International Atomic Energy Agency

INDC(CCP)-212/GE

INTERNATIONAL NUCLEAR DATA COMMITTEE

A MASS TABLE FOR A CONSISTENT SET OF ATOMS

V.K. Bodulinskij, A.E. Ignatochkin, A.I. Khovanovich and F.E. Chukreev

Translation from Nuclear Constants 2(46) 31 (1982)

Translated by the IAEA October 1983

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria October 1983

83-05935

A MASS TABLE FOR A CONSISTENT SET OF ATOMS

V.K. Bodulinskij, A.E. Ignatochkin, A.I. Khovanovich and F.E. Chukreev

Translation from Nuclear Constants 2(46) 31 (1982)

Translated by the IAEA October 1983

UDC 539.171

A MASS TABLE FOR A CONSISTENT SET OF ATOMS

V.K. Bodulinskij, A.E. Ignatochkin, A.I. Khovanovich and F.E. Chukreev

ABSTRACT

A table of atomic masses is drawn up for a set of atoms characterized by maximum consistency with all experimental data. The following principles are used as a basis for compiling the table: maximum reliability, in the view of the authors, of the experimental data for mass doublets and for energies of nuclear reactions and radioactive decay; use of the least-squares method for processing experimental data; and analysis of the internal consistency of data. The physico-methodological and statistical criteria discussed in the paper were used to select 752 atoms, the masses of which are linked by 2480 experimentally measured ratios, for a consistent set. Apart from masses, mass excesses and binding energies for each atom, the table contains β -decay energies for 474 cases.

In order to ensure the uniformity of measurements in physical studies it is necessary to use data on the masses of atoms and associated quantities which have been evaluated, i.e. correlated to a certain degree of reliability with all the existing experimental data. Among the associated quantities are the mass excess, which is the difference between the mass of an atom and its mass number; the binding energy and the energy of B-decay. It is not possible, working on the basis of purely theoretical assumptions, to calculate the masses of atoms with sufficient accuracy. Nor do semi-empirical equations result for the moment in high enough accuracy. There are no grounds for considering the results of individual studies on an empirical determination of the masses of atoms sufficiently reliable, since there is always a possibility of the systematic error not having been taken into account. In order to increase reliability we need to follow a combined approach to the whole mass of experimental information available. An approach of this kind is followed in the paper by A. Wapstra and K. Bos [1], who, by analysing and generalizing many primary experimental data, succeeded in drawing up tables for the masses of atoms [2] with an accuracy exceeding that found in individual studies. However, a detailed examination of the principles underlying the mass evaluation of atoms in Ref. [1] shows that the results obtained are of uneven reliability. Moreover, many new data have been published since that time.

In this paper the criteria for drawing up a set of atoms with consistent masses (ACM) are defined on the basis of a given body of experimental information, and the values and errors in ACM masses, and the mass excesses, binding energies and β -decay energies associated with them are rendered more accurate. The data obtained may find extensive application for studies in theoretical and experimental physics and also in the field of nuclear power.

Criteria for the elaboration of a set of atoms with consistent masses and a method of evaluation

A large number of measurements have now been accumulated for mass doublets and energy releases in nuclear reactions and radioactive transformations. Since in experiments nowadays only the difference between the masses (energies) of atoms are determined and not their absolute values, all these results can be divided up into two sets. In the first of these we shall put results which, when taken together, link the mass of each of the atoms in the set in the form of the differences from the masses of at least two other atoms, the experimental information available being self-consistent to within a certain degree of reliability. All other results have to be placed in the second set. In fact, if there is only one measurement of a difference of this kind, there is always a probability, except in the case of mass-spectrometric measurements for stable nuclides, that one may take the energy of transition into an excited state as the energy of transition between the ground states of nuclei. Such cases may occur as a result of insufficiently accurate knowledge of the systems of nuclear transitions. This source of unreliability can be eliminated - or at least allowance can be made for it in the error shown for the mass of an atom - only by intercomparison of data, i.e. only

- 2 -

for results of the first set. The criterion selected for this comparison was consistency between evaluated masses and each of the experimental results used to within three adjusted standard deviations of the particular result. This criterion is described more fully below.

It is suggested that ACM should be taken to include only those atoms for which the masses are described by the first set of experimental results. For the formal verification of ACM some basic concepts are required. A comparison is made between any measurement under consideration and the process equation linking the value for a certain linear combination of atomic masses M_i with the process energy Q_j which has a standard deviation $\sigma_i(Q)$:

$$\sum_{i} l_{ij} M_i = Q_j \pm \sigma_j(Q) , \qquad (1)$$

in which we assume the coefficients l_{ij} to differ from zero by whole numbers and we sum over the atomic masses linked by the given process.

<u>Definition 1</u>. Two process equations are considered to be similar with respect to the pair of atoms i and k if there is a linear combination of these equations which does not contain M_i and M_k simultaneously.

<u>Definition 2</u>. We shall consider as subset pairs similar with respect to the pair of atoms i and k, a subset of process equations, any pair of elements of which is similar with respect to the pair of atoms i and k. Thus, every process equation linking n atoms may be assigned to n(n - 1)/2such subsets.

<u>Definition 3</u>. The atom i is considered independent if there is no similar subset pair which simultaneously includes a full set of equations containing M_i . The atom of the nuclide ¹²C was taken to be independent since its mass serves as a basis for the scale of atomic mass units (amu).

<u>Definition 4</u>. An atom of the nuclide i is formally included in the ACM as long as at least one of the following conditions is fulfilled:

- It is independent;
- There are at least two equations containing it which are grouped in a pairwise similar subset only in combinations containing independent atoms whose masses are known with an error that is negligible;
- It is stable, and there exist one or more mass spectrometric measurements of its mass relative to a combination of masses of independent atoms.

After examining the entire original set of results and identifying the atoms of nuclides which do not satisfy definition 4, equations containing such atoms are discarded, while the remaining set undergoes the same evaluation again. This process is repeated until a set of equations linking only atoms which satisfy definition 4 is found. It is from this set alone that the mass values are determined and their consistency with each of the equations included in the set is verified. If for any reason it is necessary to omit one or another atom or equation from the evaluation, the remaining set is again analysed according to the method described above. Atoms linked by the final set of results used in the present evaluation are considered to be atoms with standard masses.

From the formal point of view, our verification of ACM is similar to the so-called class of primary data evaluated in Ref. [1]. A considerable amount of primary data has consequently been included in our evaluation exactly as it is given in Ref. [1], and in that sense our tables maintain a degree of continuity with that paper. In addition, we have used data from 164 papers which were either published after the period covered by Ref. [1] or belonged to that period but were not included in that evaluation for one reason or another. Because of the inclusion of new data, and also in cases where there was disagreement with the arguments advanced in Ref. [1], it was necessary to perform an additional matching procedure, the principles of which are described below. As a result of that, some of the data used in Refs [1,2] as primary data were treated in our evaluation as unreliable or as not belonging to the ACM set. However, we felt that some of the data in Ref. [1] regarded as unreliable should be included in the evaluation. Exclusion of some of the data from Refs [1,2] meant that the data referred to but not used had to be included with a lower degree of accuracy, while the incorporation of new data also enabled some of the equations defined in Ref. [1] to be introduced as second- or even higher-order equations since, when combined with the new data, they began to satisfy the requirements for elements of the set of equations for defining ACM masses.

In our study of the new results, we have attempted to stress as far as possible the contribution made by our paper. For example, for some measurements an adjustment was made in respect of a process known from another paper or from an evaluation. When using these data, the authors

- 4 -

did not take the absolute values for the process energy, but rather the difference between the measured and calibrated process values. Some of the results could not be utilized because the calibration was performed for atoms not belonging to the ACM.

The same methods were employed to achieve consistency within the set, as in Refs [1,2]: correction of standard deviations of mass spectrometric measurements by means of C_{i} coefficients and the rejection of unreliable equations. The method of averaging similar equations which was widely used in Ref. [1] was not applied to new data since it has become clear that in many cases it produces an unjustifiably optimistic mean error. The use as in Ref. [1] of the coefficients C, to correct the standard deviations of mass spectrometric results is an indication of the fact noted in many papers that certain similar data obtained at different facilities deviate significantly from each other for reasons that are not understood. Preference was given in the present evaluation to doublets measured by cycles as this enabled the absence of systematic errors for data obtained at a single facility to be verified by constructing closed circuits. From the methodological point of view, the best of all the analysed data of this kind are probably those of the Sukhumi Physico-Technical Institute (R.A. Demirkhanov Laboratory). No corrective coefficients were assigned to data not included in the Ref. [1] evaluation with the exception of the doublets defining 67 Zn, to which the coefficient $C_{i} = 2.5$ had to be allocated. In addition, it proved necessary to assign a coefficient $C_{i} = 2.5$ to all the results obtained by the Canadian team (K.S. Sharma, K.S. Kozier et al.). Furthermore, in some cases the massdoublet weights assigned in Ref. [1] were reviewed.

Criteria of two types were included in the analysis of the reliability of all the results considered. Account was taken of the characteristics of the methodology, the equipment used and (most important of all) the extent to which theoretical and model representations tended to convert the value taken directly from experiments to that required to evaluate the energy of the process being studied. With regard to the last of these, in cases where discrepancies arose between equations describing nuclear processes we decided first and foremost not to use the results of electron capture energy measurements. This explains the substantial discrepancy between the data in this paper and those given in Ref. [2] in the 153 Gd region.

- 5 -

Apart from the physico-methodological criteria described above which were applied to individual results, we also applied a statistical criterion which takes advantage of the verification of the ACM set formulated above. The requirement that the discrepancy coefficients

$$\left(Q_{j}-\sum_{i}l_{ij}M_{i}\right)/C_{j}\sigma_{j}(Q)$$
⁽²⁾

should not exceed 3 corresponds qualitatively to the requirement that even in relatively small subsets of the set of equations employed (where reasonable values are assigned for masses not defined by the subset in question) the discrepancy distribution should be Gaussian with a single dispersion. Accordingly, the non-fulfilment of this condition can be considered a significant inconsistency in a small subset of this kind. Particular attention was paid in such situations to atoms whose masses are defined by only two equations. Whenever the statistical criterion was not fulfilled in such cases, the atom and both equations defining its mass were quite definitely excluded from the analysis as data whose reliability could not be evaluated. It was for this reason that we omitted the atom ⁶⁰Co , for example, whose mass was evaluated in Refs [1,2] with the standard deviation at 14 keV (in energy units) on the basis of two measurements the results of which diverged by about 145 keV.

For atoms whose masses were defined by more than two equations, the statistical criterion was applied in practice only in conjunction with physico-methodological criteria, playing an auxiliary role in clarifying cases of conflict. Where there were three or more measurements, it was always possible in practice to identify and discard the most dubious measurement using physico-methodological criteria. Thus, instead of averaging similar but inconsistent equations as was done in Ref. [1], a stricter and more coherent set of conditions for the reliability of the experimental results included in the evaluation was utilized.

It should be stressed that in the matching process constant consideration was given to determining the real source of conflict. Here the statistical criterion described above was applied to subsets of the data set which, in complicated cases, included up to several tens of atoms, and the conflict was by no means always due to those measurements for whose equations there was a large discrepancy.

A detailed description of the results of applying this methodology and a comparison of them with other evaluations are beyond the scope of

- 6 -

this paper. Consistency between data was achieved in regions containing nuclides with mass numbers 3, 46-50, 55-67, 82, 87-89, 94, 104-106, 149-153, 159, 175, 180-181, 198-200, 205-206, 249.

The set of data compiled by the authors for determining ACM masses encompassed 2480 experimental results linking the atomic masses of 752 nuclides including ¹²C. A system of normal equations was established from these data by the usual method. The least-squares method was used to determine the masses [3]. Two fundamental constants were utilized in the calculation process: the atomic mass of the nuclide ¹²C = 12 amu (exactly) and the coefficient for converting energy units to mass units

$$K \pm \sigma(K) = (1073535 \cdot 5 \pm 3.0) \times 10^{-9} \text{ amu/meV}$$
 (3)

obtained from the value 1/K given in Ref. [4]. The conversion to amu was chosen because the standard deviation $\sigma(K)$ is comparable with the errors in the most accurate mass spectrometric measurements, the results of which are given in amu.

Calculation method and atomic mass table structure

The mass excesses (i.e. the differences between the mass of the atom and its mass number) were selected as the parameters to be evaluated:

$$\mu = \mathbf{M} - \mathbf{A}, \tag{4}$$

where μ is the mass excess, M is the mass of the atom and A is its mass number. Where necessary, the equations were transformed so that they depended on the mass excesses. Clearly, this procedure did not interfere in any way with the standard deviations.

If the equations of the original system (1) transformed into amu and written in terms of the mass excesses μ_i have the form of the sum of all N atoms in the ACM set:

$$\sum_{i=1}^{N} \ell_{ij} \mu_{i} = z_{j} \pm \delta_{j}(z) \qquad (j = 1, 2, ..., J),$$
(5)

where, in constrast to expression (1), zero values are adopted for the missing coefficients l_{ij} , then the system of normal equations is written as:

$$\sum_{k=1}^{N} a_{km} \mu_m = R_k , \qquad (6)$$

where

$$a_{km} = \sum_{j=1}^{J} \ell_{kj} \ell_{mj} / \left[C_{j} \delta_{j}(z) \right]^{2} ; \qquad (7)$$

$$R_{k} = \sum_{j=1}^{J} \ell_{kj} z_{j} / [C_{j} \sigma_{j}(z)]^{2} .$$
 (8)

To obtain the covariance matrix a_{km}^{-1} , a specially developed inversion algorithm was used, the prototype for which was algorithm 42b in Ref. [5]; this has much in common with the method described in Ref. [6]. The essential difference in our method is the fourfold reduction of the operating field required (based on the fact that the inverted matrix is symmetrical and positively defined), and a further difference being the steps taken to optimize the operating time of the algorithm in the case of vacuum matrices.

