делящихся материалов массой около 2 мг - облучали в реакторе в течение времени Т. Затем с помощью быстродействующей автоматизированной пневмопочти, оборудованной концевыми выключателями позиций облучения и измерения, таймерами отдельных стадий эксперимента и фиксаторами их реальной длительности (подробное описание пневмопочти приведено в работе /1/), облученный образец доставлялся на позицию измерения (время доставки составляло около 2,5 с); спустя время t после окончания облучения образец измеряли на гамма-спектрометре с коаксиальным германий-литиевым детектором (чувствительным объемом 63 см³ и с энергетическим разрешением 3 коВ для энергии 661 коВ) и многоканальным амилитудным анализатором NTA-1024 на линии с ЭВМ EC-1010. В работе использовали модифицированный метод измерений на последовательных временных интервалах, или медленный АТ-анализ, который был ранее успешно использован для определения выходов сравнительно долгоживущих продуктов деления в одноцикловом режиме /2-5/. В течение каждого цикла облученный образец измеряли несколько десятков раз по "живому" времени анализатора в интервале энергий п-излучения 100-1200 кэВ, причем носле каждого измерения накопленная информация передавалась в оперативную память ЭВМ, а память многоканального амплитудного анализатора полностью освобождалась. По истечении общего времени цикла 8 образец с помощью пневмопочты снова доставлялся на позицию облучения. Затем цикл повторялся, причем временные параметры отдельных стадий эксперименте оставались неизменными. Для выполнения этого требования время выдержки до первого измерения t, выбирали несколько большим, чем максимально возможное время доставки.

В ходе эксперимента информация, накопленная в памяти ЭВМ при измерениях в физически тождественных временных интервалах циклов, суммировалась поканально, чем достигалась необходимая статистика при идентификации и измерениях короткоживущих продуктов деления.

Пусть в скорость счета в исследуемом фотопике вносят вклад L рационуклидов. Тогда скорость счета n_{ii}, обусловленная *i-м* нуклидом (*i = 1,...,L*) в *j-м* цикле, равна

$$n_{ij}(t) = A_i \left[1 - \exp(-\lambda_i T) \right] \sum_{\ell=1}^{J} exp\left\{ -\lambda_i \left[(j-\ell)\Theta + t \right] \right\} = A_i \left[1 - \exp(-\lambda_i T) \right] \left[1 - \exp(-\lambda_i \Theta_j) \right] \left[1 - \exp(-\lambda_i \Theta_j) \right]^{-1} \times \exp(-\lambda_i t).$$
(1)

Здесь λ_i – постоянная распада *i*-го нукляда; $A_i = N_A | \mu \, \delta_f \phi m \varepsilon_{E_p} \eta_{i_{E_p}} \beta_{E_p} Y_i^{(c)}$, где N_A – число Авогадро; μ – относительная атомная масса деляцегося вещества; δ_f – сечение деления; ϕ – плотность потока нейтронов на позиции облучения; m – масса делящегося вещества; ε_{E_p} – светосила спектрометра для p-квантов с энергией E_p ; β_{E_p} – поправка на самопоглощение в образце для энергии E_p ; $\eta_{i_{E_p}}$ – абсолютный квантовый выход p-линии E_p , принадлежащей *i*-му нуклиду; $Y_i^{(c)}$ – абсолютный кумулятивный выход *i*-го нуклида.

Соотношение (I) получено в предположении, что периоды полураспада ядер-предшественников исследуемого нуклида много меньше его собственного периода полураспада и времени Т. Тогда для числа импульсов, обусловленных *i*-м нуклидом к зарегистрированных в исследуемом фотопике за время измерения T_i в *j*-м цикле, можно записать

$$N_{ij}(t,\tau_j) = \int_{t}^{t+\tau_j} P_j(t) n_{ij}(t) dt = A_i \int_{t}^{t+\tau_j} P_j(t) \left[1 - \exp(-\lambda_i \tau)\right] \frac{\left[1 - \exp(-\lambda_i \Theta_j)\right]}{\left[1 - \exp(-\lambda_i \Theta)\right]} \exp(-\lambda_i t) dt,$$

где $P_j(t) = i - P_{oj} \exp \left[-\alpha_j(t) t \right]$ - некоторая функция, учитывающая изменение загрузки спектрометрического тракта во время измерения (47; $P_{oj}, \alpha_j(t)$ - параметри. Установлено, что параметр $\alpha_j(t)$ при $t \ge t$, хорошо описывается выражением $\alpha_j(t) = B_j + C_j | t$, где B_j и C_j - постоянные, определяемые из длительностей каждого измерения по "живому" и текущему времени. Суммируя по всем к циклам, получаем

$$N_{i}(t,k) = \sum_{j=1}^{k} N_{ij}(t,\tau_{j}) = \frac{A_{i}\left[1 - \exp(-\lambda_{i}T)\right]}{\lambda_{i}\left[1 - \exp(-\lambda_{i}\theta)\right]} \sum_{j=1}^{k} G_{ij}V_{ij}$$
(2)

Здесь

$$G_{ij} = 1 - \frac{B_j \lambda_i (\tau_j - \tau_{ij})}{B_j + \lambda_i} \frac{\left\{1 - \exp\left[-(B_j + \lambda_i)\tau_j\right]\right\}}{\left[1 - \exp\left(-B_j\tau_j\right)\right]\left[1 - \exp\left(-\lambda_i\tau_j\right)\right]}$$

٢,

где
$$\mathcal{T}_{\mathcal{HC}} = \int_{t}^{t+l_{j}} P_{j}(t)dt = \mathcal{T}_{j} - P_{0j} \exp\left[-(C_{j} + B_{j}t)\right] \frac{\left[i - \exp(-B_{j}\tau_{j})\right]}{B_{j}} -$$
"живое" время измерения;
 $V_{ij} = \left[i - \exp(-\lambda_{i}\tau_{j})\right] \left[i - \exp(-\lambda_{i}\Theta_{j})\right] \exp(-\lambda_{i}t).$

Сумлируя выражение (2) по і и зная из эксперимента числа импульсов в фотопике при измерениях на последовательных временных интервалах N₉(t_æ, k)±б_æ(æ=I,2,...,М - число измерений в цикле), можно найти коэфициенти A_i, линимизируя с использованием метода наименьших квадратов выражение

$$S = \sum_{\substack{\alpha=1 \\ \alpha \in I}}^{M} \left\{ \sum_{i=1}^{L} \frac{A_i \left[1 - \exp(-\lambda_i T) \right]}{\lambda_i \left[1 - \exp(-\lambda_i 0) \right]} \sum_{j=1}^{K} G_{ij\alpha} Y_{ij\alpha} - N_{\mathfrak{g}}(t_{\alpha}, k) \right\}^2 \frac{1}{\mathcal{G}_{\alpha}^2}$$

Для анализа с целью нахолдения N_э сложных линейчатых спектров *у*-излучения несепарированной смеся продуктов деления использовали модифицированную програми обработки, описанную в работе /6/. Необходимые значения энергий у-излучения и периодов полураспада взяты в соответствии с коглиляцией работи [77.

Виходи продуктов деления ²³³и находили модифицированным методом R-отношений [2,4], определяемым выражением

$$Y_{3i}^{(c)} = Y_{5i}^{(c)} \left(\frac{\overline{A_{3i}}}{A_{5i}} \right) \left[\frac{Y_{3z}^{(c)}}{Y_{5z}^{(c)}} \left(\frac{\overline{A_{5z}}}{A_{3z}} \right) \right] ,$$

где индексами 3 и 5 обозначены величины, относящиеся к ²³³U и ²³⁵U соответственно; индексом с - величины, относящиеся к одному или нескольким реперным нуклидам, значения выходов которых с достаточной наделностью известны как для исследуемого с индексом 3, так и для нормирукщего с индексом 5 процессов деления. Индекси усреднения А-отношений отражают возможность измерения исследуемых и (или) реперных продуктов деления по нескольким у-линиям. Усреднение вырадения в квадратных скобках соответствует возможному наличию нескольких реперных нуклидов.

Применение метода R-отношений позволяет избежать необходимости учета физических и регистрационных характеристик п-излучения продуктов деления и предде всего абсолютных квантовых выходов, неопределенности значений которых могут явиться источником серьезных ошибок при нахождении выходов [2,8].

Характеристики реперных нуклидов, используемых в настоящей работе, сведены в табл. І. Значения их выходов вноирали в соответствии с данными работи /97. Незначительный разброс полученных значений О свидетельствует, на нап взгляд, о непротиворечивости применяемой методики.

Временине параметры эксперимента, проведенного на реакторе ИРТ-2000 (LMON) в потоке нейт-ронов с плотностью сколо 10¹⁰ нейтр./(см².с), приведены в табл.2, а полученные результати – в табл.3. Значения выходов исследуемых ядер при делении ²³³U тепловыми нейтронами взяти из работы /97. Следует отметить, что все полученные отношения $Y_5^{(c)}/Y_5^{(c)}$ для изучаемых короткохивущих продуктов деления оказались меньшими единицы. Это соответствует неоднократно отмечавшемуся факту сдви-га наиболее вероятных зарядов $[Z_{P}]_3$ по сравнению с $[Z_{P}]_5$ к области β -стабильных ядер.

Таблипа З

Характеристики реперных продуктов деления

Реперный нуклид	T _{I/2} , c	Y ^(c) , % [9]	Y ^(c) , % <i>[</i> 97	Е _у , кәВ	$\delta = \left[\frac{Y_{3z}^{(c)}}{Y_{5z}^{(c)}} \overline{\left(\frac{A_{5z}}{A_{5z}}\right)}\right]$
⁸⁹ Kr	I90,8	4,66 <u>+</u> 0,28	5,54 <u>+</u> 0,58	218,59	0,651 <u>+</u> 0,055
90 _{Kr}	32,32	4,94 <u>+</u> 0,60	3,92 <u>+</u> 0,39	121,82	0,753 <u>+</u> 0,058
137 _{Xe}	205,8	6,18 <u>+</u> 0,37	6,65 <u>+</u> 0,67	455,45	0,598 <u>+</u> 0,051
139 _{Xe}	39,7	5,31 <u>+</u> 0,32	3,12 <u>+</u> 0,34	218,59	0,638 <u>+</u> 0,067

Примечание. б=0,657±0,028.

Табляца 2 Значения временны́х параметров эксперимента

Делящее- ся ядро	Т, с	k	t ₁ , c	М	τ _ж
235 _U	I0	4 I	3	30	2
233 _U	20	66	3	30	2

Результаты измерений кумулятивных выходов продуктов деления ²³³0 тепловыми нейтронами

Продукт деления	T _{I/2} , c	Y ₅ ^(c) , % [9]	$Y_{5}^{(c)}/Y_{5}^{(c)}$	Y ₅ ^(C) , %
88 _{Br} 99 _{Nb} 100 _{Zr} 101 _{Nb} 103 _{Tc} 136 _I 143 _{Ba} 144 _{La}	I6,3 I5,0 7,I 7,I 54,2 48,0 I2,0 42,4	2,25±0,13 3,93±0,31 5,60±0,11 [#] 4,99±0,17 [#] 3,16±0,19 [#] 5,05 ^{%*} 5,23±0,36 5,35±0,06 ^{****}	0,485 <u>+</u> 0,094 0,548 <u>+</u> 0,028 0,766 <u>+</u> 0,066 0,255 <u>+</u> 0,019 0,495 <u>+</u> 0,060 0,672 <u>+</u> 0,036 0,759 <u>+</u> 0,129 0,860 <u>+</u> 0,043	I,09±0,22 2,I6±0,20 4,29±0,38 I,27±0,II I,57±0,21 3,39 3,97±0,73 4,60±0,23

* Значения кумулятивных выходов получены суммированием относительных независимых выходов предшественников и изучаемого ядра с последущим умножением на рекомендованное значение выхода данной масси.

XX За отсутствием экспериментального значения кумулятивного выхода ¹³⁶I при делении ²³⁵U тепловыми нейтронами использовано его рекомендованное расчетное значение /9/.

жж Значение кумулятивного выхода ¹⁴⁴La получено вычитанием из кумулятивного выхода ¹⁴⁴Ce его независимого выхода.

Список литературы

- I. Гудков А.Н., Казанцев В.В., Колдобский А.Б., Колобалкин В.М. Циклическая пневмотранспортная установка на реакторе ИРТ-2000 МИФИ. – В кн.: Экспериментальные методы ядерной физики. Вып.7, М.: Атомиздат, 1980, с.30-34.
- Гудков А.Н., Живун В.Н., Жуков И.В. и др. Определение выходов продуктов деления тория-232, урана-233, урана-235, урана-238, плутония-239 быстрыми нейтронами. - В кн.: Нейтронная физика (Материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, I8-22 апреля 1977 г.).
 Ч.З. М.: ЦНИИатоминформ, 1977, с.192-196.
- 3. Бялко А.А., Гудков А.Н., Живун В.М. и др. Выходы продуктов деления урана-235 и плутония-239 нейтронами спектра быстрого реактора БР-I. См. /1/, вып.3, с.82-95.
- 4. Гудков А.Н., Емвун В.М., Коваленко В.В. Методика определения выходов продуктов деления тория-232, урана-233, урана-235, урана-238, плутония-239 быстрымы нейтронамы. - Там же, вып.4, с.105-112.
- 5. Гудков А.Н., Живун В.М., Звонарев А.В. и др. Измерение выходов продуктов деления ²³⁶и нейтронами спектра бистрого реактора. - Атомн. энергия, 1980, т.48, вып.6, с.401-402.
- 6. Гудков А.Н., Кивун В.М., Коваленко В.В., Колобашкин В.М. Методика быстрой обработки сложных гамма-спектров несепарированной смеси продуктов деления. - См. /1/, вып.6, с.81-90.

- Blachot J., Fiche Ch. Gamma-Ray and Half-Life Data for the Fission Products. Atom. Data Nucl. Data Tabl., 1977, v.20, p.241-310.
- 8. Гудков А.Н., Живун В.М., Коваленко В.В. и др. Определение абсолютного квантового выхода гамма-излучения с энергией 196, I кэВ криптона-88 методом амплитудно-временно́го анализа спектра гамма-излучения несепарированной смеси продуктов деления. - См./1/, вып.5, с.109-112.
- 9. Meek M.E., Rider B.F. Compilation of Fission Product Yields. Report NEDO-12154-2, 1977.

Статья поступила в редакцию II декабря 1980 г.

УДК 539.170.01

ПОЛУЧЕНИЕ ОБОБЩЕННОГО СПЕКТРА ЧАСТОТ КОЛЕБАНИЙ АТОМОВ ЗАМЕДЛИТЕЛЯ ИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДВАЖДЫ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ РАССЕЯНИЯ МЕДЛЕННЫХ НЕЙТРОНОВ

Ю.В.Лисичкин, А.Г.Новиков, В.А.Семенов, С.И.Тихонова

THE DERIVATION OF THE GENERALIZED FREQUENCY DISTRIBUTION OF MODERATOR ATOMS FROM EXPERIMENTAL DOUBLE DIFFERENTIAL SCATTERING CROSS-SECTION OF THERMAL NEUTRONS. The procedure of the derivation of the generalized frequency distribution function for incoherently scattering atoms is discribed. The problem of the derivation is solved by taking into account effects of elastic (quasielastic), multiphonon and multiple scattering. The results of data processing using the program SPECTR are given both for "paper" and real experiment.

Для расчета различных карактеристик рассеяния медленных нейтронов реакторными замедлителями необходимо (во многих случаях практически достаточно) знать обобщенный спектр частот колебаний основного рассеивающего атома /L/. Как правило, наиболее полные и точные данные по обобщенному спектру частот можно получить, анализируя результаты измерений дважды дифференциальных сечений (ДДС) рассеяния медленных нейтронов /2/. Однако связь обобщенного спектра частот с ДДС даже в случае справедливости некогерентного гауссовского приближения является сложной и носит нелинейный характер /3/:

$$\frac{d^2 6}{d\Omega dE} = \frac{6}{4\pi} \left(1 + \frac{1}{\mu} \right)^2 \frac{k}{k_0} \exp\left[-x^2 \gamma(0) \right] \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt \exp\left[-i\omega t + x^2 \gamma(t) \right], \qquad (1)$$

где

 $r(t) = \frac{\hbar}{2\mu} \int_{-\infty}^{\infty} \frac{\exp(i\omega t)g(\omega)d\omega}{\omega \left[1 - \exp(-\hbar\omega/k_{\rm B}T)\right]};$ (2)

 $x^2 = k^2 + k_0^2 - 2kk_0\cos\theta; \delta_f$ – сечение рассеяния на свободном ядре; μ – масса атома рассеивателя в единицах масси нейтрона; k_0, k – модуль волнового вектора нейтрона до и после рассеяния соответственно; ћ – постоянная Планка, деленная на 2*я*; t – время; ω – круговая частота; k_5 – постоянная Больцмана; Т – температура рассеивателя; $g(\omega)$ – обобщенный спектр частот.

Используя соотношение (2), можно преобразовать выражение (I) таким образом, чтобн выделить в ДДС неупругого рассеяния вклад однофононного рассеяния, линейный относительно $g(\omega)$, с точностью до фактора Дебая — Уоллера:

$$\frac{d^{2} \mathcal{G}_{inel}}{d \Omega dE} = \frac{\mathcal{G}_{f}}{4 \pi} \left(1 + \frac{1}{\mu} \right)^{2} \frac{k}{k_{0}} \exp\left[- \varpi^{2} r^{(0)} \right] \left\langle \frac{\hbar^{2} \varpi^{2}}{2 \mu} \frac{g(\omega)}{\omega \left[\exp(-\hbar \omega / k_{\mathrm{B}} T) - 1 \right]} + \frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} dt \exp(-i\omega t) \left\{ \exp\left[\varpi^{2} r(t) \right] - 1 - \varpi^{2} r(t) \right\} \right\rangle$$
(3)

Второе слагаемое в угловых скобках выражения (3) отражает роль многофононных процессов. Вклад последних в ДДС неупругого рассеяния часто не является малым по сравнению с вкладом однофононных процессов, особенно при высоких температурах замедлителя /3/. Данное обстоятельство обусловливает первую трудность получения величины $q(\omega)$ из ДДС.

Проблема получения обобщенного спектра частот из экспериментальных ДДС значительно затрудняется также наличием весьма существенных в большинстве случаев методических эффектов. Действительно, ДДС неупрутого рассеяния, наблюдаемые в реальном эксперименте, кроме вклада многофононного рассеяния всегда содержат также вклады упругого (за счет конечного разрешения спектрометра) и многократного (за счет конечных размеров образца) рассеяний. В известных авторам работах, в которих $g(\omega)$ получали из нейтронных данных, указанные трудности преодолевали следуищим образом. Вкладом упругого (квазиупругого) рассеяния в ДДС, начиная с некоторого $\varepsilon \ge \varepsilon_{ij}$, пренебрегали. Значение ε_{ij} оценивали, исходя из полуширины функции разрешения в упругом пике. При этом или пренебрегали влиянием конечных размеров образца (4), или предварительно корректировали экспериментальные ДДС на эффект многократного рассеяния (5). Далее осуществиялась итерационная процедура получения $q(\omega)$, основанная на методе Эгельстаффа или на выделении вклада однофононного рассеяния. При этом, как правило, роль разрешения не учитивалась.

