INDC(CCP)-183/L

INTERNATIONAL NUCLEAR DATA COMMITTEE

ESTABLISHMENT OF THE BOSPOR-80 MACHINE LIBRARY OF EVALUATED THRESHOLD REACTION CROSS-SECTIONS AND ITS TESTING BY MEANS OF INTEGRAL EXPERIMENTS

V.M. Bychkov, K.I. Zolotarev, A.B. Pashchenko, V.I. Plyaskin

Translation from Nuclear Constants 3(42) 60 (1981)

August 1982

Reproduced by the IAEA in Austria August 1982 82-5033 .

.

•

÷

ESTABLISHMENT OF THE BOSPOR-80 MACHINE LIBRARY OF

EVALUATED THRESHOLD REACTION CROSS-SECTIONS AND ITS TESTING BY MEANS OF INTEGRAL EXPERIMENTS

V.M. Bychkov, K.I. Zolotarev, A.B. Pashchenko, V.I. Plyaskin

Translation from Nuclear Constants 3(42) 60 (1981)

August 1982

.

UDC 539.172.4

ESTABLISHMENT OF THE BOSPOR-80 MACHINE LIBRARY OF EVALUATED THRESHOLD REACTION CROSS-SECTIONS AND ITS TESTING BY MEANS OF INTEGRAL EXPERIMENTS

V.M. Bychkov, K.I. Zolotarev, A.B. Pashchenko, V.I. Plyaskin

A paper was published in 1979 containing a compilation of experimental data on the cross-sections of (n,p), (n,α) and (n,2n) threshold reactions and recommended excitation functions [1]. A further paper considered the development of evaluation methods based on the use of theoretical model calculations, an increase in the number of recommended excitation functions, correction of the recommended crosssections on the basis of integral experiments and allowance for recent experimental data. To satisfy the wide circle of users, BOSPOR-80 - a machine library of evaluated threshold reaction cross-sections - was set up.

General information on the Library

The Library contains 142 recommended excitation functions for the (n,2n), (n,p), (n,α) and (n,t) reactions in the incident neutron energy range from threshold up to 20 MeV at intervals of 0.1 MeV. The cross-sections were evaluated after a critical analysis of existing experimental data and calculations based on up-to-date models of the nuclear reactions had been made.

In the analysis of the experimental data, preference was given to studies using radiochemical methods, enriched isotopes and semiconductor detectors which gave results coinciding to within the experimental error limits. Data differing substantially from the results of other authors which were in agreement were excluded from the study.

There are clearly insufficient experimental data to perform a reliable evaluation of the excitation functions for neutron-induced threshold reactions. Furthermore, the data from different authors often differ much more than the measurement errors quoted. Calculations were therefore used to obtain recommended cross-sections: in the first place, this allowed results which were obviously erroneous to be excluded from the overall set of experimental data; secondly, it enabled reaction crosssections to be evaluated for those incident neutron energy ranges and target nucleus mass numbers for which no experimental data exist. The cross-sections were evaluated on the basis of the optical and statistical models and Griffin's pre-equilibrium decay model. Predictions from the (N-Z) systematics were taken into account in analysing the cross-sections of reactions induced by 14-15 MeV neutrons. The methodology used to evaluate the threshold reaction cross-sections has been described in detail elsewhere [1-8].

In order to correct and verify further the accuracy of the recommended threshold reaction excitation functions given in the Library, they were compared with the results of integral experiments in two ways:

- A comparative analysis of recommended microscopic cross-sections for 56 Fe(n,p) 56 Mn and 58 Ni(n,p) 58 Co using data from three libraries (ENDF/B-IV, UKNDL and BOSPOR-80) based on one of the methods of unfolding neutron spectra from measured reaction rates (the BOSPOR-80 data can be recommended for practical application) [9]; and
- A comparison of experimental cross-sections measured in the fission spectrum with values obtained by averaging the excitation functions in the BOSPOR-80 Library over the ²³⁵U fission spectrum (in specific cases, microscopic cross-sections in the near-threshold range of incident neutron energies were corrected in accordance with the integral data results).

The results of this comparison are described in detail below.