The calculations were performed using a 1010B computer equipped with a specialized mathematical software system, the prototype for which is Basic Fortran - 1010B [7]. High-speed floating-point arithmetical subprograms were used in the calculations, these having a higher accuracy than in Ref. [7] with the number representation remaining unchanged. Five bytes were allocated to one real number, four of which (32 binary digits) were used to represent the mantissa. Rounding off by eliminating the least significant, overflow digits and normalizing the result were carried out after each arithmetical operation.

The operating field for the inversion of the matrix of the 751st order for our algorithm has a volume of about 1.4 megabytes, which enables it to be placed on existing magnetic discs with a total capacity of 1.5 megabytes. To reduce the rounding errors, a special arrangement of the variables was used in inverted matrix calculations with the result that the average number of operations per element was cut by a factor of about three.

The system of normal equations was solved by multiplying the covariance matrix a_{km}^{-1} by the column R_k [8]. In the process, fixed point arithmetic was simulated to improve accuracy. Assessment of how accurately the set of solutions obtained corresponded to the minimum value

$$\chi^{2} = \frac{1}{J-N} \sum_{j=1}^{J} \left(\sum_{i=1}^{N} \ell_{ij} \, \mu_{i} - z_{j} \right)^{2} / \left[C_{j} \sigma_{j}(z) \right]^{2}$$
(9)

resulted in the following value for the discrepancy factor for the calculated parameters $\delta\mu_{\star}:$

$$\left[\overline{\delta\mu_i/\delta_i(\mu)}\right] \sim 0.5 \tag{10}$$

where $\sigma_i(\mu) = \sqrt{a_{1i}^{-1}}$ is the standard deviation of the i-th evaluated parameter. As a further check, the set of equations (1) used to obtain the tables in Ref. [2] was processed by the method described. A comparison of our control results with the tables in Ref. [2] showed that agreement between them is far better than follows from expression (10). Since there were no data on the degree of accuracy of the minimization of χ^2 when the tables in Ref. [2] were being drawn up, we can only conclude that the degree of equivalance between the calculation processes compared is high.

For our set of data, the calculation of χ^2 gave the result:

$$\chi^2 = 0,895,$$
 (11)

and the Birge coefficient was consequently not introduced for standard deviations of the mass excesses.

The results of the calculations are given in the table. The ACMs are arranged according to the mass numbers A and, within the limits of constant A, according to the charge Z. The "N" column shows the number of neutrons in a nucleus and the "Z" column shows its charge. The column 'Atom' contains the mass number A and the chemical symbol of the element. The data for the "Atomic Mass" column were obtained in amu by summing A with the calculated mass excesses. In the summation, steps were taken to prevent the loss of the lowest significant figures of the sum. The standard deviation given in brackets in this column corresponds to $\sigma_i(\mu)$ rounded to two figures if these figures represent a number not exceeding 25, or to one figure in other cases. The standard deviations are given everywhere in units of the least significant figures of the relevant result. The "Mass Excess" column contains the results of the matching process, expressed in keV. Since the transformation was achieved using the coefficient in Eq. (3), the standard deviation for mass excesses was calculated from the relationship

$$\mathcal{G}_{i}(\mu/K) = \mathcal{G}_{i}(\mu)/K \sqrt{\left[\mathcal{G}(K)/K\right]^{2} + \left[\mathcal{G}_{i}(\mu)/\mu_{i}\right]^{2}}$$
(12)

In the "Binding Energy" column, the quantity presented is

$$E_{bi}(A, Z) = Z\mu_{H} + N\mu_{n} - \mu(A, Z)$$
(13)

where the binding energies are expressed in keV, $\mu_{\underset{}{H}}$ is the mass excess of the hydrogen atom, and $\mu_{_{I\!\!R}}$ is the neutron mass excess.

The "Beta-Decay Energy" column gives the value:

$$E_{\beta}(A,Z) = \mu(A,Z) - \mu(A,Z+1).$$
 (14)

The positive value $E_{\beta}(A, Z)$ corresponds to the β -decay of the atom (A, Z) into the atom (A, Z + 1), and the negative value to the allowed transition of the atom (A, Z + 1) to the atom (A, Z). This value could not be calculated unless the atom (A, Z + 1) was included in the ACM set, and in such cases no entry was made in this column. The beta-decay energies are expressed in keV.

The standard deviations for the last two columns were calculated by the method of evaluating standard deviations for random variable functions described, inter alia, in Ref. [8].

If

$$E = E(\mu_1, \mu_2, ..., \mu_L),$$
 (15)

the standard deviation is

$$\mathcal{O}(E) = \left(\sum_{i=1}^{L} \sum_{j=1}^{L} \frac{\partial E}{\partial \mu_i} \frac{\partial E}{\partial \mu_j} a_{ij}^{-1}\right)^{1/2} . \tag{16}$$

The values $\sigma_i(E/K)$ were obtained from $\sigma_i(E)$ according to an equation similar to Eq. (12).

REFERENCES

- [1] Wapstra A.H., Bos K. The 1977 Atomic mass evaluation. Part.IV. Evaluation of input values; adjustment procedures. - Atomic Data and Nucl. Data Tables, 1977, v.20, E 1, p.1-125.
- [2] Wapstre A.H., Bos K. Ibid., V.19, N 3, p.177-214-
- [3] LINNIK, Yu.V., Least squares method and fundamentals of mathematical statistical processing of observations. Fizmatgiz, Moscow (1962) (in Russian).
- [4] Tables of standard reference data fundamental physical constants.
 GSSSD 1-76 Standards Publishing House, Moscow, (1976) (in Russian).
- [5] AGEEV, M.I., ALIK, V.P., GALIS, R.M., MARKOV, Yu.I., Library of algorithms 1b-50b. Sov. radio, Moscow (1975) 107 (in Russian)
- [6] WAPSTRA, A.H., NIIKH, G.I., VAN LISHUT, R., Nuclear Spectroscopy Tables. Atomizdat, Moscow (1960) (in Russian).
- [7] Videoton 1010B. Basic Fortran-1010B. User's Manual 203.009.00.02 SW Budapest (1973).
- [8] TAYLOR, B., PARKER, V., LANGENBERG, D., Fundamental constants and quantum electrodynamics, Atomizdat, Moscow (1972).

Article received by editors on 1 March 1982

EVALUATED MASSES AND ASSOCIATED VALUES FOR A CONSISTENT SET OF ATOMS

		• ,)		· · · · · · · · · · · · · · · · · · ·			
N	7	Атом	Atomic mass, amu	Mass excesses, keV	Binding en keV	ergy,	Beta-deca energy, l	ay (eV
1		1 N A	1,008664912 (19)	8071,38 (3)	0	(0)	782.345	(16)
٥	1	1н.	1,007825037 (10)	7289,034 (22)	0	(0)		
1 '	1	2н	2.014101783 (20)	13135,83 (4)	2224,5	(16)		
2	1	3H	3,01604927 (3)	14949,92 (5)	8481.8	(4)	18.604	(10)
1	2	3hf	3,01602930 (3)	14931,32 (5)	7718,1	(3)		
5	7	4нF	4,00260325 (5)	2424,93 (4)	28295,9	(4)		
4	2	6HF	6,0188868 (9)	17595,1 (9)	29270.5	(9)	3506.6	(7)
3	3	6L I	6.0151224 (7)	14086.5 (6)	\$1994,7	(6)	-	
4	Ę	71.1	7.0160038 (8)	14907.5 (8)	19245.1	(8)	-861-89	(7)
3	<i>a</i>	7HF	7.0169290 (8)	15769,4 (8)	37600 8	(8)		
6	. 🤉	8HF	8.033922 (7)	<u>11599</u> (7)	31408	(7)	10653	(7)
5	2	BI T	8 0224864 (9)	20946 1 (8)	41277.9	(8)	16004.4	(8)
a		AHE	8.00530513 (11)	4941.74 (10)	56499.9	(18)	-17979.5	(12)
τ.	Š	AB	8.0246068 (13)	(51) 5, 15955	37738.1	(12)	-12172	(24)
?	6	AC.	H.03767 (3)	\$5095 (24)	24784	(24)		
6	ı	91 T	9.0267893 (21)	24954.3 (20)	45541.1	(20)	13606-5	(19)
5	4	98F	9.0121825 (4)	11347.8 (4)	58165.2	(4)	• • • • •	
3	h	90	9.03103R (4)	28912 (4)	19036	(4)		
6	а	1085	10 0135848 (4)	12607.2 (4)	64971.2	(4)	555-6	(6)
5	5	10B	10.0129378 (5)	12051.6 (5)	64150,4	(5)		
٥				, "	46500 (1201	20160	(120)
n -	τ	1111	11,04342 (13)		4731714 ((())	C 7 7 0 U	(160)
	4	1141			67480	10)	11000	103
h	۰.	116	11,0095052 (5)	M667.9 (4)	10203.0	(5)	-1445-2	(8)
5	₩.	F1C	11.0114333 (10)	10650.1 (9)	75441.0	(9)		

.

- 12' -

N	7	Атом	Atomic mass amu	ò,	Mass exces keV	ses,	Binding e keV	nergy,	Beta-deca energy, k	eV
 н	+	1	12,026916	 (15)	25072	(14)		(14)	-6	(14)
7	5	124	12.0143526	(14)	11364.5	(13)	79575.3	(13)	13169.5	(13)
h	h	150	12,000000	(0)	0	(0)	92162.5	(3)	-17348.0	(10)
5	7	12N	12.0186130	(10)	17338.0	(10)	74042,1	(10)	• • • • • • •	****
7	6	130	13,003354847	(16)	\$125,045	(18)	97104.8	(5)	-2550-55	(18)
6	7	1.5	13, 10575835	(19)	5345,26	(18)	94196.5	(3)	•	
8	h	140	14,003241985	(23)	\$019,915	(24)	105285,3	(3)	156,473	(9)
7	1	141	14,003074006	(22)	2863,441	(22)	104659,5	(\$)	+5144+0 °	(3)
ĥ	A	140	14.0085962	(1)	8007 ₄ 4	(3)	98733,2	(4)		
R	1	15N	15.00010896	(4)	101.49	(3)	115492.8	(4)	-2754.0	(7)
7	A	150	15,0010654	(8)	2855,5	(7)	111456.5	(สา	Ť	
9	7	16N	10.0060996	(25)	h681.7	(23)	117984.9	(24)	10418.8	(23)
A	A	160	15,99491463	(4)	+4/37,03	(4)	127620,3	(4)		
9	м	170	16,9991305	(8)	-809,9	(7)	131764.6	(8)	-2761.6	(8)
8	9	176	17,00209517	(20)	1951,45	(19)	154550+1	(4)		
10	A	180	17,9991594	(\$)	-783,0	(5)	149804,1	(5)	#1655 ₊ 6	(6)
9	9	185	18.0009367	()	872.6	(7)	137371,2	(8)	-4447	(4)
A	10	LUNF	18,005710	(5)	2214	(4)	132142	(4)		
12	7	1914	19,01696	(9)	15790	(90)	1 1 2 0 9 0	(90)	12460	(90)
11	A	190	19,003576	(3)	3331	(5)	141766	(3)	4819	(3)
10	٩	19F	18.49840323	(14)	-1487,40	(13)	147802,5	(5)		
11	9	50F-	19,9999816	(6)	-17,1	(4)	154403.6	(7)	7025,9	(7)
10	10	ZUNE	19.9924390	(5)	+7043,1	(5)	160647;2	(7)		
13	A	210	21,00873	(5)	8130	(40)	155110	(40)	8180	(40)
12	9	21F	20,994949	(8)	-47	(7)	162505	(7)	5686	(7)
11	10	21NF	20.9938452	(12)	-5733,2	(11)	167408,7	(12)		

	12	10	554E	21.9913836	(6)	-8026,2	(5)	177773.1	(7)	-2842,1	(5)	
	11	11	22NA	21 9944347	(7)	-5184,1	(7)	174148.6	(9)	-4789,2	(19)	
	10	12	55WC	21,9995761	(19)	-394,8	(18)	168577.0	(19)			
	12	11	2 3 N A	22,9897689	(8)	-9530.5	(8)	186560,2	(10)	~4058.8	(14)	
	11	12	23MG	22,9941261	(15)	-5471,5	(14)	181725 1	(16)			
	13	11	24NA	23, 9909627	(8)	-8418.3	(8)	193525,6	(10)	5513,2	(6)	
٠	12	12	24MG	23,9850440	(7)	+13931.5	(6)	198256,5	(9)	-13878	(4)	
	11	13	2441	23,999942	(4)	+54	(4)	183597	(4)	-10821	(22)	
	10	14	2451	24,011558	(23)	10767	(22)	171994	(22)			
	15	10	25NE	24.99769	(10)	-2150	(90)	196110	(90)	7200	(100)	
	14	11	25NA	24, 989954	(7)	-9351	(7)	202536	(7)	3833	(7)	
	13	12	2546	24 9858394	(7)	-13190.6	(6)	205586.9	(9)			·
	15	11	26NA	25,992606	(24)	-6888	(23)	208138	(23)	9324	(25)	
	14	12	26MG	25,9825958	(7)	-16212.0	(7)	216679.8	(9)	-4004,8	(4)	
	13	13	2641	25,9868951	(8)	-15501-3	(7)	211892,6	(10)			1 +
	16	11	27NA	26,99396	(8)	+5630	(AU)	214950	(80)	8960	(80)	4
	15	12	27MG	26,9843429	(13)	-14584,6	(12)	253152.1	(14)	2610.6	(10)	•
	14	13	27 AL,	26,9815403	(7)	-17195.3	(6)	224952.0	(9)			
	17	11	28NA	27,99879	(13)	-1130	(120)	218520	(150)			
	14	14	2851	21,9169279	(6)	-21491.7	(6)	236537.5	(9)	T		
	18	1 1	2914	29,00286	(16)	2660	(150)	555800	(150)	13510	(160)	
	17	12	59MC	28,98857	(6)	-10650	(50)	235330	(50)	7560	(50)	
	16	13	29 AL	28 ` 980448	(6)	-18213	(5)	242113	(5)	3681	(5)	
	15	14	2951	28.9764961	(7)	-21893,9	(6)	245011.1	(10)			
	19	11	SONA	30.0090	(3)	8400	(300)	225200	(300)			
	16	14	3051	29,9737713	(7)	+24432,1	(6)	255620.6	(10)	-4227	(3)	
	15	- 15	305	29.978309	(3)	-20205	(3)	250611	(3)			
	16	15	31P	30.9737628	(6)	-24440.0	(6)	262917.5	(10)	-5395.1	(16)	
	15	16	315	30,9795547	(17)	-19044.8	(16)	256740.1	(18)			
	17	15	320	31,9739073	(8)	-24305,4	(7)	270854,4	(11)	1710.4	(6)	
	16	16	325	31,9720711	(5)	- 26015,8	(5)	271782,5	(10)	-12687	(6)	
	.15	17	3201	31,985691	(7)	-13329	(7)	258313	(7)			

.

