INDC(CCP)-204/GA

INTERNATIONAL NUCLEAR DATA COMMITTEE

CHARACTERISTICS OF X-RAY TRANSITIONS IN Cr XXI - Cr XXIII IONS

By R.S. Kiselyus, J.J. Grudzinskas, A.V. Kuplyauskene, Z.B. Rudzikas, V.I. Tutlis, V.A. Abramov and V.S. Lisitsa I.V. Kurchatov Institute of Atomic Energy, Moscow

Translated by the IAEA

April 1984

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

IIDC(CCP)-204/GA

IAEh-3759/6

UDC 539.182; 539.184; 533.9

CHARACTERISTICS OF X-RAY TRANSITIONS IN Cr XXI - Cr XXIII IONS

R.S. Kiselyus, J.J. Grudzinskas, A.V. Kuplyauskene, Z.B. Rudzikas, V.I. Tutlis, V.A. Abramov and V.S. Lisitsa I.V. Kurchatov Institute of Atomic Energy, Moscow, 1983

April 1984

Reproduced by the IAEA in Austria April 1984 84-02806

ABSTRACT

The authors describe the theoretical methods, together with the wavelengths and the radiative transition and autoionization probabilities, for Cr XXI, Cr XXII and Cr XXIII. Electron transitions from the 2p- to the 1s-shell are considered. Calculations in a single-configuration Hartree-Fock-Pauli approximation are made for electric dipole and quadrupole and magnetic dipole transitions using numerical solutions of the Hartree-Fock equations and analytical radial orbitals. The results obtained by the two methods are compared with one another and with the calculated and experimental data of other authors. On the basis of this comparison it is possible to evaluate the accuracy of the calculation methods used.

1. INTRODUCTION

The spectroscopic diagnostics for a hot plasma associated with the study of the X-ray spectra of multicharged ions should be based on calculated data for a wide range of atomic processes [1,2]. These include calculations of the characteristics of atomic transitions (wavelengths and radiative (A) and autoionization (Γ) decay probabilities) as well as a number of crosssections and the rates of processes resulting in the formation of ions of a given ionization state Z and in the filling of the radiating configurations (ionization, photo- and dielectron recombination and excitation by electron impact). Here the interpretation of the measurements in a wide band of wavelengths requires such calculations on a mass scale for a great number of individual transitions. For this purpose, we have to prepare general-purpose computer programs for calculation of both atomic transition characteristics and the cross-sections of the different processes. These programs should not only ensure a sufficiently high accuracy but also take up a minimum amount of computer time. The optimal choice can be made by carrying out a comparative analysis of the results obtained in dfferent approximations and by different methods and by comparing these data with experiment.

The matter is rather more satisfactory in the case of transitions in a discrete spectrum. In any event, for transitions with $\Delta n \neq 0$ (which are important for X-ray diagnostics) the wavelengths obtained by different methods agree with one another with an accuracy of the order of 10^{-3} and the radiative transition probabilities with an accuracy of about 20%, which is quite sufficient for diagnostic purposes. The accuracy of the calculations of atomic characteristics, including interaction with a continuous spectrum (continuum), is much lower. Thus, the individual values of autionization level widths obtained by different calculation methods may differ by almost an order of magnitude. This applies to a still greater extent to excitation cross-sections, especially for dipoleforbidden transitions in fairly complex ions. Essentially, the only method of large-scale calculation of cross-sections here is the Coulomb-Born method [2]. Therefore, the choice of "sufficiently good" wave functions of the continuous spectrum is still a matter of current interest.

- 3 -

In this study we have carried out a comparative analysis of the calculations of atomic transition characteristics for chromium ions. It is of particular importance to compare the autoionization level widths Γ obtained by different methods. On the basis of such a comparison we can expect to choose fairly simple and, at the same time, reliable analytical approximations for the continuous spectrum functions.

It should be noted that from an experimental standpoint there is interest in calculating spectra not only with the maximum possible accuracy $(\lambda/\Delta\lambda \gtrsim 10^3-10^4)$ but also with a lower accuracy $(\lambda/\Delta\lambda \sim 10^2)$ covering a wider spectral band. The information obtained from lower-resolution measurements in a wide band of wavelengths should then be compared with higher-resolution measurements in a narrow spectral band. These conditions correspond to the contemporary experimental set-up in the tokamak plasma.

Below we give the calculated values of wavelengths and probabilities of radiative transitions and autoionization widths for two-, three- and four-electron chromium ions having a k-vacancy. The calculations were performed with the use of numerical solutions of the Hartree-Fock equations and analytical radial orbitals. The characteristics of electron transition from the 2p- to the 1s-shell were determined. We carried out a comparative analysis of the results with one another and also with the available calculation data obtained by the method of the perturbation theory (perturbutations with respect to 1/Z) [3-5]. The wavelengths are compared with the available experimental data. The spectra of the dielectron satellites of the 1s2p ${}^{1}p_{1}$ -1s² ${}^{1}S_{0}$ resonance line of Cr XXIII were experimentally recorded in Ref. [6] and the wavelengths of two transitions between configuration states $1s2s2p^{2} - 1s^{2}2s2p$ in Ref. [7].

Our calculations were performed in a single-configuration approximation with allowance for relativistic effects in the form of corrections. The exception is two-electron transitions, which were calculated in a twoconfiguration approximation. We considered the following configurations: 1520

 $2s^2$, 2s2p, $2p^2 - for Cr XXIII$, $152s^2$, 1s2s2p, $1s2p^2$, 1s2p3s, 1s2p3p, 1s2p4p, 1s2p5p, 1s2p3d - for Cr XXII, $1s2s^2p$, 1s2s2p3s, $1s2s2p^2$, 1s2s2p3p, 1s2s2p4p, 1s2s2p5p, 1s2s2p3d - for Cr XXI.

- 4 -

In section 2 we describe the methods of calculating energy spectra and in section 3 those for the radiative transition and autoionization probabilities. The obtained wavelengths and radiative and non-radiative transition probabilities are compared in detail in section 4. In the same section we compare the results obtained by the two methods, discuss their accuracies and make recommendations on their use. The numerical data needed for calculating the intensities of dielectron satellites are given in Appendices 1-5. The latter contain the wavelengths, the probabilities of electric dipole and quadrupole as well as magnetic dipole transitions and autoionization for each ion separately: Cr XXIII in Appendix 1, Cr XXII in Appendix 2 and Cr XXI (electric dipole transitions) in Appendix 3. Appendix 4 gives the probabilities of electric quadrupole and Appendix 5 those of magnetic dipole transitions. The autionization probabilities for Cr XXI are summed over the 1s²2se% and 1s²2pe'% decay channels.

The following notations have been used in the Appendices: GHRO means the wavelengths λ and the probabilities of radiative transition A and of autoionization Γ determined with the help of generalized hydrogen-like analytical radial orbitals [9], while HFRO denotes those determined by the use of numerical solutions of the Hartree-Fock equations [8]. The figures in columns SL γ and S'L' γ ' denote $(2s+1)L(2\gamma+1)$ and $(2s'+1)L'(2\gamma'+1)$. For transition probabilities the symbol 3.62 + 2 means $(3.62 \cdot 10^2) \cdot 10^{13} s^{-1}$.

2. CALCULATION METHOD FOR ENERGY SPECTRA

The energy spectra are calculated by means of both the numerical solutions of the Hartree-Fock equations [8] and the analytical radial wave functions [9] in the form:

$$P(nl|i_{i} = A_{nl} \sum_{i=1}^{max(2,n-l)} C_{i}^{nl} \pi^{min(l+i,n)} e^{-x_{i}^{-l}x}, C_{i}^{nl} = 1.$$
(1)

The radial orbital parameters $\alpha_i^{n\ell}$ and $C_i^{n\ell}$ in Eq. (1) in the case $n-\ell = 1$ are determined from the minimum non-relativistic energy and $C_i^{n\ell}$ for orbitals $n - \ell > 1$ from the conditions of the orthogonality of the single-electron wave functions.

The wave functions - numerical as well as analytical - were used for the energy spectrum calculation by means of the program described in Ref. [10] and its additions, which cover the cases of numerical [11] and analytical [12] radial orbitals.

In the calculations of the atomic characteristics of multicharged ions the relativistic effects make a substantial contribution. These were taken into account in the Hartree-Fock-Pauli approximation [13], where the relativistic effects for energy are calculated in the form of corrections to the non-relativistic Hamiltonian of an atom. In this method all terms of the order α^2 entering into the Breit operator are regarded as perturbations and taken into account in the first order with respect to the functions of the non-relativistic Hartree-Fock Hamiltonian. In accordance with Ref. [13], we took into account the following relativistic corrections: the correction due to the dependence of electron mass on velocity; the correction for the orbit-orbit interaction; the corrections due to the contact and spin-contact interaction and the correction for the spin-orbital interaction. The energy matrix including the abovementioned relativistic corrections was calculated for each total moment eqwithin the framework of the LS coupling. After diagonalization, the eigenvectors obtained characterize the energy levels in the intermediate type of coupling.

3. CALCULATION OF RADIATIVE AND AUTOIONIZATION TRANSITION PROBABILITIES

The electric dipole transition probabilities were calculated with the use of the transition operator in the form of length. The matrix elements were calculated from both the numerical and analytical radial orbitals determined with the term-averaged expression for energy. A computer program was prepared to calculate the characteristics of radiative and non-radiative transitions. It can be used to perform calculations immediately after determining the energy spectrum and wave functions by the program given in Ref. [10] or by the use of these data stored in advance on an external magnetic carrier. The program determines transition energies, wavelengths, the matrix elements of the transition operators in the form of "length", "velocity" and in a form with an arbitrary calibration constant [14], oscillator strengths and transition probabilities as well as level widths and autionization probabilities. Since it is a general-purpose program it is possible at the same time to calculate any desired set of the above characteristics. It is capable of performing calculations with numerical or analytical Slater radial orbitals. The latter can be used both in

- 6 -

the form of (1) with an arbitrary number of exponential terms and any values of exponent $\mathcal A$ and in the form

$$\mathcal{P}(nl|z) = \sum_{i} N_{i} C_{i} z^{n_{i}} e^{-\alpha_{i} z}, \qquad (2)$$

where

$$N_{i} = \left[\left(2x_{i} \right)^{2n_{i}+1} / \left(2n_{i} \right)^{1/2} \right]^{1/2}$$
(3)

The program calculates the transition characteristics for the discrete terms in the LS coupling scheme and for the discrete values of f in the intermediate coupling in the single-configuration approximation as well as in the case where multi-configuration wave functions are used.

The autoionization probabilities were calculated in the first order of the theory of perturbations with respect to interelectron interaction. In the case of the wave functions represented in the intermediate type of coupling, the autoionization probability of level $j(s^{-1})$ can be written as:

$$\Gamma(i) = \frac{2\pi 10^{17}}{2,42} \sum_{i} \left| \sum_{k,k'} (j | k) (k | H | k') (k' | i) \right|^{2}, \quad (4)$$

where H denotes the operator of electrostatic interaction energy, (j|b) and (b'|i) are the coefficients of expansion of the wave functions in the intermediate coupling within the framework of the LS coupling and i denotes the states of an ion with an electron in the continuous spectrum.

The radial integrals of electrostatic interaction of electrons were calcualted with the use of numerical solutions of the Hartree-Fock equations (11) and with the analytical radial wave functions (1).

Numerical solutions of the Hartree-Fock equations of the continuous spectrum were determined by the programs given in Ref. [15]. The radial orbital of an electron in the continuum was determined in the field of the "frozen" core of an ion having one electron less than an ion in the autoionized state. The radial orbitals of an electron in the continuous spectrum were orthogonalized to the corresponding orbitals of the core. The radial integrals were calculated with the use of the radial function of an electron in the continuum determined for the Hartree-Fock Hamiltonian, averaged over all terms. In the calculations with analytical radial orbitals an electron in the continuous spectrum was described by the Coulomb wave function [16] with an effective nuclear charge. The value of the effective nuclear charge was chosen as the difference between the nuclear charge of the ion and the number of electrons remaining after autoionization. In this case, the electrostatic interaction integrals were calculated with the help of the recurrence formulae of Ref. [17].

4. DISCUSSION OF RESULTS

4.1. Two-electron chromium ion

In Table 1 we compare the wavelengths λ and the probabilities of autoionization Γ and radiative decay A for the two-electron chromium ion. From the results given in Table 1 it will be seen that the probabilities of both radiative transitions and autoionization obtained by means of the anlaytical functions and numerical solutions of the Hartree-Fock equations are in satisfactory agreement. The radiative transition probabilities virtually coincide, while the autoionization probabilities differ by less than 2%.

The radiative transition probabilities calculated in Ref. [3] by the perturbation theory (perturbations with respect to 1/Z) agree satisfactorily with those obtained in our work. At the same time, the autoionization probabilities determined in Ref. [3] differ from our calculations by up to 14% and, in the case of the metastable state $2p^{2}$ $^{3}p_{0}$ with respect to autoionization, by a factor of 3.5.

The wavelengths of electric dipole transitions determined with the use of the analytical radial orbitals are shifted towards lower values by $(0.0056 \stackrel{+}{-} 0.0002) \stackrel{\circ}{A}$ in comparison with those obtained with the numerical functions and by $(0.0059 \stackrel{+}{-} 0.0007) \stackrel{\circ}{A}$ in comparison with those found by the perturbation theory [3]. Comparing the wavelengths obtained with the numerical functions and those by the perturbation theory, we find that they agree satisfactorily. The greatest deviation does not exceed 0.0013 $\stackrel{\circ}{A}$.

4.2. Three-electron chromium ion

The characteristics of the radiative and non-radiative transitions for the three-electron chromium ion obtained with analytical and numerical radial functions and also those obtained by the perturbation theory

- 8 -

(perturbations with respect to I/Z) [3,5] are given in Table 2. The comparison of the wavelengths in this table shows a very good agreement between the data obtained by the perturbation theory [3,5] and those derived from numerical solutions of the Hartree-Fock equations. The greatest deviation does not exceed 0.06%. The wavelengths of radiative transitions calculated with the use of analytical radial orbitals are shifted towards lower values by 0.0059 Å on an average, which amounts to less than 0.3%. The shift is the same as in the case of the two-electron chromium ion (see Table 1).

The electric dipole transition probabilities calculated with the use of numerical solutions of the Hartree-Fock equations and analytical radial orbitals display satisfactory agreement. The greatest deviation, amounting to 3.6%, is observed in the case of the $1s2p({}^{1}p)3p {}^{2}D_{5/2} - 1s^{2}3p {}^{2}p_{3/2}$ transition. In all other cases, they differ by less than 2.5%. In comparison with the radiative transition probabilities obtained by the perturbation theory [3,5] we note much higher deviations. For most transitions the deviations vary from 3 to 15%, although for some of them they are still higher. This refers to the probabilities of transitions between configurations $1s2p^{2}p_{3/2} - 1s^{2}2p {}^{2}p_{3/2}$. In the latter case, the radiative transition probabilities found by the perturbation theory and those by the variational methods differ by up to two orders.