Threshold reaction cross-sections averaged over the 235 U fission spectrum

The BOSPOR-80 excitation functions were averaged over the 235 U thermal fission spectrum for comparison with cross-sections measured in the fission spectrum.

The fission neutron spectrum was approximated by the Watt, Cranberg and Leachman formulas [10]:

$$L_1(E) = 0,48395 \exp(-E) \sin h \sqrt{2E};$$
 (I)

$$I_{2}(E) = 0,45274 \exp(-E/0,965) \sin h \sqrt{2,29E}$$
 (2)

$$I_{3}(E) = 0,76985 \exp(-0,775E) \sqrt{E}$$
 (3)

The differences between the spectra approximated by these formulas are shown in Figs 1 and 2. The uncertainty in the description of the fission neutron spectrum

- 2 -

reflects the current status of experimental data, the greatest uncertainty being observed in the very soft and hard parts of the spectrum.

The excitation functions of the (n,p), (n, α) and (n,2n) reactions for comparatively light (⁴⁵Sc, Fig. 3a) and heavy (¹⁹⁷Au, Fig. 3b) isotopes are examined for the purpose of illustration. Comparing the threshold reaction excitation functions with the shape of the fission spectrum, we can predict the main tendencies in the integral cross-sections:

- The threshold region of the excitation function makes a decisive contribution to the integral cross-sections since the number of fission neutrons decreases exponentially with increasing energy;
- The integral cross-sections of the (n,p) and (n,α) reactions decrease from light to heavy isotopes as a result of the growth of the Coulomb barrier; and
- The integral cross-sections of the (n,2n) reaction increase for heavy nuclei as a result of the reduction in the neutron binding energy.

The table compares the averaged cross-sections with the integral experiments. The evaluated experimental data are taken from Refs [11-16].

A comparison of the calculated and experimental data does not allow any definite conclusion to be drawn regarding the applicability of one particular formula for approximating the spectrum, although broadly speaking it can be said that formula (1) gives the best results for the cross-sections of the (n,p) and (n,α) reactions, while an analysis of the (n,2n) reaction cross-secticns suggests that the fission neutron spectrum here is if anything somewhat harder – closer to formula (3). The mean square deviation from the evaluated experimental data of the BOSPOR-80 cross-sections averaged over the spectrum given by formula (1) is approximately 25%.

It is interesting to compare the fission-spectrum-averaged cross-sections obtained for the BOSPOR-80 excitation functions with the results of various semiempirical evaluations. The table below gives the average cross-sections obtained by Pearlstein [17] and Calamand's predictions [12] based on Roy and Hawton's classification. The excitation functions of the (n,p), (n,α) and (n,2n) reactions were calculated by Pearlstein by a semi-empirical method, and averaging was performed over the Cranberg spectrum. On the whole, the data of Pearlstein and Calamand are in poorer agreement with the experimental cross-sections than the BOSPOR-80 values, which were obtained by a more rigorous method. The satisfactory agreement between Pearlstein's predictions for the spectrum-averaged cross-sections of the (n,2n) reaction with the data given in the present paper should be pointed out. The mean

- 3 -

square deviation from the BOSPOR-80 cross-sections is about 33%. With the exception of some predictions in the region of the relatively light elements (14 N, 19 F, 31 P, 32 S, 35 Cl, 39 K, 50 Cr, 54 Fe, 58 Ni) which deviate considerably, Calamand's calculations of the (n,2n) reaction cross-sections [12] show a mean square deviation of approximately 43% from the BOSPOR-80 spectrum-averaged cross-sections approximated by formula (1). Calamand's predictions of average cross-sections for the (n, α) and (n,p) reactions [12] show a mean square deviation from the BOSPOR-80 data of about 150 and 200% respectively. In this last example, the cross-sections for 6 Li and 24 Mg were not taken into account.

The evaluated data have been organized in the form of a machine library recorded on magnetic tape in the EC-1033 computer of the Nuclear Data Centre (Obninsk) and can be obtained on request. The BOSPOR-80 microscopic cross-sections were entered in the SAIPS data computing system [18]. We intend to continue work on the Library both to increase the number of reactions considered and to refine the recommended cross-sections further, taking into account new differential and integral measurements.

