International Atomic Energy Agency

INDC(CCP)-215 Distr.: L

INTERNATIONAL NUCLEAR DATA COMMITTEE

NEUTRON NUCLEAR DATA FOR PU-240

G.V. Ancipov, V.A. Konshin, E.Sh. Sukhovickij

ACADEMY OF SCIENCES OF THE BYELORUSSIAN SOVIET SOCIALIST REPUBLIC A.V. LYKOV INSTITUTE OF HEAT AND MASS TRANSFER

Translation by IAEA from an original in Russian dated 1982

April 1984

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Note by editor (H.D. Lemmel, IAEA Nuclear Data Section):

This document contains a partial translation from

V.G. Ancipov, V.A. Konshin, E. Sh. Sukhovickij:

Jadernye Konstanty dlja Izotopov Plutonija (Nuclear Data for Plutonium Isotopes)

Editor-in-Chief: Academician A.K. Krasin of the Byelorussian Academy of Sciences

"NAUKA I TECHNIKA", MINSK, 1982

This book contains four parts, on Pu-239, Pu-240, Pu-241, and Pu-242, of which the part on Pu-240 was translated and included in the present document. For the other isotopes the reader is referred to the following documents published earlier:

Pu-239: INDC(CCP)-166, August 1981 Pu-241: INDC(CCP)-142, March 1980 Pu-242: INDC(CCP)-150, August 1980

The related evaluated data in ENDF-5 format are available in the IAEA Nuclear Data Library for Actinides, INDL/A, documented in IAEA-NDS-12 Rev. 7 (Dec. 1983) under the following accession numbers:

> Pu-239: INDL-9421 Rev. 3 Pu-240: INDL-9431 Rev. 2 Pu-241: INDL-9440 Pu-242: INDL-9450 Rev. 3

Further revisions to these evaluations can be expected; the data user is advised to verify whether he has the most recent version.

Reproduced by the IAEA in Austria April 1984 84-02807

INTRODUCTION

In nuclear reactors ²³⁹Pu is produced through neutron capture by ²³⁸U nuclei followed by β^- disintegration of ²³⁹U and ²³⁹Np. The isotopes ²⁴⁰Pu, ²⁴¹Pu and ²⁴²Pu are formed in the subsequent process of the capture of neutrons by ²³⁹Pu nuclei. This booklet gives evaluated nuclear data for these isotopes in the energy region 10⁻⁵ eV-15 MeV needed for reactor calculations and other applications.

Table I.1 shows the energies Q and thresholds T of possible reactions of neutrons with nuclei of 239 Pu, 240 Pu, 241 Pu and 242 Pu in the region being examined.

An evaluation of neutron cross-sections of plutonium isotopes in accordance with their energy dependence has been performed in the following energy regions: the resonance, the unresolved resonance and the fast neutron energy regions. In view of the requirements arising in actual practice, the thermal region of 10^{-5} -5 eV has been shown separately. The evaluation covers the following characteristics for possible reactions between neutrons and nuclei: total interaction cross-section σ_{nT} , absorption cross-section σ_{nA} , fission cross-section σ_{nf} , radiative capture cross-section $\sigma_{n\gamma}$, elastic scattering cross-section σ_{nn} , inelastic scattering cross-section $\sigma_{nn'}$, (n,2n)and (n,3n) reactions, average number of neutrons per fission event $\bar{\nu}$ and per absorption event n, angular distributions of elastically scattered neutrons d $\sigma_{nn'}/d\Omega$ and inelastically scattered neutrons d $\sigma_{nn'}/d\Omega$, energy distributions of secondary neutrons, and spectra of γ -rays accompanying the nonelastic processes.

Reactions with charged particle emission were not examined in view of their low probability.

The data shown constitute complete systems of constants (files). In addition, group-averaged constants broken down into the standard 26 groups and Westcott's g-factors are given.

<u>The resonance energy region</u>. Owing to the complex energy dependence of neutron cross-sections, evaluated resonance parameters which can be used for calculating the detailed dependences of the cross-sections of all types of reaction are given. Our evaluation is based on the Breit-Wigner and Reich-Moore formalisms. In the region 10^{-5} -5 eV the cross-sections are presented in tabular form in view of the high levels of accuracy required, which are not always provided by parametrization. The unresolved resonance region. In this region, average resonance parameters are obtained which can be used for calculating all types of cross-section. The evaluation is based on the use both of average experimental cross-sections and of data from the resolved resonance region. For calculating neutron cross-sections, use was made of energy-averaged Breit-Wigner formulae which allow for different ideas about width distribution laws.

The fast neutron energy region. The nuclear data evaluation in this region is based on analysis of available experimental data and on widelyused present-day theoretical models such as the generalized optical model, the statistical model, the pre-equilibrium decay model and others. The models and the parameters used in them were carefully tested over the whole range of experimental data available. Fission penetrability was calculated using the Hill-Wheeler model with discrete and continuous spectra of transitional states. The effective penetrability for radiative capture was calculated in accordance with the cascade theory of Y-ray emission with the spectral factor in Lorentzian form, as required by testing in terms of widths of the $(n,\gamma f)$ process. The level density of the continuous excitation spectrum was approximated by present-day models based on collective effects. The neutron transmission coefficients were determined using the coupled channel method taking into account the deformation of the nucleus. The (n,2n) and (n,3n) reaction cross-sections were obtained using a model based on information about process stages. The angular distributions of the elastic scattered neutrons and neutrons inelastically scattered at groundstate rotational band levels were calculated by means of the coupled channel method. For other levels the angular distributions were considered to be isotropic. For finding the energy distributions of secondary neutrons in a continuous spectrum, use was made of a cascade statistical model based on the pre-equilibrium mechanism by which the process takes place. The spectra of γ -rays from inelastic processes were, with the exception of fission γ -rays, calculated by means of the statistical cascade model. Experimental data were used for the fission γ -ray spectrum.

The evaluated data are presented in the tables. They have been included in the Soviet evaluated nuclear constants library and have been approved as standard for use in the USSR. More detailed information on the complete

- 2 -

nuclear data files for plutonium isotopes, including numerical data on magnetic tape and a detailed description of the evaluation procedure, can be obtained upon request from the Nuclear Data Centre of the State Committee on the Utilization of Atomic Energy, which is located at the Fiziko-Energeticheskij Institut in Obninsk.

				Isotop	e		•	
Reaction	2	*Pu	24	°Pu	24	Pu	z 42 [Pu
Redection	Q	T	'Q	T	Q	Τ	Q	T
	······································			Me	V			
(n, γ) (n, 2n) (n, 3n) (n, 4n) (n, p) (n, d) (n, n) (n, nd) (n, nd) (n	$\begin{array}{c} - & -5,655 \\ -12,653 \\ -18,513 \\ -3,94 \\ -3,17 \\ -9,167 \\ -9,79 \\ -9,79 \\ -3,66 \\ -8,79 \\ -8,79 \\ -\end{array}$	$\begin{array}{c}6,534\\ 5,679\\ 12,706\\ 18,591\\ -0,059\\ 3,96\\ 3,18\\ 9,193\\ 9,46\\ 9,83\\ 3,68\\ -11,79\\ 8,83\\ -5,24 \end{array}$	$-6,534 \\ -12.189 \\ -19.187 \\ -1,311 \\ -4.252 \\ -9,473 \\ -10,520 \\ -9,740 \\ -4,053 \\ -10,240 \\ $	$\begin{array}{r} -5,241 \\ 6,561 \\ 12,240 \\ 19,267 \\ 1,317 \\ 4,270 \\ 4,240 \\ 6,500 \\ 10,564 \\ 9,781 \\ 4.070 \\ -10,38 \\ 10,283 \\ -5,26 \end{array}$	$-5,241 \\ -11,775 \\ -17,430 \\ -0,582 \\ -4,332 \\ -3,236 \\ -6,552 \\ -9,490 \\ -9,46 \\ -4,491 \\ -9,29 \\ -$	$\begin{array}{r} -6,301\\ 5,263\\ 11,824\\ 17,503\\ 0,584\\ 4,350\\ 3,250\\ 6,589\\ 9,530\\ 9,530\\ 9,50\\ 4,510\\ -11,233\\ 9,33\\ -5,14\end{array}$	$-6,301 \\ -11,542 \\ -18,075 \\ -4,658 \\ -4,371 \\ -6,883 \\ -10,629 \\ -9,535 \\ -4,860 \\ -10,793 \\ -10,792 \\ -10,792 \\ -10,792 \\ $	$\begin{array}{c} -5.037\\ 6.327\\ 11.590\\ 18.150\\ 4.678\\ 4.389\\ 6.912\\ 10.673\\ 9.575\\ 4.880\\ -9.786\\ 10.838\\ -4.982\end{array}$

.

Table I.1. Energies Q and thresholds T of reactions between neutrons and 239_{Pu} , 240_{Pu} , 241_{Pu} and 242_{Pu} nuclei

Chapter 2

NUCLEAR DATA FOR ²⁴⁰Pu

The evaluation of resonance parameters of ²⁴⁰Pu in the resolved resonance energy region $(10^{-5}-1000 \text{ eV})$ was based on the parameters obtained in experimental work [1-9]. After renormalization to more accurate values of Γ_n , as described in Ref. [10], these parameters cease to contradict one another. The parameters of the first resonance were rendered more accurate by us, using the available measurements of capture cross-sections and total cross-sections at the thermal point, the most accurate of which are those measured by Lounsbury [11] ($\sigma_{n\gamma} = (289.5 \stackrel{+}{-} 1.4b)$, and the coherent scattering lengths in Ref. [12] ($\sigma_{nn} = 1.54 \stackrel{+}{-} 0.09b$). The evaluated thermal cross-sections are to a large extent determined by these two quantities. Cross-sections can also be calculated with Breit-Wigner formulae using the evaluated resonance parameters shown in Table 2.2.

In the unresolved resonance region (1-142 keV), evaluated neutron cross-sections and average parameters are based on the available experimental data for σ_{nT} [13-16] and $\sigma_{n\gamma}$ [4, 17-19] and on evaluated average resonance parameters from the resolved resonance region, as follows: $\langle \Gamma_{\gamma} \rangle = 30.7 \text{ MeV}; \langle D \rangle = 13.5 \stackrel{+}{-} 0.5 \text{ MeV}; S_{o} = (1.1 \stackrel{+}{-} 0.16) \cdot 10^{-4};$ $(\Gamma_{f}) = 3.34 \stackrel{+}{-} 1 \text{ MeV}; X_{max} = 1/X_{min} = 30.$

The method used for evaluating cross-sections in the unresolved resonance region is described in Ref. [20]. It takes into account the presence of a two-humped fission barrier and consequently, in addition to Porter-Thomas fluctuations, fission widths are subject to further fluctuations as a result of the existence of bound states in the second well of the fission barrier.

The strength function of the p-wave $S_1 = (2.8 \pm 0.4) \cdot 10^{-4}$ was selected from the condition of agreement between experimental and theoretical data for σ_{py} in the unresolved resonance region.

Table 2.3 shows the number of degrees of freedom for the partial reaction channel widths taken into account in the unresolved resonance region, while Tables 2.4-2.7 give the energy-dependent average parameters of ²⁴⁰Pu in the energy region 1-142 keV. Table 2.8 gives evaluated average cross-sections in the unresolved resonance energy region calculated using evaluated average resonance parameters.

The fission cross-section in the fast energy region (142 keV-15 MeV) was evaluated from experimental data [8, 21-31], which were practically all obtained with respect to ²³⁵U using the quantitites σ_{nf} (²³⁵U) obtained by us [32]. Table 2.9 gives evaluated values of σ_{f} (²⁴⁰Pu) together with the ratio σ_{pf} (²⁴⁰Pu)/ σ_{pf} (²³⁵U).

The evalution of $\bar{\nu}_p$ was based on the experimental data described in Ref. [34] and on data from last publications [35,36]. The results of experiments have been normalised to $\bar{\nu}^{sp}(^{252}Cf) = 3,731$. The energy dependence of $\bar{\nu}_p$ (²⁴⁰Pu) can be approximated by the following formula:

 $\bar{v}_{p}(E) = 2.8408 + 0.14601 E (MeV).$

The quantity $\overline{\nu}_{d}$ was taken to be equal to 0.009 in the region up to 5 MeV and 0.006 in the region above 7 MeV and undergoes a linear decrease between 5 and 7 MeV; $\overline{\nu}^{sp}$ (²⁴⁰Pu) was taken to be equal to 2.14 \pm 0.01 [34].