The autoionization probabilities determined with analytical functions agree satisfactorily with those determined with numerical solutions of the Hartree-Fock. The greatest deviation is found for the level $1s2p({}^{1}p)3p {}^{2}p_{3/2}$ (12.6%). In all the other cases given in Table 2, the deviation from the values calculated with analytical functions is less than 7%. There is much less agreement between the autoionization probabilities obtained by both the variational methods and the results obtained by the perturbation theory [3,5]. The deviation varies from 7 to 30%, but in some cases it is twice as high and, for the level $1s2p({}^{3}p)3p {}^{2}p_{3/2}$, goes up to three orders.

Appendix 2 gives the calculation results in full for wavelengths (λ) and the radiative transition (A) and autoionization (Γ) probabilities. The radiative and non-radiative transition probabilities obtained with the use of numerical and analytical functions agree satisfactorily, while the wavelengths differ on an average by 0.3%. The autoionization probabilities for configurations 1s2p3s and 1s2p5p were not calculated since it is impossible to find numerical solutions of the Hartree-Fock equations for an electron in the continuum, owing to the inadequacy of the operational memory of the BEhSM-6 computer.

4.3. Four-electron chromium ion

In Table 3, the wavelengths and the electric dipole transition and autoionization probabilities determined with analytical and numerical radial orbitals are compared with each other and with the data of Ref. [4] obtained by the perturbation theory. It will be seen that the wavelengths calculated with the use of numerical solutions of the Hartree-Fock equations agree very satisfactorily with those obtained by the perturbation theory. The wavelengths determined with the help of analytical radial orbitals are shifted towards lower values on an average by 0.007 $\stackrel{\circ}{\text{A}}$. This value is somewhat higher than in the case of the two-electron and three-electron chromium ions although the percentage ratio remains the same - 0.3%.

The electric dipole transition probabilities calculated with the help of variational analytical and numerical wave functions exhibit very good agreement with each other, except for the intercombination transition $1s2p^{3} D_{2} - 1s^{2}2p^{2} p_{2}$, for which the difference is 23%. Comparison of these radiative transition probabilities with the data of Ref. [4] obtained by the perturbation theory (perturbations with respect of 1/Z) reveals satisfactory agreement (the difference between the probabilities varies from 10 to 20% for most of the transitions considered); the probability of the transition $1s(2s2p^2 p) p_0^3 - 1s^2 2s2p p_1^3$ obtained by the perturbation theory is twice the probabilities obtained in our work. The autoionization probabilities calculated with the use of numerical solutions of the Hartree-Fock equations are close to those obtained with analytical functions (in most cases they differ by less than 4%). The autoionization probabilities determined in Ref. [4] by the method of the perturbation theory (perturbations with respect to 1/Z) differ considerably from those found in the present study. These probabilities for the $1s^2p^3$ LS \neq states reveal the greatest difference: up to 37% in the case of numerical functions and up to 40% in the case of analytical functions.

The radiative transition and autoionization probabilities given in Appendix 3 show satisfactory agreement with each other. The wavelengths calculated with analytical functions differ by less than 0.3% from those obtained with numerical solutions of the Hartree-Fock equations. For an electron in the continuous spectrum, in the case of the configurations $1s^2 2s \ \epsilon l$, where l = 0,1,2,3, it was not possible to find the radial wave function by numerically solving the Hartree-Fock equations, owing to the inadequacy of the operational memory of the BEhSM-6 computer or for lack of the necessary degree of agreement. For this reason, the autoionization probabilities for configurations $1s2s2p \ nl \ (nl = 3s, 3p, 3d, 4p, 5p)$ were not determined with numerical wave functions.

4.4. Comparison with experiment

The experimentally measured wavelengths 2.212 Å and 2.216 Å given in Ref. [7] for transitions $1s2s2p^{2} {}^{3}D_{2} - 1s^{2}2s2p {}^{1}p_{1}$ and $1s2s2p^{2} {}^{1}D_{2} - 1s^{2}2s2p {}^{1}p_{1}$, respectively, agree satisfactorily with our calculated values obtained with the use of numerical solutions of the Hartree-Fock equations (2.2086 Å and 2.2170 Å).

A well-resolved spectrum of chromium ions in the 2.18-2.24 Å wavelength region emitted by a tokamak plasma was recorded in Ref. [18]. This wavelength region covers the resonance, intercombination and forbidden lines of Cr XXIII and also the lines emitted during the filling of the 1s-vacancy in Cr XXII, Cr XXI, Cr XX and Cr XIX formed by dielectron recombination or electron excitation.

Spectrum identification [18] was based on the calculated wavelengths found in the same study. Use was made of the energies and wave functions determined by the method of superposition of configurations with allowance for relativistic corrections in the intermediate coupling. The radial wave functions were found for the Hartree-Fock-Slater Hamiltonian averaged over all terms. The autoionization and radiative transition probabilities were also calculated. Table 4 contains a comparison of the wavelengths and the autoionization and radiative transition probabilities calculated by the different methods and those measured experimentally. Since it is difficult in a theoretical calculation to take full account of all correlation, relativistic and radiative corrections, the wavelengths in Ref. [18] are shifted towards higher values by $\Delta \lambda = 2.9 \times 10^{-3} \text{ Å}$ for Cr XXIII, by $\Delta \lambda = 3.4 \times 10^{-3} \text{ Å}$ for Cr XXII and by $\Delta \lambda = 3.9 \times 10^{-3} \text{ Å}^{\circ}$ for Cr XXI until they coincide with

the well-known lines of transitions $1s2p \, {}^{1}p_{1} - 1s^{2} \, {}^{1}s_{0}$, $1s(2s2p^{3}p)^{2}p_{3/2} - 1s^{2}2s \, {}^{2}s_{1/2}$ and $1s2s2p^{2} \, {}^{3}D_{3} - 1s^{2}2s2p \, {}^{3}p_{2}$, respectively. The wavelengths (λ_{k}) in Table 4, which were determined in our work, are also shifted towards higher values. The corrections are as follows (in $10^{-3} \, {}^{0}A$): Cr XXIII - 6.2, 0.6; Cr XXII - 7.4, 0.7 and Cr XXI - 7.8, 0.2 for GHRO and HFRO, respectively.

Table 4 shows that there is satisfactory agreement between the theoretical wavelengths and between them and the experimental data. The autoionization and radiative transition probabilities also agree satisfactorily. The exception is the probabilities of autoionization decay of states $1s(2s2p \ ^3p)^2p_{3/2}$, $1s2s2p^2 \ ^3D_1$ and $1s(2s2p^2 \ ^4p)^3p_1$ calculated with the numerical functions of the continuous spectrum.

4.5. Magnetic dipole and quadrupole and electric quadrupole transitions

In Table 5 we compare the oscillator strengths of the magnetic dipole and electric quadrupole transitions. The oscillator strengths calculated with the use of numerical solutions of the Hartree-Fock equations are in satisfactory agreement with the theoretical data taken from Ref. [9].

In Ref. [20] it is pointed out that the spectra of multicharged iron ions show intensive lines corresponding to the magnetic quadrupole transition $1s2p \ {}^{3}p_{2} - 1s^{2} \ {}^{1}s_{o}$ and to the relativistic magnetic dipole transition $1s2s \ {}^{3}s_{1} - 1s^{2} \ {}^{5}s_{o}$. We calculated the wavelengths and the probabilities of these transitions and obtained the value of $3.47 \times 10^{-9} \ {}^{-1}$ for the probability of the magnetic quadrupole transition $1s2p \ {}^{3}p_{2} - 1s^{2} \ {}^{1}s_{o}$ in Cr XXIII. This value is lower by only two orders than in the case of electric dipole transitions. The wavelength 2.1882 Å lies within the band of lines emitted during the filling of the 1s-vacancy through transition from the 2p-shell.

The wavelength of the allowed magnetic dipole transition $1s2s {}^{3}s_{1} - 1s^{2} {}^{1}s_{0}$ in the relativistic approximation with the use of the numerical and analytical non-relativistic wave functions is found to be 2.2025 Å and 2.1937 Å, respectively, while the solution of the relativistic Dirac-Hartree-Fock equations gives 2.1964 Å (the probability equals 4.12 x $10^{7} s^{-1}$), λ_{exp} being 2.2035 Å [18].

CONCLUSIONS

From the foregoing analysis of the results obtained in this work the following conclusions can be drawn:

- 1. The wavelengths of electric dipole transitions determined with the help of solutions of the Hartree-Fock equations show better agreement with the experimental values than in the case where analytical radial orbitals are used. It is therefore recommended that theoretical studies should use wavelengths obtained with numerical radial functions. In cases where calculations are performed on the basis of analytical radial orbitals the wavelengths obtained in the present study should be shifted towards higher values on an average by 0.3% of the calculated wavelength. Both these methods are most universal and effective and enable further refinements to be applied easily.
- 2. Numerical solutions of the Hartree-Fock equations and analytical radial orbitals are equally suitable for calculating the radiative transition and autoionization probabilities since within the required accuracy both these methods yield results of approximately the same quality. Somewhat greater deviations are observed in the case of the data of the perturbation theory (perturbations with respect to 1/Z), which in a number of cases result in changes of the order of the quantity itself.
- 3. It is advisable to use analytical radial orbitals for large-scale calculation of the autoionization characteristics of multicharged ions. This will save computer time and make it possible to take more accurate account of the energy dependence of the wave function of an electron in the continuous spectrum.

The authors wish to express their gratitude to S.A. Kuchas, G.V. Merkelis and E.G. Savichyus for their help with some of the calculations.

- 13 -

REFERENCES

- [1] Vainsh+ein L.A., Boiko V.A., Kononov E.Ya. Spectroscopy of multicharged ions in laboratory plasma. - Atomic Physics, 1979, v.6, p.159.
- [2] WEINSTEIN [Vainshtein], L.A., SOBELMAN, I.I., YUKOV, E.A., Excitation of Atoms and Spectral Line Broadening, Nauka Press, Moscow (1979), 319 pp. (in Russian).
- [3] Veinshtein L.A., Safronova U.I. Wavelengths and transition prebabiliting of satellites to resonance lines of H- and Helike iong. - Atomic Data and Nuclear Data Tables, 1978, vol. 21, no.1, p.49.
- [4] Safrenova U.I. Lisina T.G. Atomic constants of autoionization states of ions with Z=6,8,10-42 in the Be isoelectronic sequence. - Atomic Data and Nuclear Data Tables. 1979, vol. 2., no.1, p.49.
- [5] Vainsh.ein L.A., Safrenova U.I. Dielectronic satellite spectra for highly charged H-like ions (21 31 - 1s21, 21 31 -1s31) and He-like ions (1s21 31 - 1s²21, 1s21 31 - 1s²31) with 2=6-33. - Atomic Data and Muclear Data Tables, 1980, vol.25. no.4. p.311.
- [6] Boike V.A., Faenov A.Ya., Pikuz S.A. X-Rav spectroscopy of multiply-charged ions from laser plasmas. - J.Quant.Spectrosc.Radiat.Transfer, 1978, vol.19, no.1, p.1..
- [7] Boiko V.A., Chugunov A.Yu., Ivanova T.G., Faerov A.Ya., Holin I.V., Pikuz S.A., Urnov A.M., Vainshtein L.A., Safronova U.I. He-like ion resonance-line satellites radiated from Be-like ions. - Mon.Not...Astr.Soc., 1978, vol.185, no.2, p.305.
- [8] BOGDANOVICH, P.O., "A program for numerical solution of the Hartree-Fock equations" in: Collection of Software for Atomic Calculations, Vilnius, No. 2 (1978) 3 (in Russian).
- [9] KUPLYAUSKIS, Z.I., MATULAJTITE, A.V., YUTSIS, A.P., "The use of generalized hydrogen-line radial orbitals for calculating atomic structures", Litovskij Fizicheskij Sbornik 2, 4 (1971) 557.

- [10] TUTLIS, V.I., "A calculation program for the energy spectra of atoms and ions by the method of superposition of configurations" in: Collection of Software for Atomic Calculations, Vilnius, No. 6 (1980) 3 (in Russian).
- [11] BOGDANOVICH, P.O., "A calculation program for energy spectra with allowance for superposition of configurations on the base of numerical Hartree-Fock functions" in: Collection of Software for Atomic Calculations, Vilnius, No. 6 (1980) 108 (in Russian).
- [12] KUPLYAUSKENE, A.V., "A calculation program for the energy spectra of atoms and ions by the method of superposition of configurations using analytical radial orbitals" in: Collection of Software for Atomic Calculations, Vilnius, No. 6 (1980) 86 (in Russian).
- BOGDANOVICH, P.O., SHADZHYUVENE, S.D., BORUTA, I.I., RUDZIKAS, Z.B.,
 "A theoretical study of the energy spectra of isoelectron sequences of oxygen with allowance for relativistic corrections," Litovskij
 Fizicheskij Sbornik 16 4 (1976) 505.
- [14] KANYAUSKAS, Yu.M., MERKELIS, G.V., RUDZIKAS, Z.B., "Towards a theory of electric multipole transitions," Litovskij Fizicheskij Sbornik 16 6 (1976) 795.
- [15] GRUDZINSKAS, I.I., BOGDANOVICH, P.O., "A program for numerical solution of the Hartree-Fock equations for the continuous spectrum wave functions," GFAP (1977) No. 11002319 (in Russian).
- [16] LANDAU, L.D., LIFSHITS, E.M., Quantum Mechanics, Nauka Press (1974) 752 pp. (in Russian).
- [17] ZEMTSOV, Yu.K., "Calculation of autoionization probabilities for helium and helium-like ions", Opt. Spectrosk. 37 4 (1974) 626.
- [18] ,TFR group, J.Dubau, M.Loulergue. High-resolution spectra from inner-shell transitions in highly ionised chromium (CrXIX-CrXXIII). - J.Phys.B: Atom.Molec.Phys, 1982, v.15, no.7, p. 1007.
- [19] Fawcett B.C. Theoretical oscillator strengths for 2s²2p^N -2s2p^{N+1} and 2s2p^{N+1} - 2p^{N+2} transitions and for 2s²2p^N "forbidden" transitions BeI, BI, CI, NI, OI series, Z 26. - At. Data Nuclear Data Tables, 1978, v.22, no.6, p.473.
- [20] Dubau J., Loulergue M. Electron excitation cross sections and oscillator strenghts for highly ionised atoms. -Physica Scripta, 1981, v.23, no.2, p.136.

