ISSN 0207-3668

INDC(CCP)-226/G

государственный комитет ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР

ВОПРОСЫ АТОМНОЙ НАУКИ ТЕХНИКИ

СЕРИЯ: Ядерные константы

выпуск 1 (55)

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор О.Д. КАЗАЧКОВСКИЙ

НЕЙТРОННЫЕ КОНСТАНТЫ И ПАРАМЕТРЫ Зам. главного редактора Б.Д.КУЗЬМИНОВ

Ф.Н. Беляев, П.П. Благоволин, В.П. Вертебный, В.Я. Головня, Ю.С. Замятнин, Ю.А. Казанский, С.С. Коваленко, В.Е. Колесов, В.А. Коньшин, Б.Д. Кузьминов, В.Н. Манохин, В.И. Мостовой, Г.В. Мурадян, В.Н. Нефедов, М.Н. Николаев, Ю.П. Попов, Г.Я. Труханов, В.А. Толстиков, О.А. Сальников, С.И. Сухоручкин, Г.Е. Шаталов, Г.Б. Яньков, В.П. Ярына, М.С. Юдкевич

КОНСТАНТЫ И ПАРАМЕТРЫ СТРУКТУРЫ ЯДРА И ЯДЕРНЫХ РЕАКЦИЙ

Зам. главного редактора А.Г. ЗЕЛЕНКОВ

Б.Я. Гужовский, П.П. Дмитриев, Н.Н. Жуковский, Б.С. Ишханов, Е.Г. Копанец, В.М. Кулаков, И.П. Селинов, Ю.В. Сергеенков, Ю.В. Хольнов, Н.П. Чижова, Ф.Е. Чукреев

ЯДЕРНО-РЕАКТОРНЫЕ ДАННЫЕ

Зам. главного редактора М.Ф. ТРОЯНОВ

И.А. Архангельский, П.П. Благоволин, А.И. Воропаев, А.Ю. Гагаринский, Т.В. Голашвили, Л.В. Диев, В.П. Жарков, С.М. Зарицкий, Ю.А. Казанский, А.А. Лукьянов, В.Г. Мадеев, В.И. Матвеев, В.А. Наумов, М.Н. Николаев, Р.В. Никольский, Э.Е. Петров, Г.Б. Померанцев, Л.В. Точеный, В.В. Хромов, О.В. Шведов

Ответственный секретарь выпуска В.В. Возяков

(C) Центральный научно-исследовательский институт информации и технико экономических исследований по атомной науке и технике (ЦНИИатоминформ), 1984 ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНФОРМАЦИИ

И ТЕХНИКО-ЭКОНОМИЧЕСКИХ ИССЛЕДОВАНИЯ ПО АТОМНОЯ НАУКЕ И ТЕХНИКЕ

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ

Серия: ЯДЕРНЫЕ КОНСТАНТЫ

Научно-технический сборник

Выпуск 1(55)

НЕЙТРОННЫЕ КОНСТАНТЫ И ПАРАМЕТРЫ

ЯДЕРНО-РЕАКТОРНЫЕ ДАННЫЕ

Москва

1984

содержание

Нейтронные константы и параметры

Юрова Л.Н., Поляков А.А., Рухло В.П., Титаренко Ю.Е., Комин С.Ф., Шведов О.В., Мясоедов Е.Ф., Давыдов А.В., Травников С.С. Интегральные сечения радиационного захвата в тепловой и резонанс- ной областях энергий для ²³⁰ Th, ²³¹⁻²³³ Pa, ²³⁶ U, ²³⁷ Np	3
Коренной В.П., Возяков В.В., Хаткевич О.В., Фоков Ю.Г., Груша Н.М.	
характеристики реактора с диссоциирующим теплоносителем	9
Дитце К., Ферманн К., Леманн Е., Хюттель Г., Голубев В.И., Козловцев В.Г., Веселов В.М.	
Оценка ядерных данных кадмия в интегральном эксперименте на кри- тической сборке КБР-9	13
Блохин А.И., Булеева Н.Н., Колесов В.Е., Кривцов А.С., Манохин В.Н., Пахомова О.А.	
Постановка на ЭЕМ FC-1033 комплекса программ для работы с библиотеками оценезных нейтрсных данных в формате кылг/в	16
Ядерно-реакторные данные	

Воропаев А.И., Матвеенко И.П., Шакана В.И., Шокодько А.Г.	
Анализ погрешностей реактивности по методу обращенного решения уравнения кинетики, обусловленных погрешностями параметров запаздывающих нейтронов	18

Базыков А.И., Жарков В.П., Карташев И.А. Расчет анизотропных переходов без полиномиального разложения	24
Ежов А.А., Книжникова Л.А., Фрунзе В.В.	
Эффективные пороговые сечения для экспериментального определения потоков нейтронов в бланкетах термоядерного реактора	29
Броницкий Л.Л., Мякинченко С.Н., Постников В.В.	
Исследование влияния температуры нейтронного газа и эмиттера на изменение чувствительности эмиссионных детекторов нейтронов	35
Библиографический индекс работ, помещенных в настоящем выпуске, в Международной системе СИНДА	38

Редактор Г.В.Зубова Технический редактор С.И.Халиллулина Корректор М.А.Макеева

Подписано в печать 31.05.84. Т - 13218. Формат 60х84 1/8. Печать офсетная. Печ.л. 5,5. Уч.-изд.л. 4,5. Тараж 367 экз. Индекс 3645. 8 статей. Зак тип. # 6/2

Отпечатано в ЦНИИатоминформе 127434, Москва, аб/ящ 971 УДК 621.039.5

ИНТЕГРАЛЬНЫЕ СЕЧЕНИЯ РАДИАЦИОННОГО ЗАХВАТА В ТЕПЛОВОЙ И РЕЗОНАНСНОЙ ОБЛАСТЯХ ЭНЕРТИЙ ДЛЯ ²³⁰ть, ²³¹⁻²³³ра, ²³⁶U, ²³⁷Np

Л.Н.Юрова, А.А.Поляков, В.П.Рухло, Ю.Е.Титаренко, С.Ф.Комин. О.В.Шведов, Б.Ф.Мясоедов, А.В.Давыдов, С.С.Травников

INTEGRAL CAPTURE CROSS-SECTIONS IN THERMAL AND RESONANCE ENERGY REGIONS FOR 230Th, 231-233Pa, 236U, 237Np. The results of expe-rimentally determination thermal cross-sections and resonance integral values are presented. The measurements were carried out by the activation method using high-resolution semicon-ductor detectors.

<u>Методика измерений</u>. Значения тепловых сечений бол, и резонансных интегралов I_{л, г} для ²³⁰ть, ²³¹⁻²³³га, ²³⁶0, ²³⁷кр определялись сравнением скоростей реакций радиационного захвата этих нуклидов со скоростью реакции радиационного захвата стандарта в заданном спектре нейтронов. В качестве стандарта использовали ²³²ть . Предполагая, что в процессе облучения изменечие концентрации нуклидов, образущихся в результате реакции радиационного захвата, обусловлено каналом, связанным только с радиоактивным распадом $\lambda^{(A+1)_B} \gg \int_0^\infty \sigma_{n,p}^{A_B} \varphi dE$, определяемые параметры для ²³⁰ть, ²³¹Ра, ²³⁶U, ²³⁷Np можно представить в следующем виде /1/:

$$\frac{\tilde{\mathcal{G}}_{on,p}^{A_{B}}}{\tilde{\mathcal{G}}_{on,p}^{232}T_{h}} = \left(\frac{N}{N^{233}P_{a}}\right)_{T.K} \frac{N^{232}T_{h}}{N^{A_{B}}} \frac{g^{232}T_{h}(T_{H})}{g^{A_{B}}(T_{H})} \frac{R_{Cd}^{232}T_{h}(R_{Cd}^{A_{B}}-1)}{(R_{Cd}^{232}T_{h}-1)R_{Cd}^{A_{B}}} \frac{f^{233}P_{a}(t)}{f^{(A+1)}B(t)};$$

$$\frac{I_{n,p}^{A_{B}}}{I_{n,p}^{232}T_{h}} = \left(\frac{N^{(A+1)}B}{N^{233}P_{a}}\right)_{1/E} \frac{N^{232}T_{h}}{N^{A_{B}}} \xi \frac{f^{233}P_{a}(t)}{f^{(A+1)}B(t)},$$

где А - массовне числа, принимающие значения 230, 231, 236, 237; В - химические символы соответствущих элементов - тория, протактиния, урана и нептуния; N - ядерные концентрации; g(T_H) - фактор Весткотта; R_{Cd} - кадмиевое отношение; ξ - поправка, связанная с отклонением спектра нейтронов от спектра ферми; φ - плотность потока нейтронов.
 Значения теплового сечения и резонансного интеграла²³² Pa, ²³³ Pa (для изомера с T_{1/2}=6,75 ч) определяли на основе регистрации соответственно²³³ Pa,²³⁴ Pa в экспериментальных образцах, со-

держащих ²³¹Ра. ²³²ть. В этом случае определяемые параметры можно представить в следущем виде /1,27:

$$\frac{\tilde{G}_{on,f}^{232} Pa}{\tilde{G}_{on,f}^{231} Pa} = \left[\frac{N^{233} Pa N^{231} Pa}{(N^{232} Pa)^2}\right]_{T,K} \frac{g^{231} Pa}{g^{232} Pa} \frac{R_{Cd}^{231} Pa}{R_{Cd}^{232} Pa} + \frac{R_{Cd}^{232} Pa}{R_{Cd}^{232} Pa} - \frac{\left[f^{232} Pa(t)\right]^2}{(1/\lambda)^{232} Pa f_1^{233} Pa}; (1)$$

$$\frac{I_{n,f}^{232}}{I_{n,f}^{231}}_{n,f} = \left[\frac{N^{233}Pa}{(N^{232}Pa})^2 \right]_{1/E} \xi' \frac{\left[\frac{f^{232}Pa}{(1/\lambda)^{232}Pa} \frac{f^{233}Pa}{f_1^{233}Pa} \right]_{1/E} ;$$

$$\frac{I_{n,f}^{233}Pa}{I_{n,f}} = \left(\frac{N^{234}Pa}{(N^{233}Pa} \right)_{1/E} \frac{N_{cT}^{232}Th}{(N_{cT}^{233}Pa} \xi \frac{f^{233}Pa}{f_1^{234}Pa} \right)_{1/E} ,$$
(2)

 2^{233} Ра (t) - временной параметр для 2^{233} Ра с учетом распада 2^{233} Ра ; $N_{c\tau}$ - ядерная концентрация стандарта; λ - постоянная распада. Такое представление параметров 2^{232} га и 2^{233} Ра упрощает методику их определения, так как устраняет необходимость изготовления мишеней, содержа-щих радиохимически чистие ²³²Ра и ²³³Ра. Для разделения тепловых и резонансных нейтронов использовали кадмий. Поправку, учитывающую вклад резонансных нейтронов в скорость реакции радиационного захвата при облучении образцов в тепловой колонне, вводили с использованием измеренных кадмиевых отношений в виде $R_{cd}/(R_{cd}-1)$, а фактор Весткотта, учитывающий отклонение зависимости се-чений в тепловой области от закона 1/v, рассчитывали по формуле

$$g^{A_B}(T_H) = \frac{2}{\sqrt{\pi}} \frac{1}{(kT_H)^2} \int_0^\infty \frac{\overline{\sigma}_{n,r}^{A_B}(E)}{\overline{\sigma}_{on,r}^{A_B}} E \exp(-E/kT_H) dE,$$

k - постоянная Больцмана; T_H, E - температура и энергия нейтронов. Дифференциальные сечегде ния были взяты из оцененных дакных библиотеки КОРТ, используемой для расчета тепловых реакторов [3].Величины коэффициента 🤱 определяли расчетным путем. Спектр нейтронов в месте облучения образцов рассчитывали по программе TRIFON [4]. Выражение для вычисления коэффициента & имело вид

$$\xi = \begin{bmatrix} 10 \text{ M} \Im B & A_B \\ \int_{0}^{10 \text{ M} \Im B} \mathcal{G}_{n, p}^{A_B}(E) \varphi(E) dE \\ \int_{0}^{10 \text{ M} \Im B} \mathcal{G}_{n, p}^{232} \mathsf{Th}(E) \varphi(E) dE \end{bmatrix} \frac{\int_{0}^{10 \text{ M} \Im B} \mathcal{G}_{n, p}^{232} \mathsf{Th}(E) \frac{dE}{E}}{\int_{0}^{10 \text{ M} \Im B} \mathcal{G}_{n, p}^{A_B}(E) \frac{dE}{E}}$$

Экспериментальные образцы. Ионий (²³⁰ть), являющийся продуктом «-распада ²³⁸U, был выделен радиохимическим методом из протактиний-иониевого концентрата, полученного из урановой руды. Одновременно с радиохимическим выделением ²³⁰ть происходит выделение ²³²ть, поскольку данный нуклид содержится в урановых рудах как сопутствующий элемент. Присутствие ²³²ть в полученном ионии упростило выбор стандарта ввиду высокой точности рекомендованных значений теплового сечения и ре-зонансного интеграла ²³²Th /57. Протактиний (²³¹Pa) был получен радиохимическим выделением после длительного облучения иония /67. Уран (²³⁶U) выделяли из облученного ²³⁵U, концентрация ²³⁶U после выделения составляла 99,8%. Нептуний (²³⁷Np) выделяли радиохимическим методом из облученного урана и подвергали тщательной очистке от урана, плутония и осколков деления.

Методика приготовления экспериментальных образцов состояла в следуищем: слабокислые растворы нуклидов наносили на подложку из тонкой обеззоленной бумаги диаметром IO мм и после выпаривания упаковывали в тонкостенные алюминиевые бюксы. Массовое количество каждого нуклида в экспериментальном образце составляло 30-50 мкг.

Торий (²³²ть) использовали в виде азотнокислой соли ть(NO₃)₂. Для обеспечения оптимальных условий регистрации ²³⁴Ра и ²³³Ра проводили радиохимическое выделение этих нуклидов из облученного тория. Массовое количество азотнокислого тория в экспериментальном образце составляло около 100 мг. В качестве стандарта использовали "бесконечно тонкие" фольги, изготовленные методом электролитического осаждения Th(NO3)2 на алиминиевую подложку.

Определение относительных концентраций нуклидов. Из анализа схем распада исследуемых нуклидов выбраны *у*-линии с максимальным значением абсолютного квантового выхода на 100 распадов, что обеспечивает минимальные погрешности при определении их концентраций. Энергии *у*-линий, абсолютные квантовые выходы Y и периоды полураспада этих нуклидов приведены в табл.1 [7-97.

Нуклид	Тип распада	Е, кэВ	Y, %	^T 1/2
230 _{Th}	α	67,73 <u>+</u> 0,03	0,37 <u>+</u> 0,0I	(8,0 <u>+</u> 0,3)·IO ⁴ лет
231 _{Th}	β¯	84,2I <u>+</u> 0,02	6,5 <u>+</u> 0,5	(25,52 <u>+</u> 0,0I)ч
231 _{Pa}	ά	283,56 <u>+</u> 0,06	I,69 <u>+</u> 0,08	(3,276 <u>+</u> 0,0II)·I0 ⁴ ч
232 _{Pa}	β-	969,3 <u>+</u> 0,I	4I,6 <u>+</u> I,9	(I,3I <u>+</u> 0,02) сут
233 _{Pa}	ß	3II,887 <u>+</u> 0,0I0	37 <u>+</u> 2	(26,95 <u>+</u> 0,06) сут
234 _{Pa}	β-	946,3	17	6,75 ч
236 _U	α {	49,369 <u>+</u> 0,009 II2,750 <u>+</u> 0,0I5	0,079 <u>+</u> 0,003 0,0I89 <u>+</u> 0,0007	(2,34I5 <u>+</u> 0,00I4)•I0′лет -
237,,	{	59,543 <u>+</u> 0,0I5	36,0 <u>+</u> 3,6	(6,752 <u>+</u> 0,002) су т
U	ß	208,005 <u>+</u> 0,023	23,0 <u>+</u> 2,3	_
	ſ	86,49 <u>+</u> 0,I0	I2,6 <u>+</u> I,3	(2,I4 <u>+</u> 0,0I)·I0 ⁶ лет
237 _{Np}	α {	194,9I <u>+</u> 0,07	0,2I <u>+</u> 0,02	-
238m	ر م- (2I2,28 <u>+</u> 0,07	0,I6 <u>+</u> 0,02	-
- ND	js	984,46 <u>+</u> 0,07	27,8 <u>+</u> 0,8	(2,II7 <u>+</u> 0,002) сут
	1			

Характеристики У-излучения радионуклидов

Таблица I

С учетом особенностей, возникающих при регистрации интенсивности *П*-излучения исследуемых нуклидов, использовали детекторы различных типов: коаксиальные (Ge-L1)-детекторы объемом 40 и 80 см³ с энергетическим разрешением 2,9 и 2,2 кэВ соответственно для энергии I332 кэВ и рентгеновский детектор из сверхчистого германия объемом I,5 см³ с энергетическим разрешением 750 эВ для энергии I22 кэВ.

Измерения (Ge-Li)-детектором объемом 80 см³ осуществляли с использованием стандартного спектрометрического тракта (производство фирмы ORTEC) и анализатора Pluremate, изготовленного фирмой Intertechnique.

Основная трудность возникала при определении относительных концентраций n^{232} Th/ n^{230} Th, так как регистрировать распад ²³²Th трудно из-за его большого периода полураспада. Использование метода масс-спектрометрии дало возможность получить требуемое отношение концентраций 2^{32} Th/ n^{230} Th = I,766±0,008[#]. В этом случае выражение для определения относительных концентраций исходных нуклидов можно представить в следуицем виде:

$$\frac{N^{232}Th}{N^{A_{B}}} = \left(\frac{N^{232}Th}{N^{230}Th}\right)_{\substack{Macc-\\cnekTp.}} \left(\frac{N^{230}Th}{N^{A_{B}}}\right)_{\substack{n-\\cnekTp.}} = \left(\frac{N^{232}Th}{N^{230}Th}\right)_{\substack{Macc-\\cnekTp.}} \frac{S^{230}Th}{S^{A_{B}}Y^{230}Th} \frac{S^{230}Th}{\varepsilon^{230}Th} \frac{S^{A_{B}}}{S^{A_{B}}Y^{230}Th} \frac{S^{230}Th}{\varepsilon^{230}Th} \frac{S^{230}Th}{\varepsilon^{230}Th} \frac{S^{A_{B}}}{S^{A_{B}}Y^{230}Th} \frac{S^{A_{B}}}{\varepsilon^{230}Th} \frac{S$$

где S – площадь пика регистрируемой интенсивности у-излучения; є – относительная эффективность регистрации спектрометра при данной энергии.

Относительные концентрации нуклидов, образующихся в результате реакции радиационного захвата, определяли из выражения

^{*} Macc-спектрометрический анализ выполнен в Институте теоретической и экспериментальной физики (ИТЭФ) Л.Я.Мамеловой.

$$\frac{N^{(A+1)}_{B}}{N^{233}_{P\alpha}} = \frac{S^{(A+1)}_{B}}{S^{233}_{P\alpha}} \frac{Y^{233}_{P\alpha} \varepsilon^{233}_{P\alpha} \lambda^{233}_{A}}{Y^{(A+1)}_{B} \varepsilon^{(A+1)}_{B} \lambda^{(A+1)}_{B}}$$
(3)

Относительные эффективности коаксиальных и рентгеновских спектрометров определяли с помощью калибровочных источников, в спектре *р*-излучения которых имеется необходимое количество *р*-линий /10/.