REFERENCES

- BYCHKOV, V.M., MANOKHIN, V.N., PASHCHENKO, A.B., PLYASKIN, V.I., Cross-sections of the (n,p), (n,α) and (n,2n) threshold reactions. Parts 1 and 2: Questions of Atomic Science and Technology, Ser. Nuclear Constants 1 (32) (1979) 27; Part 3 Ibid. 2 (33) (1979) 51; Part 4 Ibid. 4 (35) (1979) 21. Translation of a series of four articles published in Nuclear Constants in 1979. Report INDC (CCP) 146/LJ, IAEA, Vienna 1980.
- [2] BYCHKOV, V.M., PASHCHENKO, A.B., PLYASKIN, V.I., Calculation of the cross-sections of the (n,xn) and (n,xnf) threshold reactions for fissile nuclei (in Russian). Physics and Power Engineering Institute Preprint FEI-1052, Obninsk (1980).
- [3] BYCHKOV, V.M., PASHCHENKO, A.B., Analysis of threshold reactions in Cr,
 Fe and Ni isotopes within the framework of statistical theory (in Russian).
 Physics and Power Engineering Institute Preprint FEI-699 Obninsk (1976).
- [4] BYCHKOV, V.M., PASHCHENKO, A.B., PLYASKIN, V.I., Cross-sections of the (n,p) reaction at 14.5 MeV for stable nuclei with Z ≥ 20 (in Russian). Questions of Atomic Science and Technology, Ser. Nuclear Constants I (28) (1978) 5.

- [5] BYCHKOV, V.M., PASHCHENKO, A.B., PLYASKIN, V.I., Calculations of crosssections of (n,2n) reactions and neutron inelastic scattering spectra in the 50-200 range of mass numbers (in Russian), Ibid. 2 (29) 7.
- [6] ABAGYAN, L.P., BYCHKOV, V.M., ZAKHAROVA, S.M., et al., Evaluation of crosssections of threshold reactions with charged particle escape for Cr isotopes (in Russian), Ibid. 3 (30) 11.
- [7] BYCHKOV, V.M., PASHCHENKO, A.B., PLYASKIN, V.I., Dependence of the (n,2n) reaction cross-section on the parameter (N-Z)/A (in Russian), Ibid. 4 (31) 48.
- [8] BYCHKOV, V.M., PASHCHENKO, A.B., PLYASKIN, V.I., Cross-sections for inelastic interactions of charged particles with atomic nuclei (in Russian), Physics and Power Engineering Institute, Obninsk (1981).
- [9] BYCHKOV, V.M., ZOLOTAREV, K.I., PASHCHENKO, A.B., PLYASKIN, V.I., Analysis of recommended threshold reaction cross-sections for the BOSPOR-80 Library using integral experiments, in: Neutron Physics (Proc. 5th All-Union Conference on Neutron Physics, Kiev, 15-19 September 1980) (in
- Russian), Part 3 TsNIIatominform Moscow (1980) 296. [10] Zÿp W.L. - In: 1973, Nuclear Data in Science and Technology (Proc. of a sumposium, Paris, 1973). V.II. Vienna: IAEA, 1973, p.271.

 Fabry A. e.a. - In: 1978, Neutron Cross-Sections for Reactor Dosimetry (Proc. of a meeting, Vienna, 1976). V.I. Vienna: IAEA, 1976, p.233

[12] Calamand A. Cross-sections for fission neutron spectrum induced reactors. - Report INDC(NDS)-55/L. Vienna: IARA, 1973.

