ГОСУДАРСТВЕННЫЙ КОМИТЕТ INDC(ССР)-193/G ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

серия: Ядерные константы

выпуск 2 (46)

. .

ГОСМДАРСТВЕННЫП КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМИОП ЭНЕРГАН СССР Комиссия по ядерным данным физико-энергетическият институт

вопросы атомной науки и техники

Серия: ЯДЕРНЫЕ КОНСТАНТЫ

Научно-технический сборник

Выпуск 2(46)

	······································		• • •••••••
Москва	ЦНИИатоминформ		1982
		· · · · · · · · · · · · · · · · · · ·	

СОДЕРЖАНИЕ

Нейтронные константы и параметры

Колесов В.В., Лукьянов А.А.	
Совместный многоуровневый анализ полного сечения и сечения деления ²³⁹ ри ниже 160 эв	3
Андросенко Х.Д., Королев Г.Г., Шпак Д.Л. Угловая анизотропия осколков деления ²³² Th, ²³³ U, ²³⁵ U, ²³⁸ U, ²³⁸ Pu, ²³⁹ Pu нейтронами с энергией I2,4-I6,4 МэВ	9
Андреев М.Ф., Маршалкин В.Е., Повышев В.М., Русских В.С. Переходные состояния делящегося ядра 2350	15
Оганесян С.А. Метод расчета спектров в сечений образования р-квантов при неупругом рассеянии нейтронов	:7
Бондаренко В.А., Бондарс Х.Я., Лапенас А.А. Сечения возбуждения изомера ¹⁸⁰ нг быстрыли нейтронали (1 ⁹ -8 ⁻ , E _{yp} =1141,5 кэв)	27
Константи и параметры структури ядра и ядерных реакими	
Бушуев А.В., Матвеев О.В., Озерков В.Н., Чачин В.В. Определение выходов р-квантов с энергией 208 кэВ при распаде ²³⁷ U и с энергией 984 кэВ при распаде ²³⁸ Np	30
Бодулинский В.К., Игнаточкин А.Е., Хованович А.И., Чукреев Э.Е. Построение таблици масс для согласованного набора атомов	31
Библиограбический индекс работ, помещенных в настоящем выпуске, в Международной системе СИНДА	64

Р ЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор О.Д.КАЗАЧКОВСКИЙ

НЕЙТРОННЫЕ КОНСТАНТЫ И ПАРАМЕТРЫ Зам. главного редактора Л.Н.УСАЧЕВ

П.П.Благоволин, В.П. Вертебный, В.Я. Головня, Ю.С. Замятнин, Ю.А. Казанский, С.С. Коваленко, В.Е. Колесов, В.А. Коньшин, Б.Д. Кузьминов, В.Н. Манохин, В.И.Матвеев, В.И. Мостовой, Г.В. Мурадян, М.Н. Николаев, Э.Е. Петров, Ю.П. Попов, Г.Я. Труханов, О.А. Сальников, С.И. Сухоручкин, Г.Е. Шаталов, Г.Б. Яньков, Г.Б. Ярына, М.С. Юткевич

КОНСТАНТЫ И ПАРАМЕТРЫ СТРУКТУРЫ ЯДРА И ЯДЕРНЫХ РЕАКЦИЙ

Зам. главного редактора А.Г. ЗЕЛЕНКОВ

Б.Я. Гужовский, П.П. Дмитриев, Б.С. Ишханов, Е.Г. Копанец, Ю.В. Сергеенков, Ю.В.Хольнов, Н.П. Чижова, Ф.Е. Чукреев

ЯДЕРНО-РЕАКТОРНЫЕ ДАННЫЕ

Зам, главного редактора М.Ф. ТРОЯНОВ

И.А. Архангельский, П.П. Благоволин, А.И. Воропаев, А.Ю. Гагаринский, Т.В. Голашвили, Л.В. Диев, В.П. Жарков, С.М. Зарицкий, Ю.А. Казанский, Е.П. Кунегин, А.А. Лукьянов, В.Ф. Любченко, В.Г. Мадеев, В.И. Матвеев, В.А. Наумов, М.Н. Николаев, Р.В. Никольский, Г.Б. Померанцев, Л.В. Точеный, В.В. Хромов, О.В. Шведов

Ответственный секретарь Д.А. КАРДАШЕВ

С

Физико-энергетический институт (ФЭИ), 1982

ノ武 539.170.013

совместных многоуровневых анализ полного сечения и сечения деления ²³⁹ра ниже 160 эБ В.В. Колесов, А.А. Лукьянов

> SIMULTANEOUS MULTILEVEL ANALYSIS OF THE ²³⁹Pu TOTAL AND FIS-SION CROSS-SECTIONS UP TO 160 eV. We used for cross-sections general results of S-matrix theory taking into account Doplereffect as well as an experimental resolution. The data for total and fission cross-sections were analysed, using the computer code, based on the least-square method, in the energy range up to 160 eV. Our set of resonance parameters reproduce all features of energy behaviour in the resolved resonance region.

очное знание детальной структуры сэчений делящихся ядер в резонансной области энергий имеет важное прикладное значение. Аотя в последние годы и достигнут значительный успех в измерениях, результаты различных экспериментов полностью не согласуются друг с другом. Поэтому вопросы оценки сечений и сопоставления результатов различных экспериментов в указанной области представляют достаточно сложную проблему.

Во многих случаях для решения этой проблемы желательно аналитическое представление сечений путем введения определенного числа параметров, получаемых на основе анализа экспериментов. Такая параметризация позволяет, например, решать следующие задачи: 1) сравнивать между собой результаты различных экспериментов с разным разрешением и температурой образца, 2) восстанавливать истинные значения сечений при различных температурах, 3) сравнительно легко рассчитывать функционалы от сечений, 4) представлять большое число экспериментальных данных относительно малым числом параметров.

В настоящее время наиболее широкое распространение получили три основных приближения для параметризации и описания энергетической структуры сечений: брейт-вигнеровское приближение, схема *R*-матричной теории, схема *S*-матричной теории.

Первое приближение является наиболее простым для применения, но в связи со значительными эффектами межрезонансной интерференции для многих элементов и, в частности, для ²³⁹Pu его использование не представляется оправданным. Основным преимуществом *R*-матричной схемы является простая интерпретация получаемых параметров. Среди недостатков в первую очередь следует отметить трудности, возникающие при учете доплер-эффекта и разрешения. Поиск параметров в этом случае также весьма трудоемок. В случае делящихся ядер применение **S**-матричной схемы, вероятно, более оправданно. При этом легко учитываются доплер-эффект и аппаратурное разрешение, возможно описание сечений с любым числом каналов реакций и любой степенью интерференции резонансных уровней. Представление практически так же удобно для применения в различных расчетах, как и брейт-вигнеровское.

Следует отметить, что в большинстве работ, например /1/, а также во многих библиотеках оцененных данных приводятся лишь резонансные параметры, полученные на основе брейт-вигнеровского приближения. Это приводит к необходимости использовать достаточно сложные комплексы программ для восстановления детального хода сечений.

<u>Методика расчетов.</u> Для представления сечений в настоящей работе использовалась многоуровневая схема **S**-матричной теории. С учетом доплер-эффекта, согласно данным работы /2/, общие формулы для сечений записываются в виде

$$\begin{split} & \vec{\sigma}_{\tau} = \vec{\sigma}_{p} + 0.65 \cdot 10^{6} / \sqrt{E} \sum_{\lambda} 1 / \nu_{\lambda} \left\{ G_{\lambda}^{\tau} \Psi \left[(E - \mu_{\lambda}) / \nu_{\lambda} ; \nu_{\lambda} / \Delta_{\tau} \right] + H_{\lambda}^{\tau} \chi \left[(E - \mu_{\lambda}) / \nu_{\lambda} ; \nu_{\lambda} / \Delta_{\tau} \right] \right\}; \\ & \vec{\sigma}_{F} = 0.65 \cdot 10^{6} / \sqrt{E} \sum_{\lambda} 1 / \nu_{\lambda} \left\{ G_{\lambda}^{F} \Psi \left[(E - \mu_{\lambda}) / \nu_{\lambda} ; \nu_{\lambda} / \Delta_{\tau} \right] + H_{\lambda}^{F} \chi \left[(E - \mu_{\lambda}) / \nu_{\lambda} ; \nu_{\lambda} / \Delta_{\tau} \right] \right\}, \end{split}$$

где \mathcal{G}_{p} - потенциальное рассеяние; G_{λ}^{T} , H_{λ}^{T} , G_{λ}^{F} , H_{λ}^{F} - параметры формализма; μ_{λ} - положение резонанса; ν_{λ} - его ширина; $\Delta_{\tau} = \sqrt{4} \text{ KTE/(A+1)}$ - доплеровская ширина; Ψ и χ - симметричная и асимметричная доплеровские функции, содержащие главную энергетическую зависимость сечения и имеющие резонансный вид. Аппаратурное разрешение учитывается здесь заменой Δ_{τ} на $\Delta = \sqrt{\Delta_{\tau}^{2} + \Delta_{R}^{2}}$, где Δ_{R}^{2} - дисперсия функции разрешения аппаратуры.

<u>Анализ экспериментов и результаты</u>. При анализе использовались следующие наборы экспериментальных данных:

- по б, в области 0,014 - 4,5 эВ с разрешением 2,7 - 0,52 мкс/м /3/, а также в области выше 4,5 эВ с разрешением 0,018 - 0,001 мкс/м /4/;

- по \mathcal{O}_F в области 0,019 – 2 эВ с разрешением 2,5 – 0,8 мкс/м /5/, в области 2 – 4,5 эВ с разрешением 0,2 – 0,03 мкс/м /6/, в области 4,5 – 37,5 эВ с разрешением 0,025 мкс/м /7/ и в области выше 37,5 эВ с разрешением 0,007 – 0,004 мкс/м /8/.

Практически все измерения проводились с наилучшим на настоящий момент для своей области энергий разрешением. Для согласования положений резонансов в полном сечении и в делении оказалось необходимым произвести смещение энергетических шкал в измерениях работ [7, 8], чтобы привести их в соответствие со шкалой в работе [4]. Смещение осуществлялось по закону $E' = E - \alpha E + \beta$, где $\alpha = 0,0047729$, $\beta = 0,0152823$ для [7] и $\alpha = 0$, $\beta = 0,033$ для [8]. Анализ сечений проводился по методу наименьших квадратов с помощью программы, описанной в работе [9]. Потенциальное сечение принималось равным 10.3 d[#]. Полученные таким образом резонансные параметры приведены в таблице вместе с одноуровневыми параметрами из работы [1]. На рис. I-3 сравниваются восстановленные сечения и экспериментальные данные.

Рис.З. Рассчитанные и экспериментальные сечения в области 100 - 150 эВ

ŧ

<i>щ</i> , әВ	ν, эΒ	G ^T ·10 ⁴ , 9B ^{1/2}	$H^{7 \cdot 10^4},$ $\mathfrak{sB}^{1/2}$	G ^{F.} 10 ⁴ , 3B ^{I/2} ,	H ^F ·10 ⁴ , 3 ^{1/2} ,	<i>,</i> ЭВ	ν, эВ	$G^{T} \cdot I0^{I}, _{\mathfrak{B}^{\mathbb{I}/2}},$	$\begin{array}{c} H^{T} \cdot 10^{4}, \\ {}_{\mathfrak{B}^{1/2}} \end{array}$	$G^{F} \cdot IO^{4},$ $3B^{I/2}$	$\begin{array}{c} H^{F} \cdot 10^{4}, \\ \mathfrak{s}B^{1/2}, \end{array}$
-0,26	0,100	0	0,4274	0	0,3100	15,42	0,405	2,8498	-0,1814	2,6114	-0,0598
(-1,81)	(1,650)	(3,1998)	_	(2,8314)	-	(15,45)	(0,350)	(2,3758)	-	(2,1999)	-
(-0,08)	(0,035)	(0,0518)	-	(0,0489)	-	17,63	0,038	6,4463	0,0190	2,9145	-0,1193
0.30	0.047	2 0222	0.0492	7 2240	0.0241	(17,65)	(0,037)	(5,8296)	-	(2,5307)	-
(0.29)	(0, 047)	(2, 2315)	0,0402	(1,3534)	-	22,24	0,052	8,2352	0,2296	4,734I	0,2243
(0,23)	(0,047)	(2,2010)		(1,0004)		(22,28)	(0,054)	(7,8679)	-	(4,4822)	
3,15	2,250	0,4700	0,0830	0,4500	-0,0532	23.88	0.046	0.2852	-0.0430	0.1806	-0.0485
(5,89)	(1,651)	(0,3870)	-	(0,3819)	. –	(23,92)	(0,035)	(0,2610)	-	(0,1490)	_
7,81	0,043	4,1733	-0,0922	2,3591	0,0412	26,23	0,043	4,5 3 31	0,0262	2,2577	-0,065 I
(7,81)	(0,044)	(4,1017)	-	(2,2526)	-	(26,22)	(0,042)	(3,5111)	-	(1,9244)	-
		0.0057	0.5774		0.0075	27,24	0,025	0,3962	0,0217	0,0558	-0,0048
10,92	(0,089)	8,3851	0,5114	6,4047 (6,2786)	0,7015	(27,22)	(0,021)	(0,4114)	-	(0,0586)	· -
(10,52)	(0,100)	(0,0410)		(0,2700)		32,29	0,083	0,7340	0,0207	0,5092	0,04I3
(11,49)	(0,026)	(0,2508)	-	(0,0505)	-	(32,29)	(0,076)	(0,6596)	·	(0,4851)	-
II,88	0,033	4,2233	-0,3242	I,6253	-0,2832	(34,58)	(0,046)	(0,0311)	-	(0,0168)	
(11,88)	(0,038)	(3,8830)		(I,4645)	-,	35,43	0,019	0,5888	0,0006	0,0568	0,0014
14.30	0,053	2,6068	-0,3247	I,5852	-0,3I54	(35,48)	(0,024)	(0,6861)	-	(0,0581)	-
(14,30)	(0,051)	(2,2851)	-	(1,5072)	-	41,38	0,023	8,9349	0,3422	0,7149	0,0664
TA 66	0.036	7 1337	0.5076	3 2002	0.3614	(41,40)	(0,026)	(9,8778)	-	(0,9455)	
(14.67)	(0.035)	(7.4113)	-	(3.0963)	_	41,63	0,05 I	3,0294	-0,1235	1,3963	-0,0887
			<u> </u>		L	(41,64)	(0,053)	(3,4550)	-	(1,5393)	-

Резонансные параметры 239 ри (в скобках - одноуровневые параметры /[])

თ

	μ, эВ	ν, эВ	$G^{T} \cdot 10^{4}, _{\mathfrak{s}B^{I/2}},$	$H^{T} \cdot 10^{4},$ $\mathfrak{sB}^{\mathbb{I}/2},$	$G^{F} \cdot 10^{4},$ $\partial B^{I/2}$	$H^{F} \cdot 10^{4},$ $_{\partial B}I/2$		<i>м</i> , эВ	ν, эB	G ^T ·10 ⁴ , 3B ^{1/2} ,	$H^{T} \cdot 10^{4},$ $3B^{1/2}$	$G^{F} \cdot 10^4,$ $B^{I/2}$	$\begin{array}{c} H^{F} \cdot 10^{4}, \\ {}_{\mathfrak{B}B} I/2 \end{array}$
	44,44	0,026	13,5942	0,3824	1,2069	-0,0266		74,03	0,03 9	5,7519	-0,7261	2,63 80	-0 ,8253
	(44,46)	(0,029)	(14,1207)	-	(1,3084)	-		(74,01)	(0,036)	(5,7009)		(2,5197)	-
	47,56	0,141	3,7368	0,2674	3,2502	0,1571		74,90	0,093	34,4847	2, 34 I4	22,3 753	1,0277
	(47,57)	(0,156)	(4,0877)	-	(3,2136)	-		(74,91)	(0,073)	(36,3043)	-	(21,1433)	-
	49,65	0,367	2,4500	0,1974	2,3500	0,1177		78,94	0,063	0,1079	0,0231	0,0022	-0,0037
	(49,68)	(0,401)	(2,8772	-	(2,6869)	+		(78,91)	(0,046)	(0,2303)		(0,1219)	-
	50,04	0,027	6,3568	0,1099	1,3829	-0,0474		81,13	0,835	2,5826	4,0 2 03	2,3074	3,7796
	(50,05)	(0,029)	(6 ,844I)	-	(1,5547)	-		(81,72)	(1,023)	(4,7818)	-	(4,6613)	_
	52,54	0,029	20,2067	0,7271	2,7112	0,0467		82,66	0,024	0,5693	0,0167	0,0338	-0,0287
	(52,57)	(0,034)	(19,8633)	_	(2,4681)	-	i	(82,64)	(0,035)	(0,8259)	-	(0,3456)	-
	55,58	0,029	3,0807	-0,0041	I, I6I0	-0,1479	i	(83,48)	(0,875)	(1,3404)	-	(1,3057)	_
7	(55,60)	(0,029)	(3,6128)	-	(1,3211)	-		85,42	I,I65	28,6130	-3,4829	2 5,9597	-4,7143
	57,42	0,466	I5, 0716	6,2855	13,7402	5,2303		(85,28)	(1,049)	(27,8232)	-	(26,5710)	-
	(57,41)	(0,255)	(10,6615)	-	(9,3002)	-		85,49	0,038	12,5233	0,4069	2,3643	-0,1821
	(58,81)	(0,551)	(7,5472)	-	(7,4624)	-		(85,44)	(0,037)	(12,3335)	_	(2,8105)	- '
	59,16	0,069	9,1128	0,8103	6,5670	-0, 249		90,72	0,030	17,6433	0,8753	2,6941	-0,0635
	(59,19)	(0 ,090)	(10,5224)	-	(7,0514)	-		(90,70)	(0,030)	(17,8340)	-	(2,6829)	-
	63,60	3,511	10,0000	-11,9197	9,8000	- IO ,9900		92,97	0,021	I,0I50	-0,0112	0,0930	-0,0685
	(60,91)	(3,399)	(12,9072)	, -	(12,7871)	-		(92,92)	(0,029)	(1,3749)	_	(0,2013)	-
	63,03	0,049	I,I 457	0,0007	0,7143	-0.0:89		95,37	0,039	2,9964	0,2744	0,8838	-0,0540
	(63,05)	(0,076)	(1,5228)	-	(1,0962)			(95,31)	(0,049)	(3,2589)	-	(0 ,9 632)	-
	65,45	0,196	7,22.3	2,1266	5,3894	3, 232		96,65	0,732	5,3388	-1,1699	4,9017	-1,0593
	(65,33)	(0,046)	(0,6373)	-	(0,3435)			(96,44)	(0,850)	(6,9614)	-	(6,7293)	-
	65,70	0,336	16,73 %	1,9750	5,9393	-0 254		98,87	4,652	14,5392	1,5010	14,0253	-0,8727
	(65,68)	(0,068)	(20,5695)	-	(11,0313)	-		(100,20)	(3,001)	(6,0530)	-	(5,9975)	-

µ , эВ	ν, 93	G ^T ·10 ⁴ , 35 ^{1/2} ,	$H^{T} \cdot 10^4,$ $_{\mathfrak{B}B}$ 1/2	G ^{F.} 104, эв1/2,	Н ^F ·I0 ⁴ . ЭВ ^{I/2} .	д , ЭВ	ν, эīd	$G^{T} \cdot 10^4, _{\mathfrak{B}^{\mathrm{I}/2}},$	$H^{T} \cdot 10^{4}, _{\mathfrak{sB}^{I}/2},$	$\mathbf{G}^{F} \cdot \mathbf{I} 0^4, \mathbf{g}^{\mathrm{I}} / 2^4, \mathbf{g}^{\mathrm{I}} / 2^4$	$H^{F} \cdot 10^4, _{\mathfrak{B}^{\mathbb{I}/2}},$
103,01	0,025	2,3071	0,1037	0,4703	-0,0383	132,04	I,575	11,1373	-1,0295	10,6627	-2,3901
(102,94)	(0,023)	(2,5535)	-	(0,4908)	-	(131,69)	(1,900)	(16,5727)	-	I6 ,219 5)	-
105,31	0,030	6,5878	0,2973	0,6896	-0,0168	133,61	0,022	6,4109	0,1869	0,8250	-0,0349
(105,25)	(0,024)	(6 ,23 04)	-	(0,7794)	-	(133,72)	(0,028)	(6,4892)	-	(0,7599)	<u></u>
106,69	0,036	12,6625	0,6342	4,6437	-0,3053	135,23	7,506	10,6572	-6 ,791 9	6 , 81 9 6	-1,6538
(106,62)	(0,038)	(13,9489)	-	(4,7907)	-	I3 6,79	0,050	4,1424	0,1111	2,7971	-0,2782
110,42	0,030	0,6378	0,0206	0,2580	-0,0 39 5	(136,68)	(0,063)	(4,2112)		(2,7774)	-
(110,33)	(0,022)	(0,6807)	-	(0,2035)	-	139,21	0,00002	0,0444	0,030 6	0	0,0061
113,96	0,919	0,2115	0,2115	0,2100	0 ,9 800	(139,21)	(0,161)	(0,1363)	-	(0,1183)	
(114,38)	(0,749)	(0,7848)	-	(0,7613)	-	I42,96	0,041	3,7593	-0,0849	2,4286	-0,3129
115,28	0,086	0,1852	-0,1980	0	-0,1901	(142,85)	(0,069)	(4,2409)		(2,4696)	-
(115,04)	(0,103)	(0,3210)	-	(0,2560)	-	143,48	0,042	5,1322	0,5257	2,2537	-0,0155
116,06	0,122	4,8072	0,5479	4,2813	-0,0809	(143,40)	(0,042)	(5,1962)		(1,8748)	
(115,97)	(0,134)	(5,4545)	-	(4,4244)	-	146,14	0,406	I,4373	0,5271	1,2514	-0,2300
II8,84	0,041	22,350I	0,9402	9,094I	-0,4038	(147,37)	(0,501)	(1,0995)	-	(1,0494)	
(118,77)	(0,05 I)	(25,7776)	-	(10,3383)	-	146,27	0,002	6 ,5670	0,7200	1,0224	0,0888
119,22	0,405	0,6196	-0,2233	0,1546	0,2436	(146,18)	(0,035)	(8,9219)	-	(1,5253)	-
121,02	0,024	3,0593	-0,0709	I,4482	-0,2362	148,29	0,047	0,4334	-0,0964	0,3032	-0,3 13 8
(120,93)	(0,039)	(3,7027)	-	(1,8168)		(148,14)	(0,075)	(0,5148)	-	(0,3583)	-
123,48	0,040	0,6926	-0,0036	0,3583	-0,1555	148,93	2,402	2.95I 8	-1,0449	2,9360	3,0953
(123,38)	(0,032)	(0,6318)	-	(0,3783)	-	I49,45	0,026	I,6839	0,1667	0,5990	-0,2506
126,23	0,020	2,1035	0,1266	0,4517	-0,0093	(149,35)	(0,059)	(1,9555)		(0,8740)	-
(126,14)	(0,046)	(2,7451)	-	(0,5728)	-	156,22	0,162	0,1900	-0,3589	0,1800	0,3213
127,56	0,019	0,6344	-0,0160	0,1599	-0,0804	157,08	0,342	13,9589	1,2623	9,9080	-0,4117
(127,45)	(0,032)	(0,6654)	_	(0,2579)	-	(157,01)	(0,613)	(13,8339)	-	(6,1005)	, _

Ø

Результаты многоуровневой параметризации иллюстрируют возможность совместного описания полного сечения и сечения деления ²³ ра в резонансной области с помощью единого согласованного набора резонансных параметров. Построенные по найденным параметрам сечения описывают все особенности детальной энергетической структуры экспериментальных сечений, где наибольший интерес представляют области интерференционных минимумов.

В дальнейшем планируется тестирование полученных параметров, главным образом H_{λ}^{T} и H_{λ}^{F} , по результатам измерения нейтронных спектров и сечений деления на фильтрованных пучках для относительно толстых образцов $(10)^{7}$.

Список литературы

- 1. Анцинов Г.В., Баханович Л.А., Ларков В.Ф. и др. Препринт № 12. Минск, ИТМО АН ЕССР, 1981.
- 2. Adler D.B., Adler F.T. Neutron cross-sections in fissile elements. In: Proceedings of the Conference on Breeding in Large Fast Reactors. Argonne. ANL-6792, 1963, p.695-708.
- 3. Bollinger L.M., Cote R.E., Thomas G.E. The slow neutron cross-sections of plutonium-239. -In: Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958). Geneva, United Nations, 1958, v.15, p.127-137.
- 4. Derrien H., Blons J., Eggermann C. e.a. Sections efficaces totale et de fission du ²³⁹Pu. -In: Proceedings of the Conference on Nuclear Data for Reactors (Paris, 1966). Vienna, IAEA, 1967, V.2, p.195-210.
- 5. De Saussure G., Weston L.W., Gwin R. e.a. Measurement of the neutron capture and fission cross-sections and of their ratio alpha for ²³³U, ²³⁵U and ²³⁹Pu. Ibid., p.233-249.
- 6. Gwin R., Silver E.G., Ingle R.W. D.a. Measurement of the neutron capture and fission cross-sections of ²³⁹Pu and ²³⁵U, 0,02 DV to 200 keV, the neutron capture cross-sections of ¹⁹⁷Au, 10 to 50 keV, and neutron cross-sections of ²³³U, 5 to 200 keV. Nucl. Sci. and Engng, 1976, v. 59, p.79-106.
- 7. De Saussure G., Blons J., Iousseaume C. e.a. Mesure et analyse de la section efficace de fission du plutonium-239 de O a 5 keV. - In: Proceedings of the Symposium on Physics and Chemistry of Fission (Salzburg, 1965). Vienna, IAEA, 1965, v.1, p.205-216.
- Blons J. High resolution measurements of neutron induced fission cross-sections for 233U, 235U, 239Pu and 241Pu below 30 keV. Mucl. Sci. and Engng, 1973, v.51, p.130-147.
- 9. Колесов В.В. Программа многоуровневого анализа резонансных сечений. Вопросы атомной науки и техники. Сер. Ядерные константы, 1980, вип.3(38), с.17-20.
- Bakalov T., Ilchev V., Ukraintsev V.K. e.a. Transmission and self-indication measurements of ²³⁵U and ²³⁹Pu in 2 eV - 20 keV energy region. - In: Proceedings of the International Conference on Nuclear Cross-Sections for Technology. Knoxville, 1979, p.642-698.

Статья поступила в редакцию 15 марта 1982 г.

УДК 539.173.4

УТЛОВАЯ АНИЗОТРОЛИЯ ОСКОЛКОВ ДЕЛЕНИЯ ²³²ть, ²³³U, ²³⁵U, ²³⁸U, ²³⁷EP, ²³⁸Pu, ²³⁹Pu НЕЙТРОНАМИ С ЭНЕРГИЕЙ 12,4 - 16,4 МЭВ

Х.Д. Андросенко, Г.Г. Королев, Д.Л. Шпак

ANGULAR ANISOTROPY OF FISSION FRACMENTS OF 232 Th, 233 U, 235 U BY NEUTRONS WITH 12,4-16,4 MeV. The angular anisotropy of the fission fragments of 232 Th, 235 U, 235 U, 237 Np, 236 Pu, 239 Pu was studied using the glass detectores. The measurements were performed in the neutron energy range 12,4-16,4 MeV. The angular distribution of the most of the nuclei was fitted by $\cos \theta$ quadratic dependence. The dependence of $\cos \theta$ should be made for 232 Th and 236 U. The results was compared with the data of the other authors.