The total interaction cross-section in the fast energy region was evaluated on the basis of calculations using the coupled channel method. We found the optical potential from the potential for 238 U and adjusted it in order to take into account existing experimental data for 240 Pu on σ_t , S_o, S₁ and R' [33].

The parameters of potential for 240 Pu were selected as follows:

$$W_D = \begin{cases} 3,05 + 0.4 \ E \ (E \le 10 \ \text{MeV}) \\ 7,05 \ (E > 10 \ \text{MeV}) \end{cases}$$

$$W_R = (46,04 - 0.3 \ E) \ \text{MeV}$$

$$a_D = (0,555 + 0,0045 \ E) \ \phi,$$

$$r_R^0 = 1,256 \ \phi, \ a_R = 0,626 \ \phi, \ r_D^0 = 1,26 \ \phi, \ V_{s0} = 7,5 \ \text{MeV}$$

$$\beta_2 = 0,191, \ \beta_4 = 0,094.$$

Table 2.10 shows the evaluated total interaction cross-section.

The evaluations of other types of neutron cross-section were based on calculations using the statistical and generalized optical models. Optical penetrabilities were calculated using the coupled channel method.

For calculating level densities, the Fermi-gas model based on collective effects was used. The radiative capture penetrabilities were normalized to $\langle \Gamma \rangle_{\gamma \text{ obs}}$. In order to allow for fission competition, fission penetrabili-ties were determined from the description of the evaluated cross-section σ_f .

Tables 2.10-2.14 show evaluated data on σ_{nT} , σ_{n} , σ_{γ} , $\sigma_{nn'}$, σ_{n2n} and σ_{n3n} .

The fission neutron spectrum was approximated by the Maxwellian distribution $N_{M}(E) = 2 \exp(-E/kT)/(\sqrt{\pi T^{3/2}})$, where T is the temperature of the nucleus (values of T are given in Table 2.10). The energy distributions of secondary neutrons from the (n,n') (continuous spectrum), (n,2n) and (n,3n) reactions were evaluated from the statistical model with allowance for the possibility of pre-equilibrium emission; these are shown in Table 2.16. The spectra of γ -rays from inelastic processes are given in Table 2.17. The spectrum of fission γ -rays was taken to be equal to the experimental spectrum of Ref. [37] and is assumed not to depend on neutron energy. Tables 2.15 and 2.18 show group-averaged constants for 240 Pu.

REFERENCES

- Kolar W., Böckhoff K. H. Final Results on the Neutron Total Cross-[1] Section of Pu-240.— Proc. Conf. on Neutron Cross-Sections and Technology. Washington, v. 1, p. 519-526.
- Weigmann H., Winter J., Schmid H. Neutron Capture Measure-ments in the Resonance Region: Cu and Pu-240.— Proc. Conf. on [2] Neutron Cross-Sections and Technology. Washington, 1968, v. 1, p. 533-540.
- [3] Ashgar M., Moxon M. C., Pattenden N. J. Neutron Resonance Parameters of ²⁴⁰Pu,— Proc. Conf. on Nuclear Data for Reactors.
- Paris, 1966, v. 2, p. 145. Hockenbury R. W., Moyer W. R., Block R. C. Neutron Capture, Fission, and Total Cross-Sections of Plutonium from 20 eV to 30 keV.— Nucl. Sci. Eng., 1972, v. 49, p. 153—161. [4]
- [5] Böckhoff K. H., De Keyser A., Horstmann H. Measurement of the Neutron Total Cross-Section of ²⁴⁰Pu.--Proc. Conf. on Nuclear
- Data for Reactors. Paris, v. 2, p. 135—145. *Cao M. G., Migneco E., Theobald J. P., Wartena J. A.* Scattering Cross-Section of Pu-240.— Proc. Conf. on Neutron Cross Sections and Technology. Washington, 1968, v. 1, p. 513—516. *Migneco E., Theobald J. P.* Resonance Grouping Structure in Neu-tron Induced Subthreshold Fission of Pu-240.— Proc. Conf on Neu-tron Induced Subthreshold Fission of Pu-240.— Proc. Conf on Neu-tron Induced Subthreshold Fission of Pu-240.— Proc. Conf on Neu-[6]
- [7] tron Cross Sections and Technology. Washington, 1968, v. 1, p. 527—532.
- Byers D. E., Diven B. C. ²⁴⁰Pu Fission Cross-Section from Nuclear [8] Explosion .- Proc. Conf. on Neutron Cross Sections and Technolo-
- gy. Washington, 1966, v. 2, p. 903. Moxon M. C., Jolly J. E., Endacott D. A. J. ²⁴⁰Pu Resonance Para-[9] meters.-U. K. Nuclear Data Progress Report, UKNDC (72)P37, March 1972, p. 9–12. Weigmann H., Theobald J. P. Resonance Parameters of ²⁴⁰Pu.—
- [10] J. Nucl. En., 1972, v. 26, p. 643–645. Lounsbury M., Durham R. W., Hanna G. C. Measurements of Alpha
- $\begin{bmatrix} 11 \end{bmatrix}$ and of Fission Cross-Sections Ratios for 233U, 235U and 239Pu at Thermal Energies .- Proc. IAEA Conf. Helsinki, 1970, v. 1, p. 287-294.
- Lander G. H., Mueller M. H. Coherent Scattering Amplitude of ²⁴⁰Pu and ²⁴²Pu.— Acta Crystallogr., 1971, v. B27, p. 2284. Kolar W., Bockhoff K. H. Resonance Parameters of ²⁴⁰Pu.—J. Nucl. [12]
- [13] En., 1968, v. 22, p. 299-315.
- Smith A. B., Lambropoulos P., Whalen J. F. Fast Neutron Total [14] and Srattering Cross-Sections of Plutonium 240.— Nucl. Sci. Eng., 1972, v. 47, p. 19—28. Poenitz W., Whalen J., Smith A. Systematics of Neutron Total
- [15] Cross-Sections of Heavy and Actinide Nuclei.— Reports to the Nuclear Data Committee, BNL-NCS-26133, April, 1979, p. 1–2.
- Wisshak K., Käppeler F. Neutron Capture Cross-Sections Ratios of ²⁴⁰Pu, ²⁴²Pu, ²³⁸U and ¹⁹⁷Au in the Energy Range from 10 to 90 keV.— Progress Report on Nuclear Data Research in the Fede-[16] ral Republic of Germany, NEANDC(E)-182U, v. 5, April 1977, p. 20-21.
- [17] Weston L. W., Todd J. H. Neutron Capture Cross-Section of Plutonium-240.— Nucl. Sci. Eng., 1977, v. 63, p. 143—148.

- [18] Wisshak K., Käppeler F. Neutron Capture Cross-Section Ratios of ²⁴⁰Pu, ²¹²Pu, ²³⁸U and ¹⁹⁷Au in the Energy Range from 10 to 90 keV.— Nucl. Sci. Eng., 1978, v. 66, p. 363—377.
- [19] Wisshak K., Käppeler F. Neutron Capture Cross-Section Measurements on ²⁴⁰Pu and ²⁴²Pu in the Energy Range from 50 to 250 keV.— Progress Report on Nuclear Data Research in the Federal Republic of Germany, NEANDC(E)-192U, v. 5, April 1978, p. 23-25.
- [20] ANTSIPOV, G.V., KON'SHIN, V.A., SUKHOVITSKIJ, E.Sh., "Evaluation of neutron cross-sections of ²⁴⁰Pu in the unresolved resonance region" (Proc. IIIrd All-Union Conf. on Neutron Physics) Vol. 2, Kiev (1975) 21 [in Russian].
- [21] NESTEROV, V.F., SMIRENKIN, G.N., Fission cross-sections of ²⁴⁰Pu for 0.04-4 MeV neutrons, At. ehnerg. 9 (1960) 16 [in Russian].
- [22] FURSOV, B.F., KUPRIANOV, V.M., SMIRENKIN, G.N., "Fast-neutron fission cross-sections of 233U, 238U, 239Pu, 240Pu, 241Pu and 242Pu measured relative to the fission cross-section of ²³⁵U" (Proc. IVth All-Union Conf. on Neutron Physics) Vol. 3, Kiev (1977) 144 [in Russian].
- [23] Behrens W., Newbury R. S., Magan J. W. Measurements of the Neutron Induced Fission Cross-Sections of ²⁴⁰Pu, ²⁴²Pu and ²⁴⁴Pu Relative to ²³⁵U from 0.1 to 30 MeV.— Nucl. Sci. Eng., 1978, v. 66, p. 433—440.
- [24] Henkel R. L. Fast Neutron Fission Cross-Sections Measurements.— AECD-4256, 1957.
- [25] Hansen G., Mc Guire S., Smith R. K. WASH-1074, see comments to ref. [95] in Byer T. A Simultaneous Evaluation of the ²³⁹Pu Fission Cross-Section and the ²³⁹Pu/²³⁵U Fission Cross-Section Ratio in the Fast Neutron Energy Region.— Atomic Energy Review, 1972, v. 10, p. 548.
- [26] Ruddick P., White P. H. The Measurement of the Neutron Fission Cross-Section of ²⁴⁰Pu in the Energy Range 60—500 keV.— J. Nucl. En., A/B, 1964, v. 18, p. 561—567.
- En., A/B, 1964, v. 18, p. 561-567. [27] White P. H., Warner G. P. The Fission Cross-Section of ²³³U, ²³⁴U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu and ²⁴¹Pu Relative to that of ²³⁵U for Neutrons in the Energy Range 1-14 MeV. J. Nucl. En., 1967, v. 21, p. 671-679.
- [28] Gilboy W. B., Knoll G. F. Fission Cross-Sections of Some Plutonium Isotopes in the Neutron Energy Range 5-150 keV.- Proc. Conf. on Nuclear Data for Reactors. Paris, 1966. v. 1, p. 295.
- [29] SAVIN, M.V., ZAMYATIN, Yu.S., KHOKHLOV, Yu.A., PARAMONOVA, I.N., "Ratios of fast-neutron fission cross-sections of ^{235}U , ^{239}Pu and ^{240}Pu ," Yaderno-fizicheskie issledovaniya v SSSR (Nuclear Physics Research in the USSR), <u>8</u> (1969) 12 [in Russian].
- [30] FREHAUT, J., SOLEILHAC, M., MOSINSKI, G., "Measurement of the average number of $\overline{\nu}_p$ of prompt neutrons emitted during fission induced in ²⁴⁰Pu and ²³⁵U by neutrons with energies between 1.5 and 15 MeV" (Proc. IInd All-Union Conf. on Neutron Physics) Vol. 3 (1974) 152 [in French].
- [31] FOMUSHKIN, Eh.F., GUTNIKOVA, E.K., NOVOSELOV, G.F., PANIN, V.I., Measurement of the fission cross-section of ²⁴⁰Pu with neutrons from a nuclear explosion, At. ehnerg. <u>39</u> (1975) 295 [in Russian].

- [32] KON'SHIN, V.A., SUKHOVITSKIJ, E.Sh., ZHARKOV, V.F., Determination of Errors in Evaluated Data Using Correlations and Evaluation of $\alpha(239Pu)$, $\alpha(^{235}U)$, $\sigma f(^{235}U)$ and $\sigma f(^{239}Pu)$, Minsk (1978) 50 pp. (Preprint of the A.V. Lykov Institute of Heat and Mass Exchange, Byelorussian Academy of Sciences) [in Russian].
- [33] KLEPATSKIJ, A.B., KON'SHIN, V.A., SUKHOVITSKIJ, E.Sh., "Optical potential for heavy nuclei" (Proc. Vth All-Union Conf. on Neutron Physics), Kiev (1980) [in Russian].
- [34] Manero F., Konshin V. A. Status of the energy-dependent \overline{v} -values for the heavy isotopes (Z>90) from thermal to 15 MeV and of the \overline{v} -values for spontaneous fission.— Atomic Energy Review, 1972, v. 1, p. 637—675.
- [35] FREHAUT, J., MOSINSKI, G., BOIS, R., SOLEILHAC, M., Measurement of the Average Number $\overline{\nu}_p$ of Prompt Neutrons Emitted During Fission Induced in ²⁴⁰Pu and ²⁴¹Pu, CEA-R-4626, France (1974) [in French].
- [36] SAVIN, M.V., KHOKHLOV, Yu.A., ZAMYATIN, Yu.S., PARAMONOVA, I.N., "The average number of prompt neutrons in fast-neutron-induced fission of ²³⁵U, ²³⁹Pu and ²⁴⁰Pu" (Proc. IAEA Conf. on Nuclear Data for Reactors, Helsinki, 1970) Vol. 2, Vienna (1970) 157 [in Russian].
- [37] Sund R. E., Verbinski V. V., Weber H. Prompt Gamma Rays from ${}^{235}U(n, f)$, ${}^{239}Pu(n, f)$ and Spontaneous Fission of ${}^{252}Cf$.— Phys. Rev., v. C7, p. 1175—1185.