- [13] Zÿp L. On the consistency between integral and differential cross-section data. Report BCN-56. Netherlands Energy Research Foundation, 1979.
- [14] BONDARS, Kh.Ya., VEJNBERGS, Ya.K., LAPENAS, A.A., Activation crosssections for some threshold reactions (in Russian), Questions of Atomic Science and Technology, Ser. Nuclear Constants 15 (1974) 63.
- [15] Bruggeman A., Maenhant W., Hoste I. Average cross-sections for (n,p)- and (n, a)-reactions on ¹⁹F and ²³Na in a fission neutron spectrum. - J.Inorg. Nucl. Chem., 1979, v,41, p.445.
- [16] Kobayashi K., Kimura I., Nakazawa M., Akiyama M. Fission spectrum averaged cross-sections of some threshold reactions measured with fast reactor YAYOI. - J. Nucl. Sci. and Technol., 1976, v.13(10), p.531.
- [17] Pearlstein S. Analysis of (n,2n) cross-sections for medium and heavy mass nuclei. Nucl. Sci. and Engng, 1965, v.23, p.238; An Extended Table of Calculated (n,2n) Cross-Sections. -Nucl. Data, 1967, v.3, N 3, p.327; Neutron induced reactions in medium mass Nuclei. - J.Nucl. Energy, 1973, v.27, p.81.
- [18] BERZONIS, M.A., BONDARS, Kh.Ya., Methods of calculating neutron spectra from measured reaction rates in SAIPS (in Russian). Part 2: Programme and Software, Izv. Akad. Nauk. Latv. SSR, Ser. Physical and Technical Sciences <u>I</u> (1981) 18.

(Article received 5 January 1981)

<u>Fig. 1</u>. 235 U fission neutron spectrum, approximated by formulas (1), (2) (-----) and (3) (------).

Fig. 2. Relative deviations of neutron spectra represented by formulas (1) $[X_1(E)]$, (2) $[X_2(E)]$ and (3) $[X_3(E)]$.

Fig. 3. Excitation functions of the reactions: 1--(n,p), 2-(n, α), 3-(n,2n) for the isotopes 45Sc(a) and 197Au(b).

²³⁵U fission neutron spectrum with the experimental data and the calculations of Pearlstein [17] and Calamand [12]