Современные представления об энергетической зависимости угловой анизотропны осколков деления при достаточных возбуждениях основываются на статистической теории /1/. Величина угловой анизотропии $A = W(0^{\circ}) / W(90^{\circ}) - 1$, формы углового распределения осколков деления $W(\Theta)$ определяются параметром $\rho = \bar{J}^2/2K_0^2$, где \bar{J}^2 – средний квадрат углового момента составного ядра, а K_0^2 – дисперсия его проекции на ось симметрии (направление разлета осколков).

дисперсия его проекции на ось симметрия (направление разлета осколков). Параметр K_0^2 примерно линейно зависит от энергии возбуждения ядра в переходном состоянии E^* , отсчитываемой от вершины барьера $E^* = E - E_f$: Такая зависимость сохраняется до критической точки фазового перехода $E_{\rm Kp} \approx 10 - 12$ МэВ /2/. В реакции $(n, f)\overline{J}^2$ также линейно зависит от E_n , точнее: $\overline{J}^2 = (2, 1 - \sqrt{E_n} + 1)/2$. Эти

свойства величин $\overline{\mathfrak{I}}^2$ и K_0^2 определяют характер $W(\mathfrak{O}, E_n)$:

- по мере приближения порога вследствие уменьшения K² угловая анизотропия растет;

- на каждом пороге (n, xnf)-реакции угловая анизотропия возрастает в зависимости от вклада этой реакции в полное сечение деления, которое тем больше, чем меньше делимость ядра Γ_{f}/Γ_{n} ;

- по мере увеличения угловой анизотропии максимум под 0° делается более резким, что соответствует росту $W(\theta) \sim \sum a_n \cos^2(\theta)$ вклада членов более высокого порядка. Это предсказание и попытка количественного описания хода угловой анизотропии были даны еще в работах И.Халперна, В. Струтинского /3/ и Дж. Гриффина /4/ более 20 лет назад.

Экспериментальные данные в области порога (n, f)-реакции хорошо подтверждают эти выводы. Однако полученные в последних работах /5,6/ данные для ²³²ть, ²³⁴U, ²³⁶U, ²³⁸U в области порога (n, 2nf) не согласуются с ними, практически не обнаруживая увеличения угловой анизотропии даже у такого ядра, как ²³²та, которое имеет делимость на первом плато примерно 0,05 и вследств**ие** этого большой вклад реакций с предварительным испусканием нейтронов.

Для выяснения этого противоречия, используя уникельную возможность получения нейтронов в реакции $T(d,n)^4$ не с $E_d = 0,2$ МэВ в зависимости от угла вылета нейтрона к пучку ускоряемых дейтронов, мы детально измерили угловые распределения осколков деления для ядер в области энергий нейтронов от 13,4 до 14,8 МэВ. При энергии дейтронов $E_d \leqslant$ 0,2 МэВ сечение реакции Т (d, n)⁴не настолько велико, что практически исключаются фоновые нейтроны от сопутствующей реакции Т(d,n)^эне (соотношение эффект к фону 100:1).

Измерения проводились на ускорительной трубке КГ-0,25 и ускорителе ЭГ-2,5 с использованием реакции $T(d,n)^4$ не, осуществлявщейся с помощью твердой тритиевой мишени с титановой подложкой. Экспериментальное устройство для настоящего эксперимента представляет собой усовершенствованную (более усложненную) модификацию многоуглового детектора, ранее описанного в работе [7]. Мишени делящихся веществ и цилиндрические детекторы монтировались в специальные кассеты, которые помещались на одинаковом расстоянии от источника нейтронов в кассетодержатели, выполненные с минимальным содержанием рассеивающего материала. Одновременно имелась возможность под определенными углами φ (от одного до двух) к пучку ускоряемых частиц получать дублированную информацию от 4 до 6 делящихся изотопов.

При подготовке и проведении эксперимента особое внимание обращалось на точность выполнения заданной геометрии экспериментального устройства и фиксации пучка ускоряемых дейтронов. Дейтронный пучок формировался в фиксированное пятно диаметром не более 5 мм посредством специально сконструированного мишенедержателя. В первой серии измерений облучению подверглись одновременно изотопы ²³⁸ра, ²³⁷ мр и ²³⁹ра с толщиной слоев около 0,5 – 0,8 мг/см². Во второй серии измерений облучались изотопы ²³⁸ра, ²³⁵ U, ²³⁸U и ²³²Th с толщиной слоев около 0,5; 1,0; 0,7 и 2.0 мг/см² соответственно. Изотоп 238 ри в обеих сериях измерений служил в качестве опорного элемента для получения информации об относительном ходе сечения деления. Его выбор обусловлен тем, что, как это видно из работы/87,он обладает максимальной делимостью в(n, f)-реакции, и добавки в процессе деления от (n, n'f) и (n, 2n'f)-реакций предполагаются незначительными.

В настоящей работе приводятся данные угловой анизотропии от измерения угловых распределе-ний осколков деления ²³²Th, ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁸Pu и ²³⁹Pu нейтронами с знергией 12,4 -16,6 МэВ, полученными в реакции $T(d, n)^4$ не на ускорителе $\partial \Gamma_2, 5$.

В непосредственные результаты просмотра под микроскопом, которые группировались в десять угловых интервалов от 0 до 90°, вводились поправки на эффект центра масс, неравномерность потока нейтронов по площади делящихся слоев и угловую зависимость эффективности регистрации, проводимую в отдельных калабровочных опытах. Фон нейтронов от сопутствующей реакции $D\left(d,n
ight)^4$ не

фон экспериментального зала, определяемые экспериментально, не учитывались из-за их неэначительной величины. Для ²³⁸Ри из результатов прямых измерений вычитались спонтанные деления. В ошибку измерений кроме статистической ошибки включалась средняя погрешность просмотра, принимаемая за 0,4%.

из рисунка видно, что данные об угловой анизотропии деления для двух четно-четных ядер-мишеней, обладающих малой делимостью на первом и втором плато и тем самым существенным вкладом реакции $(n, 2n'_f)$ в суммарную делимость, проходят существенно выше данных работ (5,67), обнаруживая ход, ожидаемый из теоретических соображений. Для четно-четного ядра-мишени мость $A(E_n)$ в пределах ошибок эксперимента отсутствует, что может быть объяснено очень малым вкладом $(n, 2n'_f)$ -реакции из-за высокой делимости данного ядра на первом плато. Более детальный анализ полученных результатов о форме угловых распределений осколков деления и об энергетической зависимости угловой анизотропии выходит за рамки настоящего эксперимента.

Угловая анизотропия деления $\mathbb{V}(0^{\circ})/\mathbb{V}(90^{\circ})^{232}$ ть, 238 U и 233 U (а) и 235 U, 237 мр, 239 Pu и (б) как функция энергии нейтронов \mathbb{E}_n . Данные работ: $O - \sqrt{5}$; $O - \sqrt{6}$; $H - \sqrt{8}$; $D - \sqrt{9}$; $\nabla - \sqrt{107}$; $\Diamond - \sqrt{117}$; $\bullet -$ настоящей работы

Список литературы

- 1. Halpern I., Strutnsky V.M. Paper p/1513. Proc. Second Unit. Nations Conf., PUAE, Geneva, 15, 1958.
- 2. Шпак Д.Л., Остапенко В.Б., Смяреннын Г.Н. Ядерная физика, 1971, т.13, с.950.
- 3. Halpern I., Strutnsky V.N. Proc. Second Intern. Conf., PUAE, Geneva, 15, 1968, p.408.

4. Griffin J.J. Phys.Rev., 1959, v.116, p.107.

- 5. Leachman R.B., Blumberg L. Ibid., 1965, v.137, p.13814.
- 6. Kotase A. Mem. Fac Engng, Kyushu Univ., 1961, v.21, p.81.
- 7. Шпак Д.Л., Фурсов Б.И., Смиренкин Г.Н. Ядерная физика, 1970, т.12, с.35.
- 8. Henkel R.L., Brolley J.R. Phys. Rev., 1956, v.103, p.1292.
- 9. Simmons J.E., Henkel R.L. Ibid., 1960, v.120, p.198.
- 10. Brolley J.E. Ibid., 1954, v.94, p.640.
- 11. Blumberg L., Leachman R.B. Ibid., 1959, v.116, p.109.

Статья поступила в редакцию 15 апреля 1982г.

УДК 539.173 ПЕРЕХОДНЫЕ СОСТОЯНИЯ ДЕЛЯЩЕГОСЯ ЯДРА ²³⁵0

М.Ф. Андреев, В.Е. Маршалкин, В.М. Повышев, В.С. Русских

TRANSITION STATES OF FISSIONABLE $235_{\rm U}$ NUCLEUS. The channeling analysis of the experimental data on $235_{\rm U}$ nuclei fission in $2350(t,pf) - .2340(n,f) - and <math>235_{\rm U}(r,f)$ - reactions has been performed. Fission barrier parameters of the fissionable $235_{\rm U}$ nucleus transition state lower bands have been retrieved as a results of analysis. All peculiarities of the experimental data energy dependence referring to compound nucleus $235_{\rm U}$ fission are well reproduced in the calculations of cross-sections in (n, f) - and(r,f) - reactions and the fission probability calculations in (t,pf) - reactions using the retrieved parameters set simultaneously for all reactions mentioned.

Выполненные в последние годы анализы /1-37 экспериментальных данных по делению четно-четных ядер в реакциях с заряженными частицами /1,47 убедительно показывают, что спектр нижних возбужденных состояний ядра при деформации, соответствующей седловой точке, аналогичен спектру при стабильной деформации и может быть описан как наложение вращательных полос на колебательные состояния. Самое нижнее переходное состояние (ПС) имеет момент нуль и положительную четность. При энергии возбуждения, превышающей энергию разрыва пар ($\Delta \approx 1$ MoB), изменение числа ПС может быть описан описан описан с ла с может быть описан описан с ла с может быть описан описан с ла с может быть и положительную четность.

Спектр ПС нечетных делящихся ядер представляется более сложным и менее изученным в настоящее время, как это видно из работ /5,67. Важными вопросами являются: значения спина и четности нижайшего ПС, определение параметров барьеров нижайшего ПС, скорость возрастания числа ПС с ростом энергии возбуждения. Исследованию этих вопросов на примере делящегося ядра ²³⁵0 и посвящена настоящая работа. Имеющиеся в литературе экспериментальные данные по сечению деления 234 U нейтронами с энергиями от 24 кэВ до 4 МэВ [7-11] дополнены результатами исследования деления 235_{U} в реакциях 233_{U} (t, pf) и 235_{U} (r, f), и эта экспериментальная информация приведена на рисунке. Методика экспериментов и техника получения данных в реакции ²³³U (t, pf) были доложены на 3-й Всесовзной конференции по нейтронной физике в Киеве в 1975 г. /127, а эксперимент по изучению реакции 235_{U} (p, f) будет подробно изложен в отдельной работе. На рисунке при-ведены также сечения деления 235_{U} в реакциях 233_{U} (t, p_f) и 235_{U} (p, f), измеренные в других работах. использование такого объема экспериментальных данных для каналового анализа с целью изучить спектр ПС делящегося ядра ²³⁵0 представляется важным с точки зрения надежности определения параметров барьеров ПС. В этих реакциях даже при одних и тех же значениях энергии возбуждения составное ядро 235 и образуется в состояниях с различными значениями момента и четности, соответственно процесс деления осуществляется через разные ПС. С изменением энергии возбуждения также создается существенно разная возможность проявления одних и тех же ПС делящегося ядра.

Сечения деления изотопов урана (_____ расчет). Экспериментальные данные взяты из работ: _____ $(- __/ 5/, - _/ 7/, - _/ 8/, \Delta - _/ 10/, \nabla - _/ 11/, - _/ 13/, x - _/ 18/, + - _/ 19/, \Box - _/ 20/, \Delta - _/ 21/, O - настоящей$

паналовый анализ энергетической зависимости экспериментально определенных значений сечения деления 234 U нейтронами $\mathcal{G}_{f}(\varepsilon)$, делимости $P_{f}(\varepsilon)$ в реакции 233 U(t, p_{f}) и сечения деления 235 U f-квантами $\mathcal{G}_{f}(E^{*})$ с целью изучить ПС проводился в соответствии сс следующими выра-жениями:

$$\mathcal{O}_{f}(\varepsilon) = \frac{\pi}{K^{2}} \frac{1}{2(2I+1)} \sum_{\substack{\Im \pi_{\mathcal{J}} \in j \\ \pi_{\mathcal{J}} = \pi_{\mathcal{I}}(-1)^{\ell}}} (2\Im + 1) \mathcal{O}_{\ell_{\mathcal{J}} I \pi_{\mathcal{I}}}^{\Im \pi_{\mathcal{J}}}(\varepsilon) P_{f}^{\Im \pi_{\mathcal{J}}}(E^{*}); \qquad (1)$$

$$P_{f}(E^{*}) = \sum_{\substack{\Im \pi_{J} \ell \\ \pi_{J} = \pi_{I}(-1)^{\ell}}} \mathcal{G}_{\ell I \pi_{I}}^{\Im \pi_{J}}(E^{*}) P_{f}^{\Im \pi_{J}}(E^{*}) \sum_{\substack{\Im \pi_{J} \ell \\ \pi_{J} = \pi_{I}(-1)^{\ell}}} \sum_{\substack{\Im \pi_{J} \ell \\ \pi_{J} = \pi_{I}(-1)^{\ell}}} \mathcal{G}_{\ell I \pi_{I}}^{\Im \pi_{J}}(E^{*}); \qquad (2)$$

$$\mathcal{O}_{f}(\varepsilon_{f}) = \sum_{\Im \mathfrak{A}_{J}} \mathcal{O}_{\Im \mathfrak{A}_{J}}(\varepsilon_{f}) P_{f}^{\Im \mathfrak{A}_{J}}(E^{*}), \qquad (3)$$

подробно описанными в работах /1,37. Здесь только отметим, что распад состояния составного ядра с определенными значениями J^Я через дискретную и непрерывную части спектра ПС описывался соответственно первым и вторым слагаемыми следующего выражения:

$$\Theta_{f}^{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}}}(E^{*}) = \sum_{k} \Theta_{f}^{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}}(E^{*}) + \int_{V_{\min}^{+} \Delta}^{\infty} P_{f}(E^{*}, E_{f}^{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}) \rho(E_{f}^{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}, \mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}) dE_{f}^{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}},$$
(4)

причем при описании делительных коэффициентов проницаемости через дискретные ПС использовалось представление двугорбого барьера, а через непрерывную часть спектра ПС – представление одногорбого барьера деления. При проведении каналового анализа указанной выше экспериментальной информации использовались результаты анализа четно-четных делящихся изотопов ²³⁶U, ²³⁸U и ²⁴⁰Pu, в котором было установлено, что параметры барьеров нижнего ПС для этих изотопов совпадают. Представляется разумным предположить, что при делении ²³⁴U нейтронами или ²³⁵U *р*-квантами сравнительно высокой энергии в делящемся ядре ²³⁵U нижайшее ПС имеет такие же параметры барьеров. Это может иметь место, потому что плотность возбужденных состояний составного ядра ²³⁵U велика и дополнительное по сравнению с четно-четными ядрами увеличение внутренней энергии ядра в процессе деформации из-за выполнения законов сохранения проекции момента и четности несущественно. Э отличие от четно-четных делящихся ядер, имеющих спин, равный нулю,и положительную четность для нижайшего ПС, спин и четность этого ПС в нечетном ядре следует определить.

С этой целью в соответствии с выражениями (1) и (2) были проведены расчеты сечений деления с делимости в области низких энергий возбуждения при значениях спина нижайшего ПС от 1/2 до 7/2 при сбоих значениях четности. Если спин и четность нижайшего ПС равны $1/2^+$, то при энергиях нейтронов 1-300 кэВ деление осуществляется нейтронами S-волны и рассчитанные значения сечения деления не соответствуют экспериментальным как по абсолютной величине, так и по энергетической зависимости. Рассчитанные сечения превышают экспериментальные при всех энергиях нейтронов в этой области и с уменьшением энергии нейтронов ниже 100 кэВ они растут в соответствии с ростом сечения образования составного ядра. Если спину и четности нижайшего ПС приписать значения $1/2^$ или $3/2^-$, то ядро будет делиться нейтронами р-волны. Рассчитанные значения сечения в этом случае также превышают экспериментальные и убывают с уменьшением энергии нейтронов много медленнее, чем при эксперименте. Если спин и четность нижайшего ПС равны $3/2^+$, то деление осуществляется нейтронами d-волны и рассчитанные значения качественно соответствуют экспериментальным. При более высоких значениях спина нижайшего ПС рассчитанные значения сечения получаются меньшими, чем из эксперимента, и уменьшаются при делении нейтронами f - и

g-волн более быстро, чем экспериментально измеренные, с уменьшением энергии нейтронов. Рассчитанные значения делимости для ²³³U (t, pf)-реакции при энергиях возбуждения делящегося ядра 5,3 - 5,6 МэВ меняются менее резко с изменением спина и четности нижайшего ПС. Однако лучшее согласие с экспериментальными данными получается в случае, когда нижайшее ПС имеет значение спина 3/2 и положительную четность.

Энергетические сдвиги следукщих полос ПС, обусловленные энергией колебаний коллективной природы, разумно считать такими же, как и в четно-четных изотопах урана. Тогда полосы ПС отрицательной четности будут расположены примерно на 1 МэВ выше нижайшего ПС, и деление через них сколько-нибудь заметно начнется при энергии возбуждения, превышающей 6 МэВ. Быстрое возрастание сечения деления ²³⁴0 нейтронами и делимости в ²³³0 (t, pf)-реакции при увеличения энергии возбуждения ²³⁵0 примерно от 5,7 до 6,2 МэВ естественно связать с ростом числа ПС, обусловленных нечетным нейтроном и разрывом нуклонной пары. Предполагая, что возрастание числа ПС с ростом энергии возбуждения описывается, как и числа возбужденных состояний при устойчивой деформации, формулой плотности из работы /14/, можно найти значения параметров щели $\Delta = P_N + P_Z$ и оболочечной поправки S = S_N + S_Z при деформации, соответствующей седловой точке. Описание зависимостей сечения деления ²³⁴0 нейтронами и делимости в ²³⁴0 нейтронами и делимости в ²³⁴0 нейтронами и делимости в ²³⁵0 примерно от 5,7 до 6,2 МэВ естественно связать с ростом числа ПС, обусловленных нечетным нейтроном и разрывом нуклонной пары. Предполагая, что возрастание числа ПС с ростом энергии возбуждения описывается, как и числа возбужденных состояний при устойчивой деформации, формулой плотности из работы /14/, можно найти значения параметров щели $\Delta = P_N + P_Z$

Описание зависимостей сечения деления 2^{34} нейтронами и делимости в 2^{35} (t, p_f)-реакции от энергии возбуждения в области 5,3 - 5,5 МэВ определяет параметры барьеров нижайшей полосы ПС. При извлеченных значениях параметров барьеров относительная вероятность деления через ПС нижайшей полосы в этом энергетическом интервале практически не меняется, потому что наряду с возрастанием величины делительных проницаемостей растут и проницаемости в конкурирующих с делением нейтронных каналах распада. В реакции 2^{33} (t, p_f) сечение образования делящегося ядра 2^{35} в состояниях с моментом и четностью, совпадающими с аналогичными величинами нижайшей полосы ПС, слабо меняется в этом энергетическом интервале, что приводит к практически постоянному значению делимости. В делении 2^{34} и нейтронами при этих же значениях энергии возбуждения делящегося ядра наблюдаемый рост в сечении деления хорошо соответствует росту сечения образования составного ядра 2^{35} и нейтронами d-волны. Таким образом, разница в энергетической зависимости сечения деления в этих реакциях такая же, как и разница в поведении сечений образования составного ядра в состояниях, соответствующих нижайшей полосе ПС делящегося ядра 2^{35} С ростом энергии возбуждения от 5,5 до 5,7 МэВ сечение деления в обеих реакциях растет. Однако, если при делении 2^{34} и нейтронами этот рост связан в основном с ростом сечения образования составного ядра нейтронами d-волны, то в 233 (t, p_f) -реакции рост сечения обусловлен возрастанием вероятности деления через ПС второй полосы.

При дальнейшем возрастании энергии возбуждения рост сечения деления в обеих реакциях в значительной степени обусловлен возрастанием вероятности деления через непрерывную часть спектра ПС. Хорошее описание энергетической зависимости сечения деления в 2^{34} U (n, f) и 2^{35} U (f, f)-реакциях при энергиях возбуждения делящегося ядра не менее 6,5 МэВ определило параметры в формуле для плотности ПС равными 0,15 и -1,8 МэВ для энергетической щели и оболочечной поправки соответственно при значении кривизны одногорбого барьера ПС непрерывной части спектра, равной 0,35 МэВ. Рассчитанные значения делимости $P_f(E^*)$ при этих же значениях энергии возбуждения, к сожалению, заметно превышают экспериментальные. Однако это может быть связано с неточностью определения $\sqrt{15}$ энергетической зависимости относитедьной вероятности поглощения нейтронов с различными ℓ в 2^{33} U (t, p_f) -реакции при энергиях возбуждения выше примерно 6,5 МэВ. При

В предположении двух полос ПС дискретной части спектре и описанного выше непрерывного спектра не удается с точностью лучше 30% описать сечение деления 234 U нейтронами с энергией 0,4 – 1 МэВ, а также сечение деления 235 U f-квантами с энергией примерно 6 МэВ. Наиболее вероятной причиной такой ситуации является следующая. При энергиях возбуждения вблизи начала не-прерывной части спектра ПС рассчитанные (средние) значения плотности ПС с определенными значения $J\pi_{J}$ могут заметно отличаться от их реальных эначений. При образовании составного ядра в этой области энергий возбуждения поглощаются только дипольные электрические f-кванты в реакциях с r-квантами, нейтроны с $0 \le l \le 3$ в реакциях с нейтронами и нейтроны с $0 \le l \le 8$ в (t, ρ) -реакции. В соответствии с этим деление в 235 U (r, f)- и 234 U (n, f)-реакциях идет через существенно меньшее число ПС, чем в реакции 233 U (t, ρ_f) , поэтому вероятность отклонения рассчитанных значений сечения деления от экспериментальных значительно выше в первых двух случаях, чем в последнем. При достаточно больших значениях энергии возбуждения $E^* \gtrsim 6,5$ МэВ вероятность флуктуаций плотности ПС на интервале примерно 100 кэВ становится малой и согласие между рассчитанными и экспериментальными значения улучшается.

Для согласования рассчитанного сечения с экспериментальным при 5,7 $\leq E^* \leq 6,3$ МэВ были введены еще полосы ПС с K = 1/2 положительной и отрицательной четности, деление через которые осуществляется нейтронами s- и р-волны соответственно и обеспечивает наблюдаемый максимум в сечении деления при $E^* \approx 6,1$ МэВ. В области низких энергий возбуждения ($E^* \leq 5,7$ МэВ) деление через эти ПС сравнительно маловероятно в соответствии с высотой и кривизной барьеров деления, а при высоких значениях энергии возбуждения ($E^* \gtrsim 6,3$ МэВ) сечение деления уменьшается из-за возрастания вероятности неупругого раассеяния нейтронов в соответствии с увеличением числа возбужденных состояний ядра 234 0 с энергией, большей примерно 0,8 МэВ. Введение полосы ПС с K=1/2 положительной четности улучшает согласие рассчитанных значений сечения деления 235 0 *р*-квантами с энергиями вблизи 6 МаВ с экспериментальными и приводит к сравнительно малым изменениям в рассчитанных значениях делимости в 2350 (t, p_f)-реакции.

На рисунке показана достигнутая степень согласия результатов расчета с экспериментальными данными. Извлеченные значения параметров полос ПС приведены в таблице, а параметры в формуле для плотности ПС, как указано выше, оказались равными $\Delta = 0.15$ МэВ, S = -1.8 МэВ. Высоты барьеров полос ПС, энергия начала непрерывного спектра и значение оболочечной поправки определены с ошибкой не более 200 кэВ.

к ^я л	$V_{A} = V_{B}$	$\hbar\omega_{A} = \hbar\omega_{B}$	V _c	$\hbar\omega_{c}$	W
3/2 ⁺	5,60	0,65	2,0	0,65	-0,03
7/2 ⁺	5,80	0,65	2,3	0,65	-0,03
1/2 ⁻	5,90	0,90	2,5	0,90	-0,03
1/2 ⁺	6,10	0,90	2,5	0,90	-0,03

Параметры барьеров ПС делящегося ядра ²³⁵0, извлеченных из анализа экспериментальных данных (энергия дана в мегаэлектронвольтах)

С целью определять К нижайших полос ПС была предпринята попытка описания угловых распределений осколков детения 2340 нейтронами, измеренных в работе /9/. Расчеты проводились по формулам работы /3/ справ. тивым в олучае деления через ПС дискретной части спектра, поэтому сравнение носило скорее качественный, чем количественный характер. При указанных в таблице К для полос ПС получается сравнительно хорошее описание изменения угловых распределений осколков деления в зависимости от энергии нейтронов.

В порядке обсуждения точности извлеченных значений полезно оценить влияние неточностей расчета сечения образования делящегося ядра на параметры IIC. Наиболее просто это сделать при энергиях возбуждения, которые заметно ниже и выше высоты барьера нижайшего IIC. В подбарьерной области деления изменение высоты барьера на величину 100 кзВ эквивалентно изменению вероятности образования составного ядра более чем в два раза. В подбарьерной области, где деление осуществляется в основном через непрерывную часть IIC, изменение параметра щели Δ на 100 кзВ комтенсирует изменение вероятности образования составного ядра примерно в 1,5 раза. Неточности использованного описания вероятности образования составного ядра заметно ниже и составляют в (n, f)-реакции приблизительно 10%, в (r, f)-реакции (при $\varepsilon_{r} \ge 6$ МэВ) примерно 20%, в (t, ρ_f) -реакции – 20% (2, 3, 15).

Сравнивая полученные результаты с аналогичными результатами других авторов /6,9,16,17/, отметим наиболее существенные различия в методике анализа экспериментальных данных. В работах /3,9,16,17/ и настоящей работе выполнен каналовый анализ как энергетической зависимости сечения деления или делимости, так и изменения угловых распределений осколков деления. Описание энергетической зависимости угловых распределений в представлении как одногорбого барьера делени [2.16.17], так и двугорбого барьера [3] требует введения нескольких полос ПС и определяет высоту арьера нижайшего ПС с $\mathcal{I}^{W_{\mathcal{I}}} = 3/2^+$ для ²³⁵0 равной 5,6 МэВ. В работах [2,6] анализируется только эн рантическая зависимость делимости – P_r (E*) и барьеры нижайшего ПС определяются по ее описанию до находа на плато. Сравнительно высокое значение первого барьера [2,6], на наш взгляд, обусловлено завышаными значениями – S-функции /3/, определяемой флуктуациями ширин отдельных резонансов, вследствие не чета флуктуаций в проницаемости двугорбого барьера деления [3]. Излишне высокие значения высоты барьера нижайшего ПС в работе [6] явились причиной введения нормализующего коэффициента G_n и его замены в более поздних работах **В.Васк** и др. коэффициентом увеличения плотности ПС. Использование параметров Δ и S в формуле для плотности ПС /14/ достаточно для описания наблюдаемой знергетической зависимости сечения деления, и введение дополнительного параметра в виде коэффициента увеличения плотности ПС не является необходимым. наиболее существенная разница с результатами работ /9,16,17/ состоит в том, что в настоящей работе введены дополнительно непрерывная часть спектра ПС и полоса ПС К³⁴³ =7/2⁺. Эта полоса позволяет хорошо описать сечение деления в реакции 2330(t, pf) при энергиях возбуждения не менее 6 мэВ, а введение непрерывной части ПС обеспечивает описание сечения деления при значениях энергий возбуждения не менее 6 МэВ.