Результаты экспериментального определения относительных эффективностей регистрации коаксиальных детекторов в диапазоне 100-1500 и 50-1500 кэВ и рентгеновского детектора в диапазоне 40-300 эВ представлены на рисунке.

Относительные эффективности регистрации детекторов: I — коаксиального объемом 40 см³; 2 — рентгеновского объемом I,5 см³; 3 — коаксиального объемом 80 см³

Концентрацию N_{CT}²³²Th при спределении резонансного интеграла ²³³Ра определяли облучением стандарта и азотнокислого тория Th(NO₃)₂ в тепловой колонне. Значение величины N_{CT} вычисляли с помощью тепловых сечений соответствующих нуклидов:

$$N_{cT}^{232}Th = \left(\frac{N_{cT}^{233}Pa}{N_{cT}^{234}Pa}\right)_{T.K} \frac{\sigma_{on,T}^{233}Pa}{\sigma_{on,T}^{232}Th} \frac{g^{233}Pa}{g^{232}Th}(T_{\mu})}{\sigma_{on,T}^{232}Pa} \frac{R_{cd}^{233}Pa}{R_{cd}^{232}Th}(R_{cd}^{232}Th-1)}{R_{cd}^{233}Pa} \frac{R_{cd}^{232}Pa}{N_{cT}^{233}Pa} \frac{1}{N_{cT}} \frac{f^{234}Pa}{f^{233}Pa}(t)}{f}$$
(4)

Использование выражений (3) и (4) позволяет перейти непосредственно от значений регистрируемых интенсивностей у-излучений S к значениям концентраций N в экспериментальном образце и стандарте.

<u>Облучение экспериментальных образцов</u> проводили на реакторе ТВР ИТЭФ в центральном экспериментальном канале, спектр замедленных нейтронов в котором близок к спектру Ферми. В качестве тепловой колонны использовали экспериментальный канал, расположенный в тяжеловодном отражателе /II/. Облучение экспериментальных образцов проводили в стандартных алюминиевых контейнерах, схема загрузки которых показана в работах /I,2/. Температуру нейтронов в тепловой колонне принимали равной $T_{\mu} = (T_{D_20} + 3^0) \kappa$ /II/.

<u>Результати эксперимента</u> по определению значений тепловых сечений и резонансных интегралов для ²³⁰ть, ²³¹-233_{Pa}, ²³⁶U, ²³⁷Np представлены в табл.2-4. Для ²³¹Pa и ²³⁷Np приведены вначения резонансных интегралов, полученные в измерениях с помощью кадмиевых фильтров различной толщины. Для ²³²Pa приведено только среднее сечение в спектре тепловых нейтронов. Определить значение теплового сечения ²³²Pa при температуре 293,7 К оказалось невозможным ввиду отсутствия данных об энергетической зависимости сечений и, следовательно, невозможности вычислить параметр g(T_H). Значение сечения приведено без учета поправки на налкалмиеную активацию ²³²Ра, максимальное значение которой по оценкам не превышает 8%. Величину резонансного интеграла ²³²Ра определяли с помощью кадмиевых фильтров толщиной 0,5 мм. Поправку на отклонение от спектра Ферми не вводили.

Таблица 2

Нуклид	d.,,	N ^(A+1) B	N ²³⁰ Th	$g^{232} Th(T_{\rm H})$	$R_{\rm Cd}^{232} Th (R_{\rm Cd}^{B} - 1)$	Æ	$f^{233}Pa(t)$	^А в б	τ ^A 8 6
	MM	N ²³⁵ Pa	N ^A B	$g^{A_{B}}(T_{\mu})$	$(R_{Cd}^{232}Th-1)R_{Cd}^{A_B}$	~	$f^{(A+1)_{B}}(t)$	°o n, j	-n,ŋ,0
230 _{mh}	-	I,472± 0,026	I,000	0,992	0,902 <u>+</u> 0,002	-	I,30I	22,4 <u>+</u> 0,5	-
	0,50	5,594± 0,099	I,000	-	-	I,0I4	I,I65	-	990 <u>+</u> 40
	-	18,577 <u>+</u> 0,263	0,739 <u>+</u> 0,013	0,974	I,0I5+ 0,00I	-	I,238	219 <u>+</u> 6	1
231 _{Pa}	0,50	16,302 <u>+</u> 0,231	0,427 <u>+</u> 0,007	-	_	0,996	I,003		I040 <u>+</u> 40
	0,35	I6,275 <u>+</u> 0,230	0,579 <u>+</u> 0,010	-	-	0,996	I,003	-	1410 <u>+</u> 60
236	-	71,229± 1,007	0,006I4± 0,000I2	I,002	0,843 <u>+</u> 0,003	-	I,035	5,00 <u>+</u> 0,I4	-
2,2 0	0,50	482,404 <u>+</u> 6,822	0,00459 <u>+</u> 0,00009	-	-	I,00I	I,020	-	340 <u>+</u> I5
	-	41,636 <u>+</u> 0,589	0,238 <u>+</u> 0,004	I,056	I,018 <u>+</u> 0,001	-	I,I39	I58 <u>+</u> 4	-
237 _{Np}	0,50	27,5I6± 0,389	0,177± 0,003	· _	-	I,006	I,002	-	740 <u>+</u> 30
	0,35	I6,6I4 <u>+</u> 0,235	0,342± 0,006	-	-	I,006	I,002	_	860 <u>+</u> 40

Результаты экспериментального определения значений теплового сечения и резонансного интеграла 230 Th, 231 Pa, 236 U, 237 Np

Таблица З

Результати экспериментального определения значений сечения ²³²Ра, усредненного по тепловому спектру нейтронов, и резонансного интеграла этого нуклида

N ²³³ Pa/N ²³² Pa	N ²³¹ Pa/N ²³² Pa	$\frac{\left[f^{232}_{Pa}(t)\right]^{2}}{\left(\frac{1}{\lambda}\right)^{232}_{Pa}f^{233}_{f_{1}}}(t)}$	б ²³² Ра,б	I ²³² Pa I _{n, j} n, 6
(23,71±1,18)·10 ⁻⁵	(25,68 <u>+</u> 0,33)·10 ³	I,74	2300 <u>±</u> I30	-
(54,41±2,72)·10 ⁻⁵	(82,31 <u>+</u> 1,16)·10 ³	I,74	-	81200 <u>+</u> 5100

Таблица 4

Результаты экспериментального определения значения резонансного интеграла²³³Ра при образовании изомера²³⁴Ра

$\frac{(N^{234}Pa/N^{233}Pa})_{1/E}(N^{233}Pa})_{T.K}(N^{233}Pa})_{T.K}$	²³³ ρα Gon,γ ²³² Th Gon,γ	$\frac{g^{233}Pa}{g^{232}Th}(T_{H})$	$\frac{\frac{233}{Cd}Pa}{\frac{232}{232}} \frac{\frac{232}{Cd}}{\frac{232}{Cd}} \frac{\frac{232}{Cd}}{\frac{233}{Cd}} - 1$	Ę	1 _∞ ²³³ Ра→ ²³⁴ Ра
I,82 <u>+</u> 0,02	2,84 <u>+</u> 0,4I	0,93I	I,043 <u>+</u> 0,040	I,023	436 <u>+</u> 67

При определении относительной концентрации нуклидов учитывали погрешности измеряемых площадей пиков, регистрируемых при распаде соответствующих нуклидов (около 1%), погрешности относительных эффективностей регистрации спектрометров (около 1%) и погрешности постоянных распада. Погрешности абсолютных квантовых выходов соответствующих р-линий не вводили. Наибольшие погрешности возникали при определении относительной концентрации $N^{23}Pa/N^{22}Pa$ [см. (1),(2)]. Это связано с трудностями регистрации р-квантов 233Ра на фоне спектра р-излучения 231Ра, поскольку в чем имеются р-линии с близкими энергиями. Площадь пика р-линии 233Ра (E_p =3II,89 кэВ) нахокили в виде разности

 $S_{311,\,89}^{233} = S_{310,\,00;}^{231} - S_{310,\,00;}^{231} - S_{310,\,00;}^{231} + S_{310,\,00;}^{231} + S_{312,\,88}^{231} +$

что приводило к увеличению погрешности отношения n²³³Pa/n²³²Pa. Точность регистрации *п*-линии ²³³Pa в этом случае контролировали определением периода полураспада этого нуклида, значение которого **т**_{1/2} = (27,5±0,5) сут совпадало с данными, представленными в табл. I.

Список литературы

- I. Юрова Л.Н., Поляков А.А., Титаренко Ю.Е. и др. Активационные измерения тепловых сечений и резонансных интегралов ²³⁰Th, ²³¹Pa, ²³²Pa, ²³³Pa, ²³⁶U, ²³⁷Np: Препринт № 99. М.: ИТЭФ, 1982.
- 2. Юрова Л.Н., Поляков А.А., Шведов О.В. и др. Экспериментальное исследование резонансного поглощения нейтронов изотопами протактиния: Препринт № 46. М.: ИТЭЪ, 1977.
- 3. Абагян Л.М., Юдкевич М.С. Оцененные нейтронные данные для расчета тепловых реакторов. -Вопросы атомной науки и техники. Сер. Ядерные константы, 1981, вып.4(43), с.24-52.
- 4. Бурмистров А.Я., Кочуров Б.П. Пространственно-энергетическое распределение нейтронов в цилиндрической ячейке реактора (программа TRIFON): Препринт № 107. М.: ИТЭФ, 1978.
- 5. Mughabghab S.F., Garder D.U. Neutron Cross-Sections. Third ed. BNL-325, v.1 Resonance parameters, 1973.
- 6. Пальшин Е.С., Мясоедов Б.Ф., Давыдов А.В. Аналитическая хымия протактиния. М.: Наука, 1968.
- 7. Lederer C.M., Shirley V.S. Table of Isotopes. Seventh ed. New-York: J.Wiley and Sons. Inc., 1978.
- Schmorak M.R. Nuclear Data Sheets for A=232, 236, 240. J.Nucl.Data Sheets, 1977, v.20, N 2, p.185-186.
- 9. Bowman W.W., MacMURDO. Atomic Data and Nuclear Data Tables, 1974, v.13, N 2-4.
- IO. Вылов Ц., Горожанкин В.М., Еелев Ж. и др. Спектры излучений радиоактивных нуклидов. Ташкент: ФАН, 1980.
- II. Зингерман Ю.В., Шведов О.В. Измерение потока тепловых, надкадмиевых и быстрых нейтронов в реакторе ТВР: Препринт № 67. М.: ИТЭФ, 1974.

Статья поступила в редакцию ЗІ мая 1983 г.

УДК 621.039.51; 621.039.534.3

НЕУПРУГОЕ РАССЕНИЕ НЕЙТРОНОВ НА ХРОМЕ И ЕГО ВЛИЯНИЕ НА РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ РЕАКТОРА С ДИССОЦИИРУЮЩИМ ТЕПЛОНОСИТЕЛЕМ

В.П.Коренной, В.В.Возяков, О.В.Хаткевич, Ю.Г.Фоков, Н.М.Груша

> NEUTRON INELASTIC SCATTERING BY CHROMIUM AND ITS INFLUENCE ON THE CALCULATED CHARACTERISTICS OF THE REACTOR WITH DISSO-CIATING COOLANT. The last experimental studies of inelastic scattering cross-sections in natural chromium taking into account by ENDF/B-Y and CND-2 evaluations, point out the necessity of decreasing \mathscr{O}_{in} near threshold. Matrixes of intergroup transitions caused by inelastic scattering in these evaluations are obtained. Influence of re-evaluated \mathscr{O}_{in} on the calculated characteristics of the reactor with dissociating coolant is discussed.

В последние годи в связи с разработкой проектов реакторов на бистрых нейтронах повысился интерес к хромистым сплавам и сталям с большим содержанием хрома. Елагодаря высокой химической и радиационной стойкости хром признан. перспективным материалом для использования в быстрых реакторах с диссоциирующим теплоносителем /I/. В некоторых реакторах такого типа содержание хрома в активной зоне достигает 30 об.%. При использовании хрома высоких концентраций следует учитывать его свойства не только как чистого поглотителя, но и как элемента, активно влияющего на формирование спектра нейтронов, что повышает требования к точности сечений неупругого рассеяния нейтронов на изотопах хрома.

В последней версии библиотеки групповых констант ННАБ-78 /2/ использованы данные о неупругом рассеянии для библиотеки микроконстант ENDF/B-IV /3/. Появление новых экспериментальных данных /4/ было учтено в оценке работы /5/ для пятой версии ENDF/B и в оценке Центра ядерных данных (ЦНД-2) /6/.

Один из главных выводов работы /4/ - значительное различие между сечениями неупругого рассеяния, измеренными на уровнях волизи порога и предсказанными статистической теорией. Результаты модельных расчетов сечений, хорошо описывающие данные при энергиях более пороговых, завышают результаты расчетов в околопороговой области.

Неупругое рассеяние на природном хроме определяется в основном рассеянием на 2⁺-уровне ⁵²Cr с энергией I434 кэВ, который дает вклад примерно 75% в полное сечение неупругого рассеяния G_t при энергии нейтронов 2 МэВ, 65% при энергии 3 МэВ и 30% при энергии 4 МэВ. На рисунке приведены результаты экспериментальных измерений и оцененные кривые для этого уровня. Оценка работы (5) основывалась на данных, полученных в работе (4), что привело к занижению значения G_t волизи порога примерно на 30% по сравнению с данными ENDF/B-IV. В оценке ЦАД-2 (6) значение этого сечения также было занижено, но оцененная кривая получена теоретически и не описывала "провала" в области энергий нейтронов I,8-2,2 МэВ.

В данной работе получены групповые сечения неупругого рассеяния и матрицы межгрупповых переходов на основе оценок ENDF/B-V и ЩЩ-2. В резонансной области энергий от порога до 2 МэВ полное сечение неупругого рассеяния принималось как сумма вкладов дискретных уровней. В табл. I приведена схема уровней изотопов хрома, использованная при получении матрицы неупругих переходов по оценке ENDF/B-V. В оценке ЩЩ-2 учтены первый уровень ⁵⁰Сг, первый уровень ⁵⁴Сг и по пять первых уровней ^{52,53}Сг. В области выше 2 МэВ полное сечение неупругого рассеяния внчислялось как разность полного сечения неупругих процессов и суммы сечений реакций с захватом нейтрона.

При сравнении оцененных данных по сечению неупругого рассеяния нейтронов важным критерием является величина сечения увода нейтронов деления под порог делечия ²³⁸U, определяемая по формуле расоты /2/:

 $\tilde{G}_{yb} = \frac{\int_{0}^{\infty} dE' \Phi(E') \tilde{G}_{f}^{238}(E') \int_{0}^{\infty} dE \tilde{G}_{in}(E' - E) \left[1 - \frac{\tilde{G}_{f}^{238}(E)}{\tilde{G}_{f}^{238}(E')} \right]}{\int_{0}^{\infty} dE' \Phi(E') \tilde{G}_{f}^{238}(E')} \ .$

Таблица I

Схема уровней изотопов хрома

						Соде	ожани	е изото	па,	ođ.%					
4,3 5 (9,262	° _{Cr}) [≭]	83,79 (7,940)	⁵² Cr ¥	9,50 (9,72)	53 _{Cr} ¥	2,36 ⁵ (3,246)	⁴ Cr ¥	4,3 ⁵ (9,26	0 _{Cr} 2) [#]	83,79 ⁵ (7,940	2 _{Cr}	9,50 ⁵ (9,72)	3 _{Cr} *	2,36 ⁵⁴ (6,246)	⁴ Cr) [#]
E _{yp} , M a B	J ^N	E _{yp} , M ə B	J ^N	E _{yo} , MəB	$\mathfrak{I}^{\mathfrak{N}}$	E _{yp} , M ə B	ງ ^ແ	Е _{ур} , МэВ	$\mathfrak{I}^{\mathfrak{N}}$	^Е ур' МэВ	J ^N	Eyp, MaB	ז %	Еур МэВ	J [%]
0,0000	0+	0,000	0+	0,000	3/2-	0,0000	0+								
0,783	2+	I,434	2^{+}	0,564	I/2	0,8348	2*	-	<u>-</u>	3,II4	6+	2,32I	3/2	-	-
-	-	2,370	4+	I,006	5/2	-	-	-	-	3,162	2+	-	-	-	-
-	-	2,647	0+	I,287	7/2	-	-	-	-	3,4I4	4+	-	-	-	-
-	-	2,768	4+	I,539	7/2	-	-	-	-	3 , 47I	<u></u> з+	-	-	-	-
	-	2,965	2+	I,972	9/2	-	-	-	-	3,77I	2+	-	-	-	-

* Энергия связи последнего нейтрона в составном ядре (в мегаэлектронвольтах).

По оценке БІАБ-78, сечение увода для природной смеси изотопов хрома оказалось равным 0,53 б. По нациа расчетам, оценки ENDF/B-V и ИД-2 значений сечения був ниже соответственно на II и 10%. К сокалению, экспериментальные данные об этой величине отсутствуют.

ечение возбуждения уровня 1434 ков
о2 Сг (приведено к содержанию изотопа
з природной смеси). Оценки:
ENDF/B-IY. Экспериментальные
$(a) = \frac{4}{3} = \frac{4}{3} = \frac{2}{3} = \frac{2}{3}$
♀ - /9/; + - /10/; ■ - /11/; ▲,△ -

Матрицы межгрупповых переходов были получены по методике, изложенной в работе (157. Вклад в полное сечение неупругого рассеяния от рассеяния в области непрерывного спектра $\mathcal{G}_{in}^{cont} = \mathcal{O}_t - \mathcal{G}_{in}^{discr}$, где \mathcal{G}_{in}^{discr} - сумма сечений рассеяния на учитываемых уровнях дискретного спектра. Для энергетических распределений нейтронов, неупруго рассеянных в этой области, принималась оценка ENDF/B-IV, основанная на результатах измерений работы (167.

В табл.2 приведены матрицы межгрупновых переходов за счет неупругого рассеяния и реакции (n,2n) по оценкам ENDF/B-V и ЦАД-2 в сравнении с матрицей EHAE-78. Как видно из таблицы, матрицы, полученные по данным работ [5,6], предсказывают меньший сброс энергии нейтронов за счет неупругого рассеяния.

Елияние изменений в сечении неупругого рассеяния (по оценкам ENDF/B-V и ЦАД-2) в системе групповых нейтронных констант ЕНАЕ-78 на интегральные реакторные характеристики исследовалось на примере реактора на быстрых нейтронах с диссоцирующим теплоносителем /1/. Изменения в сечении G_t компенсировались соответстнующими изменениями групповых сечений упругого рассеяния нейтронов, так что полное сечение взаимодействия нейтронов с ядрами хрома в библиотеке БНАБ-78 оставалось постоянным. Спектр нейтронов, коэфициент размножения (К_{Эф}), коэфициент воспроизводства (КВ) нейтронов и другие характеристики рассчитывались с помощью программи DRZM из комплекса программ НФ-6 /17/. Многогрупповые уравнения переноса нейтронов в программи DRZM решаются в диффузионном приближении. Для решения конечно-разностных уравнений используется итерационный сеточный метод переменных направлений в двумерной цилиндрической геометрии. С помощью программы МИМ /18/, в которой резонансные эффекты учитываются с использованием формализма факторов резонансной самоэкранирсвки сечений, были рассчитаны 26-групповые микросечения. Как показали расчеты, переход к матрице, полученной по оценке ENDF/B-V, привел к повышению К_{Эф} на 0,4% и КВ на 0,013. В результате использования оценки ЦНД-2 коэфициент К_{Эф} повысился на 0,2%, а КВ на 0,006.