.

N	7	Атом	Atomic mas amu	šs,	Mass exce keV	esses,	Binding ke ¹	energy, V	Beta-dec energy,	ay keV
17	16	\$35 \$35	32,9714591	(5)	-26585,9	(5)	280423,9	- (10)		****
19	15	54P	51,973632	(9)	-24562	(9)	287251	(9)	5470	(9)
I.A	1.6	545	33.9678679	(3)	-29931.1	(3)	291840.5	(9)	+5492.3	63
17	+17.	3401	35,4737641	(4)	+24438.B	(4)	285565 8	(10)		
19	16	358	34,96903255	(21)	-28846.23	(51)	298827.0	(9)	167.49	(18
18	17	15CI	14,96885274	(6)	+29013,72	(10)	546515-1	(4)		
20.	16	365	35,9610790	(16)		(15)	308718.1	(18)	-1144.0	(15
19	17	3661	55,96830711	(8)	-29521,98	(11)	306791 8	(10)	709.4	(3
18	18	SHAR	35,9675456	(5)	-30231.3	(3)	306718.8	(10)	-15808	68
17	19	\$6K	35,981293	(9)	-11426	(8)	293131	(8)	=10980	(40
16	20	3604	35,99308	(4)	-6450	(40)	281370	(40)		
21	16	378	36,971143	(17)	-26889	(16)	313013	(16)	4872	(16
50	17	3701	36,96590257	(9)	-31761,81	(15)	317105.0	(10)	-814,9	(5
19	18	17AP	30,9667764	(6)	-\$0948,0	(5)	315506.8	(11)	+6148,5	(15
18	19	57K	36.9733769	(15)	-24799,4	(14)	308575,9	(17)		
20	1.6	SAAR	\$1,9627321	(8)	+34715.1	(8)	327345,3	(13)	-5912.7	(7
19	19	386	37,9690797	(10)	-58805,3	(10)	320650,2	(14)		
22	17	3901	38,968006	(20)	-29803	(18)	331287	(18)	3438	(18
21	1 A	19AR	38,964315	(5)	- 13241	(5)	333942	(5)	565	(5
20	19	39K	34,9637077	(8)	- 13806.3	(8)	333725,5	(13)	-6530,8	(18
19	5 0	39C A	38,97071AB	(21)	-27275.5	(19)	326412,4	(55)	·	
22	18	40 A R	39,9623829	(7)	-35040,4	(7)	34 58 1 5 . 3	(13)	+1505.0	(6
21	19	40K	39,9639986	(8)	+ 13535 . 4	(8)	341526,0	(13)	1511.7	(5
20	20	40CA	39 9625904	(9)	-34847.1	(8)	342055.4	(15)	*	

L

23	18	41 A R	40,9645005	(10)	-33067.9	(9)	349912.2	(14)	2492.0	(8)
22	19	41K	40,9618253	(9)	=35559 B	(8)	351621.8	(13)	<i>₩421,4</i>	(μ)
21	5 V	41CA	40,9622177	(9)	-35138,4	(8)	350418 0	(13)		(4)
								•••••		
23	19	42K	41,9624015	(13)	-35023,1	(12)	359156.4	(16)	3522.0	(15)
25	50	42CA	41,9586205	(14)	- 38545,0	(13)	361896 1	(17)	+6423.6	(4)
51	51	4280	41,9655165	(15)	- 52121,4	(14)	354690 1	(17)		•
21	20	4364	42 4587691	(14)		(17)	740430 1	(1 7)	- 7774 5	
22	2.	4160	12 9611529	(25)		(13)	30707781	(17)	"««««»»»»	(19)
7 C 3 1	25	4350	42,001110		~30100 <u>.</u> C	(2)	300000	(3)	-0000	(7)
C 1	~ ~	4311	464700765		-64160	(/)	224110	(7)		
24	20	44CA	43.9554832	(14)	-41467.5	(13)	380961.3	(17)	-3655.5	(20)
23	21	4450	43,9594075	(25)	# 37812.0	(25)	376523	(3)	-265	(20)
22	22	4411	43,959692	(3)	- 37547	(3)	375476	(3)		
25	20	45CA	44,9561881	(14)	-40810.9	(13)	388 576.1	(17)	257.5	(9)
2/1	21	4550	44,9559116	(12)	+41068.4	(12)	387851.2	(17)		
							• • •			
26	2 0	46CA	45,953689	(4)	-43139	(4)	398/75	(4)	-1381	(4)
25	21	46SC	45,9551718	(13)	-41151.5	(13)	396611.7	(17)	2367.3	(8)
24	25	4611	45,9526304	(12)	-44124.9	(11)	39A196,7	(16)	≁7 050,9	(5)
23	23	46V	45,9601997	(13)	+37074.0	(12)	390363,5	(17)		
70	20	4764	46 954543	(4)	-42644	(4)	406052	(0)	1978	(4)
26	21	4750	46 9524085	(22)	-44531 6	(21)	407257 2	(24)	600 6	(19)
25	22	0711	06 9517637	(9)	-44937 2	191	407075 /	(15)	-2020 U	(14)
24	24	479	46,9549081	(16)	-42003.2	(15)	403364.1	(19)		(14)
			•				•••			
56	Su.	4 H C A	47,952532	(4)	-44216	(4)	415995	(4)	281	(7)
7 <	51	4886	47.952231	(7)	-44497	(6)	415494	(6)	3990	(6)
26	52	4811	47,9479475	(9)	- 48487 , 1	(7)	418701./	(16)	-4015	(3)
25	23	4 A V	41,952257	(3)	+44472	. (3)	413905	(3)	-1653	(8)
54	211	48CP	47,954032	(8)	-42819	(7)	411469	(8)		
ZA	21	4950	48 950022	(4)	-	(4)	125621	· (4)	2003	(4)
27	22	4911	118 94 1871 A	(9)	-48557 9	(9)	126843 9	(16)	= 601 B	(4)
5 F 3 A	22	49.0	18 0496714	() 2)	-4133747	(12)	420114347	(18)	-24.24	(1)
36	24	4969	40.9403174	(1)	-45120 B	(25)	47.3477.0	(10)	-7117	())
()	20	//Q_M_k	444 77177 7	1 1 0 1	- 17647	(())	466V11 X12660	(17)		1879
371		14 7 M N	40,7340/1	(19)	¬)/0})	(/ 	413776	/ /		

ł

16

-

r	7	Атом	Atomic ma amu	55,	Mass exc keV	esses,	Binding ke	energy, V	Beta-de energy,	cay keV '
	*••• <u>-</u>	.	••••••••••••••••	,	.	*****				
54	22	5011	49 9447925	(9)	*51426,1	(9)	437785,5	(16)	-2205,5	(13)
21	43	20V	49,94/1599	(15)	+49220,6	(12)	434795,6	(18)	10.58, 5	(9)
26	<i>d</i> 4	5008	49,946045\$	(14)	*50258,9	(13)	435051,6	(19)	-1635.0	(4)
25	25	50MN	49,9547385	(14)	-42626,9	(13)	426637,3	(19)		
29	25	5177	50,9466161	(13)	+49727.1	(13)	444155 9	(19)	2473,5	(16)
28	23	51V	50,9439608	(13)	-52200.6	(12)	445847.0	(18)	-751.5	(9)
27	24	51CR	50,9447675	(14)	-51449,1	(13)	444515 2	(19)	-3208,5	(5)
59	25	51 MN	50,9482119	(14)	≠48240 , 7	(13)	440322,4	(19)	Ţ	
29	123	52V	51,9447768	(17)	+51440.5	(16)	453158.3	(21)	3975.9	(15)
28	24	52CR	51,9405086	(13)	-55416.4	(12)	456351.8	(19)	-4711.4	(21)
51	25	52MN	51,9455664	(25)	-50705,0	(23)	450858	(3)		
29	24	53CR	52,9406503	(13)	-5284.4	(12)	464291.2	(19)	-595.6	(9)
58	25	5 1 M N	52,9412897	(14)	+54688.7	(13)	462913.2	(20)	·	
30	24	54CR	53,9388816	(13)	+56931.B	(12)	474010.0	(19)		
28	26	54FF	53,9396113	(13)	-56252.1	(12)	471765.6	(19)	-8242.0	(5)
51	21	5400	53,9484594	(14)	-48010 2	(13)	462741.5	(19)	•	-
30	25	55MN	54.9380462	(13)	+57710.1	(12)	482077.3	(19)	#231.5	(6)
29	26	55FF	54,9382947	(13)	-57478.6	(12)	481063.5	(19)	-3450.9	(6
28	27	5500	54,9419994	(14)	-54027,6	(13)	476830 2	(19)	• • •	
30	26	56FF	55,9349375	(13)	-60605.8	(12)	492262.1	(20)	-4567.5	(19
20	21	5600	55.9398409	(24)	-56038-3	(23)	486912	(3)	-2135	(11)
28	28	56N1	55,942133	(12)	*53904	(11)	483995	(11)		
32	25	57MN	56,938284	(4)	-57488	(3)	497998	(4)	2092	(3
31	26	57FF	56.9353941	(13)		(12)	499908.1	(20)	-836.2	(5
40	21	5700	56 9362918	(13)	-59144 2	(13)	498289 5	(20)		

32	56	58FE	57,9332758	(13)	-62153.7	(12)	509952.7	(20)	-2307.5	(12)	
31	27	5800	57,9357530	(17)	-59846 1	(16)	506862.8	(22)	380.9	(12)	
30	2 R	58NT	57,9353442	(14)	-60227.0	(13)	506461.3	(20)			
34	25	59MN	58,94044	(3)	•55480	(30)	512130	(30)	5180	(30)	
33	26	59FE	58,9348760	(16)	-60663.1	(15)	516533.5	(22)	1565.5	(11)	
32	27	5900	58,9331954	(13)	+62228,6	(12)	517316.7	(20)	-1073.1	(6)	
31	85	59NT	58,9343474	(13)	#61155 <u>,</u> 5	(13)	515461,2	(20)	-		
34	56	60FE	59,934074	(4)	-61410	(4)	525352	(4)	239	(4)	
33	27	60CD	59,9338177	(13)	#61648 ,9	(12)	524808,3	(20)	2823,63	(11)	
32	2 H	60N1	59,9307864	(13)	-64472,5	(12)	526849.6	(20)			
33	8.5	DINT	60,9310560	(13)	-64221.5	(13)	534669,9	(21)	-2238.4	(14)	
32	29	61CU	60,9334590	(18)	-61983.1	(16)	531649,2	(23)	-5636	(16)	
31	30	617N	60,939509	(17)	+563 48	(16)	525231	(16)			
34	85	62NT	61,9283439	(13)	-66747.8	(12)	545267.7	(21)	= 3949	(5)	
33	29	62CU	61,932583	(5)	* 62799	(5)	540537	(5)	•		
36	27	6300	62,933599	(20)	+61853	(19)	549227	(19)	3662	(19)	I
35	8 S	63N1	62,9296672	(15)	#65515,1	(12)	552106,3	(51)	65,89	(20)	<u>ب</u>
34	29	6301	62,9295965	(13)	-65581,0	(12)	551389,9	(21)	-3367.4	(17)	00
33	30	63ZN	62,9332115	(21)	-62213.6	(20)	547240	(3)			. 1
36	85	64NT	63,9279653	(14)	-67100.4	(13)	561763.0	(21)	-1674.9	(8)	
35	59	64CII	63,9297633	(15)	+65425,6	(14)	559305,8	(22)	578.0	(14)	
34	30	64ZN	63,9291428	(17)	-66003,6	(16)	559101,5	(23)			
36	29	65CU	64.9277898	(18)	-67263.9	(17)	569215.6	(24)	-1352.0	(11)	
35	30	65ZN	64,9292413	(17)	-65911,9	(16)	567081,2	(24)			
38	2 A	66N 1	65, 929122	(21)	~66023	(19)	576829	(19)	236	(19)	
37	29	66011	65,9288684	(20)	-66259,2	(19)	576282	(3)	2642,2	(17)	
36	30	662N	65,9260319	(14)	-68901.4	(13)	578142,1	(22)			
39	85	67N1	66,931573	(17)	-63740	(16)	582617	(16)	3570	(17)	
38	29	6761	66,927741	(8)	-67310	(8)	585404	(8)	575	(8)	
57	30	677N	66,9271254	(14)	+67882,8	(15)	585194.9	(22)	-1005-1	(13)	
36	31	67GA	66,9282011	(17)	-66880_8	(16)	5A3410.5	(24)	-4222	(5)	
35	32	67GF	66,932733	(5)	-02029	(5)	578406	(5)			