Serial Reaction BOSPOR-80 number Experiment [17] [12] Watt Cranberg Leachman ²H(n,2n)¹H 1 5,41 5,17 5,19 --⁶Li(np)⁶He 2 _ 4,18 4,09 3,91 _ 39 ⁶Li(n2n)⁵Li 0,158 3 0,142 0,173 2,1 9Be(n2n)⁸Be 4 144<u>+</u>6 143 250 140 135 ¹⁰B(nt) 5 23,8 23,4 22,6 -¹²C(mp)¹²B 0,26.10-3 <0,1.10-3 6 0,2•10⁻³ 0,47·10⁻³ - $^{14}N(n\alpha)^{11}B$ 7 91,0 86 25 90,2 -¹⁴N(n2n)¹³N 0,94·10⁻³ 0**,77·1**0⁻³ 1,3 •10-2 8 _ 0,03 ¹⁶0(np)¹⁶ 0,016 0,019 0,024 0,0005 9 0,019<u>+</u>0,001 _ $16_{0(n\alpha)}13_{C}$ 10,7 11,3 11,0 _ 6,0 10 19**7**(np)¹⁹0 0,23 11 0,83+0,02 1,18 1,12 1,15 _ $19_{r(n\alpha)}^{16}$ 15,1 ±0,2 14,3 13,8 13,4 8,0 12 1**,1·1**0⁻² 19_{7(n2n})¹⁸7 7,7·10⁻³ 6,3•10⁻³ 50•10⁻⁻³ <u>(7.3+0.7)·10⁻³</u> 13 23 Ha(np)²³Na 1,36 1,39 1,31 0,31 14 1,43+0,02 ²³Na(n, α)²⁰F 0,556 0,49 0,502 0,591 0,53+0,02 15 ²³Na(n2n)²²Na (2,2<u>+</u>0,2)·10⁻³ 4•10⁻³ 3,15•10⁻³ 6,38·10⁻³ 2,39·10⁻³ 8-10-3 16 ²⁴Mg(np)²⁴Na 17 1,48+0,082 1,52 1,4 1,56 62 $27_{\rm Al}({\rm np})^{27}{\rm Mg}$ 18 3,86+0,25 3,99 3,82 3,83 3,1 $27_{\text{Al}}(n\alpha)^{24}Na$ 0,705+0,040 0,698 0,633 0,724 0,48 19 2851(np)28Al 6,4+0,8 7,55 7,08 7,44 2,0 20 31P(mp) 31S1 30,6 35,5<u>+</u>2,7 32,5 32,0 11,0 21 $31_{P(n\alpha)}^{28}$ 1,9+0,6 1,94 22 1,95 1,81 1,1 31_{P(n2n)}30_P 1,09•10⁻³ 0,859•10⁻³ 1,69•10⁻³ 0,*3*6•10⁻³ 0,013 23 32_{S(np)}32_P 65.6 64,5 61,9 100 66,8<u>+</u>3,7 24 $32_{s(n\alpha)}^{29}$ si 43,6 42,8 41,2 13 25 32_{S(nt)}30_P 1,06**·10⁻⁵** 0,8·10⁻⁵ 1,8·10⁻⁵ 26 32_{S(n2n)}31_S 0**,**63•10⁻⁵ 0,48·10⁻⁵ 1,18•10⁻⁵ 8•10-4 27 $34_{\mathrm{S}(\mathrm{n}\,\alpha)}31_{\mathrm{S1}}$ 28 2,2+0,2 2,3 2,14 2,29 13 $25_{01(n\alpha)}^{32}P$ 29 8,8<u>+</u>4,6 10,7 10,3 10,2 8,0 35_{C1(n2n)}34_{C1} 1,25·10⁻³ 0,62+10-3 0**,** <u>34</u>•10⁻³ 0,79+10⁻³ 0,01 30 35_{C1(n2n)}^{34m}C1 0,8•10-3 0,4•10⁻³ 0,51.10-3 31 39K(np)39Ar 20 78 82,2 81,1 32 $39_{K(n\alpha)}^{36}$ C1 5,24 5,46 5,24 33 8,0<u>+</u>0,3 13 3° k(n2n)³⁸K 0,6.10-3 0,28.10-3 0,29·10⁻³ 7-10-3 0**,**37**•10⁻³** 34 ⁴¹K(np)⁴¹Ar 2,21 2,12 2,12 1,1 35 2,1<u>+</u>0,2 $41_{E(n\alpha)}38_{01}$ 0,56 0,55 36 0,76±0,05 0,53 2,6 42Ca(np)42K 37 3,44 3,25 3,35 2,6 _ ^(j4)Ca(np)⁴⁴K 0,071 0,064 0,077 0,11 38 44Ca(n α)41Ar 39 0,061±0,009 0,055 0,049 0,061 0,18 0,033 45 Sc(mp)45 Ca 14,4 14 22,0 14,2 13,7 40 15<u>+</u>12 $45 \text{sc}(n\alpha)^{42} \mathbb{K}$ 0,407 0,182<u>+</u>0,012 41 0,373 0,42 0,67 $45_{Sc}(n2n)^{44}Sc$ $45_{Sc}(n2n)^{44m}Sc$ 0,057 0,04 0,033 42 -0,039 0,05 43 0,012 0,0099 0,018 46_{T1(np)}46_{Sc} 44 12,5<u>+</u>0,9 12,8 12,3 12,3 12,0 11 ⁴⁶Ti(n2n)⁴⁵Ti 2,0.10-3 (7,8<u>+</u>0,9)•10⁻³ 3,7•10-3 2,9.10-3 6,1·10⁻³ 8.10-3 45 47 Ti(np)47 Sc 46 22,2 21,8 21,0 29 19,0<u>+</u>1,4 11,0 48 T1 (np) 48 Sc 47 0,300±0,018 0,262 0,241 0,269 0,28 0,98 49_{11(np)}49_{8c} 0,45 48 0,47 0,45 1,2 ---1,4 50 Ti(np) 50 Bc 49 0,0085 0,0073 0,01 0,025 0,013 51 v(n, a) 48 sc 0,022+0,003 0,023 0,0204 50 0,0257 0,017 0,024