											· · · · ·	
	Sta	ate			GHRO		HFRO			The	eor. [3,5]
initial final		2	A	Γ	λ	Ä	Г	λ.	A	Г		
152p	ſP,	1s ²	15,	2.1756	3.62+I	0	2.1812	3.59+I	0	2.1814	3.46+I	0
252p	1P	1525	³ 5,	2.0842	5.04-I	I.82+I	2.0898	5.04 -I	I.89+I	2.0905	5 .3 6-I	I.97+I
252p	1P_1	1525	15,	2.0937	2.03+I	I.82+I	2.0994	2.02+I	I.89+I	2.1007	2.03+I	I.97+I
25.2p	3P2	1525	³ 5,	2.0963	2.07+I	I.46+0	2. 1019	2.06+I	I.44+0	2.1022	2.05+I	I.35+0
2s2p	³ P ₁	1525	³5,	2.1002	2.0I+I	I.88+0	2.1058	2.00+I	I.87+0	2.1061	I.99+I	I.84+0
2s2p	3p	1525	35,	2.1015	2.05+I	I.42+0	2.1071	2.05+I	I.44+0	2.1074	2.04+I	I.35+0
2s2p	*P1	1525	150	2.1098	4.86-I	I.88+0	2. II56	4.86-I	I.87+0	2. II64	5 .22- I	I.84-D
2p ²	¹ D ₂	152p	³ P ₂	2.0952	7.48+0	2. 65+I	2.1005	7.28+0	2.68+I	2.1010	7.85+0	2.79-I
$2p^2$	3p2	152p	30	2.0970	I.2I+I	u.32 0	2.1024	I.20+I	8.17+0	2.1031	I.22+I	9.46+0
2p ²	³ p ₂	152p	³ P ₂	2.1063	2.37+I	8.32+0	2.1062	2.37+I	9 . 17+0	≿.10 66	2.29+I	9.46+0
$2p^2$	'D2	152p	1P1	2.1014	3.40+I	2.65+I	2.1068	3.39+I	2.66+I	2.1070	3.3341	2.79+I
2p ²	3P0	152p	JP;	2.1022	4.I 3+I	I.I2+0	2.1076	4.II+I	I.12+0	2.1074	3.8I I	3.I2-I

Table 1. Comparison of wavelengths $(\stackrel{0}{A})$ and radiative transition and autoionization probabilities (10^{13} s^{-1}) for Cr²²⁺

Sta	te		GHRO		HFRO			Theor. [3]		
initial	final	λ	A	Γ	λ	A	Γ	λ	A	Г
1s(2s2p 1P)2p	1525 25 15	2,1838	I.27+I	7.83+0	2.1896	I.30+I	7.29+0	?. 1898	I.08+I	9.5I+O
15(252p ³ P) ² P	² 5 _{1/2}	2.1919	2.39+I	2.96+0	2.1977	2.35+I	2.89+0	2.1972	2.46+I	2.61+0
$152p^2$ $^2P_{3/2}$	15 ² 2p ² P _{3/2}	2.1903	4.78+I	2.75+0	2.1974	4.67+I	2.82+0	2.1965	4.52+I	3.52+0
² D _{3/2}	² P _{4/2}	2.1920	2.36+I	I.33+I	2.1948	2.32+I	I.34+I	2.1978	2.28+I	1.50+1
2D3-12	²p _{3/2}	2.1946	I.70+I	I.48+I	2.2017	I.66+I	I.49+I	2.2009	I.62+I	I.69+I
² D _{3/2}	² P _{3/2}	2.1963	I.57+0	I.33+I	2.2034	I.60+0	I.34+I	2.2021	I.88+0	I.50+I
4P5/2	$^2R_{\rm H}$	2.2032	I.57+0	I.39+0	2.2105	I.52+0	I.37+0	2.209I	I.6I+0	I.7I+0
4R3/2	² P _{3/2}	2.2055	4.37+0	I.03-I	2.2128	4.27+0	I.02-I	2.2 I09	5.I5-I ^a	7.40-2 ^a
152p(3P)3p 25,12	$15^{2}3p^{2}P_{3/2}$	2.1833	8.85+0	6 .49 –I	2.1890	9.05+0	5.67-I	2.1879 ^a	1.22+I ^a	I.57-I ^a
152p(1P)3p 2R	2 _{R3/2}	2.1784	3.3I+I	I.0I+0	2.1841	3.I9+I	I.08+0	2.1837 ^a	3.06+I ^a	5.27-I ^a
152p(3P)3p 2R12	² P _{3/2}	2.1916	9.IO-I	I.39-I	2.1975	9.II-I	I.38-I	2.1961 ^a	1.19+0 ^a	7.77-4 ⁸
152p(P)3p 2D3p	$^{2}P_{3/2}$	2.1798	3.64+I	2,92+0	2.1856	3.5I+I	3.18+0	2. J848 ^a	3.I9÷I ^a	2.96+0 ^a

Table 2. Comparison of wavelengths (A) and radiative transition and autoionization probabilities (10^{13} s^{-1}) for Cr²¹⁺

N.B. a - Values taken from [5].

- 17 -

[Sta	te		GHRO			HFRO			Theor. [4]		
initial		final		λ	A	Γ	λ	~ A	Г	λ	. A	Г
1525 ² 2p	10	152252	15,	2.2016	3.36+I	9,14+0	2.2067	3.35+I	9.94+0	2.2070	2.75+I	8.42+0
	30		15	2.2120	I.95+0	I.46+I	2.2173	I.87+0	I.63+I	2.2170	I.66+0	I.52+I
1s(2s2p2+P	Ŋ ³ Ŕ	15 ² 252p	$^{3}\rho_{1}$	2.1955	5.88+0	I.36+I	2.2000	5.86+0	I.38+I	2.2023	I.38+I	I.38+I
15252p2	15		1P,	2.2003	I.64+I	2.03+I	2.2073	I.65+I	I.96+I	2.2064	I.65+I	2 3 6+I
	³ D ₂		⁻ ρ,	2.2045	2.43+I	1.35+I	2.2086	2.40+I	I.40+I	2.2110	2.19+1	1.83+I
	³ D,		3P2	2.2062	I.7I+I	I.69+I	2.2138	I.72+I	I.7I+I	2.2134	I.66+I	2.09+I
			1P_1	2.2101	I.27+I	2.50+I	2.2170	I.24+I	2.60+I	2.2I58	1.08+I	2.50+1
	5P.		³ P ₂	2.2215	4.I8-I	4.25-I	2.2292	4.24-I	4.32-I	2.2281	4.30-I	5.5I-I
$152p^3$	3P0	$15^2 2p^2$	³ P ₁	2.2030	I.77+I	I.58+I	2.2076	I.78+I	I.7I+I	2.2075	I.64+I	2.34+I
	۰D,		3p	2.2049	2.32+I	2.45+I	2.2103	2.86+I	2 08+I	2.2109	2.16+I	2.66+I
	1P,		¹ 5	2.2087	2.18+1	I.6I+I	2.2167	2.I5+I	I.7I+I	2.2164	I.8I+I	2.22+I
	3D,		3µ2	2.2116	2.34+0	2.07+I	2.2169	2.72+0	2.02+I	2.2176	2.48+0	2.62+I

Table 3. Comparison of wavelengths (A) and radiative transition and autoionization probabilities (10^{13} s⁻¹) for Cr²⁰⁺.

,

	St	ate	Τ	GHRO			HFRO		18			
ini	tial	final	א <i>ג</i>	A	Γ	7.	A	Γ	λ,	$\boldsymbol{\lambda}_{exp}$	A	r
152p	1P,	152 1	2.1818	36.22		2.1818	35.35		2.1818	2.1818	34.67	
	³ P	1 19	2.1885						2.1885	2. 1886		
	30	10	2.1926	2.07		2.1927	2.06		2.1526	2.1927		
15(252		1525 25	2.1902	12.73	7.83	2.1903	I2.98	7.28	2.1904	2.1907	I2.48	7.63
15(252		25	2.1955	35.19	D.I4	2.1955	35.04	IO.0	2.1955	2.1955	C4.I 6	0.06
	2p,	25	2.1983	23.94	2.96	2.1984	23.5	2.89	2.1983	2.1982	22.95	2.91
152p2	20,0	15 2p 8	2.1994	23. 55	13.34	2.1955	23.23	13,36	2.1983		22.19	I3.IO
	"D_5/2	²ŗ	2.2010	I6.9 8	I4. 80	2.2024	16.64	I4.9I	2.2018	2.2016	I5.87	I4. 6I
15252p	$2^{1}D_{2}$	15252p 3	2.2044	3.73	25.0	2.2047	4.32	26.0	2.2018	. · · ·	4.37	23.30
152522p		152252 15	2.2394	33.57	9.14	2.2069	34.34	9.94	2.2075	2.2079	32.42	I2.4 0
15252p	² , ³ D,	152520 F	2.2110	I9.54	I3.40	2.2075	I9.70	468.0	2.2103	2.2I03	I9.6C	I2. 95
1s(?s2	3"P] "P	³ P	2.2II8	28.43	0.97	2.2075	28.70	91.46	2.2I09		28.0I	6.88
15252p	2^{3}	³ p	2.2123	24 . 3I	I3.47	2.2088	24.00	I3.95	2.2II6	2.2II 5	23.23	I3. 85
1s(2s2p	² ⁴ P) ³ P	³ P	2.2119	37.92	7.55	2.2II9	37.66	7.35	2.2II8		37.II	7.I7
1s 2s 2p	2 3D	³ p	2.2140	I?.IO	I6.93	2.2140	17.19	17.14	2.2140	2.2140	I6.38	17.37
	³ D,	3/5	2.2141	6.70	I3.40	2.2140	6.62	488.0	2.2141		6.95	I2. 95
1s(2s2p2	2°P)3P2	16	2.2142	4.30	I8.I8	2.2137	4.55	I6.I 9	2.2145		5.07	2I. 05
15252p	$2 1 \bar{D}_{2}$	19,	2.2179	12.73	25.02	2.2172	I2.43	26.02	2.2180	2.2173	II.56	23.30

Table 4. Comparison of wavelengths λ_k (A) and radiative transition A (10¹³ s⁻¹) and autoionization Γ (10¹³ s⁻¹) probabilities

- 19 -

0	Sta	ites	Magnetic	dipole	Electric	quadrupole
uration	initial	final	f	f/19/	f	f/19/
1s2232p2	10,	³ p	8,36-7	8,49-7		
	³ p_2	$^{3}\bar{p_{I}}$	6,27-7	5,88-7	5 ,72-I 2	4,46-12
	<i>D</i> ,	$^{3}\rho$	4,50-7	4,48-7		
	15°	sp,	I,266	I,39-6		
	sp2	³ <i>p</i> ₀ ,			3,78-II	3,83-II
15 ² 25 ² 2p ³	20512	#5312	I,60-8	I,90- 8	7,74-II	7,83-II
	${}^{2}D_{3/2}$	45312	3,95-7	4,91-7	3,39- <u>1</u> 1	3,10-II
	$^{2}p_{3/2}$	45312	3,69-7	3,36-7	· `	
	² P _{4/2}	⁴ S _{3/2}	3,157	3,52-7		
$1s^2 2s^2 2p^4$	³ ρ,	3p2	I,82-6	I,89-6		
	³ ρ	3p.	·1,20-2	I,5I-7		
	¹ U ₂	3p2	5,28-7	5,55-7		
	'D_2	³ P _q	I,08-7	I,II-7		A
	15°	3p	I,846	2,15-6		
•	3p	3p			8,8I-II	8,II-II
•	¹ D ₂	3p	_		3,95-I2	6, [,] 25–12
	"S ₀	³ ρ 2	—		3 ,3 9 -1 0	I,43-I0

·

Table 5. Comparison of oscillator strengths for magnetic dipole and electric quadrupole transitions in chromium ions

· · · · · · · · · · · · · · · · · · ·			CHRO				
SL1	511-		GIRO			HFRU	
	đ	<u>λ</u>	A	Γ	λ	A	r
			152p	- 15 ²			
II3	101	2.1756	3.62+I		2.1812	3.59+I	
313	IOI	2.1864	2.07+0	-	2.1921	2.05+0	
			252p	- 1525			
113	303	2.0842	5.04-I	I.82+I	2.0898	5.04-I	I.89+I
II3	IOI	2.0937	2.03+I	I+I3.I	2.0994	2.02+I	I.89+I
315	303	2.0963	2.07+I	I.46+0	2.1019	2.06+I	1.44+0
'3I3	303	2.1002	2.0I+I	I.88+0	2.1058	2.00 HI	I.87+0
311	303	2.1015	2.05+I	I.42+0	2.1071	2.05+I	I.44+0
313	IOI	2. I098	4.86-I	I.88+0	2. 1156	4.86-I	I.87+0
			$2p^{2}$ -	- 1s2p	-		
IOI	313	2.0840	7.83-2	I.34+I	2.0899	7.49-2	I.37+I
IOI	II3	2.0939	4.18+I	I.34+I	2.0993	4.I6+I	I.37+I
125	313	2.0914	4.62-2	2.65+I	2.0967	3.62-2	2.68+I
I25	315	2.095I	7.48+0	2.65+I	2.1005	7.28+0	2.68+I
315	313	2.0970	I.2I+I	8.32+0	2.1024	I.20+I	8.17+0
313	3II	2.0980	1.39+I	0	2.1034	I.38+I	ა
313	313	2.0991	9.82+0	0	2.1045	3.73+0	. 0
315	315	2.1008	2.37+I	8.32+0	2.1062	2.37+I	8.17+0
125	113	2.1014	3.40+I	2.65+I	2.1068	3.39+I	2.68+l
3II	313	2.1022	4.I3+I	I.I2+0	2.1076	4.II+I	I.I2+0
313	3I 5	2.1029	I.72+I	0	2.1083	I.7I+I	0
315	113	2.1071	5.7I+O	8.32+0	2.1125	5.50+0	8.17+0
313	II 3	2.1092	5.6 2-I	0	2.1147	5.61-1	0
3II	113	2.1123	7,52-2	I.I2+0	2.1178	7.20-2	I.I2+0

Appendix 1. Wavelengths (A) and radiative transition and autoionization probabilities (10^{13} s^{-1}) for Cr XXIII