Список литературы

- 1. Britt H.C., Rickey F.A., Jr., Hall W.S. Phys. Rev., 1968, v.175, p.1525.
- 2 Back (S.B., Hansen Ole, Britt H.C., Garrett J.D. Ibid., 1974, v.C9, p.1924.
- 3 Маршалкин В.Е., Повышев В.М. В кн.: Нейтронная физика (Материалы 3-й Всесоюзной конференции по нейтронной физике Киев, 9-13 июня 1975 г.). М.: ШНИИатоминформ, 1976, ч.6, с.135.
- 4. Cramer J.D., Britt H.C. Phys. Rev., 1970, v.02, p.2350.
- 5. Britt H.C., Cramer J.D. Ibid., p.1758.
- 6. Back B.B., Britt H.C., Hansen Ole, e.a. Ibid., 1974, v.C10, p.1948.
- 7. Lamphere R.W. Nucl. Phys., 1962, v.38, p.561.
- 8. Perkin J.L., White P.H., Fieldhouse P. e.a. J. Nucl. Energy, 1965, v.19, p.423.
- 9. Behkami A.N., Roberts J.H., Loveland W., Huizenga J.R. Phys. Rev., 1968, v.171, p.1267.
- 10. White P.H., Hodgkinson J.G., Wall G.J. Proc. Salzburg Conf. Physics and Chemistry of Fission. Austria, Salzburg, IAEA. EANDC(UK). 1965, p.538.
- 11. James G.D., Dabbs J.W., Harvey J.A. e.a. CM. /3/, 4.5, c.251.
- 12. Андреев М.Ф., Гладков В.В., Завгородний В.А. Там же, ч.6, с.140.

- 13. Драгнев Т., Дерменджеев Е., Каленкова Н. в др. Там же, с.146.
- 14. Gilbert A., Cameron A. Can. J. Phys., 1965, v.43, p.1446.
- 15. Andersen B.L., Back B.B., Bang J.M. Nucl. Phys., 1970, v.A147, p.33.
- 16. Воротников П.Е. Ядерная физика, 1967, т.5, с.583.
- 17. Vandenbosch R. Nucl. Phys., 1967, v.A101, p.460.
- 18. Khan A.M., Knowles J.W. Ibid., 1972, v.A179, p.333.
- 19. Bowman C.D., Auchampaugh G.F., Fultz S.C. Phys. Rev., 1964, v.133, p.B676.
- 20. Anderl R.A., Yester M.V., Morrison R.C. Nucl. Phys., 1973, v.A212, p.221.
- 21. White P.H., Warner G.P. J. Nucl. Energy, 1967, v.21, p.671.

Статья поступила в редакцию 15 апреля 1982 г.

УДК 539.171.017

метод Расчета спектров и сечений образования при неупругом рассеянии нейтронов

С.А. Оганесян

THE (ALCULATION METHOD OF GAMMA SPECTRUM AND CROSS-SECTION GAMMA-GENERATION ON INELASTIC SCATTERING OF NEUTRONS. The calculation method of gamma spectrum and cross-section gammagene; ration on inelastic scattering of neutrons is abown. This method gives well agreement with experimental results. The calculation gamma spectrum for reaction 2^3 Na (nn', j') for different energy of neutrons are carry out.

В связи с развернутой программой строительства энергетических реакторов за последние годы значительно возросла потребность в библиотеке оцененных данных по сечениям образования и спектрам n-квантов, испускаемых в результате неупругих взаимодействий нейтронов $[(n,p), (n,n'p), (n,p_p), (n,d_p)$ и т.п.] с ядрами основных элементов, входящих в состав реактора и защиты. Потребность в такой библиотеке вызвана в первую очередь тем, что основным фактором, определяющим биологическую дозу излучения за радиационной защитой ядерных реакторов, как правило, является

Г-излучение. Поэтому при расчете защиты ядерных реакторов необходимо знать сечения образования **Г**-квантов в нейтронных реакциях. Источником данных о сечениях служит машинная библиотека файлов оцененных нейтронных данных, в которой до настоящего времени содержатся лишь данные о сечениях образования **Г**-квантов, оцененные за рубежом [1]. В последнее время в СССР и за рубежом ведутся интенсивные экспериментальные исследования по изучению спектров испускаемых **Г**-квантов в зависимости от энергии налетающих нейтронов [2,3], но, поскольку возможности экспериментальных методов ограничены, экспериментальные данные часто носят отрывочный и противоречивый характер. Для получения надежных и систематических данных необходима независимая оценка результатов существующих измерений. К настоящему времени такая работа проведена по сечениям образования **Г**-квантов при радиационном захвате нейтронов.

Цель данной работы – разработка алгоритмов расчета спектров *р*-квантов, испускаемых при неупругом рассеянии нейтронов. В связи с тем, что такой расчет осложнен недостатком экспериментальной информации о высокоэнергетических состояниях ядер, возбуждающихся при достаточно больших начальных энергиях нейтронов, существует несколько различных подходов к вычислению требуемых величин. В различное время разными авторами были предложены методы для расчета спектров и сечений образования *р*-квантов [4-8]. Некоторые из методов (например, в работах [5,6]) являются эмпирическими систематиками, осуществляющими подгонку под экспериментальные данные с помощью формальных параметров. Основной недостаток этих способов расчета заключается в их предваятости: спектр

д-квантов полагается имеющим испарительную форму. К тому же в конкретном расчете необходимо знать многие эмпирические параметры, которые не всегда и не для всех изотопов известны. Другой подход к вычислению требуемых величин изложен в работе /7/. Он основан на модели составного ядра; к расчету сечений возбуждения уровней привлекается формализм Хаузера – Фешбаха /9/, что позволяет получить детальный линейчатый спектр *р*-квантов.

Для практического применения такого подхода необходимо знать характеристики (энергии возбуждения, спины и четности) всех уровней ядра-мишени. Однако такая информация имеется лишь для нескольких низколежащих уровней; для более высоких уровней она либо неполна, либо вовсе отсутствует. В последнем случае расчет *f*-спектров может основываться лишь на статистической теории /10/. Примером использования этой теории для расчета спектров *f*-излучения, сопровождающего неупругое взаимодействие нейтронов, служит работа /4/.

Для расчета сечений образования и спектров *р*-квантов в промежуточной области, о возбуждающихся уровнях которой имеется незначительная информация, требуется применение того или иного синтетического метода.

Предлагаемая в данной работе методика охватывает всю область энергий: и область возбуждения известных дискретных уровней, и область возбуждения континиуума неизвестных или перекрывающихся уровней ядра-мишени, и промежуточную область. При этом упор делается на расчет множественности образования п-квантов и их спектр, а не на расчет сечений неупругих процессов (поскольку последние уже оценены и результаты оценки содержатся в соответствующих библиотеках).

метод расчета

Общие замечания и точный расчет

Рассмотрим процесс неупругого рассеяния нейтрона. Пусть E_n – начальная энергия налетающего нейтрона, $E_{n'}$ – энергия неупруго рассеянного нейтрона, а E_{omd} – кинетическая энергия ядра-отдачи. Если пренебречь отдачей ядра после испускания f-кванта, то максимальную энергию f-кванта можно выразить как $E_{max}^{f} = E_n - E_{n'} - E_{omd}$. Считая, что сечения возбуждения всех

f-кванта можно выразить как $E_{max} = E_n - E_{n'} - E_{om} \delta$. Считая, что сечения возоуждения все уровней при данной энергии нейтрона E_n и коэффициенты ветвления этих уровней в процессе fраспада известны, приходим к следующему выражению для сечения образования остаточного ядра в

ℓ-м возбужденном состоянии:

$$P_{\ell} = \mathcal{O}_{\ell} + \sum_{k=\ell+1}^{L} P_k K_{k,\ell} , \qquad (1)$$

где P_k - сечение образования ядра в k-м возбужденном состоянии; G_ℓ - сечение возбуждения ℓ -го уровня в реакции неупругого рассеяния; $K_{k,\ell}$ - коэффициент ветвления, т.е. p-перехода ядра из k-го состояния в ℓ -е; $L = L(E_n)$ - максимально возбуждаемый при данной энергии E_n уровень. Уравнение (1) будем называть уравнением каскада.

Для спектра *п*-квантов, испускаемых ядром при распаде *l*-го возбужденного состояния, получаем

$$d\mathscr{O}_{\mathfrak{p}}^{\ell}(E_n, E_{\mathfrak{p}}) / dE_{\mathfrak{p}} = P_{\ell}(E_n) \sum_{k=0}^{\ell-1} K_{\ell,k} \mathcal{O}\left[E_{\mathfrak{p}} - (E_{\ell} - E_k)\right], \qquad (2)$$

где $\mathcal{O}(E) - \mathcal{O}$ -функция Дирака. Чтобы получить весь спектр излучения, необходимо просуммировать выражение (2) по всем распадающимся состояниям:

$$d\mathcal{O}_{p}(E_{n}, E_{p})/dE_{p} = \sum_{\ell=1}^{L} P_{\ell}(E_{n}) \sum_{k=0}^{\ell-1} K_{\ell,k} \mathcal{O}\left[E_{p} - (E_{\ell} - E_{k})\right] .$$
(3)

вводя понятие множественности р-квантов, уравнение (З) можно переписать так:

$$d\sigma_{p}(E_{n},E_{p})/dE_{p} = \sigma_{in}(E_{n})M(E_{n},E_{p}), \qquad (4)$$

где $M(E_n, E_r)$ - множественность, или среднее число *г*-квантов с энергией E_r , испускаемых ядром на один акт неупругого рассеяния.

Проинтегрировав обе части уравнения (4) по энергии η -квантов и разделив полученное выражение ние на $\mathcal{G}_{in}(E_n)$, можно получить $\mathcal{G}_{f}(E_n)/\mathcal{G}_{in}(E_n) = M(E_n)$, где $\mathcal{G}_{in}(E_n) = \sum_{\ell=1}^{n} \mathcal{G}_{\ell}(E_n)$;

Ж(En) > 1. носледнее неравенство выражает тот факт, что остаточное возбуждение снимается по крайней мере одним р-квантом или же каскадом из нескольких р-квантов.

Практический расчет по формуле (3) связан со следующими трудностями:

- отсутствуют экспериментальные данные о возбужденных состояниях ядра (в особенности в области высоких возбуждений), а также отсутствует информация о коэффициентах ветвления этих уровней;

- для расчета спектров и сечений образования *п*-квантов (3) требуется знать сечения возбуждения при неупругом рассеянии всех уровней ядра-мишени. В файлах же оцененных данных парциальные сечения возбуждения заданы лишь для нескольких первых уровней, а все остальные уровни относятся к области непрерывного спектра и задаются общим сечением б_{cont} (E_n). Поэтому для практических расчетов необходимо ввести некоторые упрощающие предположения

Дискретизация области непрерывного спектра

Разобьем всю область непрерывного спектра на І интервалов, энергетическая ширина каждого из которых равна около 0,5 МэВ. как правило, спектр неупругорассеянных нейтронов задается в испарительной форме:

$$f(E_n \rightarrow E_{n'}) = \frac{E_{n'}}{A} \exp\left[-E_{n'}/T(E_n)\right]$$

T(E_n) - ядерная температура испарения; А - нормировочная константа, определяемая урав-Здесь нением

$$A = T^{2} \left\{ 1 - exp \left[-(E_{n} - E_{2p})/T \right] \left[1 + (E_{n} - E_{2p})/T \right] \right\}$$

где E_{2p} - верхняя граница спектра. Сечение возбуждения уровней *i*-го энергетического интервала

$$\mathcal{O}_{i}(E_{n}) = \mathcal{O}_{\text{cont}}(E_{n}) \int_{E_{n} - \varepsilon_{i,i+1}}^{E_{n} - \varepsilon_{i-1,i}} f(E_{n} - E_{n'}) dE_{n'} ,$$

где $\varepsilon_{i-1,i}$ и $\varepsilon_{i,i+1}$ - соответственно верхняя и нижняя граници *i*-го интервала возбуждения. Рассуждая способом, аналогичным тому, который использовался при выводе выражения (1), для заселенности і-го интервала можно получить

$$P_i = \mathcal{O}_i + \sum_{j=i+l}^{I} P_j K_{j,i} \quad ,$$

где $K_{j,i}$ - коэффициент ветвления j -го интервала в i-й, способ вычисления которых рассматри-вается ниже. Для заселенности n-го дискретного уровня по аналогии с выражением (1) получим

$$P_{n} = 6_{n} + \sum_{m=n+1}^{N} P_{m} K_{m,n} + \sum_{i=1}^{I} P_{i} K_{i,n} .$$

Весь спектр испускаемых п-квентов можно разделить на две части: дискретную (или линейчатую) часть, обусловленную переходом между нижними разрешенными уровнями, и непрерывную часть, вызываемую межгрупповыми переходами, а также переходами из групп на дискретные уровни. 10гда спектр у-квантов, порожденных в результате неупругого рассеяния нейтрона с начальной энергией Е,, будет рассчитываться по формуле

$$\begin{split} d\mathcal{O}_{p}(E_{n},E_{p}) \middle/ dE_{p} &= \sum_{i=1}^{I} P_{i}(E_{n}) \left[\sum_{j=i+1}^{I} \overline{K}_{i,j} \overline{S}_{i,j}(E_{p}) + \sum_{n=0}^{N} \overline{K}_{i,n} \overline{S}_{i,n}(E_{p}) \right] + \\ &+ \sum_{n=1}^{N} P_{n}(E_{n}) \sum_{m=0}^{n-1} K_{n,m} \mathcal{O} \left[E_{p} - (E_{n} - E_{m}) \right] \,, \end{split}$$

где введены следующие обозначения: $\overline{S}_{i,j}(E_{f})$ – нормированный спектр f-квантов, излучаемых при переходах из i-го интервала в j-й; $\overline{S}_{i,n}(E_{f})$ – нормированный спектр f-квантов при пере-

ходах из *i*-го интервала на *n*-й дискретный уровень. Понятно, что в определении формы спектров $\overline{S}_{i,j}(E_p)$ и $\overline{S}_{i,n}(E_p)$ и меется значительный произвол, фри расчете спектра *p*-квантов из реакции 25 Na (*n*, *n'p*) спектов $\overline{S}_{i,j}(E_p)$ и $\overline{S}_{i,n}(E_p)$ и выбирались в треугольной форме (см. рисунок). «аксимум спектра $\overline{S}_{i,j}(E_p)$ приходился на переход между средними энергиями интервалов (вершина треугольника). Спектр обращается с нуль при энергиях $E_p^{max} = E_i^B - E_j^H$; $E_p^{min} = E_i^H - E_j^B$; $E_j^{cp} = (E_i^B - E_j^B)/2 + (E_i^H - E_j^H)/2$. Аля спектра $\overline{S}_{i,n}(E_p)$ соответствующие границы задаются так: $E_j^{max} = E_j^B - E_n$; $E_p^{min} = E_i^H - E_n$; $E_p^{cp} = [(E_i^B + E_i^H)/2] - E_n$.

Расчет коэффициентов ветвления

Как уже указывалось, для большого числа высоковозбужденных уровней не существует экспериментальной информации об их коэффициентах ветвления. Этот пробел в исходных данных приходится восполнять с помощью расчета. Определим средний коэффициент ветвления для переходов из интервала і в интервал ј таким образом:

$$K_{i,j} = \sum_{\beta_j=1}^{M} \left(\sum_{\alpha_i=1}^{L} K_{\alpha_i, \beta_j} \right).$$
(5)

Нормированные спектры p-квантов из реакции 23Na(n, n'r)

Здесь K_{α_i,β_j} - коэффициент ветвления уровня α , принадлежащего *i*-му интервалу, на уровень β , при

принадлежащего і-му интервалу, на уровень β , приналлежащий ј-му интервалу; L - число уровней в і-м интервале, а M - в ј-м. На самом деле точное усреднение приводит к формуле

$$K_{i,j} = \sum_{\beta_j=1}^{M} \left[\sum_{\alpha_i=1}^{L} K_{\alpha_i,\beta_j} \mathcal{O}_{\alpha_i}(E_n) \right] / \mathcal{O}_i(E_n) ,$$

где $\tilde{G}_{\alpha_i}(E_n)$ – сечение возбуждения уровня с индексом α_i , но поскольку данных о сечениях для области непрерывного спектра нег, приходится использовать формулу (5).

Заметим, что при конкретных расчетах (э) экспериментальные данные, если они существуют, усредняются наравне с расчетными. Кроме того, при усреднении по выражению (э) перед коэффициентами ветвления уровней, само существование которых сомнительно, выбирается множитель 1/2, а знаменатель заменяется на эффективное значение $(L - \lambda) + \lambda 1/2$, где λ – число "сомнительных" уровней в *i*-м интервале. Для расчета экспериментально неизвестных коэффициентов K_{α_i,β_i} используется предположение Бринка – Акселя о зависимости матричного элемента оператора перехода от онергии. Пользуясь результатами теории Бринка – Акселя, для силовой функции E1-перехода имеем 2127

$$f(E_{g}) = \frac{\Gamma_{if}^{(E_{1})}}{D_{if}^{(E_{f})}} = \frac{\sigma_{E_{1}} E_{g}^{4} \Gamma_{E_{1}}^{2}}{2\pi^{2} \hbar^{2} C^{2} g \left[(E_{g}^{2} - E_{E_{1}}^{2})^{2} + E_{g}^{2} \Gamma_{E_{1}}^{2} \right]}, \qquad (6)$$

где $g = (2I_i + 1)/2(2I_f + 1)$ - статистический множитель; I_i - спин исходного состояния; I_f - спин конечного состояния перехода; $\Gamma_{if}^{(E1)}$ - парциальная ширина для E1-перехода из состояная i в состояние f; $D_{if} \in E_f$) - величина, обратная плотности конечных состояний, связаяных с исходным состоянием законами сохранения спина и четности при переходе

$$I_i - I_f = \Delta I \leq I; \qquad \pi_i - \pi_f = \Delta \pi \neq 0; \tag{7}$$

б_{е1} – величина сечения фотопоглощения в пике электрического дипольного резонанса для данного ядра; Г_{е1} – энергетическая ширина резонанса; Е_{е1} – энергетическое положение пика резонанса. для коэфициента ветвления уровня с индексом « на уровень в из выражения (6) получаем

$$K_{\alpha f^{5}} = \frac{E_{f}^{2} \sigma_{z}/g}{\sum_{E_{f}=0}^{\epsilon_{\alpha}} E_{f}^{2} \sigma_{z}/g};$$

 $f(E_r) = E_r^2 \sigma_z / g$

где $\mathcal{G}_{z} = \mathcal{G}_{E_{f}} E_{f}^{2} \Gamma_{E_{f}}^{2} / (E_{f}^{2} - E_{e_{f}}^{2})^{2} + E_{f}^{2} \Gamma_{E_{f}}^{2}; \quad E_{f} = E_{\alpha} - E_{\beta}.$ выражение

будем называть приведенной силовой функцией.

Очевидно, что для конкретных расчетов по формуле (8) необходимо прежде вычислить статистический множитель g, для чего в свою очередь требуется информация о спинах и четностях исходных и конечных возбужденных состояний. Ныше уже отмечалось, что для большинства высоковозбужденных состояний, энергетическое положение которых хотя и известно, таких данных или не существует вообще или они представлены неоднозначно.

Перейдем к рассмотрению всех возможных случаев, возникающих при расчете g .

<u>Опин и четность начального состояния точно известны.</u> Рассмотрим следующие моменты:

1. Не известна четность конечного состояния; в этом случае правая часть выражения (9) умножается на 1/2 - вероятность того, что четность имеет нужный знак.

2. Приводится несколько возможных значений спина конечного состояния, между тем четность его определена точно. В этом случае для вычисления вероятности конечному состоянию обладать тем или иным спином используем спиновую составляющую плотности уровней:

$$\rho(E_{\beta}, I) = ex_{\rho}(-I^{2}/2ct) - ex_{\rho}\left[-(I+I)^{2}/2ct\right].$$
⁽¹⁰⁾

входящие в состав этого уравнения параметры, а также формулы для их расчета будут определены ниже. Теперь же запишем вероятность того, что состояние $E_{m{ heta}}$ обладает спином I_n :

 $P(I_n) = \rho(E_\beta, I_n) / \sum_n \rho(E_\beta, I_n), \qquad (11)$

где суммирование в знаменателе ведется по всем возможным значениям спина, приписанным уровню E_{β} . Учитывая правила отбора (7), усредняем значение q :

$$\bar{g} = \sum_{m} \frac{2I_{i}+1}{2(2I_{m}+1)} P(I_{m}).$$
(12)

ی дано несколько возможных значений спина конечного состояния, причем четности некоторых из них приводятся, других же нет. а этом случае формула (11) разветвляется на две: либо

$$P(I_n) = \frac{1/2 \rho(E_\beta, I_n)}{\sum_m \rho(E_\beta, I_m) + 1/2 \sum_k \rho(E_\beta, I_k)}$$

если четность не известна и имеет нужный знак, либо

$$P(I_n) = \frac{\rho(E_\beta, I_n)}{\sum_m \rho(E_\beta, I_m) + \frac{1}{2}\sum_k \rho(E_\beta, I_k)} ,$$

если четность n-го состояния известна. Суммирование по m ведется по уровням с известной четностью, суммирование по k – с неизвестной.

4. Неязвестнымя являются в спин. в четность конечного состояния. В этом случае полагаем, что $I_f^{\min} \leq I_f \leq I_f^{\max}$, где I_f^{\min} - минимальное значение спина; I_f^{\max} - его максимальное значение. Эти значения выбираются для каждого конкретного ядра отдельно. Далее вычисления ведутся по выражениям (11) и (12), а при определении приведенной силовой функции пользуемся формулой

$$\bar{f}(E_p) = 1/2 E_p^2 \sigma_z / \bar{g} .$$
⁽¹³⁾

(8)

(9)

<u>Спин и четность конечного состояния известны; недостаток информации о спинах и четностях</u> <u>существует для начальных состояний</u>. Очевидно, что в данном случае применимы все формулы предыдущего пункта, только усреднение *g* проводится теперь по спинам начальных состояний. Однако, если для начального состояния неизвестной является только четность, то автоматически увеличивается число возможных *E1*-переходов в конечные состояния с любой четностью, поэтому расчет приведенной силовой функции проводится по формуле (9), а не (13).

Существует недостаток информации как для начальных состояний, так и для конечных. Рассмотрим следующие случаи:

1. Для начального состояния приводится несколько значений спинов, четности некоторых из них известны. Для конечного состояния имеется аналогичная информация. В этой ситуации для подсчета \bar{q} получаем

$$\bar{g} = \sum_{n} \sum_{m} \frac{2I_{n} + i}{2(2I_{m} + i)} P_{i}(I_{n}) P_{f}(I_{m}) , \qquad (14)$$

где $P_i(I_n)$ - вероятность начальному состоянию обладать спином I_n ; $P_f(I_m)$ - соответствующая вероятность для спина I_m конечного состояния.

2. Рассмотрим случай, когда ничего не известно о спине и четности начального распадающегося состояния, нет таких данных и для возможных конечных состояний. Здесь можно предположить, что $I_{min} \leq I_n^i \leq I_{max}$; $I_{min} \leq I_m^f \leq I_{max}$, т.е. выбираются верхние и нижние пределы на величины спинов, входящих в распределение (10). Расчет проводится по формуле (14), а при расчете приведенной силовой функции – по формуле (9), перед которой выбирается множитель 1/4.

<u>Оредние коэффициенты ветвления для интервалов целиком неразрешенных уровней</u>. Это такие высоковозбужденные состояния остаточного ядра, о которых нет вообще никакой экспериментальной информации. Вводя понятие статистической плотности уровней, после необходимых преобразований можно вывести приведенные ниже формулы.

1. для силовой функции р-перехода с уровня ρ_{α} , принадлежащего интервалу целиком неразрешенных уровней a, на уровень q_{β} , принадлежащий идентичному по характеру интервалу b:

$$\bar{f}(E_{\mathcal{F}}) = \frac{\sum\limits_{P} \sum\limits_{q} \int\limits_{\Delta E_{\mathcal{G}}} \rho(E_{q_{\mathcal{G}}}, I_{q}, \pi) dE_{\mathcal{G}} \int\limits_{\Delta E_{a}} \frac{\left(E_{P_{a}} - E_{q_{\mathcal{G}}}\right)^{2} \mathcal{G}_{z}}{\bar{g}} \rho(E_{P_{a}}, I_{P}, \pi) dE_{a}}{\sum\limits_{P} \sum\limits_{q} \sum\limits_{\Delta E_{\mathcal{G}}} \rho(E_{q_{\mathcal{G}}}, I_{q}, \pi) dE_{\mathcal{G}} \int\limits_{\Delta E_{\mathcal{G}}} \rho(E_{P_{a}}, I_{P}, \pi) dE_{a}} ,$$

где ΔE_{a} и ΔE_{b} - соответствующие энергетические размеры интервалов, по которым ведется интегрирование.

2. Для приведенной силовой функции перехода с уровня p_a на уровень β_j , принадлежащий частично разрешенному интервалу j:

$$\bar{f}(E_{p}) = \frac{\sum_{P} \int_{\Delta E_{a}} \frac{(E_{Pa} - E_{\beta_{j}})^{2} \tilde{G}_{z}}{\bar{g}} \rho(E_{Pa}, I_{p}, \pi) dE_{a}}{\sum_{P} \int_{\Delta E_{a}} \rho(E_{Pa}, I_{p}, \pi) dE_{a}}$$

Вычисление \bar{g} проводится по формуле (14), причем слабой энергетической зависимостью его в пределах самих интервалов можно пренебречь. Для плотности уровней выбирается формула [8]

$$\rho(\mathbf{E}_x, \mathbf{I}, \pi) = 1/2 \,\omega(\mathbf{E}_x) \rho(\mathbf{E}_x, \mathbf{I}) \,.$$

Здесь $\rho(E_x, I)$ – спиновая составляющая выражена уравнением (10);

$$\omega(E_x) = 1/T \exp\left[(E_x - E_0)/T\right], \quad \text{если } E_x < E_f$$
;

$$\omega(\mathbf{E}_{\mathbf{x}}) = \exp(2\sqrt{au}) / \frac{12\sqrt{2ac} at^3}{ecnu}, \quad ecnu \quad \mathbf{E}_{\mathbf{x}} \ge \mathbf{E}_f ,$$

где $c = 0,0868 A^{2/3}$ (А – массовое число изотопа); эффективная энергия возбуждения $u = at^2$ или $u = E_x - \Delta$ (t – термодинамическая температура возбужденного ядра, Δ – поправка на энергию спаривания).