Cross-sections averaged over the 235 U thermal fission neutron spectrum, mb

Secial	Reaction	Cross-sections averaged over the ²³⁵ U thermal fission neutron spectrum, mb						
number		Experiment	BOSPOR-80			[17]	[10]	
			Watt	Cranberg	Leachman	[1/]	. [12]	
51	⁵⁰ Cr(n2n) ⁴⁹ Cr	(6+1)·10 ⁻³	1,8•10-3	1,4•10-3	2,8.10-3	1.6.10-3	0.011	
52	52 Cr(1,) 52 V	1, 0 9±0,08	0,76	0,71	0,78	0,76	0,66	
53	52 _{Cr(n2n)} 51 _{Cr}	-	0,033	0,027	0,048	0.041	0,028	
54	⁵⁵ Mm (n2n) ⁵⁴ Mm	0,2 <u>44+</u> 0,015	0,231	0,193	0,300	0,180	0,18	
55	⁵⁴ Fe(np) ⁵⁴ Mu	79,7 <u>+</u> 4,9	82,2	80,4	77,7	72	70	
56	$54 \operatorname{Fe}(n\alpha)^{51} C_{1}$	0 ,6<u>+</u>0, 2	0,604	0,559	0,614	0,79	0,49	
57	54 Fe(n2n) 55 Fe	0 ,005<u>+</u>0,002 5	1,4.10-3	1,08•10 ⁻³	2,4.10-3	1,6•10 ⁻³	0,007	
56	20 Fe(np) 20 Mn	1,035 <u>+</u> 0,075	1,08	1,00	1,08	0,96	0,81	
59	⁵⁶ Fe(n2n) ⁵⁵ Fe		0,0754	0,0617	0,105	0,065	0,068	
60	⁵⁹ Co(np) ⁵⁹ Fe	1,42 <u>+</u> 0,14	1,14	1,08	1,10	3,1	1,0	
61	59 Co(n α) 56 Mn	0,14 <u>3+</u> 0,010	0,147	0,135	0,151	0,075	0,17	
62	⁵⁹ Co(n2n) ⁵⁸ Co	0,40+0,04	0,174	0,145	0,229	0,14	0,15	
63	⁵⁸ Ni(np) ⁵⁸ Cc	108,5 <u>+</u> 5,4	103	101	97,9	96	85,0	
64	59 _{W1(nd)} 57 _{Co}	-	0,172	0,155	0,184	0,12	_	
65	$58_{Ni(n\alpha)}59_{Fe}$	3+0,9	2,75	2,63	2,66	2,1	4,4	
66	$58_{Ni(n2n)}57_{Ni}$	(5,77 <u>+</u> 0,31)•10	⁻³ 2,6•10 ⁻³	2,0.10-3	3,85.10-3	3,3·10 ⁻³	0,026	
67	⁶⁰ Ni(np) ⁶⁰ Co	2, <u>3+</u> 0,4	2,57	2,42	2,53	1,7	2,1	
6 8	⁶² Ni(n α) ⁵⁹ Fe	0,09 <u>+</u> 0,07	0,0289	0,0255	0,327	0,04	0,036	
69	⁶³ Cu(n2n) ⁶² Cu	1 ,122<u>+</u>0, 012	0,097	0,080	0,133	0 , 095	0,11	