1,03/5	1,0250	0,9875	0,9020	0,9500	0,925	0,900	0,850	0,800	0,750	0,700	0,000	0,550	0,500	0,450	0.400	0,300	0,200	0,150	0,100	0,090	0,070	0,060	0,040	0,0253	0,020	0,010	0,009	0,007	0,006		0,003	0,002	0,001		0,00005	0,00001		F. AV	
74235,750	38015,810	9777.057	7150 019	4313,127	2887,717	2074,905	1230,818	823,590	596,196	456.370	364,371	255,254	221,808	196,882	178.261	155,079	148,238	152,846	168,182	173 640	189,007	200,086	235,533	287,798 867,787	320,401	444,523	495,104 467.677	528,283	569,529	699 705	800,869	979,007	1381,912	1059 475	6169,028	13793,330		σηγ	the energy re
13,126 24,959	6,722	1,207	7.30°, 1	0,764	0,512	0,368	0,219	0,147	0,107	0,082		0,047	0,041	0,037	0,034		0,029	0,030	0,034	0.035	0,038	0,041	0,048	0,059	0,066	160,0	0,096	0,108	0,117	0,140	0,165	0,201	0,284	0 401	1,269	2,836		σ _{nf}	egion 0.00001
10086,550	2466,964	544.971	270,014	204,399	122,030	77.739	35,537	17,747	9,201	4,773	9 380	0,426	0,116	0,023	0.063	0,300	0,769	0,991	1,213	1.257	1,345	1,389	1,020 1,477	1,540	1,563	1,606	1,614	1,618	1,623	1,001	1,636	1,640	1,644	1 646	1,648	1,648	đ	Onn	-5 eV
79306,315 151275,109	40489,496	10323.758	5/41,/42	4518,290	3010,259	2153.012	1266,574	841,484	605,504	461,225	366 376	255,727	221,965	196,942	104,190	155,465	149,036	153,867	169,429	174 039	190,390	201,516	237.058	289,397 968 986	322,030	446,220	496,820	530,009	571,269	694 4602	802,670	980,848	1383,840	1054 599	6171,945	13797,810		σ _n T	111

.

١ 11 1

5,00	4,80	4,60	4,40	4,20	4,00	3,80	3,60	3,40	3,20	3,00	2,80	2,60	2,40	2,20	1,80	1,60	1,50	1,40	1,35	1,30	1,250	1,225	1,200	1,175	1,1500	1,1375	1,1250	1,1125	1,1000	1,0900	1,0800	1,0700	·1,0650	1,0600	1,0590	н, су	н V
1,483	1,668	1,890	2,158	2,486	2,890	3,398	4,044	4,883	5,995	7,508	9,629	12,718	17,432	25,084	65,370	129,512	200,626	345,508	481,197	710,742	1143,148	1517,794	2103,889	3092,752	4948,172	6547,405	9030,889	13161,080	20672,700	31895,740	53271,700	94580,320	123481,100	149320,200	152791,400		σ _{nγ}
0,001	100,0	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,002	0,003	0,003	0,004	0,005	0,013	0,024	0,037	0,062	0,086	0,127	0,203	0,270	0,373	0,548	0,876	1,159	1,598	2,328	3,656	5,640	9,420	16,723	21,833	26,401	27,015		₫ _n f
9,459	9,645	9,853	10,087	10,351	10,652	11,00	11,407	11,889	12,468	13,180	14,074	15,231	16,787	18,985	27,879	38,851	49,322	68,247	84,449	110,060	154,970	191,881	247,432	337,476	499,527	635,021	840,810	1175,260	1768,977	2636,015	4249,396	7277,130	9328,521	11074,07	11289,470		σ_{nn}
10,943	11,314	11,744	12,246	12,838	13,543	14,399	15,453	16,774	18,465	20,690	23,706	27,952	34,223	44,074	93,262	168,387	249,985	413,817	565,732	820,929	1298,321	1709,945	2351,694	3430,776	5448,575	7183,585	9873,297	14338,668	22445,333	34537,395	57530,516	101874,173	132831,454	160420,671	164107,885		σ _{nT}

Table 2.2. Evaluated resonance parameters for 240_{Pu}

Group Number

 E_r

еV

(¤

Ş

meV ŗ

1,056 20,46 38,34 41,64 66,65

2,3543 2,65 17,00 14,40 51,00

0,0057 0,70 0,09 0,11 0,04

32,24 32,2 26,5 28,5

074 W N --

,

1 12 Ţ

Cont. 2.1.

Cont. 2.2

Group	FeV	F _n	Γ_f	Гү
Number	~ <i>p</i> , · ·		meV	
54	778,3	1.20	0.0	30.7
55	782,2	2,80	138.0	30.7
56	791,0	23,90	15.0	30.7
57	810,5	213,00	10,5	30,7
58	819,9	110,00	1.5	30.7
59 ·	845,6	10,30	1.0	30,7
60	854,9	48,00	0,15	30,7
61	876,5	14,00	0.8	30.7
62	891.5	95,00	1.7	30.7
63	903,9	21,60	0.8	30.7
64	908,9	78,00	0.0	30.7
65	915,3	37,00	0.0	30.7
66	943.5	122,00	0.1	30.7
67	958,4	73,00	0.1	30.7
68	971,3	78,00	0.2	30.7
69	979.2	7.30	1.8	30.7
7 0	1001.8	95.00	1.8	30.7

<u>Table 2.3</u>. Number of degrees of freedom of χ^2 distribution of partial widths

1	J	π	$\overline{\nu}\langle \Gamma_n \rangle$	ν<Γ _n , >	ν ₍ -Γ _f)	νζΓγγ
0 1 1 2 2	1/2 1/2 3/2 3/2 5/2	+ - + +		2 1 2 1 1	1 2 4 4 6	8888

F koV	$\langle D \rangle_{1/2}$	$\langle D \rangle_{3/2}$	$\langle D \rangle_{5/2}$
L, Kev		eV	
1	13,4778	6.8909	4,7678
9	13,4502	6.8767	4.7580
3	13,4227	6.8626	4.7483
4	13,3952	6.8486	4.7385
6	13,3405	6.8205	4,7191
Ř	13,2859	6,7926	4,6997
ıŏ	13,2316	6,7648	4,6805
12	13,1775	6,7372	4,6613
14	13,1237	6,7096	4.6422
16	13,0701	6,6822	4.6232
20	12,9635	6,6276	4,5854
24	12,8579	6,5735	4.5479
28	12,7531	6,5199	4.5107
32	12,6492	6,4668	4,4739
36	12,5463	6,4141	4,4373
40	12,4441	6.3618	4,4011
45	12.3177	6.2971	4.3563
50	12,1926	6.2331	4.3119
60	11.9464	6,1071	4,2246
70	11,7053	5,9837	4,1391
80	11,4693	5,8629	4.0554
90	11.2382	5,7446	3.9734
100	11.0120	5,6289	3.8932
110 .	10,7905	5,5155	3,8147
120	10.5736	5,4046	3,7378
130	10,3613	5,2959	3,6625
140	10.1534	5,1895	3,5888

Table 2.4. Average distances between resonances of ²⁴⁰Pu

Table 2.5. Average neutron widths of Pu

E, keV	$\Gamma^0_{n\ 1/2}$ +	$\Gamma^{1}_{n \ 1/2}$	$\Gamma^{1}_{n \ 3/2}$ -	$\Gamma^2_{n\ 3/2^+}$	$\Gamma^2_{n 5/2^+}$
		·	Me V	·	
1	46,883	0,406	0.207	0.0	0.0
2	66,166	1,142	0.584	0.0	0.0
3	80,871	2,086	1,067	0.0	0.0
4	93,191	3,194	1,633	0,001	0,001
6	113,668	5,805	2.968	0.003	0.002
8	130,716	8.842	4.521	0.005	0.004
10	145,548	12.225	6.250	0.010	0.007
12	158,788	15,900	8,129	0.015	0.010
14	170,810	19.824	10,135	0.022	0.015
16	181.857	23,966	12,253	0.030	0.021
20	201,665	32,796	16.767	0.052	0.036

Cont. 2.5.

E, keV	$\Gamma^{0}_{n\ 1/2}^{+}$	$\Gamma^{1}_{n1/2}$ -	$\Gamma_{n \ 3/2}^{1}$	$\Gamma_{n \ 3/2}^{2}$	$\Gamma_{n\ 5/2}^{2}$
-			meV		
24 28 32 36 40 45 50 60 70 80 90 100 110 120 130	219,113 234,740 248,904 261,853 273,771 287,428 299,899 321,888 340,663 356,841 370,861 383,053 393,668 402,909 410,939 417,895	42,220 52,112 62,374 72,923 83,696 97,393 111,264 139,248 167,195 194,789 221,803 248,072 273,484 297,957 321,438 343,893	21,585 26,643 31,888 37,281 42,788 49,790 56,880 71,184 85,469 99,573 113,379 126,805 139,791 152,297 164,295 175,769	0,081 0,118 0,162 0,215 0,277 0,365 0,468 0,714 1,017 1,374 1,785 2,248 2,761 3,322 3,926 4,572	0,056 0,081 0,112 0,191 0,253 0,327 0,494 0,703 0,950 1,235 1,555 1,910 2,297 2,715 3,162

lable 2.0. Average inelastic widths of	le 2.6.	Average	inelastic	widths	of	240 P1
--	---------	---------	-----------	--------	----	-----------

E, keV	$\Gamma^0_{n', 1/2^+}$	$\Gamma_{n', 1/2}^{1}$	$\Gamma_{n'3/2}^{1}$	$\Gamma_{n' 3/2}^{2}$ +	$\Gamma_{n' 5/2^+}^2$
		······	meV	·	· · · · · · · · · · · · · · · · · · ·
45	0.001	1.046	1.069	30,978	21,430
50	0,014	6,664	6,813	57,372	39,689
60	0,126	23,913	24,449	87,653	60.634
70	0,387	45,433	46,450	108,352	74,950
80	0,826	69,250	70,799	124,474	86,098
90	1,450	94,289	96,396	137,736	95,269
100	2,274	119,870	122,545	148,989	103,048
110	3,298	145,530	148,774	158,729	109,780
120	4,521	170,946	174,754	167,278	115,689
130	5,939	195,890	200,248	174,863	120,930
140	7,545	220,195	225,089	181,646	125,616

		•							2/0
Table 2.7.	Average	fission	widths	and	the	factor	x	for	240 Pu
	:	7	-				max		

E koV	$\Gamma_{f^{1/2}}/\nu$	$\Gamma_{f^{3/2}}/\nu$	$\Gamma_{f^{5/2}}/\nu$	x
<i>L</i> , kev	· · · · · · · · · · · · · · · · · · ·	meV		- max
1 2	3,339 3,353	1,707 1,714	1,181 1,186	29,513 29,201

Cont. 2.7.