Таблица 2

Номер					Номер гр	ушы					Сумма
пя груп-	0	Ĩ	2	3	4	5	6	7	8	9 ·	
I	0,038 0,038 0,0II	0,363 0,250 0,23I	0,449 0,290 0,272	0,300 0,347 0,34I	0,102 0,223 0,238	0,056 0,126 0,140	0,0I9 0,046 0,049	0,005 0,012 0,015	0,00I 0,002 0,005	- 0,00I 0,002	I,333 I,335 I,304
2	0,056 0,063 0,040	0,398 0,385 0,386	0,443 0,452 0,422	0,287 0,274 0,237	0,I04 0,IC9 0,I09	0,032 0,036 0,040	0,009 0,0I0 0,0I2	0,002 0,002 0,003	0,00I 0,00I 0,00I	-	I,332 I,332 I,250
3	0,027 0,022 0,0 2 I	0,44I 0,4I9 0,44I	0,354 0,367 0,397	0,II9 0,II6 0,I24	0,050 0,044 0,052	0,019 0,020 0,018	0,006 0,006 0,005	0,002 0,002 0,002	0,00I 0,00I -	1 1	I,0I3 0,997 I,060
4	0,02I 0,020 0,020	0,172 0,172 0,182	0,211 0,231 0,256	0,076 0,090 0,104	0,043 0,041 0,044	0,0I3 0,0I4 0,0I6	0,004 0,004 0,008	0,002 0,001	-		0,542 0,573 0,630
5		0,02I 0,022 0,022	0,020 0,023 0,024	0,008 0,008 0,009	0,003 0,003 0,004	0,00I 0,00I 0,00I			-	-	0,053 0,057 0,060

Матрицы межгрупповых переходов по оценкам ENDF/B-V (верхняя строка), ЦАД-2 (средняя строка)и БНАБ-78 (нижняя строка)

Чтобы сделать окончательный выбор оцененных данных о сечении неупругого рассеяния нейтронов для хрома, необходимо провести дополнительные измерения этого сечения в околопороговой области и измерить камерой деления с ²³⁸U сферическое пропускание на образцах хрома для определения сечения $\sigma_{q\delta}$.

Список литературы

- I. Кухаев А.И., Наумов В.А., Попов Б.И. Расчет нейтронно-физических характеристик быстрого реактора БРИТ-ЗОО, охлаждаемого диссоцирующим газом N₂O₄, и оценка погрешности расчетов. - Вопросы атомной науки и техники. Сер. Физика и техника реакторов, 1982, вып.7(29), с.51-54.
- 2. Абагян Л.П., Базазянц Н.О., Николаев М.Н., Цибуля А.М. Групповые константы для расчета реакторов и защить. М.: Энергоиздат, 1981.
- 3. Prince A. Evaluator, ENDF/B-IV (MAT 1191), National Cross-Section Center. Brookhaven National Laboratory, 1974.
- 4. Karatzas P.T., Couchell G.P., Barnes B.K. e.a. Neutron Inelastic Scattering Cross-Sections for Natural Chromium Determined from the (n, n'p)-Reaction. - Nucl.Sci. and Engng, 1978, v.67, N 1, p.34-53.

- 5. Prince A., Burrows T.W. Evaluation of Natural Chromium Neutron Cross-Sections for ENDF/B-V: ENL-NCS-52152 (ENDF-286), NNDC. ENL, 1979.
- 6. Возяков В.В., Бычков В.М., Лунев В.П., Попов В.И. Оценка сечений неупругого рассеяния нейтронов на хроме. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1982, вып.4(48), с.44-53.
- 7. Дегтярев Ю.Г., Протопопов В.П. Возбуждение низколежащих уровней ²⁷Al, ⁵²Cr, ⁵⁶Fe и ²⁰⁹Bi при неупругом рассеянии нейтронов с энергией I-4 МэВ.-Атомная энергия, 1967, т.23, вып.6, с.568-571.
- Winkler G., Hansjakov K., Staffel G. Measurement of Differential Elastic and Inelastic Scattering Cross-Sections with 14 MeV Neutrons on Barium and Chromium. - Proc. of the International Conference on Nuclear Cross-Sections for Technology. Washington Government Printing Office, 1980.
- 9. Корж И.А., Кашуба И.Е., Голубова А.А. Использование статистической теории ядра для предсказания сечений неупругого рассеяния нейтронов атомными ядрами. - В кн.: Нейтронная физика (Материалы 3-й Всесоюзной конференции по нейтронной физике, Киев, 9-ІЗ июня 1975 г.). М.: ЦН:Шатоминформ, 1976, ч.4, с.203-208.
- 10. Федоров М.Б., Яковенко Т.И. Рассеяние нейтронов с энергией 2,9 МэВ четно-четными изотопами железа, хрома и щинка. - В кн.: Нейтронная физика (Материалы 2-й Всесоюзной конференции по нейтронной физике, Киев, 28 мая-І мюня 1973 г.). Обнинск, 1974, ч.3, с.56-61.
- II. Almen-Ramström E.A. Systematic Study of Neutron Inelastic Scattering in the Energy Range 2,0 to 4,5 MeV. Sweden, Studvik, 1975.
- 12. Kinney W.E., Ferey F.G. Natural Chromium and ⁵²Cr Neutron Elastic and Inelastic Scattering Cross-Sections from 4,7 to 8,56 MeV: ORNL-4806 (ENDF-198), 1974.
- I3. Van Patter D.N., Nath N., Shafroth S.M. e.a. Gamma-rays from Inelastic Neutron Scattering in Chromium. - Phys.Rev., 1962, v.128, N 3, p.1246-1267.
- I4. Бродер Д.Л., Колесов В.Ф., Лашук А.И. и др. Сечения возбуждения уровней Mg, ⁵²Cr, ⁵⁸Ni, ⁶⁰Ni и ⁹³Nb при неупругом рассеянии нейтронов. Атомная энергия, I964, т.I6, вып.2, с.I03-IIC.
- I5. Levis R.C., O'Relly B.D. The Calculation of Slowing-down Transfer Matrices in the Spherical Harmonics Representation: NAA-SR-11530, 1960.
- I6. Сальников О.А., Ловчикова Г.Н., Котельникова Г.В. и др. Неупругое рассеяние нейтронов на ядрах Сг, Ni, Y, Zr, W. - In: Second International Conf. on Nucl.Data for Reactors (Helsinki, 1970). Vienna: IAFA; 1970, v.2, p.359-375.
- I7. Бизин М.Н., Савочкин О.А., Чухлов О.П. Комплекс программ НФ-6 для расчета основных нейтронно-физических характеристик атомных реакторов на ЭВМ БЭСМ-6: Препринт НИИАР, П-401334. Димитровград, 1977.
- 18. Башлачников А.И. Константное обеспечение комплекса НФ-6: Препринт НИИАР-49(408). Димитровград, 1974.

Статья поступила в редакцию 2 сентября 1983 г.

JEK 539.17:621.039.519.4

ОЦЕНКА ЯДЕРНЫХ ДАННЫХ КАДМИЯ В ИНТЕГРАЛЬНОМ ЭКСПЕРИМЕНТЕ – НА КРИТИЧЕСКОЙ СБОРКЕ КБР-9

К.Дитце, К.Ферманн, Е.Леманн, Г.Хюттель (Центральный институт ядерных исследований, ГДР)

В.И.Голубев, В.Г.Козловцев, В.М.Веселов (Физико-энергетический институт. СССР)

> ESTIMATION OF THE CADMIUM NUCLEAR DATA BY INTEGRAL EXPERI-MENT AT KER-9 ASSEMBLY. The difference between calculational and experimental values of scattering materials reactivity worths was discovered during experiments at RRR/SEG-IV facility (CINR, GDR), which contents Cd in its composition. To verify the reasons of this discrepancies the reactivity worths of several Cd samples of different sizes were measured at KBR-9 facility. The KBR-9 had no Cd in its composition. The comparison of calculational and experimental results indicated the underestimation of resonance selfshielding effect of Cd capture cross-sections in the BNAB-78 and KEDAK-3 Nuclear Data Libraries.

Композиция центральной вставки SEG-IV кольцевого реактора RRR (ЦИЯИ, ГДР) выбрана таким образом, что в ее центре функция ценности нейтронов почти не зависит от энергии /1/. Одним из компонентов такой среды был кадмий, поглощающий нейтроны низких энергий. Как показали расчеть, эффект реактивности чисто рассеивающих материалов и псевдореактивность источников нейтронов существенно зависят от концентрации кадмия во вставке; следовательно, точность предсказания нейтронно-физических характеристик такой композиции в значительной степени определяется надежностью представлений о нейтронных сечениях кадмия /2/. В этих расчетах использовались сечения кадмия из работи /3/ без учета эффекта резонансной блокировки, групповые константы и f-факторы из библиотеки ЕНАБ-78 (4/; а также групповые константы с факторами блокировки, полученные из файла КЕДАК-3 /5/ с помощью программы FEDGROUP /6/.

В работе [2] на вставках с различным содержанием кадмия сравнивались расчетние и экспериментальные значения коэўфициентов реактивности расссивающих материалов (графита, полиэтилена, дейтерированного полиэтилена), нормированных на коэўфициент реактивности карбида обогащенного бора. Расхождения результатов расчета и эксперимента в основном обусловлены неточностых описания резонансной блокировки сечений кадмия, а именно недооценкой эффекта блокировки в библиотеках констант ЕНАБ-78 и КЕДАК-3.

Из-за присутствия кадмия в системе SEG-IV проверка точности констант кадмия в экспериментах на этой сборке усложнена необходимостью учета резонансной блокировки кадмия как компонента среды. Поэтому было принято решение ныполнить такие эксперименты на сборке КБР-9 (ФЭИ, СССР), в активной зоне которой нет кадмия, а спектр нейтронов не сильно отличается от спектра системы SEG-IV. Кроме измерений с использованием кадмия и обогащенного бора (нормировочный элемент) для проверки правильности методики учета эффектов размера экспериментального образца измеряли коэффициенты реактивности тантала.

Описание эксперимента. Критическая сборка КБР-9, на которой выполнены эксперименты, по своей конструкции и составу аналогична сборке КБР-3-3 [7], т.е. состоит из центральной вставки, содержащей ²³⁵U и нержавеющую сталь и окруженной драйвером из обогащенного урана. В отличие от сборки КБР-3-3 все зоны сборки КБР-9 имеют не сферическую, а цилиндрическую форму.

Основными измеряемыми величинами являлись коэфициенти реактивности различных материалов, образцы которых с помощью реакторного осциллятора периодически вводили в центр сборки и извлекали из него. Методика измерений и описание экспериментальных устройств даны в работах (8-10). Использование образцов различных размеров позволило определить зависимость удельной реактивности для каждого материала от величины средней хорды образца, т.е. величину $\rho/m(\tilde{\ell})$, где ρ – измеренная реактивность данного образца; m – масса образца; $\tilde{\ell} = 4V/S$ – средняя хорда.

Эффект самоэкранировки приводит к тому, что величина ρ/m не является постоянной; задача заключается в нахождении фактора $\alpha(\bar{\ell})$, правильно учитывающего самоэкранировку. Методы определения этого фактора подробно описаны в работе /II/. Для кадмия и тантала расчеты проводились с

привлечением f-факторов в использованных библиотеках констант. В случае обогащенного карбида бора применялся метод вероятностей поглощения нейтронов в образце.

На рис.І.показаны экспериментальные значения удельных реактивностей для трех образцов из обогащенного карбида бора (81% ^{IO}B). Значения реактивностей, исправленные на эффект самоэкранировки с помощью расчетных коэффициентов, изображены на рисунке крестиками. Эти значения уже не зависят от массы образца, что позволяет достаточно надежно получить значение реактивности данного материала при $m \rightarrow 0$.

Расчетная зависимость фактора самоэкранировки $\alpha(\bar{\ell})$ для кадмия, тантала и карбида бора в сборке КЕР-9 приведена на рис.2. Для кадмия эти криные рассчитывались по днум системам констант, и различие в их относительном ходе согласуется с весьма заметным различием в f-факторах библиотек НАБ-78 и КЕДАК-3, которые вместе с групповыми сечениями захвата кадмия приведены в табл.1.

Рис.І. Удельная реактивность трех образцов обогащенного карбида бора в зависимости от величины средней хорды образца (сборка КБР=9)

Таблица I

Номер		EHAE-78	B	KBDAK-3			
ци г.руп	б _с	$f_c(\vec{o}_0 = 0)$	$f_{c}(\vec{0}_{0} = 10)$	ର୍ତ୍ଦ	$f_c(\vec{o}_0 = 0)$	$f_{c}(\tilde{o}_{0} = 10)$	
I	0,0016	-	_	0,007	-	-	
2	0,0027	·	-	0,009			
3	0,0048	-	-	0,0I5	-	-	
4	0,0086		-	0,029	-	-	
5	0,0177	-	-	0,055	-	-	
6	0,036I	-	-	0,089	-	-	
7	0,0722		-	0,106	-	-	
8	0,1240	-	_	0,I3I	-	-	
9	0,1987		-	0,189	-	-	
IO	0,346		-	0,3I9	-	-	
11	0,5850	-	-	0,602	-	-	
12	0,9110	-	-	I,028	-		
13	I,328	-	-	I,402	-	-	
I4	I,979	-	-	I,53I	0 ,8 9	0,89	
15	2,392	-	-	2,035	0,44	0,49	
16	4,535	0,746	0,883	4,562	0,22	0,29	
17	2,799	I,0	I,0	7,0IO	0,20	0,25	
I8	IO,33	0,225	0,327	II,847	0,21	0,25	
I9	4,372	0,335	0,454	5,526	0,20	0,27	
20	0,839	0,882	0,951	0,32I	0,52	0,69	

Сечения радиационного захвата и f-факторы для кадмия в системах БНАБ-78 и КЕДАК-3

Номер груп- пы		EHAB-78	}		KEDAK-3				
	ଡ _c	$f_c(\tilde{o}_0=0)$	$f_{\rm C}({\mathcal O}_0=10)$	୍ର	$f_c(\mathcal{O}_0=0)$	$f_c(\mathcal{O}_0 = 10)$			
21	I,042	_	-	0,123	0,99	I.0			
22	2,II9	-	-	0,810	0,96	0,98			
23	7,646	-	-	6,406	0,84	0,90			
24	58,0	-	-	65,206	0,66	0,70			
25	I4I 0	-	_ ·	I392	0,42	0,43			
26	2964	-	-	2512	0,93	0,94			
23 24 25 26	2,119 7,646 58,0 1410 2964	-	-	6,406 65,206 1392 2512	0,96 0,84 0,66 0,42 0,93	0,98 0,90 0,70 0,43 0,94			

Окончание табл. І

В эксперименте измерялись коэффициенты реактивности четырех образцов кадмия массой от 2,5 до 25 г. Чистота образцов по кадмию составляла 0,999, остальные 0,1% приходились в основном на олово и свинец.

<u>Сравнение результатов эксперимента и расчета</u>. Эффект реактивности кадмия, тантала и карбида бора рассчитивали по теории возмущений первого порядка /9/, что вполне оправдано для небольших образцов материалов, не содержащихся в составе активной зоны критической сборки. Коэффициенты реактивности кадмия и тантала как в расчете, так и в эксперименте нормировались на коэффициент реактивности карбида бора. Как уже упоминалось, тантал использовался для проверки правильности метода учета размеров образца. Отношение расчетных и экспериментальных значений относительных коэффициентов реактивности тантала (С/К) оказалось весьма близким к единице и для разных расчетов функции ценности и потока нейтронов в центре сборки КЕР-9, выполненных в ФЗИ и ЦИНИ, совпадало в пределах 3-6%.

На рис.З показана экспериментальная зависимость коэффициента реактивности кадмия от длины хорды в образце совместно с расчетными кривнии. Стрелками изображены рассчитанные по днум версиям констант (БНАБ-78 и кЕDAK-3) соответствующие значения при $m \rightarrow 0$. Видно, что эти величины не противоречат тенденции экспериментальной кривой, но относительный ход расчетной и экспериментальной зависимости $\rho/m(\bar{\ell})$ существенно различается, подчеркивая недооценку эффекта резонансной блокировки в использованных библиотеках констант, особенно в БНАБ-78. Как можно видеть из табл.2, отношение С/Е существенно отличается от единицы и увеличивается с размером образца.

Таблица 2 Отношение центральных коэфинияентов реактивности кадмия (С/В) в зависимости от размеров образцов

	ō	C/1	5
116,1	СМ	EHAE-78	KEDAK-3
25,67	0,740	I,66	I,39
IO,26	0,350	I,56	I,34
5 , I3	0,180	I,4I	I,27
2,56	0,097	I,28	I,I9

Расхождение при m - O коэфициентов реактивности кадмия, рассчитанных по HAE-78 и КЕDAK-3, примерно на 9% отражает некоторое различие групповых сечений захвата кадмия в этих библиотеках констант. Кроме того, в системе КЕDAK-3 факторы блокировки отличны от единицы в большем диапазоне энергий, чем в системе ЕНАЕ-78, и заметно меньше по величине (см. табл. I).

Более сильная блокировка сечений заквата в системе КЕДАК-3 приводит к большей зависимости удельной реактивности кадмия от размеров образца, но даже и она недостаточна для правильного описания реального эффекта (см. рис. 3).

Из изложенного можно сделать вывод, что обнаруженное в интегральном эксперименте на крити – ческой соорке КБР-9 расхождение расчетной и экспериментальной форм зависимости удельной реактивности кадмия от размеров использованных образцов объясняется недооценкой эффекта резонансной блокировки сечений захвата кадмия в рассмотренных системах ядерных констант (EHAE-78, KEDAK-3). Это подтверждает выводы по результатам эксперимента на сборке SEG-IV. Поэтому представляется целесообразным провести дополнительную корректировку сечений этого элемента, особенно факторов блокировки, основываясь на информации, получаемой в результате дифференциальных измерений.

Список литературы

- I. Fährmann K., Lehmann E. Kernenergie, 1981, Bd 24, S.431.
- Бёмер Б., Ферманн К., Леманн Е. Измерение и оценка нейтронных констант (Доклад на совещании специалистов СЭВ). Варна, 1981.
- 3. Bachmann H. KFK-1080, 1969.
- 4. Абагян Л., Базазянц Н., Николаев М., Цибуля А. Групповые константы для расчета реакторов и защиты. М.: Энергоиздат, 1981.
- 5. Goel B., Krieg B. KFK-2386/1, 1979.
- 6. Vertes P. KFKI-1981-34, 1981.
- 7. Голубев В., Исачин С., Казанский Ю. и др. Вопросы атомной науки и техники. Сер. Ядерные константы, 1978, вып.1(28), с.41.
- 8. Fährmann K., Hüttel G., Liewers P. Kernenergie, 1970, Bd 13, S.11.
- 9. Fährmann K. Ibid., S.681.
- IO. Fährmann K., Hüttel G.ZFK-RPP-10/71, 1971.
- II. Dietze K., Fährmann K. 2FK-RPP-20/79, 1979.

Статья поступила в редакцию І декабря 1983 г.

УДК 539.170:681.3.06

ПОСТАНОВКА НА ЭВМ ЕС-IO33 КОМПЛЕКСА ПРОГРАММ ДЛЯ РАБОТЫ С БИБЛИОТЕКАМИ ОЦЕНЕННЫХ НЕИТРОННЫХ ДАННЫХ В ФОРМАТЕ ЕМДР/В

А.И.Блохин, Н.Н.Булеева, В.Е.Колесов, А.С.Кривцов, В.Н.Манохин. О.А.Пахомова

> ADOPTING ON THE ES-1033 COMPUTER THE SERVICE PROGRAMMS FOR OPERATION WITH THE ENDF/B FORMAT EVALUATED DATA LIBRARIES. In the article the main possibilities of service programms for evaluated neutron data in ENDF/B format, adopting in CJD on ES-1033 computer are described.