N	7	Атом	Atomic mas amu	55,	Mass exc keV	esses,	Binding ke	energy, V	Beta-de energy,	cay keV
 3H	30	68ZN	67,9248421	(15)	-70009.7	(14)	5953'93,1	(23)		
36	35	68GE	67,928103	(14)	-66972	(13)	590791	(13)		
39	30	69ZN	68,9265482	(16)	-68420,5	(15)	601875.3	(23)	904.7	(25)
38	31	69GA	68,925577	(3)	-69325,1	(24)	601998	(3)	-2225-2	(25)
37	32	69GF	68,927966	(4)	+67100	(3)	598990	(4)	-4020	(30)
36	33	69AS	68 . 9 1 558	(3)	-63080	(30)	594190	(30)	+6800	(40)
35	34	695E	68,93957	(4)	- 56290	(40)	586610	(40)		
40	30	70ZN	69,925321	(3)	≈69564	(3)	611090	(3)	+655.0	(15)
39	31	70GA	69,926024	(3)	-68908,9	(25)	609653	(3)	1654	(3)
38	32	70GF	69,9242485	(17)	#70562,6	(16)	610524.1	(25)		
41	30	71 Z N	70.927721	(11)	-67328	(10)	616925	(10)	2814	(10)
40	31	71GA	70,9247002	(23)	-70141,9	(22)	618957	(3)	-235,1	(17)
39	32	71GE	70,9249526	(20)	=69906 , 8	(18)	617940	(3)	-2012	(4)
38	33	7145	70,927113	(5)	- 67894	(4)	615145	(5)		
42	30	152N	71,926855	(7)	-68134	(6)	625803	(6)	457	(6)
41	3,1	72G A	11,9263646	(25)	-68591,5	(24)	625478	(3)	3993	(3)
40	32	· 72GE	71,9220779	(18)	+72584,5	(17)	659689	(3)		
38	34	725E	71.927106	(13)	-67400	(15) -	622440	(12)		
41	32	73GE	72,9234615	(17)	-71295.7	(16)	635471.4	(25)	-345	(4)
40	33	73AS	72,923832	(4)	-70951	(4)	634344	(4)	-2740	(10)
39	34	735F	72,926773	(12)	-68211	C113	630822	(11)	= 4530	(550)
38	35	738 _R	72,93164	(24)	+63680	(550)	625510	(053)	-6690	(550)
37	36	73KR	72,93882	(15)	56980	(140)	618030	(140)		
42	32	74GE	73,9211762	(17)	-13424.5	(16)	645671.5	(25)	-2561.7	(18)
41	33	7445	73, 9239263	(24)	-70862.8	(22)	642327	(3)	1355,9	(25)
40	34	745F	73,9224707	(21)	+72218.7	(20)	642901	(3)	•	

42	33	75AS	74.9215892	(15)	-73039.8	(14)	652575.8	(24)	-864.9	(10)
41	34	755E	74,9225177	(17)	-12174,9	(16)	650929	(3)		
	• -	14.04							_	
44	\$7	76GF	75,9213999	(23)	-/3210.1	(22)	661606	(3)	+919,7	(24)
43	13	76AS	75,9223872	(16)	-12240.5	(15)	659904	(3)	2968.7	(16)
42	54	165F	12,9192005	(14)	=/5265 ₊ 2	(18)	662090	(3)		
39	37	76KB	75,9349	(5)	#60600	(300)	645100	(\$00)		
44	33	7745	76.920646	(4)	-13919	(3)	669597	(4)	693	(4)
43	30	775F	76,9199019	(19)	-74611.5	(18)	669508	(3)	=1365	(3)
42	35	778R	76.921367	(4)	-73247	(3)	667361	(4)	-3010	(30)
41	36	77KR	76.92459	(3)	-70240	(30)	663570	(30)	-5130	(120)
40	37	77RA	76,93010	(13)	-65110	(120)	657660	(120)	•	,
116	30	78cF	77 422852	(6)	-71863	(5)	676396	(6)	96.0	(10)
40	17	7846	77 934817	(10)	-72828	(9)	474678	(10)	704	(10)
43	." 3 1.4	7865	77 017208/	(20)	-77026 7	((4)	670370	(7)	4204	(4)
44	7.4 T.4	TRAD	77 020303	(4)	-7/05017	(10)	676568	(5)	- 1060	(180)
47	70 17	7400	11,72071	(4)		(180)	673380	(180)	+/VAV	(100)
41	37	1080	11,70170	(17)	-07040	(100)	007719	(100)		
45	34	795F	78.918491	(4)	-75926	(3)	686965	(4)	157	(4)
44	35	79HR	78,9183219	(24)	-76085.3	(55)	686340	(3)		
	1	80.05	70 0145076	() 6)	-77777	(21)	101988	(3)	-1473 0	(+0)
46	14	8000	79,7103033	(2)	-75004 3	(2))	690000		1000	(7)
47	רי. היו	COBR COBR	14 4102141	(24)	-71404.2	(86)	6746.26		1976	(0)
44	11	0.0KH	14 . 410310	(7)	-//040	(0)	043446	(6)		
46	35	8188	80,916290	(3)	-/7976	(3)	104375	(3)		
48	34	825F	81,916696	(4)	-77598	(3)	712851	(4)	-100	(4)
47	35	R2HR	81,916804	(3)	+77497	(3)	711968	(3)	3043.4	(14)
46	36	82×R	B1,913485	(3)	-80591	(3)	714279	(4)		
<i>u</i> D	3.0	HIGE	82 919115	(5)	-75344	(5)	718669	(5)	3670	(15)
44	۶., ۲.	ALHD	A2 015175	(15)	-79015	(14)	721557	(14)	968	(14)
47	36	6 3K R	R2,914135	(3)	-74983	(3)	721743	(4)		••••
	_									
50	S 11	RASE	P3,918462	(16)	-12428	(15)	121349	(15)	1810	(50)
49	35	84HR	A3,91652	(3)	-17760	(50)	128380	(30)	4670	(30)
48	36	84KP	85,911507	(3)	-82431	(3)	732263	(3)	-2680	(3)
47	37	8480	H 5,914584	(4)	-19752	(3)	728801	(4)	841	(3)
46	' 3P	HASP	83,913427	(4)	-80643	(4)	728910	(4)	- -	

I.

N	7	Атом	Atomic ma amu	55,	Mass exc key	esses,	Binding	energy, eV	Beta-dec energy.	cay keV
				*	,					
49	36	USKR	84,912532	(4)	+81477	(3)	7 59 380	(4)	687.3	(20)
48	37	85KH	84,911794	(5)	#82164	(5)	739285	(4)	+1066	(7)
47	38	855R	84,912938	(1)	+41098	(7)	737436	(7)		
50	36	86KR	85,910615	(5)	-43262	(4)	749236	(5)	+519	(5)
49	37	86RA	85,911172	(3)	-82743	(3)	747935	(4)	1775,2	(19)
48	3A	BASP	R5,909267	(4)	-84518	(3)	744924	(3)		
51	36	H7KR	86,913359	(5)	-80/06	(4)	754752	(5)	3897	(4)
59	37	8788	86,909176	(3)	-84603	(3)	757866	(4)	272,3	(18)
49	38	47SR	86,908883	(\$)	-84875	(3)	757354	(3)	-1861,3	(14)
48	39	67Y	86,910881	(5)	-83014	(3)	754714	(4)	+ \$664	(9)
47	40	RAVB	40,414413	(4)	+14270	(4)	(2450 8	(4)		
52	36	BBKR	87,914452	(15)	-79688	(14)	761805	(14)	2913	(14)
51	37	8888	H7,911325	(4)	-82601	(4)	763935	(5)	5316	(3)
50	38	ABSR	87.905618	(3)	+87917	(3)	768469	(4)	+ 1621	(3)
49	34	88¥	87,999505	(5)	*****	(4)	764066	(5)		
51	3A	895R	88,907450	(4)	-86210	(4)	774834	(5)	1492	(3)
50	39	89¥	AA, 90584A	(3)	-87703	(3)	775544	(4)	-2836,4	(22)
49	'4 a -	897R	88,908893	(3)	-84866	(3)	771925	(4)	-4243	(19)
48	41	89NA	88,913448	(50)	-80054	(19)	766900	(19)		
51	39	907	84,407152	(4)	- 86488	(3)	782401	(4)	2283.1	(25)
50	40	907R	89,904701	(3)	-68771	(3)	783902	(4)		
51	40	9178	90,905639	(3)	+87897	(3)	791099	(4)	+1255	(\$
50	41	91NA	90,906987	(4)	+86642	(4)	789061	(4)	-4440	(13)
49	42	91K0	90,911754	(13)	+#5505	(15)	783839	(13)		

53	39	92Y	91,908935	(17)	-84827	(16)	796882	(16)	3634	(16)
52	40	927R	91,905035	(3)	-88460.5	(25)	799734	(4)	+2006.3	(17)
51	41	92NB	91,907188	(3)	*86454	(3)	796945	(4)	355	(4)
50	42	9240	91,906807	(4)	-86809	(4)	796518	(4)		• •
53	4 0	937R	92.906471	(3)	-87122.3	(25)	806467	(4)	89.8	(16)
52	44	93NB	92,906375	(3)	-87212	(3)	805774	(4)	-408	(3)
51	42	9340	92,906812	(4)	-86805	(4)	804584	(4)	-3193	(3)
50	43	93TC	92,910240	(5)	-83612	(5)	800609	(5)		
55	39	94Y	93,911595	(6)	-82349	(6)	810548	(6)	4920	(5)
54	40	947R	93,906313	(3)	-87270	(3)	814686	(4)	-899,8	(23)
53	41	94NB	93,907279	(3)	-86370	(3)	813004	(4)	2044,5	(23)
52	42	94M0	93,905084	(3)	-88414.7	(25)	814266	(4)		
55	40	952R	94.908039	(3)	+85661	(3)	821149	(4)	1123.5	(23)
54	41	95NB	94,9068333	(23)	-86784.9	(25)	B21490	(3)	925,6	(5)
53	42	95M0	94,9058397	(25)	-87710,5	(22)	821635	(3)	-1699	(7)
52	43	95TC	94,907664	(8)	-86011	(8)	819151	(8)	+2560	(14)
51	44	95RU	94,910412	(13)	-83451	(12)	815809	(12)		
56	4 ሰ	467R	95,908273	(3)	-85444	(3)	82'9002	(4)		
54	42	96M0	95,9046172	(53)	-88793,4	(21)	830787	(3)		
52	44	96RU	95,907596	(9)	-86074	(9)	826504	(9)		
57	40	977Ŕ	96,910949	(3)	-82951	(3)	834581	(4)	2658,1	(19)
56	41	97NB	96,908096	(3)	-85609	(3)	836457	(4)	1933,6	(19)
55	42	97MN	96,9060198	(23)	+87542,7	(51)	837608	(3)	- 320	(4)
54	43	971C	96,906363	(5)	-87223	(5)	836506	(5)	-1104	(10)
53	44	97RU	96,907553	(10)	+86115	(9)	8 14615	(9)		
56	42	9840	97,9054067	(23)	-88113,8	(21)	846250	(3)	-1686	(4)
55	43	981C	97,9072,17	(5)	-86428	(5)	843782	(5)	1797	(8)
54	44	98RU	97,905287	(7)	+88225	[6]	844797	(7)		
57	42	99MA	98,9077107	(23)	-85967,7	(22)	852176	(3)	1356,9	(10)
56	43	991C	98,9062540	(24)	-87324.6	(23)	852750	(3)	293,6	(18)
55	44	99RU	98,905939	(3)	-87618;2	(24)	852262	(4)		
58	42) j O n M O	99.907474	(6)	-86188	(6)	860468	(7)		
56	44	Í O O R U	99.904219	(3,)	-89220.0	(24)	861935	(4)		
							•			

N	7	Атом	Atomic m amu	ass,	Mass ex ke	cesses, V	Binding k	g energy, keV	Beta-de energy,	cay keV
59	* 42	101MO	100.910343	(7)	-HIGIG	·••======	945944	/ 7 \	3044	
58	43	10170	100.90733	(3)	-86326	(24)	00000 847805	(7)	1625	(24)
57	44	101RU	100,905581	(3)	×87952	(3)	868738	(4)	1062	[64]
58	44	10280	101.90434A	(3)	+89100	(3)	877958	(4)	-2323	(6)
57	45	10284	101,906841	(7)	+86777	(6)	874853	(7)	1149	(5)
56	46	10560	101,905608	(7)	-87926	(7)	875219	(7)		
59	44	103RU	102,906322	(3)	-87261	(3)	884190	(4)	762	(3)
58	45	103RH	102,905504	(4)	+88023	(4)	884170	(5)	-544	(8)
57	46	103PD	102,906088	(8)	+87479	(7)	882843	(8)	-2680	(50)
56	47	103AG	102,90896	(5)	#84800	(50)	879380	(50)	-4180	(50)
55	48	10300	102,913448	(11)	-80624	(10)	874423	(11)	• -	• - • •
60	44	104RU	103.905420	(5)	#88102	(5)	893102	(5)	-1150	(6)
59	45	10464	103,906654	(4)	-86952	(4)	891170	(5)	2452	(5)
58	46	104PD	103,904022	(3)	+89403	(3)	892839	(4)		
61	44	105RU	104,907740	(5)	-85940	(5)	899012	(5)	1918	(4)
60	45	105RH	104,905681	(4)	#87859	(4)	900148	(5)	567	(3)
59	46	105PD	104.905072	(3)	-88426	(3)	899933	(4)	-1346	(9)
58	47	105AG	104,906517	(10)	#87080	(9)	897804	(9)	-2739	(5)
57	4 R	10500	104,909457	(11)	¥84341	(10)	894283	(10)		•
62	44	106RU	105,907315	(10)	-86336	(9)	907479	(10)	39,4	(3)
61	45	106RH	105,907275	(10)	#86375	(9)	906736	(10)	3541	(9)
60	46	10620	105,903472	(3)	#89916	(3)	909494	(4)	-2974	(4)
59	47	106AG	105,906665	(5)	#86941	(5)	905737	(5)	193	(7)
58	4 A	10600	105,906458	(6)	- =87135	(5)	905149	(6)		
61	46!	107PD	106,905124	(5)	=88377	(5)	916026	(6)	33	(3)
60	47	107AG	106,905124	(4)	-88410	(4)	915277	(5)		(3)