В работе [6/показано, что введение поправки на многократное рассеяние ранее проводилось недостаточно корректно. Однако даже при использовании более правильного метода введения этой поправки в случае существенного вклада многократного рассеяния в экспериментальные ДДС недостаточно одноразовой коррекции последних перед применением в дальнейшем итерационной процедуры подучения обобщенного спектра. Подобное фактическое исключение эффектов многократного рассеяния из итерационной процедуры основано на неверном в общем случае представлении о слабой чувствительности многократного рассеяния к изменению формы $g(\omega)$. Однако, хотя вклад многократного рассеяния нейтронов и определяется многократными интегралами от ДДС; во многих случаях он весьма суцественно зависит от обобщенного спектра частот. Дело в том, что среди процессов многократного рассеяния в той области начальных энергий и углов рассеяния, где обычно проводятся нейтронные эксперименти иля получения q(w), преобладают упруго-однофононные и однофононно-упругие переходы. А вклад этих процессов в наблюдаемые ДДС прямо пропорционален обобщенному спектру частот. Поэтому, как правило, вклад многократного рассеяния зависит от $q(\omega)$ значительно сильнее, чем вклад многофононного рассеяния, определяемий интегралами от обобщенного спектра. Данный вывод подтверждается и конкретными расчетами, проделанными по программам FISC и DDS [6]. Кроме того, в большинстве экспериментов, выполняемых в целях определения величины $q(\omega)$, вклад многократнорассеянных нейтронов в области однофононного рассеяния часто существенно превышает вклад многофононного рассеяния. В связи с изложенными обстоятельствами для работ по получению оцененных ДЛС важнейших замедлителей характерна такая ситуация, когда, несмотря на имекщиеся в наличии модели обобщенного спектра частот, полученные различными как экспериментальными, так и расчетными методами, ни одна из моделей не дает достаточного согласия с экспериментальными ДДС, измеренными при различных температурах в широкой области передач импульса и энергии нейтрона. Особенно это относится к измерениям, выполненным при низких начальных энергиях нейтронов и малых утлах рассеяния.

Таким образом, существует необходимость разработки более совершенных методов получения обобщенного спектра частот. В настоящей работе описываются методы получения величины $g(\omega)$, основанные на сравнении экспериментальных ДДС с расчетными, вычисленными адекватно экспериментальным, исходя из заданного приближения $g(\omega)$. Ограничимся рассмотрением замедлителей, к которым хорошо применимо некогерентное приближение. При этом главное ограничение описываемого метода расчета заключается в использовании гауссовского приближения для автокорреляционной функции основного рассеивающего атома. Учет негауссовских эффектов проводится лишь для квазиупругого рассеяния /6/. В рамках указанных ограничений задачу получения модели обобщенного спектра частот, более точной, чем исходная, можно решать различиным вариантами метода последовательных приближений на основе адекватного сравнения расчетных и экспериментальных ДДС. Выбор варианта метода последовательных приближений занисит от объема и точности экспериментальных данных по ДДС, специйики исследуемого замедлителя, а также от точности определения параметров экспериментальной установки, необходимых при учете методических эффектов (например, функции разрешения спектрометра). ДДС, наблюдаемое экспериментально, всегда можно представить в виде суммы сечений, соответствующих вкладам упругого (квезиупругого), однофононного, многофононного и многократного рассеяний:

$$\frac{d^{2} \mathcal{G}_{\text{skcn}}}{d \Omega d E} = \left(\frac{d^{2} \mathcal{G}}{d \Omega d E}\right)_{\text{skp}} + \left(\frac{d^{2} \mathcal{G}}{d \Omega d E}\right)_{\text{outp}} + \left(\frac{d^{2} \mathcal{G}}{d \Omega d E}\right)_{\text{skp}} + \left(\frac{d^{2} \mathcal{G}}{d \Omega d E}\right)_{\text{skp}}.$$
(4)

В случае, если ДДС измерены в абсолитных единицах с хорошей точностью и энергетическая шкала и форма функции разрошения сисктрометра (по крайней мере для упругого пика) определены также с достаточной точностью, процедуру получения обобщенного спектра частот можно организовать следующим образом. Исходя из *n*-го приближения $g(\omega)$, рассчитаем ($d^2 \sigma_{\text{расч}}/d\Omega dE$)_и, адекватное (с учетом сделанных выше замечаний) экспериментальному. Если степень согласия с экспериментом неудовлетворительна, предполатаем, что вся разница $\Delta \sigma_{p,9}^n = d^2 \sigma_{3ксn}/d\Omega dE - (d^2 \sigma_{\rhoасч}/d\Omega dE)_n$ обусловлена отличием истинного обобщенного спектра $g_0(\omega)$ от приближениого $g_n(\omega)$. Так как связь $\Delta \overline{\sigma}_{p,9}^n$ с $g_0(\omega)$ в этом случае остается нелинейной и весьма сложной, перейдем к рассмотрению иместо истанного $g_0(\omega)$ -приближения (*n*+*i*)-го приближения обобщенного слектра, предполагая, что значение $g_n(\omega)$ позволяет точно описать p(0) и все составляющие наблюдаемого ДДС, кроме вклада однофононного рассеяния, наиболее чувствительного к виду $g(\omega)$. Тогда связь (*n*+*i*)- и *n*-го приближений обобщенного спектра частот определится соотношением

$$g_{n+1}(\omega) = \Delta \sigma_{p,\vartheta}^{n} \frac{\omega \left[1 - \exp(-\hbar\omega/kT)\right]}{\left(\sigma_{f}/4\pi\right)\left(k/k_{0}\right)\left(1 + 1/\mu\right)^{2}} \exp\left[\gamma_{n}(0)\varkappa^{2}\right] + g_{n}\omega.$$
(5)

Отметим, что как n -e, так и (n+i)-е приближения обобщенного спектра частот должны быть отнормированы на единицу и неотрицательны. Процедура получения $g(\omega)$, основанная на выражении(5), далее называется методом вычитания. При практическом использовании метода вычитания часто возникают трудности, связанные с недостаточной точностью измерения ДДС, так как вычитание поправок может быть проведено лишь на уровне абсолютных значений. К абсолютным измерениям ДДС, выполненным с невысокой точностью, или к относительным измерениям может быть применена процедура получения обобщенного спектра, которая далее называется методом умножения. В этом методе предполагается, что отношение однофононного вклада к полному ДДС в случае расчета и эксперимента совпадает. Тогда (n+i)-е приближение обобщенного спектра частот получается из *n*-го приближения на основе выражения

$$g_{n+1}(\omega) = \frac{d^2 \sigma_{\mu c \eta}}{d\Omega dE} \frac{\omega \left[1 - \exp(\hbar \omega / kT)\right]}{(\sigma_f / 4\pi)(k/k_0)(1 + 1/\mu)^2} \left(\frac{d^2 \sigma_{\mu \alpha c \eta}}{d\Omega dE} / \frac{d^2 \sigma_{\mu \alpha c \eta}}{d\Omega dE}\right)_n . \tag{6}$$

Методы получения обобщенного спектра частот, кратко рассмотренные выше, были реализованы в программе SPECTR, написанной на языке ФОРТРАН-IУ для ЭВМ БЭСМ-6. Необходимые для получения спектра расчетные характеристики и поправки, входящие в формулы (5), (6), определяются с использованием написанных ранее блоков комплекса программ DDS, SCATL и FISC /6/. ДДС однофононного иекогерентного рассеяния исходного приближения, необходимое при использовании методов умножения и вычитания, усредняется по функции разрешения, если исходная модель спектра частот получена расчетным путем. При вычислении последующих приближений усреднение однофононного ДДС по функции разрешения не производится.

Таким образом, в результате расчетов по программе SPECTR находим обобщенный спектр частот, усредненный по функции разрешения. Для подучения "истинного" вида спектра необходимо решение соответствущей обратной задачи, проводимое специальными методами. В настоящей работе эти вопросы не рассматриваются. Первым этапом проверки метода получения $g(\omega)$, реализованного в программе SPECTR, явились "бумажные" эксперименты по получению обобщенного спектра частот. Это целесообразно с методической точки эрения, так как позволяет:

- избежать неопределенностей, присутствущих при анализе реального эксперимента;

- оценить точность получения $q(\omega)$;

- исследовать зависимость необходимого объема вычислительной работы от заданной точности получения $q(\omega)$.

Рассмотрим "бумажный" эксперимент по получению обобщенного спектра частот для гидрида циркония $2rH_{1,84}$ (порошкообразный образец цилиндрической формы, температура образца $T = 300^{\circ}C$, начальная энергия $E_0 = 8,95$ мэВ, угол рассеяния $\Theta = 38^{\circ}$). Эксперимент проводили следующим образом. Исходя из модели обобщенного спектра частот гидрида пиркония, приведенной в работе $\sqrt{7}$, по программе FISC было вычислено "экспериментально наблющаемое ДДС" для условий, полностью соответствующих реальному эксперименту на спектрометре ДИН-IM. Это ДДС было введено в качестве экспериментальных данных в программу SPECTR. За исходное приближение $g(\omega)$ брали используемую в реакторных расчетах феноменологическую модель обобщенного спектра гидрида пиркония "дебай + гауссиан" [2].

Этот спектр и соответствующие им ДДС, полученные методом умножения, после различного числа итераций в сравнении с истинным и исходным спектрами показаны на рис.1,2. Как видно из рисунков, спектр наиболее медленно приближается к истинному в той области передач энергии, где сечение однофононного рассеяния крайне мало по сравнению с вкладом упругого и многократного рассеяний (что и следовало ожидать). В то же время "экспериментальные" ДДС существенно менее чувствительны к отличию приближенного обобщенного спектра частот от истинного. При применении программы SPECTR к аналогичному реальному эксперименту (рис.3-6) согласие адекватных ДДС несколько хуже, что может быть связано как с ошибками в определении функции разрешения, так и с недостаточной точностью гауссовского приближения.

Рис.І. Обобщенный спектр частот атома водорода в гидриде пиркония ZrH₂ [f(ε)=g(ε)/(2sh ε/kT), где ε=hω; Θ = 38°, "бумажный" эксперимент, метод умножения]: I – исходное приближение; 2 – I-е приближение; 3 – 2-е приближение; 4 – 5-е приближение;5 – истинный спектр, задоженный при расчете экспериментальных ДДС, усредненный по функции разрешения спектрометра; 6 – I4-е приближение.

Рис.2. ДДС гидрида циркония ZrH₂ (E = 0,009 эВ, 0 = 38⁰, T = 573К, "бумажний" эксперимент, метод умножения): I - расчет, исходное приближение; 2 - расчет, I-е приближение; 5 - эксперимент; 6 - расчет, I4-е приближение (промежуточные итерации оцущены)

Рис.3. Обобщенный спектр частот атома водорода в гидриде пиркония ZrH_{1,84} (T = 573K, θ = 38°, реальный эксперимент, метод умножения): I,2,3,4 - соответственно приближения исходное, I-, 5- и I5-е

Рис.4. ДДС гидрида циркония ZrH_{1,84} (E₀ = 0,009 аВ, $9 = 38^{\circ}$, T = 573К, реальный эксперимент, метод умножения): а – оптический пик; б – упругий пик; I – расчет, исходное приближение; 2 – расчет, I-е приближение; 3 – расчет, 5-е приближение; 4 – расчет, I5-е приближение; 5 – эксперимент

Рис.5. Обобщенный спектр частот атома водорода в гидриде пиркония ZrH_{1,84} (0 = 38°, T = 573К, реальный эксперимент): I – исходное приближение; 2 – I5-е приближение, метод умножения; 3 – то же, метод вычитания

Рис.6. ДДС гидрида циркония ZrH_{1,84} (E₀ = 0,009 эВ, $\Theta = 38^{\circ}$, T = 573К, реальный эксперимент): а - оптический пик; б - упругий пик; I - расчет, исходное приближение; 2 - расчет, I5-е приближение, метод укножения; 3 - то же, метод вычитания; 4 - эксперимент

Обработанный по программе SPECTR эксперимент для легкой воды при T = 600K / 8/ интересен потому, что в отличие от приведенных выше примеров в этом случае вклад "однофононных" процессов в ДДС существенно меньше вклада многофононных. Тем не менее рис. 7,8 демонстрируют улучшение согласия расчета и эксперимента с ростом числа итераций. Из рисунков следует также, что влияние исходной модели $q(\omega)$ на результат уменьшается по мере возрастания числа итераций. Это свидетельствует об устойчивости метода получения обобщенного спектра частот.

Рис.7. Обобщенный спектр частот атома водорода в воде (T = 600K, реальный эксперимент, метод умножения): I - исходное приближение, модель Эша /9/; 2 - 3-е приближение; 3 - 7-е приближение

Список литературы

- I. Методы расчета полей тепловых нейтронов в решетках реакторов. М.: Атомиздат, 1974.
- 2. Спектры медленных нейтронов. М.: Атомиздат, 1971.
- 3. Турчин В.Ф. Медленные нейтроны. М.: Атомиздат, 1963.
- 4. Harling O. The Scattering Low for Water at 268 K and 298 K. J. Chem. Phys., 1969, v.50, p.5287.
- 5. Blanckenhagen P. Intermolecular Vibrations and Diffusion in Water Investigated by Scattering of Cold Neutrons. Ber. Bunseng. - Phys. Chem., 1972, v. 76, p. 891.
- Лисичкин Ю.В., Довбенко А.Г., Ефименко Б.А. и др. Учет конечных размеров образца при обработке измерений дважди дифференциальных сечений рассенния медленных нейтронов. – Вопроси атомной науки и техники. Сер. Ядерные константы, 1979, вып.2(33), с.12.
- 7. Slaggie E. Central Force Lattice Dynamical Model for Zirconium Hydride. J. Phys. and Chem. Solids, 1968, v. 29, p. 923.
- 8. Новиков А.Г., Искендеров С.М. Температурная зависимость квазиупругого рассеяния медленных нейтронов водой. Атомн. энергия, 1977, т.42, с.498.
- Bach L., Jeater M., Moore W., Seemann K. The Temperature Dependence of Neutron Inelastic Scattering from Water. - Nucl. Sci. and Engng, 1971, v. 46, p. 223.

Статья поступила в редакцию 2 марта 1981 г.

УДК 539.172.4

ОРТАНИЗАЦИЯ МАШИННОЙ БИБЛИОТЕКИ ОЦЕНЕННЫХ СЕЧЕНИЙ ПОРОГОВЫХ РЕАКЦИЙ БОСПОР-80 И ЕЕ ТЕСТИРОВКА ПО ИНТЕТРАЛЬНЫМ ЭКСПЕРИМЕНТАМ

В.М.Бычков, К.И.Золотарев, А.Б.Пащенко, В.И.Пляскин

A MACHINE LIBRARY OF EVALUATED THRESHOLD REACTION CROSS-SECTI-ONS BOSPOR-80. The Library contains 142 recomended excitation functions of (n,p); (n, α); (n,t)-and (n,2n)-reactions in the energy range from threshold up to 20 MeV. The evaluation based on crytical analysis of experimental data and nuclear reaction models calculations. A comparision of recommended cross-sections averaged on fission neutron spectrum with experimental data is made. BOSPOR-80 evaluated cross-sections are recorded on magnetic tape of the Nuclear Data Centre ES-1033 computer (Obninsk) and can be obtaind by request from CJD.

В 1979 г. была опубликована работа /1/, содержащая компиляцию экспериментальных данных по сечениям пороговых реакций (n,p), (n,c), (n,2n) и рекомендованные функции возбуждения. Дальнейшая работа заключалась в развитии методов оценки, основанных на применении расчетов по теоретическим моделям, расширении числа рекомендованных функций возбуждения, корректировке рекомендованных сечений по интегральным экспериментам и учете появившихся в последнее время экспериментальных данных. Для удовлетворения широкого круга пользователей была организована машинная библиотеке оцененных сечений пороговых реакций БОСПОР-80.

Общие сведения о библиотеке

Библиотека содержит I42 рекомендованные функции возбуждения реакций (n,2n), (n,p), (n, α), (n,t) в дианазоне энергий падающих нейтронов от порога соответствующих реакций до 20 МэВ с щетем 0,I МэВ. Оценка сечений выполнена после критического анализа имеющейся экспериментальной информации и расчетов, основанных на современных моделях протекания ядерных реакций.

При анализе экспериментальных данных предпочтение отдавалось работам, выполненным с колользованием радиохимических методов, обогащенных изотопов, полупроводниковых детекторов и даларт совпадающие в пределах сшибок эксперимента результати. Из рассмотрения искличались данные, которые существенно отличались от совпадающих результатов других авторов.

Экспериментальных данных для проведения надежной оценки функций возбуждения порогоных реакций, вызванных нейтронами, явно недостаточно. Кроме гого, данные разных авторов часто различаются между собой существенно больше приводимых ошибок измерений. Поэтому для получения рекомендованных сечений были использованы расчеты. Это позволило: во-первых, искличить из всеё освокупности экспериментальных данных явно ошибочные; во-вторых, оценить сечения реекций для тех диапазонов энергий налетающих нейтронов и массовых чисел ядер-мишеней, по которым нет экспериментальных данных. Расчеты сечений проводились в рамках оптической, статистической моделей и модели предравновесного распада Грифина. При анализе сечений реакций, вызванных нейтронами с энергией I4-I5 МэВ, учитивались предсказания (N-Z)-систематик. Подробно методика оценки сечений пороговых реакций изложена в работах Д-87.

Для дополнительной корректировки и проверки точности рекомендованных функций возбуждения пороговых реакций, представленных в библиотеке, было проведено их сравнение с результатами интегральных экспериментов в двух направлениях:

- сравнительного анализа рекомендованных микроскопических сечений ⁵⁶ Fe(n,p)⁵⁶ Mn и ⁵⁸Ni(n,p)⁵⁸ со по данным трех библиотек (ENDF/B-IV, UKNDL и EOCHOP-80) на основе одного из методов восстановления нейтронных спектров по измеренным скоростям реакций (данные EOCHOP-80 можно рекомендовать цля практического использования) /9/;

- сравнения экспериментальных сечений, измеренных на спектре деления, с величивами, полученными усреднением функций возбуждения в библиотеке БОСПОР-80 по спектру деление 2350 (в отдельных случаях проводилась корректировка микроскопических сечений в околопороговой области энергий налетающего нейтрона по результатам интегральных данных).