В настоящее время для записи оцененных нейтронных данных широко применяется формат ENDF/B /1/. В США для работы с данными в этом формате разработана система обслуживающих программ /2,3/. Наличие в Центре ядерных данных (г.Обнинск) большого числа оцененных данных в формате

пальчие в центре ядерных данных (г.оонинск) обльшого числа оцененных данных в форматс вмоб/в (библиотеки ENDF/B-IV, ENDL-78, JENDL-1, INDL/A, IRDF-82, ряд файлов из ENDF/B-V и др.), а также использование этого формата для записи разрабатываемых в институтах СССР файлов оцененных данных привело к необходимости постановки сервисных программ ENDF/B. В связи с этим в Центре ядерных данных на базе ЭНМ ЕС-IO33 были поставлены наиболее широко используемые сервисные программы, позволяющие проводить проверку, корректировку, выборку и т.п. данных из различных библиотек в формате ENDF/B. В данной работе приводится перечень таких программ с кратким описанием выполняемых функций. По своему назначению программы можно разделить на следующие группы:

Программа	Выполняемые функции
CHECKER-5, FIZCON, PSYCHE	Проверка данных на соответствие фор- мату ЕNDF/В и физическую согласованность
TCTION, CRECT	Корректировка данных

MERGER, PRINF, PRINTE SUMRIZ, PRINF, CATALOG (LINEAR+RECENT) RESEND

INTER, SIGMA-1. GROUPIE

Выборка данных Каталог данных Преобразование данных в области разрешенных резонансов Внчисление средних значений

СНЕСКЕК-5 - программа проверки соответствия представления данных общей структуре формата ENDF/B-5.Программа анализирует изотоп с заданными значениями МАТ и выдает сообщение о несоответствии записей (МАТ, MF, МТ) формату ENDF/B-5. Общая структура и описание программы приведены в работе [4].

FIZCON - программа проверки на физическую внутренных согласованность данных о парциальных

сечениях. Эта программа анализирует согласованность следующих величин: $\vec{\sigma}_t = \vec{\sigma}_{el} + \vec{\sigma}_{non}; \quad \vec{\sigma}_{non} = \vec{\sigma}_{in} + \vec{\sigma}_{n,2n} + \vec{\sigma}_{n,3n} + \vec{\sigma}_{n,p} + \vec{\sigma}_{n,\alpha} + \cdots; \quad \vec{\sigma}_{in} = \sum_{k=1}^{N} \vec{\sigma}_{in}^{(k)} + \vec{\sigma}_{in}^{comp}; \quad \vec{\sigma}_f = \vec{\sigma}_{n,f} + \vec{\sigma}_{n,nf} + \cdots$ и т.д. согласно описанию [4]. В результате работы программы выдаются сообщения о выполнении указанных условий.

РУСНЕ - программа проверки соответствия представления резонансных областей данного элемента требованиям формата ENDF/B-5, а также значения энергий Q_{пор} для пороговых реакций. Вычисляет резонансные интегралы [4].

DICTION - программа, основная цель которой проанализировать элемент с заданными значениями МАТ и создать в секции с MF=I и MT=451 каталог оцененных данных [5].

СRECT - программа корректировки данных - позволяет исключать, дополнять или вводить новые данные по заданным значениям (МАТ, MF, МТ), упорядочивать их и т.д. Общее описание программы приведено в работе /47.

MERGER - программа, с помощью которой из различных библиотек, представленных в формате ENDF/B, можно образовать новый набор данных, упорядоченный по значениям MAT (или ZA) /3/. Программа позволяет создавать новые версии наборов оцененных элементов из различных библиотек.

PRINF, PRINTE - программы, предназначенные для выборки данных из определенной биолиотеки по заданным значениям (МАТ, МF, МТ).

SUMRIZ - программа, анализирующая элементы с заданными значениями МАТ и составляющая справку о содержащихся для данного МАТ оцененных данных [2].

PRINF - программа, выдакщая на внешний носитель (МЛ, АЦПУ, МД) полное содержание элемента с данными (MAT, MF, MT) и предназначенная для работы с файлом данных по различным сечениям MF =3. Программа извлекает из ыт-з значения сечений с определенным МТ для заданного энергетического интервала от Енач до Екон.

САТАLOG - программа, составляющая справку с ленти с оцененными данными. Для каждого элемента с заданным значением МАТ в компактном виде выдается список МТ по всем классам (МГ) данных с указанием длины (в записях) каздого МТ. Такой каталог является удобным справочником для работы с файлами оцененных данных.

LINEAR - программа, преобразущая таблици данных по сечениям из MF=3 в форму, которая удовлетворяет линейному закону интерполяции по шкале энергий и сечению /6/. Имеет на виходе данные в формате ENDF/B. Точность формирования новых таблиц задается пользователем и обычно равна 0,1%. Программа используется при работе программ RECENT и GROUPIE .

RECENT - программа для реконструкции энергетической зависимости сечений посредством комбинации резонансных параметров (МГ-2, МТ-151) и табулированных сечений из файла МГ-3 /7/. В результате работы этой программы создается новый набор данных с заданным значением МАТ, в котором сечения представлены в "поточечном" представлении. Этот новый набор данных включает в себя также исходные данные по резонансным параметрам, которые могут быть использованы при последующих вычислениях доплеровского уширения и эффектов самоэкранировки.

RESEND - программа, аналогичная по своему назначению программам LINEAR и RECENT [8].

INTER - программа для вычисления значений сечения в тепловой точке, резонансных интегралов и в-факторов, а также сечений, усредненных по спектру Максвелла [2]. Набор данных должен быть предварительно обработан программой RESEND.

SIGMA-1 - программа для учета влияния эффектов доплеровского уширения резонансов /9/. Предварительно данные должны быть обработаны программами LINEAR и RECENT.

GROUPIE - программа для вычислений козффициентов блокировки и **F**-факторов сечений \mathcal{G}_t , \mathcal{G}_{el} , $\mathcal{G}_{n,n}$, \mathcal{G}_{f} (согласно методу И.И.Бондаренко) и групповых (неблокированных) сечений, усредненных по заданному нейтронному спектру. Число групп и энергетическая зависимость нейтронного спектра в общем случае могут быть заданы извне. Полное описание программы приведено в работе /10/.

Рассмотренные программы позволяют проводить операции при работе с оцененными данными в формате ENDF/B. Они могут служить основой как при формировании новых файлов оцененных данных, так и в различного рода приложениях.

Список литературы

- I. Data formats and procedures for the evaluated nuclear data file, ENDF: ENL-NCS-50496 (ENDF 102), October, 1979.
- 2. ENDF/B-5 processing programs. Editor N.Day Day: IAEA-NDS-29. Rev., 0, 1980.
- 3. Cullen D.E. Summary of ENDF/B pre-processing codes: IAEA-NDS-39. Rev., 0, 1981.
- 4. Description of the ENDF/B processing codes CHECKER, CRECT, DAMMET, PLOTFB and Retrieval Subroutimes: ENL-13582 (ENDF-110), 1967.
- 5. Cullen D.E. Program DICTION in Description of the ENDF/B Processing Codes and Retrieval Subroutines: BNL-50300 (ENDF-110), 1971.
- 6. Cullen D.E. Program LINEAR (Version 79-1): Linearize Data in the evaluated nuclear data file/ Version B (ENDF/B) format. Livermore, LLL: UCRL-50400, 1979, v.17, part A.
- Cullen D.E. Program RECENT (Version 79 1): reconstruction of energy dependent neutron cross-sections from resonance parametes in ENDF/B format.Livermore, LLL: UCRL-50400. 1979, v.17,part C.
- 8. Czer O. RESEND: A program to preprocess ENDF/B materials with resonance files into a pointwise form: ENL-17134, 1973.
- 9. Cullen D.E. Program SIGMA-1 (version 79-1): Doppler broaden evaluated cross-sections in the evaluated nuclear data file/vetsion B (ENDF/B) format. Livermore: UCRL-50400, 1979, v.17, part B.
- IU. Cullen D.E. Program GROUPIE (version 79-1): Calculate Bonrarenko self shielded cross-sections and multiband parameters from evaluated data in the evaluated nuclear data file/version B (ENDF/B) format. Livermore: UCRL-50400, 1979, v.17, part D.

Статья поступила в редакцию 18 июня 1983 г.

ЯДЕРНО-РЕАКТОРНЫЕ ДАННЫЕ

УДК 621.039.514

АНАЛИЗ ПОГРЕШНОСТЕЛ РЕАКТИВНОСТИ ПО МЕТОДУ ОБРАЩЕННОГО РЕЛЕНИЯ УРАВНЕНИЯ КИНЕТИКИ, ОБУСЛОВЛЕННЫХ ПОГРЕШНОСТЯМИ ПАРАМЕТРОВ ЗАПАЗДЫВАЮЩИХ НЕЙТРОНОВ

А.И.Воропаев, И.П.Матвеенко, В.И.Шикина, А.Г.Шокодько

ANALYSIS OF ERRORS IN REACTIVITY CARRIED OUT BY THE KI-NETICS EQUATION INVERSED SOLUTION METHOD DUE TO DELAYED NEUTRON PARAMETER UNCERTAINTIES. The reactivity errors have been determined in a numerical experiment with consideration for the delayed neutron parameter correlations for the 2350 nuclide for reactivity measurements by the kinetics equation inversed solution method. The kinetics model is a point one and the reactivity perturbation is a promt one.

Метод измерения реактивности ядерного реактора на основе обращенного решения уравнения кинетики (ОРУК) получает с 1953 г. все более широкое распространение. Вначале этот метод развивался по линии создания более совершенных аналоговых реактиметров /1/. Однако в последние годы он развивается в основном в направлении создания нифровых реактиметров /1,2/, имехщих значительные преимущества по сравнению с аналоговыми и осуществляющих вычисление реактивности по экспериментальным данным с помощью средств нифровой вычислительной техники. Это объясняется универсальностью и большой гискостью цифровых реактиметров, разработкой простых, но достаточно точных алгоритмов вычисления реактивности и, что особенно важно, бурным развитием доступных малых ЭЕМ и микропроцессоров, способных осуществлять обращенное решение уравнения кинетики.

Следует отметить, что определение реактивности методом ОРУК зависит от параметров α_i и λ_i (доля и постоянная распада предшественников запаздывающих нейтронов *i-й* группы) с их погрешностями $\Delta \alpha_i$ и $\Delta \lambda_i$. Естественно, что погрешности измеряемой реактивности частично будут определяться погрешностями $\Delta \alpha_i$ и $\Delta \lambda_i$. Задачи определения погрешностей реактивности методом ОРУК непросты (особенно с учетом корреляций в погрешностях $\Delta \alpha_i$, $\Delta \lambda_i$), но представляют несомненный практический интерес. В литературе имеются лишь отрывочные сведения по этому вопросу /3/.

Цель настоящей работы – анализ погрешностей реактивности, обусловленных погрешностями параметров запаздывающих нейтронов, с учетом их корреляций, разных версий этих параметров [4-6]. Анализ проведен методом численного эксперимента в точечной модели кинетики для случая мгновенного перевода реактора с критического состояния в подкритическое. Погрешности проанализированы для трех реактивностных функционалов, часто встречающихся в практике реакторного эксперимента: самой реактивности, разности реактивностей и отношения реактивностей.

Оценка матрины ошибок относительных выходов и постоянных распада заназдивающих нейтронов на основе численного моделирования эксперимента. Методика измерений параметров запаздывающих нейтронов обычно сводится к облучению образцов делящегося материала в реакторе или на нейтронном пучке ускорителя и к последующей регистрации спада нейтронной активности образца высокоэффективным детектором. Искомые параметры определяются путем представления кривой нейтронной активности суммой шести экспонент (методом наименьших кведратов) /4/.

При численном моделировании эксперимента по сравнению с реальным экспериментом принимались упрощающие предположения. Предполагалось, что детектор, регистрирующий запаздывающие нейтроны, является всеволновым, фон отсутствует и в образце нет посторонних примесей. Если принять, что интервал времени, за который снимается отсчет, мал, то временная зависимость нормированной на начальный момент времени скорости спада нейтронной активности (при облучении образца "мтновенной" нейтронной вспышкой) выражается через параметры запаздывающих нейтронов при условии

 $\sum_{i=1}^{5} a_i = 1$ следующим образом:

$$N(t) = \sum_{i=1}^{6} a_i \exp(-\lambda_i t).$$
 (I)

Для расчета были приняты параметры запаздывающих нейтронов, рекомендованные в работе [4] для ²³⁵0 при делении быстрыми нейтронами. В соответствии с процедурой эксперимента для различных временных диапазонов были выбраны [4] свои шаги регистрации нейтронной активности (табл.1).

Шаги регистрации для различных временных диапазонов

Таблица I

Диапазон времени, с	Шаг регистрации, с	Число точек	Диапазон времени, с	Шаг регистрации, с	Число точек
0,I-I	0,I	IO	50-100	10	5
I-I5	I	I4	100-200	20	5
I5-50	5	7	200-400	40	5

Таким образом, в численном эксперименте временная зависимость (1) была представлена 46 точками. Для упрощения последующих вычислений предполагалось, что при указанном выборе временных интервалов в первом приближении измерения можно считать равноточными. Зная вид зависимости спада нейтронной активности и временные интервалы отсчетов, можно получить оценку корреляционной матрицы параметров запаздывающих нейтронов в методе наименьших квадратов $\sqrt[77]{}$. Процедура расчета сворится к вычислению матрицы $G = (A^T A)^{-1}$ с последующим переходом от ковариаций (соv) к корреляциями (R) по формулам

$$co\sigma_{ij} = R_{ij}G_{i}G_{j}; \quad R_{ij} = R_{ji}; \quad D_{ii} = G_{i}^{2},$$
 (2)

где D_{ii} , Cov_{ij} – диагональные и внедиагональные элементы матрицы G. Элементы α_{ij} матрицы A (коэффициенты чувствительности) вычисляются в линейном приближении:

$$\alpha_{ij} = \frac{\frac{\partial N(t_j)}{\partial x_i}}{\frac{N(t_j)}{x_i}}$$

где $x_i = a_1, a_2, a_3, a_4, a_5, a_6, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6$. Результать оценки корреляционной матрицы параметров запаздывающих нейтронов представлены в табл.2, из которой следует, что между соседними величинами выходов и постоянных распада запаздывающих нейтронов имеется сильная корреляционная связь ($\mathbb{R}\approx 1,0$). Корреляции между парами a_1 и λ_1 относительно невелики ($\mathbb{R}\approx 0,1$).

Таблица 2

Пара- ме- тры	a ₁	a2	a ₃	a ₄	a ₅	a ₆	λ,	λ2	λ3	λ ₄	λ ₅	λ ₆
$a_1 a_2 a_3 a_4 a_5 a_6 \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \lambda_6$	I,000	0,993 I,000	0,994 0,999 I,000	0,993 0,999 0,999 I,000	0,993 0,999 0,999 0,999 I,000	0,980 0,988 0,986 0,989 0,986 I,000	0,106 -0,003 0,005 -0,007 0,000 -0,022 I,000	0,104 0,000 0,011 -0,010 0,000 -0,033 0,927 0,999	0,078 0,005 0,022 -0,012 0,000 -0,059 0,653 0,842 0,999	0,054 0,005 0,026 -0,011 0,002 -0,090 0,442 0,616 0,905 0,999	0,027 0,003 0,019 -0,006 0,012 -0,140 0,218 0,318 0,548 0,771 1,000	0,017 0,002 0,013 -0,003 0,016 -0,144 0,138 0,204 0,366 0,558 0,921 1,000

Корреляционная матрица параметров запаздывающих нейтронов

Примечание. Пихняя часть таблицы не заполнена ввиду симметрии матрицы.

Влияние погрешностей параметров запаздывающих нейтронов на относительную погрещность реак-

<u>тивности</u>. Рассмотрена ситуация, когда в исходном состоянии реактор был критичен (без внешнего источника), а изменение реактивности произошло мгновенно в момент времени t = 0. Оценка погрешности проведена в предположении, что величина реактивности ρ связана со скоростью счета детектора $\varphi(t)$ соотношением, основанным на уравнении точечной кинетики реактора [8,9]:

$$\mathcal{P} = i \left\{ \sum_{i=1}^{6} a_{i} \lambda_{i} \int_{0}^{t} \varphi(t') \exp\left[-\lambda_{i}(t-t')\right] at' + \varphi_{0} \sum_{i=1}^{6} a_{i} \exp\left(-\lambda_{i} t\right) \right\} / \left[\varphi(t)\right],$$

где *β* - реактивность в единицах _{β эφ}; φ_0 - скорость счета нейтронного детектора в исходном критическом состоянии реактора.

, понерсил реактивности определялась по формуле $D[\rho(\vec{x})] = p^T D(x)p$, где p- матрица коэффициентов чувствительности реактивности к параметрам запаздывающих нейтронов, элементы которой определялись как величины относительного изменения реактивности на единицу относительного изменения параметра в зависимости от времени $p_p = (d\rho/d\rho)(\rho/\rho); D(x)$ - ковариационная матрица ошисок параметров запаздывающих нейтронов; ρ - параметр.

В расчетах использовали четыре варианта матрицы ошибок:

<u>Вариант I</u>. Приняты погрешности параметров запаздывающих нейтронов, рекомендованные в работе [4]. Используя полученную корреляционную матрицу (см.табл.2), по формулам (2) можно рассчитать соответствующую ковариационную матрицу.

<u>Вариант 2</u> отличался от первого тем, что все ковариации были приняты равными нулю.

<u>Вариант 3</u>. Приняти погрешности нараметров запаздывающих нейтронов, рекомендованные в расоте /5/. Соответствующая матрица ошисок онла получена (так же, как в первом варианте) с использованием оцененной в настоящей расоте корреляционной матрицы.

<u>Вариант 4</u> отличался от третьего тем, что ковариации принимали равными нуло. Результаты представлены на рис.1. Полученные расчеты показали, что погрешности реактивности после ее возмущения нарастают во времени, начиная с нуля, с тенденцией к конечному асимптотическому значению; с ростом реактивности увеличиваются и ее погрешности. Пренебрежение корреляциями параметров заназдывающих нейтронов приводит к увеличению погрешности реактивности на IO-30%. Как и следовало окидать, относительный характер изменения погрешности реактивности от времени при учете корреляций практически одинаков для днух рассмотренных наборов параметров запаздывающих нейтронов. Погрешность реактивности, определенная по данным работи /5/, примерно в I,5 раза больше, чем определенная по данным работи /4/. Оценка относительной погрешности реактивности б ρ , найденной по данным работы /6/, показала (рис.2), что характер зависимости величини δ_ρ в этом случае отличается от характера зависимости δ_ρ , определенная по данным работи /6/, больше, чем δ_ρ , рассчитанная по данным работ /4,5/. Это обусловлено тем, что в начальный момент времени основной вклад вносят погрешности параметров a_i и λ_i для короткохинущих групп. Такие погрешности по данным работы /6/ значительно больше, чем по данным работи /5/. С увеличением времени возрастает

вклад погрешностей параметра λ_i для долгоживущих групп, которые по данным работы /6/ значительно меньше по сравнению с данными работ /4,5/, чем и объясняется более пологий ход зависимости $\delta \rho = f(t)$ в первом случае.