70	⁰ Cu(np) ⁰ Ni	0 ,48<u>+</u>0, 08	0,557	0,533	0,536	0 ,3 9	0,34	
71	$G_{u(n2n)}^{O_{v}Cu}$	-	0,32	0,271	0,41	0,42	0,28	
72	Zn(np) Cu	29,9 <u>+</u> 1,6	36,8	36,0	34,8	22	43	
73	$\frac{1}{2n}(n2n)^{-2n}$	-	0,017	0,014	0,026	0,044	0,04	
-74 75	×n(np) 0u 66 (مر م−)65	0,02 <u>+</u> 0,11	0,033	0,70	0,020	0,94	2,2	
75 76	$69_{(n2n)}68_{$	< y	0,227	0,099 6 189	0,299	0,22	0.20	
70	$71_{Ga(121)}$ 70_{Ga}	_	0,617	0,527	0,758	0,67	0,56	
78	70 _{Ge(n2n)} 69 _{Ge}	1.8+0.9	0.075	0.060	0.104	0.096	0.059	
79	⁷⁶ Ge(n2n) ⁷⁵ Ge	-	0,66	0,57	0,81	0.75	0,51	
80	75 _{AB(np)} 75 _{Ge}	0 ,45<u>+</u>0,1 5	0,232	0,22	0,23	0,44	0,67	
81	$75_{\text{AB}}(n\alpha)^{72}$ Ga	-	7,1.10-3	6,1•10 ⁻³	8,2•10-3	0,019	6,3 •10 ⁻³	
82	⁷⁵ As(n2n) ⁷⁴ As	0 ,33<u>+</u>0, 02	0,281	0,235	0,367	0,39	0,23	
8 3	⁷⁴ Se(L2n) ⁷² Se		0,03	0,024	0,045	0,043	0,036	
84	^{/0} Se(n2n) ^{/9} Se	-	0,137	0,113	0,189	0,14	0,091	
85	⁷⁸ Se(n2n) ⁷⁷ Se	-	0,234	0,195	0,310	0,28	0,18	
86	$\log_{\mathbf{Se}(\mathbf{n}2\mathbf{n})}^{80} \mathrm{Se}(\mathbf{n}2\mathbf{n})$	10	0,432	0,366	0,547	0,59	0,34	
87	$^{52}Se(n2n)^{51}Se$,	1,01	0,873	1,2	0 ,9 5	0,64	
88	(Br(n2n)) Br 81- (3.80)	-	0,204	0,169	0,272	0,25	0,15	
89	81	-	0,288	0,242	0,374	0,49	0,26	
90	$85_{m}(n-1)^{-1}B_{1}$	-	0,168	0,14	0,221	- 7	-	
רע כם	87 ph (n 2n) 85 ph	0,57±0,01	0,27	0 242	0,22	18	0,20	
92	848r(n2n)83g	-	0.1	0_08	0.15	0,064	0-042	
رر بنو	885r(n2n)87Es	<10	0.0451	0.037	0.0626	-	-	
95	891(n2n) ⁸⁸	0,156+0.011	0,126	0,103	0,177	0,49	0.076	
96	90Zr(hp)90Y	0,38+0,02	0,33	0,31	0,33	0,12	0,71	