<u> </u>	c'117'		GHRO			HFRO	alain, ganggen dengan dan pangang
SLJ	51 / -	λ	Λ	r	Я	A	Γ
			15 2 5 ²	- 1s ²	2p		
202	212	2.2228	9.27-I	I.I7+I	2.2334	6.5 2-I	
202	214	2.2272	9.52-I	I.I7+I	2.2379	7.39-I	
		•	15 (252	2p'P)-	$1s^{2}2s$		
212	202	2. 1838	I.27+I	, 7.83+0	2,1896	I.30+I	7.29+0
214	202	2.1830	0+16.I	9.79+0	2.1 888	I.0I+0	9.89-2
			15(25)	2p ³ P)-	15 ² 25		
214	202	2.1891	3 52+I	I.43-I	2.1948	3.50+1	I.00+1
· 212	202	2.1919	2.39+I	2.96+0	2.1977	2,35+I	2.89+0
414	202	2.2048	6.83 I	3.57-2	2.2IO 6	6.87-I	4.16-2
4I2	20%	2.2062	2.08-I	8.94-2	2.2121	2.09-I	I.06-2
			$1s2p^2$	- 15 ²	2р		
202	212	2.1818	4.04-I	6.00+0	, 2.1847	3.88-I	6.08+0
202	214	2,1860	1+60°2	6.00+0	2,1932	2.05+I	6.08+0
214	212	2.1860	1.30+0	2.75+0	2.1888	- .24+0	2.82-0
214	214	2.1903	4.78+I	2.75+0	2.1974	4.67+I	2.82+()
212	212	2.1912	4.I9+I	4.50-I	2.1940	4.I2+I	4.57-I
224	212	2.1920	2.36+I	I.33+I	2.1948	2.32+I	I.34+I
22 6	214	2.1946	I.70+I	1.48+I	L.2017	I.66+I	I.49+I
212	214	2.1954	I.02+I	4 50-I	2.2026	9.99+0	4.57-I
,224	214	2.1963	I.57+0	I.33+I	2.2034	I.60+0	I.34+I
414	212	2.2012	5.94-3	I.03-I	2.2041	5.54-3	I.02-I
412	212	2.2036	1.25+0	2.78-I	2.2065	I.?4-10	2.78-I
416	214	2.2032	I.57+0	I.38+0	2.2105	I.52+0	I.37+0
414	214	2.2055	4.37+0	I.03-I	2.2128	4.27-0	1.02-I
412	214	2.2079	7.04-2	2.78-I	2.2152	6.95-2	2.78-I
<i>~ •</i>			152p(1P)35 -	15 ² 35		
214	202	2.1786	3.45+I	I.07-2	2,1838	3.46+I	
212	202	2.1788	3.55+I	2.05-I	2,1841	3.58+I	

Appendix 2. Wavelengths (A) and radiative transition and autoionization probabilities (10^{13} s^{-1}) for Cr XXII

(°) (3	<u> </u>		GHF	20	HFRC)		
529	51	λ	A	Г	λ	A	τι 1	
			1s 2p(³/	0)35 -	15 ² 35			
214	202	2.1837	9.79-I	I.75+0	2.1891	I.06+0		
212	202	2.1874	I.54+0	I.64+0	2.1929	I.52+0		
`414	202	2.1399	I.9I+0	I.49-1	2.1956	I.9I+0	~	
412	202	2.1910	3.25-I	6.282	2.1967	3.30-I	وستبيض	
			1s 2p (*	P)3p -	15 ² 3p			
202	212	2.176I	I.57+0	2.43+0	2.1806	I.4I+0	3. I4+0	
212	2I2	2.1788	3.44+I	4.27-2	2.1834	3.33+I	9.20-2	
202	214	2.1774	2.85+I	2,43+0	2.I83I	2.73+I	3,14+0	
212	214	2.1801	8.I2-I	4.27-2	2.1859	6.60-I	9.20-2	
2I4	212	2.1771	3.55-I	I.0I+0	2.1816	3.55-I	0+80.I	
224	212	2.1791	3.39+I	3.89+0	2.1837	3.26+I	4.22+0	
214	214	2.1784	3.3I+I	J.01+0	2.I84I	3.I9+I	I.08+0	
224	214	2.1803	I.66-I	3.89+0	2.1862	I.60-I	4.22+0	
225	214	2.1798	3.64+I	2.92+0	2.1856	3.5I+I	3.18+0	
			152p(*	P)3p -	$1s^2 3p$			
202	212	2.1820	4.56-I	6.49-I	2.I865	4.82-I	5.67-I	
212	212	2.1887	6 . 18-3	I.96I	2.1933	3.80-6	I.8I-I	
412	212	2.1892	I.80+0	6.8I-2	2.1938	I.82+0	I.I2-I	
4:22	212	2.1932	6.42-I	I.57-3	2.1979	6.36-I	I.0I-3	
202	214	2.1833	8.85+0	6.49-I	2.1890	9.05+0	5.67-I	
212	214	2.1900	I.69-I	1.96-I	2.1958	I.62-I	I.8I-I	
412	214	2.1905	4.3I-I	6 . 8I–2	2.1963	3.8I-I	I.12-I	
4:22	214	2.1945	7.97-2	I.57-3	2.2004	7.95-2	I.0I-3	
404	212	2.1853	2.27-I	8.48-I	2.1898	2.55-I	8.59-I	
214	21.2	2.1904	5.99-I	I.39-I	2.1949	5.77-I	I.38-I	
414	212	2.1862	2.79-2	2.54-I	2.1908	3.16-2	2.57-I	
224	212	2.1878	I.93+0	I.I0+0	2.1923	I.97+0	I.08+0	
4.34	212	2.1922	I.80+0	I.77-2	2.1969	I.76+0	2.00-2	
41)4	214	2.1866	3.I2+0	8.48-I	2.1924	3.24+0	8.59-I	
214	214	2.1916	9.IO-I	I.39-I	2.1975	9.II-I	I.38-I	
414	214	2.1874	I.98-I	2.54-I	2.1933	I.76-I	2.57-I	
224	214	2.1890	I.II 6	I.I0-0	2.1948	1.00:6	0.30.I	

Appendix 2 (cont.)

617	c'11 7'		GHRO		-	HFRO	
52 j	51	λ	A	Г	λ	A	Γ
			1s 2p (3P)3p -	15 ² 3p		
424	214	2,1935	2.00-I	1.77-2	2.1994	2.02-I	2.00-2
416	214	2.1868	2.00-I	7.3I-I	2.1926	2.08-I	7.67-I
226	214	2.1840	8.49-I	3.34+0	2.1898	8.88-I	3.4I+0
426	214	2.1914	I.34+0	2.75-I	2.1973	I.29+0	2.84-I
			1s2p(1	P)3d -	$1s^2 3d$		·
212	224	2.1758	3.55+I	6.85-2	2.1812	3.50+I	I.2I-I
214	224	2.1749	I.3I+0	6.43-2	2.1803	I.28+0	I.15-1
224	224	2.1774	3.43+I	2.II-3	2.1829	3.38+I	3.46-3
214	226	2.1753	3.29+I	6.43-2	2.1811	3.24+I	I.15-1
224	226	2,1778	8.20-I	2.II-3	2,1837	7.86-I	3.46-3
226	224	2,1772	· I.30+I	I.94-I	2.1826	I.28+I	2.30-I
23 6	224	2.175J	I.83+I	I.35+0	2.1810	I.80+I	I.56+0
226	226	2.1776	2.28+I	I.94-I	2.1834	2.25+I	2.30-I
23 C	226	2.1760	I.I2+I	I.35+0	2.1819	I.IO+I	I.56+0
238	226	2.I 769	3.06+I	I.50+0	2.1827	2.99+I	I.75+0
			1s2p(3	P)3d -	1s²3d		
212	224	2,1807	I.42+0	3.88-3	2.1861	I.46+0	5.14-3
412	224	2,1834	5.19-4	3.27-7	2.1889	4.80-4	I.64-6
422	224	2.1873	I.33+0	2.44-3	2.1927	I.32+U	4.63-3
214	224	2.1825	7.20-I	4.69-3	2.1879	7.29-I	6.60-3
414	224	2,1835	I.I5-I	2.05-4	2.1890	I.I5-I	2.66-4
224	224	2,1882	1.5I-I	3.35-3	2.1937	I.52-I	5.35-3
424	224	2.1873	I.04+0	6.42-5	2.1928	I.02+0	2.46-4
434	224	2.1910	5.79-I	8.88-5	2.1965	5.76-I	I.28-4
214	226	2.1829	2,96+0	4.69-3	2.1887	2.9810	6.60-3
414	226	2,1839	I.6I-I	2.05-4	2,1898	I.62–I	2.66-4
224	226	2,1886	I,38+0	3,35-3	2,1945	I.36+0	5.35-3
424	226	2.1877	3.44-3	6.42-5	2,1936	3.06-3	2,46-4
434	226	2.1914	2.71-3	8.88-5	2.1973	2.77-3	I.28-4
416	224	2.1871	I.85+0	4.27-3	2.1925	I.85+0	9.73-3
22 6	224	2.1888	I.46+0	4.57-4	2.1943	I.45+0	1.71-3

	al 11-1		GHRO			HFRO	
517	52	λ	A	Γ	λ	A	Γ
			- 1s2p(³ P)3d -	15 ² 30		
42 6	224	2.1835	4.75-I	3.35-3	2,1889	4.72-I	5.22-3
23 6	224	2.1846	I.56+0	I.06-3	2.1900	I.57+0	3.87-3
43 6	224	2.I90I	I.59+0	3.44-2	2.1956	I.58+J	4.20-2
416	226	2.1875	2.64+0	4.27-3	2.1933	2.62+0	9.73-3
226	226	2.1692	I.33-I	4.57-4	2.1951	I.3I-I	I.7I-3
426	226	2.1839	6.17-2	3.35-3	2.1897	6.07-2	5.22-3
23 6	226	2.1850	I.22+0	I.06-3	2.1908	I.22+0	3.87-3
436	226	2.1905	1.08-I	3.44-2	2.1964	I.08-I	4.20-2
428	226	2.1845	8.26-2	I.64-2	2. 7903	8.38-2	I.80-2
238	226	2.1826	6.33+0	2.53-3	2.1884	6.43+0	I.07-2
438	226	2.1890	I.20+0	6.69-2	2.1949	I .I 9+0	7.63-2
•		· ·	1s2p('P)4p -	1s ² 4p		
202	212	2.1762	3.39+0	6.98-I	2.1816	3.20+0	7.60-I
214	212	2.1766	2.80-I	3,29 - 1	2.1819	2.76-I	3.25 - I
202	214	2.1768	3.32+I	6.98-I	2.1821	3.22+I	7.60-I
214	214	2.1771	3.58+I	3.29-I	2.1825	3.47+I	3.25-I
212	212	2.1772	3.35+I	5.6I-3	2.1826	3.24+I	7.4I-3
224	212	2.1772	3.6I+I	I.25+0	2.1826	3.49+I	I.22+0
226	214	2.1774	3.7I+I	8.IO-I	2. I828	3.58+I	7.80 - I
2 I2	2I 4	2.1777	3.25+0	5.6I-3	2.1831	3.06+0	7.4I - 3
224	214	2.1778	2.66-I	I.25+)	2.1831	2.64-I	I.22+0
		•	1s2p(3P)4p -	15 ² 4p		•
202	2 I2	2.1823	I.88-I	4.78-I	2.1876	I.93-I	4.88-I
202	2I4	2.1828	9.08-I	4.78-I	2.1882	8.67-I	4.88-I
22 3	214	2.1833	3.25-3	I.49+0	2.1886	2.00-3	I.49+0
2I4	212	2.1835	8.28-4	2.49-I	2.1889	I.28-3	2.5I-I
214	214	2.1841	4.24-I	2.49-I	2.1894	4.I6-I	2.51-1
404	2I?	2.1841	2.42-3	6.30-2	2.1895	2.60-3	6 .2I-2
413	. 14	2.1845	3.82-2	2.55-I	2.1899	3.82-2	2.59-I
404	~ J 4	2.1846	5.72-2	6.30-2	2.1900	5.47-2	6.2 I -2
224	212	2.1870	4.57-I	8.I3-I	2.1924	4.38-I	8.22-I

		•	GHRO		HFRO			
517	527	Я	A	Г	لا	A	Г	
			1s2p((p) 4p -	$15^{2}4p$			
212	212	2.1873	I.19-I	9.95-2	2.1926	9.82-2	9.63-2	
224	214	2.1876	I.8740	8.I3-T	2.1929	I.8I+0	8.22-I	
412	212	2.1877	I.5I+0	I.I3-1	2.1932	I.49-Ю	I.25-I	
212	214	2.1878	I.25+0	9.95-2	2,1932	I.23+0	9.63-2	
412	214	2.1883	3.56-I	I.13-1	2.1937	3.18-I	I.25-I	
426	214	2.1883	I.85+0	3.5I-I	2.1937	1.8I-0	3.51-1	
414	212	2.1884	I,30-Ю	9.19-2	2.1938	I.23+0	9.41-2	
414	214	2.1890	4.68-I	9.19-2	2.1943	4.57-I	9.41-2	
424	212	2.1890	7.86-I	I.06-I	2.1943	7.95 - I	i.05-I	
424	214	2.1895	2.39-3	I.06-I	2.1949	3.00-3	1.05-1	
422	212	2.1898	2.89-1	8.59-3	2.1951	2.8I-I	8.87-3	
422	214	2.1903	3.62-2	8.59 -3	2.1957	3.57-2	8.87-3	
			152p(10)5p -	15²5p			
202	212	2.170I	3.96+0	3.22-I	2.1814	3,7I+0		
212	212	2.1766	3.3U+I	3.07-3	2.1819	3.20+I		
202	214	2.1763	3.30+I	3.22 - I	2.1817	3.20+I	-	
212	214	2.1768	3.95+0	3.07-3	2.1822	3.70+0		
214	212	2.1762	2.07-I	I.59-I	2.1816	2.08-I		
224	212	2.1766	3.65+I	5.99 I	2.1819	3.5 3+1	-	
214	214	2.1765	3.65+I	I.59-I	2.1819	3.52+I		
224	214	2.1768	2.04-I	5.99-I	2.1821	2.07 I		
226	214	2.1766	3.70+I	7.96 - I	2.1820	3.57+I		
			1s 2p(3)	0)5p -	1s²5p			
202	212	2.1825	5.36-2	2.40-I	2.1878	5.35-2		
212	212	2.1870	2.52-I	5.86-2	2.1923	2.22-I	- and the second	
412	212	2.1873	I.64+0	7.34-2	2.1926	I.62+0		
422	212	2.1887	I.I8-I	I.29-2	2.I94I	I.I2-I		
202	214	2.1827	I.73-I	2.40-I	2. 1881	I.62-I		
212	214	2.1872	I.54+0	5.86-2	2,1926	I.52+0		
412	214	2.1876	3.47-I	7.34-2	2.1929	3.II-I		
422	214	2.1890	I.80-2	I.29-2	2.1944	I.78-2		
212 412 422	214 214 214	2.1872 2.1876 2.1890	3.47-I I.80-2	7.34-2 1.29-2	2.1929 2.1944	3.1I-I I.78-2	-	

Appendix 2 (cont.)