Все необходимые к расчету эмпирические параметры, входящие в приведенные выше бололулы приведены, например, в работе /12/ Запишем теперь выражения для усредненных коэфбициентов ветвления из интервалов неразрешенных уровней:

А. Коэффициент ветвления из интервала а в интервал б (оба интервала расположены в неразрешенной области)

$$K_{\alpha,6} = \sum_{q} \int_{\Delta E_{g}} \rho(E_{q_{6}}, I_{q}, \pi) dE_{6}(X/Y),$$

 $X = \sum \int \frac{(E_{p_a} - E_{q_b})^2 \sigma_z}{\overline{\sigma}} \rho(E_{p_a}, I_p, \pi) dE_a ;$

где

$$Y = \sum_{\beta=0}^{L} \sum_{P} \int_{\Delta E_{\alpha}} \frac{(E_{p} - E_{\beta})^{2} \sigma_{z}}{\overline{g}} \rho(E_{p_{\alpha}}, I_{p}, \pi) dE_{\alpha} + \sum_{c=\overline{J}_{0}+1}^{I} \sum_{P} \sum_{z} \int_{\Delta E_{c}} \rho(E_{z_{c}}, I_{z}, \pi) dE_{c} \int_{\Delta E_{\alpha}} \frac{(E_{p_{\alpha}} - E_{z_{c}})^{2} \sigma_{z}}{\overline{g}} \rho(E_{p_{\alpha}}, I_{p}, \pi) dE_{\alpha}$$

Б. воэффициент ветвления из интервал α в интервал j (исхолной интервал α принадлежит целиком неразрешенной области, а коссочный интервал j – частично разрешенной энергетической области)

$$K_{\alpha,j} = \sum_{\beta_j}^{m} (X/Y) , \qquad (15)$$

где

$$\begin{split} X &= \sum_{\rho} \int_{\Delta E_{a}} \frac{(E_{\rho_{a}} - E_{\beta_{j}})^{2} \mathcal{O}_{z}}{\overline{g}} \rho(E_{\rho_{a}}, I_{\rho}, \pi) dE_{a} ; \\ Y &= \sum_{\beta=0}^{L} \sum_{\rho} \int_{\Delta E_{p}} \frac{(E_{\rho_{a}} - E_{\beta})^{2} \mathcal{O}_{z}}{\overline{g}} \rho(E_{\rho_{a}}, I_{\rho}, \pi) dE_{a} + \\ &+ \sum_{c=J_{0}+1}^{I} \sum_{\rho} \sum_{z} \int_{\Delta E_{c}} \rho(E_{z_{c}}, I_{z}, \pi) dE_{c} \int_{\Delta E_{a}} \frac{(E_{\rho_{a}} - E_{z_{c}})^{2} \mathcal{O}_{z}}{\overline{g}} \rho(E_{\rho_{a}}, I_{\rho}, \pi) dE_{a} ; \end{split}$$

æ

M – число уровней в интервале j; J_0 – номер самого верхнего интервала частично разрешенных уровней (отсчет номеров интервалов производится снизу). Вычисление \bar{g} в каждом конкретном случає ведется по вышеприведенным формулам. Исно, что выражение для коэффициента ветвления $K_{a,n}$ из интервала неразрешенных уровней a на дискретный уровень n получается упрошением формулы (15).

Сравнение	экспери	имент ал ьны:	ки	расчетных	данных	для	спектра
Г-ква	нтов Из	реакции	2 3 N	a(n,n'/)			

С помощью описанного выше метода был произведен расчет спектра *п*-квантов, возникающих при неупругом рассеянии нейтронов на ядре ²³Na . Информация об энергетическом положении, спинах и четностях возбужденных состояний ²³Na была получена из работ /13-15/. Конкретные величины дифференциальных сечений неупругого рассеяния в зависимости от начальной энергии нейтрона En взяти из оценки, приведенной в работе /16/. В соответствии с этой же работой проводилась разбивка спектра возбужденных состояний 23 на на дискретную и непрерывную части. При граничной энергии дискретного спектра, равной 5 МаВ, вся область непрерывного спектра вплоть до энергия возбуждения. равной I2 МэВ, была разбита на I4 интервалов со средней энергетической шириной около 0,5 МаВ. Зависимость ядерной температуры T = T(En) от энергии нейтрона взята из библиотеки UKNDL. Полученные расчетные спектры у-квантов сравнивались с экспериментальными данными /17-18/.

В табл. 1-3 приведены расчетные и экспериментальные данные о сечениях образования л-квантов дискретных энергий. Вполне удовлетворительное согласие между расчетом и экспериментом свидетельствует, на наш взгляд, о возможности практического применения предложенной методики оценки сечений образования п-квантов при неупругих взаимодействиях быстрых нейтронов.

Таблица 1

Er	$E_{\mathbf{x}}$, кэ \mathbb{B}	брасч	б _{эксп} /177	E _F	E_{x} ,кэВ	брасч	_{Эксп} /177
	$E_n =$	4,85 MəB		2697	4775	5,8	12,6+ 2,3
439	439	673	628 +62.8	2985	2985	53,9	42,7+ 4,7
627	2708	37,7	28,6+ 3,4	3240	3679	46,2	41,3+ 4,5
1038	3679	8,2	9,2+1,9	3411	3850	7,3	7,9 <u>+</u> 1,6
1639	2078	227,2	182,1+18,8	3850	3850	9,5	10,3 <u>+</u> 2,3
1772	3850	27,0	24,6+ 4,4	3915	3915	42,4	46,7 <u>+</u> 5,8
1790	4775	5,3	5,3 <u>+</u> 3,8	4336	4775	13,1	20,5 <u>+</u> 2,6
1837	3915	5,0	6,0 <u>+</u> 1,9	4431	4431	47,0	27,9 <u>+</u> 3,0
1954	2393	28,1	24,5 <u>+</u> 2,9	4939	5378	7,7	7,7 <u>+</u> 2,8
2078	2078	17,1	17,8 <u>+</u> 2,9	5299	5738	2,5	2,5 <u>+</u> 1,9
2266	2705	56,6	40,8 <u>+</u> 4,8			1337	I475,6+I69,3
2393	2393	38,9	32,9 <u>+</u> 3,8				
2546	2985	49,7	35,5 <u>+</u> 4,9		E _n	= 5,4 MəB	
2641	2541	64,7	43,7 <u>+</u> 4,8	439	439	644,8	670,7 <u>+</u> 67,8
2985	2985	60,8	45,2 <u>+</u> 4,9	627	2708	35,6	38, 2 + 4, 2
3240	3679	27,3	28,1 <u>+</u> 3,3	1038	3679	11,0	12,9 <u>+</u> 2,3
3411	3850	5,0	2,7 <u>+</u> 1,5	1639	2078	227,3	216,0 <u>+</u> 22,6
3850	3850	6,6	6,0 <u>+</u> 1,5	1772	3850	36,4	39,6 <u>+</u> 4,2
3915	3915	30,8	34,5 <u>+</u> 3,8	1790	4775	1,6	3,1 <u>+</u> 1,9
4431	4431	13,5	-5,0 <u>+</u> 1,3	1837	3915	6,8	7,5 <u>+</u> 1,9
-	_	1382.5	1200 7+137 3	1954	2393	24,4	23,6 <u>+</u> 2,9
	_	100,0	1000,11101,0	2070	4475	4,0	
	E _n = 5,9	± 0,15 MəH	3	2078	2078	17,1	28,1 <u>+</u> 3,4
439	439	611,5	699,6 <u>+</u> 70,4	2266	2705	53,4	49,2 <u>+</u> 5,4
627	2708	30,9	32,7 <u>+</u> 3,6	2393	2393	24,4	32,5 <u>+</u> 4,0
1038	3679	13,8	11,9 <u>+</u> 2,3	2546	2985	48,4	43,2 <u>+</u> 4,7
1639	2078	219,7	242,4 <u>+</u> 25,1	2641	2641	47,0	58,3 <u>+</u> 6,2
1772	3850	39,2	43,3 <u>+</u> 4,9	2985	2985	59,2	50,5 <u>+</u> 5,4
1790	4775	2,9	6,3 <u>+</u> 1,9	3240	3679	37,0	48,1 <u>+</u> 5,2
1837	3915	6,9	8,4 <u>+</u> 2,1	3300	5378	2,5	2,5 <u>+</u> 1,3
1954	2393	10,9	22,0 <u>+</u> 2,6	3411	3850	6,8	13,1 <u>+</u> 1,8
2070	4775	7,3	18,2 <u>+</u> 3,1	3476	3915	3,6	7,5 <u>+</u> 2,0
2078	2078	16,5	10,0 <u>+</u> 3,8	3850	3850	-8,8	$13, 2 \pm 1, 6$
2266	2705	46,4	44,0 <u>+</u> 4,8	3915	3815	41,6	45,5 <u>+</u> 5,0
2393	2393	15,1	25,1 <u>+</u> 2,8	4336	4775	7,2	10,1 <u>+</u> 1,9
2546	2985	43,9	37,0 <u>+</u> 4,7	4431	4431	40,0	15,6 <u>+</u> 2,1
2641	2641	36,8	54,6 <u>+</u> 5,8	-	-	1388,8	1429,1 <u>+</u> 157,5

Расчетные и экспериментальные сечения образования у-квантов дискретных энергий

24

1388,8 1429,1<u>+</u>157,5

.

E _f	E_x , kəb	брасч	б _{эксп} [17]	б _{эксп} /187
E,	n = 6,45 MəB	3		Е _п = 6,3 МаВ
439	439	608.1	728.5+84.2	581.1+50.2
627	2708	31.2	9.6+ 6.8	37.6+ 5.6
1038	3679	12.5	12.6 + 1.9	-
1639	2078	213.0	278.8+28.9	223,2+24,0
1772	3850	35.7	48.2+ 7.3	43.7+ 5.3
1790	4775	4.0	· - ·	, <u> </u>
1837	3915	6.6	7.9+ 3.1	-
1954	2393	7.1	17.6+ 3.1	· -
2070	4775	9.9	97 0. 3 1	
2078	2078	16,0	27,0 <u>+</u> 3,1	· · · · · ·
2260	2705	46,8	64,1+ 8,8	44,8+ 5,4
2393	2393	9,9	25,4+ 2,8	27,3+ 5,7
2546	2985	39,8	- 36,6 <u>+</u> 5,2	25,4 <u>+</u> 5,0
2641	26-1	27,0	51,0 <u>+</u> 5,4	38,6± 5,65
2697	4775	7,9	18,6 <u>+</u> 2,3	-
2829	5534	11,1	14, 4+ 2, 3	· 🚽
2985	2985	48,6	43,6 <u>+</u> 5,3	38,4 <u>+</u> 6,9
3240	5679	42,0	42,3 <u>+</u> 5,0	-
3411	3850	6,6	8,8 <u>+</u> 2,9	-
3400	5534	5,5	4,4 <u>+</u> 1,9	- -
3476	3915	3,5	4,1 <u>+</u> 2,3	· -
3850	3850	8,7	13,8 <u>+</u> 1,9	-
3915	3915	42,4	47,9 <u>+</u> 6,2	-
4270	(6350)	2,3	2,3 <u>+</u> 1,3	· _
4336	4775	17,8	30,0 <u>+</u> 4,7	-
4431	4431	47,0	28,3 <u>+</u> 5,7	_
4939	5378	16,3	16,1 <u>+</u> 2,6	-
5299	5738	3,5	3,3 <u>+</u> 1,6	
5323	5762	4,9	5,2 <u>+</u> 1,1	-
5378	5378	4,9	5,0 <u>+</u> 1,6	-
5528	5967	3,1	3,1 <u>+</u> 1,3	-
5738	5738	14,2	14,4 <u>+</u> 2,8	-
5762	5762	6,0	5,8 <u>+</u> 1,6	, –
59 34	5934	4,7	4,7 <u>+</u> 1,5	-
3300	5378	11,4	11,4 <u>+</u> 3,1	-
	·	1377.8	1674, 6+219,4	