Результаты этого сравнения подробно освещены ниже.

Сечения пороговых реакций, усредненные по спектру деления 2350

Функции возбуждения БОСПСР-80 были усреднены по спектру деления ²³⁵U тепловыми нейтронами для сравнения с сечениями, измеренными на спектре деления.

Спектр нейтронов целения аппроксимировался формулами Уатта (I), Крэнберга (2) и Личмена (3) /IO7:

$$K_1(E) = 0,48395 \exp(-E) \sin h \sqrt{2E};$$
 (I)

$$X_{2}(E) = 0,45274 \exp(-E/0,965) \sin h \sqrt{2,29E}$$
 (2)

$$I_z(E) = 0,76985 \exp(-0,775E) \sqrt{E}$$
 (3)

Различие в спектрах, аппроксимированных перечисленными формулами, показано на рыс. I и 2. Неопределенность в описании спектра нейтронов деления отражает состояние экспериментальных данных. Наибольшая неопределенность наблюдается в области очень мятких и жестких участков спектра.

В качестве примера рассмотрены функции возбуждения реакций (n,p),(n,c) и (n,2n) для сравнительно легкого (⁴⁵sc, puc.3, a) и тяжелого (¹⁹⁷Au, puc.3, d) изотопов. Сопоставление функций возбуждения пороговых реакций с формой спектра деления позволяет предсказать основные тенденции в интегральных сечениях:

- определяющий вклад в интегральные сечения дает пороговая область функции возбуждения, так как число нейтронов деления экспоненциально уменьцается с ростом энергии;

- интегральные сечения реакций (n,p) и (n, α) уменьшаются от легких к тяжелым изотопам вследствие роста кулоновского барьера;

- интегральные сечения реакции (n,2n) растут для тяжелых ядер вследствие уменьшения энергии связи нейтрона.

В таблице приведено сравнение усредненных сечений с интегральными экспериментами. Оцененные экспериментальные данные взяти из работ /II-I67.

Сравнение расчетных и экспериментальных данных не позволяет сделать строгий вывод о применимости той или иной формулы аппроксимации спектра, хотя в целом можно отметить, что формула (I) дает лучшие результаты для сечений реакций (n,p) и (n, α), а из анализа сечений реакции (n,2n) можно заключить, что спектр нейтронов деления скорее является несколько более жестким -

Рис.3. Функции возбуждения реакций: I – (n,p), 2 – (n, ∞), 3 – (n,2n) для изотопов $^{45}sc(a)$ и ^{197}au (б)

ближе к формуле (3). Среднеквадратичное отклонение средних по спектру (1) сечений БОСПОР-80 от оцененных экспериментальных данных составляет приблизительно 25%.

Интересно сраннить сечения, усредненные по спектру деления и полученные для функций возоуждения БОСПОР-80, с результатами различных полуэмпирических оценок. В приведенной таблице даны средние сечения, полученные Перлстейном /17/, и предсказания Каламанда /12/ по систематике Роя и Хаутона. Функции возбуждения реакций (n,p), (n, α) и (n,2n) рассчитаны Перлстейном в полуэмпирическом подходе, а усреднение проводилось по спектру Крэнберга. В целом данные Перлстейна и Каламанда согласуются с экспериментальными сечениями хуже, чем значения БОСПОР-80, полученные при более строгом подходе. Нужно отметить удовлетворительное согласие предсказаний средних по спектру сечений реакции (n,2n) /17/ с данными авторов настоящей статьи. Среднеквадратичное отклонение от сечений БОСПОР-80 составляет примерно 33%. Расчети сечений реакции (n,2n) /12/, за исключением некоторых сильно отличающихся предсказаний в области относительно легких элементов (1⁴N, 1⁹F, 3¹P, 3²S, 3⁵Cl, 3⁹K, ⁵⁰Cr, 5⁴Fe, ⁵⁸Ni), имеют среднеквадратичное отклонение приблизительно 43% от сечений БОСПОР-80, усредненных по спектру (1). Предсказания средних сечений реакций (n, α) и (n,p) /12/ имеют среднеквадратичное отклонение от данных БОС-ПОР-80 примерно 150 и 120% соответственно. В последнем случае сечения для ⁶I4 и ²⁴Mg не принимались во внимание.

Номер		Сечения, усредненные по спектру нейтронов деления нейтронами, мо				^{д 235} U теп	IOBRIMIA			
п•п•	геакция	Эксперимент		ECCIIOP-80	/507	/707				
		-	Уатт	Крэнберг	Личмен	<u>[</u> 1 <u>7</u>]	[14]			
1	² H(n,2n) ¹ H	-	5,41	5,17	5,19	-	-			
2	⁶ Li(np) ⁶ He	-	4,18	4,09	3,91	-	39			
3	⁶ Li(n2n) ⁵ Li	- 1	0,158	0,142	0,173	- 1	2,1			
4	⁹ Be(n2n) ⁸ Be	144 <u>+</u> 6	143	140	135	-	250			
5	¹⁰ B(nt)	-	23,8	23,4	22,6	-	-			
6	$12_{C(np)} 12_{B}$	i -	0,26.10 ⁻³	0 ,2•10⁻³	0,47•10 ⁻³	-	<0,1.10 ⁻³			
7	$^{14}\mathbb{N}(n\alpha)^{11}\mathbb{B}$	-	91,0	90,2	86	-	25			
8	$14_{N(n2n)}13_{N}$	-	0,94•10 ⁻³	0,77.10 ⁻³	1,3 •10 ⁻²	–	0,03			

Сравнение функций возбуждения БОСПОР-80, усредненных по спектру нейтронов деления ²³⁵U, с экспериментальными данными и расчетами Перлстейна /17/ и Каламанда /12/

Продолжение таблицы

Номер	Pearms	Сечения, уср	Сечения, усредненные по спектру нейтронов делен нейтронами, мо				
n.n.	1 Optimized	Section	EOCIIOP-80				1
	[оконеримент	Уатт	Крэнберг	Личмен	[<u>17</u>]	<u>_[127</u>
		1		1	1	1	
9	$16_{0(np)} 16_{\rm N}$	0,019±0,001	0,019	0,016	0,024	-	0.0005
10	$16_{0(n\alpha)}13_{c}$	-	11,3	11,0	10,7	-	6.0
11	¹⁹ 3 (np) ¹⁹ 0	0,83 <u>+</u> 0,02	1,18	1,12	1,15	-	0,23
12	$19_{\rm F}({\rm n}\alpha)^{16}{\rm N}$	15,1 ±0,2	14,3	13,8	13,4	- 1	8.0
13	¹⁹ F(n2n) ¹⁸ F	(7.3 +0.7)·10-3	7,7.10-3	6,3•10 ⁻³	1,1.10 ⁻²	-	50.10-3
14	23Na(np) 23 Na	1,43 <u>+</u> 0,02	1,39	1,31	1,36	- 1	0,31
15	²³ Na(n, α) ²⁰ F	0,53 <u>+</u> 0,02	0,556	0,502	0,591	-	0,49
16	²⁵ Na(n2n) ²² Na	$(2,2\pm0,2)\cdot10^{-3}$	4•10 ⁻³	3,15.10-3	6,38.10-3	2,39.10-3	8.10-3
17	²⁴ Mg(np) ²⁴ Na	1,48 <u>+</u> 0,082	1,52	1,4	1,56	-	62
18	²⁷ Al(np) ²⁷ Mg	3,86±0,25	3,99	3,82	3,83		3,1
19	27 Al(n α) ²⁴ Na	0,705+0,040	0,698	0,633	0,724	-	0,48
20	²⁸ Si(np) ²⁸ Al	6,4 <u>+</u> 0,8	7,55	7,08	7,44	-	2.0
21	³¹ P(np) ³¹ Si	35,5 <u>+</u> 2,7	32,5	32,0	30,6	-	11,0
22	$^{31}P(n\alpha)^{28}$	1,9+0,6	1,95	1,81	1,94	-	1.1
23	${}^{31}P(n2n){}^{30}P$	-	1,09.10-3	0,859•10-3	1,69.10-3	0,36•10-3	0,013
24	³² S(np) ³² P	66,8 <u>+</u> 3,7	65,6	64,5	61,9	-	100
25	$^{32}S(n\alpha)^{29}Si$	_	43,6	42,8	41,2	-	13
26	³² S(nt) ³⁰ P	- · -	1,06.10-5	0,8.10-5	1,8·10 ⁻⁵	-	-
27	32 S(n2n) 31 S] –	0,63•10-5	0,48•10 ⁻⁵	1,18•10 ⁻⁵	-	8•10-4
28	$^{54}S(n\alpha)^{51}Si$	2,2±0,2	2,3	2,14	2,29	-	13
29	25 Cl(n α) 32 P	8,8 <u>+</u> 4,6	10,7	10,3	10,2	- '_	8,0
30	⁵⁵ Cl(n2n) ⁵⁴ Cl	-	0,79*10-3	0,62.10-3	1,25.10-3	0,34•10 ⁻³	0,01
31	²⁵ Cl(n2n) ^{24m} Cl		0,51.10-3	0 ,4•10⁻³	0,8•10 ⁻³	-	-
.32	²⁹ K(np) ²⁹ Ar	-	82,2	81,1	78	- 1	20
33	$\frac{29}{50}$ K(n α) $\frac{20}{50}$ Cl	8,0 <u>+</u> 0,3	5,46	5,24	5,24		13
34	²⁹ K(n2n) ²⁸ K	-	0,37•10 ⁻³	0,29•10 ⁻³	0,6.10-3	0,28•10 ⁻³	7•10 ⁻³
35	$\frac{4^{1}}{K(np)}$	2,1 <u>+</u> 0,2	2,21	2,12	2,12	- 1	1,1
36	$\frac{4^{1}}{1}\mathbb{K}(n\alpha)^{20}$	0,76 <u>+</u> 0,05	0,56	0,53	0,55	- 1	2,6
37	$^{+2}Ca(np)^{+2}K$	-	3,44	3,25	3,35	-	2,6
38	⁴⁴ Ca(np) ⁴⁴ K	÷	0,071	0,064	0,077	-	0,11
39	$^{++}Ca(n\alpha)^{++}Ar$	0,061 <u>+</u> 0,009	0,055	0,049	0,061	0,18	0,033
40	$^{+9}$ Sc(np) $^{+9}$ Ca	15 <u>+</u> 12	14,4	14 , 2	13,7	14	22,0
41	49 Sc(n α) 42 K	0,182 <u>+</u> 0,012	0,407	0,373	0,42	-	0,67
42	⁴⁹ Sc(n2n) ⁴⁴ Sc		0,04	0,033 ×	0,057	0,039	0,05
43	⁻ /Sc(n2n) Sc	-	0,012	0,0099	0,018	~	-
44	^{-C} T1(mp) ^{-C} Sc	<u>12,5+0,9</u>	12,8	12,3	12,3	11	12,0
45	$\frac{40}{10}$ Ti(n2n) $\frac{47}{10}$ Ti	(7,8 <u>+</u> 0,9)•10 ²	3,7•10 ⁻³	2,9·10 ⁻²	6 ,1 •10 ⁻³	2 , 0•10 ⁻³	8•10 ³
46	"'Ti(np)"'Sc	19,0 <u>+</u> 1,4	22,2	21,8	21,0	29	11,0
47	⁴⁸ Ti(np) ⁴⁸ Sc	0, <i>3</i> 00 <u>+</u> 0,018	0,262	0,241	0,269	0,28	0,98
48	$\frac{1}{50}$ Ti(np) ⁴⁷ Sc	-	0,47	0,45	0,45	1,2	1,4
49	Ti(np) ²⁰ Sc	-	0,0085	0,0073	0,01	0,025	0,013
50	'∀(n,α) ⁴⁰ Sc	0,022 <u>+</u> 0,003	0,023	0,0204	0,0257	0,017	0,024

Продолжение таблицы

Heree	Destruction	Сечения, усредненные по спектру нейтронов деления ²³⁵ 0 тепловыми нейтронами, мо					
номер п.п.	Реакция	Green and the		EOCIIOP-80		/=~7	/F 07
		эксцерммент	Уатт	Крэнберг	Личмен	<u>/17</u> /	[12]
51	$50_{Gr(n2n)}^{49}_{Gr}$	(6+1)•10 ⁻³	1.8.10-3	1.4.10-3	2.8.10-3	1.6.10-3	0.011
52	52 _{Cr(np)} 52 _V	1,09+0,08	0.76	0.71	0,78	0.76	0,66
53	520r(n2n)510r	-	0.033	0.027	0.048	0.041	0.028
54	⁵⁵ Mn(n2n) ⁵⁴ Mn	0,244 <u>+</u> 0,015	0,231	0,193	0,300	0,180	0,18
55	⁵⁴ Fe(np) ⁵⁴ Mn	79,7 <u>+</u> 4,9	82,2	80,4	77 , 7	72	70
56	54 Fe (n \propto) 51 Cr	0.6+0.2	0.604	0,559	0,614	0,79	0.49
57	54 _{Fe(n2n)} 53 _{Fe}	0.005+0.0025	1.4.10-3	1.08.10-3	2.4.10-3	1.6.10-3	0.007
58	⁵⁶ Fe(np) ⁵⁶ Mn	1,035 <u>+</u> 0,075	1,08	1,00	1,08	0,96	0,81
59	56 _{Fe(n2n)} 55 _{Fe}		0.0754	0.0617	0,105	0.065	0.068
60	⁵⁹ Co(np) ⁵⁹ Fe	1.42+0.14	1.14	1.08	1.10	3.1	1.0
6 1	$59_{\text{Co}(n\alpha)}$ 56 Mm	0,143+0,010	0,147	0,135	0,151	0,075	0,17
62	59 _{Co(n2n)} 58 _{Co}	0.40+0.04	0.174	0.145	0.229	0.14	0.15
63	58 _{Ni(np)} 58 _{Co}	108.5+5.4	103	101	97.9	96	85.0
64	59m1 (na) 57co		0 472	0 155	0 18/	0.42	
65	$58_{\rm W1}(m_{\rm el})$ 59 m	- z.0 0	0,172	2.67	2 66	0,12	
65	$58_{\rm H1}(n2n)57_{\rm H1}$	$(5.77+0.34) \cdot 10^{2}$	-3 2 6 10-3	2,09	z 85•10 ⁻³	z z 10 ⁻³	0.026
67	$60_{\text{N}1}(\text{nn})^{60}$	2 3.0 4	2,0010	2.42	2.53	17	2.1
68	$62_{N1}(n \sim 59_{P2})$	0.09+0.07	0.0289	0.0255	0 327	1,7	0.036
69	$63_{(n(n)2n)}62_{(n)}$	1 122+0.012	0,020	0,080	0,133	0,095	0,11
70	$65_{(m)}65_{W1}$	0.48.0.08	0,557	0,533	0,536	0,39	0.34
70 71	$65_{Cu(n2n)}64_{Cu}$		0.32	0,271	0,41	0,42	0,28
72	$64_{2n(nn)}64_{Gu}$	29.9+1.6	36.8	36.0	34.8	22	43
73	$64_{Zn(n2n)}63_{Zn}$		0.017	0.014	0.026	0.044	0.04
74	66 _{7n(np)} 66 _{Cu}	0.62+0.11	0.833	0.78	0,826	0.94	2.2
75	$66_{Zn}(n2n)^{65}Zn$	<5	0.118	0.099	0,161	0.22	0.091
76	69Ca(n2n) ⁶⁸ Ga	-	0.227	0,189	0,299	0,32	0.20
77	$71_{\text{Ga}(n2n)}70_{\text{Ga}}$	-	0,617	0,527	0,758	0,67	0,56
78	⁷⁰ Ge(n2n) ⁶⁹ Ge	1,8+0,9	0,073	0,060	0,104	0,096	0,059
7 9	⁷⁶ Ge(n2n) ⁷⁵ Ge	-	0,66	0,57	0,81	0,75	0,51
80	75 _{As(np)} 75 _{Ge}	0 ,45<u>+</u>0,1 5	0,232	0,22	0,23	0,44	0,67
81	$75_{AS}(n\alpha)^{72}Ga$	-	7,1.10-3	6 ,1•10⁻³	8,2•10 ⁻³	0,019	6,3 •10 ⁻³
82	$75_{AS}(n2n)^{74}AS$	0,33 <u>+</u> 0,02	0,281	0,235	0,367	0,39	0,23
ۆك	⁷⁴ Se(n2n) ⁷³ Se		0,03	0,024	0,045	0,043	0,036
84	⁷⁶ Se(n2n) ⁷⁵ Se	~	0,137	0,113	0,189	0,14	0,091
85	⁷⁸ se(12n) ⁷ 'se	-	0,234	0,195	0,310	0,28	0,18
86	⁸⁰ Se(n2n) ⁷⁹ Se	10	0,432	0,366	0,547	0,59	0,34
87	⁸² Se(n2n) ⁸⁷ Se	,	1,01	0,873	1,2	0,95	0,64
88	⁷⁹ Br(n2n) ⁷⁸ Br	-	0,204	0 ,1 69	0,272	0,25	0,15
8 9	^{ol} Br(n2n) ⁸⁰ Br	-	0,288	0,242	0 , 374	. 0,49	0,26
90	ol Br(n2n)	-	0,168	0,14	0,221	-	- 1
91	²⁷ Eb (n2a) ⁶⁴ Eb	0,37 <u>+</u> 0,01	0,27	0,22	0 , 35	0,3	0,20
92	Rb(n2n) ⁰⁰ Rb	-	0,372	0,313	0,476	1,8	0,35
93	Sr(n2n) ⁰² Sr	-	0,1	0,08	0,15	0,064	0,042
94	Sr(n2n) ^{O/m} Si	<10	0,0451	0,037	0,0626	-	-
95	Y(n2n)	0 ,156<u>+</u>0, 011	0,126	0,103	0,177	0,49	0,076
96	~Zr(np)~Y	0,38+0,02	0,33	0,31	0,33	0,12	0,71