· · · · ·	-1:1-1		GHRO			HFRO	/
slj	5.7.4	λ	A	Γ	2	A	Г
			1s2p(3	P)5p -	15 ² 5p		
404	212	2.1834	I.3I-3	2.45-2	2.1887	I.35-3	
214	212	2.1830	I.I4-3	I.12-I	2.1884	I.38-3	
414	212	2.1876	I.95+0	1.09-2	2.1930	I.89-0	
224	212	2.1869	2.53-I	3.89-I	2.1922	2.43-I	
424	212	2.1383	7.53-2	I.43-I	2.1936	7.57-2	
404	214	2.1836	I.45-2	2.45-2	2.1890	I.36-2	
214	2I 4	2.1833	9.62-2	I.I2-I	2.1886	9.34-2	
414	2I 4	2.1879	2.60-I	I.09-2	2.1932	2.52-1	معي
224	214	2.1871	I.95+0	3.89-I	2.1925	I.90+0	
424	214	2.1886	I.7I-2	I.43-I	2.1983	I.68-2	
416	2I 4	2.1836	8.84-3	I.I2-I	2.1889	8.77-3	
226	214	2.1830	4.53– 5	6.95-I	2.1883	I.42-4	
426	214	2.1875	2.00+0	2.35-I	2.1928	I.95+0	

<u> </u>	c'11 d'		GHRC)		HFRO	
517	52	λ	A	I,	λ	A	Г
			1_2522	$2p - 1s^2$	$2s^{2}$		ويعتقا ويتبع ويتعاديه
113	IOI	2.2016	3.23+I	່າ.I4.0	2.2067	3.35×I	9.94+0
313	IOI	2,2120	I.95+0	I.46+I	2.2173	I.87-0	I.63+I
			1525^{2}	2p - 1s²,	$2\rho^2$		
II3	· 311	2,2382	3.0I-I	9.I4-:0	2.2490	2.07-I	9.94+0
17 3	3.73	2.2/06	2.73-2	9.14.0	2.2514	I.88-2	9.94:0
113	315	2.2425	2.33-I	9.14+0	2.2534	I.63-I	9.94+0
EI 5	313	2.2+73	3.I8-I	I.49-I	2.2584	2.29-I	I.67+I
II3	125	2.2479	I.25+0	9.14-0	2.2589	9.6I - I	9.94:0
313	311	2,2487	2.40-I	I.46+I	2.2598	I.78-I	I.63+I
315	315	2.2492	6.I8-I	I.49-I	2.2004	4.62-I	I.67 I
313	313	2.25II	2.03-I	I.46-I	2.2623	I.54-I	I.63+I
311	313	2.2522	7.80-I	I.50 I	2.2634	5.96.I	I.67 I
313	315	2.2530	3.I3-I	I.46 I	2.2643	2.5I-I	I.63 I
315	125	2.25 46	6.51-2	⁺ .49 I	2,2659	5.27-2	I.67.I
113	101	2.2559	9.66-I	9.14-0	2.2668	7.40-I	9.94.0
313	125	2,2585	I.I3-4	I.46 I	2.2698	7.66-5	I.63 I
313	101	2.2665	I.03-I	I.46 I	2.2778	7.94-2	I.63-I
		•	1s(2s2	'p ²² P) -	· 15252	?ρ	
315	313	2.1900	5.78-2	I.82:I	2.1945	2.03-I	I.64 I
3I 3	3II	2.I9II	I.I3-2	I.64.J	2.1947	8.97-3	I.90 I
313	313	2.1922	I.53-2	I.64 I	2.1966	I.38-2	I.90 I
315	315	2.1930	5.0I-I	I.82.I	2.2009	5.08-I	I.64.I
313	315	2.1952	9.69.0	I.64 I	2.2030	I.80.I	I.90.I
3II	313	2.1955	5.88.0	I.36 I	2.2000	5.86.0	I.38 I
315	113	2.2064	4.30 0	I.82° I	2.2115	4.55 0	I.64+I
313	II 3	2.2086	3.89-I	I.64.I	2 21 58	3.16-1	I.90 I
311	113	2.2II 9	I.76 Û	1.36 I	2.2190	2.40+0	I.38 I
			1s(2s .	2p ²⁴ P).	- 15 ² 252	?p	
315	313	2.20II	I.83 O	7.55.0	2.2052	2.0I 0	7.35-0
313	3II	2.2040	2.84-I	6.97-0	2,2073	2.87 I	9.15 I

Appendix 3. Wavelengths $(\stackrel{o}{A})$ and radiative transition and autoionization probabilities (10^{13} s^{-1}) for Cr XXI

		. <u></u>	GHRO			HFRO	
517	527	2	A	Γ	λ	A	Г
		, ,	19(252	$(\rho^{2} P) -$	15 ² 25 20)	
315	315	2.204I	3.79+I	7.55+0	2.2117	3.77-I	7.35+0
313	313	2.2052	3.34+0	6.97+0	2.2092	3.39:0	9.I5÷I
3II	313	2.206 I	4.63.I	4.45+0	2.2103	4.57+I	3.9I+0
313	315	2.2082	8.5I+O	6 . 97+0	2.2158	8.60÷0	9.I5+I
315	II3	2.2176	4.25-I	7.55+0	2.2240	3.I9-I	7.35.0
3I3	II3	2.2217	3.79-3	6.97i0	2.2285	5.46-2	9.I5+I
3II	II3	2.2229	3.32-I	4.45+C	2.2295	4.6I-I	3.9I+0
			1s 2s .	$20^2 -$	1s² 2s 2p	b	
IOI	313	2.1841	I.58-2	2.03+I	2.1884	6. I 4-2	I.96+I
II3	311	2.1844	5.27-2	3.47+0	2.1879	5.45-2	2.43+2
113	313	2.1855	2.85-3	3.47+0	2.1898	3.84-I	2.43+2
II3	315	2.1885	3.79-2	3.47:0	2.1962	3.72-2	2.43+2
I25	313	2,1937	3.53-2	2.50+I	2.1980	I.33-2	2.60+I
303	3II	2.1955	5.79-I	I.II+I	2.1990	6.I5-I	I.09iI
I25	315	2.1966	3.73 -0	2.50i I	2.2045	4.32+0	2.60+I
303	, 3 I3	2.1967	3.57+0	I.II+I	2.2010	4.09+0	I.09+I
IOI	'II3	2.2003	I.64+I	2.03+I	2.2073	I.65+I	I.96+I
303	315	2.1997	7.36+0	I.II+I	2.2074	6.45+0	I.09+I
II3	II3	2.2018	5.09+I	3.47+0	2.208I	5.0°-I	2.43+2
323	. 311	2.202I	8.84-2	I.34-I	2.2054	I.I 3-I	4.88+2
323	313	2.2032	I.95+I	I.34+I	2.2073	I.97+I	4.88+2
325	313	2.2045	2.43+I	I.35+I	2.2086	2.40+I	I.40+I
323	315	2.2063	6.70+0	I.34+I	2.2138	6.62+0	4.88+2
327	315	2.2062	I.7I+I	I.69+I	2.2138	I.72+I	I.7I+I
325	315	2.2075	1.6I+O	I.35+I	2.2151	I.6I+0	I.40+I
I25	II3	2.2101	I.27+I	2.50+I	2.21.0	I.24+I	2.60+I
303	II3	2.2131	I.05+0	I.II+I	2.2200	7.57-I	I.09+I
323	II3	2.2198	I.58-I	I.34+I	2.2265	5.6 7-5	4.88+2
325	II3	2.2210	I.25-I	I.35+I	2.2277	6.57-I	I.40+I
515	313	2.2208	8.35-4	7.07-2	2.2249	8.18-4	7.7I -2
5 I 3	ЗII	2.2217	I.40-I	I.69-I	2.2250	I.43-I	8. 25-I
517	315	2.2215	4.I8-I	4.25 , -I	2.2292	4.24-I	4.32-I

• /	alutat		GHRO			HFRO	
sıj	517	λ	A	Γ	א	A	Г
		1	15 2 5 2 F	, ² -	15 ² 252	0	
513	313	2,2229	3.32-I	I.69-I	2.2270	3.36-I	8.25-I
515	315	2.2238	2.IO-I	7.07-2	2.22.5	2.I2-I	7.71-2
5I3 ·	315	2.2259	I.95-2	I.69-I	2.2236	2.02-2	8.25-I
515	113	2.2376	6.03-5	7.07-2	2.2444	I.II-4	7.71-2
513	II3	2.2397		1.69 -1	2.2465	2.86-3	8.25-I
		1	s 2 s ('S)	2p35	$-15^{2}25$	35	
315	303	2.1851	7.27-I	I.30-I	2,1906	8.I7-I	
II3	303	2.1896	8.19+0	3.60-I	2.1949	8.52+0	
113	IOI	2.1930	2.29+I	3.60-I	2.1983	2.20+I	
313	303	2,1938	2.28+I	I.07-I	2.1993	2.22+I	
ЗП	303	2.1942	2.50+I	2.70-3	2.1997	2.43+I	****
3I3	I01	2.1972	2.39.0	I.67-I	2.2027	2.33+0	
		19	$25(^{3}5)^{2}$	2p(² P) 3s	- 15 ² 2s 3	35	
II3 [°]	303	2.1836	3.63-I	Í.29+0	2.1890	4.22-I	<u> </u>
313	303	2.1856	5.02+0	I.47-I	2.1911	4.99+0	
3II	303	2.1862	1.I5+I	2.33-I	2.1917	I.I9+I	
II3	IOI	2.1870	5.82+0	I.29+0	2.1923	6.72+0	
313	IOI	2.1890	5.06:0	I.47-I	2.1945	4,94+0	
3I 5	303	2. 1916	3.5I+I	2.33-9	2.1969	3.48+I	
		15	$2s(^{3}5)2$	$P_{O}(4P) 35$	$-15^{2}25$	35	
315	303	2.2007	2.I9-I	I.57-0	2.2059	2.59-I	
313	303	2.2039	8.38-2	I.50+U	2,2090	7.58-2	Strange Services
3II	303	2.205I	2.24-I	I.52+0	2. 2I02	2.I7-I	
313	IOI	2.2073	5.08-I	I.50+0	2.2I24	5.I2-I	
515	303	2,208I	6.35-I	4.68-2	2.2I3 5	6 .35 –1	
513	303	2.2096	2.3I-I	2.43-2	2.2I50	2.32-I	
513	IOI	2.2131	2.13-3	2.43-2	2.2I 84	I.89-3	
		1:	52s(15)	2p3p -	15225	3p	-
IOI	II3	2.1830	I.92-I	I.93+0	2.1887	Í.85-I	
311	II3	2.1955	I.68-2	2.73-I	2.2012	I.2I-2	
TOT	313	2.1810	9.15-2	I.93+0	2.1867	9.70-2	

			GHRO			HFRO	
517	527	λ	A.	Г	λ	A	Г
	— <u>— — — — — — — — — — — — — — — — — — </u>	1:	s2s(15)2	ρ3ρ -	1s22s31	5	
3II	313	٤. 1935	2.76+I	2.73-I	2,1992	2.7I+I	
303	3II	2.1906	I.I0+0	7.58-I	2.1962	I.I7+0	
II3	3II	2.1939	I.54+0	3.67-I	2.1995	I.58+0	
313	3Iİ	2.1919	2.08+I	2.22-I	2.1974	2.07+I	
323	3II	2.1963	7.I4-i0	4.34-I	2.202I	6.98+0	
303	II3	2.1928	I.44.I	7.58-I	2.1984	I:4I+I	Contacto de la contecta de la contec
II3	II3	2.1960	7.52+0	3.67-I	2.2017	7.35+0	
313	II3	2.I94I	I.42+0	2.22-I	2.1996	I.43+0	Lille + das
323	II3	2. I 986	I.72-0	4.34-I	2.2043	I.70-0	
303	3I3	2.1908	6.97+0	7.58-I	2.1964	7.04:0	
II3	313	2.I94I	3.42-2	3.67-I	2.1997	2.88-2	
313	313	2.I92I	7.42-0	2.22-I	2.1977	7.29+0	
323	313	2.1966	I.2I+I	4.34-I	2.2023	I.18+I	
303	315	2.1918	6.69+0	7.58-I	2.1974	6.46+0	
II 3	3I 5	2.1950	I.26 I	J.67-I	2.2007	I.23-I	
313	315	2.1920	4.52:0	2.22-I	2.1986	4.62 +0	
323	315	2.1975	I.33-2	4.34-I	2.2033	I.I7-2	
3 15	II3	2.1873	I.I7:0	4.90-I	2.1930	I.40+0	
125	II3	2.1856	9.02-2	3.3I O	2.1912	I.20-I	
325	II3	2.1963	4.4 4+0	I.23.0	2.2020	4.35+0	
3I 5	313	2.1853	4.62-3	4.90-I	2.1910	8.57-3	
I25	313	2.1835	I.I7-2	3.31 +0	2.1892	I.26-2	
325	313	2. I944	I.05 I	I.23+0	2.2000	I.03+I	
315	315	2.1863	2.30.0	4.90-I	2.1920	2.74+0	
I25	315	2.1844	8.57-2	3.3I+0	2.1902	9.23-2	
325	315	2.1953	9.60-0	I.23.0	2.2010	9.43+0	
327	315	2.1870	2.I9+0	I.29 0	2.1928	2.47+0	
		1	s 2s (³ S) 2	?p(² P)3p	- 15 ² 25	3p	•
311	113	2.1886	2.29-0	3.88-3	2.1943	2.68+0	
ICI	313	2.1895	4.08-I	9.I7-I	2.1950	5.52-I	
31.1	313	2.1867	7.99÷0	3.88-3	2.1924	8.42+0	
303	3II	2.1847	5.87-2	9.98-I	2.1903	6.95-2	

.