62	46	10820	107.903893	(3)	-89524	(3)	925245	(4)	-1916	(5)
61	47	10846	107,905950	(4)	-87608	(4)	922546	(5)	1641	(6)
60	48	10800	107 904189	(5)	-89248	(5)	923405	(5)	••••	
63	46	10920	108,905951	(3)	-87607	(3)	. 931399	(4)	1116.7	(19)
62	47	10946	108, 904752	(3)	+88723.5	(24)	931734	(4)	-183	(5)
61	48	10900	108,904949	(4)	-88540	(4)	930768	(5)	-2024	(7)
6.0	49	1091N	108,907122	(8)	-86516	(7)	927962	(8)		
		41000	100 006171	(7)	_ # 8 7 7 //	(7)	0 1 0 1 0 7	(4)		(7)
67	40	11040		(7)	-87468 D	(24)	940197	(0)		
6 U J		11000	1094 200111	(24)	-40352 7	(22)	930340	(4)	6074 3	(10)
00	46	LIUCI	104,4030032	1641		(26)	4400.05	(4)		
63	4 p	11100	110,9041802	(25)	-89256,3	(24)	947627	(4)	-830	(8)
62	49	18884	110,905071	(8)	-88426	(8)	946015	(8)	+2478	(10)
61	50	1115A	110,407731	(8)	-85949	(7)	942755	(8)		
60	46	11260	111,907326	(21)	-86326	(20)	954332	(20)	294	(19)
65	47	11246	111.90701	(3)	+46650	(25)	953844	(25)	5965	(25)
64	44	11500	111,9027569	(22)	+90582.1	(21)	951024	(4)	•2575	(7)
63	49	11211	111,905521	(7)	-88007	(7)	953667	(8)	659	(6)
62	50	11251	111.904814	(5)	-88666	(5)	953543	(6)		
45	цн	11300	112 9044984	(21)	-89053.0	(20)	963566	(4)	329	(4)
5.	46	13516	112 904045	(4)	-89182	(3)	963115	(4)	-1042	(4)
. 3	50	11351	112,905164	(4)	-88340	(4)	961289	(5)	-3890	(30)
62	51	11358	112,90934	(3)	-84450	(30)	956620	(30)		
66	<i>(</i>) H	11460	116 9063571	(19)	-90023 0	(18)	972608	(4)	-1438	(4)
65	40	11-11	115 904901	({ }	-88585	(3)	970387	(4)	1982.2	(25)
64	<u>'</u> 10	11451	113.902773	(3)	-90567	(3)	971587	(4)		
	(h	. 15.00					0.1974.4	()		(3.))
67	44	11700	114,905414	())	+08107	(4)	410103	(7)	1447.0	(20)
66	49	11214	114,90 \$854	(4)	-14222	(4)	4/4424	(5)	446	(4)
ስዓ	ንሶ	11558	[14,90555A	(5)	. #40041	(4/4/35	(4)		
6.14	4.0	11660	115,9947539	(24)	-88/21,9	(22)	987444	(4)	-454	(5)
67	49	11010	115,945241	(4)	-#8268	(4)	986215	(5)	\$263	643
56	5 a	11654	115.401738	(5)	-91531	(1 1	988694	(4)		

ł 24

L

N	7	Атом	Atomic m amu	ass,	Mass e k	xcesses, eV	Bindin	g energy, keV	Beta-de energy	ecay , keV
* * * *	L			-+ <u>+</u> +-+++	•••••	*****				
69	4 A	11700	116,907225	(14)	-86420	(13)	993219	(14)	2528	(14
68	49	117[N	116,904511	(9)	+HA949	(8)	974965	(4)	1455	(8)
67	50	1175N	116,902949	(3)	+90404	(3)	995638	(4)		
68	50	1185N	111,901602	(3)	<u>791658</u>	(3)	100496\$	(4)		
64	50	11951	118,903306	(3)	-90071	(3)	1011448	(4)		
70	50 -	1208N	119,902195	(3)	#91105	(3)	1020554	(4)	-2681	(7
69	51	12058	119,905073	(8)	+88425	(8)	1017090	(8)	951	(20
68	52	120TF	119.904052	(20)	-89376	(19)	1017259	(19)		
12	49	12111	120,907862	(24)	+85826	(22)	1024128	(22)	3579	(22
71	50	1215N	120,904235	(3)	- 89205	(3)	1026725	(5)	386,0	(25
70	51	ISISB	120,903821	(3)	-89591	(3)	1026329	(5)	-1066	(14
69	52	1511E	120,904964	(16)	-B8526	(15)	1024481	(15)	-5591	(22
68	53	1511	120,907398	(51)	-86259	(19)	1021431	(19)		
77	50	1225N	121.903437	(4)	-89949	(4)	1035540	(5)	-1623	(3
71	51	1225A	121,905179	(4)	-88356	(3)	1033135	(5)	1981	64
70	52	1551E	121,903053	(5)	-90307	(4)	1034333	(5)		
74	49	1531N	122,91044	(3)	+#3421	(24)	1037866	(24)	4403	(24
73	50	1235N	122,905718	(4)	-87824	(4)	1041486	(5)	1396	(4
15	51	123SB	155,904519	(4)	÷93550	(3)	1042100	(5)	-52.3	(23
71	52	1231F	122.904276	(4)	-89167	(4)	1041265	(5)	-1230	(4
70	55	1531	122,905546	(6)	-87938	(5)	1039253	(6)		
74	50	1249N	123,905268	(5)	+88243	(5)	1049970	(0)	-627	(5
73	51	1245A	123,905942	(4)	-87616	(3)	1048567	(5)	2904 . Ø	(18
72	52	124TE	123,902823	(4)	-90520	(4)	1050689	(5)	*	
70	54	154XF	123,90612	(15)	-87450	(140)	1046050	(140)		

75	50	1255N	124,907779	(6)	-85904	(51	1055709	(6)	2348	(6)
74	51	12559	124,905258	(5)	*88253	(4)	1057275	(5)	766.8	(20)
73	52	1251F	124,904/134	(4)	-89019	(4)	1057260	(5)	+177.8	(18)
12	53	1251	124,904625	(4)	-88842	(4)	1056300	(5)	•	-
74	52	126TE	125,903310	(4)	-90067	(4)	1066379	(5)	-2156	(5)
73	53	1591	125,905624	(7)	-87911	(6)	1063441	. (7)		
15	52	j271F	126.905222	(5)	-88286	(5)	1072669	(6)	696	(4)
74	53	1271	126,904475	(5)	-88981	(4)	1072582	(5)		
76	52	12811	127.904463	(4)	-88993	(4)	1081447	(5)	-1257	(5)
75	53	1281	127,905813	(5)	-87736	(4)	1079408	(5)	2125	(4)
74	54	1 SAXE	127,9035308	(17)	-89861.2	(16)	1080751	(4)		•
78	51	12958	128,909146	(23)	-84631	(22)	1085939	(22)	2377	(21)
77	52	1291F	128,906595	(5)	-87007	(4)	1087533	(6)	1498	(4)
76	53	1501	128,904986	(5)	+88505 .	(4)	1088249	(6)	192	(4)
75	50	129XF	128,9047801	(21)	-88697,5	(20)	1087659	(4)		
7 Å	52	130TF	155,006558	(5)	-87349	(5)	1095946	(6)		
76	54	130 XE	129,9035095	(17)	-89881.1	(16)	1096914	(4)	-3020	(11)
75	55	13005	129,906752	(12)	#86861	(11)	1093111	(11)	441	(4)
74	56	130BA	129.906278	(11)	-87302	(11)	1092770	(11)		
79	52	131 TE	130,908533	(5)	-85202	(5)	1101871	(6)	2250	(6)
78	53	1311	130,906117	(5)	-87452	(5)	1103338	(6)	970.8	(6)
77	54	131 XE	130,905075	(5)	+88423	(5)	1103527	(6)	-353	(6)
76	55	13105	130.905454	(8)	-88070	(7)	1102591	(8)	-1358	(13)
75	56	131BA	130,906912	(14)	-86712	(13)	1100251	(13)		
78	54	135XE	131.904147	(5)	+89287	(5)	1112463	(6)	-2104	(23)
77	55	(32CS	131.906411	(24)	-87178	(23)	1109571	(23)	1278	(24)
16	56	1328A	131,905039	(10)	-88456	(9)	1110067	(10)		
78	55	13365	132.905427	(8)	-88095	(7)	1118560	(8)	-521	(3)
11	56	133BA	132,905985	(8)	-87575	(8)	1117257	(9)	· · ·	
80	54	134XE	133,905395	(8)	-88125	(7)	1127443	(8)	-1209	(10)
79	55	13405	133,906693	(8)	+86915	(7)	1125451	(8)	2058.5	(4)
78	56	1348Å	133,904484	(8)	-88974	(7)	1126727	(8)		

- 26

б I

			amu	55,	keV	66666,	ke	V V	energy,	ay keV
'	• 5 2	. 351		┍╺╴╴╸╸╸╸ ╱╱╲		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * *		
81	5,1	1331	114 907136	141		(30)	1131970	(30)	2/10	(30)
80	54	13546	134,707164	(12)	-87672		1131746	(12)	1100	(9)
70	5.	13584	134 905661	(2)	-87871	(6)	1134619	(7)	600	(2)
17	9	1.2.204	1 34 ⁴ 30 300 1	.	+01011	191	1122105	4.6.3		
82	54	136xF	135,907219	(7)	=86426	(7)	1141887	(8)		
80	56	136HA	135,904549	(7)	#88913	(6)	1142809	(7)		
78	5 A	136CF	135,90713	(5)	¥86500	(40)	1158840	(40)	А	
	5	. 17vc	174 011643	(7)	- 42180	(7)	1	(4)		(0)
(C) (C))4 5c	11116	130,711706	())	+0630V		110313	(0)	4100	(9)
07	בי	11701	130 4 70 7007	(0)			1142314	(7)	111342	(4)
91	20	14/08	1 10 4 10 0 0 1 1	ιομ	401141	(0)	1144104	(7)		
82	56	1 \$8HA	137,905227	(6)	+88281	(6)	1158320	(1)	+1747	(5)
81	57	1381.A	137,907103	(5)	-86534	(5)	1155791	(6)	1041	(12)
80	5 A	1 \$8CE	137, 405985	(13)	-47575	(12)	1156050	(13)		
83	56	1 398A	138.908822	(6)	-84933	(6)	1163045	(7)	2308	(5)
82	57	159LA	138,906344	(5)	-87241	(4)	1164569	(6)		() /
	. .									- .
8.5	57	140LA	139,909468	(5)	-84331	(4)	1169730	(6)	3760,8	(20)
82	58	14068	1 59, 905451	(4)	488091	(4)	1172709	(5)	+\$587	(6)
101	9 6	14068	124 404022	(7)	-84705	(7)	1168540	(8)		
83	5A	141CF	140,908268	(4)	•85449 [°]	(4)	1178137	(5)	580.1	(15)
82	59	141PR	140, 907645	(4)	#86029	(4)	11/7935	(5)	=1814	(8)
81	60	141ND	140,909592	(9)	-84215	(9)	1175339	(10)	-3/18	(25)
80	61	141PH	140,91358	(3)	-80496	(25)	1170838	(25)	-4554	(24)
79	62	1415M	140 918473	(13)	+75942	(12)	1165501	(13)	, •	
79	62	1415M	140 918473	(13)	+75942	(12)	1165501	(13)	,	

	84	58	142CE	141,909237	(5)	-84546	(4)	11+5306	(6)	-745	(3)
	83	59	142PR	141.910037	(4)	-83801	(4)	1183778	(5)	2159.3	(25)
	82	60	142ND	141.907719	(3)	-85960	(3)	1185155	(5)	-4890	(60)
	A I	61	142PM	141,91297	(6)	-81070	(60)	1179480	(60)	+2080	(60)
	80	62	4254	141,915204	(16)	+78988	(15)	1176618	(16)		
	85	5 A	143CF	142.912378	(5)	-81650	(4)	1190452	(6)	1455	(4)
	Ã.	59	143PR	142.910815	(4)	-83076	(3)	1191125	(5)	935,3	(19)
	83	60	143ND	142,909811	(3)	-84011	(3)	1191278	(5)	-1038	(4)
	82	61	43PM	142,910925	(5)	-82974	(5)	1189458	(6)	-3452	(10)
	81	62	143SH	142,914630	(11)	-79522	(10)	1185224	(11)		
	86	5 A	144CE	143,913642	(5)	-80443	(4)	1197345	(6)	318,2	(20)
	85	59	144PR	143,913300	(4)	-80761	(4)	1196881	(6)	2996	(3)
	84	60	144ND	143,910084	(3)	+83757	(3)	1199095	(5)	+2327	(4)
	83	61	144PM	143,912582	(5)	-81430	(5)	1195986	(6)	544	(4)
	82	62	1445M	143,911998	(4)	-81974	(4)	1195748	(5)		
	85	60	145ND .	144.912570	(3)	+B1441	(3)	1204851	(5)	-158	(3)
	84	61	145PM	144 912740	(5)	-81283	(4)	1203910	(6)	-618	(4)
	83	62	1455M	144.913403	(4)	+80665	(4)	1202510	(5)	-2721	(11)
	82	63	(45EU	144,916324	(13)	-77944	(12)	1199007	(12)	i i	
	86	60	146ND	145.913114	(3)	~80935	(3)	1212415	(5)		
	84	62	1465M	145,913049	(7)	-80995	(6)	1210911	(7)	-3873	(4)
	83	63	146EU	145,917207	(12)	-11155	(11)	1206256	(11)		
	87	60	147ND	146,916097	(3)	-78155	(3)	1217708	(5)	895.7	(9)
	86	61	147PM	146,915136	(3)	-79051	(3)	1217821	(5)	224.7	(4)
	85	62	1475M	146,914895	(3)	•79276	(3)	1217263	(5)	-1722	(3)
	84	63	147EU	146.916744	(4)	-77553	(4)	1214758	(5)		
	88	60	148ND	147,916889	(4)	-77418	(3)	1225042	(5)	-537	(9)
	87	61	1 ayah	147,917465	(İO)	-76882	(9)	1223723	(10)	2464	(9)
	86	62	1485M	147.914819	(5)	-79346	(3)	1225405	(5)	-3120	(30)
	85	63	148EU	147.91817	(3)	-19550	(30)	1551200	(30)		
	H9	60	149ND	148,920144	(4)	+74386	(3)	1230081	(5)	1697.7	(23)
	8 A	61	laabm	148.918122	(3)	-76084	(3)	1230996	(5)	1062.6	(10)
•	P7	62	14952	148,917181	(3)	-77146	-(3)	1231276	(5)		•••
	#5	60	149GN	148,919336	(5)	-75139	(5)	1227704	(6)	-3696	(11)
	84	64	14910	148,923304	(15)	-71443	(12)	1253550	(12)		