Рис. I. Зависимость относительной погрешности реактивности $\delta \rho$ от времени t для: a – $\rho = +0,2$ (дисперсии по данным работи (4/); б – $\rho = -1$ (дисперсии по данным работи (4/); в – $\rho = -1$ (дисперсии по данным работи (5/). Кривая 1 – без учета корреляций; 2 – с учетом корреляций

Рис.2. Зависимость $\delta \rho = f(t)$ для разных версий пераметров запазднвающих нейтронов при $\rho = -0.1$. Данные расот: 1 – for f(t) = -0.5; 3 – far f(t)

Погрешность разности измеренных реактивностей. Необходимость определения погрешности разности двух значений реактивности возникает, в частности, в связи с тем, что эффективности органов СУЗ и различных физических образцов находятся как разность двух значений реактивности: для реактора с выведенным и введенным в него органом СУЗ (или физическим образцом). Зная коэффициенти чувствительности отдельных реактивностей (см. предыдущий раздел), можно найти коэффициенты чувствительности разности реактивностей следующим образом:

2

t. MUH

$$\eta_p^{M} = \frac{\mathcal{P}_1 \mathcal{T}_p(\mathcal{P}_1) - \mathcal{P}_2 \mathcal{T}_p(\mathcal{P}_2)}{\mathcal{P}_1 - \mathcal{P}_2} ,$$

где η_ρ(β) – коэффициент чувствительности данной реактивности β. Используя полученные коэффициенты чувствительности разности реактивностей и ковариационную матрицу параметров запаздывающих нейтронов, можно определить погрешность разности реактивностей для двух случаев, когда:

- параметры запаздывающих нейтронов закоррелированы (cov#0);

- корреляция параметров отсутствует (соч=0).

Результаты расчетов показали, что во втором случае погрешность разности двух реактивностей примерно в 1,5 раза больше, чем в первом, когда корреляция параметров учитывалась (табл.3).

Таблица 3

Относительная погрешность разности двух реактивностей для 1. =180 с, %

	Кова-		\mathcal{P}_2										
	риация	-I0	-3,0	-I,O	-0,3	+0,I	+0,2						
P_=	Cov≖0	7,45	7,07	6,16	4,55	2,45	I,99						
=-0,I	Cov≠O	5 , I2	4,90	4,35	3,33	I,95	I,64						

При большом различии реактивностей погрешность их разности определяется практически погрешностью большей (по абсолютной величине) из реактивностей. При этом с ростом одной из них погрешность разности возрастает. Когда две реактивности солыжаются по значению, абсолютная погрешность разности реактивностей стремится к нулю. Это следует как из общефизических соображений, так и из численных расчетов. Общефизические соображения сводятся к тому, что рассматриваемые погрешности носят не статистический характер, а систематический. Поэтому отклонения в двух реактивностях за счет погрешностей параметров α_i и λ_i будут одного знака. Они будут сходиться при солижении реактивностей и в пределе вычтутся друг из друга. Как видно, для относительной погрешности в данном случае получается неопределенность типа нуль/нуль, которая раскрывается в предположении неизменности коэффициента $\gamma_{\rho}(\rho)$ при изменении реактивности. В этом случае $\gamma_{\rho}^{M} = \gamma_{\rho}(\rho_{2}) = -\gamma_{\rho}(\rho_{2})$ и относительная погрешность разности двух солижающихся реактивностей стремится к относительной погрешности одной из этих реактивностей. Численные расчеты показали, что погрешность такого приближения для реактивностей -0,10 и -0,11 составляет около 20%, а для реактивностей -10,0 и -10,1 около 3,2% (для t = 180 с).

Погрешность отношения реактивностей. Оценка влияния погрешностей параметров запаздывающих нейтронов на погрешность отношения реактивностей проведена путем численного эксперимента. С этой целью были использованы коэффициенты чувствительности отдельных реактивностей, полученные ранее. Коэффициенты чувствительности отношения реактивностей определены как величины относительного изменения отношения реактивностей на единицу относительного изменения параметра: $\eta_s = (\rho/S)(dS/d\rho)$, где $S = \rho_1/\rho_2$.

Формула, выражающая коэффициенты чувствительности отношения реактивностей через коэффициенты чувствительности отдельных реактивностей, имеет вид $\mathcal{D}_{S} = \mathcal{D}_{\rho_{1}} - \mathcal{D}_{\rho_{2}}$, где $\mathcal{D}_{\rho_{1}} - \mathbf{x}$ оэффициент чувствительности переой реактивности к изменению параметра; $\mathcal{D}_{\rho_{2}}$ - коэффициент чувствительности второй реактивности к изменению параметра.

Результати расчетов для различных отношений реактивностей и различных моментов времени приведены на рис.3. Расчеты показали, что с увеличением времени потрешность возрастает и при одинаковой величине отношений погрешность тем больше, чем больше по абсолютной величине значения реактивностей β_1 и β_2 . Для одного момента времени, но различных величин отношений реактивностей погрешность резко уменьшается с приближением отношения S к единице. Для S=1 она равна нулю, а затем возрастает и тем круче, чем больше по абсолютной величине β_2 . Неучет корреляции параметров запаздывающих нейтронов приводит к увеличению погрешности отношения реактивностей примерно на 25%.

Puc.3. Зависимость погрешности отношения реактивностей δS от времени t (a) и величины этого отношения S для момента времени 30 с (d): I и 3 - $\rho_1 = -0.2$; $\rho_2 = -1.0$; 2 и 4 - $\rho_1 = -0.5$; $\rho_2 = -0.1$ (I и 2 без учета корреляции; 3 и 4 - с учетом корреляций); ---- $\rho_2 = -0.2$;

Из изложенного можно сделать следующие выводы:

I. В численном эксперименте для измерения реактивности методом ОРУК определена корреляционная матрица выходов и постоянных распада предшественников запаздывающих нейтронов для двух версий их номинальных значений (см.работы (4,5/).

2. Для метода ОРУК в точечной модели кинетики для простейшего случая изменения реактивности (мгновенного ее изменения с нуля до конечной отрицательной величины) определены погрешности в реактивности, обусловленные погрешностями параметров запаздывающих нейтронов, с учетом корреляций между ними (топливо²³⁵и).

3. Величина относительной погрешности реактивности растет со временем и с абсолютной величиной реактивности. В диапазоне времени 30-60 с она составляет 2,5-5% для разных версий параметров запаздывающих нейтронов при $|\rho| \leq 5 \beta_{3\phi}$, а в диапазоне 100-300 с наблюдается ее рост примерно до 10%. Во времени погрешность должна асимптотически стремиться к постоянной величине.

4. Корреляционные связи между параметрами запаздывающих нейтронов уменьшают погрешности реактивности по методу ОРУК на IO-30% в широкой области значений реактивности и времени после ее возмущения.

5. Следует иметь в виду, что стремление в методе ОРУК к большим временам после возмущения реактивности для подавления пространственных эффектов приводит к повышенным погрешностям реактивности за счет погрешностей параметров запаздывающих нейтронов.

6. При большом различии в значениях днух реактивностей погрешность их разности и отношения определяется практически погрешностью, большей из них по абсолютному значению. Если две реактивности сближаются, то погрешность их отношения стремится к нулю (абсолютная и относительная). При разности этих реактивностей абсолютная погрешность стремится к нулю, а относительная погрешность оказалась близка к погрешности одной из реактивностей.

Список литературы

- I. Литицкий В.А., Бондаренко В.В., Куприянова И.А. Методы и средства измерения реактивности размножающих сред. Ч.Ш. Инверсно-кинетические методы. Обнинск: ФЭИ, 1982.
- 2. Сарылов В.Н., Воскресенский Ф.Ф., Горбунов А.Н. Цифровые реактиметры. Атомная техника з рубежом, 1979, № II, с.19-24.
- 3. Dow B.L., Pettus W.G., Wilson T.L. Measurement Uncertainty in Core Physics Parameters. Trans. Amer. Nucl. Soc., 1977, v.27, N 2, p.895-896.
- 4. Кипин Дж.Р. Физические основы кинетики ядерных реакторов. М.: Атомиздат, 1976.

- 5. Tuttle R.J. Delayed-Neutron Data for Reactor-Physics Analysis. Nucl.Sci. and Engng, 1975, v.56, N 1, p.37-71.
- 6. Besant C.B., Challen P.J., M.H.McTaggart e.a. Absolute yields and group constants of delayed neutrons in the fast fission of ²³⁵U, ²³⁸U and ²³⁹Pu. - J.Brit.Nucl.Energy Soc., 1977, v.16, N 2, p.161-176.
- 7. Худсон Д. Статистика для физиков. М.: Мир, 1970.
- Monta K. Time Optimal Digital Computer Control of Nuclear Reactor. Nucl.Sci.Technol., 1967, v.5, N 2, p.51-62.
- Могильнер А.М., Фокин Г.Н., Чайка Ю.В. и др. Применение малых ЭВМ для измерения реактивности. Атомная энергия, 1974, т.36, вып.5, с.358-362.

Статья поступила в редакцию I сентября 1983 г.

УДК 539.22

PACYET AHUBOTPOTHEX TEPEXOLOB EES HOLMHOMMALLHOTO PASJOKEHUS

А.И.Базнков, В.П.Жарков, И.А.Карташев

THE CALCULATION OF ANISOTROPIC TRANSITIONS WITHOUT POLYNOMIAL RIPANSION. The evaluation of the effect of the neutron angular distribution shape and averaging spectrum on the anisotropic transition matrix element values is carried out. The direct integration method of scattering function is used.

Совершенствование численных методов решения уравнения переноса излучения в биологической защите реакторов невозможно без корректной интерпретации анизотропии рассеяния нейтронов. Вся информация об асимметрии рассеяния в уравнении Больцмана содержится в функции рассеяния, и разные способи учета анизотропии различаются между собой по форме представления угловой зависимости этой функции. Обычно функцию рассеяния представляют в виде разложения в ряд по полиномам Лежандра, тем самым значительно упрощая процесс расчета интегрального члена и уменьшая объем информации, хранимой в памяти ЭВМ.

Однако при расчете переноса быстрых нейтронов на большие расстояния от источника (типичная ситуация в задачах защиты) аппроксимация функции рассеяния рядом из нескольких членов оказывается явно недостаточной, что приводит не только к большим погрешностям в оценке углового потока, но и к физически нереальным его осщилляциям /I/. Предложенные в последние годы методы расчета анизотропных переходов без полиномиального разложения /2-7/, в которых используется непосредственно функция рассеяния, свободны от этого недостатка.

В общем виде сечение перехода и функция рассеяния для гомогенной среды записываются следуищим образом (5/:

$$\sigma_{g'+g}(\bar{\mathfrak{A}}'-\bar{\mathfrak{A}}) = \int_{E_{g+1}}^{E_g} dE \int_{g'+1}^{E_{g'}} dE' \sigma(E',\bar{\mathfrak{A}}'-E,\bar{\mathfrak{A}}) \phi(E',\bar{\mathfrak{A}}') / \int_{E_{g'+1}}^{E_{g'}} dE' \phi(E',\bar{\mathfrak{A}}'); \qquad (1)$$

$$\mathcal{O}(E', \vec{\Omega}' - E, \vec{\Omega}) = \frac{\mathcal{O}_{S}(E')}{2\pi} f_{c} \left[E', \mu_{c}(E', E) \right] \left| \frac{d\mu_{c}}{dE} \right| \delta \left[\mu_{L} - \beta(E, E') \right];$$

$$\Gamma(E, 1) \leq E' \leq \Gamma(E, -1).$$
(2)

Здесь $\mathcal{G}_{S}(E')$ - микроскопическое сечение взаимодействия нейтронов с ядрами среди; $f_{C}[E', \mu_{C}(E', E)]$ - угловое распределение рассеянных нейтронов в системе центра инерции; $\mu_{C}(E', E)$ - косинус угла рассеяния в системе центра инерции; $\phi(E', \overline{\Omega}')$ - угловой поток нейтронов;

$$\beta(E, E') = \frac{(A+1)}{2} \left(\frac{E}{E'}\right)^{\frac{1}{2}} - \frac{A-1}{2} \left(\frac{E'}{E}\right)^{\frac{1}{2}} - \frac{A}{2} \frac{Q}{(EE')^{\frac{1}{2}}};$$

$$E' = \Gamma(E, \mu_{L}) = \frac{E}{(A-1)^{2}} \left[\frac{A^{2} - 1 - A(A-1)Q/E}{(A^{2} - 1 - A(A-1)Q/E + \mu_{L}^{2})^{\frac{1}{2}} + \mu_{L}} \right]^{2},$$

где Q - энергия возбуждения отдельного уровня ядра; А - относительная атомная масса ядрамишени.

Подставляя выражения (2) в (I) и интегрируя дельта-функцию, получаем [5]

$$\mathcal{O}_{g' \rightarrow g}(\mu_{\mathrm{L}}, x, y) = \begin{cases} \frac{1}{2\pi \Delta g'} \int_{x}^{y} dEg(E, \mu_{\mathrm{L}}), & x < y; \\ 0, & x > y, \end{cases}$$
(3)

гдө

 $\Delta g' = \int_{E_{g'+1}}^{E_{g'}} dE' W(E'); \quad W(E') - \text{ весовая функция;}$

$$g(E, \mu_{L}) = \frac{(A+1)^{2} \sigma_{s}(E') f_{c}(E', \mu_{c}) W(E')}{\left[A^{2} - 1 - A(A-1)Q/E + \mu_{L}^{2}\right]^{1/2} A\left(1 + \frac{A+1}{A} \frac{Q}{E'}\right)^{1/2}};$$

 $\mu_L(\mu_C, E')$ - косинус угла рассеяния в лабораторной системе. Исходя из положения границ отдающей группы g' по отношению к энергии обратного порога ре-акции $E_{g0} = -AQ/(A-1)$, можно выделить три случая:

I.
$$E_{g'+1} > E_{g0}$$
. Torma
 $G_{g' \to g}(\mu_{L}) = G_{g' \to g}(\mu_{L}, \alpha, \beta).$

2. $E_{g'+1} \leq E_{g0} \leq E_{g'}$. Torma mpu:
a) $\mu_{L} \leq 0$ $G_{g' \to g}(\mu_{L}) = G_{g' \to g}(\mu_{L}, \alpha, \beta); E_{g'+1} \geq \Gamma_{\min}(\mu_{L});$
b) $\mu_{L} > 0$

(4)

$$\tilde{G}_{g' \to g}(\mu_{L}) = \begin{cases} \tilde{G}_{g' \to g}(\mu_{L}, E_{g+1}, \alpha) + \tilde{G}_{g' \to g}(\mu_{L}, \alpha, \delta), E_{g'+1} \ge \Gamma_{\min}(\mu_{L}); \\ \tilde{G}_{g' \to g}(\mu_{L}, E_{g+1}, \delta), & E_{g'+1} < \Gamma_{\min}(\mu_{L}). \end{cases}$$
(5)

a)
$$\mu_{L} \leq 0$$
 $\sigma_{g' \rightarrow g}(\mu_{L}) = 0$;
b) $\mu_{L} > 0$ (6)

$$\begin{split} & \mathcal{G}_{g' \to g}(\mu_{L}) = \left\{ \begin{array}{ll} \mathcal{G}_{g' \to g}(\mu_{L}, c, d) + \mathcal{G}_{g' \to g}(\mu_{L}, a, b), & E_{g' + 1} \geq \Gamma_{min}(\mu_{L}); \\ & \mathcal{G}_{g' \to g}(\mu_{L}, c, b), & E_{g' + 1} < \Gamma_{min}(\mu_{L}) < E_{g'}; \\ & 0, & E_{g'} \leq \Gamma_{min}(\mu_{L}), \end{array} \right. \end{split}$$

где $\Gamma_{\min}(\mu_{L}) = -A(A+i)Q/(A^{2}-i+\mu_{L}^{2});$

$$\begin{split} & \Gamma_{\pm}^{-}(E', \mu_{L}) = \frac{E'}{(A+1)^{2}} \left[\mu_{L} \pm \sqrt{A^{2} + A(A+1)Q/E' - 1 + \mu_{L}^{2}} \right]^{2}; \\ & a = \max \left[E_{g+1}, \Gamma_{\pm}^{-}(E_{g'+1}, \mu_{L}) \right]; \quad \mathcal{B} = \min \left[E_{g}, \Gamma_{\pm}^{-}(E_{g'}, \mu_{L}) \right]; \\ & c = \max \left[E_{g+1}, \Gamma_{\pm}^{-}(E_{g'}, \mu_{L}) \right]; \quad d = \min \left[E_{g}, \Gamma_{\pm}^{-}(E_{g'+1}, \mu_{L}) \right]. \end{split}$$

Таким образом, применение формул (3)-(6) дает возможность значительно повысить точность расчета анизотропных переходов. Отметим, что использование полученных результатов в расчетных методах (например, методах дискретных ординат) требует по сравнению с полиномиальным разложением увеличения объема памяти ЭВМ для хранения матрицы с учетом всех направлений угловой сетки. Однако с развитием возможностей вычислительной техники это не будет непреодолимой трудностью.

Для исследования описанного метода была разработана вичислительная программа (ЭВМ БЭСМ-6) и проведены сопоставления с литературными данными. При численной реализации упругое рассеяние выделено в отдельный блок, поскольку логика выбора пределов интегрирования в этом случае [4] значительно проце, чем при неупругом рассеянии на выделенном уровне [5-6].

На рис.І приведени результати сравнения рассчитанных сечений упругого перехода для воды с данными работи /2/. Результати показывают, что в случае высокой анизотропии рассеяния полиномиальное разложение даже со степенью разложения в ряд $\ell = 8$ может оказаться недостаточным (сильно искажен шик в районе $\mu_L \approx I$ и заметны отрицательные осциляции). Рис.2, а, б иллострирует сильную зависимость сечения упругого перехода для углерода и кислорода от косинуса угла рассеяния в лабораторной системе, обусловленную асимметрией углового распределения.

В табл. I и 2 приведены в качестве примера рассчитанные элементы матрип неупругих переходов на первых уровнях возбуждения нескольких ядер с учетом и без учета анизотропии рассеяния. Анализ результатов показывает, что асимметрия углового распределения приводит к увеличению (по сравнению с изотропным) вероятности перехода до 70% (см. табл. I) и, следовательно, к существенному перераспределению нейтронов по принимахщим группам. Приведенные данные имеют практическое значение, поскольку сущестнующие системы констант, как правило, получены в предположении изотропии неупругого рассеяния. Данные табл. I показывают также, что значения элементов матрицы переходов обнаруживают и заметную зависимость от формы спектра усреднения (до 40%). Но самое большое влияние на сечение перехода б_{q'-9} (μ_L) оказывает, конечно, форма углового распределения рассеянных ней-

тронов, что хорошо видно из рис.З,а,б. Более гладкое распределение, приводимое в файле ENDF/B для переходов I-7 и I-8, дает значения, отличающиеся в I,5 раза от соответстнующих значений для угловых распределений, приведенных в файле ENDL /8/.

Сравнение	алементов	матрицы	сечения	перехода	цля	неупругого	рассеяния	
на уровне	6,052 MaB	для ядра	1 ⁶ 0					

Границы груш	ы, МэВ	Данны	Данные о сечении перехода, б					
отдающей	принимающей	работы /5/#	настоящей	paootu				
			ж 2	# 3	ж 4			
	9,0484-8,1873	4,034.10-3	3,616•10-3	2,146.10-3	2,324.10-3			
	8,1873-7,4082	I,50I•I0 ⁻²	I,592•I0 ⁻²	I,053•I0 ⁻²	I,393.I0~			
14,9182-13,4986	7,4082-6,7032	1,526.10	1,623.10-2	I,480·10 ⁻²	I,8I6•I0 ⁻²			
	6,7032-6,0653	9,666.10-3	8,646•I0 ⁻³	I,3II.10 ⁻²	9,406•I0 ⁻³			
	6,0653-5,488I	4,466.10-3	3,9II•I0 ⁻³	7,277.10	4,856 IO ⁻³			
	5,4881-4,9658	5,614•10-4	5,28I·I0 ⁻⁴	I,I50•I0 ⁻³	7,794.10-3			

Данные ENDF/В нормированы на 4,9•10⁻²0; учет анизотропии рассеяния, спектр усреднения 1/Е.
 Учет анизотропии. спектр усреднения 1/Е. исколные дание ENDL. /97

^{#2} Учет анизотропии, спектр усреднения 1/Е, исходные данные ENDL /8/. ^{#3} Без учета анизотропии, спектр усреднения 1/Е, исходные данные ENDL /8/. #4 Учет анизотропии, спектр деления, исходные данные ENDL /8/.