Appendix 3 (cont.)

	c'u z'		GHRO			HFRO	• <u>••••</u> •••••••••••••••••••••••••••••••
-6	528	2	A	Γ	Я	A	r
		/5	$2; (^{3}5) 2$	р(²Р)3р ·	- 15 ² 25.	30	
II3	311	2.1839	9.92-2	2.6I-I	2.1895	I.OI-I	
313	311	2.1858	5.36-2	I.47-2	2.1916	5.37-2	
323	3II	2,1870	4.87+0	2.67+0	2.1927	5.IO+0	
303	II3	2.1869	I.92+0	9.98-I	2.1925	I.56+0	
II3	II3	2.1860	8,50-0	2.6I-I	2.1917	9.4940	
312	II3	2.1280	3.43-2	I.47-2	2.1938	4.90-2	
323	II3	2. 1892	I.69-I	2.67:0	2.1949	I.39-1	
303	313	2.1849	I.0I.0	9.98-I	2.1905	I.00:0	
113	313	2.1841	4.84-2	2.61-1	2.1897	7.20-2	
313	313	2.1860	7.57-I	I.47-2	2.191 8	I.00-0	
323	313	2. J873	7.72+0	2.67+0	2.1929	7.88,0	
303	CI5	2, 1859	9.74:0	9.98-I	2.1915	I.04 I	
II3	315	2.1851	5.34-2	2.6I-I	2.1907	I.64-2	
3I <u>3</u>	315	2.1870	I.05+0	I.47-2	2.1927	9,93-I	
323	315	2,1882	6.II-I	2.67 0	2. 1939	5.89-I	
315	II3	2.1925	2.II+I	I.18+0	2. 1981	2.12+1	-
125	I13	2.1937	6.32+0	2.0I+0	2.1993	6.16:0	
325	II 3	2. 1886	3.13-0	2.I5 G	2.1943	3.I2+0	
3IJ	313	2. 1906	4.18-1	I.18:0	2.1967	3.96-I	
125	313	2.1917	2.26+I	2.0I+0	2.1973	2.28 I	
325	313	2.1867	1.89+u	2.15+0	2.1924	2.00+0	
375	315	£.1915	I.40.I	I.I8-0 '	2.1971	I.+0:I	
125	315	2.1927	4.83+0	2.01+0	2.1982	4.77-0	
325	315	2.1876	4.5I-0	2.15.0	2.1933	4.40+0	
327	315	2.1929	3.38 ₇ I	I.74-0	2.1985	3.36 I	
		19	525(³ 5)2	2p(⁴ P)3p ·	- 15 ² 253	3p	
311	II3	2.2089	2.74-I	3.96-3	2.2I-4	2.74-I	
5 21	113	2.2137	6.37-4	2.10-4	2.2193	7.15-4	
311	313	2.2069	3.02-I	3.9-3	2.2124	3.23-I	
5 2 I	313	2.2117	3.25-I	2.10-4	2.2173	3.30-T	
JC3	311	2.200I	6 .53-3	I.05+0	2.2055	7.09-3	
313	3II	2.2070	6.92-2	4.52-I	2.21 25	I.09-I	

G/7	c'/'7'		GHRO			HFRO	
52 J	528	λ	A	ľ	7	A	Ţ
		14	525(³ S)	2ρ(⁴ P)3ρ	$-15^2 2$	5 3p	
513	311	2.2073	4.62-I	2.06-I	2.212 8	4.38-I	*****
323	ЗII	2.2047	9.II-2	2.49-0	2.2I02	9.24-2	-
523	3II	2.2IIO	3.44-I	4.86-3	2.2I 66	3.50-I	-
303	II3	2.2023	I.59-I	I.05.0	2.2077	I.6 3- I	
313	II3	2.2092	2.60-2	4.52-I	2.2147	3.36-2	والوج المتكور
513	II3	2.2095	3.26-2	2.0ô-I	2.2150	2.82-2	-
323	II3	2.2069	7.46-I	2.49 0	2.2124	7.58-I	-
523	II3	2.2132	4.36-3	4.86-3	2,2I 88	4.33-3	
303	313	2.2003	8.90-4	I.05.0	2,2057	(.25-4	-
3I3	313	2.2072	3.97-2	4.52-I	2.212?	2.29-2	
513	313	2.2075	2.30-I	2.06-I	2,2130	2.52-I	*****
323	313	2.2050	3.97-I	2.49 0	2.2I04	4.02-I	
523	313	2.2II2	I.89-6	4.86-3	2.2I 58	9.7I-6	*****
303	315	2.2013	I.30-0	I.05.0	2.2067	I.36+0	
313	3 15	2.2082	6.35-3	4.52-1	2.2137	7.97-3	
513	3 I5	2.2085	3.47-2	2.06-I	2.2140	3.12-2	
323	3 I5	2.2059	I.86-2	2.49.0	2.2111	2.02-2	
523	315	2.2122	4.63-2	4.86-3	2.2 I78	4.72-2	
315	113	2.2078	2.49-I	9.07-I	2.2IL3	2.49-I	
515	I I3	2.2070	I.78-2	I.94-I	2.2125	I.96-2	
325	II3	2.2049	I.50-I	I.98+0	2.2I04	I.57-I	
525	II 3	2.2122	I.I3-2	I.2I-2	2.2177	I.I7-2	
3I 5	313	2.2058	4.49-I	9.07-I	2.2113	4.66-I	
515	313	2.2050	5.22-3	I.94-I	2.2105	ບໍ ∙ບ5–3	
325	313	2.2029	2.35-2	I.98-0	2.2084	2.37-2	نديون .
5 2 5	313	2.2I02	5.I4-I	1.21-2	2.2I 57	5.28-I	
505	315	2.2095	4.7I-I	9.40-2	2.2151	4.8I-T	
315	315	2.2068	8.77-3	9.07-I	2.2123	6.60-3	
5 I 5	3 15	2.2059	6.00-4	I.94-I	2.2II5	3.93-4	
32 5	315	2.2039	8.24-I	I.98+0	2.2094	8.57-I	
5 2 5	315	2.2III	I.97-3	1.2I-2	2.2167	2.53-3	
517	315	2.2053	6 .3 9 -2	3.96-I	2.2108	6.72-2	

.

			GHRO		HFR	0	· · · · · · · · · · · · · · · · · · ·
5LJ	szj	λ	A	<u>г</u>	λ	A	Г
<u></u>		1.	$s2s(^{3}s)2$	p(4P)3p	- 15 ² 25 3	3р	
327	315	2.2025	I.50-I	3.29+0	2.2079	Í.52-I	
527	315	2.2094	4.6I-I	8.83-2	2.2150	4.65-I	
		19	25 (15)	2p3d -	- 15 ² 25 3	3d	
3II	323	2.1824	I.6I+0	2.08-3	2.1880	I.77+0	
II3	323	2.1815	9.20-2	2.37-4	2.1871	I.JI-I	
313	323	2. 1895	2.IO+I	4.55-2	2.1950	2.II+J	
323	323	2.I92I	I.404I	3.79-3	2.1976	I.35+I	
II3	125	2.1847	2.98-2	2.37-4	2.1904	2.6I-2	
313	I25	2.1928	6 .35-I	4.55-2	2,1982	6.I 3 -I	
323	· 125	2.1954	4.60-I	3.79-3	2.2009	4.7I-I	
. II 3	325	2.1816	8.24-2	2.37-4	2.1873	I.04-I	-
313	325	2.1896	I.I6+I	4.55-2	2.1951	I.II+I	
323	325	2.1923	I.38+I	3.79-3	2. 1978	I.36+I	
315	323	2.1922	4.45-I	2.25-2	2.1978	3.48-I	
125	323	2.1886	4.5I-I	I.05-I	2.1941	3.97-I	· '
325	323	2.1836	I.I3-I	5.2 I-3	2.1958	I.38+I	
335	323	2.1940	I.II+I	·5.20-I	2. 1996	I.07+I	<u> </u>
315	125	2.1955	3.64+0	2.25-2	2.20II	3.6I+O	
125	125	2.1919	I.I5+I	I.05-I	2.1974	I.07+I	
325	125	2.1868	3.90+0	5.2I-3	2.1991	2.92+0	
335	125	2.1972	2.49+0	5.20-I	2,2029	2.46+0	
315	325	2.1924	4.80+0	2.25-2	2.1979	4.5I+0	
I25	325	2.1888	5.46+0	I.05-I	2.1942	5.59+0	
325	325	2.1837	2.5I-I	5.2I-3	2.1959	I.5I+I	
335	325	2.I94I	5.47-0	5.20-I	2.1997	5.220	
315	327	2.1926	I.43+I	2.25-2	2.1982	I.39+I	
125	327	2.1890	I.IO+I	I.05-I	2. 1945	I.09+I	
325	327	2.1839	4.85+0	5.2I-3	2.1961	3.08-I	
335	327	2.1943	2.10-2	5.20-I	2.1999	I.67-2	
327	125	2.1866	6.0I-4	2.82-2	2,1923	I.2I-3	
I37	125	2.1851	I.54-0	3.63-I	2.1907	I.66+0	-

<u> </u>	c111 .1		GHRO			HFRO	
517	529	λ	١	Г	λ	A	Р
	_	15	2 s (¹ 5) 2	p3d -	15 ² 2 5 3	d	
337	125	2.1959	I.70+0	6.72-I	2.2014	I.68+0	
327	32 5	2.1835	I.63-I	2.82-2	2. 1891	I.63-I	600 ,000
I37	325	2.1820	4.I2-4	3.63-I	2.1876	2.00-4	
337	325	2.1927	I.05+I	6.72-I	2.1983	I.0I+1	
327	327	2.1838	8.IO-I	2.82-2	2.1894	9.4I-I	-
I37	327	2.1822	6.93-3	3.63-I	2. I879	I.23-2	
337	327	2.1930	I.03+I	6.72-I	2. 1985	9,98+0	
33 9	327	2.1909	3.I3+I	I.I2-0	2. 1964	3.06+I	
	•	1	\$ <i>2</i> \$(³ \$)	2p(² P)30	1- :s ² 25	3d	
3II	323	2.1892	3.44, I	5.57-2	2.1946	3.39+I	
II3	323	2.1864	I.23-I	4,38-2	2.1918	I.64-I	-
3I3	323	2.1825	2.59-I	3.37-3	2. I88I	2.76-I	
323	323	2.1838	8.96-I	2.04-2	2.1893	9.28-I	
II3	I 2 5	2.1896	2.5I I	4.38-2	2. 1951	2.36 I	
313	I25	2.1857	I.32-I	3.37-3	2.1914	I.90-I	
323	I25	2.1870	I.02-I	2.04-2	2.1925	I.I3+I	
II3	325	2.18 65	5.07+0	4.38-2	2.1920	5.48:0	
313	325	2.1826	I.88+0	3.37-3	2.1882	2.IO+0	
323	32 5	2.1839	3.38+0	2.04-2	2.1894	3.14:0	-
3 15	323	2.1823	I.7I-3	6.I6 -3	2.1879	I.73-3	
I25	323	2.1842	5.70-I	5.76-2	2.1897	3.26-I	-
325	323	2.1903	[1.38+I]	I.48-I	2.1891	9.93-2	
335	323	2.1845	7.73.0	6.66-I	2.1900	8.27+0	
315	I 2 5	2.185 5	I.64-I	6.I6-3	2. I9II	2.I9-I	,
I25	I 2 5	2.1874	8.80.0	5.76-2	2.1930	9.20+0	
325	I25	2. 1936	3.08:0	I.48I	2.1924	5.IJ-0	
335	125	2.1877	2.70+0	6.66-I	2.1933	I.84+0	-
315	325	2.1824	3.46-I	6.I6 -3	2.1 880	3.7I-I	
I:25	32 5	2. 1843	2.74-2	5.76-2	2.1 899	2.46-3	
3:25	325	2.1904	I.5I+I	I.48-I	2.1893	2.85-I	-
3:35	325	2.184 6	4.0I+0	6.66-I	2.1901	4.13+0	
315	327	2.1827	4.14.0	6. I6 -3	2.1883	4.6I+0	

Appendix 3 (cont.)

C1 N	s'L'7' -		GHRO		HFRO		
SLY	367	λ	A	Г	λ	A	Г
		1 s 2	s (35)2	$Pp(^{2}P)3$	$d - 1 s^2 2$	2s3d	
125	327	2.1845	7.65-3	5.76-2	2.1901	I.78-I	
325	237	2.1907	4.5I-I	I.48-I	2.1895	4.53-0	
235	327	2.1848	7.07-I	6.66-I	2.1904	7.30-I	
327	I2 5	2.1937	7.99-2	I.93-I	2.1992	7.77-2	
I37	725	2.1911	3.IO.I	I.02+0	2.1965	3.05+I	
337	125	2.1877	2.03+0	4.56-I	2.1933	2.I3+0	
327	<u>25</u>	2.1906	I.65+I	I.93-I	2.1 96 I	I.62+I	
137	325	2.188u	I.94+0	I.02:0	2.1934	I.98+0	
337	325	2.1846	5.29+0	4.56-I	2.1901	5.50-0	
327	327	2.1909	I.854I	I.93-1	2,1963	1.84 I	
I37	327	2.1882	I.U7+0	I.02:0	2.1936	I.IO+0	
.33',	327	2.1848	4.63+0	4.56-1	2.1904	4.69.0	مر بر ان
339	327	2.1845	3.09.0	2.15-I	2.1901	3.38+0	
	1	s 2 s (3	\$)2p(4	P)3d-	$1s^2 2s 3$	d	
311	323	2.1980	4.27-I	2.12-3	2.2033	4.54-I	
5 21	323	2.2057	4.86-I	6.66-4	2.2IIU	4.87-I	
313	323	2.1986	3.94-3	2.44-3	2,2040	4.02-3	
513	323	2.2024	2.3I-3	I.03- 6	2.2078	2.26-3	
323	323	2.2749	6.88-3	7.89-4	2.2102	7.66-3	
5 23	323	2.2058	3.47-I	6.26-4	2.2II2	5.47-I	
5 33	323	2.2095	I.78-I	I 07-5	2.2I4 9	I.79-I	چند میں
3I 3	125	2.2019	7.94-2	2.44-3	2.2073	7.93-2	
513	125	2.2057	5.19-4	I.U3-6	2.2III	5.30-4	
3∡3	I25	2.2082	3.12-1	7.89-4	2.2136	3.09-I	
523	I2 5	2.2091	4.47-3	6.26-4	2.2145	4.2I-3	
5 33	125	2.2I 28	3.53-3	I.07-5	2,2182	3.38-3	
313	325	2.1988	7.35-I	2.44-3	2.2041	7.7"-I	
513	325	2.2026	I.44-4	I.03- 6	2.2080	1.69-4	
C 2 3	325	2.2050	4.89-2	7.89-4	2.2I04	5.06-2	منصف
523	325	2.2059	I.80-I	6.26-4	2.2114	I.79-I	a
533	325	2.2096	7.70-2	I.075	2.215_{1}	7.66-2	
315	325	2.1998	I.I4 0	2.88- 3	2.2052	I.22-2	

Appendix 3 (cont.)