Окончание таблицы

Номер	Реакция	Сечения, усредненные по сцектру нейтронов деления ²³⁵ и тепловыми нейтронами, мо						
		Эксперимент		ECCIIOP-80		/177	1707	
			Уатт	Крэнберг	Личмен		[12]	
97	⁹⁰ Zr(n2n) ⁸⁹ Zr	0,076 <u>+</u> 0,01	0,079	0,064	0,115	0,26	0,048	
98	93Nb(n2n) 92 Nb	-	1,04	0,9	1,25	0,9	1,1	
99	⁹³ Nb(n2n) ^{92m} Nb	0,475+0,032	0,39	0,33	0,46	_	_	
100	$92_{Mo(n2n)}91_{Mo}$	-	0,015	0,012	0,024	0,0289	0.023	
101	$103_{\rm Rh(n2n)}102_{\rm Rh}$	-	0,729	0,623	0,896	0,715	0.74	
102	106 _{Cd(n2n)} 105 ^m Cd	-	0,132	0,108	0,182	-	_	
103	111 _{Cd(np)} 111 _{Ag}	-	0,020	0,018	0,023	-	0.083	
104	$112_{Cd}(n\alpha)^{109}Pd$	-	0,7.10-3	0,69.10-3	0.58.10-3	0,9•10-3	10-3	
105	116 _{Cd(n2n)} 115 _{Cd}	-	2,07	1,81	2,4	1.51	1.5	
106	$113_{In(n2n)}112_{In}$	-	0,731	0,622	0,909	0.704	0.7	
107	$115_{In(n2n)}$ 114_{In}	- 1	1.07	0,922	1.3	1.05	1.1	
108	115 _{In(n2n)} 114m _{In}	-	0.761	0,652	0,926	_	-	
109	$112_{Sn(n2n)}111_{Sn}$	-	0.235	0,194	0.315	0.142	0.18	
110	$118_{Sn(n\alpha)} 115_{Cd}$	-	2.3.10-4	2.10-4	3.10-4	-	4.10-4	
111	121 _{Sb(n2n)} 120 _{Sb}	-	0.846	0.724	1.04	0.883	0.89	
112	123 5b(n2n) 122 5b	-	1.0	0.86	1.2	1.16	1.2	
113	$127_{I(n2n)}^{126}$	1.05+0.065	1.13	0,973	1.36	0,965	1.0	
114	133 _{Cs(n2n)} 132 _{Cs}		0,992	0.851	1,21	1.00	1.2	
115	140 _{Ce(n2n)} 139 _{Ce}	-	1,32	1.14	1.57	1,15	1.0	
116	¹⁴⁰ Ce(n2n) ^{135m} Ce	-	0.44	0.37	0.55	-	-	
117	¹⁴² Ce(n2n) ¹⁴¹ Ce	-	7.3	6.6	7.8	6.13	7.9	
118	141 _{Pr(n2n)} 140 _{Pr}	-	1.1	0.95	1.34	0.86	0.86	
119	142 _{Nd(n2n)} 141 _{Nd}	-	0,627	0.530	0,795	2,97	0.57	
120	¹⁴⁶ Nd(n2n) ¹⁴⁵ Nd	-	4,98	4,44	5,47	4,85	5.4	
121	¹⁴⁸ Nd(n2n) ¹⁴⁷ Nd	_	6.13	5.49	6.64	6.02	6.9	
122	150 _{Nd(n2n)} 149 _{Nd}	-	6,94	6.24	7,45	6.12	6.7	
123	144 Sm(n2n) 143 Sm	l. -	0,369	0.308	0,490	0,321	0.27	
124	$148_{Sm(n2n)}147_{Sm}$	-	3,26	2,88	3,67	2,90	3.1	
125	¹⁵⁰ Sm(n2n) ¹⁴⁹ Sm	-	3,50	3,10	3,91	3,42	3.6	
126	$152_{Sm(n2n)} 151_{Sm}$	-	2,34	2,05	2,69	2,84	2.8	
127	$154_{Sm(n2n)}153_{Sm}$	_	3,90	3,45	4,34	3,80	3.7	
128	169 _{Im(n2n)} 168 _{Im}	-	3,56	3,14	4.03	3,43	3.7	
129	175 _{Iu(n2n)} 174 _{Iu}	-	4,79	4.25	5.32	4.15	5.6	
130	¹⁸¹ Ta(np) ¹⁸¹ Hf	-	1•10-3	0,8.10-3	1,3.10-3	-	3•10-3	
131	181 _{Ta(n2n)} 180 _{Ta}	-	4.96	4.41	5,49	5,27	5,8	
132	181 _{Ta(n2n)} 180m _{Ta}		2.63	2.34	2,91	_	-	
133	$191_{Ir(n2n)}190_{Ir}$	_ .	2.71	2.38	3.1	3,03	3,8	
134	$193_{Ir(n2n)}192_{Ir}$	-	3.71	3,28	4.17	4,59	5,4	
135	197 _{Au(n2n)} 196 _{Au}	3.0+3	3.23	2.84	3.69	3.32	4.0	
136	203 _{T1(n2n)} 202 _{T1}	3.0+0.5	3.08	2.71	3,49	4,82	5,8	
137	205 _{T1(n2n})204 _{T1}		3.78	3.34	4,24	5.61	7.0	
138	204 _{pb(n2n})203 _{pb}	2.45+0.4	2.06	1.79	2.41	3.07	3.0	
139	208 _{Pb(n2n})207m _{Pb}		0.891	0,769	1,06	-	-	
140	209 _{B1(n2n})208 _{Bi}	_	5.92	5.27	6,5	5.93	7,8	
141	232 _{Th(n2n)} 231 _m	15.7+0.7	15.4	14.1	15.9	_	-	
142	238 _{U(n2n)} 237 _U	15.7+0.8	14.5	13.4	14.8	-	-	
					•			

Примечание. Подчеркнути наиболее достоверные, по мнению авторов компиляций, значения.

Оцененные данные организованы в виде малинной библиотеки, записаны на магнитную ленту ЭВМ EC-IO33 Центра по ядерным данным (г.Обнинск) и могут быть получены по запросу. Микроскопические сечения БОСПОР-80 введены в информационно-вычислительную систему SAIPS /187. Нредполагается, что работа над библиотекой будет продолжена как по расширению числа рассмотренных реакций, так и по доработке рекомендованных сечений с учетом новых дифференциальных и интегральных измерений.

Список литературы

- I. Бычков В.М., Манохин В.Н., Пащенко А.Б., Пляскин В.И. Сечения поротовых реакций (n,p),(n,d), (n,2n). Ч.І, 2. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1979, вып. I(32), с.27; Ч.З. – Там же, I979, вып.2(33), с.51; Ч.4. – Там же, I979, вып.4(35), с.21; Translation of a series of four articles published in Nuclear Constant in 1979. – Report INDC (ССР) – 146/LJ. Vienna; IAEA, 1980.
- 2. Бнчков В.М., Пащенко А.Б., Пляскин В.И. Расчет сечений пороговых реакций (n,xm) и (n,xmf) на делящихся ядрах. Препринт ФЭИ-1052. Обнинск, 1980.
- 3. Бычков В.М., Пащенко А.Б. Анализ пороговых реакций на изотопах Сг, Fe, Ni в рамках статистической теории. - Обнинск, Препринт ФЭИ-699, 1976.
- Бычков В.М., Пащенко А.Б., Пляскин В.И. Сечения реакции (n,p) при энергии I4,5 МэВ для стабильных ядер с z≥20. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1978, вып.I(28), с.5.
- 5. Бычков В.М., Пащенко А.Б., Пляскин В.И. Расчеты сечений реакций (n,2n) и спектров неупругого рассеяния нейтронов в области массовых чисел 50-200. - Там же, вып.2(29), с.7.
- 6. Абагин Л.П., Бычков В.М., Захарова С.М. и др. Оценка сечений пороговых реакций с вылетом заряженных частиц на изотопах хрома. - Там же, вып.3(30), с.II.
- 7. Бычков В.М., Пащенко А.Б., Пляскин В.И. О зависимости сечения реакции (n,2n) от параметра (N-z)/A. Там же, вып.4(31), с.48.
- 8. Бычков В.М., Пащенко А.Б., Пляскин В.И. Сечения неупругого взаимодействия заряженных частиц с атомными ядрами. Обнинск: ФЭИ, 1981.
- 9. Бычков В.М., Золотарев К.И., Пащенко А.Б., Пляскин В.И. Анализ рекомендованных сечений пороговых реакций библиотеки БОСПОР-80 с использованием интегральных экспериментов. - В кн.: Нейтронная физика (Материалы 5-й Всесоюзной конференции по нейтронной физике, Киев, I5-I9 сентября 1980 г.). Ч.З. М.: ШНИМатоминформ. 1980. с.296.
- IO. Zÿp W.L. In: 1973, Nuclear Data in Science and Technology (Proc. of a sumposium, Paris, 1973). V.II. Vienna: IAEA, 1973, p.271.
- II. Fabry A. e.a. In: 1978, Neutron Cross-Sections for Reactor Dosimetry (Proc. of a meeting, Vienna, 1976). V.I. Vienna: IAEA, 1976, p.233
- I2. Calamend A. Cross-sections for fission neutron spectrum induced reactors. Report INDC(NDS)-55/L. Vienna: IAEA, 1973.
- I3. Zÿp L. On the consistency between integral and differential cross-section data. Report ECN-56. Netherlands Energy Research Foundation, 1979.
- I4. Бондарс Х.Я., Вейнбергс Я.К., Лапенас А.А. Сечения активации некоторых пороговых реакций. -Вопросы атомной науки и техники. Сер. Ядерные константы, 1974. вып. 15. с.63.
- I5. Bruggeman A., Maenhant W., Hoste Ι. Average cross-sections for (n,p)- and (n,α)-reactions on ¹⁹F and ²³Na in a fission neutron spectrum. - J.Inorg. Nucl. Chem., 1979, v,41, p.445.
- I6. Kobayashi K., Kimura I., Nakazawa M., Akiyama M. Fission spectrum averaged cross-sections of some threshold reactions measured with fast reactor YAYOI. - J. Nucl. Sci. and Technol., 1976, v.13(10), p.531.
- I7. Pearlstein S. Analysis of (n,2n) cross-sections for medium and heavy mass nuclei. Nucl. Sci. and Engng, 1965, v.23, p.238; An Extended Table of Calculated (n,2n) Cross-Sections. -Nucl. Data, 1967, v.3, N 3, p.327; Neutron induced reactions in medium mass Nuclei. - J.Nucl. Energy, 1973, v.27, p.81.
- 18. Берзонис М.А., Бондарс Х.Я. Методы расчета спектров нейтронов по измеренным скоростям реакций в SAIPS. Ч.2. Программное и информационное обеспечение. - Изв. АН Латв. ССР. Сер. физических и технических наук, 1981, № 1, с.18.

Статья поступила в редакцию 5 января 1981 г.

5-я Всесоюзная конференция по нейтронной физике

УДК 539.170.4 ASYMMETRICALLY DEFORMED THIRD MINIMUM IN THE ²³¹Th AND ²³³Th FISSION BARRIERS

> J. Blons, C. Mazur, D. Paya, M. Ribrag DPh-N/MF, CEN Saclay, BP 2, 91190 Gif-sur-Yvette, France

and

H. Weigmann

Central Bureau for Nuclear Measurements EURATOM, Geel, Belgium

Neutron induced fission cross-sections of 230 Th and 232 Th have been measured up to 5 MeV. The C.B.N.M. electron linear accelerator (GELINA) has been used as a neutron time of flight spectrometer with a nominal resolution of 84 psec/m for 230 Th(n,f) and 42 psec/m for 232 Th(n,f) reaction. The fission fragment detector was a 6 cell gas scintillator filled with xenon at N.T.P.

The existence of fine structure peaks, a few keV wide, in both the 230 Th (n,f) and 232 Th(n,f) cross sections, is definitively confirmed. The analysis of the two vibrational resonances located respectively at 720 keV for 230 Th (the figure) and 1.6 MeV for 232 Th, shows clearly that these peaks can be interpreted, in terms of two rotational bands with opposite parities. This parity degeneracy is a conse quence of the asymmetric, pear-like deformation of the excited nucleus.

Fig. Comparison between experimental, ϕ , and calculated fission cross-sections as functions of neutron energy E_n

YAK 539.170.4 EXPERIMENTAL STUDY OF ISOSPIN MIXING IN 12 C + n + 13 C(T=3/2) AND 16 O + n + 17 O(T=3/2) RESONANCES

S. Cierjacks, G. Schmalz

Kernforschungszentrum Karlsruhe Institut für Kernphysik II Postfach 3640 7500 Karlsruhe Federal Republic of Germany

and

F. Hinterberger, P. Rossen

Institut für Strahlen- und Kernphysik der Universität Bonn Nußallee 14-16, 5300 Bonn Federal Republic of Germany

ABSTRACT

Narrow resonances of 13 C and 17 O have been studied by a measurement of the total neutron cross sections of carbon and oxygen between 3 and 30 MeV. Employing the improved time-of-flight spectrometer at the Karlsruhe Isochronous Cyclotron and precise calibration methods, resonance cross sections were measured with an energy resolution of 1:2100 at 10 MeV and energy accuracies between 10^{-4} and 10^{-5} . Resonance analyses of the measured data provided parameters for numerous narrow states of both isopins, T = 1/2 and T = 3/2. These data in conjunction with information from broad T = 1/2 resonances provided a good means to experimentally determine isospin mixing matrix elements. Results were obtained for the first five T = 3/2 resonances in 17 O and the first T = 3/2 resonance in 13 C. The obtained mixing matrix elements are compared with previous experimental results and shell-model predictions of this quantity.

1. INTRODUCTION

A special feature of the lowest T = 3/2 states in light nuclei of mass A = 4 n + 1 is that they are bound with respect to isospin-allowed particle decay. The study of their isospin-forbidden decays provides a good means to investigate the nature of charge-dependent effects in the nuclear states, i.e., the size and the structure of isospin impurities. In principle, a systematics of isospin mixing can provide not only information on the isospin violating Coulomb part of the interaction, but also on the effects of a possible charge assymetry or a charge dependance of the nuclear forces.

In the past major experimentical information in this field came from isospin-forbidden proton scattering providing proton decay widths and other

properties of the isospin-nonconserving decay of the lowest T = 3/2 resonances in light A = 4 n + 1, $T_z = -1/2$ nuclei from ¹²C to ⁴⁰Ca [1, 2]. Similar investigations of the isospin-forbidden neutron decay are comparatively scarce and were only made for 24Mg + n [3] and 28Si + n [4]. Therefore, the present work is an important extension of previous studies of A = 4 n + 1, $T_z = +1/2$ nuclei. The high-resolution measurement of total neutron cross sections of C and O between 3 and 30 MeV provided precise determinations of excitation energies, total widths and partial neutron decay widths for a large number of narrow T = 1/2 and T = 3/2 resonances [5]. Concerning T = 3/2states in 1^{\prime} o an extensive study has recently been finalized [6]. Experimentally ten known T = 3/2 resonances were observed in the total cross section and analyzed. The study also yielded information on seven additional candidates for T = 3/2 resonances at higher energies. For carbon the extracted information on T = 3/2 states is still comparatively small. At present only the first T = 3/2 state at E = 15.11 MeV has been analyzed. While our previous work concentrated primarily on the properties of T = 3/2 resonances in ¹⁷0 and on the systematics of isospin-forbidden decay widths for the first T = 3/2resonances in various $T_z = +1/2$ and $T_z = -1/2$ nuclei, the present paper describes an approach to experimentally determine isospin mixing matrix elements which is expected to give additional information on the dominating isospin mixing mechanisms.

In section 2 we describe some details of the transmission experiment. The formalism used in resonance analyses of narrow states is outlined in section 3. Section 4 describes the method employed in the determination of average mixing matrix elements. The results are presented in section 5 and compared with previous experimental data and some theoretical predictions.

2. EXPERIMENTS

The experiments were performed at the fast neutron time-of-flight spectrometer of the Karlsruhe Isochronous Cyclotron using the 190 m flight path and employing standard transmission techniques. A detailed description of the recently improved system and the calibration methods involved has been published elsewhere [5]. Thus, only a brief summary is given below. A schematic diagram of the experimental set-up is shown in Fig. 1. Neutrons are produced by bombardment of a thick natural uranium target with \sim 50 MeV deuterons from the internal cyclotron beam. The use of the "KfK deflectionbunching" system allowed the production of neutron bursts of \sim 0.8 ns duration at 50 kHz repetition rate and with a time-averaged intensity of the order of 10^{13} n sr⁻¹ s⁻¹. Neutrons were detected in a 1.2 cm long by 5 cm diameter NE 102 A plastic scintillator coupled to a Valvo 56 AVP photomultiplier. The time resolution of the detector was about 300 ps for the dynamic range covered in the experiment. Neutron flight-times were measured by a digital time analyzer (LABEN UC-KB). The start pulse was derived from the cyclotron r.f., while the stop input was provided from a fast constant fraction discriminator. The neutron spectra were accumulated in 28 K channels of 0.25 ns width and stored in the core memory of a modified CDC-3100 on-line computer.

Every effort was made to obtain a high total time resolution. This depends mainly on the neutron burst width and thus on the proper timing of the cyclotron phase. The slight adjustments of the unisochronism and the
phase width of the deuteron beam bursts, which were necessary, could easily be performed by using the on-line computer programme CICERO [7]. With this method a total effective spectrometer resolution of $\Delta t/L = 5.5 \text{ ps m}^{-1}$, yielding an energy resolution $\Delta E/E = 4.8 \text{ x} 10^{-4} \text{ at } E_n = 10 \text{ MeV}$, was achieved.

For oxygen a liquid sample of natural isotopic composition and thickness $1.20 \text{ atoms barn}^{-1}$ was used, while the carbon run used a pyrolytic graphite sample of $1.02 \text{ atoms barn}^{-1}$. The liquid oxygen was irradiated in a large Dewar spere of ~ 28 cm diam. In this case the empty Dewar transmission spectrum was also measured for background subtraction. The large target thickness for both elements was chosen to obtain high sensivity for weak resonances which are typical for the many-MeV region.

In order to perform also very precise absolute resonance energy determinations, suitable calibration methods were applied. Absolute energy determinations depend on the flight time of resonance neutrons and on the effective flight path length. Employing an opto-electronic method for the long distance measurement, a total effective flight path length of $L = (18925.27 \pm 0.09)$ cm was obtained. Absolute flight time measurements involved the peak of prompt γ -rays from the neutron target and the cumulative probability method to fix the time zero point with an accuracy of ± 25 ps. On this basis absolute resonance energies were determined with accuracies ranging between 10^{-5} and 10^{-4} , depending on the statistical quality of the resonance anomalies.

A typical result obtained from the transmission experiment is shown in Fig. 2. The total neutron cross section of oxygen in the region from 4.5 - 8.0 MeV is an example of the high quality data obtained for both elements over the whole range from 3 to 30 MeV. It was found that the systems ¹²C+n and ¹⁶O+n exhibit a simple resonance structure with a large number of narrow, isolated levels. Only at very high neutron energies the narrow resonances are increasingly superimposed on broad "background" resonances.

3. RESONANCE ANALYSES

The narrow resonances observed in the total neutron cross sections of carbon and oxygen were analyzed employing a single-level S-matrix formalism. The assumption of single isolated resonances is reasonable even in the case of interference with broad nearby states. Such an interference mainly alters the phase relations, i. e. the interference pattern of the narrow resonances. It leaves, however, the important parameters such as the resonance energy and the total and partial widths practically unchanged. Thus, any broad resonance amplitude can be treated as part of a smoothly energy dependent background amplitude.