Таблица 2

Таблица I

Сравнение элементов матрицы сечения перехода для неупругого рассеяния

Границы групп, МэВ		12 _{C,}	Q=4,4 3	²⁷ ▲1,	Q=0,843	⁵⁶ Fe,	Q=0,845
отданцей	принимающей	#	∓ 2	¥	ж 2	¥	ж 2
	I4,3-II,360	-	_	0,0023	0,0016	0,0230	0,0205
	II,360-9,020	0,005	0,002	0,0083	0,0090	0,0516	0,0541
	9,020-7,166	0,082	0,060	-	-	-	-
I4,3-II,36	7,166-5,694	0,148	0,163	-	-		-
	5,694-4,523	0,077	0,088	-	-	-	-
	4,523-3,593	0,002	0 ,00 I	-	-	-	-

Окончание табл.2

Границы групп, МэВ		¹² C, Q=	4,43	27 _{Al,}	Q=0,843	⁵⁶ Fe, Q=0,845	
отдащей	принима л цей	¥	36 2	¥	≣ 2	¥	ж 2
	II,36-9,020	-	-	0,0029	0,0024	0,0248	0,0237
	9,020-7,166	-	-	0,0129	0,0I34	0,0660	0,0671
	7,166-5,694	0,038	0,025	0,0002	0,0002	-	-
II,36-9,02	5,694-4,523	0,157	0,142	-	-	-	-
	4,523-3,593	0,I63	0,184	-	~	-	-
	3,593-2,854	0,072	0,079	-	-	-	-
	2,854-2,019	0,001	0,00I	-	-	-	-

* С учетом анизотрошии.

*2 Без учета анизотропии.

Таким образом, можно сделать вывод, что по сравнению с полиномиальным разложением метод расчета анизотропных переходов путем прямого интегрирования функции рассеяния дает возможность увеличить точность расчета многогрупповых констант и, следовательно, углового потока нейтронов при решении уравнения переноса.

Список литературы

- I. Takahashi A., Iamamoto I., Ebisuya M., Sumita K. Method for calculating anisotropic neutron transport using scattering kernel. J.Nucl.Sci.Technol., 1979, v.16, N 1, p.1-15.
- 2. Attia E.A., Harms A.A. A new expansion for highly anisotropic neutron-nucleus scattering. -Nucl.Sci. and Engng, 1976, v.59, N 4, p.319.
- 3. Mikols W.J., Shultis J.K. A low-order approximation for highly anisotropic multigroup transport cross-section. - Ibid., 1977, v.62, N 4, p.738.
- 4. Odom J.P., Shultis J.K. Anisotropic neutron transport without legendre expansions. Ibid., 1976, v.59, N 3, p.278.
- Brockmann H. A general method to calculate multigroup transfer cross-sections for elastic and discrete level inelastic neutron scattering. - Atomkernenergie-Kerntechnik, 1980, Bd 35, Lfg. 1, S.15.

- Brockmann H. Treatment of anisotropic scattering in numerical neutron transport theory. -Nucl.Sci. and Engng, 1981, v.77, p.377.
- Hong K.J., Shultic J.K. Accurate evaluation of multigroup transfer cross-sections and their legendre coefficients. - Ibid., 1982, v.80, p.570.
- Integrated system for production of neutronics and photonics calculational constants. Livermore, UCRL-50400, 1975, v.15.

Статья поступила в редакцию 14 апреля 1983 г.

УДК 621.039.612.45 + 539.172.4 ЭФФЕКТИВНЫЕ ПОРОГОВЫЕ СЕЧЕНИЯ ДЛЯ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ПОТОКОВ НЕЙТРОНОВ В БЛАНКЕТАХ ТЕРМОЯДЕРНОГО РЕАКТОРА

А.А.Ежов, Л.А.Книжникова, В.В.Фрунзе

EFFECTIVE THRESHOLD CROSS-SECTIONS FOR EXPERIMENTAL DETERMINA-TION OF NEUTRON FLUX DENSITY IN A FUSION REACTOR BLANKETS. The cross-sections of 133 threshold reactions are evaluated for the kinds CTR - blanket. The neutron flux density in a fusion reactor blankets may be determinated with the minimal relative errors if the effective threshold cross-sections method was used together measured saturation activities per nuclei.

Одним из наиболее простых методов получения плотности потока нейтронов по данным активации детекторов, обычно используемых в виде фольг, считается метод эффективных пороговых сечений, в котором плотность потока нейтронов определяется выражением

$$\int_{E_{9\phi}^{i}}^{\infty} \phi(E)dE = \int_{E_{nop}^{i}}^{\infty} \phi(E)\mathcal{G}_{i}(E)dE / \mathcal{G}_{9\phi}^{i} , \qquad (I)$$

где i – номер детектора (фольги); $E_{3\phi}^{i}$, $G_{3\phi}^{i}$ – эффективные энергия и сечения i-й пороговой реакции; E_{nop}^{i} – порог ядерной реакции; $G_{i}(E)$ – энергетическая зависимость сечения пороговой реакции; $\phi(E)$ – спектр нейтронов, подлежащий определению.

Если значения активационных интегралов $\int \phi(E) G_i(E) dE$ получают в результате эксперимента при облучении нейтронами детектора (фольги), то значение эффективного сечения $G_{3\phi}^i$, которое является функцией $E_{3\phi}^i$, находят в результате оценок при различных априорных допущениях. Метод эффективных пороговых сечений, успешно развитый для определения потоков и спектров нейтронов в ядерных реакторах (1,27, может онть использован для определения этих же характеристик в термоядерных реакторах, например в бланкетах, материалом которых может служит графит (3,47, литий или твердые литийсодержащие материалы, такие, как Li₂0, Li₂Si0₃, Li₂Ti0₃ (5-77, и др., а также бериллий/8,97.

Из выражения (I) сечение $\mathcal{G}_{j\phi}^{i}$ может быть найдено как функция $E_{j\phi}^{i}$ для спектра нейтронов $\phi_{j}(E)$, обусловленного, например, реакцией D-T, достаточно близкого к спектру $\phi(E)$, который является неизвестным:

$$\mathcal{O}_{\mathcal{P}}^{i}(E_{\mathcal{P}}^{i}) = \int_{E_{nop}^{i}}^{i} \Phi_{j}(E) \mathcal{O}_{i}(E) dE \int_{E_{\mathcal{P}}^{i}}^{i} \Phi_{j}(E) dE.$$
(2)

В качестве спектра $\phi(E)$ авторами данной работи были выбраны спектры термоядерных нейтронов в различных *j*-х геометрических точках в радиальном направлении бланкета термоядерного реактора толщиной I м для каждого из трех возможных типов (концепций) бланкета: I) набора графитовых блоков; 2) твердого керамического воспроизводящего тритий материала Li_2O с ядерной плотностью по литию 8,2•10²² атом/см³; 3) бериллиевого умножителя и замедлителя нейтронов. Расчети спектров термоядерных нейтронов $\phi_j(E)$ в бланкетах термоядерных реакторов проводились по программе вLANK /IQ/, реализующей расчет нейтронных полей в интересующей области энергий (E > 0,I MэB) методом Монте-Карло. Область переноса представляли при этом сферическим слоем, внутренний и внешний радиус которого составляли соответственно I и 2 м. Для определения эффективных пороговых сечений и энергий использовали нейтронные спектры в I4 точках, причем в случае углеродной и бериллиевой бланкетных систем рассматриваемые точки были расположены в интервале от $z_i = 1$ м до $z_2 = I,52$ м с равным шагом 0,04 м, а для слоя Li_2 0 от $z_i = I$ м до $z_2 = I,26$ м с шагом 0,02 м.

Сечения пороговых реакций взять из справочника /II/. Для каждой из I4 пространственных точек численным интегрированием определяли зависимость эффективного порогового сечения от эффективной пороговой энергии. Затем для каждого значения $E_{3\phi}^{i}$ определяли среднее (по всем пространственным точкам) значение $G_{3\phi}^{i}$. Наконец, вноирали такое значение $E_{3\phi}^{i}$, для которого среднеквадратичное отклонение $G_{3\phi}^{i}$ от значений $G_{3\phi}^{i}$ ($E_{3\phi}^{i}$) во всех пространственных точках было минимальным. Эти значения $E_{3\phi}^{i}$ и $G_{3\phi}^{i}$ принимали в качестве окончательных значений эффективных пороговых энергий и сечений для данной i-й реакции (см. таблицу). Погрешность, которую вносит использование этих значений в определение плотности потока нейтронов, определялась по формуле

$$\Delta = \max_{j} \left| \frac{\mathcal{G}_{j \neq \varphi}^{i} \int_{E_{j \neq \varphi}}^{E_{\varphi}} \phi_{j}(E) dE - \int_{E_{nop}}^{E_{\varphi}} \phi_{j}(E) \mathcal{G}_{i}(E) dE}{\int_{E_{nop}}^{E_{\varphi}} \phi_{j}(E) \mathcal{G}_{i}(E) dE} \right|, \qquad (3)$$

где j =1,..., I4; E_o - энергия нейтронов источника. Значения погрешности также приведены в таблице.

Пороговая		Графит	<u>, , , , , , , , , , , , , , , , , , , </u>	Ок	ИСЬ ЛИТИ	LA LA	H	Бериллий	
реакция	E _{эф} ,	б ^і эф,	Погреш- ность, %	E ⁱ _{эф} ,	б _{эф} ,	Погреш- ность, %	Ε ⁱ _{эф} ,	σ _{эφ} ,	Погреш- ность, %
	МэВ	MQ		МэВ	мб		MaB	мб	
⁶ Li(n,p) ⁶ He	3,2	17,0	9,0	3,3	I5,6	9,8	3,2	I6,4	6,4
$^{11}B(n, \alpha)^{8}Li$	IO,6	33,0	2,3	10,0	28,2	2,7	IO,5	31,9	4,0
$14_{H(n,2n)}13_{H}$	12,8	5,0	3,6	12,5	4,4	3,7	12,4	4,3	4,8
$16_{0(n,p)}13_{N}$	11,2	37,8	1,2	11,2	38,4	I,0	11,2	38,6	2,6
$19_{F(n,p)}19_{0}$	5,8	34,I	2,2	5,3	33,I	6,7	7,3	40,6	5,3
$^{19}\mathbf{F}(n,\alpha)^{16}\mathbf{N}$	3,2	89,7	6,8	3,3	77,9	6,8	3,5	83,I	5,8
$19_{F(n,2n)}$ 18 _F	12,8	40,0	3,7	12,5	35,8	4,I	12,4	34,3	4,3
$23_{Ne(n,p)}23_{Ne}$	6,3	57,6	I,4	6,3	59,3	2,3	7,3	64,8	2,9
23 Na(n, α) ²⁰ F	8,0	I36,3	2,I	9,5	150,4	I,7	9,6	I58,5	3,3
$24_{Mg(n,p)}^{24}Na$	7,3	167,9	I,2	8,2	180,6	2,2	6,6	152,7	5,2
$25_{Mg(n,p)}^{25}Na$	6,9	60,0	I,7	7,9	67,0	2,0	7,3	64,8	2,9
$27_{A1(n,p)}^{27}$ Mg	5,9	92,I	I,5	5,4	89,5	2,9	7,3	107,9	2,8
$27_{Al(n,\alpha)}^{24}Na$	8,4	II4,8	I,8	9,3	126,3	2,2	9,5	137,6	4,I
²⁸ Si(n,p) ²⁸ Al	6,3	323,0	I,2	6,4	331,7	2,3	7,2	359,0	2,6
$^{31}P(n,p)^{31}Si$	3,I	I28,2	I,6	2,I	109,6	3,3	I,6	102,2	2,9
$^{31}P(n,\alpha)^{28}Al$	6,8	122,9	I,I	6,8	I26,I	I,2	7,4	I3I,3	I,6

Рекомендуемые значения $\mathcal{G}^i_{\mathcal{P}\mathcal{P}}$ и $E^i_{\mathcal{P}\mathcal{P}}$ для пороговых реакций и погрешность метода эффективных пороговых сечений

Продолжение таблицы

Пороговая		Графит		Оки	сь лития		Б	Бериллий		
реакция	Еі, эф, МаВ	б _{эф} , мб	Погреш- ность, %	Еі эф, МаВ	б _{эф} , мо	Погреш- ность, %	Еі, эф, МаВ	бі эф, мб	Погрец- ность, %	
$32_{S(n,p)}32_{P}$	3,2	328,5	3,8	2,4	302,I	4,4,	I,4	253,3	3,2	
$34_{S(n,p)}34_{P}$	7,5	82,6	I,3	7,9	84,8	I,4	7,7	8I,7	I,9	
$^{34}S(n,\alpha)^{31}S$	6,8	I47 , 3	I,3	7,2	156,5	2,I	7,3	155,0	I,9	
$35_{Cl(n,\alpha)}32_{P}$	5,I	I60,3	I,4	3,8	I44,9	4,2	5,3	168,5	2,8	
³⁹ K(n,p) ³⁹ Ar	3,I	315,3	2,3	I,7	253,I	3,1	I,3	236,7	3,I	
39 K(n, α) ³⁶ Cl	5,9	I24,9	I,5	5,9	127,8	I,2	5,3	II9,0	2,5	
$40_{\rm Ar(n,\alpha)}^{37}$ s	8,9	I0,9	2,0	9,6	12,4	I,8	9,7	I2,9	2,7	
$41_{K(n,p)}41_{Ar}$	6,0	52,3	I,9	5,9	53,3	2,0	7,3	60,6	2,8	
$41_{K(n,\alpha)}^{38}$ Cl	6,8	3I,8	I,4	8,I	36,4	I,6	6,6	31,0	4,4	
$42_{Ca(n,p)}42_{K}$	6,6	151,3	I,2	7,9	173,8	2,2	6,7	I54,I	3,3	
$44_{Ca(n,p)}44_{K}$	8,8	23,4	6,3	10,3	30,I	4,5	IO,8	35,5	7,7	
$44_{Ca(n,\alpha)}41_{Ar}$	10,9	36,8	3,6	10,3	29,8	3,6	IO,8	34,9	6,6	
45 _{Sc(n,p)} 45 _{Ca}	3,2	75,I	3,8	2,4	71,4	6,0	5,2	94,3	4,3	
45 Sc(n, α) 42 K	8,3	59,I	I,9	8,2	57,8	I,8	7,9	55,3	3,0	
45 sc(n, 2n) 44 sc	12,8	215,2	2,5	12,6	196,0	3,3	I2,5	189,4	6,6	
47 _{Ti(n,p)} 47 _{Sc}	3,2	II4,7	2,4	2,9	115,9	I,9	2,5	II0,8	3,0	
⁴⁸ Ti(n,p) ⁴⁸ Sc	8,3	45,0	3,8	9,9	55,8	3,8	IO,6	69,0	6,8	
49 _{Ti(n,p)} 49 _{Sc}	6,8	20,8	3,3	9,4	27,2	3,0	6,5	19,8	7,0	
⁵⁰ Ti(n,p) ⁵⁰ So	II,3	12,0	3,6	II,4	II,6	5,6	II,6	12,7	6,0	
51 _{V(n,p)} 51 _{Ti}	7,8	26,5	2,3	9,5	31,8	2,4	9,6	34,I	5,7	
⁵² Gr(n,p) ⁵² V	7,7	90,6	2,0	9,4	108,0	2,6	9,6	II8,4	4,6	
⁵² Cr(n,2n) ⁵¹ Cr	13,2	228,4	2,9	12,9	177,2	5,7	12,9	176,6	2,8	
⁵⁴ Fe(n,p) ⁵⁴ Min	3,2	497,0	3,0	2,9	493,0	2,5	I,5	394,7	3,4	
54 Fe(n, α) 51 Cr	8,3	85,5	2,7	9,7	100,6	3,I	IO,5	127,5	6,6	
⁵⁵ Mn (n,∝) ⁵² V	10,8	28,5	3,I	I0,3	24,0	3,5	10,7	27,0	6,I	
⁵⁵ Mm(n,2n) ⁵⁴ Mm	II,5	635,7	2,4	II,8	688,3	4,2	II,8	678,2	5,7	
⁵⁶ Fe(n,p) ⁵⁶ Mn	7,0	89,0	2,0	9,4	II5,3	2,9	6,6	83,6	6,4	
⁵⁶ Fe(n,2n) ⁵⁵ Fe	12,8	406,0	2,9	12,5	365,5	3,4	12,4	349,8	3,8	
⁵⁸ Ni(n,p) ⁵⁸ Co	3,2	570,0	2,3	2,4	515,5	4,8	Ι,4	438,5	3,0	
⁵⁹ Co(n,p) ⁵⁹ Fe	6,8	48,I	2,4	9,3	62,4	3,7	6,5	4 6,I	6,4	
⁵⁹ Co(n, \propto) ⁵⁶ Mn	8,3	23,2	2,2	9,6	27,I	2,7	9,6	28,4	6,6	
⁵⁹ Co(n,2n) ⁵⁸ Co	11,6	519,9	3,2	II,9	56 I, 0	6,I	II,9	551,I	7,8	
⁶⁰ Ni(n,p) ⁶⁰ Co	6,7	137.0	I,0	8,0	158,0	I,7	6,7	137,9	3,7	
63 Cu(n, α) 60 Co	7,6	39,5	2,7	7,8	39,7	2,0	7,7	38,3	2,4	
⁶³ Cu(n,2n) ⁶² Cu	II,7	343,4	4,6	12,2	391,7	6,7	12,2	38 5,5	5,3	
⁶⁴ Zn(n,p) ⁶⁴ Cu	3,2	234,9	3,7	3,0	241,0	2,I	3,3	239,6	3,8	