0.1.7			GHRO			HFRO	
527	527	λ	A	L,	λ	A	Γ
		1s	2s(³ 5)2	p(⁴ P)3d	- 1s²2s	3a'	
515	323	2.2025	8.63-2	7.22-5	2.2079	I.IO-I	
325 1	323	2.2052	3.3I-I	I.63-3	2.2I06	3.52-I	
525	323	2.2060	2.57-I	7.70-4	2.2II4	2.57-I	
335	323	2.2028	I.58+0	6.9I-3	2.2082	I.32+0	
535	323	2.2090	2.69-I	5.82 -3	2.2144	2.70-I	
315	I25	2.2031	7.07-2	2.88-3	2.2085	6.99-2	
515	I2 5	2.2058	2.26-2	7.22-5	2.2II2	2.70-2	
325	I25	2.2085	6 .92–3	I.63-3	2.2I3 9	6 . 90 -3	
5 2 5	I2 5	2.2093	8.65-4	7.70-4	2.2I4 8	8.25-4	
335	I25	2.206I	3.82-I	6.9I - 3	2.2II5	3.69-I	
535	I25	2.2123	I.32-3	5.82-3	2.2178	I.27-3	
315	325	2.2000	I.07-I	2.88-3	2.2053	I.IO-I	
5 I 5	325	2.2026	3.9I-3	7.22-5	2.2080	7.95-3	,end 140,
325	325	2.2054	I.57-I	I.63-3	2.2107	I.54-I	~~~
525	325	2.2062	2.66-I	7.70-4	2.2116	2.7I-I	
335	325	2.2030	7.6I-I	6.9I-3	2.2083	7.86-I	10 m
535	325	2.209I	2.13-2	5.82-3	2.2.46	2.16-2	
315	327	2.2002	9.65 - I	2.88-3	2.2055	I.0I +0	and the second
515	327	2.2029	1.64-2	7.22-5	2.2083	I.82-2	
325	327	2.2056	I.4I-I	I.63-3	2.2110	I.48-I	
5 2 5	327	2.2064	I.47-I	7.70-4	2.2II 8	I.44-I	
33 5	327	2.2032	3.44-2	6 .9I-3	2.2086	3.34-2	
535	327	2.2094	2.29-2	5 .82–3	2.2148	2.27-2	~
517	I25	2.2097	3.32-2	9.50-4	2.2151	3.20-2	
327	1 2 5	2.2075	2.96-I	8.53-3	2.2129	2.94 -I	
527	125	2.2060	2.27-2	3.23-3	2.2II4	2.31-2	
337	I25	2.2040	9.19-2	I.28-2	2.2094	9.02-2	·
537	125	2.2II5	2 .3I- 5	I.4I-2	2.2170	I.72-5	
517	325	2.2065	2.69-I	9.50-4	2.2119	2.66-I	
327	325	2.2043	5.80-I	8.5 33	2.2097	6.0I-I	
527	325	2.2028	I.52-2	3,23-3	2.2082	I.67-2	
337	325	2.2029	I.2I+0	I.28-2	2.2062	1.21+0	

Appendix 3 (cont.)

and the second se		والمتحدي ونقاعه فبالمشاهد والمستند وبراه	فماعا بوعي زارية ويشعبنيها	ومالحين ومديون انتظار	سالك ففيستمسون الخراليك أكراك		the second s
617	C'1'7'		GHRO		HFI	RO	
51	329	<u>λ</u> .	A	Г	λ	A	Г
		19	525(³ 5)2	p(4P)3d	- 1s ² 2s3	Bd	
537	325	2.2084	3.53-I	I.4I-2	2.2138	3.50-I	;
517	327	, 2.2067	3.79-I	9.50-4	2.2122	3.8I-I	
327	327	2.2046	I.48-I	8.53-3	2.2099	I.48-I	
527	327	2.203I	7.51-2	3.23-3	2.2084	7.62-2	
337	327	2.20II	8.39-I	I.28-2	2.2065	8.73-I	
537	327	2.2086	I.37-4	1.4I-2	2.2I40	8.73-5	
529	327	2.2035	5.02-2	6.20-3	2.2089	5.16-2	<u> </u>
339	327	2.1996	I.93-0	2.59-2	2.2050	2.0340	
539	327	2.2073	4.32-I	2.30-2	2.2128	4.32-I	
		1	's 2s('S)	2p4p -	152254	ip .	
IOI	II3	2.1832	3.03-I	5.22-I	2.1892	3.85-I	
BOI	II3	2.1933	2.5I-I	2.30-I	2.1993	2.50-I	
IOI	313	2.1824	I.80-I	5.22-I	2.1864	2.09-I	
301	313	2.1926	2.5I,I	2.30-I	2.1985	2.46+I	
303	3II	2.1926	2.02-2	I.02-I	2,1985	2.49-2	
[13	3II	2. I896	I.00+0	3.29-I	2.1954	I.02+0	
313	3II	2.1902	2.25+I	I.54-I	2.1961	2.25+I	
323	3II	2.1936	7.80.0	2.07-I	2. 1995	7.62+0	
<u>303</u>	II3	2.1934	4.87+0	1.02-I	2.1993	4.77+0	
II3	113	2.1904	2.07+I	3.29-1	2.1962	2.07 iI	
BI 3	II3	2.I 9II	3.53-0	I.54-I	2.1969	3.46.0	
323	II3	2.1944	I.36.0	2.07-I	2.2003	I.30.0	
303	I13	2.1934	4.87+0	I.02-I	2.1993	4.77.0	
[]3	II3	2.1904	2.07 rI	3.29-I	2.1962	2.07 I	
313	II 3	2.I9II	3. 53+0	I.54-I	2.1969	3.46.0	
323	II3	2.1944	I.36 ±0	2.07-I	2.2003	I.30,0	
303	313	2.1926	2.86-I	I.02-I	2.1986	2.66-I	
113	313	2.1897	5.62-0	3.29-I	2.1955	5.52,0	
3I3	313	2.1903	7.99+0	I.54-I	2.1962	7.99:0	~-
323	313	2.1936	1.37 I	2.07-I	2.1996	I.35+I	
303	315	2.1930	I.83+I	I.02-I	2.1990	I.80+I	
113	3 I5	2.I90I	6.38 0	3.29-I	2.I959	6.30+0	

· •

<u> </u>	01. t		GHRO			HFRO	
517	52	λ	A	Г	λ	À	Γ
		1:	525(15)	2p4p -	15254	0	
313	3I5	2.1907	8.57-I	I.54-I	2.1966	8.80-I	
323	315	2.1940	I.2I-2	2.07-I	2.2000	9.99-3	
315	113	2.1849	6.I9-I	I.8I-I	2.1909	8.96-I	~~~~
I25	II3	2.1840	7.84-I	9.48-I	2.I 969	I.9I-0	
325	II3	2.1934	8.68:0	7.23-I	2.1993	8.64+0	
3 15	313	2.1841	2.75–I	I.8I-I	2.1901	2.5I-I	
I2 5	313	2.1833	5.88-5	9.48-I	2.1961	3.I5+I	
325	313	2.1926	2. 98+0	7.23-I	2.1986	2.80+0	······
315	315	2.1845	I.18+0	I.8I-I	2.1905	I.68+0	
12 5	315	2.1837	8.73-5	9.48-I	2.1965	1.53+0	
325	315	2.1930	1.26+I	7.23-I	2.1990	I.23+I	
327	3 15	2.1845	I.28+0	3.65-I	2.1905	I.46.0	<u>~</u>
		19	525(³ 5)2	о(² Р)4р-	1s2254p	0	
IOI	II3	2.1899	3.48+I	5.23-I	z.1957	3.48+1	
30I	II3	2.Iu57	9.59-I	9.20-5	2,1917	9.6 2- I	
IOI	313	2.1892	I.0I+0	5.23-I	2.1950	I.04+0	
30I	313	2.1850	I.02+I	9.20-5	2,1909	I.08-I	
303	3II	2.1840	I.02-I	I.88-I	2.1900	7.14-?	
II3	, 3II	2.1835	6.29-2	I.16-I	2.1894	7.02-2	
313	311	2.1844	2.87-I	8.58-2	2.1904	3. 38-1	
323	311	2.1 851	4.42+0	I-I6.8	2.1910	4.67+0	
303	II 3	2.1848	I.84-0	I.88-I	2.1908	2.12+0	
II3	II3	2.1843	2.45:0	I.16-I	2.1903	2.92+0	the state
313	113	2.1852	I.I6+0	8.58-2	2.1912	7.66-I	·
323	II3	2.1859	2.03 - I	8.8I-I	2.1918	I.77-I	
303	313	2.I84I	9.75-I	I.88-I	2.1900	I.07+0	
113	313	2.1836	7.6I - 5	I.16-I	2.1835	2.51-3	
313	313	2.1845	5.42-3	8.58-2	2.1904	8.02-2	
323	313	2.1851	7.8I+0	8.8I-I	2.1911	8.08+0	
303	315	2.1845	3.07-0	I.88-I	2.1905	4.67+0	
II3	315	2.1840	2.45-I	I.I6-I	2.1899	I.95-I	مسود

Appendix 3 (cont.)

~	0111-1		GHRO	an a	HFRO				
51	52	2	A	ľ	λ	A	Г		
		15	525(³ 5)2	?p(?p)4p	- 15 ² 254	ρ			
313	315	2.1849	6.90-0	8.58-2	2.1909	5.89+0			
323	315	2.1855	6.42-I	8.8I-I	2.1915	6.I8-I			
315	II3	2.1910	I.9I-0	7.77-I	2.1962	I.99.I			
12 5	113	2.1904	2.0I+I	6.79-1	2.1900	9.79-I			
325	II3	2.1855	4. I9+0	6.50-ï	2.1914	4.07.0			
3I 5	313	2.1903	3.I4+I	7.77-1	2.1 955	5.29-2	-		
125	313	2,1897	3.9I-2	6.79-I	2. I893	9.60-0			
325	313	2.1847	I.30+0	6.50-I	2.1906	1.45:0			
315	315	2.1907	I.70.0	7.77-I	2.1959	I.56.I	~~~		
125	3I 5	2.1900	I.54;I	6.79-I	2.1897	9.19-5			
325	315	2.1851	5.37:0	6.50-I	2.1911	5.2I+0			
327	315	2 .1905	3.49+I	6.9I-I	2.1963	3.48 I			
$1525(^{3}5)2p(^{4}P)4p - 15^{2}254p$									
JII	113	2.2062	4.86-I	2.05-3	2.2120	4.93-I			
521	II3	2.2090	5.6I - 4	I,84-4	2.2148	4.17 - 4			
3II	313	2.2055	3.27-3	2.05-3	2.2II2	4.07-3			
5 2 I	313	2,2083	2.60-I	I.84-4	2.2I40	2.64-I	 ,		
303	3II	2.20II	I.28-2	4.52-I	2.2068	I.39-2			
313	3II	2.2064	I.I3-I	5.67-I	2.2I2I	I.I3I			
513	311	2.2059	2.2I-I	I.I3-I	2.2II 6	2.26-I			
323	ЗII	2.2047	2.68-2	7.77-I	2.2105	2.50 - 2			
523	3II	2.2079	2.09-I	I.6I-2	2.2I 37	2,I2-I			
303	II3	2.2019	2.24-2	4.52-I	2.2077	2.15 - 2			
313	II3	2.2072	4.79-4	5.67-I	2.2I30	4.64-4			
513	113	2.2067	9.48-3	I.I5-I	2.2I25	9.39-3			
323	II3	2.2056	6.68-I	7.77-I	2.2114	6.79-I			
523	II3	2.2087	7.00-3	I.6I-2	2.2I 45	6.87-3			
303	313	2.20II	7.49-3	4.52-I	2.2069	8.52-3			
313	313	2.2064	4.40-4	5.67-I	2.2122	2.88-4			
513	313	2.2059	3.09-I	I.I5-I	2.2II7	3.I2-I			
323	313	2.2048	3.36-2	7.77-I	2.2106	3.15-2			
523	313	2.2080	I.92-2	I.6I-2	2.2137	I.99-2			

slj		GHRO			HFRO			
	527	λ	A	Γ	λ	A	Г	
		. 1s	15254	Ø				
303	315	2.2015	I.39I	4.52-I	2.2073	I.36-1	6-4mm	
313	3I5	2.2068	I.46-I	5.67-I	2.2126	I.47-1		
513	315	2.2063	I.27-3	I.15-I	2.2I2I	I.20-3		
323	315	2.2052	2.46-2	7.77-I	2.2110	2.49-2		
523	315	2.2009	3.56-2	I.6I-2	2.2142	3.59-2		
505	II3	2.2037	2,35-3	4.43-2	2.2095	2.44-3		
315	II3	2.2029	I.90-2	4.62-I	2.2086	I.942	all the second	
515	II3	2.2072	2.41-3	3.46-2	2.2130	2.20-3	-	
325	113	2,2058	3.87-I	7.89-I	2.2115	3.93-I		
525	II 3	2.208I	4.20-2	7.90-2	2 .2I3 9	4.30-2		
505	3I3	2.2029	I.I3-3	4.43-2	2.2087	I.22-3		
315	313	2.2021	I.98-3	4.62-I	2.2978	2.47-3	-	
515	313	2.2064	5.89-I	3.46-2	2.2122	5.94-I		
325	313	2.2050	9 .I3-2	7.89-I	2.2108	9.15-2	مجمين	
525	313	2.2073	I.I5-I	7.90-2	2.2131	I.I8-I		
505	315	2.2033	4.IO-3	4.43-2	2.2091	4. I6-3		
315	315	2.2025	I.05-I	4.62-I	2.2083	I.06-1		
515	3I 5	2.2068	I.94-I	3.46-I	2.2I2 6	I.97-I	·	
325	315	2.2054	I.82-I	7.89-I	2.2112	I.82-I	-	
525	315	2.2077	8.46-2	7.90-2	2.2I3 5	8.52-2		
517	315	2.2032	I.25-2	I.48-I	2.2090	I.2 9–2		
327	315	2.2020	I.76-3	I.34+0	2.2077	I.22-3	e	
527	315	2.2064	6.05-I	I.44-I	2.2121	6.I5 -I	-	
		15	25('5)2	2p5p -	15²255	ζ ρ		
IOI	II3	2.1829	7.27-I	2.05-I	2.1891	8.32-I	<u>مرمن</u>	
311	II3	2.1925	6.83-I	I.4I-I	2.1985	6.83-I		
IOI	CI3	2.1825	8.48-2	2.05-I	2.1887	1.32-I		
3II	CI3	2.1921	2.42+I	I.4I-I	2.1982	2.34+I	, mainte	
303	HII	2.1897	2.I9+I	2.66-I	2.1955	2.25+I		
II3	311	2.1894	I.04+0	I.72-I	2.1951	9.88-I		
3I3	ЗII	2,1921	5.56-4	2.86-I	2.1981	4.2I-4		
323	311	2.I925	8.06+0	3.79-I	2.1986	7.74-0		

- 42 -

Appendix 3 (cont.)