In this paper only a brief summary of the main formulae characterizing the special formalism will be given. For the resonance channel with orbital and total angular momentum L and J, respectively, the complex scattering matrix element S_{LJ} can be expressed by [8]

$$S_{LJ} = S_{LJ}^{nr} - i \frac{\Gamma_{no}}{E - E_{R} + i\Gamma/2} \exp \left[2i(Re\delta_{LJ}^{nr} + \phi_{LJ}^{r})\right]$$
(1)

where S_{LJ}^{nr} is the weakly energy dependent background amplitude, Γ_{no} the groundstate neutron decay width, E the cm energy of the neutron-target system, E_R the resonance energy, Γ the total widths, Re $\delta \frac{nr}{LJ}$ the real part

of the background phase shift and $\phi \, ^r_{LJ} a$ possible resonance phase. Using the usual relation for the total cross section

$$\sigma_{t} = \frac{2\pi}{k^{2}} \sum_{lj} (j+1/2) \operatorname{Re}(1-S_{lj}), \qquad (2)$$

where k is the c.m. neutron wave number, it is possible to separate the expression for the total cross section into a non-resonant background term σ_t^{nr} and a purely resonant term (or a sum of resonant terms, if more than one level is involved):

$$\sigma_{t} = \sigma_{t}^{nr} + (J+1/2) \frac{\pi}{k^{2}} \frac{\Gamma_{no}}{(E-E_{R})^{2} + (\Gamma/2)^{2}} [2(E-E_{R})\cos 2\psi + \Gamma \sin 2\psi] (3)$$

with

$$\Psi = \operatorname{Re} \delta \frac{\mathrm{nr}}{\mathrm{LJ}} + \phi \frac{\mathrm{r}}{\mathrm{LJ}} + \pi/4^{*}$$
(4)

For numerical calculations the weakly energy dependent $\operatorname{term} \sigma_t^{nr}$ was parametrized by the usual quadratic expression:

$$\sigma_{t}^{nr} = a + b (E - E_R) + c (E - E_R)^2.$$
(5)

This parametrization allows the determination of the essential resonance parameters $E_{\rm R}$, Γ and $\Gamma_{\rm no}$ (or (J+1/2) $\Gamma_{\rm no}$, if J is not known) without any detailed specification of the background amplitudes. Employing ψ as a single fit parameter the seven parameters a, b, c, ψ , $E_{\rm R}$, Γ and $\Gamma_{\rm no}$ were adjusted to the experimental data by a non-linear least-squares fitting routine [9]. Since the correlation between the fit parameters is weak, the resonance parameters $E_{\rm R}$, Γ and $\Gamma_{\rm no}$ could be determined with high precision. The excitation functions calculated from equ.(3) were folded by the total effective resolution function before comparison with the experimental data. The effective resolution function was obtained by folding the measured time spectrum of the prompt γ -peak, the Gaussian Doppler broadening and the rectangular time spread introduced by the neutron transit times through the 1.2 cm thick scintillator of the neutron detector. The time spread caused by the neutron source length was negligible small in the present experiments.

Employing the described formalism resonance parameters for a large number of narrow T = 1/2 and T = 3/2 states were determined from our total neutron cross section measurements. At present we have analyzed eighteen T = 1/2 and seventeen T = 3/2 resonances (or candidates for T = 3/2 states) in 170, whereas the respective results for ¹³C cover six T = 1/2 resonances and one T = 3/2 state. Measured transmission data in the region of the first seven $0^{17}(T = 3/2)$ resonances and of the first ¹³C (T = 3/2) state are shown in Figs. 3 and 4. The solid lines through the data points are best fit curves from our resonance analysis.

4. DETERMINATION OF ISOSPIN MIXING MATRIX ELEMENTS

Isospin impurities and isospin mixing matrix elements were calculated using the method proposed by Weigmann et al. [3]. In this method the small isospin admixture in the ground state of the target nucleus is neglected. An estimate of the isospin impurity in the T = 3/2 compound state can be derived

from the reduced width of the T = 3/2 state and the average reduced width of nearby T = 1/2 resonances having the same spin and parity.

Concerning isospin mixing matrix elements Weigmann et al. used first order perturbation theory and derived two expressions for a zeroth order guess $\langle T = 3/2|V|i \rangle_0$ and a lower limit $\langle T = 3/2|V|i \rangle_{min}$ of the average isospin mixing matrix element. Their expression to derive the zeroth order guess is: - L/.

$$\Gamma_{n}^{L}(T = 3/2) = |\overline{\langle T = 3/2 | V | i \rangle_{0}}|^{2} \sum_{i} \frac{\Gamma_{n}^{-(1)}}{[E_{i} - E(T = 3/2)]^{2}}$$
(6)

where the sum extends over all T = 1/2 resonances of the respective J^{π} value. The lower limit is determined by the equation.

$$\Gamma_{n}^{L}(T=3/2) = |\langle \overline{T=3/2} | \overline{V} | \overline{i} \rangle_{min}|^{2} | \Sigma_{n} \frac{\Gamma_{n}^{L}(i)^{1/2}}{|\overline{E_{i}} - \overline{E}(T=3/2)|} |^{2}$$
(7)

In the present work the required reduced widths ['nL were calculated according to the definition commonly used in neutron resonance physics:

$$\Gamma_{n}^{L} = \frac{\Gamma_{n}}{P_{L}} \left(\frac{1eV}{E_{cm}}\right)^{1/2};$$
(8)
$$P_{o} = 1, P_{1} = \frac{\rho^{2}}{1+\rho^{2}}, P_{2} = \frac{\rho^{4}}{9+3\rho^{2}+\rho^{4}}, P_{3} = \frac{\rho^{6}}{225+45\rho^{2}+6\rho^{4}+\rho^{6}}$$

with $\rho = kR$ and $R = (1.25 \ A^{1/3} + 0.8)f$.

In this definition Γ_n means the measured c.m. neutron decay width,

 E_{cm} the c.m. resonance energy, P_L the penetration factor in the channel with orbital angular monumentum L and A the mass number of the target nucleus. T = 3/2 states in ¹³C above the ¹²B (T = 1)+p threshold $E_{th}(^{13}C) = 17.53$ MeV and in ¹⁷O avove the ¹⁶N(T=1)+p threshold $E_{th}(^{17}O) = 13.78$ MeV are unbound with respect to isospin-allowed decay. Therefore, isospin impurities and meaningful isospin mixing matrix elements can only be determined for the first T = 3/2 resonance in ^{13}C and the first five T = 3/2 states in ^{17}O . The necessary information on T = 1/2 resonances was taken primarily from our resonance analysis of narrow T = 1/2 states. This information was complemented by experimental results collected in ref. 1 by Ajzenberg-Selove. Adopting the method of Weigmann et al. we encountered some difficulty arising from resonances with unassigned or uncertain 1 and J values which occur increasingly at high excitation energy. In addition neutron decay widths for many of the high energy resonances are not known. In order to circumvent this difficulty the following procedure was adopted: In the calculation of the zeroth order value from equ. (6) only resonances with defined spin and parity and known neutron decay width were included in the summation over i, whereas the estimate of the lower limit by equ. (7) also included resonances with tentative spin assignments (i. e. resonances with either one correct value among a few possible $\tilde{\sigma}^{\pi}$ assignments or with correct J value, but undetermined parity). We excluded, however, those resonances which applied to the above spin state selection, but which were only observed in particle decays other than neutron decay.

In Table 1 a the resonance parameters of the first five T = 3/2 resonances in ¹⁷O as determined from our analysis are summarized. Table 1 b gives the respective preliminary values for the first T = 3/2 state in ¹³C. The T = 1/2

states used in the derivation of isospin mixing are listed in Tables 2 - 7. Only the resonances without parentheses have been used in conjunction with equ. (6), while the whole set given in each table was used to derive the lower limits via equ. (7).

5. RESULTS AND DISCUSSION

The fractional isospin impurities $\Gamma_n(3/2)/\Gamma_n(1/2)$ and the two estimates for the average isospin mixing matrix elements determined from the present study are given in Table 8. Of particular interest is that the fractional isospin impurities vary over the large range of ~ 0.1 to 4%. In contrast to this result the zeroth order values of the mixing matrix elements do not vary significantly from resonance to resonance and between the two different nuclei. With one exception their values lie all in the narrow range between ~ 100 and 250 keV. Only the matrix element for the fourth ^{17}O (T = 3/2) resonance with 340 keV appears to be comparatively high. In this case, however, the spread in resonance widths is unreasonably small, which might indicate that the high zeroth order value is due to the neglection of important T=1/2 resonances at higher excitation energies.

The present results may be compared to other sources of information on isospin mixing. First of all, we can compare the present results with experimentally determined mixing matrix elements for some low lying T = 3/2 resonances in ²⁵Mg [3] and in ²⁹Si [4]. Isospin impurities and isospin mixing matrix elements for these nuclei determined by the same method are included in Table 8. It can be seen that the zeroth order values are in general agreement with the observations from our work. The relatively small value for the second T = 3/2, $J = 3/2^{T}$ resonance in ²⁵Mg has already been discussed by the authors [3]. They mentioned in their publication, that the value may not represent the true average mixing matrix element, but rather approximate the individual mixing matrix element between the 555,4 and the 844,2 keV resonances in ^{25}Mg . Concerning fractional isospin impurities the previous determinations in ^{24}Mg + n and ^{28}Si + n gave values of $\sim 18~\%$ for both T = 3/2 s-wave resonances. These seemed to be rather high in comparison to the $\sim 2~\%$ admixture obtained for the two d-wave resonances in 25 Mg. Therefore it was argued that this might be related to differences in "external" or "boundary condition" mixing for different partial waves. This supposition is, however, considerably weakened by the present work, which gives a very small admixture of 0.16 % for the third T = 3/2, J = 1/2⁺ resonance in ¹⁷0.

It is further interesting to note that the resulting charge-dependent matrix elements of the present work compare well with those deduced for (T=1) analog - (T=0) antianalog mixing in the neighbouring A=4 n nuclei ^{12}C [10, 11] and ^{16}O [12].

Even though a complete discussion of our results in terms of particular mixing mechanisms is beyond the scope of this paper, we would also like to compare our experimental results with some model predictions: In a simple schematic model Mc Donald and Adelberger [13] calculated the effective charge-dependent matrix elements for antianalog mixing which have been shown to be an important source of isospin mixing in light nuclei [14]. These authors demonstrated that antianalog mixing is mainly due to effects of isospin-nonconserving two-body matrix elements. These matrix elements were found to be more or less independent of A and of the order of $\sim 150 - 200$ keV for $T_{\rm Z}$ = +1/2 nuclei, in accordance with findings of the present work. This

observation may suggest, that the isospin-nonconserving neutron decay is mainly caused by antianalog mixing. This suggestion is further supported by the fact, that the model of Mc Donald and Adelberger is presently the only one which can explain the large charge asymmetry observed in the isospinforbidden particle decay of the first T=3/2 states in several $T_z=+1/2$ and T_{z} =-1/2 nuclei. Unfortunately, however, this model cannot explain the strong mass dependance for the reduced neutron widths, which was found to vary more like A^4 than like $A^2 \cdot 7$ [6] as required by a combination of the models of Mc Donald and Adelberger and of Trainor et al. [15]. Moreover, Auerbach and Lev [16] have calculated isospin mixing matrix elements for several light nuclei using the projection operator formalism [17]. In contrast to Mc Donald and Adelberger they conclude that the most important contribution to the isospin mixing comes from the one-body Coulomb matrix element between analog and antianalog configuration states. Their values for several $T_z = -1/2$ nuclei range between $~\sim 200$ and 350 keV. These results also compare well with our present results, but are in conflict with the extremely small proton decay widths observed for light $T_z = -1/2$ nuclei [1, 2].

Two-body Coulomb matrix mixing elements between the first T=3/2 states in 170 and 17F and a number of T=1/2 shell model states were calculated by Walker and Schlobohm [18]. Their calculations show that the most important contribution is due to the mixing of the T=3/2 states with their antianalog states. These authors obtained a value of 196 keV for the antianalog mixing of the lowest T=3/2, J =1/2⁻ state in oxygen assuming that the antianalog state is located around 3.1 MeV excitation. Comparing this to the matrix element for the T=3/2, J =1/2⁻ state of ¹⁷0 in Table 8, it would indicate that the T=1/2 resonances in the included energy range contain on the average an almost 100 % component of the antianalog configuration state which does not seem to be reasonable. Furthermore, with respect to the latter two models it should be mentioned that neither of them can explain the large charge asymmetry effects for the reduced decay widths observed for the first T=3/2 states in various $T_z=+1/2$ and $T_z=-1/2$ nuclei and for several low lying analog resonances of A = 4n+1 mirror nuclei [6, 13].

In summary, it appears that the size of experimentally determined mixing matrix elements is, in general, consistent with models for mixing mechanisms proceeding through admixtures of nearby T=1/2 levels. However, in order to decide which particular T=1/2 states are primarily responsible for the isospin mixing, it is necessary to inspect in more detail the contributions from single or groups of single T=1/2 resonances. Such investigations are a promising task for the future. Studies of this type could certainly further gain from additional resonance parameter assignments, especially at high excitation energies. For carbon and oxygen improved T=1/2 resonance sets can, in principle, be obtained from additional analyses of some broader resonances observed, but not yet analysed in our high-resolution cross section measurements.

REFERENCES

- F. Ajzenberg-Selove; Nucl. Phys. <u>A 268</u> (1976) 1; Nucl. Phys. A 281 (1977) 1 and Nucl. Phys.; <u>A 320</u> (1979) 1
- 2. P.M. Endt and C. van der Leun, Nucl. Phys. A 320 (1978) 1

- 3. R. Weigmann, R.L. Macklin and J.A. Harvey, Phys. Rev. <u>C 14</u> (1976) 1328
- 4. S. Cierjacks, S.K. Gupta and I. Schouky, Phys. Rev. <u>C 17</u> (1978) 12

.

- S. Cierjacks, F. Hinterberger, G. Schmalz, P. von Rossen, D. Erbe and B. Leugers, Nucl. Instr. Meth. <u>169</u> (1980), 185
- F. Hinterberger, S. Cierjacks, G. Schmalz, P. von Rossen, D. Erbe and B. Leugers, to be published in Nucl. Phys. A
- W. Kneis, W. Kappel, B. Kögel, Ch. Lehmann, E. Leinweber, J. Möllenbeck,
 W. Segnitz and H. Schweickert, Proc. 8th Int. Conf. on Cyclotrons and their Applications, Indiana, USA, 1979, IEEE Trans. Nucl. Sci. NS-26, 2366
- 8. J.E. Lynn, The theory of neutron resonance reactions, Chlarendon, Oxford, 1968
- F. Hinterberger, P. v. Rossen, H.G. Ehrlich, B. Schüller, R. Jahn, J. Bisping and G. Welp, Nucl. Phys. <u>A 253</u> (1975) 125
- 10. J.M. Lind, G.T. Garvey and R.E. Tribble, Nucl. Phys. A 276 (1977) 25
- 11. E.G. Adelberger, R.E. Marrs, K.A. Snover and J.E. Bussoletti, Phys. Rev. <u>C 15</u> (1977) 484
- 12. G.J. Wagner, K.T. Knöpfle, G. Mairle, P. Doll and H. Hafner, Phys. Rev. C 16 (1977) 1271
- 13. A.B. McDonald and E.G. Adelberger, Phys. Rev. Lett. 40 (1978) 1692
- 14. G. Bertsch and A.Z. Mekjiian, Ann. Rev. Nucl. Sci. <u>22</u> (1972) 25
- 15. T.A. Trainor, T.B. Clegg and W.J. Thompson, Phys. Rev. Lett. 33 (1974) 229
- 16. N. Auerbach and A. Lev, Phys. Lett. <u>34 B</u> (1971) 13
- 17. N. Auerbach, J. Hüfner, A.K. Kerman and C.M. Shakin, Rev. Mod. Phys. <u>44</u> (1972) 48
- 18. G.E. Walker and D. Schlobohm, Nucl. Phys. A 140 (1970) 49
- 19. A.B. McDonald, T.K. Alexander and O. Häusser, Nucl. Phys. A 273 (1976) 464
- F. Hinterberger, R. Schönhagen, P. von Rössen, B. Schüller, F.E. Blumenberg,
 P.D. Eversheim and R. Görgen, Nucl. Phys. <u>A 308</u> (1978) 61

Table 1 a

E _r (keV)	c.m. system ſ (keV)	Γ (keV) o	Γ ^L (eV)	J ^{π e.}
				_
6934.38 ± 0.17	2.4 ± 0.3	1.88 ± 0.12	0.8 <u>7</u> ± 0.06	1/2
8321.7 ±0.6	6.9±1.1	1.27 ± 0.14	0.52 ± 0.06	3/2
8795.7 ±6	6 ± 2	0.21 ± 0.14.	0.071± 0.05	1/2+
8854.0 ± 0.6	2.5±1.0	0.40±0.06	0.59 ± 0.09	5/2
9419.0 ±2.3	9 ± 5	0.24 ± 0.09	0.13±0.05	(5/2 ⁺)

Resonance parameters of the first T = 3/2 states in 170

å Ref. 1

b constrained to value of ref.[19].

Table 1 b

Resonance parameters of the first T = 3/2 state in ¹³C (preliminary)

E (keV)	c.m. system F (keV)	Γ (keV) ⁿ o	Γ ^L (eV)	J ^{π a.}
10160.0 ± 2.0	5.49 ± 0.25 ^b	0.43 ± 0.09	0.16 ± 0.03	3/2
				•

^a Ref. 1 ^b constrained to value of ref. [20].