E 1. W	$\Gamma_{f^{1/2}}/\nu$	$\Gamma_{f^{3/2}}/\nu$	$\Gamma_{f^{5/2}}/\nu$	x			
L , Kev	meV						
3	3,367	1.722	1.191	28.892			
4	3,382	1,729	1.196	28,587			
6	3,411	1,744	1.207	27.987			
8	3,440	1,759	1.217	27.401			
10	3,470	1,774	1.227	26.828			
12	3,500	1,789	1,238	26.267			
14	3,530	1,805	1,249	25,720			
16	3,560	1,820	1,259	25,184			
20	3,622	1,852	1,281	24,149			
24	3,684	1,883	1,303	23,159			
28	3,748	1,916	1,325	22,213			
32	3,812	1,949	1,348	21,309			
-36	3,878	1,983	1,372	20,445			
40	3,945	2,017	1,395	19,619			
45	4,030	2,060	1,425	18,638			
50	4,117	2,105	1,456	17,74			
60	4,297	2,196	1,519	16,007			
70	4,484	2,292	1,586	14,485			
80	4,680	2,392	1,656	13,125			
90	4,884	2,496	1,727	11,910			
100	5,097	2,605	1,802	10,824			
110	5,319	2,719	1,880	9,854			
120	5,550	2,837	1,962	8,986			
130	5,792	2,960	2,047	8,210			
140	6,044	3,089	2,136	7.515			

Table 2.8. Evaluated cross-sections of ²⁴⁰Pu in the unresolved resonance region

Е,	σ _{nT}	σ _{nn}	σ _{nf}	σ _{nγ}	σ _{nn} ,
keV			b		
1	23,921	19.551	0.260	4,110	0
2	19,860	17,064	0,180	2,616	0
3	18,103	15,885	0,152	2,066	0
4	17.078	15,151	0,137	1,790	0
6	15.898	14,280	0,120	1,498	0
8	15.222	13,776	0,112	1,334	0
10	14,777	13,446	0,108	1,223	0
12	14.459	13,209	0,106	1,144	0
14	14.219	13,039	0,105	1,075	0
16	14.030	12,900	0,104	1,026	0
20	13,752	12,716	0,102	0,934	0
24	13,553	12,590	0,101	0,862	0
28	13,402	12,494	0,099	0,809	0
32	13,282	12,426	0,097	0,759	0

Cont. 2.8.

Ε,	σ _{nT}	σ _{nn}	σ _{nf}	σ _{ηγ}	σ _{nn} ,
keV			b		
36 40 45 50 60 70 80	13,181 13,096 13,003 12,921 12,778 12,652 12,535	12,365 12,316 12,251 12,151 11,946 11,762 11,589	0,096 0,094 0,092 0,090 0,085 0,080 0,077	0,720 0,686 0,636 0,581 0,489 0,428 0,382	0 0,024 0,099 0,258 0,382 0,487
90 100 110 120 130 140	12,422 12,313 12,204 12,096 11,988 11,878	11,423 11,258 11,116 10,968 10,820 10,684	0,075 0,074 0,073 0,073 0,074 0,074	0,347 0,321 0,300 0,283 0,270 0,259	0,577 0,660 0,715 0,772 0,824 0,861

		$\sigma_{n,f}(225),$	σ _{nf} (*40Pu)	$\Delta \frac{\sigma_{nf}^{(240}\text{Pu})}{}$
E, MeV	$\sigma_{nf}(240Pu), b$	b	$\sigma_{nf}^{(235U)}$	$\sigma_{nf}^{(235U)}$
0.15	0.074	1 450	0.0509	E 9
0,15	0,074	1,408	0,0508	5,2
0,10	0,076	1,438	0,0529	4,8
0,18	0,080	1,399	0,0572	4,0
0,20	0,084	1,336	0,0629	3,8
0,22	0,089	1,336	0,0666	-3,8
0,24	0,095	1,311	0,0725	3,8
0,26	0,103	1,289	0,0799	3,8
0,28	0,110	1,270	0,0874	3,8
0,30	0,120	1,250	0,0960	3,8
0,32	0.130	1.233	0.1064	3.8
0.34	0.145	1,221	0.1188	3.8
0.36	0 161	1 215	0.1325	3.8
0.38	0 176	1 214	0 1450	3.8
0.40	0,201	1 919	0 1658	3.8
0.49	0,201	1 2052	0,1066	3.8
0, 42	0,207	1 1063	0,1300	
0 46	0,201	1,1900	0,2100	2,9
	0,297	1,100		2,9
0,48	0,338	1,1709	0,2874	3,9
0,00	0,391	1,100	0,3303	4,0
0,05	0,53	1,140	0,4625	4,1
0,60	0,66	1,128	0,5851	4,2
0,65	0,786	1,113	0,7062	4,0
0,70	0,890	1,105	0,8054	4,0
0,75	0,986	1,104	0,8931	3,9
0,80	1,10	1,117	0,9848	3,8
0,85	1,248	1,144	1,0909	3,7
0,9 <u>0</u>	1,360	1,180	1,1525	3,6
0,95	1,441	1.204	1,1968	3,5
1,0	1.497	1.215	1.2321	3,2
1,1	1.549	1.22	1.2697	3.0
1,2	1.556	1,2260	1.2692	2.7
1.4	1 568	1,2390	1,2655	2.5
1.6	1,616	1.2580	1,2846	2,4
1.8	1,666	1 2760	1,3056	2.3
2.0	1 690	1 2840	1 3162	2,0
2.9	1 688	1 2748	1 3941	2,1
2.4	1 680	1 2587	1 3347	211
2.6	1,000	1,200	1 3486	2,1
2,0	1,071	1,2091	1,0400	2,1
2 A	1,001	1,2217	1,0090	
5 C	1,052	1,2000	1,0/10	
0,2 2▲	1,042	1,1930	1,3/04	2,1
3,4 2 C	1,632	1,1821	1,3806	
3,6	1,620	1,1711	1,3833	
3,8	1,607	1,1691	1,3864	2,1
4,0	1,594	1,1470	1,3897	2,1
4,5	1 ,558	1,1170	1,3948	2,3
5,0	1,516	1,0870	1,3947	2,4
5,5	1,507	1,052	1,4325	2,5

Table 2.9. Evaluated fission cross-sections of ²⁴⁰Pu

Cont. 2.9.

E , MeV	σ _{nf} (²⁴⁰ Pu), b	σ _{nf} (***U), b	$\frac{\sigma_{nf}^{(240}\text{Pu})}{\sigma_{nf}^{(235\text{U})}}$	$\Delta \frac{\sigma_{nf}^{(240}\mathrm{Pu})}{\sigma_{nf}^{(215}\mathrm{U})},$
6,0 6,5 7,0 7,5 8,0 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0	1,674 1,893 2,100 2,274 2,349 2,337 2,319 2,304 2,285 2,271 2,266 2,242 2,229 2,216 2,208 2,212 2,208 2,212 2,229 2,212 2,229 2,213 2,293 2,418	1,139 1,386 1,60 1,755 1,82 1,824 1,812 1,80 1,7860 1,7761 1,770 1,7584 1,7680 1,8364 1,922 1,9981 2,0603 2,0969 2,108	1,4697 1,3658 1,3125 1,2957 1,2907 1,2812 1,2798 1,2800 1,2794 1,2786 1,2802 1,2750 1,2607 1,2607 1,2067 1,1488 1,1071 1,0819 1,0935 1,1471	2,5 $2,6$ $2,6$ $2,9$ $2,9$ $3,0$ $3,1$ $3,2$ $3,3$ $3,6$ $4,0$ $4,3$ $4,8$ $4,9$ $5,0$

54433332222221111100000000000000000000000	MeV	3
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	140	Ø _n T
$\begin{array}{c}10\\10\\10\\9\\9\\10\\21\\9\\10\\21\\21\\21\\21\\21\\21\\21\\22\\22\\22\\22\\22\\22\\$	Unn	n
0,211 0,214 0,211 0,212 0,211 0,212 0,025 0,025 0,025 0,021 0,025 0,0210	1 VnV 1	a
0,920 0,920 0,920 1,078 1,117 1,325 1,355		σ _{nn} ,
	1, 21	$\sigma_{n,2n}$
00000000000000000000000000000000000000	11,011	$\sigma_{n,3n}$
$\begin{array}{c} 1,392\\ 1,$	T, MeV	4 ~ · ·

Table 2.10. Evaluated data on cross-sections and temperature T of 240Pu fission neutrons in the energy region 0.15–15 MeV

Cont. 2.10.

<i>E</i> ,	σ _{nT}	σ _{nn}	σ _{nγ}	σ _{nn} ,	$\sigma_{n,2n}$	$\sigma_{n,3n}$	T ,
Mev			b			2	me v
55	7 570	1 318		1 7330	0.0		1 427
6.0	7 280	4,010	0,0111	1 5662		0,0	1 407
6 5	7,030	3 780	0,0000	1 3482	0,0	0,0	1 446
7 0	6,828	3 579	0,0000	1,1220	0,019	0.0	1.450
7.5	6,622	3.374	0.0072	0.9188	0.048	0.0	1,454
8.0	6,452	3.206	0.0065	0.7695	0.121	0.0	1,458
8.5	6,285	3.045	0.0060	0.6870	0,210	0.0	1,461
9.0	6.143	2,912	0.0055	0,5955	0.311	0.0	1,465
9.5	6,027	2,801	0,0051	0,5669	0,350	0,0	1,469
10,0	5,939	2,717	0,0047	0,5583	0,374	0,0	1,473
10,5	5,866	2,656	0,0043	0,5447	0,390	0,0	1,477
11,0	5,826	2,618	0,0040	0,5400	0,398	0,0	1,481
11,5	5,827	2,590	0,0038	0,5302	0,461	0,0	1,485
12,0	5,841	2,599	0,0036	0,5204	0,489	0,0	1,488
12,5	5,851	2,613	0,0033	0,5107	0,509	0,0	1,492
13,0	5,864	2,637	0,0031	0,5029	0,501	0,012	1,496
13,5	5,885	2,670	0,0029	0,4921	0,445	0,063	1,500
14,0	5,914	2,710	0,0028	0,4812	0,367	0,124	1,503
14,5	5,943	2,750	0,0026	0,4724	0,277	0,148	1,507
15,0	5,976	2,801	0,0025	0,4445	0,159	0,151	1,510

.

						Level en	ergy E,	MeV					
E , Me∨	Dire	ect	Compound nucleus mechanism										
	0,043	0,142	0,043	0,142	0,294	0,597	0,649	0,742	0,861	0,900	0,938	0,959	0,993
0, 15 0, 16 0, 20 0, 22 0, 24 0, 26 0, 28 0, 30 0, 32 0, 34 0, 36 0, 38 0, 40 0, 42 0, 44 0, 46 0, 50 0, 55 0, 60 0, 65 0, 70 0, 80	0,021 0,024 0,029 0,038 0,044 0,051 0,057 0,076 0,083 0,090 0,096 0,103 0,109 0,109 0,116 0,122 0,128 0,134 0,140 0,140 0,146 0,159 0,173 0,185 0,199 0,222	0,001 0,002 0,003 0,004 0,004 0,006 0,007 0,008 0,010 0,012 0,013 0,015 0,021 0,027 0,034 0,042 0,050 0,057	0,899 0,926 0,968 1,009 1,031 1,054 1,056 1,190 1,196 1,198 1,196 1,192 1,185 1,175 1,160 1,170 1,153 1,134 1,111 1,054 0,905 0,833 0,769 0,704	0,001 0,002 0,003 0,012 0,017 0,023 0,028 0,034 0,041 0,048 0,056 0,065 0,065 0,074 0,086 0,095 0,105 0,114 0,139 0,162 0,178 0,209 0,218	0,001 0,001 0,002 0,004 0,006 0,008	0,005 0,146 0,230 0,270 0,284	0,054 0,100 0,127	0,001					

<u>Table 2.11</u>. Cross-sections of level excitation and continuous spectrum of 240 Pu, b

$\begin{array}{c} 0,85 \\ 0,90 \\ 0,243 \\ 0,95 \\ 0,252 \\ 1,00 \\ 0,262 \\ 1,10 \\ 0,278 \\ 1,20 \\ 0,293 \\ 1,40 \\ 0,316 \\ 1,60 \\ 0,332 \\ 1,40 \\ 0,316 \\ 1,60 \\ 0,332 \\ 1,80 \\ 0,340 \\ 2,00 \\ 0,341 \\ 2,20 \\ 0,341 \\ 2,20 \\ 0,341 \\ 2,40 \\ 0,336 \\ 2,60 \\ 0,330 \\ 2,80 \\ 0,323 \\ 3,00 \\ 0,315 \\ 3,20 \\ 0,307 \\ 3,40 \\ 0,302 \\ 3,60 \\ 0,280 \\ 0,280 \\ 3,80 \\ 0,289 \\ 4,00 \\ 0,282 \\ 4,50 \\ 0,268 \\ 5,50 \\ 0,248 \\ 6,00 \\ 0,240 \end{array}$	0,064 0,071 0,077 0,083 0,094 0,104 0,118 0,127 0,133 0,135 0,136 0,135 0,136 0,135 0,136 0,135 0,136 0,133 0,133 0,133 0,133 0,133 0,132 0,129 0,127 0,121 0,115 0,109 0,104	0,654 0,605 0,548 0,390 0,320 0,232 0,051 0,051 0,028 0,015 0,008 0,005 0,002 0,001 0,001	0,227 0,232 0,231 0,223 0,202 0,181 0,148 0,105 0,066 0,038 0,022 0,012 0,007 0,004 0,002 0,001	0,010 0,013 0,016 0,018 0,022 0,025 0,028 0,024 0,017 0,011 0,007 0,004 0,002 0,001 0,001	0,281 0,271 0,255 0,235 0,192 0,161 0,114 0,070 0,040 0,023 0,013 0,007 0,004 0,002 0,001 0,001	0,139 0,146 0,145 0,141 0,123 0,110 0,089 0,064 0,041 0,025 0,015 0,009 0,005 0,003 0,002 0,001 0,001	0,003 0,004 0,005 0,007 0,009 0,012 0,017 0,017 0,014 0,010 0,006 0,004 0,002 0,001 0,001	0,020 0,048 0,065 0,075 0,072 0,054 0,036 0,022 0,013 0,007 0,004 0,002 0,001	0,047 0,096 0,146 0,156 0,094 0,061 0,037 0,022 0,012 0,007 0,004 0,001	0,006 0,052 0,120 0,142 0,091 0,059 0,036 0,021 0,012 0,007 0,004 0,002 0,001 0,001	0,024 0,076 0,095 0,087 0,059 0,037 0,022 0,013 0,008 0,005 0,003 0,002 0,001 0,001	0,025 0,046 0,058 0,050 0,037 0,025 0,015 0,009 0,005 0,003 0,002 0,001 0,001
$\begin{array}{c cccc} 6,50 & 0,235 \\ 7,00 & 0,228 \\ 7,50 & 0,221 \\ 8,00 & 0,214 \\ \end{array}$	0,098 0,092 0,086 0,081											

1 24

ł.