I 28

ł

N	7	Атом	Atomic m	ass,	Mass ex	cesses,	Binding	energy,	Beta-de	cay
			amu		ke	V	k	eV	energy,	keV
an	4 60	15000	149 920887	···	-71603			· • • • • • • • • • • • • • • • • • • •	*6*******	
88	60	15058	149 917271	(3)	-77040	(4)	123/400	(5)		
A 7	63	15050	149.919716	(12)	-14766	())	1737686	(7)	*2294	
86	6n	15000	149 918652	(11)	-15176		1210100	(12)	1009	(4)
85	65	150TR	149,923680	(18)	+71092	(17)	1230947	(17)	#4003	(13)
90	61	151PM	150.921204	(11)	•73348	(10)	1244454	(11)	1168	(9)
89	62.	151SM	150,419929	(3)	+74586	(3)	1244859	(5)	76.2	(6)
88	63	151EU	150,919848	(3)	-74662	(3)	1244153	(5)	+479	(5)
87	64	151GD	150,920361	(6)	-74185	(5)	1242892	(7)	-2558	(4)
86	65	151TP	150,923108	(5)	-71625	(5)	1239551	(6)	-	•
90	62	1528M	151,919729	(3)	+74175	(3)	1253117	(5)	-1876,8	(11)
89	63	157EU	151,921743	(3)	-72896	(3)	1250458	(5)	1820	(3)
88	64	12280	151,919790	(4)	-74716	(4)	1251495	(5)		
97	61	153PH	152.924112	(17)	-70690	(16)	1257888	(16)	1879	(15)
91	62	1535H	152,922094	(3)	+72569	(3)	1258985	(5)	807	(3)
90	63	15360	152,921228	(4)	-73376	(4)	1259010	(6)	-485	(4)
89	64	153GD	152,921749	(4)	+72891	(4)	1257/42	(5)	-1585	(5)
88	65	15378	152,923450	(7)	+71306	(6)	12553/5	(7)	-21/1,4	(1)
87	•6	12204	152,925781	(/)	-0110	(6)	1252421	(8)		
56	62	1548M	153,922205	(3)	-72466	(3)	1266953	(5)		
90	64	154GD	153,920863	(3)	-73717	(3)	1266639	(5)		
93	62	155SM	154,924629	(3)	-70208	(3)	1272766	(5)	1630	(4)
59	63	155EU	154,922880	(5)	-71837	(4)	1273614	(6)	247	(3)
91	64	15560	154,922615	(3)	-72084	(3)	1273078	(5)		
94	62	1568M	155,925517	(15)	-69381	(14)	1280011	(14)	715	(11)
93	63	156FU	155,924750	(11)	+70095	(10)	12/9943	(11)	2453	(4)
92	64	156GN	155.922116	(3)	-72549	(3)	1281614	(5)		
90	66	156DY	155,924271	(8)	70542	(7)	1218042	(8)		

29 -

94	63	157EU	156,925412	(7)	-69479	(6)	1287398	(7)	1 2 9	(5)
93	64	157GD	156,923954	(3)	-70837	(3)	1287974	(5)		(23)
92	65	157TH	156,924015	(4)	-70780	(4)	1287134	(6)	-13-0	(7)
91	66	157DY	156,925454	(8)	-69439	(7)	1285011	(8)		
9 Ц	6 ù	15860	157.924097	(5)	-70703	(3)	1295911	(5)	+1215.9	(18)
93	65	ISATA	157,925403	(4)	-69487	(4)	1293913	(5)	916	(4)
92	66	58DY	157,924398	(5)	-70424	(4)	1294067	(6)		
96	63	159EU	158,929078	(9)	-66064	(8)	1300126	(9)	2510	(7)
95	64	15960	158,926383	(4)	-68574	(3)	1301853	(5)	975.6	. (19)
94	65	597A	158,925335	(4)	-69551	- (3)	1302047	(5)	-365.7	(10)
93	66	159DY	158,925728	(4)	-69185	(3)	1300899	(5)		
96	64	160GN	159,927047	(5)	-67956	(3)	1309506	(5)	-101.4	(14)
95	65	160TH	159,927156	(4)	+67854	(3)	1308423	(5)	1832.9	(17)
94	66	160DY	159,925188	(4)	+69687	(3)	1309473	(5)		
96	65	161TA	160,927558	(4)	-67480	(3)	1316119	(5)	590.3	(16)
95	66	161DY	160,926924	(4)	-68070	(3)	1315927	(5)	·	
96	66	162DY	161,926790	(4)	-68195	(4)	1.324124	(5)		
94	68	195EU	161,928772	(4)	-66349	(3)	1320713	(5)		
97	66	16304	162.928721	(4)	-66396	(4)	1330396	(5)	+2.6	(21)
96	67	16340	162.928724	(4)	-66393	(4)	1329611	(6)	-1211	(5)
95	68	163FR	162,930025	(6)	-65182	(6)	1327617	(7)		
98	66	164DY	163,929167	(4)	-65981	(4)	1338052	(6)	-1029	(4)
97	67	164нп	163,930272	(5)	-64951	(4)	1316241	(6)	1003	
96	68	164ER	163,929195	(3)	-65955	(3)	1336462	(5)		,
ġ g	66	16504	164-931697	(4)	-63625	(4)	1343768	(6)	1286	(4)
98	67	16580	164.930316	(3)	-64911	(3)	1544271	(5)	-377.2	:2()
97	6 P	165FR	164,930721	(-3)	-64534	(3)	1343112	(5)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
99	67	16600	165.932279	(3)	#63082	(3)	1350514	(5)	1854 7	(17)
9 A	68	166FR	165.9302880	(25)	+64936_A	(23)	1351586	(5)	- 3047	(1 1)
	•							× .• •		
97	69	166TM	165,933559	(12)	-61890	(11)	1347/57	(12)	-291	1.51

~	7	Атом	Atomic ma amu	SS,	Mass exce keV	esses,	Binding ke	energy, V	Beta-de energy;	cay keV
99	68 68	167ER	166,9320436	(25)	*\$3301,5	(53)	1358022	(5)	+749.0	(16)
97	70	16778	166,932848	(5)	482333 400594	(5) (5)	1358491 1353755	(5) (6)	-1954	(4)
100	84	168EA	167,9323658	(25)	-63001.3	(23)	1365794	(5)	=1679.7	(19)
99	69	1687M	167,934169	(3)	-61322	(3)	1363332	(5)	258	(4)
98	70	10848	167.933892	(4)	#61580	(4)	1362807	(6)		
101	68	169ER	168,9345862	(25)	-40933.1	(23)	1371797	(5)	351.2	(15)
100	69	109TH	168,934209	(3)	#6128H . 3	(24)	1371366	(5)	-404	(4)
99	70	169¥8	168,935185	(4)	+60376	(4)	1369675	(6)		
102	68	170ER	169,935460	(5)	+60119	(3)	1379054	(5)	+313,7	(19)
101	69	170TM	169,935797	(3)	-59805,5	(24)	1377958	(5)	967,8	(9)
100	10	11048	169,9347576	(25)	+60773,4	(23)	1378144	(5)		
103	68	171ER	170,938025	(3)	+57729	(3)	1384736	(5)	1490.3	(12)
501	69	171TM	170,936426	(3)	-59219,7	(24)	1385444	(5)	96,7	(10)
101	70	1/144	170,9363218	(24)	-59316,3	(23)	1384758	(5)	-1480,7	(55)
100	1	1/1/0	1/0,437411	(\$)	+57836	(3)	1382495	(5)		
102	70	172YB	171.9363768	(24)	+59265.2	(22)	1392778	(5)	-2524	(3)
101	71	11510	171,939087	(4)	+56741	`C43	1389472	(6)		
104	69	173TH	172,939594	(6)	-56268	(5)	1398635	(7)	1293	(5)
103	70'	17348	172,9382061	(24)	+57561:1	(22)	1399146	(5)	+675	(3)
102	71	173LU	172,938931	(4)	-56886	(3)	1397688	(6)		
104	7 a	1748	173.9388571	(24)	+56954.7	(55)	1406611	(5)	-1378	(3)
103	71	174LU	173,940337	(4)	= 55576	(3)	1404450	(6)	266	(5)
102	72	174HF	173,940052	(4)	-55842	(4)	1403933	(6)	·	

31 -

			(५)	1484852	(5)	50081-	(5)	\$ \$#\$\$6*\$#1	SU941	41	011
	(11)	1.4701	(5)	1540801	(2)	01617-	(5)	486756*581	1968	51	111
	(22)	6*1185-	(5)	8685801	(\$)	51520-	(5)	852750 581	MARI	μĹ	611
			(5)	9559281	(5)	60820-	(5)	200056 081	S0501	41	601
	(/)	0*5101-	(5)	5559/01	(5)	12451-	(5)	156256*111	าหรุ่นไ	ร้	011
	(6)	9*257	(5)	SULULUI	(52)	0 16517-	(5)	810256*081	MSHI	μŢ	111
			(5)	0866471	(5)	ららざりりゃ	(2)	167256*581	50701	٩Ľ	1901
			(5)	6162171	(52)	£ * 80/ Sp+	(5)	126056*141	MINH	b T	011
			(5)	1855401	(52)	0 84841-	(5)	555026+581	MEBI	17 L	6 Ü I
			(५)	91156511	(5)	84584+	(5)	002806*181	HSHI	η٢	801
	(61)	h*£181	(5)	5158501	(52)	6*7%797-	(2)	051056 181	AT5H1	٤٢	601
			(8)	\$821501	(1)	19580-	(L)	161816.081	MIRI	۳L	201
1	(L)	981-	(5)	2222201	(52)	D*£1/180₩	(5)	066106°041	AT181	٤1	801
32	(52)	4 * 2201	(5)	L0025#\$	(91)	0 * 4 1 1 2 1 *	(21)	57904949081	181HF	۲2	601
1		· ·	(9)	00971171	(7)	51961-	(\$)	10L906 6L1	MOUL	۵L	401
	(9)	112	(L)	1190001	(5)	71687-	(9)	897L76 6L1	ATOBI	11	LUI
	(5)	858+	(5)	1159001	(#1)	8*16167=	(51)	2975976*621	1 HOHF	۲۲	A 0 I
			(1)	0508571	(5)	548.05-	(9)	216516 411	¥1621	٤1	901
	(5)	011-	(5)	1418853	(71)	0*51+05-	(51)	221H249.811	14671	۶۲	201
			(5)	1432853	(91)	9*91125-	(21)	2464276°227	178HF	57	401
			(5)	1615201	(91)	5156855-	(71)	2815846 941	117HF	۲۲	501
	(01)	0*167	(5)	1425483	(81)	2*56525+	(61)	6152506*921	117771	۱L	901
			(5)	n1881n1	(88)	5*08585-	(5)	907106*521	3H971	ζL	104
	(12)	5 9811	(5)	0108101	(81)	0 16115	(50)	46L9206°SL1	0.1971	١L	501
	(02)	5.011+	(5)	2056101	(5)	ħUS£5-	(1)	195286*521	атат <u>і</u>	ÚΖ	401
			(9)	2090101	(1)	61775-	(†)	515106*021	JHS/ I	21	201
	(7)	769-	(5)	8115101	(02)	6*22155+	(55)	6692076*721	17521	11	#0 1
	(51)	0*197	(5)	5572171	(22)	6*60/06#	(52)	(1/2106 0/1	ulc/l	07	501