E _r (keV)	c.m. system Г (keV)	Γ (keV) o	Γ_n^{L} (eV)	J ^{TE}	Ref.	
4948.19 ± 0.17 6904.6 ± 5 7125.6 ± 2.0 8334	23.7 ± 0.4 68 ± 4 81.5 ± 3.3 340	20.6 ± 0.5 68. ± 4 69.0 ± 3.0 (340)	1 2.7 ± 0.3 32.7 ± 1.9 32.4 ± 1.4 (143)	3/2 ⁻ (3/2 ⁻) (3.2 ⁻) ^b (3/2 ⁻)	this work ref. 1 this work ref. 1	

Table 2 Resonance parameter of $J^{\pi} = 3/2^{-}$; T = 1/2 resonances in ${}^{12}C + n$

^a Ref. 1 unless otherwise noted ^b tentative assignment of this work

Table 3

Resonance parameter of $J^{\pi} = 1/2^+$; T = 1/2 resonances in ${}^{16}0 + n$

E _r (keV)	c.m. system Г (keV)	Γ _n (keV)	Γ <mark>L</mark> (eV)	ла. J	Ref.
2213 ± 8 3812 ± 6 4198.08 ± 0.24 (6629 ± 10)	124 ±12 90 ± 9 11.4± 0.5 80 ±20	$12^{4} \pm 12 \\ 87 \pm 8.7^{b} \\ 8.1 \pm 0.3 \\ (80 \pm 20)$	$83.4 \pm 8.1 \\ 44.6 \pm 4.5 \\ 4.0 \pm 0.1 \\ (31 \pm 8)$	1/2 ⁺ 1/2 ⁺ 1/2 ⁺ 1/2 ⁺ ,7/2 ⁻	ref. 1 ref. 1 this work ref. 1

^a Ref. 1 unless otherwise noted ^b calculated from Γ_{α} / Γ values of ref. 1

۶

E _r (keV)	c.m. system F (keV)	Γ _n (keV)	$\Gamma_n^{\rm L}$ (eV)	J ^{π a.}	Ref.
1795.7 ± 8	32 ± 3	32 ± 3	44 ± 4	1/2 ⁻	ref. 1
2718.7 ± 2	< 1	< 1 ±	< 0.9	(1/2 ⁻)	ref. 1
3810 ± 50	270 ±30	73 ± 8 ^b	52 ± 6	1/2 ⁻	ref. 1
4036 ± 20	69 ± 7	61.6± 6 ^b	42.2± 4.1	1/2 ⁻	ref. 1
5003	4 ± 3	2.2± 1.7 ^b	1.3± 1.0	1/2 ⁻	ref. 1
5732.3 ± 0.	9 16.7±1.7	10.9± 1.2	5.7± 0.6	(1/2 ⁻)°	this work

Table 4 Resonance parameters of $J^{\pi} = 1/2^{-}$; T = 1/2 resonances in ${}^{16}0 + n$

^a Ref. 1 unless otherwise noted ^b calculated from Γ_{α} / Γ values of ref. 1 ^c tentative assignment of this work

Table 5

Resonance parameters of $J^{\pi} = 3/2^{-}$; T = 1/2 resonances in 16 0 + n

E _r (keV)	c.m. system F (keV)	Γ (keV) ο	Γ L (eV)	J ^{n a}	Ref.
408.7 ± 2 1235.7 ± 2 3416 ± 20 4056 ± 7 4542.7 ± 0.4 5277.7	40 ± 5 28 ± 7 500 ±50 60 55.3±0.6	40 ± 5 28 ± 7 (500 ± 50) 53.4^{b} 48.9 ± 1.1 120	293 ± 37 56 ± 14 (390 ± 39) 36.3 30.5 ± 0.7 67.1	3/2 3/2 3/2 3/2 3/2 3/2 3/2	ref. 1 ref. 1 ref. 1 ref. 1 this work ref. 1

^a Ref. 1 ^b calculated from Γ_{α} / Γ values of ref. 1

Table 6 Resonance parameters of J^{π} = 5/2⁻; T = 1/2 resonances in ¹⁶0 + n

E _r (keV)	c.m. system Г (keV)	Γ (keV) o	Γ L (eV)	J ^π a	Ref.
3020.89 ± 0.16	1.38 ± 0.05	1.38 ± 0.05	34.0±1.2	5/2	this work
3237.23 ± 0.14	0.96±0.20	0.96±0.20	19.2±4.0	5/2	this work
4356.38 ± 0.11	6.89±0.22	2.86±0.08	24.2±0.7	5/2	this work
5348.7 ± 4	15 ± 1	2.25 ± 0.15 ^b	10.9±0.7	5/2	ref. 1
5714.61 ± 0.14	4.01 ± 0.23	3.37 ± 0.20	13.8±0.8	(5/2 ⁻) ^c	this work

^a Ref. 1 unless otherwise noted ^b calculated from Γ_{α} / Γ values of ref. 1 ^c tentative assignment of this work

Table 7 Resonance parameters of J^{π} = 5/2⁺; T = 1/2 resonances in ¹⁶0 + n

E _r (ker)	c.m. system F (keV)	Γ (keV)	$\Gamma \frac{L}{n} (eV)$	J ^π a.	Ref.
3243.08 ± 0.19	0.64 ± 0.23	0.64 ± 0.23	1.54 ± 0.5	5/2 ⁺	this work
4258.00 ± 0.07	6.17 ± 0.13	4.75 ± 0.11	7.32 ± 0.17	5/2 ⁺	this work
5049.61 ± 0.08	3.53 ± 0.13	2.37 ± 0.08	2.84 ± 0.10	5/2 ⁺	this work
5833 ±20	80	17.6 ^b	17.3	5/2+	ref. 1
6193 ±15	150	(150)	(136)	5/2 ⁺ ,7/2 ⁻	ref. 1
6346	75 ± 30	(75 ± 30)	(66)	5/2 ⁺ ,7/2 ⁻	ref. 1
6770.8 ± 1.2	41.7 ± 1.4	26.4 ± 0.9	21.4 ±0.7	(5/2 ⁺) ^c	this work
0083	150	(150)	(78)	5/2+	ref. 1

^a Ref. 1 unless otherwise noted ^b calculated from Γ_{α} / Γ value of ref. 1 ^c tentative assignment of present work

Table 8

Isospin impurities and isospin mixing matrix elements for T = 3/2 resonances

Reson.	J ^π E (keV)	$r_{n}(3/2)/\overline{r}_{n}(1/2)$ (%)	<t=3 2 v i=""> (keV)</t=3>	< <u>T=3/21V/i</u> min (keV)	Ref.
12 _{C+n}	J =3/2 E _r =10160.0	0.62	152	37	this work
16 _{0+n}	J =1/2 ⁻ E _r =6934.38	3.6	231	111	this work
16 _{0+n}	J =3/2 E _r =8321.7	0.54	174	56	this work
16 _{0+n}	$J = 1/2^{+}$ E _r =8795.7	0.16	135	47	this work
¹⁶ 0+n	J =5/2 E _r =8854.0	2.9	340	154	this work
¹⁶ 0+n	$J = (5/2^{+})$ $E_r = 9419.0$	1.3	166	16	this work
24 _{Mg+n}	J =5/2 ⁺ E _n =475.4	2	97	23	ref. 3
24 _{Mg+n}	J =3/2 ⁺ E _n =555.4	2	12	7	ref. 3
24 _{Mg+n}	$J = 1/2^{+}$ E = 1567.	18	150	90	ref. 3
28 _{Si+n}	$J = 1/2^{+}$ $E_{n} = 1254.$	18	144	97	ref. 4

Fig. 1 Schematic diagramm of the time-of-flight set-up. For clarity details of the KfK deflectionbunching system and the complete set of logic circuits are not shown

Fig. 2 Total neutron cross section between 4.5 and 8 MeV. These data are an example of the experimental results obtained for C and O between 3 and 30 MeV

Fig. 3 Measured neutron transmission and best fit curves (solid lines) from our resonance analyses for the first seven ¹⁷0 (T=3/2) resonances

Fig. 4 Measured neutron transmission and best fit curve (solid line) for the first ¹³C (T=3/2) resonance (preliminary)

УДК 539.17:621.039.538

АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ К ИЗМЕНЕНИЮ ГРУППОВЫХ КОНСТАНТ ПРИ РАСЧЕТАХ БИОЛОГИЧЕСКОЙ ЗАЩИТИ МЕТОДОМ ВЫВЕДЕНИЯ – ДИФУЗИИ

К. Михай

(Технический университет, Будапешт, ВНР)

ANALYSIS OF SENSETIVITY TO THE GROUP CONSTANT VARIATIONS AT THE BIOLOGICAL SHIRLDING CALCULATIONS BY RATRACTION - DIFFU-SION METHOD. This paper treats the influence of group constant uncertainties on the accuracy of calculating some readings of the activation detectors located at different sites of a biological shielding that have been mounted in the irradiation tunnel of the Budapest technical university fraining reactor. It is carried out a comparative analysis between the influence of a calculation method accuracy and a constant definition ene.

С развитием ядерной энергетики в ВНР возникает много проблем, в частности сооружение биологической защиты реактора. При расчете защиты используются различные методы, среди которых следует выделить так называемые полуэмпирические. В точности они уступают более совершенным теоретическим методам, тем не менее дают удовлетворительные результаты, обладая простотой и доступноотью. Один из них - метод выведения - диффузии проанализирован на примере тестовой задачи учебного реактора Технического университета в Буданеште, на котором моделируется несколько защитных конфигураций /1,2/. Анализ показал удовлетворительную точность метода и его практическую применимость.

Важным для практических приложений является вопрос о происхождении погрешности метода расчета. Существуют два источника погрешностей: первый связан с приближенным характером метода, второй – с погрешностями в задании исходных данных, т.е. групповых констант. Если преобладает первый источник, то возможность улучшения точности отсутствует. Если же погрешность в основном связана с исходными данными, то возможно улучшение точности метода путем уточнения групповых констант.

Далее проводится анализ чувствительности интегральных функцисналов, рассчитанных методом выведения - диффузии, к изменению групповых сечений углерода и кислорода. В качестве функционалов взяти показания детекторов индия, серы и золота, применяемых в тестовой задаче, а также значения интегральной плотности потока нейтронов и мощности поглощенной дозн.

<u>Определение профилей чувствительности интегральных функционалов</u>. Существуют два метода построения профилей чувствительности: метод последовательной вариации сечения в каждой группе и метод решения сопряженного уравнения /3/. Второму методу в последние годы уделяется много внимания, однако в настоящей работе от него отказались по двум причинам. Первая заключается в суцествовании профлемы точности определенного профиля, так как метод опирается на теорию возмущений первого порядка и, следовательно, дает профиля, так как метод опирается на теорию возмущений первого порядка и, следовательно, дает профиля чувствительности в линейном приближении. В то же время известно /4/, что профиль чувствительности является заметно нелинейной функцией от приращения сечения, выбираемого в пределах типичных экспериментальных погрешностей (около 5-10%) /5,6/. Другая (основная) причина заключается в трудности построения сопряженного оператора в связи с полуэмпирическим характером метода.

Из-за указанных причин выбрали метод последовательной вариации сечений в каждой группе. Метод реализовали следуицим образом. Сначала для заданной конфитурации вычислили илотность потока нейтронов методом выведения – диффузии в каждой группе с невозмущенными константами и по ним определили показания активационных детекторов. Затем последовательно в одной группе полное сечение уменьшили на 10% (эта цифра выбрана по типичным погрешностям в групповых сечениях). Потом тем же методом вычислили илотность потока нейтронов и соответствующие показания детекторов. Эту операцию повторили последовательно для всех групп каждой комбинации интегрального детектора и его расположения в защите. Вычисления выполнили для двух конфигураций защиты: слоев воды толщиной 30 см и графита толщиной 40 см. По этим значениям вывели занисимость

$$R_{i} = \left(\frac{\Im_{0} - \Im_{i}}{\Im_{0}} \frac{\Delta \sigma}{\sigma}\right) \frac{1}{\Delta u} ,$$

где R₁ – чувствительность к изменению сечения в 1-й группе; I₀ – показание детектора, вычисленное с невозмущенными константами; I₁ – то же с 10%-ным возмущением полного сечения в 1-й группе; Δб/б=10% – относительное изменение сечения; Δu_i – ширина группы в единицах летаргии.

Следует отметить, что отклонение в 10%, выбранное в качестве шага для изменения сечения, может не обеспечить линейности функционала в таких пределах. Однако указанная величина характерна для точности определения групповых сечений. Поэтому предпочтительнее выяснить величину погрешности в определении сечений интегральных функционалов (соответствующую реально наблюдаемой погрешности в определении сечений), чем заниматься проблемой линейности, которая совершенно неактуальна в данном случае из-за приближенного характера метода выведения – дифузии.

При количественном анализе чувствительности интегральных функционалов следует иметь в виду, что, как упоминалось выше, на практике с погрешностью одновременно заданы все групповые сечения, поэтсму для определения правильного значения погрешности функционала нужно учесть их совместное действие. Если бы значения групповых сечений были независимы, то полную чурствительность можно было вычислить по формуле

$$R = \sqrt{\sum_{i} R_{i}^{2}}.$$

Следует отметить, что библиотека констант в расчете по методу выведения - диййузии основана на 26-групповой системе [7].

Данные работы [7] являются оценками многих экспериментальных результатов, коррелированных между собой. В этом случае приведенное выше выражение дает заниженные результаты. Поскольку точные значения элементов корреляционной матрицы не известны, для оценки полной чувствительности целесообразно взять величину

$$R = \Sigma |R_i| ,$$

которая учитывает факт сильной корреляции значений групповых констант, хотя и дает несколько завышенную оценку.

Результаты вычисления и профили чувствительности представлены в работе (8/. На основе подученных данных можно вывести следующие закономерности:

- в низкоэнергетической области чувствительности или малн, или полностью отсутстнуют; увеличение чувствительности происходит в группах, где сечение активации соответствующих детекторов аномально велико;

- эмеется зависимость чувствительности функционалов от геометрических размеров защиты.

Зависимость чувствительности **df тодицин** слоя защити. На рис. I и 2 изображена суммарная чувствительность для разных активационных детекторов. На участке, где защита состоит из слоя исследуемого материала (кислород и утиерод), указанная зависимость носит почти линейный характер. Отклонения связаны с изменением состава защиты в соответствующих точках. Наличие почти линейного закона возрастания чувствительности позволяет экстраполировать ее величину на большую толщину защиты. В частности, в случае использования для защиты воды (см. рис.I) можно видеть, что пол ее толщине около I,5 м значение чувствительности должно достигнуть IO. Это означает, что если взять точность определения сечений равной около 5%, то функционалы будут вычисляться с точностью, приближающейся к 50%. Последняя пифра превышает точность метода, которая оценивалась примерно в 30%. Из изложенного следует, что существует возможность определения метода расчета путем уточнения констант.

Аналогично предыдущему случаю путем экстраполяции (см. рис.2) получают результать, свидетельствующие о том, что уже при толщине графина 40 см погрешность констант сравнима с погрешностью метода.

Анализ матрици чувствительности. Выпе рассмотрен общепринятый метод анализа чувствительности, заключающийся в том, что анализируется чувствительность йункционала, представляющего собой некоторый интеграл. Неудобство такого подхода заключается в том, что в интеграле вуалируется вклад отдельных составляющих. Это, в частности, не позволяет предсказать профиль чувствительности некоторого йункционала, если известен профиль чувствительности другого функционала.

Рис. I. Зависимость суммарной чувствительности от толдини защити (вода) для разных детекторов: ----- (Δ) - индия; ---- сери;(\otimes) - золота (0,5 - ∞);(\oplus) - золота (0 - ∞) Рис.2. Зависимость суммарной чувствительности от толщини защити (градит) для разных детекторов: ----- (Δ) - индия; --- сери;(\otimes) - золота (0,5 - ∞);(\oplus) - золота (0 - ∞)

Такой недостаток можно устранить, если в качестве функционала, для которого определяется профиль чувствительности, выбрать групповой поток φ_i -й группы. Тогда можно ввести понятие матрипк чувствительности B_{ij} , которая представляет собой чувствительность потока нейтронов в j-й группе к изменению какого-либо сечения в i-й группе, т.е.

$$B_{ij} = \left(\frac{\Delta \varphi_j / \varphi_j}{\Delta \sigma_i / \sigma_i}\right) \frac{1}{\Delta u_i} \cdot$$

В работе /8/ внчислены матрицы для метода выведения - диффузии и для изменения групповых сечений кислорода и углерсда, составляющих основную часть материала защиты. Схема вычислений аналогична изложенной выше.

Анализ определяемых матриц чувствительности позволяет сделать следущие выводы:

I. Диагональные элементы матрицы существенно превышают (по абсолютной величине) недмагональные. Это означает, что измененые сечения в какой-либо группе в основном воздействует на изменение потока в ней.

2. Для кислорода значительная чувствительность набладается в первых четырех-пяти группах (днагональные и околодиагональные элементы). Ес значения, равные примерно единице, указывают на то, что при расчетах потоков на больних глубинах (около I,5 м) погрешность их определения, связанная с неточностью знания констант, начинает превышать погрешность самого метода выведения – дифузии.

3. Для углерода большие значения чувствительности наблидаются во всех группах. Особенно велики они в первых трех-читырех группах (около 5-8). Это обстоятельство указывает на необходимость учета точности констант по углероду при расчетах методом выведения - диффузии при толнинах графита около 40 см и более.

Список литературы

- Михай К. Использование метода выведения диффузии для расчета тестовой программы по биологической защите. - В кн.: Теплогидравлические и физико-химические процессы в ядерных энергетических установках. М., 1980, вып.474, с.59-65.
- 2. Чом Д. и др. Результати измерений тестовой задачи № 2 по биологической защите. Будапешт, 1977.
- 3. Марчук Г.И. Методы расчета ядерных реакторов. М.: Госатомиздат, 1961.
- 4. Goldstein H. A survey of cross-section sensitivity analysis as applied to radiation shielding. - In: Proc. of the 5 Intern. Conf. on Reactor Shielding. USA, Knoxville, Apr. 1977, p. 18-25.
- 5. Fossan D.B. e.a. Phys. Rev., 1961, v.123, N 1, p.209.
- 6. Cohn H.O., e.a. Phys. Rev., 1960, v.122, N 2, p.534.
- 7. Абагян Л.П. и др. Групповые константы для расчета ядерных реакторов. М.: Атомиздат, 1964.
- 8. Михай К. Использование интегральных экспериментов с целью анализа ядерных констант для расчета биологической защиты ядерных реакторов: Автореферат дис. на соиск. учен. степ. канд. физ. наук. М., 1980, с.223.

УДК 539.173

моделирование энертетической структуры сечений делящихся ядер в области неразреленных резонансов

Н.Куюмджиева, Н.Янева (ИЯИЯЭ АН, София, БНР)

> ENERGY DEPENDENCE CALCULATION CODE FOR FISSIONABLE NUCLEI CROSS-SECTION IN NON RESOLVED RESONANCE RANGE. The programme was made for calculation the energy dependence of simulated cross-section on the basys of R-matrix formalism taking into account the interference between nearby situated levels. The calculated values of energy averaged 239 Pu total cross-section in the interval 100-2000 eV were compared with experimental data.

Георетическое описание энергетической структуры сечений связано с применением формальной теории ядерных реакций и использованием набора параметров, полученых при сравнении с экспериментом. В резонансной области энергии нейтронов для делящихся ядер необходим учет межрезонансной интерференции. Преимущества применения в-матричной теории состоят в том, что параметры не зависят (или слабо зависят) от энергии и подчиняются известным статистическим законам распределения. Для неразрешенных резонансов можно построить "модельные" сечения, которые зависят только от средних параметров и сохравных характеристики энергетической структуры.