Cont. 2.11.

					// Marcola (1997)	Level e	energy E	, MeV	<u></u>				
E , MeV	Dir	ect		Compound nucleus mechanism									
	0,043	0,142	0,043	0,142	0,294	0,597	0,649	0,742	0,861	0,900	0,938	0,959	0,993
10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0	0,187 0,181 0,174 0,167 0,161 0,155 0,147 0,139 0,133 0,127	0,063 0,059 0,056 0,053 0,050 0,048 0,045 0,042 0,039 0,037											
	Level energy E _q , MeV												
E, MeV	Dire	ect		Compound nucleus mechanism									$\sigma_{nn'}^{\rm cont}$
	1,002	1,031	1,038	1,076	1,090	1,116	1,138	1,161	1,178	1,180	1,223	1,232	
0,15 0,16 0,18 0,20 0,22 0,24 0,26 0,28 0,30													

0,32 0,34 0,36 0,38 0,40 0,42													
0,44 0,46 0,48 0,50 0,55 0,60 0,65 0,70													
0,75 0,80 0,85 0,90 0,95 1,00 1,10	0,032	0,030	0,010	0,003	0,001	0.001	0.029		0.004	0.005			
1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,60 2,80 3,00 3,20 3,40	0,033 0,057 0,044 0,030 0,019 0,012 0,007 0,004 0,003 0,002 0,001	$\begin{array}{c} 0,071\\ 0,089\\ 0,071\\ 0,050\\ 0,032\\ 0,020\\ 0,011\\ 0,007\\ 0,004\\ 0,002\\ 0,001\\ 0,001\\ 0,001\\ \end{array}$	0,021 0,029 0,025 0,019 0,013 0,009 0,005 0,003 0,002 0,001 0,001	$\begin{array}{c} 0,026\\ 0,049\\ 0,045\\ 0,034\\ 0,023\\ 0,014\\ 0,009\\ 0,005\\ 0,003\\ 0,002\\ 0,001\\ 0,001\\ \end{array}$	0,028 0,040 0,030 0,019 0,011 0,006 0,004 0,002 0,001 0,001	0,001 0,006 0,008 0,008 0,005 0,005 0,003 0,002 0,001 0,001 0,001	$\begin{array}{c} 0,029\\ 0,090\\ 0,077\\ 0,051\\ 0,032\\ 0,019\\ 0,011\\ 0,006\\ 0,004\\ 0,002\\ 0,001\\ 0,001\\ \end{array}$	0,002 0,003 0,003 0,003 0,002 0,002 0,001 0,001	$\begin{array}{c} 0,004\\ 0,061\\ 0,060\\ 0,043\\ 0,028\\ 0,018\\ 0,011\\ 0,006\\ 0,004\\ 0,002\\ 0,001\\ 0,001\\ \end{array}$	$\begin{array}{c} 0,003\\ 0,053\\ 0,047\\ 0,031\\ 0,019\\ 0,011\\ 0,007\\ 0,004\\ 0,002\\ 0,001\\ 0,001\\ 0,001\\ 0,001\\ \end{array}$	$\begin{array}{c} 0,064\\ 0,069\\ 0,048\\ 0,030\\ 0,018\\ 0,011\\ 0,006\\ 0,004\\ 0,002\\ 0,001\\ 0,001\end{array}$	$\begin{array}{c} 0,027\\ 0,035\\ 0,028\\ 0,019\\ 0,013\\ 0,008\\ 0,005\\ 0,003\\ 0,002\\ 0,001\\ 0,001\\ \end{array}$	0,127 0,536 0,915 1,171 1,323 1,3728 1,3883 1,3722 1,3220 1,3133 1,3166

- 26 -

Cont. 2.11.

Cont. 2.11.

E. MeV
· · ·
3,60 3,80 4,00 4,50 5,50 6,00 6,50 7,00 7,50 8,00 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,0

	$\frac{d\sigma_n (\theta)}{d\Omega}$	$=\frac{\sigma_n}{4\pi}\Big[1+\sum_{l=1}^{l_{\rm max}}$	$(2l+1) A_l P_l (c)$	os θ)]				
	E, MeV							
	0,03	0,1	0,25	0,5				
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_9 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \end{array}$	1,926329.10 ⁻² 4,414097.10 ⁻⁴ 3,026323.10 ⁻⁶	7,442489.10 ⁻² 6,470504.10 ⁻³ 2,448228.10 ⁻⁴ 7,761329.10 ⁻⁶ 2,142904.10 ⁻¹ 3,120084.10 ⁻¹ 1,942414.10 ⁻¹		3,275448.10 ⁻¹ 1,085732.10 ⁻¹ 3,007204.10 ⁻² 5,513512.10 ⁻³ 8,131873.10 ⁻⁵ 3,143330.10 ⁻⁵ 6,799094.10 ⁻⁷				
		E,	MeV					
Al	0,75	1	1,5	2				
$\begin{array}{c} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{6} \\ A_{7} \\ A_{8} \\ A_{7} \\ A_{9} \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \end{array}$	4,178902.10 ⁻¹ 1,845840.10 ⁻¹ 9,186587.10 ⁻² 2,763125.10 ⁻² 1,735785.10 ⁻³ 5,443322.10 ⁻⁴ 3,740652.10 ⁻⁵ 1,540486.10 ⁻⁶	4,846072.10 ⁻¹ 2,600257.10 ⁻¹ 1,811623.10 ⁻¹ 7,710176.10 ⁻² 1,030913.10 ⁻² 3,087584.10 ⁻³ 2,667468.10 ⁻⁴ 1,460692.10 ⁻⁵ 3,781454.10 ⁻⁷	5,888094 · 10 ⁻¹ 4,063836 · 10 ⁻¹ 3,349480 · 10 ⁻¹ 2,280611 · 10 ⁻¹ 7,518865 · 10 ⁻² 2,413091 · 10 ⁻² 3,681756 · 10 ⁻³ 4,466738 · 10 ⁻⁴ 3,509021 · 10 ⁻⁵ 1,765201 · 10 ⁻⁶	$6,714022 \cdot 10^{-1}$ $4,973681 \cdot 10^{-1}$ $3,931097 \cdot 10^{-1}$ $3,220916 \cdot 10^{-1}$ $1,611099 \cdot 10^{-1}$ $5,939962 \cdot 10^{-2}$ $1,281358 \cdot 10^{-2}$ $2,081674 \cdot 10^{-3}$ $2,255545 \cdot 10^{-4}$ $1,479202 \cdot 10^{-5}$ $2,272874 \cdot 10^{-3}$				
$A_{18} \\ A_{19}$								

Cont. 2.12.

				Ε,	MeV				
Al		3		4	5		6		
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_9 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	7 5 4 3 2 1 4 1 2 2 9	7,717806 · 10 ⁻¹ 5,978643 · 10 ⁻¹ 4,645482 · 10 ⁻¹ 8,814053 · 10 ⁻¹ 2,536680 · 10 ⁻¹ ,199531 · 10 ⁻² 1,199531 · 10 ⁻² 1,193050 · 10 ⁻³ 2,661130 · 10 ⁻⁴ 9,960892 · 10 ⁻⁶	8,264 6,726 5,399 4,280 3,073 1,747 8,116 3,447 1,099 2,434 5,632 9,097 1,175 1,842	$381 \cdot 10^{-1}$ $449 \cdot 10^{-1}$ $711 \cdot 10^{-1}$ $121 \cdot 10^{-1}$ $522 \cdot 10^{-1}$ $522 \cdot 10^{-1}$ $242 \cdot 10^{-2}$ $824 \cdot 10^{-2}$ $824 \cdot 10^{-2}$ $863 \cdot 10^{-3}$ $878 \cdot 10^{-4}$ $284 \cdot 10^{-5}$ $966 \cdot 10^{-5}$ $400 \cdot 10^{-6}$	8,518833 · 1 7,201241 · 1 5,971206 · 1 4,740797 · 1 3,525812 · 1 2,222650 · 1 1,211039 · 1 6,546642 · 1 2,842009 · 1 8,982674 · 1 2,527834 · 1 5,091129 · 1 8,301957 · 1 1,310936 · 1 3,182467 · 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	·	<i>E</i> , MeV							
Al		8		9			10		
$\begin{array}{c} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{6} \\ A_{7} \\ A_{8} \\ A_{9} \\ A_{10} \\ A_{111} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$		8,684730 · 10 7,568520 · 10 6,633550 · 10 5,685312 · 10 4,633028 · 10 2,535857 · 10 1,795816 · 10 1,325473 · 10 8,623754 · 10 4,431725 · 10 1,599654 · 10 4,903383 · 10 1,362522 · 10 2,645637 · 10 4,773674 · 10 4,470916 · 10) = 1) = 2) = 2) = 2) = 2) = 3) = 3) = 4) = 6	8,6700 7,4808 6,5600 5,7298 4,8069 3,8611 2,9451 2,2098 1,7346 1,2733 7,5068 3,2513 1,1903 3,7603 8,7308 1,7486 1,8469	$69 \cdot 10^{-1}$ $65 \cdot 10^{-1}$ $102 \cdot 10^{-1}$ $102 \cdot 10^{-1}$ $107 \cdot 10^{-1}$ $42 \cdot 10^{-1}$ $60 \cdot 10^{-1}$ $107 \cdot 10^{-1}$ $107 \cdot 10^{-2}$ $107 \cdot 10^{-2}$ $107 \cdot 10^{-2}$ $108 \cdot 10^{-2}$ $108 \cdot 10^{-3}$ $1096 \cdot 10^{-4}$ $57 \cdot 10^{-4}$ $100 \cdot 10^{-5}$	8 7 6 5 4 4 3 2 2 1 1 5 2 8 2 5 5	$,686833 \cdot 10^{-1}$ $,429383 \cdot 10^{-1}$ $,486538 \cdot 10^{-1}$ $,717611 \cdot 10^{-1}$ $,909701 \cdot 10^{-1}$ $,100394 \cdot 10^{-1}$ $,303166 \cdot 10^{-1}$ $,618535 \cdot 10^{-1}$ $,674241 \cdot 10^{-2}$ $,409719 \cdot 10^{-2}$ $,510740 \cdot 10^{-3}$ $,280021 \cdot 10^{-3}$ $,008059 \cdot 10^{-4}$ $,990598 \cdot 10^{-5}$		

Cont. 2.12.