Продолжение таблици

Пороговая		Графит		Оки	сь лития	[Бериллий	
реакция	Ξi 3cb,	G_{ab}^i ,	Погреш-	E ⁱ ,	$G_{3\phi}^{i}$,	Погреш-	E ⁱ _{эф} ,	Gi βab,	Погреш-
	МэВ	мо	nocib, "	МэВ	мб	10012, %	MaB	мо	10015, /
65 _{Cu(n,n)} 65 _{Ni}	6.7	19.4	3.1	8.T	22.0	4.2	6.5	T8 8	 6 0
$65_{Cu}(n,2n)^{64}Cu$	II.4	764.5	2.8	11.7	878.9	2.0	11.7	8T3 T	3.8
$66_{2n(n,p)}66_{Cu}$	6.9	59.3	I.8	9.3	77.2	2.8	6.6	57.0	5.8
$66_{Zn(n,2n)}65_{Zn}$	12.8	575.4	7.0	12.3	496.6	6.0	I2.3	489.2	4.9
$68_{Zn(n,\alpha)}65_{Ni}$	8.8	7.9	6.2	9.9	9.2	4.2	10.7	II.7	7.0
$69_{Ga(n,p)}69m_{Zn}$	7.4	22.1	I.8	9,4	27.I	2,7	9.6	29.8	5.I
⁶⁹ Ga(n,2n) ⁶⁸ Ga	II.6	673,4	3,5	II.9	722,2	6,8	12.0	741.2	7.5
⁷⁰ Ge(n,2n) ⁶⁹ Ge	I2,8	422,4	I,6	12,6	382,3	2,8	I2,5	370,3	5,I
⁷¹ Ga(n,2n) ⁷⁰ Ge	I0,9	954,3	3,3	II,3	1025,0	4,8	II.3	I039,0	4,2
⁷⁴ Se(n,p) ⁷⁴ As	8,3	I04,2	2,8	9,8	126,8	3,4	I0,6	I60,3	6,4
⁷⁴ Se(n,2n) ⁷³ Se	I3,2	181,3	3,2	12,9	140,2	5,9	I3,0	I48,0	2,3
$75_{\rm As}(n,\alpha)^{72}_{\rm Ga}$	II,3	9,3	3,3	II,5	9,3	4,9	II,6	9,8	6,3
$75_{AS(n,2n)}74_{AB}$	II,5	768,0	3,3	II,8	8I4,I	5,7	II,9	841,2	6,5
⁷⁶ Ge(n,2n) ⁷⁵ Ge	I0,8	969,2	3,2	II,2	1036,0	5,4	II,2	I056,0	4,5
⁷⁶ Se(n,2n) ⁷⁵ Se	I2,7	708,5	3,7	12,4	647,2	3,7	12,3	615,4	4,I
$^{79}\mathrm{Br}(n,\alpha)^{76}\mathrm{As}$	II,3	II,6	3,0	II,3	I0,9	7,7	II,4	II,6	5 ,8
⁷⁹ Br(n,2n) ⁷³ Br	II,7	682,I	3,8	12,0	735,4	8,7	12,1	751,0	7,0
³⁰ 30(n,2n) ⁷⁹ Se	II,3	939,2	2,8	II,6	1006,0	2,I	II,6	1002,0	3,I
⁸¹ Br(n,2n) ⁸⁰ Br	II,5	766,4	3 , I	II,8	823,4	4,4	II,8	812,5	6,0
81 Br(n,2n) 80m Br	II,6	508,0	2,8	II,9	552,2	5,7	II,9	541,9	7,0
⁸² Se(n,2n) ⁸¹ Se	I0,8	1153,0	2,4	I0,6	1052,0	2,9	I0,8	II3I,O	4,9
³⁴ Sr(n,2n) ⁸³ Sr	I3,2	723,5	3,6	12,9	565,2	5,2	12,9	56I,4	2,2
85 Rb(n, α) 82 Br	II,3	4,3	4,0	II,6	4,5	3,8	II,7	4,7	4,8
⁸⁵ Rb(n,2n) ⁸⁴ Rb	II,7	524,6	5,5	II,3	484.3	5,3	II,3	488,6	6,6
⁸⁶ Sr(n,p) ⁸⁶ Rb	8,8	27,9	7,0	I0,3	35,4	3,9	I0,8	41,9	7,5
⁸⁷ Rb(n,2n) ⁸⁶ Rb	II,4	930,7	2,5	II,7	995,8	2,9	II,7	988,8	4,5
⁸⁸ Sr(n,p) ⁸⁸ Rb	II,4	9,0	4,7	II,9	10,1	3,7	II,9	10,0	7,3
⁸⁸ Sr(n,2n) ^{87m} Sr	I2,8	242,6	3,7	12,4	209,0	3,7	12,4	210,3	4,2
⁸⁹ Y(n,p) ⁸⁹ Sr	8,7	I8,3	3,8	9,8	21,3	2,9	I0,5	26,I	5,7
89 Y(n, \propto) 86 Rb	II,5	3,5	5,4	II,9	3,8	5,9	12,0	3,9	8,I
⁸⁹ Y(n,2n) ⁸⁹ Y	12,8	735,6	I,9	12,5	649,3	2,6	I2 , 4	625,7	5,5
⁹⁰ Zr(n,p) ⁹⁰ Y	7,3	3I,6	3,2	9,7	4I, 5	2,8	IO,5	52,9	6,I
⁹⁰ 2r(n,2n) ⁸⁹ 2r	I2,9	443,0	3,4	12,8	415,6	3,9	12,8	418,0	5,6
⁹¹ Zr(n,p) ⁹¹ Y	8,8	I9,8	6,9	I0,4	25,8	4,4	IO,8	29,9	7,7
92 Zr(n, α) ⁸⁹ Sr	II,2	8,9	4,0	IO,4	6,7	4,I	I0,9 [,]	7,9	8,0

32

.

Продолжение таблици

Пороговая	Графит			Окись лития			Бериллий		
реакция	Ε ⁱ эφ,	$\sigma^i_{_{\!\!\!\!\!\!\mathcal{D}\!\!\!\!\!\!\!\!\mathcal{D}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Погреш- ность, %	E ⁱ Эф	$\sigma^i_{\mathbf{s}\phi},$	Погреш- ность, %	E ⁱ _{эф} ,	$\sigma^i_{{}_{\!$	Погреш- ность, %
	MəB	MÓ		МэВ	мо		МаВ	мб	
93 Nb(n, α) 90 Y	8,3	6,6	2,6	9,8	8,I	3,2	IO,5	I0,0	6,5
⁹³ Nb(n,2n) ⁹² Nb	I0,8	1286,0	2,5	I0,7	II99,0	3,9	I0,9 ·	I294,0	4,9
⁹³ Nb(n,2n) ^{92m} Nb	IO,7	465,4	2,1	IO,6	440,2	2,4	IO,8	47I,I	3,4
$94_{Zr(n,\alpha)}91_{Sr}$	II,2	3,4	4,0	II, 5	3,5	4,2	II,5	3,6	6,0
¹⁰³ Rh(n,2n) ¹⁰² Rh	I0,9	II42,0	3,2	II,3	I234,0	4,2	II,3	1249,0	4,I
¹⁰⁶ cd(n,2n) ¹⁰⁵ cd	II,7	96I,7	3,4	I2,I	IO 87, 0	6,5	12,1	1057,0	7,4
$109_{Ag(n,p)}109_{Pd}$	II,2	I4,0	3,9	IO,5	10,7	4,3	II,2	I3,6	8,4
¹¹¹ Cd(n,p) ¹¹¹ Ag	II,2	I8,8	3,8	I0,7	I5,0	5,9	II,4	19,2	7,9
112 Cd(n, α) 109 Pd	II,4	I,5	5,0	II,8	I,6	4,5	II,9	I,6	. 7,4
$112_{Sn(n,2n)}$ 111_{Sn}	II,7	820,I	4,0	I2,I	919,0	7,I	12,2	945,4	3,9
¹¹³ In(n,2n) ¹¹² In	II,2	I356 , 0	3,8	II,4	I387,0	3,8	12,2	940,0	4,0
$115_{In(n,2n)}$ ¹¹⁴ In	I0,8	I459,0	4,0	IO,9	1410,0	6,2	II,3	1637,0	5,8
$115_{In(n,2n)}^{114m}In$	IO,8	1064,0	3,8	IO,9	1032,0	5,9	II,3	II97,0	5,5
$118_{Sn(n, \alpha)}^{115}Cd$	II,5	0,45	5,6	II,9	0,48	4,7	12 , I	0,52	6,8
¹²¹ _{Sb(n,2n)} ¹²⁰ _{Sb}	10,8	920,4	5,3	I0,2	848,5	3,6	10,2	839,2	8,7
¹²³ Sb(n,2n) ¹²² Sb	10,8	1280,6	2,6	10,7	II87,O	4,2	11,2	1399,0	6,9
$127_{I(n, \alpha)}^{124}$ Sb	II,4	0,8	4,8	II,8	0,9	2,7	II,9	0,9	5 ,9
¹²⁷ I(n,2n) ¹²⁶ I	I0,8	1431,0	2,5	I0,7	1336,0	3,8	IO,9	1440,0	4,5
¹³³ Cs(n,p) ¹³³ Xe	I0,9	8,8	3,9	I0,8	7,9	. 6,2	II,3	9,5	6,6
133 Cs(n, α) 130 I	II, 5	0,63	6,2	I2,2	0,75	6,4	12,2	0,74	6,0
$133_{Cs(n,2n)}^{132}Cs$	I0,8	I408,0	3,6	.I0,9	1369,0	5,9	11,2	1537,0	4,8
¹⁴⁰ Ce(n,2n) ¹³⁹ Ce	10,7	1553,0	3,3	10,7	1480,0	4,3	10,9	1599,0	5,2
¹⁴⁰ Ce(n,2n) ^{139m} Ce	II,2	85I,I	3,2	II,6	872,I	2,8	II,6	867,6	3,6
141 Pr(n,2n) 140 Pr	I0,8	1480,0	2,5	I0,8	1413,0	4,8	10,9	I488,O	4,4
¹⁴² Ce(n,2n) ¹⁴¹ Ce	8,7	1616,0	I,8	9,3	1731	I,8	9,4	1834,0	3,2
¹⁴² Nd(n,2n) ¹⁴¹ Nd	II,4	1421,0	3,0	9,4	1847,0	I,7	9,4	1896,0 -	2,4
$144_{Sm(n,2n)} 143_{Sm}$	II,6	1120,0	2,7	II,9	1215,0	6,0	II,9	1192,0	7,4
¹⁴⁸ Nd(n,2n) ¹⁴⁷ Nd	8,8	1702,0	I,8	II,6	1469,0	2,2	II,6	1468,0	3,7
¹⁵⁰ Nd(n,2n) ¹⁴⁹ Nd	8,4	1367,0	5,I	7,2	1312,0	5,0	7,6	1282,0	8,5
¹⁵² Sm(n,2n) ¹⁵¹ Sm	9,2	1381,0	3,9	10,0	1611,0	3,2	I0 , 5	1830,0	4,8
¹⁵⁴ Sm(n,2n) ¹⁵³ Sm	8,9	1536,0	I,9	9,7	1765,0	I,9	9,6	1752,0	9,0
¹⁶⁹ Tm(n,2n) ¹⁶⁸ Tm	9,0	1674,0	2,2	9,8	1945,0	2,I	9,6	1880,0	3,5
¹⁷⁵ Lu(n,2n) ¹⁷⁴ Lu	8,9	1802,0	1,6	9,5	1994,0	I,7	9,5	2016,0	I,8
¹⁸¹ Ta(n,p) ¹⁸¹ Hf	11,5	2,6	5,0	II,9	2,8	7,4	12,0	2,9	7,9
181 Ta(n,2n) 180m Ta	8,9	964,2	I,7	9,6	1085,0	I,8	9,6	1102,0	2,6

Окончание таблящы

Пороговая		Графит		ORNOL JUTER			. Ge		
реакция	Е ^і Эф, МэВ	б _{эф} , мо	Погреп- ность,%	Е ^і эф, М э В	σi 3φ, Mo	Погреш- ность,%	Е ^і Эф, МаВ	లే 300, ≌0	Погрен-
186 _{W(n,p)} 186 _{Ta}	13,5	0,95	0,4	I3,5	0,95	0,2	I3,5	0,95	0,9
¹⁹¹ Ir(n,2n) ¹⁹⁰ Ir	9,2	1526,0	3,7	9,9	I744,0	2,8	I0,5	2026,0	4,7
193 _{Ir(n,2n)} 192 _{Ir}	9,0	1669,0	2,0	9,8	1936,0	2,2	9,6	1873,0	3,6
197 _{Au(n,p)} 197 _{Ft}	II,4	I,3	4,9	II,9	I,4	5,8	II,9	I,4	7,5
197 Au(n, α) 194 Ir	II,4	0,16	6,4	12,0	0,18	5,9	12,2	0,20	7,6
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	9,2	1773,0	3,8	9,9	2025,0	2,7	10,5	2353,0	4,7
²⁰³ Tl(n,2n) ²⁰² Tl	9,0	1526,0	3,0	9,9	I800,0	2,8	I0,5	2103,0	5,I
²⁰⁵ Tl(n,2n) ²⁰⁴ Tl	8,9	1607,0	2,3	9,7	I850 , 0	2,4	9,6	1834,0	3,5
²⁰⁴ Pb(n,2n) ²⁰³ Pb	10,7	2051,0	2,3	I0,4	I840,0	3,0	I0,7	2015,0	5,0
²⁰⁸ Pb(n,2n) ^{207m} Pb	10,9	1133,0	3,4	IO,8	1035,0	5,8	11,3	1235,0	6,7
²⁰⁹ Bi(n,2n) ²⁰⁸ Bi	8,9	1977,0	I,6	9,5	2170,0	I,6	9,5	2210,0	2,4

Таким образом, для каждой из I33 рассмотренных пороговых ядерных реаций рекомендована одна пара $\mathcal{G}_{3\phi}^{i}$ и $\mathcal{E}_{3\phi}^{i}$, применение которых для экспериментально полученных активационных интегралов $\int \phi(\mathcal{E}) \mathcal{G}_{i}(\mathcal{E}) d\mathcal{E}$ приведет к определению интегрального $\int_{\mathbf{E}_{3\phi}^{i}}^{i4,1} \mathcal{M}^{38} \phi(\mathcal{E}) d\mathcal{E}$ потока нейтронов в одном

из трех материалов бланкета (углерод, окись лития, бериллий) будущих термоядерных реакторов яли в моделях бланкета с источником термоядерных нейтронов.

Список литературы

- I. Климентов В.Б., Копчинский Г.А., Фрунзе В.В. Активационные измерения потоков и спектров нейтронов в ядерных реакторах. М.: Изд-во стандартов, 1974, с.151-162.
- Крамер-Агеев Е.А., Трошин В.С., Тихонов Е.Г. Активационные методы спектрометрии нейтронов. М.: Атомиздат, 1976, с.68-78.
- 3. Виргильев Ю.С., Костиков В.И. Радиационное изменение свойств графитовых конструкционных материалов в интервале 70-950°С до флюэнса 2,5·10²² нейтр./см².-В кн.: Исследование и разработка материалов для реакторов термоядерного синтеза. М.: Наука, 1981. с.8-15.
- 4. Fillo J.A., Powell J.R. Review: ENL Tokamak graphite blanket design concepts. Mucl. Engng and Design, 1976, v.39, N 1, p.181-201.
- 5. Masu S. Data base for breeder choice ZAERI, 1979, v.M. N 8510, p.38-62.
- 6. Колбасов Б.Н., Пистунович В.И. Начало работь Международной рабочей группы ИНТОРа на фазе ПА.-Атомная энергия, 1982. т.52, вып.1, с.76-77.
- 7. Misra B., Clemmer R.G., Smith D.L. Influence of blanket design options on tritium inventories in solid breeders. Annual meeting of the American Nuclear Society, Les-Vegas, Nov., 1980. Summaries. - Trans.Amer.Nucl.Soc., 1980, v.34, p.50-51.
- Simnad M.T., Trester P.W., Cheng E.T. The feasibility of using a beryllium neutron multiplier component in a TMHR. Winter Meeting, San Francisco, Calif., Nov.29-Dec.3, 1981. Summaries. -Ibid., 1981, v.39, p.255-257.
- 9. Казаков В.А., Шамардин В.К. Проблемы конструкционных материалов первой стенки термоядерных реакторов, связанные с объемными радиационными эффектами. См.[3], с.19-35.
- IO. Марин С.В., Марковский Д.В., Шаталов Г.Е. Программа расчета пространственно-энергетического распределения нейтронов в одномерной геометрии (BLANK). - Препринт ИАЭ-2832, 1977.
- II. Бычков В.М., Мансхин В.Н., Пащенко А.Е., Пляскин В.И. Сечения пороговых реакций, вызываемых нейтронами. М.: Знергоиздат, 1982.

Статья поступила в редакцию 20 декабря 1983 г.

УДК 539.1.074.8 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ НЕЙТРОННОГО ГАЗА И ЭМИТТЕРА НА ИЗМЕНЕНИЕ ЧУВСТВИТЕЛЬНОСТИ ЭМИССИОННЫХ ДЕТЕКТОРОВ НЕЙТРОНОВ

Л.Л.Броницкий, С.Н.Мякинченко, В.Б.Постников

INVESTIGATION OF NEUTRON GAS AND EMITTER TEMPERATURE EFFECT UPON EMISSION NEUTRON DETECTOR SENSITIVITY VARIATION. The influence of variation of the emission neutron detector temperature and of the neutron gas temperature upon detector sensitivity to neutron radiation has been considered. Temperature effect analysis is based upon investigation of Westcott crosssection variation. The temperature variation is shown to have varions effect upon sensitivity variation of detectors with ag, Rh, Hf, In, Gd emitters.

Безопасная и экономичная работа ядерных энергетических установок с системами автоматизированного контроля распределения энерговыделения, использующими эмиссионные детекторы нейтронов, в значительной степени зависит от умения правильно интерпретировать сигналы, генерируемые детекторами. При этом основным требованием, предъявляемым к таким детекторам, является пропорциональность сигнала детекторов плотности потока нейтронов в достаточно широком диапазоне изменения. В энергетических режимах работы канальных уран-графитовых реакторов РБИК эмиссионные детекторы /1/ работают практически при постоянной температуре, близкой к температуре кипяцего теплоносителя, и в пределах приведенной погрешности контрольных измерений (±3%) указанная пропорциональность обеспечивается в диапазоне 3-100% номинальной мощности реактора. Вместе с тем экспериментальные исследования указывают на сложную зависимость чувствительности некоторых эмиссионных детекторов /2/ от окружающей температуры и плотности потока нейтронов. Для повышения точности и расширения диапазона контролируемых распределений энерговыделения, очевидно, представляют интерес исследования, направленные на выяснение и уменьшение влияния факторов, обусловивших эту зависимость.

Одним из параметров, оказывающим основное влияние на величину сигнала эмиссионных детекторов, является скорость захвата нейтронов в эмиттере. Скорость захвата на ядро можно записать в виде

$$R = \int_{0}^{\infty} n(v) \mathcal{O}(v) v dv , \qquad (1)$$

где n(v) - распределение плотности нейтронов; $\mathcal{O}(v)$ - микроскошическое сечение захвата нейтронов; v - скорость нейтрона.