R-матричную теорию можно связать с К-матричным представлением (методом эффективного взаимодействия). Используя основние свойства s-матрици - аналитичность и унитарность, выражаем ее через реальную симметричную матрицу К:

$$\mathbf{S} = \exp(-\lambda\varphi)(1-\mathbf{i}\mathbf{k})^{-\gamma}(1+\mathbf{i}\mathbf{k})\exp(-\mathbf{i}\varphi). \tag{I}$$

Матрица К имеет вид

$$K_{\alpha\beta} = K_{\alpha\beta}^{0} + \sum_{\lambda=1}^{N} \gamma_{\lambda\alpha} \gamma_{\lambda\beta} (E_{\lambda} - E)^{-1}, \qquad (2)$$

где a и b - открытые каналы реакции; λ - индекс уровней; $\kappa_{\alpha\beta}^{o}$ - нерезонансная добавка.

В работе /I/ выражения (I), (2) применяются для построения матрины s с помощью модели случайной матрины и показано, что такой подход может быть использован для расчета упругих и неунругих сечений составного ядра. Величины $r_{\lambda,\alpha}$ подчиняются нормальному распределению с нулевым средним. Расстояния между уровнями ($E_{\lambda+i} - E_{\lambda}$) распределены по закону Вигнера. В работе /2/ предлагается применить такую схему для расчета нейтронных сечений делящихся ядер. При этом делается упрощенное рассмотрение задачи по известной схеме Рейха - Мура /3/. Тогда число открытых каналов уменывается значительно, радиационная ширина считается постоянной и добавляется к энергии в знаменателе выражения (2) как постоянная добавка. Для рассматриваемого случая можно записать

$$K_{\alpha\beta} = \frac{i}{2} \frac{\overline{\Gamma}_{\lambda\alpha}^{1/2} \overline{\Gamma}_{\lambda\beta}^{1/2}}{\overline{D}} \sum_{\lambda} \frac{\beta_{\lambda\alpha} \beta_{\lambda\beta}}{(E_0 - E)/\overline{D} + \lambda Z_{\lambda} - i\Gamma_{\beta}/2\overline{D}},$$

где $\overline{\Gamma}_{\lambda a}$ - средние парпиальных нейтронных ширин; \overline{D} - среднее расстояние между уровнями. Случайные величины $\beta_{\lambda a}$ имеют нормальное распределение с параметрами (0,1), а случайная величина Z_{λ} следует закону распределения Вигнера. Величина E_0 отмечает начало энергетического спектра. После несущественных преобразований выражение (1) примет вид

$$S = \exp(-i\varphi) \left[(1 - ik)^{-1} - 1 \right] \exp(i\varphi).$$
(3)

Сечение реакции и полное сечение получаются из соответствущих элементов S-матрицы с помощью известных соотношений

$$\tilde{\sigma}_{\alpha} = \frac{\pi}{K^2} \left| S_{n\alpha} \right|^2; \qquad \tilde{\sigma}_t = \frac{2\pi}{K} (1 - \operatorname{Re} S_{nn}).$$

Для численного расчета сечений создана программа моды по методу Монте-Карло /4/. Указанные законы распределения позволяют моделировать случайные величины $\beta_{\lambda a} \le Z_{\lambda}$. Используем алгоритм, представленный в работе /5/. Если два случайных числа $p_{i} \le p_{2}$ равномерно распределены в интервале (0,1), то случайные величины $\beta_{\lambda a} = (-2 \ln p_{i})^{1/2} \cos(2\pi r_{2});$ $\beta_{\lambda \beta} = (-2 \ln p_{i})^{1/2} \cos(2\pi r_{2})$ независимы в распределены нормально около нуля с отклонением, равным единице. Случайная величина $Z_{\lambda} = 2\sqrt{\pi} \sqrt{-\ln(1-p_{i})}$ следует закону распределения Вигнера.

Величины $\beta_{\lambda\alpha}$ и Z_{λ} используются для построения матрицы (1-ik) и посредством выражения (3) матрицы s. Далее внчисляются сечения \mathcal{O}_{α} и \mathcal{O}_{t} . Программу моде используют следующим образом. На основе вводных данных о средних резонанс-

Программу моде используют следующим образом. На основе вводных данных о средних резонансных параметрах подпрограммы нета и дета моделируют случайные величины $\beta_{\lambda a}$, $\beta_{\lambda \beta}$ Z_{λ} с помощью генератора случайных чисел. Подпрограммы МАТНХІ (I = 1,2) строят и обращают комплексную матряцу (1-ik) для I-спиновых состояний составного ядра. Они нычисляют и элементы s-матряцы для расчета сечений. С помощью подпрограммы MEDIUM получают сечение, усредненное по энергии согласно выражению

$$\langle \mathcal{O} \rangle = \int_{\Delta E} \mathcal{O} E dE / \int_{\Delta E} E dE .$$

Подпрограмма ERROR учитывает вероятную ошноку $P_n \approx 0,675 \sqrt{6/I_{MAKC}}$, где $I_{MAKC} \sim$ число разнгрывания по методу Монте-Карло. Дисперсия Δ средних сечений $\langle 6 \rangle$ вычисляется согласно данным работы /6/:

$$\Delta = \frac{1}{N-1} \sum_{i=1}^{N} \left(\left\langle \mathcal{O}_{i} \right\rangle \right)^{2} - \frac{1}{N(N-1)} \left(\sum_{i=1}^{N} \left\langle \mathcal{O}_{i} \right\rangle \right)^{2},$$

где W=IMARC.

В программе проведится усреднение по числу разнирываний, предвидится возможность варьирования значений средних резонансных параметров и введение статистического критерия для определения оптимальных значений этих параметров путем подгонки к экспериментальным данным. Программа составлена на языке ФОРТРАН для машин единой серии.

Описанная программа применялась для расчета усредненных значений полного нейтронного сечения ²³⁹Ра в области 300-2000 эВ. При взаимодействии в -нейтронов с ядром ²³⁹Ра возбуждаются два спиновых состояния составного ядра, в одном из которых имеются три, а в другом два открытых канала. Соответственно строятся две матрици. Число членов в сумме выражения (2) равно IO, значение I макс также равно IO. Входные данные о средних параметрах взяты из оценки работы /6/, где они получены по формуле Хаузера – Фешбаха. Результаты представлены в таблице в сравнении с экспериментальными данными, которые использовались для определения значений средних параметров.

Данные об усредненных полных нейтронных сечениях ²³⁹Pu в области 300-2000 эВ

and the second sec			•
Е, ЭВ	<0	R _m , d	
	Работа [6]	Настоящая работа	
300-400	33,367	34,501	2,8
400-500	26,519	26,88I	2,3
500-600	45,988	39,98I	4,0
600-700	24,550	24,7I4	I,5
700-800	24,010	22,274	I,7
800-9 00	22,300	22,354	I,5
900 - 1000	29,380	30,39I	2,4
1000-2000	21,944	24,49I	I,9

Как видно из таблицы, расчетные значения совпадают в пределах ошибок с экспериментальными данными, что приближается к выводу работы /1/ о применимости рассматриваемой схемы для расчета сечений составного ядра (в данном случае для делящихся ядер и с учетом интерференции резонансов в приближении Рейха - Мура). Такой вывод имеет существенное значение, так как описанный метод позволяет создать возможности расчета функционалов сечений (например, пропускания) и определения оптимальных значений средних резонансных параметров. Одновременный анализ экспериментальных данных по усредненным сечениям и пропусканию может обеспечить определение средних значений парциальных нейтронных ширин для разных спиновых состояний составного ядра.

Список литературы

I. Tepel J.W., Hofmann H.M., Weidenmuller H.A. Phys. Letters, 1974, v,48B, p.1.

- 2. Лукьянов А.А. Структура нейтронных сечений. М.: Атомиздат, 1978.
- 3. Reich C.W., Moore M.S. Phys. Rev., 1958, v.111, p.929.
- 4. Куюмджиева Н.Т. Ядрена енергия, 1980, № 13.
- 5. Соболь Н.М. Численные методы Монте-Карло. М., 1973.
- 6. Коньшин В.А. и др. Вопросы атомной науки и техники. Сер. Ядерные константы, 1974, вып.14.

УДК 539.17.013:621.3.083.2

ОПИСАНИЕ НЕЙТРОННЫХ РЕЗОНАНСОВ В РАМКАХ ЭКСИТОННОЙ МОДЕЛИ

М.Качмарчик, М.Пшитула (Институт физики Университета в Лодзи, ПНР)

> NEUTRON RESONANCE DESCRIPTION USING EXCITON MODEL APPROACH. An exciton model method of calculation of reduced neutron resonance widths is presented. The results of calculation are compared with experimental data.

Из-за больших трудностей в точном квантовомеханическом описании структуры и свойств высоковоэбужденных состояний атомного ядра, получаемых после захвата резонансных нейтронов, была предпринята попытка использовать полуклассический подход /1/. Он основан на экситонной модели /2/, которая с успехом применяется для описания характеристик ядерных реакций, вызываемых частицами с энергией более IO МэВ /3,4/. Предподагая, что эволюция структуры высоковозбужденного ядра происходит вследствие двухчастичных столкновений нуклонов, для описания эволюции структуры используем набор дифференциальных уравнений /3,4/. В первом приблажении пренебрежем различием между нейтронами и протонами. Число дифференциальных уравнений равно максимальному числу к нуклонов, которые могут находиться над уровнем Ферми ядра-мишени при энергии возбуждения промежуточного ядра, равной энергии связи нейтрона в этом ядре. Предполагая в дальнейшем эквидистантное распределение одночастичных уровней в потенциальной яме с плотностью g=A/13 МэВ⁻¹ и вводя энергетическую цель между нейтронными оболочками, можно получить показанную на рис. I зависимость числа к от числа нейтронов в ядре в области в стабильных ядер.

Рис. I. Зависимость числа k от числа нейтронов N в ядре (область д-стабильных ядер) с учетом (•) и без учета (о) знергетической щели

Для вычисления вероятностей внутриядерных переходов λ_i^{\pm} от конфигурации с і-частицами к конфигурациям с і ± 1 -частицами использовалось "золотое правило". Средний квадрат матричного элемента вычислялся по эмпирической формуле $(5/\overline{M}^2 = K/UA^3)$, а плотность конечных состояний, доступных по конфигурации с і-частицами, – по формулам работы (6/. Вероятности нейтронного и радиационного распада определяли по одночастичной ширине и оценке Вайскопфа в предположении только электрических дипольных переходов с энергией $E_n(1) = S_n/1$ /1/.

Вычисления усредненных свойств нейтронных резонансов не нуждаются в решении упомянутых дифференциальных уравнений, поскольку они зависят от средних времен преобывания возоужденного ядра в разных конфигурациях. Как показано в работах /1,7,8/, среднее время преобывания возоужденного ядра в отдельных конфигурациях Θ_i можно легко найти по системе линейных алгеораических уравнений, которые получаются интегрированием дифференциальных уравнений в пределах времени от нуля до бесконечности при условии, что в начальный момент все ядра находятся в конфигурации с 1=I. Сумма этих времен по всем значениям 1 дает время жизни \mathcal{T} возоужденного ядра, следовательно, полную ширину. Отношение $p_i = \Theta_i / \mathcal{T}$ выражает вклад конфигурации с 1 -частицами в структуру возоужденного ядра, которая определяется спектром значений p_1 .

С энергетической точки зрения испускание нейтрона для низколежащих резонансов (U=S_n) может происходить только из конфигурации с i=1. Отсюда предсказываемая приведенная нейтронная ширина $\Gamma_n^o = p_1 \Gamma_{sp}^o$.

На рис.2 показан пример структуры возбужденных ядер с U ~ S_n, а на рис.3 сопоставлены экспериментальные значения средних нейтронных приведенных пирин со значениями, вычисленными описанным способом. Рассмотренный метод позволил вычислить радиационные и полные ширины нейтронных резонансов, которые оказались завышенными в среднем на два порядка, хотя ход их зависимости от относительной атомной массы в принципе является правильным.

Рис. 2. Структура возбужденных ядер с $U \approx S_n$: • - 60 Ni: $\triangle - {}^{110}$ Cd: • - 164 Er: $\Box - {}^{200}$ Hg

Изложенное описание нейтронных резонансов является очень простым и наглядным, но имеет недостатки из-за слишком упроценных предположений.

Список литературы

- I. Przytula M., Kaczmarczyk M. Proc. Second Int. Symp. on the Neutron Induced Reactions. Smolenice, June 25-29, 1979, VEDA. Bratislava, 1980, p.263.
- 2. Griffin J.J. Phys. Rev. Letters, 1966, v.17, p.478.
- 3. Blann M. Ann. Rev. Nucl. Sci., 1975, v.25, p.123.
- 4. Гудима К.К., Ососков Г.А., Тонеев В.Д. Ядерная физика, 1975, т.21, с.260.
- 5. Kalbach-Cline C. Nucl. Phys., 1973, V.A210, p.590.
- 6. Williams F.C., Jr. Phys. Letters, 1970, v.31B, p.184.
- 7. Běták E., Dobeš J. Proc. VII-th Int.Symp. on the Interaction of Fast Neutrons with Nuclei. Gaussig, November 21-25, 1977, Zfk-376,5.
- 8. Dobeš J., Běták E. Z.Physik, 1978, Bd A288, S.175.

УДК 539.125.5.164.07 СТРИМЕРНЫЙ СПЕКТРОМЕТР ДЛЯ ИССЛЕДОВАНИЯ РЕДКИХ РЕАКЦИЙ С НЕЙТРОНАМИ

М.Н.М ихайлов, Т.М.Трошев, А.И.Трифонов, В.И.Христов, Т.Б.Я нев (ИНИНЭ АН, ЕНР), И.В.Фаломкин, Ю.А.Щербаков (ОИНИ, СССР)

> STREAMER SPECTROMETER FOR THE STUDY OF RARE REACTIONS WITH NEUT-RONS. A streamer spectrometer for detecting and photographing electron positron pairs of internal conversion in the capture of thermal neutron by the nuclei of argon and hydrogen are discribed.

Исследование захвата тепловых нейтронов с образованием конверсионных пар является одним из интересных методов для изучения мультипольности ядерных переходов и других характеристик ядерных уровней. В последние годы для изучения пар внутренней конверсии при захвате тепловых нейтронов ядрами аргона использовалась методика диффузионной камеры /1/. Были получены фотографии и энергетический спектр пар и сделан анализ углового распределения суммарного вектора пар. Значительный уровень р-фона и недостаточное энергетическое разрешение затрудняли наблюдение линии перехода в аргоне. Отчетливо наблюдались группы линий в районе 3 и 4 МэВ. Недостаточная статистика, связанная с применением этой методики, не позволила получить более детальной информации об энергетическом спектре конверсионных пар. Чтобы сделать определенные выводы о наблюдении конкретных переходов в аргоне, необходимо значительно повысить поток нейтронов и снизить р-фон из канала реактора.

Била предпринята также полнтка использовать диффузионную камеру для регистрации пар внутренней конверсии при захвате тепловых нейтронов ядрами водорода. Получены хорошие треки в камере при давлении рабочего газа I0,I·I0⁵ Па. Однако в диффузионной камере нельзя использовать интенсивный пучок нейтронов, а р-кванты создают большой фон, поэтому не удалось наблюдать соответствующей реакции.

Для дальнейшего исследования захвата тепловых нейтронов с образованием конверсионных пар в аргоне и водороде была создана стримерная камера, которая известна как трековый детектор /2-47. Она управляема и имеет малое время памяти (около I мкс), поэтому способна работать в условиях большой фоновой загрузки. Использование камеры в магнитном поле для спектрометрии дает возможность измерять импульсы заряженных частиц, углы их вылета из точки взаимодействия и изучать частицы, имеющие малый пробег. Кроме того, появилась возможность спектрометрии частиц очень малых энергий, возникших в газе камеры, а также изучения редких реакций с анализом продуктов распада. Стримерная камера может регистрировать цучки нейтронов высокой интенсивности. Рабочий газ, наполняющий камеру (аргон или водород), выполняет роль мишени, что дает возможность наблюдать точки испускания пары и обеспечивает достаточно хорошие условия для угловых и энергетических измерений.

На рисунке изображена принципиальная схема стримерного спектрометра, помещенного в магнитное поле. Размер камери, определенный с учетом энергии регистрируемых электронов, выбран равным

ЗОх20х10 см³. Камера заполнена аргоном или водородом высокой чистоты при давлении около I,0I·IO⁵ Па и размещена в магните-соленоиде. Электрон-позитронные пары регистрируются с помощью двух боковых сцинтилляционных счетчиков. Система отбора событий включает четыре таких счетчика: два из них являются боковыми стенками камеры, а другие два расположены непосредственно за ними. Сцинтилляционные счетчики, использующие ФЗУ-30, связаны между собой схемой антисовпадения – совпадения (чтобы исключить влияние фона и ложных запусков). Импульсы от счетчиков подаются на схему управления, которая запускает генератор и схему, управления, которая запускает ге-

Схема стримерного спектрометра: I - защита реактора; 2 - нейтронный пучок;3 - ФЭУ; 4 - магнитное поле; 5 - сцинтилляторы; 6 - строительная камера фотоаппаратах. Схема управления основана на использовании микросхем и имеет время задержки около 20 нс. Выходной импульс подается на схему запуска высоковольтного импульсного генератора.

Для питания камеры используется 20-каскадный импульсный генератор типа Аркадьева - Маркса. Запуск первого каскада осуществляется с помощью импульсной схемы на лавинных транзисторах и двух тригатронах. Разработанная авторами настоящего вообщения конструкция генератора имеет однополярную схему питания до 30 кВ. Ударная емкость генератора составляет 500 пФ. Амплитуда высоковольного импульса достигает 600 кВ. Разрядники генератора находятся в герметической плексигласовой трубе, позволящей увеличить давление газа в разрядных промежутках до 6.10⁵ Па. Изменением давления в этих промежутках в широких пределах регулируется амплитуда высоковольтного импульса. Каждый каскад генератора состоит из I6 конденсаторов КI5-4. Максимальное напряжение в камере с учетом емкости электродов, нагрузочного сопротивления, потерь на коронирование к внутреннее сопротивление составляет 500 кВ. Как показали испытания, генератор прост по конструкции и устойчиво работает в широком диапазоне выходных напряжений.

Треки в камере фотографируются стереоскопически двумя фотоаппаратами через сетчатый электрод. В аргонной и водородной камерах применяется режим самощунтирования, которой позволяет получить хорощую локализацию и яркое свечение следов /5/.

Для повышения локализации и яркости треков камера заполняется чистым аргоном или водородом с небольшой примесью паров воды или метана /6, 7/. Перед наполнением камера откачивается и выдерживается при остаточном давлении до I,33 Па. Система наполнения позволяет вводить в рабочий газ необходимые добавки. Без повторного наполнения камера работает обычно в течение нескольких дней. Система отбора позволяет запускать камеру в случае рождения пары на пути нейтронного пучка внутри объема камеры.

Для изучения возникновения пар внутренней конверсии при захвате тепловых нейтронов ядрами аргона и водорода с помощью спектрометра в матнитном поле необходимо наблюдать и фотографировать все электронно-позитронные пары, которые возникли в объеме стримерной камеры и были зарегистрированы счетчиками.