N	7	Атом	Atomic mas amu	iS,	Mass exce keV	sses,	Binding ke	energy, V	Beta-deca energy, I	ay ceV
+	4 ـ ـ ـ • • • . •	,	•••••••••••••••••		*****					
112	14 7e	1074	100,73/133		F34410	(5)	1491364	(5)	1312,3	(17)
117		18706	100,773/40		#41666+4	(25)	1441844	(5)	2,64	(4)
	10	1070a	100 + 2001 + 1	641	*4166341	(62)	1441115	(5)	ı	
113	75	INARE	187,958108	(3)	-39023	(3)	1497766	(5)	2119.7	(9)
112	76	1880s	107 955832	(3)	=41142	(3)	1499104	(5)	+2786	(10)
111	77	ī8atr	187,958823	(11)	+38356	(10)	1495535	(11)	+531	(9)
110	78	18891	187,959393	(6)	+37826	(6)	1494222	(8)		
	_				~			-		
114	75	INAUE	188,959221	(10)	- 37986	(9)	1504800	(10)	1008	(9)
113	16	18905	188,958139	(3)	-38994	(3)	1505026	(5)	•514	(6)
115	17	INAIN	188,958691	(7)	- 28480	(7)	1503730	(8)	+1989	(13)
111	78	TOANT	128.400851	(15)	= \$6490	(12)	1200424	(1,2)		
114	76	19005	189,958438	(3)	-18715	(3)	1512819	(5)		
112	78	190PT	189,959930	(7)	+37325	(6)	1509864	(8)		
	•	10100	400 04 00 24		24.4.6.2				7.4	
117	16	17105	140,400451		# 30402 - 11709	(3)	1518578	(6)	306	(3)
114	11	19101	170,700776	(4)	#38/90 #16/90	(4)	1310101	(6)		(2)
113	"	14161	1404401000	101	433040	(2)	1210200			
116	76	19208	191.961474	(4)	-35887	(3)	1526134	(6)	+1051	(4)
115	77	1921R	191,962602	(4)	-34836	(4)	1524300	(6)	1456	(3)
114	7 ₈	19201	191,961039	(4)	- 36292	(4)	1524974	(6)		
117	76	19305	192.964146	(4)	#3319A	(4)	1531716	(6)	1125	(4)
116	77	19318	192,962919	(3)	-34523	(3)	1532058	(6)		(22)
115	7 A	19301	192.963000	(4)	-34466	(()	1531219	(6)		(
			· · · · · · · · · · · · · · · · · · ·	* ** *	ি আল্লে উদ্দুয়া		4 -7 -4 9 9 9 7			
117	77	1941R	191,965094	(3)	#32515	(3)	1538122	(6)	2247,1	(18)
116	78	194PT	193,962681	(3)	-34762	(3)	1539587	(6)	*	

117	7 <u>A</u>	195PT	194,9647946	(17)	-32793,8	"(16)	1545690	(5)			
118	78	196PT	195,9649562	(14)	- 52643,4	(13)	1553611	(5)	=1507	(3)	
117	79	196AU	195,966574	(4)	-31136	(4)	1551321	(6)	686	(3)	
116	80	196HG	195,965838	(4)	-31855	(3)	1551224	(6)			
119	78	197PT	196,9673449	(14)	- 50418.3	(13)	1559457	(5)	718,8	(6)	
118	79	197AU	196 9665732	(12)	=31137+1	(11)	1559394	(5)	-		
120	7 A	198PT	197,967898	(4)	-29903	(3)	1567013	(6)	•325	(3)	
119	79	198AU	197,9682469	(12)	=29578,1	(11)	1565906	(5)	1372.4	(6)	
118	- 8 <u>0</u>	198HG	197,9667736	(11)	# 30950,5	(11)	1566496	(5)	-		
121	7 A	19991	198,970582	(20)	-27403	(19)	1572585	(19)	1688	(19)	
150	79	199AU	198,9687701	(12)	=29090,7	(11)	1573490	(5)	452,5	(7)	
119	80	199HG	198,9682844	(10)	=29543,1	(9)	1573160	(5).			
120	80	500HG	199,9683307	(10)	•29500 _• 0	(9)	1581188	(5)			
121	80	201HG	200,9703073	(10)	-27658.8	(9)	1587418	(5)	*482	(15)	
150	81	201TL	200,970824	(16)	•27177	(15)	1586154	(16)	-1860	(40)	1
119	82	201PB	200,97282	(4)	•25320	(30)	1583510	(40)			4
155	80	205HC	201,9706469	(11)	-27342.5	(10)	1545173	(5)	-1363	(17)	I
121	8 1	11505	501,615110	(18)	-25980	(17)	1593029	(18)	• 46	(18)	
150	82	202PB	201,972159	(11)	+25934	(10)	1592201	(11)			
123	9.0	203HG	202,972874	(3)	+25268	(3)	1601171	(6)	492,7	(19)	
155	81	2031L	202,972345	(3)	-25761	(3)	1600881	(6)	- 975	(9)	
151	82	20.528	202.973391	(10)	+24786	(10)	1599124	(1))			
124	80	204HG	203,9734968	(13)	-24687.8	(12)	1608662	(5)	+342	(3)	
123	81	2041L	203,973864	(3)	=24346	(3)	1607537	(6)	763, 19	(20)	
155	85	204PB	203,973045	(3)	•25109	(3)	1607518	(6)			
124	81	205TL	204.974422	(4)	-23826	(4)	1615089	(6)	=56.7	(20)	
153	62	20568	204,974483	(4)	-23769	(3)	1614250	(6)	+2707	(7)	
195	83	20581	204,977389	(8)	+21062	(8)	1610760	(9)	-3490	(30)	
121	нц	20260	204,98114	(4)	-17570	(30)	1606480	(50)			

	F				******					
~	7	Атом	Atomic mas amu	55,	Mass exc keV	esses,	Binding ke	energy, V	Beta-dec energy,	ay keV
125 124 123	81 82 83	2067L 206PR 206BI	205,976105 205,974465 205,978503	(4) (4) (12)	+22258 +23786 #20025	(4) (3) (11)	1621592 1622338 1617794	(6) (6) (12)	1527,6 •3761	(17) (11)
126 125	81. 82	2071L 207PR	206,977418 206,975894	(6) (4)	+21035 +22455	(6) (4)	1628441 1629078	(8) (6)	1419 -2405	(6) (7)
124 123	83 84	20781 20780	206,978476 206,981598	(9) (11)	+20050 +17142	(8) (10)	1625891 1622200	(10) (11)	8065-	(9)
127 126	81 82	208 ti. 208pa	207,982007 207,976649	(5) (4)	+16761 +21751	(5) (4)	1632238 1636440	(7)	4991	(4)
127 126	82 83	209PH 209BT	208, 981090 208, 981090	(4) (4)	=17415 =18259	(4) (4)	1640381 1640243	(6) (6)	644 ₉ 4	(12)
124 123	85 86	209AT 209RN	208,986173 208,99035	(9) (4)	¥12880 #8990	(8) (30)	1633299 1628620	(10) (30)	-3840	(30)
128 127 126	82 83 84	210PH 210HI 210Ph	209,984188 209,984121 209,982874	(4) (4) (4)	+14729 +14792 +15953	(3) (3) (3)	1645566 1644847 1645226	(6) (6) (6)	63,0 1161,5	(5) (19)
129 128	82 83	2110B 21181	210,988739 210,987269	(4) (6)	+10490 +11859	(4) (6)	1649386 1649389 -	(7) (8)	1369	(6)
130 129 128	82 83 84	21281 21281 21281	211,991888 211,991274 211,988865	(6) (5) (4)	+7557 +8128 +10373	(5) (5) (4)	1654537 1654326 1655788	(8) (7) (6)	572 2244	(4) (4)
130 129	83 84	21381 213p0	212,994380 212,992856	(12) (7)	+5235 +6654	(11) (6)	1459504 1660141	(12) (8)	1420	(10)

132	82	214PP	215,999803	(3)	-183	(3)	1663306	(6)	1019	(12)
131	83	214BT	213, 998709	(13)	•1203	(12)	1663543	(13)	3267	(12)
130	84	214PN	213,995201	(4)	-4470	(3)	1666028	(6)		
131	84	21580	214,999422	(4)	-539	(4)	1670168	(7)		
132	84	216PC	216,001.905	(6)	1775	(5)	1675926	(8)	-469	(5)
131	85	216AT	216,002408	(6)	2243	(6)	1674675	(8)		
132	ጸና	217AT	217,004713	(12)	4590	(11)	1680600	(12)		
137	84	21820	218,008971	(3)	8357	(3)	1685487	(6)		
132	8 ₆	218RN	218,005605	(4)	5221	(4)	1687058	(7)		
135	-86	219RK	219,009482	(4)	8833	(4)	1691518	(7)		
134	86	220RN	220,011384	(6)	10605	(5)	1697817	(8)	+872	(6)
133	87	250EB	550,015351	(8)	11477	(7)	1696162	(9)		
134	87	221FR	221.014249	(12)	13275	(11)	170243/	(12)		
136	P.6	2228N	222,017576	(3)	16372	(5)	1708193	(6)		
134	Hд	2558¥	222.015372	(5)	14519	(5)	1708681	(7)		
135	88	223RA	223.018504	(4)	17237	(4)	1713835	(7)		
136	8 p	224RA	224,020202	(6)	18819	(5)	1120324	(8)	-140/	(6)
135	ßg	224AC	224.021713	(8)	50556	(7)	1718135	(9)		
137	Aβ	225HA	225,023606	(4)	21989	(4)	1725225	(7)	<u></u> ነትን	(12)
136	Яg	225AC	225.023225	(12)	21634	(11)	1724798	(13)		
1 18	A B	22684	226,02540A	(3)	23668	(3)	1731618	(6)	-635,6	(25)
137	Hq	2597L	550.056090	(4)	24305	(5)	1730200	(7)	1108	(5)
136	90	2591H	226,024901	(5)	23195	(5)	1730525	(7)		
138	βQ	22745	227.027753	(3)	25852	(3)	1736723	(6)	45,4	(20)
1 57	90	227TH	227.027706	(4)	25808	(4)	1745984	(/)		
140	НA	228RA	228,031070	(5)	28942	(5)	1742480	(7)	45.6	(10)
139	A u	28826	228.031021	(5)	28896	(5)	1741/50	(7)	2132	(7)
138	ዓሶ	2581H	258.054135	(6)	26764	(5)	1743100	(٢)	-2113	(7)
137	91	2546V	228.031000	(9)	28877	(8)	1740204	(10)		
				'n						