Расчетные и экспериментальные сечения образования п-квантов

Таблица З

Er	E _x , RoB	брасч	б _{эксп} [17]	б _{эксп} / <u>18</u> 7	б _{эксп} [17]
	, E_ =	7 MaB	-f	$E_{-} = 7.3$ MaB	T = 12.5 MaB
	-1				$D_n = 1,0$ mod
439	439	618,5	665,7 <u>+</u> 67,8	565 <u>+</u> 50,2	678,0 <u>+</u> 91,7
627	2708	32,5	32,7 <u>+</u> 3,8	34 <u>+</u> 5,4	27,6 <u>+</u> 4,1
1038	3679	10,8	11,4 <u>+</u> 1,9	-	7,0 <u>+</u> 1,4
1639	2078	234,2	219,8 <u>+</u> 22,6	199 <u>+</u> 20,3	283,8 <u>+</u> 37,7
1772	3850	38,8	a/ 9, 5 A	39.7+ 5.6	57 9 70
1790	4775	7,4	44, <u>2</u> + J, 4		57,0 <u>+</u> 7,9
1837	3915	6,11	4,4 <u>+</u> 2,5	-	8,4 <u>+</u> 2,9
1954	2393	15,9	16,0 <u>+</u> 3,0	-	15,1 <u>+</u> 2,3
2070	4775	9,3	19,7 <u>+</u> 4,4	-	31,4+ 4,7
2078	2078	17,6	10,8 <u>+</u> 3,8	-	· <u>-</u> ·
2188	6042	8,4	8,4 <u>+</u> 2,5	-	-
2266	2705	48,7	48,1 <u>+</u> 5,4	34,5 <u>+</u> 5,0	50,2 <u>+</u> 7,8
2295	-	14,2	14,2 <u>+</u> 2,8	~ ·	-
2393	2393	32,5	$32,5\pm 3,6$	-	39,6 <u>+</u> 5,8
2546	2985	34,5	23,0+3,5	-	-
2041	2641	22,0	41,2+4,5	-	50,9 <u>+</u> 7,8
2697	4775	7,4	11,9 <u>+</u> 3,8	-	-
2829	5534	13,3	14,3+1,8	-	-
2985	2985	42,2	40,7 <u>+</u> 6,3	-	35,5± 5,4
3240	3079	36,2	35,3+ 5,3	-) -
3300	5378	11,2	12, 2+ 3, 0	-	-
3411	3830	12,3	8,8+ 2,8	-	-
3400	2034	4,0	4,3+1,8	-	-
3470 2050	3910	3,3	2,0+1,0	-	-
3830 0015	3850	16,0	14,7+1,9	-	-
0000	3915	37,0	34,0+ 3,0	-	41,44 9,4
4 270	0000	10 10	1,1+2,9	-	-
4000	4775	10,7	24,9+ 3,0	-	-
4431	4401 ביסוינים	40,0] –	-
49 3 9 5000	.0070 0000	10,0	$17, 2 \pm 2, 0$	-	-
0233	5730	0 ,7	3,0+1,0	-	-
0060 20110	0704 2070	0,0	7,0 <u>+</u> 1,9	-	-
0070 5599	5065	4,0	2,0+1,0	-	-
0020 5202	2115	4,1	4,0± 0,9	-	-
0070 8020	6720	10.5	11 3. 2.9	-	-
5092/1	5034	10,0	10.3, 1.6		-
0904 R020	50417	20,0		-	-
0007 0006	7090	2,0	$\begin{array}{c} 2,1+1,0\\ 1,3,1,1 \end{array}$	-	_
51/38	5738	99 17	22 6. 4.9		-
		~~~	~~, ~ + *, ~		
-	-	1488,7	1515,8 <u>+</u> 200,5	-	

Расчетные и экспериментальные сечения образования л-квантов

Список литературы

- 1. Garber D. ENDF/B Summary Documentation (ENDF-201). BNI-17541, 2th ed. New-York, 1975.
- 2. Dickens J.K. e.a. Nucl. Sci. and Engng, 1977, v.62, p.515-531.
- 3. Ахмед М.Р. и др. Атлас спектров гамма-излучения от неупругого рассеяния быстрых нейтронов. М.: Атомиздат, 1978.
- 4. Trubetzkoy E.S. Phys. Rev., 1961, v.122, p.212.
- 5. Howerton J., Plechsty E.F. Nucl. Sci. and Engng, 1968, v.32, p.178-183.
- 6. Perkins S.T. e.a. Ibid., 1975, v.57, p.1-11.
- 7. Fu C.Y. Atomic Data and Nucl. Data Tables, 1976, v.17, p.127-156.
- 8. Fu C.Y., Perey F.G. Ibid., 1975, v.16, p.409.
- 9. Hauser W., Feshbach H. Phys. Rev., 1952, v.87, p.366.
- 10. Малышев А.В. Плотность уровней и структура атомных ядер. М.: Атомыздат, 1969.
- 11. Oliva P., Prosperi D. Nuovo Cim., 1967, ILB, p.161.
- 12. Gilbert A., Cameron A.G.W. Can. J. Phys., 1965, V.43, p.1446.
- 13. Endt P.M., Van der Lenn. Nucl. Phys., 1978, v.A310, N 1,2.
- 14. Meijer R.J. e.a. Atomic Data and Nucl. Data Tables. 1975, v.15, N 5.
- 15. Smit J.J.A. e.a. Nucl. Phys., 1979, v.A318, p.111.
- 16. Абагян Л.П., Базазянц Н.О., Николаев М.Н., Цибуля А.М. Под ред. Николаева М.Н. Групповне константи для расчета реакторов и защити. М.: Энергоиздат, 1981.
- 17. Dickens J.K. Nucl. Sci. and Engag, 1973, v.50, p.98-107.
- 18. Lachkar J. e.a. В кн.: Нейтронная физика (Материалы 2-й Всесоюзной конференции по нейтронной физике, Киев, 28 мая - I июня 1973 г.). М.: ШНИМатоминформ, 1974, ч.3, с.187-196.

Статья поступила в редакцию 9 апреля 1982 г.

Удн 539.184.5

СЕЧЕНии возьядении изомера ¹⁸⁰нг Бастрыми нейтронами (I^{SI} = 5⁻, Е_{ур} = 1141,5 кэв)

В.А. Бондаренко, Х.Я. Бондарс, А.А. Лапенас

FAST-NEUTRON EXCITATION CROSS-SECTION FOR ISOMER ¹⁸⁰ Hf (I^x = 8⁻, ^P₁₈₇ = 1141,5 keV). The average cross-section for the ¹⁸⁰ Hf (T_{1/2} = 5,5 h, I^x = 8⁻) isomer production via (n, n') reaction was measured. The value obtained  $\langle \sigma_{nn} \rangle =$ 7,6⁻₀, ²/₄ mb is comparable with the excitation of 8⁺g.s. baild level and is in agreement with optical model predictions.

При исследовании возбуждения уровней ¹⁸⁰нг нейтронами [1] обнаружена активность, принадлежашая хорошо известному изомеру ¹⁸⁰нг( $T_{1/2} = 5,5 u$ ) [2]. Анализ данных о сечениях [3] показал, что изомер ¹⁸⁰нг может образоваться в результате реакций ¹⁷⁹нг(n, n) и ¹⁸⁰нг (n, n'n). Чтобы надежно отделить вклад резонансного захвата в образование изомера одновременно облучали две мишени со следующими параметрами:

Размер, мм 13х1,5	12,3x1,8
Масса, мг 497	503
Содержание, %:	
179 _{Hf} 2,5	73,7
180 _{Hf} 94,3	20,0

Пучок, как и ранее [1], фильтровался от тепловых нейтронов с помощью карбида бора толщиной 10 мм, кадмия толщиной 1 мм и естественного металлического урана толщиной 70 мм. Длительность облучения составляла 29,5 ч. р-Спектры обеих мишеней измеряли с помощью Ge(L1)-детектора объемом 40 см³ с разрешением 3,5 кэВ для линий ⁶⁰Со. Абсолютная эффективность детектора была определена с помощью стандартного набора источников. При определении абсолютной активности изомера ¹⁸⁰нг были использованы переходы с энергиями 213, 332, 443 и 500 кэВ. Необходимые данные об интенсивностях и коэффициентах конверсии этих переходов взяты из работы /2/.Поправка на самопоглощение в мишени для указанных переходов определена (расчетным путем) методом интегрирования в хорошо обусловленной геометрии с использованием коэффициентов ослабления *р*-квантов /4/.

Особое внимание уделено определению плотностей потоков нейтронов, прошедших через комбинированный фильтр, и их спектра. Спектр нейтронов измеряли по скоростям реакций с помощью 22 активационных детекторов и восстанавливали полиномиальным методом, методом направленного расхождения (мНР) и методом SAND-II в широком интервале энергий  $10^{-6}$  – 18 МэВ /5/. Спектры, восстановленные методами SAND-II и МНР, дают близкие результаты (рис.1). В табл.1 приводятся данные об интегральных потоках для разных групп нейтронов. Таким образом, в использованном пучке практически отсутствовали нейтроны, энергия которых была менее 1 кэВ. При расчетах сечения образования изомера по его активности поток быстрых нейтронов вблизи порога реакции (n, n') для уровня с энергией  $\mathbb{E}_{yp} = 1141,5$  кэВ оценивали с помощью функции возбуждения  $f(E_n) \sim i - exp[-\alpha(E_n - E_{yp})]$ , где константа  $\alpha$  выбрана равной  $(2,5\pm0,5)$  МэВ. Это соответствовало тому эмпирическому факту /6/, что из тяжелых ядер в реакции (n, n') наиболее эффективно участвуют нейтроны, энергия которых превышает энергию возбуждаемого уровня на  $(0,8\pm0,2)$  МэВ. На основе такой оценки интегрального потока нейтронов в пучке получили величину  $\langle \delta \rangle = 7, 6_{-0,4}^{+0,7}$  мб – усредненное по всему спектру нейтронов сечение образования уровня 1141,5 МэВ.

#### Таблица I



Рис.І. Спектр деления (----) и спектр нейтронов, прошедших через фильтр (x) изомера ¹⁸⁰нf

Интегральные потоки нейтронов

Е <b>п,Мэ</b> В	SAND-II	MHP	Спектр деления
10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹	5,36 (7) 5,36 (7) 5,35 (7) 4,68 (7)	5,3I (7) 5,3I (7) 5,30 (7) 4,72 (7)	- - 3,36 (7)
0,5 I,0 2,5 3,0	4,02 (7) 3,19 (7) 1,28 (7) 1,03 (7)	4,03 (7) 3,19 (7) 1,28 (7) 1,03 (7)	3,09 (7) 2,68 (7) I,28 (7) I,0I (7)

Примечание. Запись, например, 5,36 (7) означает 5,36·10⁷ нейтр./(см²·с) для всех нейтронов, энергия которых не менее 10⁻⁴ МэВ.

Дополнительное измерение скоростей счета линий при разрядке изомера 8⁻ (с учетом поправок на образование и распад), а также непосредственно в реакции (n, n'r) при одной и той же мишени и при одинаковых прочих условиях показало, что скорость счета пика линии 332 кэВ  $(6^+ - 4^+)$  в случае разрядки изомера 8⁻ составляет 10,3% скорости счета той же линии непосредственно в (n, n'r)-реакции. Эта связь позволяет выразить факторы заселения уровней работы /1/ в миллибарнах.

Выли также рассчитаны сечения возбуждения некоторых уровней согласно формализму Хаузера – Фешбаха при стандартном наборе параметров оптической модели. В расчетах использована схема уровней работы /1/. Результат расчета сечения возбуждения уровня 8⁻ ( $E_{yp}$  = 1141,5 кэВ) приведен на рис.2. Для сравнения с экспериментальными оценками было проведено усреднение рассчитанных сечений по экспериментальному спектру (см.рис.1) согласно уравнению  $\langle 6 \rangle_{x-\Phi} = \int G(E) \Phi(E) dE / \int \Phi(E) dE$ . Экспериментальные и расчетные сечения для некоторых уровней приведены в табл.2. Следует обратить внимание на то, что уровни разной структуры 8⁺0 и 8⁻8 возбуждаются почти одинаково и для уровня 8⁺ не замечается превышения сечения полосы основного состояния по сравнению с оценками по оптической моделя.

Таблица 2 Экспериментальные и расчетные сечения для некоторых уровней

≝ур, кэ⊔	I ^G n	<б> _{эксп} ,мо	<б>, мо хф.		
93,3	2+0	5090	-		
ತ∪ಜಿ,ಲ	4 ⁺ U	509	200		
54U,8	;0+ິ∪	o1	-		
1084,0	8 ⁺ 0	5	5,5		
1141,0	ຮາບ	7,ò	5,5		



Рис.2. Сечение возбуждения изомера ¹⁸⁰нг согласно формализму Хаузера — Фешбаха

Описок литературы

1. вондаренко В.А., Григорьев Е.П., Крамер Н.Д. изв.АН СССР. Сер.физ., 1979, т. ..., с. 1052.

2. Nucl. Data Sheets, 1975, v.15, p.559.

3. Mughabghab S.F., Garber D.I. Neutron Cross-Sections. BNL-325. 3th ed. 1973, v.1.

4. Storm E., Israel H.I. Nucl. Dats Tables, 1970, V.A7, p.565.

о. лапенас А.А. измерение спектров нейтронов активационным методом. Рига; Зинатне, 1975.

э. демилов А.м., Говор Л.м., Черепанцев Э.К. и др. Атлас спектров рассеяния быстрых нейтронов реактора. М.: Атомиздат, 1978.

Статья поступила в редакцию 23 ноября 1980 г.

Уда 539.122.164

тов определяли по формуле

определение выходов – "р-квантов с энергией 208 кэв при распаде ²³⁷u и с энергией 984 кэв при распаде ²³⁸кр

А.Б. Бушуев, О.В. Матвеев, Б.Н. Озерков, В.Б. Чачин

THE DETERMINATION OF THE ABSOLUTE INTENSITY OF THE *p*-RAYS 208 keV  237 U and 984 keV  238 Mp. The absolute intensities of 237U (208 keV) and  238 Mp (984 keV) *p*-rays were determined by *p*-spectrometry. The *p*-spectra of  236 U and  227 Mp samples irradiated in thermal neutron flux were measured. The Ge(Li)-detector absolute efficiency was determined by the set of standard spectrometric *p*-source. The obtained absolute intensity values are compared with the known reference value.

В связи с проведением работ по изучению характеристик облученного топлива и путей его дальнейшего использования существенный интерес представляет информация о нейтронных реакциях, ведущих к накоплению активных изотопов ²³²U, ²³⁶Pu, ²³⁸Pu, в том числе о реакциях радиационного захвата в ²³⁶U и ²³⁷Np. Скорости этих реакций в топливе экспериментально определяют активационным методом путем регистрации *p*-излучения их продуктов (²³⁷U и ²³⁸Np). Использование современных гамма-спектрометров дает возможность выделить излучения этих изотопов на фоне излучения продуктов реакции деления. Обычно регистрируются *p*-кванты, испускаемые при распаде с наибольшей вероятностью (этим достигается минимальная статистическая ошибка) и обладающие высокой проникающей способностью (поправка на поглощение излучения внутри образца мала).

При измерениях скоростей реакций ²³⁶U (n, p) и ²³⁷Np(n, p) эти условия лучше всего выполняются при регистрации р-квантов с энергией 208 кэВ при распаде ²³⁷U и с энергией 984 кэВ при распаде ²³⁸Np. Анализ опубликованных данных о вероятности испускания этих квантов /1-4/ приводит к следующим выводам:

1) неопределенность рекомендуемых величин оценивается, как не превышающая 10%;

2) величины, рекомендуемые разными авторами, различаются на 20% для ²³⁸мр и на 7% для ²³⁷U. Таким образом, определяющий вклад в погрешность результатов опытов вносит неопределенность данных о вероятности испускания регистрируемых *р*-квантов. Цель настоящей работы – уточнение данных о вероятности испускания *р*-квантов с энергией 208 кэВ при распаде ²³⁷U и *р*-квантов с энергией 984 кэВ при распаде ²³⁸мр. Использовались образцы указанных изотопов (масса 4,5 мг, чистота 100%), заключенные в капсулы из оргстекла. Образцы облучались потоком нейтронов в тепловой колонне реактора Ф-1 иАЭ им.и.В.Курчатова. Искомую величину абсолютной интенсивности *г*-кван-

$$I_{p_{abc}}^{i} = \frac{A_{i}^{j}}{N_{j} \delta_{p}^{j} n v_{0} g_{c}^{j} \left[1 - exp(-\lambda t_{0})\right] exp(-\lambda t_{1}) \varepsilon_{i}} (1 - 1/R_{cd}^{j}) ,$$

где  $A_i^j$  – полное число импульсов, зарегистрированных в фотопике, образованном *i*-ми *p*-квантами при измереннях с образцом *j*-го изотопа;  $N_j$ - число ядер изотопа *j* в образце;  $G_p^j$ - сечение радиационного захвата тепловых нейтронов *j*-м изотопом;  $g_c^j$ - соответствующий фактор Весткотта;  $nv_0$ поток тепловых нейтронов через образцы;  $\lambda$  - постоянная распада исследуемого изотопа;  $t_0$  - длительность облучения;  $t_i$  - интервал времени от момента окончания облучения до момента измерения;  $\varepsilon_i$  - вероятность регистрации *i*-х *p*-квантов (определялась путем калибровки спектрометра с помощью набора стандартных источников);  $I - I/R_{Cd}^j$ - поправка, учитывающая вклад эпитепловых нейтронов в актыващию образца (определялась по измерению кадмиевого отношения для соответствующих реакций в тепловой колонне). Гамма-спектры облученных образцов измерялись с помощью **Ge(L1**)-спектрометра. В табл.1 приведены данные о компонентах погрешности определения вероятностей испускания *p*-квантов с энергией 208 кэВ при распаде ²³⁷U и с энергией 984 кэВ при распаде ²³⁸Np. В табл.2 результаты настоящей работы сравниваются с данными других авторов.Из таблицы видно, что результаты настоящей работы согласуются с ранее полученными данными и их использование позволит уточнить рекомендованные значения.

		Саблица	1
Составляющие	погрешности	определения	
вероятностей	испускания	л-квантов	

Параметр	Погрещность, %	Работа		
А _і для ²³⁷ U	1,2	Настоящая		
А _і для ²³⁸ мр	0,0	11		
б _{л для} 236 ₀	5,76	/5/		
б _{л для} 237 _{Np}	2	[5]		
N _i	0,8	Настоящая		
$\epsilon_i$	1,87	"		
nv _o	2	11		
1-1/R _{cd}	<0,01	"		

Таблица 2 Абсолитная интенсивность *J*-квантов с энергией 208 кэВ при распаде ²³⁷0 и с энергией 984 кэВ при распаде ²³⁸къ

Работа	Irabc , %					
	237 _U	238 _{Np}				
Настоящая	21,5 <u>+</u> 1,4 23	22,7 <u>+</u> 0,7 20				
[2]	23,3	24,0				
[3]	22	23,8				
[4]	21,7	23,8				

Список литературы

- 1. Lederer C.M. e. a. Table of Isotopes. 6th ed., 1967.
- 2. Atomic Data and Huclear Data Nables, 1974, v.13, p.89-292.
- 3. Report IARA TeCDOC-232.
- 4. Rels U., Westmeier W. Gamma-ray catalog GSI 79-2, 1979.
- 5. Горбачёв В.М. и др. Взапиодействие излучений с ядрами тяженых элементов. М.: Атомиздат, 1976.

Статья поступила в редакцию 23 октября 1981г.

удк 539.171

построение таблицы масс для согласованного набора атомов

В.К. Бодулинский, А.Е. Игнаточкин, А.И. Хованович, Ф.Е. Чукреев

THE MASS TABLE FOR THE CONSISTENT ATOMS'SET. The atomic mass table was formed for the atomic set, which is characterized with the maximale reliability while consisting with all over the experimental data. The table is based on the following: in author's view the most reliable experimental data for mass doublets, nuclear reaction energies and radioactive decay energies; the least squares fit for processing of these experimental data; the test of the internal data consistency. Metodological and statistical criteria discussed in the paper allow to select 752 atoms for the consistent set. The masses of the atoms are incorporated in 2480 experimental relations. Besides of the masses, mass excesses and binding energies for each of the atom the table contains 474 betadecay energies.

Для обеспечения единства измерений при физических исследованиях необходимо использовать оцененные, т.е. согласованные с известной достоверностью со всей совокупностью экспериментальных данных значения масс атомов и связанных с ними величин. К этим величинам относятся избыток массы, определяемый как разность между массой атома и его массовым числом, энергия связи, энергия β-распада. Исходя из чисто теоретических предпосылок, рассчитать значения масс атомов с достаточной точностью не представляется возможным. Полуэмпирические формулы тоже пока не обеспечивают высокой точности. Отдельные работы по эмпирическому определению масс атомов не дают основания считать их результаты достаточно достоверными, поскольку всегда существует вероятность присутотвия неучтенной систематической ошибки.

Для повышения достоверности необходим комплексный подход ко всему имеющемуся экспериментальному материалу. Такой подход осуществлен в работе А.Вапстры и К.Боса /1/, которым удалось на основе анализа и обобщения многочисленных первичных экспериментальных данных получить таблицы масс атомов /2/ с точностью, превышающей точность, достигнутую в отдельных работах. Однако детальное рассмотрение принципов, положенных в основу оценки масс атомов /1/, показывает, что полученные результаты обладают неравнозначной достоверностью. Кроме того, с тех пор опубликовано много новых данных.

В настоящей работе определены критерии построения набора атомов с согласованными массами (ACM) на основе заданной совокупности экспериментального материала, а также уточнены значения и погрешности масс ACM и связанных с ними избытка массы, энергии связи и энергии <u>в</u>-распада. Полученные данные могут найти широкое применение при исследованиях в области теоретической и экспериментальной физики, а также ядерной энергетики.

Критерии построения набора атомов с согласованными массами и методика оценки

к настоящему времени накоплено большое число результатов измерений масс-дублетов и энерговыделений в ядерных реакциях и радиоактивных превращениях. Учитывая, что современный эксперимент определяет лишь разности масс (энергий) атомов, а не их абсолютные значения, все эти результаты можно разделить на два набора. К первому из них отнесем такие результаты, которые в совокупности связывают массу каждого из атомов, фигурирующих в наборе в виде разностей, с массами не менее чем двух других атомов, причем существующий экспериментальный материал согласуется между собой с заданной достоверностью. Все остальные результати должны быть отнесены ко второму набору. В самом деле, если имеется лишь одно определение подобной разности, то всегда, за исключением масс-спектрометрических определений для стабильных нуклидов, существует вероятность принять за энергию перехода между основными состояниями атомных ядер энергию перехода в возбужденное состояние. Такие случаи могут возникать из-за недостаточно точного знания систем ядерных переходов. Исключить указанный источник недостоверности или, по крайней мере, учесть его в приводимой погрешности для массы атома возможно только путем взаимного сопоставления данных, т.е. только для результатов из первого набора. Критерием при таком сопоставлении выбрали соответствие оцененных величин масс каждому из использованных экспериментальных результатов в пределах трех скорректированных стандартных отклонений этого результата. Волее детально этот критерий обсуждается ниже.

К ACM предлагается относить только те атомы, массы которых определяются первым набором экспериментальных результатов. Для формального определения ACM потребуется несколько основных понятий. С любым рассматриваемым измерением сопоставляется уравнение процесса, связывающее значение некоторой линейной комбинации атомных масс  $M_i$  с величиной энергии процесса  $Q_j$ , имеющей стандартное отклонение  $G_j(Q)$ :

 $\sum_{i} \ell_{ij} M_{i} = Q_{j} \pm \mathcal{O}_{j}(Q) , \qquad (1)$ 

в котором предполагается, что коэффициенты  $l_{ij}$  отличаются от нуля цельми числами, а суммирование выполняется по атомным массам, связанным данным процессом.

<u>Определение 1.</u> Два уравнения процессов называются подобными по отношению к паре атомов iи k, если существует линейная комбинация этих уравнений, одновременно не содержащая ни  $M_i$ , ни  $M_i$ .

<u>Определение 2.</u> Попарно подобными относительно пары атомов і и к поднаборами назовем подмножество уравнений процессов, любая пара элементов которого подобна по отношению к паре атомов i и k. Таким образом, каждое уравнение процесса, связывающее в атомов, может быть отнесено к n(n-1)/2 таким поднабором.

<u>Определение 3.</u> Атом і называется независимым, если не существует такого попарно подобного поднабора, который включает сразу все присутствующие в полном наборе уравнения, содержащие M_i. Учитывалось, что атом нуклида ¹²С является независимым, поскольку его масса служит основой шкалы атомных единиц массы (а.е.м.).

<u>Определение 4.</u> Атом нуклида і формально относится к ACM, если выполняется хотя бы одно из перечисленных условий:

- он является независимым;

- имеется не менее двух содержащих его уравнений, которые группируются в попарно подобний поднабор только в комбинациях с независимыми атомами, массы которых известны с пренебрежимо малой погрешностью;

- он стабилен, и имеется одно или более масс-спектрометрических измерений его массы относительно комбинации масс независимых атомов.

После рассмотрения всего исходного набора результатов и выявления атомов нуклидов, не удовлетворяющих определению 4, содержащие их уравнения исключаются из рассмотрения, а совокупность эставшихся вновь подвергается такому же рассмотрению. Процесс повторяется до тех пор, пока не будет сформирован набор уравнений, связывающих только атомы, удовлетворяющие определению 4. Только из него определяются значения масс и проверяется их согласованность с каждым из входящих в этот набор уравнений. Если из оценки по любым причинам требуется исключить тот или иной атом или уравнение, оставшийся набор вновь подвергается обработке по описанной методике. К атомам со стандартными массами отнесены атомы, связанные итоговым набором результатов, использованных в настоящей оценке.

По формальному признаку наше определение АСМ подобно так называемой категории первичных данных, определенной в работе /1/. По этой причине в настоящую оценку включена значительная часть первичных данных непосредственно в том виде, в котором они приводятся в работе /1/, и в таком смысле настоящие данные в определенной степени сохраняют преемственность с указанной работой. Кроме того, были использованы данные 164 работ, как опубликованных после периода, охваченного в работе (17, так и относящихся к этому периоду, но не охваченных указанной оценкой по каким-либо причинам. В результате включения новых данных, а также в связи с несогласием с аргументацией работы [1] потребовалось выполнить дополнительную процедуру согласования, принципы которой описываются ниже. В результате данные, использованные в работах /1,37 как переичные, были протрактованы в нашей оценке как недостоверные или не относящиеся к набору АСы. Наоборот, часть данных /1/, объявленных недостоверными, посчитали целесообразным включить в оценку. Асключение части данных, использованных в работах /1,37, потребовало ввести цитированные, во не использованые данные с меньшей точностью, а включение новых данных позволило также ввести в оценку часть уравнений, определенных в работе /1/ как вторичные и даже более высоких порядков, поскольку в совокупности с новыми данными они стали удовлетворять требованиям к элементам набора уравнений для определения масс АСМ.

При рассмотрении новых результатов авторы настоящей работы стремились максимально выделить вклад, вносимый конкретной работой. Например, для некоторых измерений выполнялась калибровка по одному процессу, известному из другой работы либо из оценки. Аспользуя такие данные, авторы брали не абсолютные значения энергии процесса, а их разности между измеряемых в калибровочным процессами. От некоторых результатов пришлось отказаться по той причине, что калибровка выполнялась по атомам, не принадлежащим АСМ.

Для согласования набора использованы те же средства, что и в работах [1,2]: коррекция стандартных отклонений масс-спектрометрических измерений с помощью множителей  $C_j$  и исключение из оценки недостоверных уравнений. Широко использованный в работе [1] метод усреднения подобных уравнений не применялся, поскольку выяснено, что он во многих случаях приводит к неоправдание оптимистической погрешности среднего. Применение так же, как и в работе [1], множителей  $C_j$  для коррекции стандартных отклонений масс-спектрометрических результатов отражает отмечаемой во многих работах факт, что некоторые подобные данные, полученные на разных установках, по вепонятным причинам значительно отличаются друг от друга. В данной оценке предночтение отдавалось том дублетам, измерение которых выполнялось циклами, позволявшиеми для данных, полученных на одной и

той же установке, проводить проверку отсутствия систематических погредностей путем построения замкнутых цепей. Вероятно, наиболее безупречными с методической стороны среди всех проанализированных данных этого типа являются результать Сухумского физико-технического института (лаборатория Р.А.Демирханова). Этим данным, не входящим в оценку работы /1/, авторы не присваивали корректирующих множителей, за исключением дублетов, определяющих 67гл, которым потребовалось присвоить  $C_j = 2,5$ . Вместе с тем оказалось необходимым присвоить  $C_j = 2,5$  всем результатам, полученным группой из Канады (К.С.Шарма, К.С.Козиер и др.). Кроме того, в нескольких случаях были пересмотрены веса масс-дублетов, присвоенные в работе /1/.

При анализе достоверности всех рассматриваемых результатов учитывались критерии двоякого рода. Во внимание принимались особенности методики, использованное оборудование, а также (что наиболее важно) степень привлечения теоретических и модельных представлений для пересчета непосредственно полученной из опыта величины в необходимую для оценки энергия исследуемого процесса. По последнему признаку при возникновении конфликтных ситуаций среди уравнений, описывающих ядерные процессы, мы прежде всего отказывались от результатов измерения энергий захвата электрона. В частности, этим объясняется значительное расхождение данных настоящей работы с данными работы /2/ в районе ¹⁵³Gd.

Помимо указанных физико-методических критериев, применяемых и отдельным результатам, использовали и статистический критерий, реализующий преимущества сформулированного выше определения набора ACM. Требование, чтобы модули невязок

$$(Q_j - \sum_i \ell_{ij} M_i) / C_j \sigma_j(Q)$$

(2)

не превышали 3, качественно соответствует тому, чтобы и в относительно небольших поднаборах использованного набора уравнений (при разумной фиксации не определяемых данным поднабором масс) распределение невязок подчинялось закону Гаусса с единичной дисперсией. Следовательно, невыполнение этого условия можно трактовать как значимое рассогласование в таком небольшом поднаборе. Особое внимание в таких ситуациях обращалось на атомы, массы которых определяются только двумя уравнениями. При невыполнении статистического критерия в таких случаях атом, как и оба определяющих его массу уравнения, безусловно исключались из анализа как данные, достоверность которых не могла быть оценена. Например, по этому признаку исключен атом ⁶⁰со, масса которого оценкой работ /1,27 определена со стандартным отклонением в 14 кэВ (в энергетических единицах) на основе двух измерений, результаты которых рассогласуются примерно на 145 кэВ.

Для атомов, массы которых определялись более чем двумя уравнениями, статистический критерий на практике применялся только в сочетании с физико-методическими, играя вспомогательную роль при выявлении конфликтной ситуации. При наличии трех и более измерений на практике всегда имелась возможность локализовать и исключить из рассмотрения наиболее сомнительное измерение, исходя из физико-методических критериев. Таким образом, вместо использованного /1/ усреднения подобных рассогласующихся уравнений была применена более жесткая и последовательная система требований к достоверности включаемых в рассмотрение экспериментальных результатов.

Необходимо подчеркнуть, что в процессе согласования пристальное внимание уделялось выявлению истинного источника конфликта. При этом описанный статистический критерий применялся к подмножествам набора данных, охватывающим в сложных случаях до нескольких десятков атомов, и далеко не всегда конфликт вызывался теми измерениями, для уравнений которых возникла большая неувязка.

Детальное изложение результатов применения настоящей методики и их сравнение с другими оценками выходят за рамки настоящей работы. Согласование данных выполнялось в областях, содержащих нуклиды с массовыми числами 3, 46-50, 55-67, 82, 87-89, 94, 104-106, 149-153, 159, 175, 180-181, 198-200, 205-206, 249.

Построенный авторами набор данных для определения масс ACM охватывал 2480 экспериментальных результатов, связывающих массы атомов 752 нуклидов, включая ¹²С. Из этих данных обычным путем была построена система нормальных уравнений. Для определения масс использовался метод наименьших квадратов /3/. В процессе вычисления были использованы две фундаментальные постоянные: масса атома нуклида ¹²С = 12 а.е.м. (точно) и коэффициент перевода энергетических единиц в массовые

$$K \pm \mathcal{O}(K) = (1073535, 5 \pm 3, 0) \cdot 10^{-9} \text{ a.e.m./m3B},$$
 (3)

полученный из значения 1/К, приведенного в работе [4]. Перевод в а.е.м. был выбран в связи с тем, что стандартное отклонение б(К) сравнимо с погрешностями наиболее точных масс-спектрометрических измерений, результаты которых даны в а.е.м.

#### Методика вычислений и структура таблиц атомных масс

В качестве оцениваемых параметров были выбраны избытки масс, т.е. разности массы атома и его массового числа:

 $\mu = M - A, \tag{4}$ 

где  $\mu$  - избыток массы; М - масса атома; А - его массовое число. Если это было необходимо, уравнейия преобразовывались так, чтобы они зависели от избытков масс. Очевидно, что такая обработка не вносила возмущений в стандартные отклонения.

Если уравнения исходной системы (1), преобразованные в а.е.м. и записанные через избытки масс  $\mu_{i}$ , имеют вид суммы по всем N атомам, входящим в набор ACM:

$$\sum_{i=1}^{N} \ell_{ij} \mu_{i} = \tau_{j} \pm \tilde{\sigma}_{j}(\tau) \qquad (j = 1, 2, ..., J),$$
(5)

где в отличие от выражения (1) для отсутствующих коэффициентов  $\ell_{ij}$  приняты нулевые значения, то система нормальных уравнений запишется как

$$\sum_{k=1}^{N} a_{km} \,\mu_m = \mathbf{R}_k \,, \tag{6}$$

где

$$a_{km} = \sum_{j=1}^{J} \ell_{kj} \ell_{mj} / \left[ C_{j} \delta_{j}(z) \right]^{2} ; \qquad (7)$$

$$R_{k} = \sum_{j=1}^{J} \ell_{kj} z_{j} / \left[ C_{j} \sigma_{j}(z) \right]^{2} .$$
⁽⁸⁾

Для получения ковариационной матрицы  $a_{km}^{-4}$  использовался специально разработанный алгоритм обращения, прототипом которого послужил алгоритм 426 /57, имеющий много общего с методикой, описанной в работе /67. Существенным отличием нашей реализации является четырехкратное сокращение необходимого рабочего поля (основанное на том, что обращаемая матрица является симметричной и положительно определенной), а также принятие мер для оптимизации времени работы алгоритма в случае разреженных матриц.

Вычисления выполнялись с использованием ЭВМ 1010Б, оснащенной системой специализированного математического обеспечения, прототином которого является Basic Fortran-IOIOB /7/. В расчетах применялись ускоренные подпрограммы арифметики с плавающей точкой, имеющие более высокую, чем в работе /7/, точность при неизменнном представлении числа. Под одно вещественное число отводилось 5 байтов, 4 из которых (32 двоичных разряда) использовались для представления мантиссы. Округление методом отбрасывания младних разрядов, переполняющих разрядную сетку, и нормализация результата выполнялись после каждой арифметической операции.

Рабочее поле обращения матрицы 751-го порядка для нашего алгоритма имеет объем около 1,4 Мбайта, что позволяет разместить его на имеющихся магнитных дисках с суммарной емкостью 1,5 Мбайта. Для уменьшения погрешностей округления при вычислениях обратной матрицы применялось специальное упорядочение переменных, благодаря которому среднее число операций над элементом сокращалось примерно в три раза.

Решение системы нормальных уравнений получалось умножением ковариационной матрицы  $a_{km}^{-i}$  на столбец  $R_k$  (8). В этом процессе для повышения точности моделировалась арифметика с фиксированной точкой. Оценка точности соответствия набора полученных решений минимуму величины

$$\chi^{2} = \frac{1}{J-N} \sum_{j=1}^{J} \left( \sum_{i=1}^{N} \ell_{ij} \,\mu_{i} - z_{j} \right)^{2} / \left[ C_{j} \sigma_{j}(z) \right]^{2}$$
(9)

дала для среднего модуля погрешностей вычисленных параметров  $\delta\mu_i$  величину

$$\left[\overline{\delta\mu_i/\delta_i(\mu)}\right] \sim 0.5 \quad , \tag{10}$$

где  $G_i(\mu) = \sqrt{a_{ii}^{-1}}$  - стандартное этклонение *i*-го оцениваемого параметра. В целях дополнительного контроля описанным методом был обработан набор уравнений [1], использованный для получения таблиц [2]. Сравнение контрольных результатов авторов с таблицами работы [2] показало, что согласие между ними намного лучше, чем следует из выражения (10). Поскольку данные о степени точности минимизации  $\chi^2$  при построении таблиц [2] отсутствуют, из этого можно сделать лишь вывод о высокой степени эквивалентности сравниваемых вычислительных процессов.

Для нашего насора данных расчет  $\chi^2$  привел к результату

$$\chi^2 = 0,895,$$
 (11)

поэтому для стандартных отклонений избытков масс коэффициент Бирджа не вводился.

Результати вичислений представлены в таблице. АСМ упорядочены по массовым числам A, а в пределах постоянного A – но заряду Z. В графе N указано число нейтронов в ядре, в графе Z – его заряд. В графе "Атом" представлены массовое число A и химический символ элемента. Данные для графы "масса атома" получены в а.е.м. путем сложения A с вычисленными избытками масс. При сложении принимались меры, предотвращающие потерю младших значащих цифр суммы. Приводимое в этой же графе в скобках стандартное отклонение соответствует  $G_i(\mu)$ , округленному до двух цифр, если эти цифры представляют число, не превышающее 25, или до одной цифры – в других случаях. Всюду стандартные отклонения приведены в единицах младшей цифры соответствующего результата. Графа "..збыток массы" содержит результаты согласования, выраженные в килоэлектронвольтах. Поскольку перевод выполнялся с помощью коэффициента (З), стандартное отклонение для избытков массы вычислялось по закону

$$\tilde{G}_{i}(\mu/K) = \tilde{G}_{i}(\mu)/K \sqrt{\left[\tilde{G}(K)/K\right]^{2} + \left[\tilde{G}_{i}(\mu)/\mu_{i}\right]^{2}} .$$
(I2)

В графе "Энергия связи" представлена величина

$$E_{cb}(A,Z) = Z\mu_{H} + N\mu_{n} - \mu(A,Z),$$
(13)

где энергии связи выражены в килоэлектронвольтах;  $\mu_H$  - избыток массы атома водорода;  $\mu_n$  - избыток массы нейтрона.

В графе "Энергия бета-распада" приводится величина

$$E_{\beta}(\mathbf{A}, \mathbf{Z}) = \boldsymbol{\mu}(\mathbf{A}, \mathbf{Z}) - \boldsymbol{\mu}(\mathbf{A}, \mathbf{Z} + \mathbf{I}).$$
(14)

Положительное значение  $E_{\beta}(A,Z)$  соответствует  $\beta^{-}$ -распаду атома (A,Z) в атом (A,Z+1), отрицательное – разрешенному переходу атома (A, Z+1) в атом (A,Z). Эта величина не могла быть вычислена, если атом (A, Z+1) не входил в набор АСШ, и в таких случаях данная графа оставлена незаполненной. Энергии  $\beta$ -распада выражены в килоэлектронвольтах.

Стандартные отклонения для последних двух граф вычислялись по методу оценки стандартных отклонений для функций случайных величин, описанному, например, в работе /8/. Если

$$E = E(\mu_1, \mu_2, ..., \mu_L),$$
 (15)

то стандартное отклонение

$$\mathcal{O}(E) = \left(\sum_{i=1}^{L} \sum_{j=1}^{L} \frac{\partial E}{\partial \mu_i} \frac{\partial E}{\partial \mu_j} a_{ij}^{-1}\right)^{1/2} .$$
(16)

Величины  $G_i(E/K)$  получены из  $G_i(E)$  по формуле, аналогичной (12).

N	7	Атом	Масса атома, а.е.м.	Избыток массы, кэВ	Энергия связи, коВ	Энергия бета- распада, кэБ	
1	<u>-</u> 0 1	1N0 1H	1,008664912 (19) 1.007825037 (10)	8071,38 (3) 7289,034 (22)	0 (0) 0 (0)	782,345 (16)	
1	1	2H	2.014101783 (20)	13135.83 (4)	2224,5 (16)		
<u>2</u> 1	1	3н 3нг	3.01604927 (3) 3.01602930 (3)	14949,92 (5) 14931,32 (5)	8481,8 (4) 7718,1 (3)	18.604 (10)	
2	2	4HF	4,00260325 (5)	2424,93 (4)	28295,9 (9)		
4 3	2 3	6HF 6L I	6,0188868 (9) 6,0151224 (7)	17593,1 (9) 14086,5 (6)	29270,5 (9) 51994,7 (6)	3506.6 (7)	
4 - 3	5	71. T 78F	7:0160038 (8) 7:0169290 (8)	14907 <u>5</u> (8) 15769,4(8)	39245 <b>,1</b> (8) 37600,8 (8)	=861 <b>s</b> 89 (?)	
6 5 4 3 2	2 3 4 5 6	8HE 8LT 8BE 88 8C	8+033922 (7) 8+0224864 (9) 8+00530513 (11) 8+0246068 (13) 8+03767 (3)	31599       (7)         20946.1       (8)         4941.74       (10)         22921.2       (12)         35093       (24)	31408 (7) 41277,9 (8) 56499,9 (18) 37738,1 (12) 24784 (24)	10653 (7) 16004,4 (8) -17979,5 (12) -12172 (24)	
6 5 3	346	9LI 98F 9C	9,0267893 (21) 9,0121823 (4) 9,031038 (4)	24954.3 (20) 11347.8 (4) 28912 (4)	45341,1 (20) 58165,2 (4) 39036 (4)	13606,5 (19)	
6 5	4 5	108F 108	10,0135343 (4) 10,0129378 (5)	12607 <b>.</b> 2 (4) 12051.6 (5)	64977,2 (4) 64750,4 (5)	555.6 (6)	
8 7 6 5	<b>K</b> 14 14	111 T 118F 118 110	11.04395 (13) 11.021659 (7) 11.0093052 (5) 11.0114333 (10)	40940 (120) 20176 (6) 8667,9 (4) 10650,1 (9)	45500 (120) 65480 (6) 76205.6 (5) 73441.0 (9)	20760 (120) 11508 (6) -1982.3 (8)	

~

Сцененные значения масс и связанных с ними величин для согласованного набора атомов

	*							Π	родолжение та	блицы
N	7 Атом		Масса атома, а.е.м.		Избыток ма кэВ	Избыток массы, кэВ		связи,	Энергия бета- распада, кэВ	
<b>н</b> А	 4	128E	12,026916	(15)	25072	(14)		(14)		(14)
7	5	128	12,0143526	(14)	13369.5	(13)	79575.3	(13)	13369.5	(13)
6	6	120	12.000000	(0)	o	(0)	92162.5	(3)	-17348.0	(10)
5	7	12N	12,0186130	(10)	17338,0	(10)	74042.1	(10)		
7	6	130	13,003354847	(16)	3125.045	(18)	97108.8	(3)	•2220.22	(18)
6	٦ آ	1 3 N	13,00573833	(19)	5345,26	(18)	94106.5	(3)		
8	6	14C	14,003241985	(23)	3019,915	(23)	105285.3	(3)	156.473	(9)
7	7	14N	14,003074006	(22)	2863.441	(22)	104659.5	(3)	+5144.0	(3)
6	8	140	14.0085962	(5)	8007.4	(3)	98733.2	(4)		
Ŗ	7	15N	15.00010896	(4)	101.49	(3)	115492.8	(4)	-2754.0	(7)
7	R	150	15,0030654	(8)	2855.5	(7)	111956,5	(8)	-	-
9	7	16N	16.0060996	(25)	5681,7	(23)	117985.9	(24)	10418.8	(23)
8	Ŗ	160	15.99491463	(4)	-4737.03	(4)	151050*3	(4)		
Q	д	170	16,9991305	(8)	-809,9	(7)	131764,6	(8)	-2761.6	(8)
8	9	17F	17,00209517	(20)	1951,65	(19)	128220,7	(4)		
10	Ą	180	17,9991594	(3)	-783.0	(3)	139809,1	(5)	=1655_6	(6)
9	9	18F	18.0009367	(7)	872.6	(7)	137371,2	(8)	-4447	(4)
8	ta	18NF	18,005710	(5)	5319	(4)	132142	(4)		
i P	7	19N	19,01696	(9)	15790	(90)	132090	(90)	12460	(90)
11	P	190	19,003576	(3)	3331	(3)	143766	(3)	4819	(3)
10	9	19F	18,99840323	(14)	-1487.40	(13)	147802.5	(5)		
11	9	20F	19,9999816	(6)	-17+1	(6)	154403.6	(7)	7025,9	(7)
1.0	10	20NF	19,9924390	(5)	-7043.1	(5)	160647.2	(7)		
13	, A	210	21.00873	(5)	8130	(40)	155110	(40)	8180	(40)
51	9	21F	20,999949	(8)	-47	(7)	162505	(7)	5686	(7)
11	10	21NF	20.9958452	(12)	-5733,2	(11)	167408.7	(12)		

86

..

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(19)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)
101424SI24.011558(23)10767(22)171994(22)151025NE24.99769(10) $-2150$ (90)196110(90)7200(90)141125NA24.989954(7) $-9357$ (7)202536(7)3833131225MG24.9858394(7) $-13190.6$ (6)205586.9(9)151126NA25.992606(24) $-6888$ (23)208138(23)9324141226MG25.9825958(7) $-16212.0$ (7)216679.8(9) $-4004.8$ 131326AL25.9868951(8) $-12207.3$ (7)214950(80)8960161127NA26.99396(8) $-5630$ (A0)214950(80)8960151227MG26.9843429(13) $-14584.6$ (12)223123.7(14)2610.6	(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
14 $11$ $25NA$ $24,989954$ $(7)$ $=9357$ $(7)$ $202536$ $(7)$ $3833$ $13$ $12$ $25MG$ $24,9858394$ $(7)$ $=13190.6$ $(6)$ $205586.9$ $(9)$ $15$ $11$ $26NA$ $25,992606$ $(24)$ $=6888$ $(23)$ $208138$ $(23)$ $9324$ $14$ $12$ $26MG$ $25,9825958$ $(7)$ $=16212.0$ $(7)$ $216679.8$ $(9)$ $=4004.8$ $13$ $13$ $26AL$ $25,9868951$ $(8)$ $=12207.3$ $(7)$ $214950$ $(80)$ $8960$ $16$ $11$ $27NA$ $26,99396$ $(8)$ $=5630$ $(80)$ $214950$ $(80)$ $8960$ $15$ $12$ $27MG$ $26,9843429$ $(13)$ $=14584.6$ $(12)$ $223123.7$ $(14)$ $2610.6$	(100)
1312 $25MG$ $24.9858394$ $(7)$ $=13190.6$ $(6)$ $205586.9$ $(9)$ 1511 $26NA$ $25.992606$ $(24)$ $=6888$ $(23)$ $208138$ $(23)$ $9324$ 1412 $26MG$ $25.9825958$ $(7)$ $=16212.0$ $(7)$ $216679.8$ $(9)$ $=4004.8$ 1313 $26AL$ $25.9868951$ $(8)$ $=12207.3$ $(7)$ $21492.6$ $(10)$ 1611 $27NA$ $26.99396$ $(8)$ $=5630$ $(80)$ $214950$ $(80)$ $8960$ 1512 $27MG$ $26.9843429$ $(13)$ $=14584.6$ $(12)$ $223123.7$ $(14)$ $2610.6$	(7)
1511 $26NA$ $25,992606$ $(24)$ $-6888$ $(23)$ $208138$ $(23)$ $9324$ 1412 $26MG$ $25,9825958$ $(7)$ $-16212,0$ $(7)$ $216679,8$ $(9)$ $-4004,8$ 1313 $26AL$ $25,9868951$ $(8)$ $-12207,3$ $(7)$ $211892,6$ $(10)$ 1611 $27NA$ $26,99396$ $(8)$ $-5630$ $(80)$ $214950$ $(80)$ $8960$ 1512 $27MG$ $26,9843429$ $(13)$ $-14584,6$ $(12)$ $223123,7$ $(14)$ $2610,6$	
141226MG25,9825958 $(7)$ $=16212,0$ $(7)$ $216679,8$ $(9)$ $=4004,8$ 131326AL25,9868951 $(8)$ $=12207,3$ $(7)$ $211892,6$ $(10)$ 161127NA26,99396 $(8)$ $=5630$ $(80)$ $214950$ $(80)$ $8960$ 151227MG26,9843429 $(13)$ $=14584,6$ $(12)$ $223123,7$ $(14)$ $2610,6$	(23)
13       13       25,9868951       (8)       -12207.3       (7)       211892,6       (10)         16       11       27NA       26,99396       (8)       =5630       (80)       214950       (80)       8960         15       12       27MG       26,9843429       (13)       =14584,6       (12)       223123,7       (14)       2610,6	(4)
16 11 27NA 26,99396 (8) *5630 (80) 214950 (80) 8960 15 12 27MG 26,9843429 (13) *14584,6 (12) 223123,7 (14) 2610,6	
15 12 27MG 26,9843429 (13) +14584,6 (12) 223123,7 (14) 2610,6	(80)
	(10)
$14  13  c/AL  26_{*}9815403  (7)  \#17195_{*}3  (6)  cc495c_{*}0  (9)$	
17 11 28NA 27,99879 (13) =1130 (120) 218520 (120)	
14 14 28 <u>51</u> 27,9769279 (6) =21491.7 (6) 236537.5 (9)	
18 11 29NA 29,00286 (16) 2660 (150) 222800 (150) 13310 (	160)
17 12 29MG 28,98857 (6) =10650 (50) 235330 (50) 7560	(50)
16 13 29AL 28,980448 (6) -18213 (5) 242113 (5) 3681	(5)
15 14 29ST 28,9764961 (7) -21893,9 (6) 245011,1 (10)	
19 11 30NA 30.0090 (3) 8400 (300) 225200 (300)	
16 14 30ST 29,9737713 (7) =24432,1 (6) 255620,6 (10) =4227	(3)
15 15 30P 29,978309 (3) -20205 (3) 250611 (3)	
16 15 31P 30.9737628 (6) +24440.0 (6) 262917.5 (10) +5395.1	(16)
15 16 315 30,9795547 (17) $-19044$ ,8 (16) 256740,1 (18)	
17 15 32P 31,9739073 (8) -24305,4 (7) 270854,4 (11) 1710,4	(6)
16 16 325 31,9720711 (5) =26015,8 (5) 271782,5 (10) =12687	(6)
15 17 32CL 31,985691 (7) =13329 (7) 258313 (7)	

.

Продолжение таблицы

N.	7	Атом	Массэ атома, а.е.м.		Избыток м кэБ	ассы,	Энергия ( кэВ	Энергия связи, кэВ		бета- кэВ
17	16	335	32.9714591	(5)	-26585,9	(5)	280423.9	(10)		
19	15	34P	34.973632	(9)	-24562	(9)	287253	(9)	5370	(9)
18	16	545	33,9678679	(3)	=29931.1	(3)	291840 5	(9)	-5492.3	(3)
17	17	3401	33,9737641	(4)	-24438.8	(4)	285565 8	(10)		
19	16	358	34,96903255	(21)	=28846,23	(21)	298827.0	(9)	167.49	(18)
18	17	\$5CL	34,96885274	(6)	-29013.72	(10)	298515-1	(9)		
20	16	565	35,9670790	(16)	=30665,9	(15)	308718.1	(18)	-1144.0	(15)
19	17	3601	35,96830711	(8)	-29521,98	(11)	306791,8	(10)	709,4	(3)
18	18	36AR	35,9675456	(3)	-30231.3	(3)	306718,8	(10)	-12806	(8)
17	10	36K	35,981293	(9)	-17426	(8)	293131	(8)	-10980	(40)
16	20	360 4	35,99308	(4)	-6450	(40)	281370	(40)		
21	16	375	36,971133	(17)	-26889	(16)	313013	(16)	4872	(16)
20	17	3701	36.96590257	(9)	-31761.81	(12)	317103.0	(10)	<b>#813,9</b>	(5)
19	18	37 AP	36,9667763	(6)	-30948.0	(5)	315506 8	(11)	-6148.5	(15)
18	19	37K	36,9733769	(15)	-24799.4	(14)	308575.9	(17)		
20	18	38AR	37.9627321	(8)	-34715.1	(8)	327345.3	(13)	-5912.7	(7)
19	19	SAK	37,9690797	(10)	-28802.3	(10)	320650.2	(14)		
22	17	3901	38,968006	(20)	-29805	(18)	331287	(18)	3438	(18)
21	18	59AR	38,964315	(5)	- 53241	(5)	333942	(5)	565	(5)
20	19	39K	38.9637077	(8)	= 53806, 3	(8)	333725.5	(13)	-6530.8	(18)
19	20	390 /	38,9707188	(21)	-27275,5	(19)	326412.4	(22)		
22	18	40AR	39,9623829	(7)	-35040.4	(7)	343813.3	(13)	-1505-0	(6)
21	19	40K	39,9639986	(8)	-33535.4	(8)	341526 0	(13)	1311.7	(5)
20	20	40CA	39 9625904	(9)	-34847.1	(8)	342055.4	(13)	- •	

	23	1.8	41 A R	40,9645005	(10)	-33067,9	(9)	349912.2	(14)	2492.0	(8)
	22	19	41K	40,9618253	(9)	-35559 8	(8)	351621.8	(13)	-421.4	(4)
	21	20	41CA	40,9622777	(9)	-35138.4	(8)	350418,0	(13)		
	23	19	42K	41,9624015	(13)	-35023.1	(12)	359156.4	(16)	3522.0	(15)
	22	20	42CA	41,9586205	(14)	-38545.0	(13)	361896.1	(17)	-6423.6	(4)
	51	21	4250	41.9655165	(15)	-32121.4	(14)	354690 1	(17)		
	23	2.0	4364	42.9587691	(14)	-38406.7	(13)	369829.1	(17)	-2250-5	(19)
	22	21	43SC	42.9611529	(25)	-36186.2	(23)	366826	(3)	-6866	(7)
	21	25	43TT	42.968523	(7)	-29320	(7)	359178	(7)		
	24	2 n	4 4 C A	43,9554832	(14)	-41467.5	(13)	380961.3	(17)	-3655.5	(20)
	23	21	445C	43.9594075	(25)	- 57812.0	(23)	376523	(3)	-265	(4)
	22	25	44TT	43,959692	(3)	-37547	(3)	375476	(3)		i i
	25	20	45CA	44,9561881	(14)	-40810.9	(13)	388376.1	(17)	257.5	(9)
	24	21	45SC	44,9559116	(12)	-41068,4	(12)	387851.2	(17)		
	26	20	46CA	45,953689	(4)	-43139	(4)	398775	(4)	-1381	(4)
÷,	25	21	46SC	45.9551718	(13)	<b>-</b> 41757 <b>.</b> 5	(13)	396611.7	(17)	2367.3	(8)
	24	22	46TT	45.9526304	(12)	-44124.9	(11)	398196.7	(16)	-7050.9	(5)
	23	23	46V	45.9601997	(13)	-37074.0	(12)	390363.5	(17)		
	27	20	47CA	46.954543	(4)	-42344	(4)	406052	(4)	1988	(4)
	26	21	47SC	46,9524085	(55)	-44531.6	(21)	407257.2	(24)	600.6	(19)
	25	22	4711	46.9517637	(9)	-44932.2	(9)	407075.4	(15)	-2928.9	(14)
	24	23	4 <b>7</b> V	46,9549081	(16)	-42003,2	(15)	403364.1	(19)		
	28	20	48CA	47,952532	(4)	-44216	(4)	415995	(4)	281	(7)
	27	21	488C	47.952231	(7)	-44497	(6)	415494	(6)	3990	(6)
	26	52	481T	47,9479473	(9)	-48487.1	(9)	418701.7	(16)	-4015	(3)
	25	22	48V	47.952257	(3)	-44472	(3)	413905	(3)	-1653	(8)
	24	24	48CP	47.954032	(8)	-42819	(7)	411469	(8)		
	28	1 ج	495C	48.950022	(4)	-46554	(4)	425623	(4)	2003	(4)
	27	55	4911	48,9478714	(9)	=48557 <b>.</b> 9	(9)	426843.9	(16)	-601.8	(8)
	26	23	49V	48,9485174	(13)	-47956.1	(12)	425459.8	(18)	-5959	(3)
	25	24	4968	48,951337	(3)	-45329.8	(25)	422051	(3)	-7717	(17)
	24	25	49MN	48,959621	(19)	-37613	(17)	413552	(17)		
									- 10		

## Продолжение таблицы

÷

N	7	Атом	Macca атома, а.е.м.		Избыток і кэВ	массы,	Энергия кэВ	связи,	Энергия бета- распада, кэВ		
	~~~~~	5011		(9)	-51/126 1	(9)	127783 5	(16)	-2205 5	. (13)	
20	22	507	49 9471599	(13)	= 49220 6	(12)	437705.6	(18)	1038 3	(21)	
26	2 /	5000	49 9460453	(14)	+50258 9	(13)	435051 6	(19)	-7632.0	(4)	
25	25	50 MN	49,9542385	(14)	-42626,9	(13)	426637.3	(19)	, , , , , ,		
29	22	5177	50,9466161	(13)	-49727.1	(13)	444155.9	(19)	2473.5	(16)	
28	23	51V	50,9439608	(13)	-52200.6	(12)	445847.0	(18)	-751.5	(9)	
27	24	51CR	50 9447675	(14)	-51449.1	(13)	444313.2	(19)	-3208.5	(3)	
26	25	51 MN	50,9482119	(14)	-48240.7	(13)	440322,4	(19)	-		
29	23	52v	51,9447768	(17)	-51440.5	(16)	453158.3	(21)	3975.9	(15)	
85	24	52 <u>0</u> R	51,9405086	(13)	-55416.4	(12)	456351.8	(19)	-4711,4	(21)	
27	25	SPMN	51 9455664	(25)	-50705.0	(23)	450858	(3)			
29	24	53CR	52,9406503	(13)	-55284.4	(12)	464291,2	(19)	-595.6	(9)	
58	25	53MN	52,9412897	(14)	-54688.7	(13)	462913.2	(20)			
30	24	54CR	53,9388816	(13)	-56931.8	(12)	474010.0	(19)			
58	26	S4FF	53,9396113	(13)	-56252,1	(12)	471765.6	(19)	-8242.0	(5)	
27	27	5400	53,9484594	(14)	-48010.2	(13)	462741.3	(19)			
30	25	55MN	54,9380462	(13)	-57710.1	(12)	482077.3	(19)	-231,5	(6)	
50	56	55FF	54,9382947	(13)	-57478,6	(12)	481063,5	(19)	=3450.9	(6)	
58	27	5500	54,9419994	(14)	-54027.6	(13)	476830,2	(19)			
30	26	56FF	55.9349375	(13)	-60605.8	(12)	492262.1	(20)	-4567.5	(19)	
29	27	5600	55,9398409	(24)	-56038.3	(23)	486912	(3)	-2135	(11)	
ŽΡ	2 R	56NI	55,942133	(12)	-53904	(11)	483995	(11)			
32	25	57MN	56.938284	(4)	-57488	(3)	497998	(4)	2695	(3)	
31	26	57FF	56,9353941	(13)	+60180.5	(12)	499908.1	(20)	-836.2	(5)	
30	27	5700	56 9362918	(13)	-59344 2	(13)	498289,5	(20)			