	· · · · · · · · · · · · · · · · · · ·	E, MeV	
A_l	11	13	15
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_9 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	$8,750966 \cdot 10^{-1}$ 7,458937 $\cdot 10^{-1}$ 6,470040 $\cdot 10^{-1}$ 5,703125 $\cdot 10^{-1}$ 4,976084 $\cdot 10^{-1}$ 4,279340 $\cdot 10^{-1}$ 3,590322 $\cdot 10^{-1}$ 2,974721 $\cdot 10^{-1}$ 2,974721 $\cdot 10^{-1}$ 2,485833 $\cdot 10^{-1}$ 2,047669 $\cdot 10^{-1}$ 1,478805 $\cdot 10^{-1}$ 8,592290 $\cdot 10^{-2}$ 4,120544 $\cdot 10^{-2}$ 1,609812 $\cdot 10^{-2}$ 4,850753 $\cdot 10^{-3}$ 1,167751 $\cdot 10^{-3}$ 1,584398 $\cdot 10^{-4}$	$\begin{array}{c} 8,986336\cdot10^{-1}\\ 7,784288\cdot10^{-1}\\ 6,736756\cdot10^{-1}\\ 5,908206\cdot10^{-1}\\ 5,219835\cdot10^{-1}\\ 4,619917\cdot10^{-1}\\ 4,061824\cdot10^{-1}\\ 3,548396\cdot10^{-1}\\ 3,548396\cdot10^{-1}\\ 3,074834\cdot10^{-1}\\ 2,631570\cdot10^{-1}\\ 2,106331\cdot10^{-1}\\ 1,469147\cdot10^{-1}\\ 8,730133\cdot10^{-2}\\ 4,387505\cdot10^{-2}\\ 1,841281\cdot10^{-2}\\ 6,490544\cdot10^{-3}\\ 1,903396\cdot10^{-3}\\ 4,302381\cdot10^{-4}\\ 5,279252\cdot10^{-5}\\ \end{array}$	9,217441 \cdot 10 ⁻¹ 8,181693 \cdot 10 ⁻¹ 7,167449 \cdot 10 ⁻¹ 6,299613 \cdot 10 ⁻¹ 5,568417 \cdot 10 ⁻¹ 4,953072 \cdot 10 ⁻¹ 4,408528 \cdot 10 ⁻¹ 3,908870 \cdot 10 ⁻¹ 3,908870 \cdot 10 ⁻¹ 3,435740 \cdot 10 ⁻¹ 2,970263 \cdot 10 ⁻¹ 1,256260 \cdot 10 ⁻¹ 1,256260 \cdot 10 ⁻¹ 1,256260 \cdot 10 ⁻¹ 7,316175 \cdot 10 ⁻² 3,623959 \cdot 10 ⁻² 1,518316 \cdot 10 ⁻² 5,338035 \cdot 10 ⁻³ 1,465305 \cdot 10 ⁻³ 2,210678 \cdot 10 ⁻⁴

Table 2.13. Expansion coefficients A_l for Legendre polynomials of angular distributions of neutrons scattered at the 2⁺ level (43 keV)

•		<i>E</i> , M	leV	
<i>A</i> _l	0,25	0,5	0,75	1
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_9 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	7,979602.10 ⁻³ 3,553559.10 ⁻³ 1,635159.10 ⁻³ 5,250656.10 ⁻⁶ 6,539792.10 ⁻⁶ 2,582448.10 ⁻⁷	$-1,373319 \cdot 10^{-2}$ $-1,267003 \cdot 10^{-2}$ $3,254349 \cdot 10^{-3}$ $-8,845921 \cdot 10^{-4}$ $-9,133986 \cdot 10^{-5}$ $1,019477 \cdot 10^{-5}$ $-2,489014 \cdot 10^{-7}$	$\begin{array}{r}2,305120\cdot10^{-2} \\1,695195\cdot10^{-2} \\ 2,833882\cdot10^{-3} \\3,099897\cdot10^{-3} \\ -1,859170\cdot10^{-4} \\ 1,350429\cdot10^{-4} \\1,443145\cdot10^{-6} \\ 1,162270\cdot10^{-6} \end{array}$	3,517964 · 10 ⁻² 2,110409 · 10 ⁻² 5,017963 · 10 ⁻³ 7,329130 · 10 ⁻³ 1,315490 · 10 ⁻⁵ 5,139608 · 10 ⁻⁴ 1,283248 · 10 ⁻⁵ 1,054238 · 10 ⁻⁵ 3,139768 · 10 ⁻⁷

Cont. 2.13.

	E, MeV						
Al	1,5	2	3 .	4			
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_{10} \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	$\begin{array}{r}6, 151960 \cdot 10^{-2} \\5, 117977 \cdot 10^{-2} \\ 2, 162784 \cdot 10^{-2} \\3, 724146 \cdot 10^{-3} \\ 7, 985897 \cdot 10^{-3} \\ 1, 413386 \cdot 10^{-3} \\ 4, 144370 \cdot 10^{-5} \\ 1, 903511 \cdot 10^{-4} \\1, 836318 \cdot 10^{-5} \\ 2, 209617 \cdot 10^{-6} \end{array}$	$\begin{array}{c}5,508488 \cdot 10^{-2} \\8,481282 \cdot 10^{-2} \\ 3,972165 \cdot 10^{-2} \\ 1,707081 \cdot 10^{-2} \\ 2,366694 \cdot 10^{-2} \\ 2,605191 \cdot 10^{-3} \\ 1,500891 \cdot 10^{-3} \\ 9,479212 \cdot 10^{-4} \\6,652662 \cdot 10^{-5} \\ 5,944203 \cdot 10^{-5} \\4,990546 \cdot 10^{-6} \end{array}$	$\begin{array}{c} 6,741991 \cdot 10^{-2} \\6,380345 \cdot 10^{-2} \\ 1,883795 \cdot 10^{-2} \\ 1,522226 \cdot 10^{-2} \\ 4,148273 \cdot 10^{-2} \\7,245222 \cdot 10^{-4} \\ 2,739114 \cdot 10^{-3} \\ 4,765559 \cdot 10^{-3} \\ 5,944017 \cdot 10^{-4} \\ 6,750844 \cdot 10^{-4} \\6,667303 \cdot 10^{-5} \end{array}$	$1,124696\cdot10^{-1}$ $-4,633498\cdot10^{-2}$ $4,845986\cdot10^{-4}$ $2,635692\cdot10^{-2}$ $3,729658\cdot10^{-2}$ $-1,525161\cdot10^{-2}$ $-7,510671\cdot10^{-3}$ $-4,097697\cdot10^{-4}$ $5,912044\cdot10^{-3}$ $4,466616\cdot10^{-3}$ $3,621372\cdot10^{-4}$ $5,280861\cdot10^{-4}$ $4,290647\cdot10^{-5}$ $-4,716094\cdot10^{-5}$			
Al	5	<i>E</i> ,	MeV 8	0			
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{19} \end{array}$	$1,259607 \cdot 10^{-1}$ $-5,940357 \cdot 10^{-2}$ $2,390336 \cdot 10^{-2}$ $2,35186 \cdot 10^{-2}$ $-1,565751 \cdot 10^{-2}$ $-1,528092 \cdot 10^{-2}$ $-1,782401 \cdot 10^{-2}$ $6,929611 \cdot 10^{-3}$ $6,713951 \cdot 10^{-3}$ $1,059286 \cdot 10^{-3}$ $2,188848 \cdot 10^{-3}$ $1,544589 \cdot 10^{-4}$ $-1,808148 \cdot 10^{-4}$ $1,510929 \cdot 10^{-5}$	$1,462804\cdot10^{-1}$ $6,373718\cdot10^{-2}$ $4,593710\cdot10^{-2}$ $1,575194\cdot10^{-2}$ $2,813722\cdot10^{-2}$ $6,915043\cdot10^{-3}$ $-1,941723\cdot10^{-2}$ $3,114824\cdot10^{-2}$ $2,484387\cdot10^{-3}$ $1,696296\cdot10^{-3}$ $2,863399\cdot10^{-3}$ $2,524936\cdot10^{-4}$ $7,390944\cdot10^{-5}$ $9,851672\cdot10^{-5}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,616214 \cdot 10 ⁻¹ -8,334602 \cdot 10 ⁻³ -6,373102 \cdot 10 ⁻² -2,351289 \cdot 10 ⁻² 6,959431 \cdot 10 ⁻³ 3,199331 \cdot 10 ⁻³ -2,190724 \cdot 10 ⁻² -4,896338 \cdot 10 ⁻² -4,896338 \cdot 10 ⁻² -1,467720 \cdot 10 ⁻² 1,248228 \cdot 10 ⁻² 1,010298 \cdot 10 ⁻² 4,044521 \cdot 10 ⁻³ 6,430362 \cdot 10 ⁻³ 2,312045 \cdot 10 ⁻³ -2,304786 \cdot 10 ⁻⁴ 7,337777 \cdot 10 ⁻⁵			

Cont. 2.13

	E , MeV									
Al	10	11	13	15						
$\begin{array}{c} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{6} \\ A_{7} \\ A_{8} \\ A_{9} \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3,570498 \cdot 10^{-1}$ $4,786557 \cdot 10^{-2}$ $-4,772743 \cdot 10^{-2}$ $-2,351068 \cdot 10^{-2}$ $-4,051883 \cdot 10^{-3}$ $7,696505 \cdot 10^{-3}$ $-1,351608 \cdot 10^{-2}$ $-4,435040 \cdot 10^{-2}$ $-4,010329 \cdot 10^{-2}$ $-2,030791 \cdot 10^{-2}$ $4,144321 \cdot 10^{-3}$ $3,313118 \cdot 10^{-3}$ $8,866735 \cdot 10^{-3}$ $1,528163 \cdot 10^{-2}$ $6,335123 \cdot 10^{-3}$ $9,980720 \cdot 10^{-4}$ $7,787357 \cdot 10^{-4}$	$\begin{array}{r} 4,329147\cdot 10^{-1}\\ 1,115032\cdot 10^{-1}\\ -5,133621\cdot 10^{-3}\\ -4,507113\cdot 10^{-3}\\ 3,666859\cdot 10^{-3}\\ 1,079534\cdot 10^{-2}\\ -2,404193\cdot 10^{-3}\\ -2,782948\cdot 10^{-2}\\ -3,480624\cdot 10^{-2}\\ -3,480624\cdot 10^{-2}\\ 2,008369\cdot 10^{-3}\\ 1,934857\cdot 10^{-3}\\ 1,934857\cdot 10^{-3}\\ 1,934857\cdot 10^{-3}\\ 3,548033\cdot 10^{-3}\\ 1,918131\cdot 10^{-2}\\ 1,387844\cdot 10^{-2}\\ 7,032775\cdot 10^{-3}\\ 3,304524\cdot 10^{-3}\\ 5,669686\cdot 10^{-4}\\ 1,232409\cdot 10^{-4}\\ \end{array}$	$\begin{array}{c} 4,980469\cdot 10^{-1}\\ 1,731908\cdot 10^{-1}\\ 3,538233\cdot 10^{-1}\\ 1,656621\cdot 10^{-1}\\ 2,315837\cdot 10^{-1}\\ 2,564071\cdot 10^{-1}\\ 1,514133\cdot 10^{-1}\\ -1,972810\cdot 10^{-1}\\ -1,972810\cdot 10^{-1}\\ -1,518727\cdot 10^{-1}\\ 6,965062\cdot 10^{-1}\\ 6,965062\cdot 10^{-1}\\ 5,645351\cdot 10^{-1}\\ 1,175961\cdot 10^{-1}\\ 1,452910\cdot 10^{-1}\\ 1,452910\cdot 10^{-1}\\ 3,343408\cdot 10^{-1}\\ 5,626597\cdot 10^{-1}\\ \end{array}$						

Table 2.14. Expansion coefficients A_{ℓ} for Legendre polynomials, of angular distributions of neutrons scattered at the 4⁺ level (142 keV)

	<i>E</i> , MeV					
<i>A</i> _{<i>l</i>} .	0,5	0,75	1	1,5		
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	3,492167 · 10 ⁻² 6,711030 · 10 ⁻³ 8,119067 · 10 ⁻³ 1,220109 · 10 ⁻³ 2,353266 · 10 ⁻⁴ 5,517312 · 10 ⁻⁶ 1,348129 · 10 ⁻⁷	$5,083438 \cdot 10^{-2}$ 1,718764 $\cdot 10^{-2}$ 1,021515 $\cdot 10^{-2}$ 9,447559 $\cdot 10^{-4}$ 6,637189 $\cdot 10^{-4}$ 1,403963 $\cdot 10^{-4}$ 1,194061 $\cdot 10^{-5}$ 7,067580 $\cdot 10^{-7}$	$\begin{array}{c} 6,169474\cdot10^{-2}\\ -2,849444\cdot10^{-2}\\ -9,692628\cdot10^{-3}\\ 3,927752\cdot10^{-3}\\ 7,146025\cdot10^{-4}\\ -3,827916\cdot10^{-4}\\ 5,320641\cdot10^{-5}\\ -3,877524\cdot10^{-6}\\ \end{array}$	$\begin{array}{c} 8,133352\cdot 10^{-2} \\6,170748\cdot 10^{-2} \\2,775602\cdot 10^{-3} \\ 9,325978\cdot 10^{-3} \\3,084806\cdot 10^{-3} \\9,273331\cdot 10^{-4} \\ 4,756210\cdot 10^{-4} \\9,579105\cdot 10^{-5} \\ 4,768986\cdot 10^{-6} \\3,181542\cdot 10^{-7} \end{array}$		