Список литературы

I. Дамянов Д.Б., Куллкин М.М., Христов В.И., Щербаков Ю.А. Доклады БАН, 1973, т.26, № II, с. 1441.

- 2. Дайон М.И. и др. Искровая камера. М.: Атомиздат, 1967.
- 3. Rice Evans P. Spark. Streamer, Proportional and drift chambers. London, 1974.
- 4. Воробьев А.А., Руденко Н.С., Сметанин В.И. Техника искровых камер. М.: Атомиздат, 1978.
- 5. Falomkin I.V. e.a. Nucl. Instrum. and Methods, 1967, v. 53, p. 266.

6. Falomkin I.V. e.a. Ibid., 1976, v. 137, p. 589.

7. Falomkin I.V. e.a. Ibid., 1975, v. 131, p. 431.

Elen	ient	Quan-	Labo -	Work-	Energy	Energy (eV)		i
S	A	tity	rato - ry	type	min	max		
AL	02 7	NA	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
AL	02 7	NP	NIR	EXPT	THR		39	STARØSTØV+2 AVG SIG, TBL
TI	046	NP	NIR	EIPT	THR		39	STARØSTØV+ AVG SIG, TBL
FB	056	NP	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
IN	115	DIN	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
∎U	1 97	NG	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
U	233	SFN	FEI	EXPT	THR		43	BØL'SHØV+NEUT-SPEC, TBL
U	235	NP	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
U	235	SFN	FBI	EXPT	THR		43	BØL'SHØV+ NEUT-SPEC, TEL
U	238	NP	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
Шp	237	NP	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
PU	239	NF	NIR	EXPT	THR		39	STARØSTØV+ AVG SIG, TBL
PU	239	SFN	FEI	EXPT	THR		43	BØL'SHØV+ NEUT-SPEC, TBL
C₽	252	NP	FEI	RXPT	THR		43	Bøl'Shøv+ neut-Spec, TBL
MAN	r	N2N	FEI	BVAL	1.0 5	2,0 7	7 47	BYCHKØV+ CALCULATIØNS, TBL
MAN	Ľ	NP	FEI	EVAL	1.0 5	2,0 7	7 47	BYCHKØV+ CALCULATIØNS, TBL
MAN	r	NA	FEI	EVAL	1.0 5	2,0 7	47	BYCHKØV+ CALCULATIØNS, TBL
MAN	Ĩ	NT	FRI	EVAL	1.0 5	2,0 7	47	BYCHKØV+ CALCULATIØNS, TBL

.

БИБЛИОГРАФИЧЕСКИЙ ИНДЕКС РАБОТ НАУЧНО-ТЕХНИЧЕСКОГО СБОРНИКА "ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. СЕРИЯ: ЯДЕРНЫЕ КОНСТАНТЫ", 1981 г., ВЫП.3(42) В МЕЖДУНАРОДНОЙ СИСТЕМЕ СИНДА

Редактор Г.В.Зубова Технический редактор С.И.Халалдулина Корректор Е.М.Спиридонова

Подписано в печать	8.09.8I.	Т25249. Форма:	60x84 I/8.
Офсетная печать.	Печ.л. 13,0.	Учизд.л. 13.0	. Tapax 327 sks.
39R. THI. # 989	17	CTATCH.	Индекс 3645.

Отпечатано в ЦНИИатоминформе 119146, Москва, Г-146, аб/яд 584 **YIK 539.170.013**

метод Анализа Средних по энертии пропускания резонансных нейт-РОНОВ/А.В.Комаров, А.А.Букьянов. - Вопросн атомной науки и техники. Сер. Ядерные константи, 1981, вын.3(42), с.3-9.

Сер. Адерные константы, тоот, нык.ост., о.о... На основе разработанной ранее теоретической медели для онисания средных по энертии препускания резовансных нейтровов как функций толщины образцах константи, резованскых нейтров проведен анализ экспериментальных данных по пропусканиям на образцах железа в раз-личных энертетических группах. Полученные величины параметров согла-суются с соответствущими данными, оцениваемыми в теория средных нейтронных сеченых. Предноженный метод описания пропусканий позволя-ет воспроизводить экспериментальные результати для любых толщин об-вещов. разцов.

Рис.5, таби.2, список лит. - 9 назв.

YIK 539.170:53.08

СЛУЧАЙ АНАЛИТИЧЕСКОГО УЧЕТА АППАРАТУРНОГО РАЗРЕШЕНИЯ ПРИ ПАЛЕ-АППРОКСИМАЛИИ РЕЗОНАНСНИХ КРИЕНХ/В.Н.Винотрадов, Е.В.Тай, Н.С.Ра-ботнов. - Вопросы атомной науки и техники. Сер. Ядерние константи, 1981, вып.3(42), с.9-II.

Рассмотрено уравнение Фредтольма первого рода с оператором типа свертки, разностным ядром и правой частью в виде рациональной фун-кции, не именщей действительных полюсов и аппроксимирунией резован-сную криную. Для ядер, списнвающих три вида аппаратурных линий: ос-трую экспоненциальную, гладкую экспоненциальную и линию Доренца, получено аналитическое решение этого уравнения с помощью пресоразо-вания Фурье, которое во всех случаях также является рациональной функцией. Рис.2. описов име. Б. тос-

PEC.2, CHECOR JET. - 5 HA3B.

УДК 539.171.017

HKIAH HPHMAX HPOHECCOB B KECTKYN YACTA CHEKTPOB PEAKINN ¹¹³In(n,n') /А.Г.Довбенко, А.В.Игнаток, В.П.Лунев, Г.Н.Ловчикова. -Вопросы атомной науки и техники. Сер. Ядерные константи, 1981, вып.3(42), с.12-18.

В рамках метода сильной связи каналов проведен анализ вклада пря-них процессов в кесткур часть спектров реакции "Спа(л,л") для энертий налетанието нейтрона 5,34 и 8,53 МэВ. Показано, что на осно-ве спектральных карактеристик квадрупольных и октупольных коллектив-них возбуждений, колучениях иля близлежащих четно-четных ядер, уда-ется объяснить больную часть наблизлежащих четно-четных ядер, уда-ется объяснить больную часть наблидаемого пренымения спектров (л,л') реакции над испарительными спектрами нейтронов (р, д)-реакции. Рис.4, табл.1, список лит. - 17 назв.

УЛК 539.172.1 ПАРАМЕТРИЗАЦИЯ ЭКСПЕРИЛЕНТАЛЬНЫХ СПЕКТРОВ НЕЙТРОНОВ ИЗ (р.п.), (п.п.) - РЕАКЦИИ НА ЯДРАХ 1721п, 187 та /М.И.Свирин. - Вопросн атом-ной науки и техники. Сер. Ядерные константы, 1981, вып. 3(42), с. 19-26. Проведен анализ экспериментальных спектров нейтронов (р,п)- и (п,п') -реакций на ядрах ¹¹ лп, ¹² Та в рамках каскадной модели ис-парения с учетом вклада нестатистической эмиссии нейтронов. Рассмот-рено влияние конкуренции у-квантов на вероятность выхода нейтро-нов в каскадах. Получение значения параметра плотности уровней с сравниваются с результатами других работ. Рис.4, табл.2, список дит. - 23 назв.

УПК 539.172.4

ОЦЕНКА СЕЧЕНИЙ РЕАКЦИЙ (п.2л), (п.3л) ДЛЯ ТЯТЕЛЫХ ЯПЕР С УЧЕ-ТОМ НЕРАВНОВЕСНЫХ ПРОЦЕССОВ/В.М. Бычков, В.И.Пляскин, Э.Ф.Тошинс-гая. - Вопроси атомной науки и техники. Сер. Ядерные константи, 1981, вып. 3(42), с.26-38.

1981, нап. 0(42), С.28-38. Описана методика оценки функций возбуждения реакций (n,2n), (n,3n) на тяжених ядрах в области энергий нейтрона до порога реак-ции (n,4n). Приведени формули для расчета абсолютных сечений, полу-ченные на основе упрощенных вариантов статистической и экситонной моделей. Канал деления описан с помощью систематики эксперименталь-ных значений Γ_n/Γ_f . Выполнена оценка сечений реакций (n,2n) и (n,3n) в области энергий от порога до 20 МэВ для 20 делящихся изо-топов. Проведено сравнение с результатами других оценок. Рис.7, табл.2, список лит. - 23 назв.

УДК 539.125.516.4

СРЕДНИЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ НУКЛИДОВ С МГНОВЕННЫМИ НЕЙТРОНАии деления ²³⁵u+n_т, ²³⁹Pu+n_т, ²⁵²сf/Б.И.Старостов, Л.Н.Кудряшов. -Вопросы атомной науки и техники. Сер. Ядерные константы, 1981, вып. 3(42), с. 39-42. Рассчитаны сечения деления нуклидов 235 U, 239 Pu, 238 U, 237 Np и сечения пороговых реакций 27 Al(n, α), 27 Al(n,p), 115 In(n,n'), 56 56_{Fe(n,p)}, ⁴⁶Ti(n,p), усредненных по спектрам мгновенных нейтро-нов деления ²³⁵U, ²³⁹Pu тепловыми нейтронами и спонтанного деле-

ния ²⁵²сі. Показано, что можно достигнуть самосогласованности боль-пого насора экспериментальных данных как между собой, так и с рас-четными оценками в пределах 2%. Табл.8, список лит. - IЗ назв.

УЛК 539.185 CHERTPH HEATPOHOB BUHYEJEHHOTO JEJEHUH 2330, 2350, 239Pu TEI-ЛОВЫМИ НЕЙТРОНАМИ И СПОНТАННОГО ДЕЛЕНИЯ ²⁵²С: /В.И.Большов, К.Е.Во-лодин, В.Т.Нестеров, В.М.Турчин. - Вопроси атомной науки и техники. Сер. Ядерные константи, 1981, вып.3(42), с. 43-46. Сер. лдерные константи, 1901, вып. 3(42), С. 43-40. Приведены результаты измерений на тепловом пучке реактора БР-10 спектров нейтронов вынужденного деления ²³³U, ²³⁵U, ²³⁹Pu и спон-танного деления ²⁵²Cf с использованием сцинтиляционной методики и кристаллов стильбена и антрацена. Определены значения параметра 6 максвелловского распределения, которые использованию для ап-проксимации результатов измерений. Показано согласие исследований с результатами более ранних измерений той же экспериментальной группы и с последними сценочными данными. Рис.3, таби.1, список лит. - 5 назв.

УДК 539.173.4

ОПРЕДЕЛЕНИЕ АБСОЛИТНИХ КВАНТОВИХ ВЫХОДОВ Г-ИЗЛУЧЕНИЯ КОРОТКО-живущих пролуктов деления г-спектрометрическим методом в цикли-ческом режиме/А.Н.Гудков, В.В.Казанцев, В.В.Коваленко и др. – Воп-росн атомной науки и техники. Сер. Ядерные константы, 1981, нап.3(42), с. 47-49.

Модийнированный метод р-спектрометрического анализа смеси не-сепарированных продуктов деления на последовательных временных ин-тервалах в пиклическом режиме использован для измерения абсолютных квантовых выходов наиболее интенсивных р-линий I3 осколочных дер. Полученные результать сравниваются с данными наиболее распростра-ненных компиляций по р-издучению радионуклидов. Впервые получены абсолютные интенсивности важнейших ралиний, сопровождащих рас-пад 101 м1, 102 м1 н 144 Ва. Табл.2, список лит. - 7 назв.

УДК 539.173.4

Измерение виходов короткожинущих продуктов деления ²³³U тепло-ними нейтронами у-спектрометрическим методом в циклическом режи-ме/А.Н.Гудков, В.В.Казанцев, В.В.Коваленко и др. – Вопроси атомной науки и техники. Сер: Ядерные константи, 1981, вып. 3(42), с.49-53.

Описана модификация метода р-спектрометрического анализа сме-си несепарированных продуктов деления на последовательных временных интервалах в циклическом рехиме, разработанная для измерения выхо-дов короткоживущих осколочных нуклидов. Приведени результати экспе римента по измерения кумулятивных выходов некоторых короткоживущих продуктов деления ²²0 тепловыми нейтронами. Табл.3, список лит. - 9 назв.

УДК 539.170.01	
ПОЛУЧЕНИЕ ОБОЕЩЕННОГО СПЕКТРА ЧАСТОТ КОЛЕБАНИЙ АТОМОВ ЗАМЕЛІ ТЕЛИ ИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ПВАЖЛЫ ЛИКОФЕРЕНЦИАЛЬНЫХ СЕЧЕНИИ РАССІ НИЯ МЕЛЛЕННЫХ НЕИТРОНОВ/Ю.В.Лисичкан, А.Г.Новиков, В.А.Семенов, С.И.Тихонова Вопросн атомной науки и техники. Сер. Ядерные и отанти, 1981, вып.3(42), с.53-60.	-N - R - R
Описана процедура получения обобщенного частотного спектра и лебаний атомов некогерентно рассеивалщего замедлителя, реализова ная в программе SPECTR, написанной на языке ФОРТРАН-IV для ЭН БЭСМ-6. Задача получения обобщенного частотного спектра решаетс различными вариантами метода последовательных приближений с учу вкладов упругого (квазаупругого), многофононного и многократно рассеяний в наблищаемое дважди дийеренциальное сечение рассен медленных нейтронов. Приводятся результати обработки по програм SPECTR как "бумажного", так и реального экспериментов для гид да циркония и легкой воды. Показано, что с ростом числа итеращ модельный сцектр, заданный первоначально, приближается к истини Рис.8, список лит 9 назв.	KO- AH- A ZH STOM FO HUH MME DU- HUH HOMY

УДК 539.172.4

ОРГАНИЗАЦИЯ МАШИННОЙ БИБЛИОТЕКИ ОЦЕНЕННЫХ СЕЧЕНИЙ ПОРОГОВЫХ РЕ-АКЦИИ БОСПОР-80 И ЕЕ ТЕСТИРОВКА ПО ИНТЕГРАЛЬНЫМ ЭКСПЕРИМЕНТАМ/ В.М.Бычков, К.И.Золотарев, А.Б.Пащенко, В.И.Пляскин. - Вопросы атомной науки и техники. Сер. Ядерные константи, 1981, вып.3(42), с. 60-67.

Организована машинная библиотека оцененных сечений пороговых ре-акций БОСПОР-80, содержащая 142 рекомендованные функции возоужде-ния реакций (n,p), (n,c), (n,t), (n,2a) в диацазоне энергий нале-такщих нейтронов от порога соответствующих реакций до 20 МэВ. Оцен-ка сечений выполнена после критического анализа экспериментальных данных и расчетов, основанных на современных моделях протекания ядерных реакций. Выполнено сравнение рекомендованных сечений, усядерных реалиля. Быпольено сравление рекомендованных сечения, ус-редненных по спектру нейтронов деления, с экспериментальными дан-ными. Оцененные сечения БОСПОР-80 записаны на матнитную ленту ЭЕМ ЕС-IO33 Центра по ядерным данным (г.Оонинск) и могут онть получены по запросу. Рис.3, табл.I, список лит. - I8 назв.

УДК 539.17:621.039.538

АНАЛИЗ ЧУВСТВИТЕЛЬНОСТИ К ИЗМЕНЕНИЮ ГРУППОВЫХ КОНСТАНТ ПРИ РАС-ЧЕТАХ БИСИСИТИЧЕСКОЙ ЗАЩИТН МЕТОДОМ ВЫВЕЛЕНИЯ - ДИФФУЗИИ/К.Михай.-Вопросы атомной науки и техники. Сер. Ядерные константы, 1981, вып.3(42), с.85-88.

Рассматрявается влияние погрешностей групповых констант на точ-ность вникаления показаний активационных детекторов, устанавливае-ных в различных местах биологической защити учебного реактора Бу-данентского технического умперситета. Приведен сравнытельный ана-лиз точности метода расчета и точности заданных констант. Доклад представлен на 5-ю Всесоквур конференцию по нейтронной физике (Киев, 15-19 сентября 1980 г.). Рис.2, синсок лит. - 8 назв.

УДК 539.173 МОДЕЛИРОВАНИЕ ЭНЕРГЕТИЧЕСКОЙ СТРУКТУРЫ СЕЧЕНИЙ ДЕЛЕШХСЯ АДЕР В ОБЛАСТИ НЕРАЗРЕШЕННЫХ РЕЗОНАНСОВ/Н.Кумалхиева, Н.Янева. - Вопро-си атомной науки и техники. Сер. Ядерные константы, 1981, вып. 3(42), **c. 88-**90. Создана программа для моделирования энергетической структури се-чений на основе R-матричного формализма с учетом интерференции олизлежащих уровней. Полученные значения усредненного по энергии сечения полного 20 ра в интервале ICO-2000 эВ сравниваются с экспериментальными данными. Табл. І, список лит. - 6 назв.

УДК 539.17.013:621.3.083.2 СПИСАНИЕ НЕЙТРОННЫХ РЕЗОНАНСОВ В РАМКАХ ЭКСИТОННОЙ МОДЕЛИ/ М.Качмарчик, М.Плитула. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1981, вып. 3(42), с. 90-92. Предложен метод вычисления приведенных нейтронных ширин резонанпреднолен метод начистеляя приведенных неитронных шарин резонан-сов на основе экситонной модели. Сравниваются результати расчета с экспериментальными данными. Доклад из ПНР представлен на 5-в Все-совзную конференцию по нейтронной физике (Киев, I5-I9 сентября 1980 г.). Рис.3, список лит. - 8 назв.

улк 539.125.5.164.07

ОТРИМЕННЫ СПЕКТРОМЕТР ДЛЯ ИССЛЕДОВАНЫ РЕШЧИХ РЕАКЦИЙ С ИТЛРОНАЛИЛИ, Н. Михайлов, Т. М. Трошев, А. М. Трифонов и др. -Сопросы атомной науки и техники. Сер. Ядерные константи, 1981, вып. 3(42), с.93-94.

Описан стримерный спектрометр, созданный в Институте ядерных исследований и ядерной энергетики Академии наук HIP. Основой спект-рометра является стримерная камера размером ЗОх20х10 см³, наполнен-ная газсм-мишеных и помещенная в магнитном поле. Спектрометр пред-назначен для детектирования и фотографирования треков электронно-постронных пар внутренней конверсии при захвате тепловых нейтронов ядрами аргона и водорода. Мишеных является газ, наполняющий камеру, что позволяет получить возможность наблюдения точки испускания па-ры и обеспечивает хорошие условия для угловых и энергетических из-мерений. - Рис. I, список лит. - 7 назв.

Рис. І. список лит. - 7 назв.

I pyó.

Индекс 3645

Вопросы атомной науки и техники. Серия: Ядерные константы, 1981, вып. 3(42), 1-96