	32	56	58FF	57,9332758	(13)	-62153.7	(12)	509952.7	(20)	-2307.5	(12)
	31	27	5800	57 9357530	(17)	-59846 1	(16)	506862.8	(22)	380.9	(12)
	30	28	58NT	57,9353442	(14)	-60227.0	(13)	506461.3	(20)	•	
	34	25	59MN	58,94044	(5)	-55480	(30)	512130	(30)	5180	(30)
	33	56	59FE	58,9348760	(16)	-60663.1	(15)	516533,5	(22)	1565.5	(11)
	32	27	5900	58,9331954	(13)	+65559 . 6	(12)	517316.7	(20)	-1073.1	(6)
	31	85	59NI	58,9343474	(13)	=61155_5	(13)	515461.2	(50)	•	
	34	56	60FF	59,934074	(4)	-61410	(4)	525352	(4)	239	(4)
	33	27	6000	59,9338177	(13)	=61648,9	(12)	524808,3	(20)	2823.63	(11)
	32	2 H	60NI	59,9307864	(13)	-64472,5	(12)	526849.6	(20)		
	33	28	61NT	60.9310560	(13)	=64221.5	(13)	-534669,9	(21)	-2238.4	(14)
	32	29	61CU	60,9334590	(18)	-61983 1	(16)	531649,2	(23)	-5636	(16)
	31	30	61 Z N	60,939509	(17)	=56348	(16)	525231	(16)		
	34	28	62NT	61,9283439	(13)	-66747.8	(12)	545267.7	(21)	= 3949	(5)
	33	59	6500	61,932583	(5)	•62799	(5)	540537	(5)		
4	36	27	6300	62,933599	(20)	+61853	(19)	549227	(19)	3662	(19)
S	35	28	63NI	62,9296672	(13)	= 65515,1	(12)	552106,3	(21)	65.89	(20)
	34	29	63CU	62 9295965	(13)	-65581.0	(12)	551389,9	(21)	-3367.4	(17)
	33	30	63ZN	62,9332115	(21)	-62213.6	(20)	547240	(3)		
	36	28	64NT	63,9279653	(14)	-67100.4	(13)	561763.0	(21)	-1674.9	(8)
	35	59	64CU	63,9297633	(15)	+65425.6	(14)	559305,8	(22)	578.0	(14)
	34	30	64ZN	63,9291428	(17)	=66003.6	(16)	559101.5	(23)		
	36	29	65Cu	64,9277898	(18)	-67263,9	(17)	569215.6	(24)	=1352.0	(11)
	35	3.0	657N	64,9292413	(17)	=65911,9	(16)	567081.2	(24)		
	38	28	66N I	65,929122	(21)	-66023	(19)	576829	(19)	236	(19)
•	37	29	66CH	65,9288684	(20)	-66259,2	(19)	576282	(3)	2642.2	(17)
	36	30	66ZN	65,9260319	(14)	-68901.4	(13)	578142.1	(55)		
	39	28	67NT	66,931573	(17)	-63740	(16)	582617	(16)	3570	(17)
	38	59	67CU	66,927741	(8)	=67310	(8)	585404	(8)	573	(8)
	57	3 n	67ZN	66,9271254	(14)	~ 67882 . 8	(13)	585194.9	(22)	-1002,1	(13)
	36	31	67GA	66,9282011	(17)	-66880,8	(16)	583410.5	(24)	-4555	(5)
	35	32	67GE	66,932733	(5)	-62659	(5)	578406	(5)		

,

Продолжение таблицы

N	7	Атом	Масса ато а.е.м.	ма,	Избыток кэЕ	массы,	Энергия кэ]	связи, З	Энергия распада	бета- , кэВ
38	30	68ZN	67.9248421	(15)	-70009.7	(14)	595393.1	(23)		
36	32	68GE	67,928103	(14)	-66972	(13)	590791	(13)		
39	30	697N	68,9265482	(16)	-68420.5	(15)	601875.3	(23)	904.7	(25)
38	31	69GA	68,925577	(3)	- 69325 , 1	(24)	601998	(3)	-2225,2	(25)
37	32	69GF	68,927966	(4)	-67100	(3)	598990	(4)	-4020	(30)
36	33	6945	68,93228	(3)	-63080	(30)	594190	(30)	-6800	(40)
35	34	69SE	68,93957	(4)	-56290	(40)	586610	(40)		
40	30	70ZN	69,925321	(3)	- 69564	(3)	611090	(3)	-655,0	(15)
39	31	70GA	69.926024	(3)	-68908,9	(25)	609653	(3)	1654	(3)
38	32	70GF	69,9242485	(17)	-70562.6	(16)	610524.1	(25)		
41	30	712N	70,927721	(11)	-67328	(10)	616925	(10)	2814	(10)
40	31	71GA	70,9247002	(23)	-70141,9	(22)	618957	(3)	-235.1	(17)
39	32	71GE	70,9249526	(20)	-69906,8	(18)	617940	(3)	=2012	(4)
38	33	71AS	70.927113	(5)	+67894	(4)	615145	(5)		
42	30	7.2.Z.N	71,926855	(7)	-68134	(6)	625803	(6)	45 7	(6)
41	31	72GA	71.9263646	(25)	-68591.5	(24)	625478	(3)	3993	(3)
40	32	72GE	71,9220779	(18)	-72584.5	(17)	628689	(3)		
3 B	34	725F	71.927106	(13)	-67900	(12)	622440	(12)		
41	32	73GE	72,9234615	(17)	-71295.7	(16)	635471.4	(25)	-345	(4)
40	33	7345	72,923832	(4)	-70951	(4)	634344	(4)	-2740	(10)
39	34	7 3 S F	72.926773	(12)	+68211	(11)	630822	(11)	-4530	(220)
38	35	73BR	72.93164	(24)	-63680	(550)	625510	(052)	-6690	(055)
37	36	73KR	72.93882	(15)	-56980	(140)	618030	(140)		
42	32	74GF	73,9211762	(17)	-73424-5	(16)	645671-5	(25)	- 2561-7	(18)
41	37	74AS	73,9239263	(24)	-70862-8	(22)	642327	(3)	1355-9	(25)
40	34	745F	73,9224707	(21)	-72218.7	(20)	642901	(3)	• • • • • • •	(

\$

42	33	75AS	74,9215892	(15)	-73039.8	(14)	652575.8	(24)	+864.9	(10)
41	34	758E	74,9225177	(17)	-72174.9	(16)	650929	(3)	•	
44	32	76GF	75,9213999	(23)	-73216.1	(22)	661606	(3)	-919.7	(24)
43	33	76AS	75,9223872	(16)	-72296.5	(15)	659904	(3)	2968.7	(16)
42	34	765F	75,9192002	(19)	=75265.2	(18)	662090	(3)		
39	37	76RB	75,9349	(3)	-60600	(300)	645100	(300)		
44	33	77AS	76.920646	(4)	-73919	(3)	669597	(4)	693	(4)
43	34	775F	76,9199019	(19)	-74611.5	(18)	669508	(3)	+1365	(3)
42	35	778R	76,921367	(4)	-73247	(3)	667361	(4)	-3010	(30)
41	36	77KR	76 92459	(3)	-70240	(30)	663570	(30)	-5130	(120)
40	37	77RB	76,93010	(13)	-65110	(120)	657660	(120)		
46	32	78GE	77,922852	(6)	-71863	(5)	676396	(6)	964	(10)
45	33	78AS	77 921817	(10)	- 72828	(9)	676578	(10)	4209	(9)
44	34	785E	77,9172984	(20)	-77036.7	(18)	680005	(3)		
42	36	78KR	77.920393	(4)	-74154	(4)	675558	(5)	-7060	(180)
41	37	7888	77,92798	(19)	-67090	(180)	667710	(180)		
45	34	795E	78,918491	(4)	-75926	(3)	686965	(4)	157	(4)
44	35	798R	78,9183219	(24)	-76083.3	(55)	686340	(3)		
46	34	80 SE	79,9165035	(25)	•77777.1	(23)	696888	(3)	-1872.9	(19)
45	35	80BR	79,9185141	(24)	-75904.2	(22)	694232	(3)	1992	(6)
44	36	BOKR	79,916376	(7)	-77896	(6)	695442	(6)		
46	35	818P	80,916290	(3)	-77976	(3)	704375	(3)		.•
4 B	34	825F	81,916696	(4)	-77598	(3)	712851	(4)	-100	(4)
47	35	82HR	81,916804	(3)	-77497	(3)	711968	(3)	3093.4	(14)
46	36	82KR	81,913483	(3)	-80591	(3)	714279	(4)		
49	30	83SF	82,919115	(5)	-75344	(5)	718669	(5)	3670	(15)
48	3 5	838R	82,915175	(15)	-79015	(14)	721557	(14)	968	(14)
47	36	83KR	82.914135	(3)	-74983	(3)	721743	(4)		
50	3 4	84SF	83.918462	(16)	-75953	(15)	727349	(15)	1810	(50)
49	35	8488	83,91652	(3)	-77760	(30)	728380	(30)	4670	(30)
48	36	84KR	83,911507	(3)	-82431	(3)	732263	(3)	-2680	(3)
47	37	84 8 8	83,914384	(4)	-79752	(3)	728801	(4)	891	(3)
46	38	84SP	R3,913427	(4)	-80643	(4)	728910	(4)		

•

.

45

•

•

	N	1	Атом	Macca at a.e.m	Macca atoma, a.e.m.		Избыток массы, кэВ		Энергия связи, кэВ		Энергия бета- распада, кэВ	
	49	 36	85KR	84,912532	(4)	+81477	(3)	739380	(4)	687.3	(20)	
	4R 47	37 38	8588 8588	84,911794 84,912938	(3) (7)	-82164 -81098	(3) (7)	739285 737436	(4) (7)	=1066	(7)	
	50	36	86KR	85,910615	(5)	-83262	(4)	749236	(5)	+519	(5)	
	49 48	37 38	86RR 865r	85,911172 85,909267	(3) (3)	-82743 -84518	(3) (3)	747935 748928	(4) (3)	1775.2	(19)	
	51	36	87KR	86,913359	(5)	-80706	(4)	754752	(5)	3897	(4)	
	50 49	37 38	87RB 675R	86 , 909176 86,908883	(3) (3)	-84603 -84875	(3) (3)	757866 757356	(4) (3)	272 . 3 =1861 . 3	(18) (14)	
•	48 47	39 40	87Y 877R	86,910881 86,914815	(3) (9)	-83014 -79350	(3) (8)	754713 750266	(4) (9)	- 3664	(9)	
	52	36	BBKR	87,914452	(15)	-79688	(14)	761805	(14)	2913	(14)	
	51 50	37 38	8888 8858	47,911325 87,905618	(4) (3)	-82601 -87917	(4)	763935 768469	(5) (4)	5316 =3621	(3) (3)	
	49	39	88 <u>Y</u>	87,909505	(5)	-84296	(4)	764066	(5)			
	51 50	38 39	895R 897	88,907450 88,905848	(4)	-86210 -87703	(4)	774834 775544	(5)	1492	(3) (22)	
	49 48	40	892R 89NR	88,908893 88,913448	(3)	-84866 -80624	(3)	771925	(4)	-4243	(19)	
	51	39	90Y	89,907152	(4)	-86488	(3)	782401	(4)	2283.1	(25)	
	50	40	907R	89,904701	(3)	-88771	(3)	783902	(4)	•	••	
	51 50	40 41	91 <u>7</u> R 91NA	90°905639 90°906987	(3) (4)	-87897 -86642	(3) (4)	791099 789061	(4) (4)	●1255 ●4440	(5) (13)	
	49	42	91MO	90,911754	(13)	-85505	(12)	783839	(13)			

£6

53	39	92Y	91,908935	(17)	-84827	(16)	796882	(16)	3634	(16)
52	40	927R	91,905035	(3)	-88460.5	(25)	799734	(4)	-2006.3	(17)
51	41	92NB	91,907188	(3)	=86454	(3)	796945	(4)	355	(4)
50	42	9200	91,906807	(4)	-86809	(4)	796518	(4)		
53	40	932R	92.906471	(3)	-87122.3	(25)	806467	(4)	89.8	(16)
52	41	93NB	92,906375	(3)	+87212	(3)	805774	(4)	-408	(3)
51	42	93M0	92,906812	(4)	- 86805	(4)	804584	(4)	= 3193	(3)
50	43	93TC	92,910240	(5)	-83612	(5)	800609	(5)		
55	39	944	93.911595	(6)	-82349	(6)	810548	(6)	4920	.(5)
54	40	947R	93,906313	(3)	-87270	(3)	814686	(4)	-899.8	(23)
53	41	94NB	93,907279	(3)	-86370	(3)	813004	(4)	2044.5	(23)
52.	42	94M0	93,905084	(3)	-88414.7	(25)	814266	(4)		•
55	40	95,7R	94,908039	(3)	~8 5661	(3)	821149	(4)	1123.5	(23)
54	41	95NB	94,9068333	(23)	-86784.9	(22)	821490	(3)	925.6	(5)
53	42	95M0	94,9058397	(23)	-87710.5	(22)	821633	(3)	=1699	(7)
52	43	95TC	94.907664	(8)	-86011	(8)	819151	(8)	-2560	(14)
51	44	95RU	94.910412	(13)	-83451	(12)	815809	(12)		
56	40	967R	95,908273	(3)	-85444	(3)	829002	(4)		
54	42	96M0	95,9046772	(23)	-88793,4	(21)	830787	(3)		
52	44	96RU	95,907596	(9)	-86074	(9)	826504	(9)		
57	40	97 <u>7</u> R	96,910949	(3)	-82951	(3)	834581	(4)	2658.1	(19)
56	41	97NB	96,908096	(3)	-85609	(3)	836457	(4)	1933.6	(19)
55	42	97MA	96,9060198	(23)	-87542,7	(21)	837608	(3)	- 320	(4)
54	43	97TC	96,906363	(5)	-87223	(5)	836506	(5)	-1108	(10)
53	44	97RU	96.907553	(10)	-86115	(9)	834615	(9)		
56	42	98M0	97,9054067	(23)	-88113.8	(21)	846250	(3)	-1686	(4)
55	43	98TC	97,907217	(5)	-86428	(5)	843782	(5)	1797	(8)
54	44	98RU	97.905287	(7)	-88225	(6)	844797	(7)		
57	47	99M0	98,9077107	(23)	-85967,7	(22)	852176	(3)	1356.9	(10)
56	43	99 T C	98,9062540	(24)	-87324.6	(23)	852750	(3)	293.6	(18)
55	44	99RU	98.905939	(3)	+87618,2	(24)	852262	(4)		
58	42	100M0	99,907474	(6)	-86188	(6)	860468	(7)		
56	44	100RU	99,904219	(3)	-89220.0	(24)	861935	(4)		

.