	E , MeV					
Al	2	3	4	5		
$\begin{array}{c} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ A_{5} \\ A_{6} \\ A_{7} \\ A_{8} \\ A_{9} \\ A_{10} \\ A_{11} \\ A_{11} \\ A_{11} \\ A_{11} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	$1,194461 \cdot 10^{-1}$ $-9,435533 \cdot 10^{-2}$ $-8,781352 \cdot 10^{-3}$ $-1,364331 \cdot 10^{-3}$ $-9,050865 \cdot 10^{-3}$ $1,272829 \cdot 10^{-3}$ $1,036950 \cdot 10^{-3}$ $-5,656189 \cdot 10^{-4}$ $4,093151 \cdot 10^{-5}$ $2,490499 \cdot 10^{-6}$ $2,688367 \cdot 10^{-6}$	$1,509580 \cdot 10^{-1}$ 1,190427 $\cdot 10^{-1}$ 3,038972 $\cdot 10^{-2}$ 1,892189 $\cdot 10^{-2}$ 4,226131 $\cdot 10^{-3}$ 6,713687 $\cdot 10^{-3}$ 1,230153 $\cdot 10^{-3}$ 1,801051 $\cdot 10^{-3}$ 2,044276 $\cdot 10^{-4}$ 1,267978 $\cdot 10^{-4}$ 4,301223 $\cdot 10^{-5}$	$1,564586 \cdot 10^{-1}$ $-1,086849 \cdot 10^{-1}$ $-1,327171 \cdot 10^{-2}$ $-1,958586 \cdot 10^{-2}$ $-5,044877 \cdot 10^{-3}$ $5,104324 \cdot 10^{-4}$ $-4,326303 \cdot 10^{-3}$ $4,297417 \cdot 10^{-3}$ $5,234896 \cdot 10^{-4}$ $-4,717444 \cdot 10^{-4}$ $1,524085 \cdot 10^{-4}$ $-1,080832 \cdot 10^{-4}$ $-4,492372 \cdot 10^{-5}$ $3,036316 \cdot 10^{-5}$ $-5,596802 \cdot 10^{-7}$	$1,662858 \cdot 10^{-1}$ $-9,393755 \cdot 10^{-2}$ $-1,926288 \cdot 10^{-2}$ $-2,656406 \cdot 10^{-2}$ $-1,752214 \cdot 10^{-3}$ $2,332126 \cdot 10^{-3}$ $-1,798216 \cdot 10^{-3}$ $-1,798216 \cdot 10^{-3}$ $-6,124236 \cdot 10^{-3}$ $-1,052030 \cdot 10^{-3}$ $4,249761 \cdot 10^{-3}$ $-3,185175 \cdot 10^{-1}$ $-1,245333 \cdot 10^{-3}$ $8,250148 \cdot 10^{-3}$ $-2,153671 \cdot 10^{-3}$		
<u> </u>	<u> </u>	 	 Me V	 		
Al	6	8	9	10		
A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ A ₈ A ₉ A ₁₀ A ₁₁ A ₁₂ A ₁₃ A ₁₄ A ₁₅	$\begin{array}{c} 1,809298\cdot10^{-1}\\7,860278\cdot10^{-2}\\3,535168\cdot10^{-2}\\2,966771\cdot10^{-2}\\ 1,091123\cdot10^{-2}\\ 7,382993\cdot10^{-2}\\ 1,662213\cdot10^{-2}\\ 4,781696\cdot10^{-2}\\ 4,781696\cdot10^{-2}\\4,324675\cdot10^{-4}\\ 7,724862\cdot10^{-4}\\ 1,078390\cdot10^{-4}\\ 1,078390\cdot10^{-4}\\ 1,570806\cdot10^{-4}\\1,524533\cdot10^{-4}\\ \end{array}$	$\begin{array}{c} 2,403260\cdot 10^{-1}\\ -4,781798\cdot 10^{-2}\\ -6,823740\cdot 10^{-2}\\ -4,652191\cdot 10^{-2}\\ 1,294119\cdot 10^{-2}\\ 1,294119\cdot 10^{-2}\\ -2,454678\cdot 10^{-3}\\ 5,242639\cdot 10^{-3}\\ 5,242639\cdot 10^{-3}\\ 2,779027\cdot 10^{-4}\\ 3,267386\cdot 10^{-3}\\ -3,661943\cdot 10^{-4}\\ -3,467173\cdot 10^{-4}\\ 8,344461\cdot 10^{-4}\\ -6,407053\cdot 10^{-4}\\ -7,642367\cdot 10^{-4}\\ -1,157087\cdot 10^{-4}\\ \end{array}$	$\begin{array}{c} 2,674455\cdot 10^{-1}\\ -3,261912\cdot 10^{-2}\\ -3,261912\cdot 10^{-2}\\ -3,472062\cdot 10^{-2}\\ -4,843831\cdot 10^{-2}\\ 1,050938\cdot 10^{-2}\\ -5,650286\cdot 10^{-3}\\ 3,768477\cdot 10^{-3}\\ 6,823515\cdot 10^{-3}\\ 2,931894\cdot 10^{-3}\\ 5,808924\cdot 10^{-3}\\ -5,646412\cdot 10^{-4}\\ -2,518404\cdot 10^{-3}\\ -4,827648\cdot 10^{-4}\\ -3,424923\cdot 10^{-4}\\ -3,125860\cdot 10^{-4}\\ -3,125860\cdot 10^{-4}\\ \end{array}$	$\begin{array}{c} 2,928140\cdot 10^{-1}\\1,848497\cdot 10^{-1}\\7,736248\cdot 10^{-1}\\7,736248\cdot 10^{-1}\\7,736248\cdot 10^{-1}\\4,902725\cdot 10^{-1}\\ 9,909807\cdot 10^{-1}\\4,857732\cdot 10^{-1}\\4,857732\cdot 10^{-1}\\3,169186\cdot 10^{-1}\\3,169186\cdot 10^{-1}\\3,983911\cdot 10^{-1}\\3,983911\cdot 10^{-1}\\4,094654\cdot 10^{-1}\\4,035322\cdot 10^{-1}\\4,035322\cdot 10^{-1}\\3,374331\cdot 10^{-1}\\ 1,586463\cdot 10^{-1}\\4,075675\cdot 10^{-1}\\9,720480\cdot 10^{-1}\\9,7204$		

Cont. 2.14.

	E, MeV						
Al	11	13	15				
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_9 \\ A_{10} \\ A_{11} \\ A_{12} \\ A_{13} \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \end{array}$	$\begin{array}{r} 3,198142\cdot10^{-1}\\ 1,190067\cdot10^{-3}\\ -7,723457\cdot10^{-2}\\ -4,960575\cdot10^{-2}\\ 4,683466\cdot10^{-3}\\ -3,291566\cdot10^{-3}\\ 1,222917\cdot10^{-3}\\ 2,476153\cdot10^{-3}\\ 4,861433\cdot10^{-3}\\ 1,277542\cdot10^{-2}\\ 9,858263\cdot10^{-5}\\ -4,924602\cdot10^{-3}\\ 5,901732\cdot10^{-5}\\ 2,486010\cdot10^{-3}\\ -9,047863\cdot10^{-5}\\ -2,318305\cdot10^{-3}\\ -6,070390\cdot10^{-4}\\ \end{array}$	$\begin{array}{r} 3,699510\cdot10^{-1}\\ 4,671855\cdot10^{-2}\\6,435750\cdot10^{-2}\\5,199838\cdot10^{-2}\\9,060205\cdot10^{-3}\\1,025260\cdot10^{-2}\\6,911418\cdot10^{-3}\\2,821091\cdot10^{-3}\\2,821091\cdot10^{-3}\\ -2,821091\cdot10^{-3}\\ -2,823513\cdot10^{-3}\\ -2,823513\cdot10^{-2}\\ 5,823513\cdot10^{-3}\\ -2,101392\cdot10^{-3}\\2,101392\cdot10^{-3}\\6,941850\cdot10^{-4}\\ 1,915706\cdot10^{-3}\\ 8,264599\cdot10^{-5}\\4,410425\cdot10^{-3}\\ -2,906756\cdot10^{-3}\\ -2,906756\cdot10^{-3}\\ -1,207650\cdot10^{-3}\\ 3,445681\cdot10^{-4}\\ \end{array}$	$\begin{array}{r} 4,223763\cdot10^{-1}\\ 1,001463\cdot10^{-1}\\4,870682\cdot10^{-1}\\5,536026\cdot10^{-2}\\1,981086\cdot10^{-2}\\1,981086\cdot10^{-2}\\1,91715\cdot10^{-2}\\9,186341\cdot10^{-2}\\9,186341\cdot10^{-2}\\1,034689\cdot10^{-3}\\ 4,262631\cdot10^{-2}\\ 1,725199\cdot10^{-3}\\ 1,421194\cdot10^{-2}\\ 7,183207\cdot10^{-2}\\ 1,125376\cdot10^{-3}\\5,071390\cdot10^{-3}\\5,071390\cdot10^{-3}\\3,992622\cdot10^{-3}\\3,901434\cdot10^{-3}\\3,893949\cdot10^{-3}\\1,263612\cdot10^{-43}\end{array}$				

Table 2.15. Matrix of inelastic transitions resulting from the (n, n'), (n, 2n) and (n, 3n) processes

		- 1		σ_{in} (i, i+k) at e	qual k				
1	. 0	1	2	3	4	5	6	7	8	9	10
0 1 2 3 4 5 6 7 8 9 10	0,204 0,278 0,268 0,393 0,573 0,829 1,132 0,892 0,456 0,087 0,000	0,035 0,048 0,051 0,120 0,318 0,412 0,205 0,333 0,411 0,193 0,000	0,021 0,039 0,097 0,189 0,525 0,382 0,062 0,003 0,060 0,000	0,067 0,137 0,299 0,441 0,413 0,137 0,030 0,014 0,002	0,258 0,204 0,468 0,384 0,224 0,044 0,008 0,002 0,001	0,377 0,251 0,326 0,203 0,099 0,012 0,001	0,318 0,134 0,132 0,073 0,026	0,104 0,044 0,041 0,018 0,006	0,026 0,012 0,011 0,004 0,001	0,007 0,003 0,002 0,001	0,001
		l					l				

E _n , MeV	Reaction type	Secondary neutron energy, MeV and reaction spectrum
1,5 2	(n, n') (n, n')	25 0,075 0,125 0,175 0,225 0,261 48 4,291 4,485 4,279 3,891 0,000 33 0,100 0,167 0,233 0,300 0,367 0,433 0,500 0,567 0,633 0,700 0,761
3	(<i>n</i> , <i>n</i> ')	18 2,009 2,093 1,932 1,700 1,452 1,213 0,995 0,804 0,642 0,506 0,000 15 0,15 0,25 0,45 0,55 0,75 0,85 0,95 1,15 1,35 1,45 1,65 1,75 1,761 87 1,533 1,468 1,064 0,858 0,522 0,397 0,297 0,159 0,081 0,057 0,026 0,017 0,000 167 0 200 0 667 1 800 2 067 2 200 2 467 2 600 2 733 2 763
4 5	(n, n') (n, n')	58 1,306 0,788 0,453 0,332 0,170 0,119 0,056 0,037 0,016 0,010 0,004 0,002 0,001 0,000 83 0,250 0,583 0,750 1,083 1,250 1,583 1,750 2,083 2,250 2,583 2,750 2,917 3,250 3,417 149 0 806 0 612 0 323 0 226 0 106 0 070 0 030 0 019 0 007 0 004 0 002 0 001 0 000
6	(<i>n</i> , <i>n</i> ')	0,3 0,5 0,9 1,1 1,5 1,7 2,1 2,5 3,1 3,5 3,9 4,1 4,5 4,761 58 0,985 0,838 0,480 0,344 0,168 0,116 0,55 0,028 0,013 0,009 0,007 0,006 0,005 0,000 17 0,350 0,583 0,817 0,283 1,750 2,217 2,450 2,917 3,383 3,850 4,550 4,783 5,717 5,761
7	(n, n') (n, 2n) 1st neutron	79 0,868 0,717 0,541 0,274 0,131 0,063 0,045 0,026 0,017 0,013 0,009 0,008 0,005 0,000 17 0,350 0,466 927 2,258 0,000
0	(<i>n</i> , 2 <i>n</i>) 2nd neutron	04 0,08 0,12 0,16 0,20 0,24 0,28 0,32 0,466 92 2,900 4,16 4,712 4,5253 3,730 2,589 1,347 0,000 1 <td< th=""></td<>
9	(<i>n</i> , <i>n</i>) (<i>n</i> , 2 <i>n</i>) 1st neutron	89 0,727 0,568 0,278 0,124 0,057 0,029 0,019 0,013 0,009 0,007 0,006 0,004 0,003 0,000 5 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,466 78 0,612 0,484 0,364 0,299 0,344 0,390 0,261 0,000
	(<i>n</i> , <i>2n</i>) 2nd neutron	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ļ	