•

Serial		235 Cross-sections averaged over the 235 U thermal fission neutron spectrum, mb						
number	Reaction	Experiment	i i i i i i i i i i i i i i i i i i i	BOSPOR-80				
		<u>ــــــــــــــــــــــــــــــــــــ</u>	Watt	Cranberg	Leachman	[17]	[12]	
97	$90_{2r(n2n)}89_{2r}$	0,076+0,01	0,079	0,064	0,115	0,26	0,048	
98	93Nb(n2n)92Nb	-	1,04	0,9	1,25	0,9	1,1	
9 9	⁹³ Nb(n2n) ^{92m} Nb	0,475 <u>+</u> 0,032	0,39	0,33	0,46	-	-	
100	$92_{Mo(n2n)}91_{Mo}$	-	0,015	0,012	0,024	0,0289	0,023	
101	$103_{\rm Rh}(n2n)^{102}_{\rm Rh}$	-	0,729	0,623	0,896	0,715	0,74	
102	¹⁰⁶ cd(n2n) ^{105m} cd	-	0,132	0,108	0,182	-	-	
103	¹¹¹ Cd(np) ¹¹¹ ▲g	-	0,020	0,018	0,023	-	0,083	
104	$112_{Cd(n\alpha)} 109_{Pd}$	-	0,7.10-3	0,69•10-3	0,58•10 ⁻³	0,9.10-3	10 ⁻³	
105	¹¹⁶ Cd(n2n) ¹¹⁵ Cd	-	2,07	1,81	2,4	1,51	1,5	
106	$113_{In(n2n)}112_{In}$	-	0,731	0,622	0,909	0,704	0,7	
107	115 In(n2n) ¹¹⁴ In	-	1,07	0,922	1,3	1,05	1,1	
108	¹¹⁵ In(n2n) ^{114m} In	-	0,761	0,652	0,926	-	-	
109	$112 {\rm Sn}({\rm n}2{\rm n})^{111} {\rm Sn}$	-	0,235	0,194	0,315	0,142	0,18	
110	$118_{\text{Sn}(n\alpha)} 115_{\text{Cd}}$	-	2 ,3•10⁻⁴	2•10-4	3•10-4	-	4•10 ⁻⁴	
111	¹²¹ Sb(n2n) ¹²⁰ Sb	-	0,846	0,724	1,04	0,883	0,89	
112	123 _{Sb(n2n)} 122 _{Sb}	-	1,0	0,86	1,2	1,16	1,2	
113	$127_{I(n2n)}126_{I}$	1,05 <u>+</u> 0,065	1,13	0,973	1,36	0,965	1,0	
114	133 _{Cs(n2n)} 132 _{Cs}		0,992	0,851	7,21	1,00	1,2	
115	¹⁴⁰ Ce(n2n) ¹³⁹ Ce	-	1,32	1,14	1,57	1,15	1,0	
116	¹⁴⁰ Ce(n2n) ¹⁵⁵ Ce	-	0,44	0,37	0,55	-	-	
117	⁷⁴² Ce(n2n) ¹⁴¹ Ce	-	7,3	6,6	7,8	6,13	7,9	
118	¹⁴¹ Pr(n2n) ¹⁴⁰ Pr	-	1,1	0,95	1,34	0,86	0,86	
119	¹⁴² Nd(n2n) ¹⁴¹ Nd	-	0,627	0,530	0,795	2,97	0,57	
120	¹⁴⁰ Nd(n2n) ¹⁴⁵ Nd	-	4,98	4 ,4 4	5,47	4,85	5,4	
121	¹⁴⁰ Nd(n2n) ¹⁴⁷ Nd	-	6,13	5,49	6,64	6,02	6,9	
122	¹⁵⁰ Nd(n2n) ¹⁴⁹ Nd	-	6,94	6,24	7,45	6,12	6,7	
123	1^{4+7} Sm (n2n) 1^{4+7}	-	0,369	0,308	0,490	0,321	0,27	
124	150 $(n2n)$ 177 Sm 150 $(n2n)$ 177 Sm 150	-	3,26	2,88	3,67	2,90	3,1	
125	150 Sm (n2n) 149 Sm (152) 151	-	3,50	3,10	3,91	3,42	3 , 6	
126	15^{2} Sm(n2n) 15^{1} Sm 15^{2}	-	2,34	2,05	2,69	2,84	2,8	
127	15^{-5} Sm(n2n) 15^{-5} Sm 169 168	-	3,90	3,45	4,34	3,80	3,7	
128	175 (n2n) 174	-	3,56	3,14	4,03	3,43	3,7	
129	$181_{m_{1}}$ $(-181_{m_{2}})$	-	4,79	4,25	5,32	4,15	5,6	
130	Ta(np) HI	-	7•10 -	0,8•10 -	1,3•10 -	-	3•10 -	
131	10^{10} Ta $(n2n)^{100}$ Ta	-	4,96	4,41	5,49	5,27	5,8	
132	101Ta(n2n) 100 mTa	-	2,63	2,34	2,91	-	-	
133	¹⁹ Ir(n2n) ¹⁹⁰ Ir	-	2,71	2,38	3,1	3,03	3,8	
134	192 Ir(n2n) 192 Ir 197 106	-	3,71	3,28	4,17	4,59	5,4	
135	$\frac{197}{4}u(n2n)$	3,0 <u>+</u> 3	3,23	2,84	3,69	2,92	4,0	
136	205 T1(n2n) 202 T1	3,0±0,5	3,08	2,71	3,49	4,82	5,8	
137	204	-	3,78	3,34	4,24	5,67 7,07	γ , 0	
138	- Pb(n2n) ²⁰ Pb	2,45±0,4	2,06	1,79	2,41	5,07	5,0	
139		÷	0,891	0,769	7,06	-	- -	
140	$-5^{-5}B1(n2n)^{-55}B1$	-	5,92	5,21	0,7	2,92	7,0	
141	$-7^{-1} m(n2n)^{-7} m$	15,7 <u>+</u> 0,7	15,4	74,7	72,9	.	-	
142	-~~U(n2n)-//U	15,7 <u>+</u> 0,8	14,5	75,4	74,8	-	-	

Note: In the opinion of the authors of the compilation, the underlined values are the most reliable.