		• • • • • •						Прод	олжение таб.	лицы
N	7	Атом	Macca ato a.e.m	ома,	Избыток массы, кэВ		Энергия связи, кэВ		Энергия бета- распада, кэВ	
59 58 57	42 43 44	101M0 101TC 101RU	100,910343 100,90733 100,905581	(7) (5) (3)	-83515 -86326 -87952	(6) (24) (3)	865866 867895 868738	(7) (24) (4)	2811 1625	(24) (24)
58 57 56	44 45 46	102RI) 102RH 102PD	101,904348 101,906841 101,905608	(3) (7) (7)	-89100 -86777 -87926	(3) (6) (7)	877958 874853 875219	(4) (7) (7)	-2323 1149	(6) (5)
59 58 57 56	44 45 46 47 48	103RU 103RH 103PD 103AG	102,906322 102,905504 102,906088 102,90896	(3) (4) (8) (5) (11)	-87261 -88023 -87479 -84800 -80624	(3) (4) (7) (50) (10)	884190 884170 882843 879380 874423	(4) (5) (8) (50)	762 -544 -2680 -4180	(3) (8) (50) (50)
60 59 58	44 45 46	104RU 104RH 104RH	103,905420 103,906654 103,904022	(5) (4) (3)	-88102 -86952 -89403	(5) (4) (3)	893102 891170 892839	(5) (5) (4)	=1150 2452	(6) (5)
61 60 59 58 57	44 45 46 47 48	105RU 105RH 105PD 105AG 105CD	104,907740 104,905681 104,905072 104,906517 104,909457	(5) (4) (3) (10) (11)	-85940 *87859 *88426 -87080 *84341	(5) (4) (3) (9) (10)	899012 900148 899933 897804 894283	(5) (5) (4) (9) (10)	1918 567 =1346 =2739	(4) (3) (9) (5)
62 61 60 59 58	445 45 47 48	106RU 106RH 106PD 106AG 106CD	105,907315 105,907273 105,903472 105,906665 105,906458	(10) (10) (3) (5) (6)	≠86336 ≈86375 ≈89916 ≈86941 ≈87135	(9) (9) (3) (5) (5)	907479 906736 909494 905737 905149	(10) (10) (4) (5) (6)	39,4 3541 -2974 193	(3) (9) (4) (7)
61 60	46 47	107PD 107AG	106,905124	(5)	-88377 -88410	(5) (4)	916026 915277	(6) (5)	33	(3)

62	46	108PD	107,903893	(3)	-89524	(3)	925245	(4)	-1916	(5)
61	47	108AG	107,905950	(4)	-87608	(4)	922546	(5)	1641	(6)
60	48	10800	107,904189	(5)	-89248	(5)	923405	(5)	• • •	• • •
63	46	10900	108,905951	(3)	-87607	(3)	931399	(4)	1116.7	(19)
56	47	109AG	108,904752	(3)	-88723.5	(24)	931734	(4)	-183	(3)
61	48	10900	108,904949	(4)	=88540	(4)	930768	(5)	-2024	(7)
60	49	1091N	108,907122	(8)	-86516	(7)	927962	(8)		
6/1	46	11000	109,905171	(7)	-88334	(7)	940197	(8)	-875	(7)
63	47	110AG	109,906111	(3)	-87458.2	(24)	938540	(4)	2894.5	(18)
62	4 H	11000	109,9030032	(24)	-90352.7	(22)	940652	(4)	•	
63	4 p	11100	110,9041802	(25)	-89256,3	(24)	947627	(4)	-830	(8)
62	49	111TN	110,905071	(8)	-88426	(8)	946015	(8)	-2478	(10)
61	50	1115N	110,907731	(8)	-85949	(7)	942755	(8)		-
66	46	112PD	111.907326	(21)	-86326	(20)	954332	(20)	294	(19)
65	47	112AG	111,90701	(3)	-86620	(25)	953844	(25)	5963	(25)
64	4 A	11200	111,9027569	(22)	-90582,1	(21)	957024	(4)	-2575	(7)
63	49	112TN	111.905521	(7)	-88007	(7)	953667	(8)	659	(6)
62	50	11251	111,904814	(5)	-88666	(5)	953543	(5)		
65	4 14	11300	112,9043984	(21)	-89053.0	(20)	963566	(4)	329	(4)
64	49	1131N	112,904045	(3)	-89382	(3)	963113	(4)	-1042	(4)
63	50	1135N	112,905164	(4)	-88340	(4)	961289	(5)	-3890	(30)
62	51	113SH	112.90934	(3)	-84450	(30)	956620	(30)		
66	48	114rn	115,9053571	(19)	-90023.0	(18)	972608	(4)	-1438	(3)
<u>۴</u> 5	49	1141N	115,904901	(3)	-88585	(3)	970387	(4)	1982.2	(25)
6.4	י ח	114SN	113.902773	(3)	-90567	(3)	971587	(4)		
67	4 P	11500	114.905414	(5)	-88107	(4)	978763	(5)	1447.8	(26)
66	49	11510	114,903859	(4)	-89555	(4)	979429	(5)	486	(4)
ት ^ኬ	5 r	115SN	114,905338	(3)	. = 90041	(3)	979132	(4)		
6.8	48	11600	115.9047539	(24)	-88721.9	(22)	987449	(4)	-454	(5)
67	4 G	11616	115,905241	(4)	-88268	(4)	986213	(5)	3263 .	(4)
56	5 n	11656	115,901738	(3)	-91531	(5)	988694	(4)		

.

		_										
Ni	7	Атом	Масса атома, а.е.м.		Избыток кэ]	Избыток массы, кэВ		Энер гия связи, кэВ		Энергия бета- распада, кэВ		
69	48 48	117CD	116.907225	(14)	-86420	(13)	993219	(14)	2528	(14)		
68 67	49 50	117[N 1175N	116,904511 116,902949	(9) (3)	-88949 -90404	(8) (3)	994965 995638	(9) (4)	1455	(8)		
68	50	1185N	117,901602	(3)	~9165 8	(3)	1004963	(4)				
69	50	1195N	118,903306	(3)	-90071	(3)	1011448	(4)				
70	50	120SN	119,902195	(3)	-91105	(5)	1020554	(4)	=2681	(7)		
69	51	120SB	119,905073	(8)	-88425	(8)	1017090	(8)	951	(20)		
68	52	120TE	119,904052	(20)	-89376	(19)	1017259	(19)	•			
72	49	1211N	120,907862	(24)	-85826	(22)	1024128	(22)	3379	(22)		
71	50	1215N	120,904235	(3)	#89205	(3)	1026725	(5)	386.0	(25)		
70	51	1215B	120,903821	(3)	-89591	(3)	1026329	(5)	-1066	(14)		
69	52	121 TE	120,904964	(16)	-88526	(15)	1024481	(15)	-2267	(22)		
68	53	1511	120,907398	(21)	+86259	(19)	1021431	(19)				
72	50	1225N	121.903437	(4)	-89949	(4)	1035540	(5)	=1623	(3)		
71	51	122SB	121,905179	(4)	-88326	(3)	1033135	(5)	1981	(4)		
70	52	1551E	121,903053	(5)	-90307	(4)	1034333	(5)				
74	49	1231N	122.91044	(3)	-83421	(24)	1037866	(24)	4403	(24)		
73	50	1235N	122,905718	(4)	-87824	(4)	1041486	(5)	1396	(4)		
72	51	123SH	122,904219	(4)	-89550	(3)	1042100	(5)	-52.3	(23)		
71	52	1231E	122,904276	(4)	-89167	(4)	1041265	(5)	-1230	(4)		
70	53	1231	122,905596	(6)	-87938	(5)	1039253	(6)				
74	50	1245N	123,905268	(5)	-88243	(5)	1049976	(6)	-627	(5)		
73	51	1245B	123,905942	(4)	-87616	(3)	1048567	(5)	2904.8	(18)		
72	52	124TE	123,902823	(4)	-90520	(4)	1050689	(5)	-			
70	54	124XF	123,90612	(15)	-87450	(140)	1046050	(140)		•		

Продолжение таблицы

	75	50	1255N	124,907779	(6)	-85904	(5)	1055709	(6)	2348	(6)
	74	51	12558	124,905258	(5)	+88253	(4)	1057275	(5)	766.8	(20)
	73	52	1251F	124.904434	(4)	-89019	(4)	1057260	(5)	+177.8	(18)
	72	53	1251	124 904625	(4)	-88842	(4)	1056300	(5)		•
	74	52	126TE	125,903310	(4)	-90067	(4)	1066379	(5)	-2156	(5)
	73	53	1591	125,905624	(7)	-87911	(6)	1063441	(7)		
	75	52	127TE	126.905222	(5)	-88286	(5)	1072669	(6)	696	(4)
	74	53	1271	126,904475	(5)	-88981	(4)	1072582	(5)		
	76	52	128TF	127.904463	(4)	-88993	(4)	1081447	(5)	-1257	(5)
	75	53	1281	127,905813	(5)	- 87736	(4)	1079408	(5)	2125	(4)
	74	54	12AXE	127,9035308	(17)	-89861.2	(16)	1080751	(4)		
	78	51	12958	128,909146	(23)	-84631	(22)	1085939	(22)	2377	(21)
	77	52	29TF	128 906595	(5)	-87007	(4)	1087533	(6)	1498	(4)
	76	53	1291	128,904986	(5)	#88505	(4)	1088249	(6)	192	(4)
	75	54	129XE	128,9047801	(51)	-88697.5	(20)	1087659	(4)		
	78	52	130TE	129,906228	(5)	-87349	(5)	1095946	(6)		
5	76	54	130 XE	129,9035095	(17)	=89881.1	(16)	1096914	(4)	-3020	(11)
	75	55	13005	129,906752	(12)	= 86861	(11)	1093111	(11)	441	(4)
	74	56	130BA	129,906278	(11)	-87302	(11)	1092770	(11)	Ne de la companya de Ne de la companya de l	
	79	52	131 TE	130,908533	(5)	-85202	(5)	1101871	(6)	2250	(6)
	78	53	131T	130,906117	(5)	-87452	(5)	1103338	(6)	970,8	(6)
	77	54	131 XE	130,905075	(5)	+88423	(5)	1103527	(6)	-353	(6)
	76	55	13105	130,905454	(8)	-88070	(7)	1102391	(8)	-1358	(13)
	75	56	131BA	130,906912	(14)	-86712	(13)	1100251	(13)		
	78	54	132XE	131.904147	(5)	-89287	(5)	1112463	(6)	-2109	(23)
	77	55	13205	131,906411	(24)	-87178	(23)	1109571	(23)	1278	(24)
	76	56	1328A	131,905039	(10)	-88456	(9)	1110067	(10)		
	78	55	13305	132,905427	(8)	-88095	(7)	1118560	(8)	- 521	(3)
	77	56	133BA	132,905985	(8)	-87575	(8)	1117257	(9)		
	80	54	134XE	133,905395	(8)	-88125	(7)	1127443	(8)	-1209	(10)
	79	55	13405	133,906693	(8)	-86915	(7)	1125451	(8)	2058.5	(4)
	78	56	134BA	133,904484	(8)	-88974	(7)	1126727	(8)		

Продолжение таблицы

.

N 7		Атом Масса атома, а.е.м.		Избыток кэВ	Избыток массы, кэВ		Эпергия связи, кэВ		бета- кэВ	
82		1351	134-91004	(3)	+83800	(30)	1141970	(30)	2710	(30)
81	54	135XF	134,907126	(12)	-86512	(11)	1133902	(12)	1160	(9)
80	55	13505	134,905881	(8)	-87672	(8)	1134279	(9)	205	(5)
79	56	1358A	134,905661	(7)	-87877	(6)	1133702	(7)		
82	54	136 X F	135,907219	(7)	-86426	(7)	1141887	(8)		
80	56	136BA	135,904549	(7)	88913	(6)	1142809	(7)		
7 A	58	136CF	135,90713	(5)	* 86500	(40)	1138840	(40)		
83	54	137 XE	136,911562	(7)	+82380	(7)	1145912	(8)	4188	(9)
82	55	13705	136,907067	(6)	+86567	(6)	1149317	(7)	1173.5	(9)
81	56	137HA	136,905807	(6)	-87741	(6)	1149709	(7)		
82	56	138BA	137,905227	(6)	-88281	(6)	1158320	(7)	-1747	(5)
в1	57	138LA	137,907103	(5)	-86534	(5)	1155791	(6)	1041	(12)
80	58	138CE	137,905985	(13)	-87575	(12)	1156050	(13)		
83	56	139BA	138,908822	(6)	-84933	(6)	1163043	(7)	2308	(5)
82	57	13964	138,906344	(5)	-87241	(4)	1164569	(6)		
83	57	140LA	139,909468	(5)	-84331	(4)	1169730	(6)	3760.8	(20)
82	58	140CF	139 905431	(4)	#88091	(4)	1172709	(5)	-3387	(6)
81	59	140PR	139,909066	(7)	-84705	(7)	1168540	(8)		
83	58	141CF	140,908268	(4)	* 85449	(4)	1178137	(5)	580.1	(15)
82	59	14128	140,907645	(4)	-86059	(4)	1177935	(5)	-1814	(8)
81.	60	141 ND	140,909592	(9)	=84215	(9)	1175339	(10)	=3718	(25)
80	61	141PM	140,91358	(3)	=80496	(25)	1170838	(25)	-4554	(24)
79	62	141 SM	140,918473	(13)	=75942	(12)	1165501	(13)		

84	58	142CE	141.909237	(5)	-84546	(4)	1185306	(6)	-745	(3)
83	59	142PR	141.910037	(4)	-83801	(4)	1163778	(5)	2150 4	(25)
82	60	142ND	141,907719	(3)	-85960	(3)	1185155	(5)	-4890	(60)
81	61	142PM	141 91297	(6)	-81070	(60)	1179480	(60)	= 2080	(60)
80	62	1428M	141.915204	(16)	+78988	(15)	1176618	(16)	-2000	(00)
85	58	143CE	142,912378	(5)	-81620	(4)	1190452	(6)	1455	(4)
84	59	143PR	142,910815	(4)	-83076	(3)	1191125	(5)	935.3	(19)
83	61	143ND	142,909811	(3)	=84011	(3)	1191278	(5)	-1038	(4)
58	61	143PM	142,910925	(5)	+82974	(5)	1189458	(6)	+3452	(10)
81	62	1435M	142,914630	(11)	-79522	(10)	1185224	(11)		
86	5 A	144CE	143.913642	(5)	-80443	(4)	1197345	(6)	318.2	(20)
85	59	144PR	143,913300	- (4)	-80761	(4)	1196881	(6)	2996	(3)
84	60	144ND	143,910084	(3)	-83757	(3)	1199095	(5)	•2327	(4)
83	61	144PM	143,912582	(5)	_=81430	(5)	1195986	(6)	544	(4)
82	62	1445M	143,911998	(4)	=81974	(4)	1195748	(5)		•
85	60	145ND	144,912570	(3)	* 81441	(3)	1204851	(5)	=158	(3)
84	61	145PM	144,912740	(5)	-81283	(4)	1203910	(6)	=618	(4)
83	62	1458M	144,913403	(4)	#80665	(4)	1202510	(5)	-2721	(11)
82	63	145EU	144,916324	(13)	-77944	(12)	1199007	(12)		
86	60	146ND	145,913114	(3)	+80935	(3)	1212415	(5)		
84	62	1465M	145,913049	(7)	-80995	(6)	1210911	(7)	= 3873	(9)
83	63	146EU	145.917207	(12)	-77122	(11)	1206256	(11)		
87	60	147ND	146,916097	(3)	-78155	(3)	1217708	(5)	895.7	(9)
86	61	147PM	146,915136	(3)	-79051	(3)	1217821	(5)	224.7	(4)
85	62	1475#	146,914895	(3)	-79276	(3)	1217263	(5)	=1722	(3)
84	63	147EU	146.916744	(4)	-77553	(4)	1214758	(5)		
88	60	148ND	147,916889	(4)	-77418	(3)	1225042	(5)	+537	(9)
87	61	148PM	147,917465	(10)	-76882	(9)	1223723	(10)	2464	(9)
86	65	1485	147,914819	(3)	-79346	(3)	1225405	(5)	-3120	(30)
85	63	148EU	147.91817	(5)	-76220	(30)	1221500	(30)		
89	60	149ND	148,920144	(4)	- 74386	(3)	1230081	(5)	1697,7	(23)
88	61	149PM	148,918322	(3)	-76084	(3)	1230996	(5)	1062.6	(10)
87	62	1495M	148,917181	(3)	-77146	(3)	1231276	(5)		
85	64	149GD	148,919336	(5)	-75139	(5)	1227704	(6)	-3696	(11)
84	65	149TP	148,923304	(15)	-71443	(12)	1223226	(12)		

53

.

N	7	Атом	Масса ато а.е.м.	Ma,	Избыток кэВ	массы,	Энергия кэI	связи, }	Энергия распада,	бета- кэВ
	*** * =	45050	1//0 020887	///\`	-77607	**-*******				
90	60	15080	147,720007	(4)	-77040	(4)	1257460	(5)		
00 07	67	1505	147,717673	(1)	-7/760 -7/766		1739202	(5)	•2294	(11)
	- 0 y - 6 /	15000	1/10 018453	(12)	- 75 776		1250100	(12)	1009	(4)
85	65	15018	149,923680	(18)	=71092	(11)	1250412	(11)	=4683	(13)
	~,	12010		(10)		(17)	1230947	(17)		
90	61	151PM	150,921204	(11)	-73398	(10)	1244454	(11)	1188	(9)
89	62.	151SM	150,919929	(3)	-74586	(3)	1244859	(5)	76.2	(6)
88	63	151EU	150,919848	(3)	-74662	(3)	1244153	(5)	₩479	(5)
87	64	151GD	150,920361	(6)	=74183	(5)	1242892	(7)	•2558	(4)
86	65	151TP	150,923108	(5)	-71625	(5)	1239551	(6)		(4)
01	62	1528M	151 919729	(3)	-74176	(1)	1367111	(5)	-197/ 9	
80	67	15261	151 921743	(5)	-72896	(3)	1250/158	(5)	1930	(11)
88	64	15260	151,919790	(4)	-74716	(4)	1251495	(5)	1020	(3)
()()		1	• • • • • • • • • • •				1631473			
92	61	153PM	152,924112	(17)	-70690	(16)	1257888	(16)	1879	(15)
91	62	1535M	152 922094	(3)	+72569	(3)	1258985	(5)	807	(3)
90	63	153EU	152,921228	(4)	-73376	(4)	1259010	(6)	+485	(4)
89	64	153GD	152,921749	(4)	-72891	(4)	1257742	(5)	-1585	(5)
88	65	153TP	152,923450	(7)	-71306	(6)	1255375	(7)	=2171.4	(17)
87	66	1530Y	152,925781	(7)	-69135	(6)	1252421	(8)		
92	62	1545M	153,922205	(3)	-72466	(3)	1266953	(5)		
90	6 и	154GD	153.920863	(3)	-73717	(3)	1266639	(5)		
	-	• - · - ·			, 3, 1, 1	())	120003/			
93	62	155SM	154,924629	(3)	-70208	(3)	1272766	(5)	1630	(4)
92	63	155EU	154,922880	(5)	-71837	(4)	1273614	(6)	247	(3)
91	64	155GD	154,922615	(3)	#72084	(3)	1273078	(5)		
94	62	1565M	155.925517	(15)	-69381	(14)	1280011	(14)	715	(11)
93	61	156FU	155,924750	(11)	-70095	(10)	12/9943	(11)	2452	(11)
<u>-</u> <u>5</u> <u>6</u>	64	156GD	155.922116	(3)	-72549	(3)	1281614	(5)	L. 4 J. J	())
90	66	156DY	155,924271	(8)	•70542	(7)	1278042	(8)		

Продолжение таблицы

¥

94	63	157EU	156,925412	(7)	-69479	(6)	1287398	(7)	1.9	(5)
93	64	15700	156.923954	(3)	-70837	(3)	1287974	(5)	• • •	(23)
92	65	157TH	156 924015	(4)	-70780	(4)	1287134	(6)	-13.0	(7)
91	66	157DY	156 925454	(8)	-69439	(7)	1285011	(8)		
94	64	158GD	157,924097	(5)	-70703	(3)	1295911	(5)	-121	(18)
93	65	158TB	157 925403	(4)	-69487	(4)	1293913	(5)	916	(4)
92	66	158DY	157,924398	(5)	-70424	(4)	1294067	(6)		••••
96	63	159E1	158,929078	(9)	-66064	(8)	1300126	(9)	2510	(7)
95	64	15960	158,926383	(4)	=68574	(3)	1301853	(5)	976.1	(19)
94	65	159TH	158,925335	(4)	-69551	(3)	1302047	(5)	= 365.7	(10)
93	66	159DY	158,925728	(4)	* 69185	(3)	1300899	(5)	•	• - • •
96	64	160GD	159,927047	(3)	- 67956	(3)	1309506	(5)	-101.4	(14)
95	65	160TB	159,927156	(4)	≈ 67854	(3)	1308423	(5)	1832.9	(17)
94	66	<u>ί</u> 60 <u>ρ</u> γ	159,925188	(4)	-69687	(3)	1309473	(5)	- •	
96	65	161TB	160.927558	(4)	-67480	(3)	1316119	(5)	590.3	(16)
95	66	161DY	160,926924	(4)	-68070	(3)	1315927	(5)	-	
96	66	162DY	161 926790	(4)	-68195	(4)	1324124	(5)		
94	68	102ER	161.928772	(4)	-66349	(3)	1320/13	(5)		
97	66	163DY	162,928721	(4)	-66396	(4)	1330396	(5)	-2.6	(21)
96	67	16340	162,928724	(4)	-66393	(4)	1329611	(6)	-1211	(5)
95	68	163ER	162,930025	(6)	-65182	(6)	1327617	(7)		
98	66	164DY	163,929167	(4)	-65981	(4)	1338052	(6)	-1029	(3)
97	67	164HO	163,930272	(5)	=64951	(4)	1336241	(6)	1003	(4)
96	68	164ER	163,929195	(3)	= 65955	(3)	1336462	(5)		
99	66	165DY	164.931697	(4)	-63625	(4)	1343768	(6)	1286	(4)
98	67	165HD	164,930316	(3)	-64911	(3)	1344271	(5)	-377.2	:23)
97	68	165ER	164,930721	(3)	=64534	(3)	1343112	(5)		·
99	67	166HD	165,932279	(3)	=63082	(3)	1350514	(5)	1854.7	(17)
98	68	166ER	165,9302880	(25)	-64936.8	(23)	1351586	(5)	= 3047	(11)
97	69	166TM	165,933559	(12)	+61890	(11)	1347757	(12)	-293	(13)
96	7 n	166YB	165,933873	(8)	=61597	(8)	1346682	(9)		

Продолжение таблицы

Ņ	7	Атом	Масса атома, а.е.м.		Избыток массы кэВ		Энергия связи кэВ		Энергия (распада,	бета- кэВ
99	 68	167ER	166,9320436	(25)	~63301.5	(23)	1358022	(5)	=749.0	(16)
98	69	167TM	166,932848	(3)	•62553	(3)	1356491	(5)	=1954	(4)
97	70	167YB	166,934945	(5)	= 60598	(5)	1353755	(6)		
100	68	168ER	167,9323658	(25)	+63001_3	(23)	1365794	(5)	=1679.7	(19)
99	69	168TM	167,934169	(3)	-61322	(3)	1363332	(5)	258	147
98	70	168YB	167.933892	(4)	-61580	(4)	1362807	(6)		
101	68	169ER	168.9345862	(25)	=60933.1	(23)	1371797	(5)	351.2	(15)
100	69	169TM	168,934209	(3)	+61284.3	(24)	1371366	(5)	-909	(4)
99	70	169Y8	168,935185	(4)	+60376	(4)	1369675	(6)		
102	68	170ER	169.935460	(5)	→60119	(3)	1379054	(5)	+313.7	(19)
101	69	170TM	169,935797	(3)	-59805,5	(24)	1377958	(5)	967.8	(9)
100	70	170YB	169,9347576	(25)	+60773,4	(23)	1378144	(5)		
103	68	171ER	170,938025	(3)	-57729	(3)	1384736	(5)	1490.3	(12)
501	69	171TM	170,936426	(3)	-59219,7	(24)	1385444	(5)	96,7	(10)
101	70	171YB	170,9363218	(24)	=59316,3	(23)	1384758	(5)	-1480.7	(22)
100	71	171LU	170,937911	(3)	=57836	(3)	1382495	(5)		
102	70	17248	171,9363768	(24)	-59265,2	(22)	1392778	(5)	-2524	(3)
101	71	1721.0	171,939087	(4)	-56741	(4)	1389472	(6)		
104	69	17-3TM	172,939594	(6)	-56268	(5)	1398635	(7)	1293	(5)
103	70	17348	172,9382061	(24)	-57561.1	(22)	1399146	(5)	≠ 675	(3)
102	71	173LU	172,938931	(4)	-56886	(3)	1397688	(6)		
104	70	17448	173,9388571	(24)	-56954.7	(22)	1406611	(5)	-1378	(3)
103	7 <u>†</u>	174LU	173 940337	(4)	* 55576	(3)	1404450	(6)	266	(5)
102	72	174HF	173,940052	(4)	-55842	(4)	1403933	(6)		