- 36 1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A A	Атом	Atomic ma amu	55,	Мавs exce keV	esses,	Binding ke	energy, V	Beta-dec energy,	cay keV	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •	229TH	224,031758	(4)	29582 29582	(3)	1748352	(7)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		230TH	230,033133	(3)	3086 \$	(3)	1755143	(6)	-1304.5	(20)	
13892230230230033938(6)31613(5)1752829(8)141902317H231036300(3)33814(3)1760264(6)14091231PA231035883(3)13425(3)1759871(6)14290232H232.037147(6)344825(5)1765982(6)14390233TH233.0415814(25)36733.1(23)1771487(6)14390233TH233.040245(3)37484.2(24)1771950(6)14490234TH234.040245(3)36916(3)1771740(7)14490234TH234.043599(5)40613(4)1777679(7)14490234TH234.043599(5)40613(4)1777679(7)14391234PA234.043599(5)38144.1(23)176885(6)143922350235.0439266(25)38144.1(23)176885(6)144922350235.0439266(25)40917.7(23)1763861(6)144922360235.0439266(25)40917.7(23)1763861(6)144922360235.044059(3)41040.8(25)1782975(6)144922360235.044059(3)45349.9(25)1763551(6)144 </td <td></td> <td>230PA</td> <td>230,034533</td> <td>(4)</td> <td>32168</td> <td>(3)</td> <td>1753056</td> <td>(7)</td> <td>555</td> <td>(5)</td> <td></td>		230PA	230,034533	(4)	32168	(3)	1753056	(7)	555	(5)	
141 90 $231TH$ $231,036300$ (3) 33814 (3) 1760264 (6) 140 91 $231PA$ $231,035803$ (5) 13425 (3) 1760701 (6) 142 90 $232TH$ $232,037147$ (6) $35448,1$ (23) 1766701 (6) 143 90 $233TH$ $232,037147$ (6) 34602 (5) 1765982 (6) 143 90 $233TH$ $233,0415814$ (25) $38733,1$ (23) 1771487 (6) 142 91 $233,0415814$ (25) $38733,1$ (23) 1771740 (6) 144 90 $233TH$ $233,040245$ (4) 17717950 (6) 144 92 2330 $235,039631$ (5) 40613 (4) 1777679 (7) 144 90 $234TH$ $234,043599$ (5) 40613 (4) 1777679 (7) 143 91 $2340A$ $234,043599$ (5) 40550 (5) 1777159 (7) 142 92 2350 $235,0439266$ (25) $38144,1$ (23) 1782975 (6) 143 92 2350 $235,0439266$ (25) $40917,7$ (23) 1782975 (6) 144 92 2360 $236,0455644$ (24) $42443,3$ (22) 1790426 (6) 144 92 2370 $237,048728$ (3) $45389,9$ (25) 17		530U	230.033938	(6)	31613	(5)	1752829	(8)			
140 9_1 $231PA$ $231.035A83$ (3) 13425 (3) 1759471 (6)142 9_0 $242TH$ 232.037147 (6) 44402 (5) 1765982 (8)143 9_0 $233TH$ 233.0415814 (25) 36733.1 (23) 1765982 (8)143 9_0 $233TH$ 233.0415814 (25) 36733.1 (23) 1771447 (6)142 9_1 $233PA$ 233.040245 (3) 17488.2 (24) 17714950 (6)141 9_2 $233U$ 233.039631 (3) 36916 (3) 1771740 (7)144 9_0 $234TH$ 234.043599 (5) 40613 (4) 1777679 (7)144 9_0 $234TH$ 234.043599 (5) 40513 (4) 1777679 (7)144 9_0 $234TH$ 234.043599 (5) 40550 (5) 177159 (7)142 9_2 $234U$ 234.043599 (5) 40550 (5) 1777159 (7)143 9_1 235.0439266 (25) 40917.7 (23) 1783861 (6)143 9_2 $235U$ 235.0439266 (25) 40917.7 (23) 1782975 (6)144 9_2 $236U$ 236.0455644 (24) 42443.3 (22) 1790426 (6)144 9_2 $237U$ 237.048728 (3) 45389.9 (25) 1795551 (6)144 9_3 $237N$		231TH	231,036300	(3)	33814	(3)	1760264	(6)	584.0	(18)	
14290 $2321H$ $232.038054H$ (25) 35446.1 (23) 1766701 (6) 143 90 $2331H$ 233.0415814 (25) 36733.1 (23) 1771447 (6) 142 91 $233PA$ 233.0415814 (25) 36733.1 (23) 1771447 (6) 144 92 $233U$ 233.040245 (3) 37484.2 (24) 1771950 (6) 144 92 $233U$ 233.039631 (3) 36916 (3) 17717400 (7) 144 90 $2347H$ 234.043599 (5) 40613 (4) 1777679 (7) 143 91 $234PA$ 234.043599 (5) 40613 (4) 177759 (7) 142 92 $234U$ 234.0439266 (25) 38144.1 (23) 1783881 (6) 143 92 $235U$ 235.0439266 (25) 40917.7 (23) 1783881 (6) 144 92 $235U$ 235.0439266 (25) 40917.7 (23) 1783881 (6) 144 92 $236U$ 236.0455644 (24) 42443.3 (22) 1790426 (6) 144 92 $237U$ 237.048728 (3) 45389.9 (25) 1795551 (6) 144 93 $237NP$ 237.048728 (3) 45389.9 (25) 1795551 (6) 144 93 $237PU$ 237.048728 (3) 4538		231PA	231,035883	(\$)	43425	(3)	1759871	(6)			
140 92 232 037147 (6) 34602 (5) 1765982 (8) 143 90 233704 $233,0415814$ (25) $38733,1$ (23) 1771487 (6) 142 91 233964 $233,040245$ (3) $37488,2$ (24) 1771950 (6) 141 92 2330 $233,039631$ (3) 36916 (3) 1771740 (7) 144 90 23478 $234,043599$ (5) 40613 (4) 1777679 (7) 143 91 234924 $234,043599$ (5) 40613 (4) 1777679 (7) 142 92 2340 $234,043599$ (5) 40613 (4) 1777679 (7) 142 92 2340 $234,043599$ (5) 40050 (5) 1777159 (7) 142 92 2340 $234,0439266$ (25) $38144,1$ (23) 1783881 (6) 143 92 2350 $235,0439266$ (25) $40917,7$ (23) 1783881 (6) 144 92 2360 $236,0455644$ (24) $42443,3$ (22) 1790426 (6) 144 92 2360 $237,048728$ (3) $45389,9$ (25) 1795551 (6) 144 93 $237NP$ $237,0481701$ (24) $44870,5$ (22) 1795288 (6) 143 94 $237PU$ $237,048044$ (6) </td <td></td> <td>232TH</td> <td>232.0380548</td> <td>(25)</td> <td>\$5448.1</td> <td>(23)</td> <td>1766701</td> <td>(6)</td> <td></td> <td></td> <td></td>		232TH	232.0380548	(25)	\$5448.1	(23)	1766701	(6)			
143 90 $233TH$ $233,0415814$ (25) $38733,1$ (23) 1771487 (6) 142 91 $233PA$ $233,040245$ (3) $37488,2$ (24) 1771950 (6) 141 92 $233U$ $233,039631$ (3) 36916 (3) 1771740 (7) 144 90 $234TH$ $234,043599$ (5) 40613 (4) 1777679 (7) 143 91 $234pA$ $234,043599$ (5) 40613 (4) 1777679 (7) 142 92 $234U$ $234,043599$ (5) 40613 (4) 1777679 (7) 142 92 $234U$ $234,043599$ (5) 40350 (5) 1777159 (7) 142 92 $234U$ $235,0439266$ (25) $38144,1$ (23) 1783861 (6) 144 92 $2350P$ $235,044059$ (3) $41040,8$ (25) 1782975 (6) 144 92 $236U$ $236,0455644$ (24) $42443,3$ (22) 1790426 (6) 144 92 $237U$ $237,048728$ (3) $45389,9$ (25) 1795551 (6) 144 93 $237NP$ $237,0481701$ (24) $44870,5$ (22) 1795288 (6) 143 94 $237PU$ $237,048404$ (6) 45084 (6) 1794284 (8)		5350	232.037147	(6)	\$4602	(5)	1765982	(8)			
142 91 $233P_{4}$ 233 040245 (3) 37488 2 (24) 1771950 (6) 141 92 233 233 039631 (3) 36916 (3) 1771740 (7) 144 90 $234TH$ 234 043599 (5) 40613 (4) 1777679 (7) 143 91 $234PA$ 234 043517 (5) 40350 (5) 1777159 (7) 142 92 2340 234 0409490 (25) 38144 (23) 1778583 (6) 143 92 2350 $235, 0439266$ (25) $40917, 7$ (23) 1783881 (6) 144 92 2350 $235, 044059$ (3) $41040, 8$ (25) 1795551 (6) 144 92 2360 $236, 0455644$ (24) $42443, 3$ (22) 1790426 (6) 144 92 2370 $237, 048728$ (3) $45389, 9$ (25) 1795551 (6) 144 93 $2370P$ $237, 048728$ (3) $45389, 9$ (25) 1795551 (6) 143 94 $237PU$ $237, 048728$ (3) $45389, 9$ (25) 1795286 (6)		233TH	233,0415814	(25)	38733.1	(23)	1771487	(6)	1244.9	(21)	
141 92 233 039631 (3) 36916 (3) 1771740 (7) 144 90 234 234 043599 (5) 40613 (4) 1777679 (7) 143 91 234 043517 (5) 40350 (5) 177159 (7) 142 92 2340 234 043317 (5) 40350 (5) 177159 (7) 142 92 2340 23400 23400 (25) 3814410 (23) 1763863 (6) 143 92 23500 2350439266 (25) 4091777 (23) 1763861 (6) 142 93 23500 2350439266 (25) 4091777 (23) 1763861 (6) 144 92 23500 235044059 (3) 4091777 (23) 1763861 (6) 144 92 23600 2360435644 (24) 4244373 (22) 1790426 (6) 144 92 23700 237048728 (3) 4538979 (25) 1795551 (6) 144 93 23700 237048728 (3) 4538975 (22) 1795288 (6) 143 94 23700 237048004 (6) 45088 (6) 1794288 (6)		233PA	233,040245	(3)	17488.2	(24)	1771950	(6)	572.1	(24)	
144 90 $234 + 043599$ (5) 40613 (4) 1777679 (7) 143 91 $234PA$ $234 + 043317$ (5) 40350 (5) 1777159 (7) 142 92 2340 $234 + 0409490$ (25) $38144 + 1$ (23) 1783881 (6) 143 92 $2350P$ $235 + 0439266$ (25) $40917 + 7$ (23) 1783881 (6) 144 92 $2350P$ $235 + 0439266$ (25) $40917 + 7$ (23) 1783881 (6) 144 92 $2350P$ $235 + 0439266$ (25) $40917 + 7$ (23) 1782975 (6) 144 92 $2360P$ $236 + 0455644$ (24) $42443 + 3$ (22) 1790426 (6) 145 92 $2370P$ $237 + 048728$ (3) $45389 + 9$ (25) 1795551 (6) 144 93 $237NP$ $237 + 048728$ (3) $45389 + 9$ (25) 1795288 (6) 143 94 $237PU$ $237 + 048404$ (6) 45088 (6) 1794288 (8)		2330	233,039631	(3)	36916	(3)	1771740	(7)			
143 91 $234PA$ $234, 043317$ (5) 40350 (5) 1777159 (7) 142 92 2340 $234, 0409490$ (25) $38144, 1$ (23) 1778585 (6) 143 97 2350 $235, 0439266$ (25) $40917, 7$ (23) 1783881 (6) 147 93 $2350P$ $235, 044929$ (3) $41940, 8$ (25) 1782975 (6) 144 92 2360 $236, 0455644$ (24) $42443, 3$ (22) 1790426 (6) 144 92 2370 $237, 048728$ (3) $45389, 9$ (25) 1795551 (6) 144 93 $2370P$ $237, 0481701$ (24) $44870, 5$ (22) 1795288 (6) 143 94 $237, 048404$ (6) 45088 (6) 1794288 (8)		234TH	234,043599	(5)	40613	(4)	1777679	(7)	262.5	(20)	
142 92 234 0409490 (25) 38144 (23) 1778585 (6) 143 92 235 0439266 (25) 40917 (23) 1783881 (6) 142 93 235 044059 (3) 41040 (25) 1782975 (6) 144 92 236 0455644 (24) 42443 (22) 1790426 (6) 144 92 236 0455644 (24) 42443 (22) 1790426 (6) 145 92 2370 237.048728 (3) 45389.9 (25) 1795551 (6) 144 93 $237NP$ 237.0481701 (24) 44870.5 (22) 1795288 (6) 143 94 237.048404 (6) 45088 (6) 1794288 (8)		234PA	234,043317	(5)	40350	(5)	1777154	(7)	5500	(4)	
143 92 235 0439266 (25) 40917 (23) 1783881 (6) 142 93 235 044059 (3) 41040 (25) 1782975 (6) 144 92 236 0455644 (24) 42443 (22) 1790426 (6) 145 92 237 048728 (3) 45389 9 (25) 1795551 (6) 144 93 237 048728 (3) 45389 9 (25) 1795551 (6) 143 94 237 0481701 (24) 44870 5 (22) 1795288 (6) 143 94 237 048404 (6) 45088 (6) 1794288 (8)		2340	234,0409490	(25)	38144,1	(23)	1778583	(6)			
142 93 235,044059 (3) 4104048 (25) 1782975 (6) 144 92 236,0455644 (24) 42443,3 (22) 1790426 (6) 145 92 237,048728 (3) 45389,9 (25) 1795551 (6) 144 93 237,048728 (3) 44870,5 (22) 1795288 (6) 143 94 237,0481701 (24) 44870,5 (22) 1795288 (6)		235U	235,0439266	(25)	40917,7	(23)	1783881	(6)	+123.1	(10)	
144 92 236,0455644 (24) 42443,3 (22) 1790426 (6) 145 92 237,048728 (3) 45389,9 (25) 1795551 (6) 144 93 237,0481701 (24) 44870,5 (22) 1795288 (6) 143 94 237,048404 (6) 45088 (6) 1794288 (8)		235NP	235,044059	(3)	41040.8	(25)	1782975	(6)			
145 92 2370 237,048728 (3) 45389,9 (25) 1795551 (6) 144 93 237NP 237,0481701 (24) 44870,5 (22) 1795288 (6) 143 94 237PU 237,048404 (6) 45088 (6) 1794288 (8)		2361	236.0455644	(24)	42443.3	(22)	1790426	(6)			
144 93 237NP 237.0481701 (24) 44870,5 (22) 1745288 (6) 143 94 237PU 237.048404 (6) 45088 (6) 1794288 (8)		237u	237.048728	(3)	45389.9	(25)	1795551	(6)	519,5	(11)	
143 94 237PU 237,048404 (6) 45088 (6) 1794288 (8)		237NP	237,0481701	(24)	44870.5	(55)	1745288	(6)	-218	(6)	
		237PU	237.048404	(6)	45088	(6)	1794288	(8)			
146 92 238U 238.0507868 (23) 47308.0 (22) 1801705 (6)		2380	238.0507868	(23)	47308.0	(22)	1801705	(6)	-145.7	(13)	
145 93 238NP 238,0509433 (24) 47453,7 (22) 1800776 (6)		238NP	238,0509413	(24)	47453.7	(22)	1800776	(6)	1291.5	(11)	

147	92	2390	239,0542920	(24)	50573.1	(22)	1806511	(6)	1265.3	(24)
146	93	239NP	239,052934	(3)	49308	(3)	1806994	(7)	721.4	(19)
145	94	239PU	239 0521592	(25)	48586,4	(23)	1806933	(6)	·	
148	95	240U	240.056589	(5)	52713	(5)	1812443	(8)		
146	94	240PU	240,0538101	(24)	50124,2	(53)	1813466	(6)		
147	9 U	241PU	241.0568482	(24)	52954.2	(55)	1818708	(6)	20,81	(20)
146	95	241 AM	241.0568259	(24)	52933,4	(22)	1817946	(6)	·	
148	94	242PU	242.0587397	(24)	54716.1	(22)	1825017	(6)	-750.1	(9)
147	95	242AM	242.0595449	(24)	55466.2	(23)	1823485	(6)	663.3	(12)
146	96	242CM	242.0588329	(25)	54802.9	(23)	1823366	(6)		•
149	9 U	243PU	243.062000	(4)	57753	(3)	1830051	(7)	582	(3)
1/18	99	243AM	243.061376	(3)	57171	(3)	1829851	(7)	-7.0	(23)
147	96	243CM	243,061383	(3)	57178,5	(25)	1829062	(6)		
150	94	244PU	244.064201	(5)	59803	(5)	1836073	(8)		
148	96	244CM	244.0627491	(24)	58450,9	(23)	1835861	(6)		
150	95	245 A M	245.066451	(4)	61899	(4)	1841266	(7)	896.6	(21)
149	96	245CM	245,065488	(3)	61002	(3)	1841380	(7)	•	
152	94	246PU	246.070174	(21)	65367	(19)	1846652	(20)	377	(10)
151	95	246AM	246.069769	(22)	64990	(21)	1846246	(22)	2375	(15)
150	96	246CM	246,067222	(4)	62617	(3)	1847837	(7)	-	
151	96	247CH	247,070349	(5)	65531	(5)	1852995	(7)		
152	96	248CH	248,072345	(5)	67390	(5)	1859207	(8)	-708	(51)
151	97	2488K	248,073106	(22)	68098-	(21)	1857717	(22)	858	(18)
150	9 A	248CF	248,072185	(24)	67240	(22)	1857792	(23)		
153	96	2490.4	249,075951	(8)	70749	(8)	1863920	(10)	894	(8)
152	97	249HK	249.074986	(4)	69849	(3)	1864037	(7)	126.3	(19)
151	9 A	249CF	249,074850	(3)	69723	(3)	1863381	(7)	-	
154	96	250CH	250,078355	(12)	72987	(11)	1869752	(13)	37	(12)
153	97	25084	250.078315	(6)	72951	(5)	1869006	(8)	1780	(4)

- 38