Влияние температуры эмиттера и нейтронного газа на сигнал детектора рассмотрим, анализируя изменение скорости захвата \mathcal{R} в зависимости от изменения этих параметров. Для реакторов на тепловых нейтронах распределение плотности нейтронов по скоростям может быть записано в виде $\sqrt{3}$ $n(v)dv = n(1-f)\varphi_{\tau}(v)dv + nf\varphi_{3}(v)dv$, где $\varphi_{\tau}(v)$ и $\varphi_{3}(v) -$ функции распределения тепловых и эпитепловых нейтронов соответственно; f – доля плотности нейтронов, приходящаяся на надтеплових и эссть спектра. Функции $\varphi_{\tau}(v)$ и $\varphi_{3}(v)$ удовлетворяют нормировке

$$\int_{0}^{\infty} \varphi_{\tau}(v) dv = \int_{0}^{\infty} \varphi_{\mathfrak{z}}(v) dv = \mathfrak{1}; \qquad n = \int_{0}^{\infty} n(v) dv.$$

Согласно данным работы [4], выражение (I) можно представить в виде $R = n v_0 \tilde{G}$, где $\tilde{G} = \tilde{G}(v_0) \left[Q(T, T_{H2}) + z S(T, T_{H2}) \right]$. Здесь $v_0 = 2200$ м/с; Т – температура эмиттера; T_{H2} – температура нейтронного газа; z – спектральный индекс;

$$g(T, T_{H2}) = 2/\sqrt{\pi} \sqrt{T_{H2}/T_0} \frac{1}{6}(v_0) \int_0^{\infty} \sigma(E, T) E/(kT_{H2}) exp(-E/kT_{H2}) d(E/kT_{H2});$$
(2)

$$S(T, T_{H2}) = 2/\sqrt{\pi} \sqrt{T_{H2}/T_0} 1/6(v_0) \int_0^{\infty} \left[\delta(E, T) - g(T, T_{H2}) \delta(v_0) v_0 / v \right] \frac{\Delta(E/kT_{H2})}{E} dE, \qquad (3)$$

где T₀ =293,6 К; Е - энергия нейтрона; k - постоянная Больцмана; б(E,T)- сечение поглощения; Δ(E/kT_u) - функция переходной области <u>/</u>5/. Для материалов, которые используются в качестве эмитеров эмиссионных детекторов, резонансные уровни в эпитепловой области хорошо разрешены. Поэтому сечение поглощения $\mathcal{G}(E,T)$ для нейтрона с энергией Е в материале эмиттера с температурой Т можно представить в виде

$$\tilde{\mathcal{O}}(E,T) = \begin{cases} \tilde{\mathcal{O}}(v_0) \sqrt{E_0/E} & - \text{ в тепловой области до первого резонанса,} \\ \sum_{i} \tilde{\mathcal{O}}_{i}^{i}(E,T) & - \text{ в резонансной области,} \end{cases}$$

причем

$$\mathcal{O}_{\mathcal{P}}^{i}(E,T) = \mathcal{O}_{0}^{i}(\Gamma_{\mathcal{P}}^{i}/\Gamma^{i})\sqrt{E_{\mathcal{R}}^{i}/E}\Psi(\xi^{i},Y^{i}), \qquad (4)$$

где \mathcal{O}_{0}^{i} - сечение в максимуме резонанса; $\Gamma_{\mathcal{J}}^{i}, \Gamma^{i}$ - радиационная и полная ширины резонанса; $\mathcal{E}_{\mathcal{R}}^{i}$ - энергия нейтрона в максимуме *i*-го резонанса; $\Psi(\xi^{i}, Y^{i})$ - функция Доплера [5]; $\xi^{i} = \Gamma^{i} / \sqrt{4kTE/A}$ (А - отношение массы ядра к массе нейтрона); $Y^{i} = (2/\Gamma^{i})(E - E_{\mathcal{R}}^{i})$.

В реакторной физике выражения (2) и (3), как правило, рассматриваются для случаев, когда температура среды, формирующей спектр нейтронов, и температура рассматриваемого образца близки друг к другу. Специфика же работы эмиссионных детекторов в некоторых случаях /2/ состоит в том, что температура эмиттера может значительно отличаться от температуры нейтронного газа, неоднозначно связанной с температурой топлива. Например, изменение режимов охлаждения графитовой кладки реактора РБМК может приводить к изменению температуры нейтронного газа и в результате к изменению соотношения между энерговыделением в топливе и сигналами детектора. Ввиду того что сигнал детектора обусловлен захватом как тепловых, так и надтепловых нейтронов, обычно различают две чувствительности детектора /6/: к тепловым и надтепловым нейтронам. В представлении Весткотта выражения для этих величин имеют соответственно вид /7/

$$\label{eq:gamma_tagger} \begin{split} \gamma_\tau = \Sigma_0 G_\tau \, g(\tau, \tau_{H\epsilon}) \, ; \qquad \gamma_{H\tau} = \Sigma_0 G_{H\tau} \, \mathrm{S}(\tau, \tau_{H\epsilon}) \, , \end{split}$$

где $\sum_{0} = \sum_{0} (v_{0})$ - макроскопическое сечение поглощения нейтронов со скоростью v_{0} =2200 м/с; G_{τ} , $G_{H\tau}$ - коэффициенты самоэкранировки для тепловых и надтепловых нейтронов в "толстых" детекторах. Выражения для q- и S-факторов после несложных преобразований с учетом выражения (4) можно представить в виде - i

$$g(T, T_{H2}) = 1/\Re \sqrt{T_{H2}/T_0} \frac{1}{6} \sqrt{6} (v_0) \sum_{i} \frac{\omega_0^{i}}{\sqrt{6}} \sqrt{E_R^{i}/kT_{H2}} \frac{\Gamma_{i}^{i}}{\sqrt{4kTE_R^{i}/A}} \times \\ \times \int_{0}^{\infty} \sqrt{E/kT} \exp(-E/kT) \int_{-\infty}^{\infty} \frac{\exp[\frac{E_i^{i}}{2}(x^{i}-y^{i})]^2}{1+x^{i^2}} dx^{i} d(E/kT); \quad (5)$$

$$S(T, T_{H2}) = 1/\Re \sqrt{T_{H2}/T_0} \frac{1}{6} (v_0) \left[\sum_{i} \frac{\sigma_0^{i}}{\sqrt{4kTE_R^{i}/A}} \frac{\Gamma_{i}^{i}}{\sqrt{4kTE_R^{i}/A}} E_R^{i} \times \right] \\ \times \int_{\mu kT_{H2}}^{\infty} \frac{E^{-3/2} \int_{-\infty}^{\infty} \frac{\exp\{-[\frac{E_i^{i}}{x^{i}-y^{i}}]/2]^2\}}{1+x^{i^2}} dx^{i} dE - v_0 g(T, T_{H2}) \delta(v_0) \sqrt{2m/\mu kT_{H2}} \right] . \quad (6)$$

Здесь $X^i = 2/\Gamma^i (E_z - E_R^i); m$ – масса нейтрона; μ – параметр функции переходной области [5]; $E_z = 1/2 m (\bar{v} - \bar{V})^2$, где \bar{v} – вектор скорости нейтрона; \bar{V} – вектор скорости ядра.

Выражения (5) и (6) использованы для оценки изменения чувствительности детекторов, обусловленного изменением температур эмиттера и нейтронного газа. Интегралы в выражениях (5), (6) вычисляли по формуле Гаусса (8). Результаты тестовых расчетов 9- и S-факторов (рис.I) хорошо согласуются с данными работ (3,4]. Некоторые отличия рассчитанных значений 9 и S от данных работ (3,4] объясняются скорее всего различием систем констант, которые использованы в работе (9], от систем, которые использованы в работах (3,4]. На рис.2 представлены зависимости изменения относительных чувствительностей детекторов $f_T = T_T/T_{0,T}$ и $f_{HT} = T_{HT}/T_{0,HT}$, где $T_{0,T}$, $T_{0,HT}$ -чувствительность к тепловым и надтепловым нейтронам при T=20⁰C и T_{нг} =20⁰C в зависимости от температуры эмиттера при фиксированной температуре нейтронного газа. Из рис.2 следует, что терморадиационный разогрев детектора (до 50-70°C) в реакторе РЕМК не может вызвать существенного изменения чувствительности детектора.

Зависимости 9 (Т.,,Т) (а) и S (Т.,,Т) (б) от температуры нейтронного газа при данные работ /3,4/; --- - расчет; 1 - родий; 2 - гафний; ребро; 4 - гадолиний

Другая картина наблюдается при изменении температуры нейтронного газа. На рис.3 представлены результаты расчетов изменения чувствительностей r_{τ} и $r_{\mu\tau}$ от $r_{\mu 2}$ при постоянной температу-ре эмиттера. Сравнение данных рис.2, а и рис.3 показывает, что изменение температуры нейтронного газа влияет значительно сильнее на чувствительности $\eta_{ au}$ и $\eta_{ ext{HT}}$, чем изменение температуры эмиттера, особенно для детектора с эмиттером из гафния. Таким образом, согласно проведенным расчетам, реальные изменения температуры эмиттера, установленного в ТВС реактора РБМК, не судут заметно влиять на чувствительность детектора с эмиттерами из серебра и гайния. Изменение режимов охлаждения графитовой кладки будет оказывать на чувствительность детектора с эмиттером из гафиия более сильное влияние, чем на детектор с эмиттером из серебра. Таким образом, значительние изменения чувствительности при нагреве детектора до температур более 400°С [2] нельзя объяснить изменением нейтронно-физических характеристик детектора и окружающей его среды.

Список литературы

- I. Емельянов И.Я., Константинов Л.В., Постников В.В. Атомная энергия, 1971, т.30, вып.3, с.275.
- 2. Емельянов И.Я., Власов В.И., Володько Ю.И. и др. Атомная энергия, 1974, т.37, вып.І. с.71.
- 3. Атомная энергия, 1959, т.6, вып.2, с.218.
- 4. Westcott C.H. Hucleonics, 1958, v.16, N 10, p.108.
- 5. Бекурц К., Виртц К. Нейтронная физика. М.: Атомиздат, 1968.
- 6. Erben 0. Jaderna energie, 1980, N26, č.2.
- Филипчук Е.В., Потапенко П.Т., Постников В.В. Управление нейтронным подем ядерного реактора. М.: Энергоиздат, 1981.
- 8. Крылов В.И., Шульгина Л.Т. Справочная книга по численному интегрированию. М.: Наука, 1966.
- 9. Гордеев И.В., Кардашев А.Д., Малышев А.В. Ядерно-физические константы. М.: Госатомиздат, 1963.

Статья поступила в редакцию 14 ноября 1983 г.

Element		Quan-	Labo-	Work-	Energy (eV)		Page	COMMENTS			
S	A	ULUY	ry	cype	min	max					
TH	230	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	METHØD,	TBL
TH	230	RIG	ITE	EXPT	5.0 -1		3	JURØVA+	ACT	METHØD,	TBL
PA	231	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	METHØD,	TBL
₽ ▲	231	RIG	ITE	EXPT	5.0 -1		3	JURØVA+	ACT	METHØD,	TBL
PA	232	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	METHØD,	TBL
PA	232	RIG	ITE	EXPT	5.0 -1		3	JURØVA+	ACT	METHØD,	TBL
PA	233	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	methød,	TBL
₽ A	233	RIG	ITE	EXPT	5.0 -1		3	JURØVA+	ACT	METHØD,	TBL
ប	236	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	METHØD,	TBL
U	236	RIG	ITE	EXPT	5.0 -1		3	JURØVA+	ACT	METHØD,	TBL
NP	237	NG	ITE	EXPT	MAXW		3	JURØVA+	ACT	METHØD,	TBL
NP	237	RIG	ITE	BXPT	5.0 -1		3	JURØVA+	ACT	methød,	TBL

БИБЛИОГРАФИЧЕСКИЙ ИНДЕКС РАБОТ, помещенных в настоящем выпуске, в Международной системе СИНДА

УДК 621.039.5 ИНТЕГРАЛЬНЫЕ СЕЧЕНИЯ РАЛИАЦИОННОГО ЗАХВАТА В ТЕПЛОВОЙ И РЕЗО-НАНСНОЙ ОБЛАСТЯХ ЭНЕРГИЙ ДЛЯ ²³⁰ть, ²³¹⁻²³³ра, ²³⁶U, ²³⁷Np / Л.Н.Юрова, А.А.Поляков, В.П.Рухло и др.-Вопросы атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.3-8. Представлени результати экспериментального определения зна-чений теплового сечения и резонансного интеграла для 250 Th, чении тепрового сечения и резонансного интеграла для ---и, 231-233_{Ра,} 236_{U,} 237_{Np}. Измерения выполнены активационным методом с применением полупроводниковых детекторов высокого раз-решения (рис.1, табл.4, список лит. - II назв.).

УДК 621.039.51:621.039.534.3

НЕУПРУГОЕ РАССЕЯНИЕ НЕЙТРОНОВ НА ХРОМЕ И ЕГО ВЛИЯНИЕ НА РАС-ЧЕТНЫЕ ХАРАКТЕРИСТИКИ РЕАКТОРА С ЛИССОЦИИРУКЩИМ ТЕПЛОНОСИТЕЛЕМ/ В.П.Коренной, В.В.Возяков, О.В.Хаткевич и др. — Вопросн атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.9-12.

Последние экспериментальные исследования сечения неупругого рассеяния нейтронов на природной смеси изотопов хрома, учтенные в оценках ENDF/B-V и ЦАЦ-2, указывают на необходимость снижения значения сечения неупругого рассеяния біл в околопороговой области. В работе по этим оценкам получены матрицы межгрупповых пе-реходов в результате неупругого рассеяния. Обсуждается влияние из-межений в сечения б_{іп} на характеристики реактора с диссоциирующим теплоносителем (рис.І, табл.2, список лит. - І8 назв.).

УДК 539.17:621.039.519.4

ОЦЕНКА ЯДЕРНЫХ ДАННЫХ КАЛМИЯ В ИНТЕГРАЛЬНОМ ЭКСПЕРИМЕНТЕ НА КРИТИЧЕСКОЙ СБОРКЕ КБР-9/К.Дитде, К.Ферманн, Е.Леманн и др. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.13-16.

В экспериментах на сборке RRR/SEG-IV (ЦИЯИ, ГДР), содержа-щей кадмий, обнаружено расхождение между расчетными и эксперимен-тальными значениями коэфициентов реактивности рассеивающих мате-риалов, что объяснено погрешностями групповых сечений кадмия. Для проверки этого вывода на сборке КБР-9, не содержащей в отличие от сборки SEG-IV кадмия в активной зоне, измерены коэффициенты реак-тивности нескольких образцов кадмия разных размеров. Сравнение из-меренных величин с расчетными подтвердило предположение о недооцен-ка эфиста везонансной блокировки сечения захвата калмия в испольке эфректа резонансной блокировки сечения захвата кадмия в исполь-зованных библиотеках констант БНАБ-78 и КЕДАК-3 (рис.3, табл.2, список лит. - II назв.).

УДК 539.170:681.3.06

ПССТАНОВКА НА ЭВМ ЕС-1033 КОМПЛЕКСА ПРОГРАММ ДЛИ РАБОТЫ С БИБЛИОТЕКАМИ ОЦЕНЕННЫХ НЕИТРОННЫХ ДАННЫХ В ФОРМАТЕ ЕМОР/В / А.И.Блохин, Н.Н.Булеева, В.Е.Колесов и др. - Вопросн атомной мауки и техники. Сер. Ядерные константи, 1984, вып.1(55), с. 16-18. Описаны основные возможности сервисных программ дли оцененных нейтронных данных в формате ЕМОF/В, освоенных в Центре по ядерным данным на ЭВМ ЕС-ID33. Рассмстренные программи служат основой как при формировании новых файлов оцененных данных, так и в различного рода приложениях (табл.1, список лит. - 10 назв.).

УДК 621.039.514

АНАЛИЗ ПОГРЕШНОСТЕЙ РЕАКТИВНОСТИ ПО МЕТОДУ ОБРАЩЕННОГО РЕЩЕНИЯ УРАВНЕНИЯ КИНЕТИКИ, ОБУСЛОВЛЕННЫХ ПОГРЕШНОСТЯМИ ПАРА-МЕТРОВ ЗАПАЗЛИВАКЩИХ НЕИТРОНОВ/А.И.Воропаев, И.П.Матвеенко, В.И.Шикина, А.Г.Шокодько. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.18-24.

Адерные константы, 1984, вып.1(55), с.18-24. В численном эксперименте для измерения реактивности методом обращенного решения уравнений кинетики определены погрешности реактивности с учетом корреляний параметров запаздывающих нейтронов для изотопа 250. Рассмотрены разные версии этих параметров. Модель кинетики точечная, возмущение реактивности мтновенное. Погрешность оценена для трех реактивностных функционалов: самой реактивности, разности реактивностей и отношения реактивностей. Учет корреляций параметров запаздывающих нейтронов приводит к уменьшению погрешности реактивности и а IO-30% в широкой области значений реактивности и времени после ее возмущения. Величина относительной погрешности реактивности растет со временем и с абсолютной величиной реактивности. В диапазоне времени 30-60 с она составляет 2,5-5% для разных версий параметров запаздывающих нейтронов при | р | ≤ 5 β₃₀, а в диапазоне IOO-300 с наолюдается рост ее примерно до IO% (рис.3, табл.3, список лит. - 9 назв.).

удк 539.22

РАСЧЕТ АНИЗОТРОПНЫХ ПЕРЕХОДОВ БЕЗ ПОЛИНОМИАЛЬНОГО РАЗЛОЖЕНИЯ/ А.И.Базыков, В.П.Жарков, И.А.Карташев. - Вопросы атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с. 24-29.

техники. Сер. Ядерные константы, 1984, вып. I(55), с. 24-29. Исследуется методика расчета матричных элементов межгрупповых анизотропных переходов без полиномиального разложения с точки зрения подготовки констант для методов дискретных ординат. Задача сводится к интерпретации интегрального члена в кинетическом уравнении Больцмана и представлении функции рассенния. Используя предложеный ранее метод прямого интегрирования функции рассения, можно рассчитать сечения перехода для упругото и неупругого (дискретный уровень) рассения нейтронов. Полученные результаты для различных элементов сравниваются с другими данными. Оценивается погрешность расчета матриц неупругих переходов при различных спектрах усреднения и в случае неучета угловых распределений нейтронов. Цоказано, что по сравнению с полиномиальным разложением метод расчета анизотропных переходов дает возможность увеличить порядок точности многогрупповых констант (рис.3, табл.2, список лит. - 8 назв.). УДК 621.039.612.45 + 539.172.4

ЭФФЕКТИВНЫЕ ПОРОГОВЫЕ СЕЧЕНИЯ ДЛЯ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕ-ДЕЛЕНИЯ ПОТОКОВ НЕИТРОНОВ В БЛАНКЕТАХ ТЕРМОЯДЕРНОГО РЕАКТОРА/ А.А.Ежов, Л.А.Книжникова, В.В.Фрунзе. - Вопросн атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.29-34.

Рассмотрен метод эффективных пороговых сечений, который может быть успешно использован для восстановления интегральных потоков нейтронов по данным активации пороговых детекторов (фольг) в бланкетах термоядерных реакторов или в устройствах, имитирующих бланкеты. Расчетным путем для I33 ядерных реакций типа (n,ρ) , (n,α) , (n,2n) получены зависимости $\mathcal{O}_{3\phi}^i$ от $E_{3\phi}^i$ для различных материалов бланкета термоядерного реактора (углерода, окиси лития, бериллия). Для каждой из рассмотренных портовых ядерных реакций рекомендована одна пара $\mathcal{O}_{3\phi}^i$ и $E_{3\phi}^i$ (где i - номер детектора), применение которых для экспериментально полученных активационных интегралов $\{\phi(E)\mathcal{O}_i(E)\mathcal{O}_i(E)\mathcal{O}_i(E)\}$.

УДК 539.1.074.8

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ НЕЙТРОННОГО ГАЗА И ЭМИТТЕРА НА ИЗМЕНЕНИЕ ЧУВСТВИТЕЛЬНОСТИ ЭМИССИОННЫХ ДЕТЕКТОРОВ НЕИТРОНОВ/ Л.Л.Броницкий, С.Н.Мякинченко, В.В.Постников. – Вопросы атомной науки и техники. Сер. Ядерные константы, 1984, вып.1(55), с.35-38.

Рассмотрено влияние изменения температуры эмиссионного детектора нейтронов и температуры нейтронного газа на изменение чувствительности детекторов к нейтронному излучених. Анализ влияния температур основан на изучений изменения сечения Весткотта. Показано, что изменение температур оказывает различное влияние на изменение чувствительности детекторов с эмиттерами из серебра, родия, гафния, индия, гадолиния (рис.3, список лит. - 9 назв.).

OTEVATKA

¥.

.

в работе В.В.Возякова, Е.Н.Кузина, В.М.Литяева, А.В.Шапаря "Эмергетические спектри нейтронов критических сборок бистрого физического стенда", напечатанной в данной серии сборника вып.4(53) за 1983 г.

Страница	Напечатато	Следует читать
53	БФС-27	E&C-39
	EC-39	EQC-28
	B&C28	50C-27

I p. 50 m.

Индекс 3645

Вопросы атомной науки и техники. Серия. Ядерине константы, 1984, вып.1(55), 1-38