Table 2.16. Neutron spectrum from the (n, n') (continuous spectrum), (n, 2n) and (n, 3n) reactions

	[· ·]	1	[[ļ			1		[]	· [
	(0,183	0,55	1,283	2,017	2,750	3,483	4,217	4,950	5,683	6,417	7,150	7,883	8,617	9,350	9,673
11	(n, n)	0,583	0,615	0,324	0,141	0,662	0,031	0,019	0,014	0,000	0,008	0,006	0,005	0,004	0,003	0,000
	(n, 2n)	0,183	0,550	0,917	1,283	1,650	2,017	2,383	2,750	3,117	3,483	3,850	4,217	4.466		
	1st neutron	0,612	0,613	0,457	0,313	0,206	0,134	0,088	0,060	0,045	0,046	0,085	0,068	0,000	0 40	
	(n, 2n)	0,04	0,20	0,40		0,80	1,00	1,40	1,00	1,80	2,20	2,40	2,80	3,000	3,40	4,466
	2nd neutron	0,010 0.917	0,202	0,019	0,009	3 250	10,124	4 983	5 850	0,193	7 583	0,040	0,011	10,000	11 050	11,000
13	(n, n')	0,217	0,000	0,200	0 145	0,200	0.036	0 023	0,000	0,013	0 010	0,400	0,006	0 005	0 001	0 000
	(n 2n)	0,030	0,400 0.650	1 083	1.517	1,950	2.383	2.817	3.250	3,683	4.117	4.983	5 417	5 850	6.283	6 466
	1st neutron	0.307	0.556	0.461	0.304	0.194	0.124	0,080	0.054	0.039	0.029	0.020	0.020	0.017	0.015	0.000
•	(n, 2n)	0.04	0,12	0,20	0,36	0,80	1,20	1,80	2,00	2,20	2,60	3,00	3,40	3,80	4,20	6,466
	2nd neutron	0,009	0,067	0,156	0,357	0,664	0,593	0,310	0,230	0,166	0,078	0,033	0,013	0,004	0,001	0,000
·	(n, 3n)	0,217	0,650	0,811												-
	1st neutron	2,298	0,009	0,000												
	(n, 3n)	0,04	0,08	0,12	0,16	0,20	0,24	[0, 28]	[0, 32]	[0, 36]	0,40	0,44	0,48	0,52	0,56	0,811
	2nd neutron	0,661	1,857	2,890	3,492	3,630	3,387	2,891	2,281	1,658	1,101	0,655	0,334	0,132	0,030	0,000
	(n, 3n)	0,04	0,08	0,12	0,10	0,20	0,24	0,28	0,32	0,30	0,40	0,811				
15	Jid neutron	0,007	0,000	4,000	9 75	2,101	1,500	5 75	6 75	7 75	0,009	0,000	10 75	19 75	12 75	12 761
	(n, n')	0,20 0,279	0,70	0,794	0,135	0,75	0.053	0,036	0,75	0,020	0,10	0,10	0,000	0,006	0,003	10,701
	(n, 2n)	0.272	0.75	1 75	2.75	3.75	4.75	5.25	5.75	6.25	6.75	7.25	7,75	8.25	8,466	0,000
÷	1st neutron	0.035	0.075	0.183	0.326	0.149	0.082	0,065	0.054	0.046	0.040	0,041	0.092	0,101	0.000	
	(n, 2n)	0,04	0,08	0,12	0,24	0,40	0,48	0,60	1,00	1,60	2,00	2,40	3,00	4,00	5,00	8,466
	2nd neutron	0,006	0,021	0,045	0,142	0,293	0,362	0,449	0,573	0,437	0,297	0,179	0,100	0,011	0,001	0,000
	(n, 3n)	0,25	0,75	1,25	1,75	2,811		· ·								
	1st neutron	1,476	0,444	0,074	0,007	0,000										
	(n, 3n)	0,04	0,08	0,12	0,40	0,60	0,80	1,00	1,20	1,40	1,60	1,80	2,00	2,20	2,811	
	2nd neutron	0,049	0,169	0,327	1,217	1,193	0,881	0,573	0,285	0,131	0,052	0,017	0,004	0,001	0,000	0 011
	(n, on)	1 100	0,00	1 020	1,20	0,40	0,40	0,00	0,00	1,00	1,20	1,40	1,00	1,80	2,00	2,811
	Sid neulion	1,490	1,000	1,303	1,029	1,220	0,919	0,013	10,000	0,151	0,003	0,024	0,000	0,002	0,001	0,000
]	l					ļ		1	I	1		l			

- 36 -

Ε __ ,		E, MeV (from inelastic scattering)																
MeV	20	,05	0,1	0,	,2	0,3	0,4	0,6	0,8	1,0	1,5	2,0	2,5	3,0	4,0	5,0	6,0	.7;0
15 12 9 6 3	00000	,004 ,004 ,003 ,003 ,002	0,025 0,024 0,023 0,021 0,017	0, 1 0, 1 0, 1 0, 1 0, 1	53 50 44 31 02	0,39 0,38 0,36 0,33 0,26	95 0,74 95 0,72 97 0,68 91 0,61 90 0,44	3 1,517 2 1,462 7 1,373 4 1,196 3 0,839	2,377 2,278 2,118 1,820 1,548	3,189 3,039 2,806 2,390 1,549	3,117 2,855 2,478 1,889 0,991	2,394 2,073 1,648 1,078 0,402	1,639 1,318 0,931 0,489 0,158	1,080 0,797 0,491 0,198 0,000	0,422 0,256 0,113 0,023	0,146 0,070 0,020 0,002	0,045 0,016 0,003	0,012 0,003 0,000
E_,	,	E _γ , MeV (from radiative capture)																
Me\	/	0,0	5 O,	1	0,	,2	0,4	0,6	0,8	1,0	1,5	2,0	3,0	4,0	5,0	6,0	8,0	10,0
15 12 9 6 3	3	0,00 0,00 0,00 0,00 0,00	08 0, 08 0, 08 0, 08 0, 08 0, 01 0, 01 0,	056 055 055 054 054 053	0, 0, 0, 0, 0,	325 322 320 316 310 303	1,920 1,903 1,888 1,864 1,830 1,789	3,047 3,012 2,975 2,917 2,832 2,732	3,537 3,478 3,412 3,310 3,159 2,987	3,740 3,655 3,555 3,405 2,182 2,940	3,397 3,245 3,060 2,800 2,430 2,069	2,754 2,551 2,306 1,975 1,561 1,191	1,569 1,342 1,090 0,800 0,484 0,271	0,793 0,618 0,440 0,266 0,115 0,004	0,362 0,254 0,156 0,074 0,021 0,000	0,152 0,094 0,049 0,017 0,003	0,021 0,009 0,003 0,000	0,002 0,000 0,000

<u>Table 2.17</u>. Spectrum of γ -rays accompanying inelastic processes

I.

11		E _γ , MeV (from fission)														
MeV	0,1	0,2	0,3 0	,5 0	7 1,	0 1	,5 2	,0	2,5	3,0	4,0	5,0	6	,0	8,0	9,0
0—15	1,0	5,2	6,3 6	,2 5,	0 3,	2 1,	,2 0,	,65 (0,40	0,22	0,089	0,02	7 0,0	014	0,001	0,0
E_, [E	γ, MeV	(from	the (n, 2n) proc	ess)					<u> </u>
MeV	0,05	0,1	0,2	0,3	0,5	0,8	8 1	,2	1,6	2	0 2	,5 3	,0	4,0	5,0	6,0
8 11 15	0,003 0,002 0,005	0,020 0,014 0,035	0,116 0,085 0,205	0,293 0,239 0,578	0,717 0,688 1,666	0,8 0,9 2,1	46 0, 61 0, 49 2.	513 974 086	0,748 1,652	8 0,4 2 1,1	79 0, 87 0,	223 0, 721 0,	084 0 410 0	,005 ,108	0,021	0,00
E _n , (<u>.</u>			E _γ , MeV (from the (n, 3n) process)									· <u>·</u>	
MeV	0,05	0,1	0,2	0	,3 (0,5	0,07	0,9		,1	1,3	1,5	1,8		2,1	2,4
15	0,0005	0,0039	9 0,0	25 0,0	64 0	,177	0,283	0,33	4 0	,352	0,307	0,259	0,16	4 0	,086	0,038

Ne	E. E.	σηγ	σ _{nf}		σ _{nn}	σ _{nn'}	$\sigma_{n,2n}$	$\sigma_{n,3n}$	11.	<u> </u>
		b					μį	ھ		
0	10,5—15 МэВ	0,004	2,249	4,541	2,624	0,527	0,432	0,009	0,8829	0.0010
1	6,5—10,5	0,007	2,181	3,958	3,375	0,962	0,094	, í	0,8691	0,0011
2	4-6,5	0,012	1,571	3,565	4,496	1,695			0,8483	0,0013
3	2,5-4,0	0,020	1,644	3,308	4,323	1,826			0,7794	0,0018
4	1,4-2,5	0,046	1,654	3,127	3,321	2,185			0,6227	0,0029
5	0,8-1,4	0,102	1,463	3,006	3,627	1,816			0,5015	0,0042
6	0,4-0,8	0,186	0,592	2,934	6,004	1,438	[[0,3609	0,0053
/	0,2-0,4	0,211	0,121	2,892	8,302	1,228			0,2540	$0,006^2$
ð	1, 1-0, 2	0,260	0,076	2,8/1	10,405	0,867			0,1259	0,0073
10	40,0-100 K9D	0,449	0,082	2,80	11,//8	0,355			0,0522	0,0075
10	10-21,5		0,097	2,804	12,437				0,0238	0,0081
19	4 65-10 0	1 4 98	0,105 0,117	2,002	13,010	0,000			0,0116	0,0082
13	2 15-4 65	2 028	0,150	2,001	15 760				0,0000	0,0083
14	1.0-2.15	3 294	0,100	2,850	18,700		1		0,0042	0,0083
15	465—1000 aB	4 814	0,210	2,850	18,528	1			0.0028	0,0083
16	215-465	7,852	0.059	2.850	22.048	}		1	0.0028	0,0083
17	100-215	24.044	0.130	2.850	29.189				0.0028	0.0083
18	46,5-100	42,398	0.154	2,850	59,564				0.0028	0,0083
19	21,5-46,5	68,247	0.235	2,850	43,721		Į		0,0028	0,0083
20	10,0-21,5	30,898	0,669	2,850	8,934				0,0028	0,0083
21	4,65-10,0	0,776	0,001	2,850	8,459				0,0028	0,0083
22	2,15-4,65	8,768	0,002	2,850	13,298	ļ		ļ	0,0028	0,0083
23	1,0-2,15	9363,358	1,657	2,850	724,759				0,0028	0,0083
24	0,465-1,0	1189,321	0,210	2,850	45,343				0,0028	0,0083
25	0,215-0,465	163,154	0,029	2,850	0,303	}.			0,0028	0,0083
	0,0253	287,798	0,059	2,850	1,540	ł	1		0,0028	0,0083

Table 2.18. Group-averaged constants for ²⁴⁰Pu

- 3.9 -