105	7 ი	175YA	174,9412713	(24)	-54705.9	(22)	1412433	(5)	467.0	(15)
104	71	17560	174.9407699	(22)	-55172.9	(20)	1412118	(5)	-694	(4)
103	72	175HE	174,941515	(4)	-54479	(4)	1410642	(6)		
106	7 g	176YB	175,942561	(3)	-53504	(3)	1419503	(5)	-110.2	(20)
105	71	1761 ()	175,9426796	(20)	53394.0	(18)	1418410	(5)	1186,5	(21)
104	72	176HF	175,941406	(3)	-54580.5	(24)	1418814	(5)	-	
106	71	17710	176,9437519	(19)	-52395.2	(18)	1425483	(5)	497.0	(10)
105	72	177HF	176,9432183	(17)	-25895-5	(16)	1425197	(5)		
106	72	178HF	177.9436967	(17)	-52446.6	(16)	1432823	(5)		
107	72	179HF	178,9458133	(15)	-50475.0	(14)	1438923	(5)	-110	(5)
106	73	179TA	178,945932	(6)	=50365	(5)	1438030	(7)		
108	72	180HF	179,9465467	(15)	-49791.8	(14)	1446511	(5)	-858	(5)
107	73	18014	179,947468	(6)	+48934	(5)	1444671	(7)	711	(6)
106	7 /1	180W	179,946704	(5)	-49645	(4)	1444600	(6)		
109	72	181HF	180,9490972	(17)	-47416.0	(16)	1452007	(5)	1027.4	(25)
108	73	181TA	180,947994	(3)	-48443.4	(25)	1452252	(5)	= 186	(7)
107	74	181w	180,948194	(7)	-48257	(7)	1451283	(8)		
109	73	18274	181,950150	(3)	-46434.9	(25)	1458315	(5)	1813.4	(19)
108	74	1828	181,948204	(3)	-48248	(3)	1459346	(5)		
109	74	183w	182,950222	(3)	-46368,0	(25)	1465537	(5)		•
110	74	184w	183,950931	(3)	-45708.3	(25)	1472949	(5)		
108	76	18405	183,952491	(3)	-44255	(3)	1469930	(5)		
111	74	1850	184,953418	(3)	-43391.0	(25)	1478705	(5)	432.6	(9)
110	75	185RE	184,952954	(3)	-43824	(3)	1478355	(5)	-1015.0	(7)
109	76	18505	184,954043	(5)	-42809	(3)	1476556	(5)	-	
112	74	186W	185.954358	(3)	-42515	(3)	1485898	(5)	-584.9	(22)
111	75	186RE	185,954986	(3)	-41930	(3)	1484531	(5)	1074.7	(17)
110	76	18605	185,953833	(5)	-43005	(3)	1484823	(5)	-	

N	2	Атом	Macca atom a.e.m.	ia,	Избыток ме кэВ	ассы,	Энергия кэВ	связи,	Энергия б распада,	ета- кэВ
	d = =						d		****	
113	. 74	187W	186,957155	(3)	-39910	(3)	1491364	(5)	1312,3	(17)
115	75	187RE	186,955746	(3)	-41222.4	(25)	1491894	(5)	2,64	(4)
111	76	18705	186,955743	(5)	#41225.1	(25)	1491115	(5)		
113	75	188RE	187,958108	(3)	-39023	(3)	1497766	(5)	2119.7	(9)
112	76	<u>1880s</u>	187,955832	(3)	-41142	(3)	1499104	(5)	•2786	(10)
111	77	1881R	187.958823	(11)	=38356	(10)	1495535	(11)	= 531	(9)
110	78	18801	187,959393	(6)	+37826	(6)	1494555	(8)		
114	. 75	189RE	188,959221	(10)	=37986	(9)	1504800	(10)	1008	(9)
113	76	18905	188,958139	(3)	-38993	(3)	1505026	(5)	=514	(6)
112	77	1891R	188,958691	(7)	-38480	(7)	1503730	(8)	=1989	(13)
111	78	189PT	188,960827	(13)	-36490	(12)	1500958	(13)		
114	76	19005	189,958438	(3)	=38715	(3)	1512819	(5)		
112	78	190PT	189,959930	(7)	+37325	(6)	1509864	(8)		
115	76	ī910s	190,960921	(3)	=36402	(3)	1518578	(6)	306	(3)
114	77	1911R	190,960592	(4)	-36708	(4)	1518101	(6)	-1019	(5)
113	78	·191PT	190,961686	(6)	-35690	(5)	1516300	(7)		
116	76	1920s	191.961474	(4)	-35887	(3)	1526134	(6)	-1051	(4)
115	77	<u>19518</u>	191,962602	(4)	-34836	(4)	1524300	(6)	1456	(3)
114	78	192PT	191,961039	(4)	-36292	(4)	1524974	(6)		
117	76	19305	192,964146	(4)	-33398	(4)	1531716	(6)	1125	(4)
116	77	1931R	192,962939	(3)	=34523	(3)	1532058	(6)	* 56 , 7	(55)
115	7 A	193PT	192,963000	(4)	-34466	(3)	1531219	(6)		
117	77	1941R	193,965094	(3)	=32515	(3)	1538122	(6)	2247.1	(18)
116	78	194PT	193,962681	(3)	-34762	(3)	1539587	(6)		

Продолжение таблицы

	117	78	195PT	194,9647946	(17)	-32793,8	(16)	1545690	(5)		
	118	78	196PT	195,9649562	(14)	-32643.4	(13)	1553611	(5)	-1507	(3)
	117	79	196AU	195,966574	(4)	=31136	(4)	1551321	(6)	686	(3)
	116	8.0	196HG	195,965838	(4)	-31822	(3)	1551224	(6)		
	119	78	197PT	196,9673449	(14)	-30418.3	(13)	1559457	(5)	718.8	(6)
	118	79	197AU	196,9665732	(12)	=31137 ₊ 1	(11)	1559394	(5)		
	120	78	198PT	197,967898	(4)	-29903	(3)	1567013	(6)	-325	(3)
	119	79	198AU	197,9682469	(12)	=29578,1	(11)	1565906	(5)	1372.4	(6)
	118	80	198HG	197,9667736	(11)	=30950,5	(11)	1566496	(5)		
	121	7 A	199PT	198,970582	(20)	=27403	(19)	1572585	(19)	1688	(19)
	120	79	199AU	198,9687701	(12)	≈ 29090°,7	(11)	1573490	(5)	452,5	(7)
	119	8 ()	199HG	198,9682844	(10)	=29543 <mark>,</mark> 1	(9)	1573160	(5)	-	
	120	80	200HG	199,9683307	(10)	•29500 _• 0	(9)	1581188	(5)		
	121	80	201HG	200,9703073	(10)	-27658.8	(9)	1587418	(5)	=482	(15)
• -	120	81	201TL	200,970824	(16)	=27177	(15)	1586154	(16)	#1860	(40)
59	119	82	201PH	200,97282	(4)	- 25320	(30)	1583510	(40)	·0	
	122	80	202HG	201.9706469	(11)	-27342.5	(10)	1595173	(5)	=1363	(17)
	121	81	20211	201,972110	(18)	-25980	(17)	1593029	(18)	-46	(18)
	120	82	20258	201,972159	(11)	* 25934	(10)	1592201	(11)		
	123	80	203HG	202,972874	(3)	* 25268	(3)	1601171	(6)	492,7	(19)
	155	81	203TL	202.972345	(3)	+25761	(3)	1600881	(6)	-975	(9)
	121	82	203PB	202,973391	(10)	-24786	(10)	1599124	(11)	-	
	124	80	204HG	203,9734968	(13)	= 24687 . 8	(12)	1608662	(5)	-342	(3)
	123	81	204TL	203,973864	(3)	-24346	(3)	1607537	(6)	763,39	(20)
	155	85	204PB	203,973045	(3)	-25109	(3)	1607518	(6)		
	124	81	205TL	204 974422	(4)	-23826	(4)	1615089	(6)	=56,7	(20)
	123	82	205PH	204,974483	(4)	+23769	(3)	1614250	(6)	# 2707	(7)
	122	83	20581	204,977389	(8)	- 21062	(8)	1610760	(9)	-3490	(30)
	121	84	20520	204,98114	(4)	+17570	(30)	1606480	(30)		

.

Продолжение таблицы

...

N	7	Атом	Масса атом а.е.м.	(2,	Избыток м кэВ	ассы,	Энергия кэВ	связи,	Энергия бета- распада, кэВ		
125 124 123	81 82 83	206TL 206PR 206BI	205,976105 205,974465 205,978503	(4) (4) (12)	-22258 -23786 -20025	(4) (3) (11)	1621592 1622338 1617794	(6) (6) (12)	152 ¥ .6 -3761	(17) (11)	
126 125	81 82	2071L 207PB	206,977418 206,975894	(6) (4)	=21035 =22455	(6) (4)	1628441 1629078	(8) (6)	1419 =2405	(6) (7)	
124 123	83 84	20781 20780	206,978476 206,981598	(9) (11)	-20050 -17142	(8) (10)	1625891 1622200	(10)	-2908	(9)	
127 126	81 82	20811. 208PB	207,982007 207,976649	(5) (4)	+16761 =21751	(5) (4)	1632238 1636446	(7) (6)	4991	(4)	
127 126	82. 83	209PB 20981	208,981090 208,980398	(4)	~17615 *18259	(4)	1640381	(6)	644.4	(12)	
124 123	85 86	209AT	208,986173 208,99035	(9) (4)	=12880 =8990	(8) (30)	1633299	(10) (30)	, 3890	(30)	
128 127 126	82 83 84	210PH - 210BI 210PO	209.984188 209.984121 209.982874	(4) (4) (4)	-14729 -14792 -15953	(3) (3) (3)	1645566 1644847 1645226	(6) (6) (6)	63.0 1161.5	(5) (10)	
129 128	82 83	21100 21101	210,988739 210,987269	(4) (6)	-10490 -11859	(4) (6)	1649 399 1649986	(7) (8)	1369	(6)	
130 129 128	82 83 84	84515 18515 04515	211,991888 211,991274 211,988865	(6) (5) (4)	-7557 -8128 -10373	(5) (5) (4)	1654537 1654326 1655788	(8) (7) (6)	572 2244	(4) (4)	
130 129	83 84	213BT 213PC	212,994380 212,992856	(12)	+5235 +6654	(11)	1659504 1660141	(12) (8)	1420	(10)	

	132	82	214Pp	213,999803	(3)	-183	(3)	1663306	(6)	1019	(12)
	1.51	83	214BT	213,998709	(13)	-1203	(12)	1663543	(13)	3267	(12)
	130	84	21400	213,995201	(4)	- 4470	(3)	1666028	(6)		
•	1 3 1	84	21580	214,999422	(4)	-539	(4)	1670168	(7)		
	132	84	216PC	216,001905	(6)	1775	(5)	1675926	(8)	-469	(5)
	131	85	21641	216,002408	(6)	2243	(6)	1674675	(8)		
	132	85	217AT	217.004713	(12)	4390	(11)	1680600	(12)		
	134	84	21800	218,008971	(3)	8357	(3)	1685487	(6)		
	132	86	218RN	218,005605	(4)	5221	(4)	1687058	(7)		
	134	86	219RN	219.009482	(4)	8833	(4)	1691518	(7)		
	1.54	<u>а</u> н	220RN	220,011384	(6)	10605	(5)	1697817	(8)	-872	(6)
	133	A 7	250EB	550.015351	(8)	11477	(7)	1696162	(9)		
	134	۴ 7	221FR	221.014249	(12)	13275	(11)	1702437	(12)		
61	136	86	222RN	222,017576	(3)	16372	(3)	1708195	(6)		
	134	A A	255KV	222,015372	(5)	14319	(5)	1708681	(7)		
	135	88	223RA	223,018504	(4)	17237	(4)	1713835	(7)		
	136	Яg	224RA	224,020202	(6)	18819	(5)	1720324	(8)	-1407	(6)
	135	89	554VC	224.021713	(8)	50559	(7)	1718135	(9)		
	1 3 7	ВŖ	225RA	225.023606	(4)	21989	(4)	1725225	(7)	\$55	(12)
	136	۴q	2540	225.023225	(12)	21634	(11)	1724798	(13)		
	1 5 A	8.8	226RA	226.025408	(3)	23668	(3)	1731618	(6)	-635.6	(25)
	137	Яq	226AC	550.050000	(4)	24303	(3)	1730200	(7)	1108	(5)
	1.56	90	2591H	226,02490t	(5)	23195	(5)	1730525	. (7)		
	138	Вq	227Ar	227,027753	(3)	25852	(3)	1736723	(6)	45.4	(20)
	1 37	90	227TH	227.027706	(4)	25808	(4)	1755984	(7)		
	140	ŔА	228RA	228.031070	(5)	28942	(5)	1742486	(7)	45.6	(10)
	139	89	22846	150160,855	(5)	28896	(5)	1741750	(7)	2132	(7)
	138	90	228TH	228.028732	(6)	26764	(5)	1743100	(8)	-2113	(7)
	137	91	2585V	228.031000	(9)	28877	(8)	1740204	(10)		

Окончание таблицы

N	Z	Атом	Масса атом а.е.м.	12,	Избыток м кэВ	ассы,	Энергия связи, кэВ		Энергия бета- распада, кэВ		
139	90	229TH	229,031758	(4)	29582	(3)	1748352	(7)			
1/10	90	230TH	230.033133	(3)	30863	(3)	1755143	(6)	-1304-5	(20)	
139	91	230PA	230.034533	(4)	32168	(3)	1753056	(7)	555	(5)	
138	92	2300	230.033938	(6)	31613	(5)	1752829	(8)			
141	90	231TH	231,036300	(3)	33814	(3)	1760264	(6)	389.0	(18)	
140	91	231PA	231,035883	(3)	33425	(3)	1759871	(6)	•		
142	90	232TH	232,0380548	(25)	35448.1	(23)	1766701	(6)			
140	92	2320	232,037147	(6)	34602	(5)	1765982	(8)			
143	90	233TH	233,0415814	(25)	38733.1	(23)	1771487	(6)	1244.9	(21)	
142	91	233PA	233 040245	(3)	57488.2	(24)	1771950	(6)	572.1	(24)	
141	92	2330	233,039631	(3)	36916	(3)	1771740	(7)	•		
144	90	234TH	234,043599	(5)	40613	(4)	1777679	(7)	262.5	(20)	
143	91	234PA	234.043317	(5)	40350	(5)	1777159	(7)	5500	(4)	
142	92	2340	234,0409490	(25)	38144,1	(23)	1778583	(6)			
143	92	235U	235,0439266	(25)	40917.7	(23)	1783881	(6)	=123_1	(10)	
142	93	235NP	235,044059	(3)	41040.8	(25)	1782975	(6)	• -		
144	92	2 3 6U	236,0455644	(24)	42443,3	(22)	1790426	(6)			
145	92	2370	237,048728	(3)	45389.9	(25)	1795551	(6)	519,5	(11)	
144	93	237NP	237,0481701	(24)	44870,5	(55)	1795288	(6)	=218	(6)	
143	94	237PU	237,048404	(6)	45088	(6)	1794288	(8)			
146	92	2380	238,0507868	(23)	47308.0	(22)	1801705	(6)	-145.7	(13)	
145	93	238NP	238,0509433	(24)	47453 7	(22)	1800776	(6)	1291,5	(11)	
144	94	238PU	238,0495568	(25)	46162.2	(23)	1801286	(6)			

.

62

147	92	2390	239,0542920	(24)	50573.1	(22)	1806511	(6)	1265.3	(24)
146	93	239NP	239.052934	(3)	49308	(3)	1806994	(7)	721.4	(19)
145	94	239PU	239,0521592	(25)	48586,4	(23)	1806933	(6)	/ · · · · · · ·	
148	92	240U	240.056589	(5)	52713	(5)	1812443	(8)		
146	94	240PU	240,0538101	(24)	50124,2	(23)	1813466	(6)		
147	94	241PU	241,0568482	(24)	52954,2	(22)	1818708	(6)	20.81	(20)
146	95	241AM	241,0568259	(24)	52933,4	(22)	1817946	(6)		
148	94	242PU	242,0587397	(24)	54716,1	(22)	1825017	(6)	- 750.1	(9)
147	95	242AM	242,0595449	(24)	55466 2	(23)	1823485	(6)	663.3	(12)
146	96	242CM	242,0588329	(25)	54802,9	(23)	1823366	(6)		
149	94	243PU	243,062000	(4)	57753	(3)	1830051	(7)	582	(3)
148	95	243AM	243.061376	(3)	57171	(3).	1829851	(7)	-7.0	(23)
147	96	243CM	243,061383	(3)	57178,5	(25)	1829062	(6)		
150	94	244PU	244,064201	(5)	59803	(5)	1836073	(8)		
148	96	244CM	244,0627491	(24)	58450,9	(53)	1835861	(6)		
150	95	245AM	245.066451	(4)	61899	(4)	1841266	(7)	896,6	(21)
149	96	24504	245,065488	(3)	61002	(3)	1841380	(7)		
152	94	246PU	246.070174	(21)	65367	(19)	1846652	(20)	377	(10)
151	95	246 A M	246,069769	(22)	64990	(21)	1846246	(22)	2373	(21)
150	96	2460M	246.067222	(4)	62617	(3)	1847837	(7)		
151	96	247CM	247.070349	(5)	65531	(5)	1852995	(7)		
152	96	248CM	248,072345	(5)	67390	(5)	1859207	(8)	-708	(51)
151	97	248BK	248,073106	(22)	68098	(21)	1857717	(22)	858	(18)
150	98	248CF	248,072185	(24)	67240	(22)	1857792	(23)		
153	96	2490	249.075951	(8)	70749	(8)	1863920	(10)	899	(8)
152	97	249нк	249,074986	(4)	69849	(3)	1864037	(7)	126.3	(19)
151	9 A	249CF	249.074850	(3)	69723	(3)	1863381	(7)		
154	96	250CM	250,078355	(12)	72987	(11)	1869752	(13)	37	(12)
153	97	2508K	250,078315	(6)	72951	(5)	1869006	(8)	1780	(4)

Список литературы

- 1. Wapstra A.H., Bos K. The 1977 Atomic mass evaluation. Part.IV. Evaluation of input values; adjustment procedures. - Atomic Data and Nucl. Data Tables, 1977, v.20, N 1, p.1-125.
- 2. Wapstra A.H., Bos K. Ibid., v.19, N 3, p.177-214.
- 3. Линник Ю.В. Метод наименьших квадратов и основы математической статистической обработки наблюдений. М.: Физматгиз, 1962.
- 4. Табляцы стандартных справочных данных фундаментальные физические константы. ГСССД 1-76. М.: Изд-во стандартов, 1976.
- 5. Агеев М.И., Алик В.П., Галис Р.М., Марков Ю.И. Библиотека алгоритмов 16-506. М.: Сов.радио, 1975, с.107-112.
- 6. Вапстра А.Х., Ниих Г.И., Ван Лимут Р. Таблици по ядерной снектроскопии. М.: Атомиздат, 1960.
- 7. Видеотон 1010Б. Basic Fortran 1010В. Руководство пользователя 203.009.00.02 SW.Буданешт, 1973.
- 8. Тейлор Б., Паркер В., Лангенберг Д. Фундаментальные константы и квантовая электродинамика. М.: Атомиздат, 1972.

Статья поступила в редакцию I марта 1982 г.

Библиографический	индекс р	pador,	помещенн	ых в	настоящем	выпуске,
В	Междунар	о дно й	системе	СИНД	A	

El	.ement	Quan-	Labo-	Work-	Ene	rgy	/ (e1	7)	Page	: COMMENTS
S	: : A	: ····	ry	: type	, mi	n	ma	C		:
NA	023	DNG	FEI	THEØ		6			17	ØGANESJAN+SIG(E-GAMMA), TBL,CFD CALC
H₽	180	DIN		EXPT		7			27	BØNDARENKØ+SIG=7.6+SIG=7.6+0.7-0.4 BARN
TH	232	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ANG ANIZØTR FRAGS, GRPH
ប	233	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ANG ANIZØTR FRAGS, GRPH
ប	2 35	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ANG ANIZØTR FRAGS, GRPH
ប	237	SNG	KUR	EXPT	2.1	5			30	BUSHUEV+GE - LI, G- SPEC, TBL
ប	23 8	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ANG ANIZØTR FRAGS, GRPH
NP	237	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ANG ANIZØTR FRAGS, GRPH
NP	2 38	SNG	KUR	EXPT	9.8	5			30	BUSHUEV + GE - LI, G - SPEC, TBL
PU	238	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ ANG ANIZØIR FRAGS, GRPH
PU	239	тøт	FEI	THEØ			1.6	2	3	KØLESØV + SIG (NEUT-E), GRAPU, ANALYS
PU	239	NF	FEI	theø			1.6	2	3	KØLESØV + ANALYS, GRAPH
PU	239	RES	FEI	THEØ			1.6	2	3	KØLESØV + RES PARAMS,TBL
PU	239	FRS	FEI	EXPT	1.2	7	1.6	7	9	ANDRØSENKØ+ ANG ANIZØTR FRAGS, GRPH

УДК 539.170.013
СОВМЕСТНЫЙ МНОГОУГОВНЕВЫЙ АНАЛИЗ ПОЛНОГО СЕЧЕНИЯ И СЕЧЕНИЯ ДЕ- ЛЕНИЯ ²³⁹ Ри НИЖЕ 160 зВ/В.В.Колесов, А.А.Лукьянов Вопросы атом- ной науки и техники. Сер. Ядерные константы, 1982, вып.2(46), с.3-9.
Для представления сечений использовалась многоуровневая схема S-матричной теории с учетом доплер-эфекта и аппаратурного разрешения. Многоуровневый анализ полного сечения и сечения деления ²³ Pu проводился по методу наименьших квадратов в области энергий ниже 160 эВ. Используемые экспериментальные данные по сечениям имеют хорошее разрешение. Многоуровневые параметры позволяют описывать все особенности детальной энергетической структуры экспериментальных сечений, где наибольший интерес представляют области интерференцион- ных минимумов (рис.3, табл.1, список лит. – 10 назв.).

УДК 539.173.4

УГЛОВАЯ АНИЗОТРОПИЯ ОСКОЛКОВ <u>ДЕЛЕНИЯ</u> 232_{тв} 233_U 235_U 238_U 237_{Np}, 238_{Pu}, 239_{Pu} НЕИТРОНАМИ С ЭНЕРТИЕЙ 12,4-16,4 МЭВ/ Х.Д.Андросенко, Г.Г.Королев, Д.Ј.Шпак. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1982, вып.2(46), с. 9-12.

С помощью стехлянных детекторов изучена угловая анизотропия осколков деления 232m, 2300, 2300, 237Np, 228Pu и 239Pu. Измерения выполнены в диапазоне энергий нейтронов 12,4-16,4 MэB. Угловые распределения для большинства делящихся элементов описываются квадратичной зависимостью сов О. Для 232m и 2300 требуется привлечение косинусов до шестой степени. Полученные результаты сравниваются с данными других авторов (рис.1, список лит. - 11 назв.).

удк 539.173

ПЕРЕХОДНЫЕ СОСТОЯНИЯ ДЕЛЯЩЕГОСЯ ЯДРА ²³⁵0 / М.Ф.Андреев, В.Е.Маршалкин, В.М.Повышев, В.С.Русских. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1982, вып.2(46), с. 12-17.

Выполнен каналовый анализ экспериментальных данных по делению ядер 2500 в реакциях 2500 (t, pf), 2500 (n, f) и 2500 (n, f). В результате анализа извлечены параметры барьеров деления нижних полос переходных состояний делящегося ядра 250. В расчетах сечений деления ядер в реакциях (n, f) и (r, f), а также делимости в реакции (t, pf), проведенных с набором извлеченных параметров, хорошо воспроизводятся все особенности знергетических зависимостей экспериментальных данных по делению составного ядра 2500 одновременно для всей совокупности указанных реакций (рис.1, табл.1, список лит. - 21 назв). УДК 539.171.017

МЕТОД РАСЧЕТА СПЕКТРОВ И СЕЧЕНИЙ ОБРАЗОВАНИЯ 7-КВАНТОВ ПРИ НЕУПРУГОМ РАССЕЯНИИ НЕЛТРОНОВ/ С.А.Оганесян. – Вопросы атомной науки и техники. Сер. Ядерныэ константы, 1982, вып. 2(46), с.17-27.

Представлен один из возможных методов расчета спектров и сечепредставлен один из возможных методов расчета спектров и сече-ний образования г-квантов, испускаемых при неупругом рассеянии нейтронов. Несмотря на некоторые упрощения, положенные в основу рас-четных формул, принятал методика дает согласие с имеющимися экспери-ментальными данными. Пооведено вычисление спектра г-квантов реак-ции 23 ма(n, n'r) для этдельных значений энергии налетающего нейтро-на. Полученные величины сравниваются с экспериментальными спектрами, данные о которых опубликованы в последние годы (рис.1, табл.3, спи-сок лит. – 18 назв.).

УЛК 539.184.5

СЕЧЕНИЕ ВОЗБУЖДЕНИЯ ИЗОМЕРА ¹⁸⁰нг ЕНСТРЫМИ НЕЯТРОНАМИ (1^Л = 8⁻, Еур = II4I,5 кэВ) /В.А.Бондаренко, Х.Я.Бондарс, А.А.Лапенас. – Вопросн атомной науки и техники. Сер. Ядерные константы, 1982, внп.2(46), с. 27-29.

Измерено сечение образования изомера 180 нг ($T_{1/2}=5,5$ ч, I^{II}= 8⁻) в реакции (n,n'). Полученное значение $\langle G_{n,n'} \rangle = 7,6^{+0},7$ мо сравнимо с сечением возбуждения уровня 8⁺ вращательной полоси основ-ного состояния и находится в согласии с предсказаниями оптической модели (рис.2, табл.2, список лит. - 6 назв.).

УДК 539,122,164

ОПРЕЛЕЛЕНИЕ ВЫХОДОВ "КВАНТОВ С ЗНЕРТИЕЙ 208 ков ПРИ РАС-ПАЛЕ ²⁹⁷И И С ЭНЕРТИЕЙ 984 ков ПРИ РАСПАДЕ ²⁹⁹Np /А.В.Бушуев, О.В.Матвеев, В.Н.Озерксв, В.В.Чачин. – Вопросы атомной науки и тех-ники. Сер. Ядерные константы, 1982, вып.2(46), с. 30-31.

Гамма-спектрометрическим методом определены вероятности испуска-ния п-квантов с энергией 208 кзВ при распаде 270 й с энергией 984 кзВ при распаде 250 гр. Измерялись п-спектры образцов 2360 и 237 Np, облученных в потоке тепловых нейтронов. Калибровка Ge(L1)-спектрометра проводилась с помощью набора стандартных источников. Полученные значения абсолютных интенсивностей сопоставляются с дан-ными ранее опубликованных работ (табл.2, список лит. - 5 назв.).

УДК 539.171

ПОСТРОЕНИЕ ТАБЛИЩИ МАСС ДЛЯ СОГЛАСОВАННОГО НАБОРА АТОМОВ/ В.К.Бодулинский, А.Е.Игнаточкин, А.И.Хованович, Ф.Е.Чукреев. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1982, вып.2(46), с. 31-64.

Вып.2(40), с. 31-64. Построена таблица атомных масс для набора атомов, который карактеризуется максимальной достоверностыр при согласовании со всей совокупносты экспериментальных данных. В основу таблиц положены следующие принципы: наиболее достоверные с точки зрения авторов экспериментальные данные о масс-дублетах, энергиях ядерных реакций и радноактивных распадов; метод наименьших квадратов для обработки экспериментальных данных; анализ внутренней согласованности данных. Обсуждаемые в работе физико-методические и статистические критерии позволыми отобрать для согласованного набора 752 атома, массы которых связаны 2480 экспериментально измеренными соотношениями. Помимо масс, избытков массь и энергий связи для каждого атома таблица содержит энергии в-распада для 474 случаев (табл.1, список лит. в назв.).

Редакторы Т.Н.Артемова, Г.В.Зубова (отв.) Технический редактор С.И.Халиллулина Корректор Е.М.Спиридонова

Подписано в печать 28.05.82. Т-I3368. Формат 60х84 I/8. Офсетная печать. Печ.л. 8,5. Уч.-изд.л. 6,3. Тираж 372 ркз. Индекс 3645. 7 статей. Зак.тип. # 676

> Отпечатано в ШНИИатоминборме 127434, Москва, аб/ящ 971

I p. 50 m.

Индеко 3645

Вопроси атомной науки и техники. Серия: Ядерные конотанты, 1982, вып.2(46), 1-64