0/7	-1.1.AI		GHRO		HF	RO	
· · · · · · · · · · · · · · · · · · ·	527	$\overline{\lambda}$	A	Γ	۲	A	Γ
		1.	s25(15)	2p5p -	15255	Γ,ρ	
303	II3	2.1901	3. 89+0	2.66-I	2.1959	3.64+0	
II3	II3	2.1898	2.I9+I	I.72-I	2.1955	2.27+I	
3I3	II3	2.1925	4.38+0	2.86I	2.1986	4.18+0	
323	II3	2.1929	I.22+0	3.79-I	2.1991	I.I3+0	
303	313	2.1898	8.03+0	2.66-1	2.1955	8.38+0	
II3	313	2.1894	4.95+0	I.72-I	2.1952	4.77+0	
3I3	313	2.I92I	2.79-I	2.86-1	2.1982	2.50-I	
323	3I 3	2.1926	I.45 I	3.79-I	2.1987	I.4I+I	
303	3I 5	2.1900	4.46-I	2.66-I	2.1957	4.67-1	
II3	3I 5	2.1896	5.96+0	I.72-I	2.1954	5.99+0	
3I 3	315	2.1923	I.95.I	2.86-I	2.1984	I.89-I	
323	315	2.1928	I.27-2	3.79-I	2.1989	6.99-3	
BI 5	II3	2.1837	8.82-2	I.2I-I	2.1899	I.87-I	
[25	II3	2.1901	9.89-I	3.55-I	2.1959	I.I6+0	
325	II3	2.1925	I.OI+I	3.99-I	2.19 85	9,94+0	
3I 5	313	2.1833	6.94-I	I.2I-I	2.18 96	7.26-I	
25	313	2.1898	3.23+I	3.55-1	2.1955	3.3I+I	
125	313	2.192I	I.6I+0	3.99-I	2.1982	I.48+0	
315	315	2.1835	3.0I-I	I.2I-I	2.1898	5.07-I	
[25	315	2.1900	I.08+0	3.55-I	2.1957	8.14-I	
325	315	2.1923	I.27+I	3.99-I	2.1984	I.22-I	
327	31 5	2.1835	I.II+0	I.59-I	2.1897	I.28+0	
		19	525(³ 5)2	Pp (PP) 5p	- 15 ² 25	5p	
IOI	113	2.1896	3.34+I	2,63–Í	2.1953	3.42.I	") tie dief
)]]	II3	2.1845	6.40-I	I.06-3	2.1907	6.97-I	
IOI	313	2.1892	I.39+0	2.63-I	2.1949	I.50+0	
311	313	2.1842	I.00+I	I.06-3	2.1903	I.17-I	
303	311	2.1833	3.97-I	I.22-2	2.1895	3.75-I	
[]3	311	2,1830	3.34-2	I.23-2	2.1892	3.99-2	
313	311	2.1839	2.55-I	4.5 I-3	2.1900	3.32-I	a
323	311	2.1842	3.80+0	3. 98–I	2.1903	4.4I+0	
303	II 3	2.1837	4.22-I	I.97-2	2.1899	5.6 3- I	

Appendix 3 (cont.)

			GHRO		HFRO					
517	527	λ	· ·	Г	λ	A	Г			
$1525(^{3}S)2p(^{2}P)5p - 15^{2}255p$										
II3	II3	2.1834	I.27+0	I.23-2	2.1896	'I.67+0				
313	II3	2.1843	2.18+0	4.5I-3	2.1904	2.25+0				
323	II3	2. 1846	I.62-I	3.98-I	2.1907	I.46-I	بوت حلد			
303	313	2. I833	5.32-I	I.97-2	2.1896	7.38-I				
II3	313	2.1830	2.69-2	I.23-2	2.1893	6.00-3				
313	313	2.1839	8.87-2	4.5I-3	2.1900	6.47-2				
323	313	2.1843	7.19+0	3.98-I	2.1904	8.25+0				
303	3,5	2.1835	2.08-I	I.97-2	2.1898	5.47-I	-			
II 3	3I 5	2.1832	2.54-I	I,23-2	2. I895	2.20-I				
313	315	2.1841	8.72+0	4.5I-3	2.1902	9.85+0				
323	315	2.1845	6.I8-I	3.98-I	2.1906	6.95 - I	-			
315	113	2.1898	I.89+I	3.43-I	2.1956	I.89+I				
125	II3	2.1833	8.I6-I	3.9I-I	2.1895	I.0I+0				
325	II3	2.1844	4.63.0	2.47-I	2.1905	5.23+0				
3 15	313	2. 1895	I.74-3	3.43-I	2.1952	3.30-2				
125	313	2.1829	7.0I-3	3.9I-I	2.1891	5.86-3				
325	313	2.1840	7.34-I	2.47-I	2.1901	8.83-I				
315	315	2.1897	I.56+I	3.43-I	2.1954	I.64 I	-			
12 5	315	2.1831	7.99-2	3.9I-I	2.1893	6.37-2				
325	315	2.1842	5.7I+O	2.4'7-I	2.1903	6.46+0				
327	315	2.1898	3.43+I	3.36-I	2.1956	3.50+I				
		f.	525(³ 5)	2p(4P)5p	$-15^{2}25$	5p				
3II	II3	2.2052	5.26-I	Í.06-3	2.2112	5.73-I				
52I	II3	2.2072	3.22-3	I.27-4	2.2134	2.94-3				
3II	313	2.2048	6.45-3	I.06-3	2.2109	5.85-3				
52I	313	2.2068	2.I9-I	I.27-4	2.2130	2.35-I				
303	311	2.2012	4.80-3	I.43-I	2.207I	5.18-3				
313	311	2.2059	3.46-2	3.6I-I	2.2120	3.5I-2				
513	3II	2.2050	3.06-I	5.07-3	2.2III	3.35-I				
323	311	2.2045	3.43-2	2.93-I	2.2105	3.45-2				
5 23	311	2.2066	I.29-I	4.84-2	2.2128	I.39-I	-			
303	II3	2.2016	4.00-3	I.43-I	2.2075	4.36-3				

Appendix 3 (cont.)

313	527	λ	A	<u></u>	~		
313				۲	<u></u>	A	<u> </u>
313		19	s2s(³ 5)2	ים ⁽⁴ ר) 5 ס	- 15 ² 253	бр	
	II3	2.2063	3.86–3	3.6I-Í	2.2125	4.59-3	
5 I 3	II3	2.2054	I.46-2	5.07-3	2.2115	I.48-2	
323	II3	2.2049	5.68-I	2.93-I	2.2109	6.I6-I	
523	113	2.2070	9.92-3	4.84-2	2.2132	1.03-2	
303	313	2.2012	3.42-3	I.43-I	2.2071	3.74-3	
313	3I3	2.2060	I.53-2	3.6I-I	2,2121	I.64-2	
513	313	2.205I	2.74-I	5.07-3	2.2II2	2.85-I	
323	313	2.2045	5.06-3	2.93-I	2.2I06	5.00-3	
523	313	2.2067	4.59-2	4.84-I	2.2128	4.98-2	
303	315	2.2014	2.77-2	I.43-I	2.2073	2.82-2	
313	315	2.2062	I.44-I	3.6I-I	2.2123	I.54-I	
513	315	2,2053	7.08-3	5.07-3	2.2114	7.76-3	
323	315	2.2047	5.51-2	2.9 3 –I	2.2IU8	6.07-2	
523	315	2.2069	3.03-3	4.84-I	2.2130	3.18-2	
505	II3	2.2024	5.42-4	I.76-2	2.2084	5.16 - 4	
315	II3	2.2020	3.93-3	I.76-I	2.2079	4.15-3	
515	II3	2.2067	5.97-2	6.83-2	2.2129	6.5I-2	-
325	II3	2.2050	3.65-I	3.99-I	2.2IIU	3.94-I	
525	II3	2.2057	2.25-4	9.17-3	2.2II8	8.64-5	
505	313	2.2021	5.14-4	I.76-2	2.2080	5.29-4	
315	313	2.2016	9.42-4	- I.76-I	2.2075	I.I7-3	
515	313	2.2064	2.87-2	6.83-2	2.2125	2.98-2	
325	313	2.2046	4.2I-2	3.99-I	2.2106	4.69-2	
525	313	2.2053	6.0I-I	9.17-3	2.2II4	6.5I-I	
505	315	2.2023	I.43-3	I.76-2	2.2082	I.25-3	
315	315	2.2018	2.12-2	I.76-I	2,2078	2.28-2	
515	315	2.2086	I.I2-I	6.83-2	2.2127	I.2I-I	
325	315	2,2048	2.23-I	3.99-I	2.2109	2.42-I	
525	315	2 2055	9 T7-2	9 T7-3	2.2TT6	9.79-2	
517	315	2 2022	2.53-3	6.20-2	2,2082	2.90-3	
327	316	2.2016	T. 47-9	6.TT-T	2.2075	2.29-8	
527	315	2.2052	6.07-T	9.75-2	2.2113	6.59-I	

alla alla		HFRO		<u> </u>	alitat	HFRO		
527	527	λ	A	- 52	52 5	λ	A	
15-25 ² 2p						15 ² 25 ² 2	2,p ⁴	
214	212	II96.0	3.79-I	3II	315	1679.0	2.09-I	
		15 ² 25 ² 2	p^2	125	3II	I3I5.6	I.52-2	
3I5	3II	I228.0	I.67-I	IOI	315	344.14	1.9I+I	
I25	3II	542.40	I.I5-2	IOI	125	645.I2	7.82+I	
IOI	315	395.59	6.60+I	313	315	I726.6	I.08-I	
IOI	I25	66 7.30	5 .3 6+I	125	313	I287.8	2.09-2	
315	313	2712.2	5.I9 -3	I 2 5	315	737.63	2.2I+C	
I25	313	7I5.3I	7.70-I					
125	3 15	971.53	9.80-I			15252 d	$2\rho^{5}$	
•		_		212	214	I437.9	4.23-I	
		15²25²	$2\rho^3$		•			
212	404	399.97	2.47+0			·		
214	212	2924.3	I.42-3			•		
212	224	836.33	8.07+0					
212	226	I034.4	2.22+0					
214	404	351.84	5.65-2					
224	404	766.58	3.85-I					
214	224	650.34	7.90+0					
226	404	65 2.I 3	I.2I+0					
214	226	764.IO	I.44+I					
22 6	224	4368.I	2.62-4					

Appendix 4. Wavelengths (A) and electrical quadrupole transition probabilities (s^{-1}) in chromium ions

		HFRO		<u></u>		HFRO		
517	52']'	λ	A	· 51J	5'L']'	λ	A	
		15 ² 25 ²	2р			15252	p_{ρ^2}	
214	212	II96.0	5.26 +3	212	412	239.12	2.34+4	
		152252	$2\rho^2$	202	212	II7I.O	5.69+3	
313	3II	2244.0	′I.5I→3	202	412	I98.57	I.70+2	
IOI	3I3	345.24	7.04+4	2I4	212	963.73	5.0I+3	
315	313	2712.2	5.68.2	212	414	261.41	3.22+4	
I25	313	7I5.3I	5.87+3	212	224	818.03	2.72+2	
I25	3 I5	97I.53	5.9143	214	412	I9I.58	1.33+3	
		$15^2 2 5^2$	$2\rho^3$	414	412	2804.3	9.94+2	
212	404	399.97	Í.3I-4	224	412	337.88	I.54+3	
214	212	2924.3	2.94-2	214	202	5444.4	2.66+I	
2I2	224	836.33	4.18+3	202	414	213.70	3.67.4	
214	404	35I.84	I.99+4	202	224	48I.60	2,39+3	
224	404	766.58	4.48+3	214	414	205.63	6.43+3	
2I 4	224	650.34	I.62.4	2I4	224	442.46	8.30+3	
226	404	652 . I3	2.50,2	224	414	384.17	4.05:3	
214	226	764.IO	5.60+3	214	416	224.48	I.2I+3	
226	224	4368.I	I.09+2	214	226	467.10	4.57+3	
		15 ² 25 ²	2p ⁴	4I 6	414	2449.4	I.08+3	
3II	313	60892.	2.13-I	226	414	367.34	5.2343	
IOI	313	429.8I	6.65.4	224	416	455.63	2.II+3	
313	⁾ 3I5	1726.6	4.07+3	226	224	8387.4	I.76.I	
I25	313	I287.8	4.35+2	226	41 6	432. I6	I.33+4	
I2 5	315	737.63	6.47+3			152252	р 3	
		15 ² 25 ²	2p ⁵	303	3II	547.79	2.34+3	
2 I2	214	I437.9	6.04+3	II3	3II	319.43	I.I6+3	
		15225 Z	20	3I3	3II	I6932.	3.30.0	
II3	311	278.18	1.25+4	3II	323	870.94	6.99+3	
313	311	4202.5	2.39-2	II3	303	766.24	I.28-4	
II3	313	297.90	7.52.3	303	313	566.II	1.08+3	
113	3 15	366.27	6.85.3	303	323	336.28	2,2943	
3 15	313	I595.9	3.27+3	II3	313	325.57	3.27-3	

Appendix 5. Wavelengths (Å) and magnetic dipole transition probabilities $(\rm s^{-1})$ in chromium ions

• •

.

Appendix 5 (cont.)

		• HFRO				HFRO		
517 527	5'2'].	λ	A	sıj	57.7	2	A	
		$15^{2}252p^{3}$				15²252	p ⁴	
II3	323	233.7I	8.3I÷3	202	4I2	293.53	6.I3-3	
3I3	323	828.33	7.68-3	212	214	I578.4	3.7I+3	
303	505	172. 95	I.90-3	212	4 I4	212.50	I.05+4	
303	315	603.97	I.29+3	212	224	397.90	7.5I+3	
125	303	568I.I	5.24-2	214	412	256.58	I.33+3	
303	325	335.46	6.40-3	412	414	5712.2	2.33+2	
II3	505	I4I.I 0	7.58+I	224	412	495.6I	I.I2+3	
II3	315	337.75	5.34+3	214	202	2038.5	I.70+2	
II3	I25	885.70	5.78+0	202	414	279.18	5.03-4	
II3	325	233 3I	2.75-4	202	224	719.90	I.27+2	
313	505	249.02	2.07-4	214	414	245.55	5.67+2	
315	313	9030.7	I.82+I	214	224	532.02	5.55.3	
I25	3I3	5I4.8I	3.74.3	224	414	456.04	5.20+3	
313	325	823.34	5.75+I	214	416	221.32	7.39+3	
323	505	356.07	2.16-3	214	226	558.99	2.47-3	
315	323	758.74	I.12.3	414	418	2242.I	2.13-3	
I25	323	3I7.49	I.53+2	226	414	437.93	I.0I-3	
323	325	I3652I	I.47-2	224	416	378.96	3.02-2	
3I5	505	242.34	3.65.4	226	224	II028.	7.84-0	
I25	505	167.84	6.0I+2	228	4Iô	366.37	I.30-4	
325	505	357.0I	5.74+3	•		152252	0 ⁵	
I25	315	545.93	8.34:3	II3	3II	414.13	4.08-3	
315	325	754.55	4.67-3	311	313	3524.5	I.?I-3	
I25	325	316.75	4.76-3	II3	313	370.58	4.20-3	
327	505	336.40	2.02.2	II 3	315	318.53	I.67+4	
3 15	327	866.76	4.96+3	3I3	315	2268.2	I.85+3	
I25	327	234.96	5.86-2			152p	•	
327	325	5828.4	7.9I-I	II3	3II	396.59	I.59+4	
		2 •	•	313	SII	4129.6	2.41.2	
		15-25 2		IIS	313	438.72	8.3I-3	
212	412	220.7I	8.0I13	II3	315	765.04	3.53-3	
212	202	889.59	7.50-3	315	313	II6I.5	8.13-3	