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CALCULATION OF SELF-SHIELDING FACTORS FOR CROSS-SECTIONS IN THE UNRESOLVED
RESONANCE REGION USING THE GRUCON APPLIED PROGRAM PACKAGE

V.V. Sinitsa

ABSTRACT

The author gives a scheme for the calculation of the self-shielding

factors in the unresolved resonance region using the GRUCON applied

program package. Some typical examples of calculation are considered

and the results are compared with those of other authors. The calculation

accuracy is better than 2%.

Computerization of the process of conversion of evaluated neutron cross-

section data into multigroup microscopic constants is an important component

in developing a system of providing constants for reactor neutron-physics

and radiation safety calculations [l]. Since the end of the seventies the

Institute of Power Physics (Obninsk) has been working on GRUCON, an appLied

program package designed for the solution of this problem. The first operative

version of the package [2-4] made is possible to perform'computerized calculations

of the microscopic unshielded group cross-sections on the basis of .computerized

evaluated data libraries in the ENDF/B format [5]. It was used in late 1982

to carry out a preliminary conversion of the foreign libraries available to

the author (the US libraries ENDL-78 [6] and ENDF/B [7], certain files of

the ENDF/Blibrary [8] and the Japanese JENDL-1 library [9]) into 28-group

unshielded cross-sections averaged with the weight of the standard spectrum

in the Bondarenko-Nikolaev-Abagyan-Bazazyants grouping [10].
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The purpose of the second stage of the work on the GRUCON package was

to be able, on the basis of the evaluated data libraries in the ENDF/B format,

to obtain the values of raultigroup shielded cross-sections and also other

functionals of cross-sectionsof practical interest, for example the experimentally

measured transmission and self-indication functions. When calculating these

values it is necessary to take into account their dependence on the composition

and temperature of the material. A slight complication in the form of the

functionals leads to very large calculation difficulties - the volume of cal-

culations is hundreds of times^bigger and much more complex procedures and

calculation schemes are required. This comment refers mostly to the unresolved

resonance region considered iri this paper.

For a solution of the problem of computerized calculation of group constants

on the basis of evaluated data libraries, the algorithms and calculation schemes

should satisfy the following requirements:

- The calculation model used should be consistent with the physical

concepts on which the initial evaluated data library is based;

- The data processing scheme should be sufficiently universal to make

it possible to obtain any functionals for micro-cross-sections of

practical interest;

- The calculation accuracy should be higher than the accuracy of the

data in order to preclude substantial distortions of the data during

conversion (the actual calculation accuracy is about ' 17.);

The time of conversion of the library unit of information - material -

should be acceptable from the standpoint of the existing practice

in preparing the group constants, for example, it should not exceed

1 h on the BEhSM-6 computer.

Very careful Consideration of procedures recommended for the processing

of unresolved resonance parameters from the ENDF/B library [11-13] revealed

that they only had a narrow sphere of application [ll], or that they did not

ensure the requisite calculation accuracy for the functionals of interest

to us [12], or else that they were not sufficiently fast (the computer time

spent was more than 10 h for the BEhSM-6 when ten-point quadrupole formulae

were used [13]). The present study proposes a set of algorithms and calcu-

lation schemes satisfying all the above requirements. It is used in the second

version of the GRUCON package [14], which has been operating in the BEhSM-6

computer since the beginning of 1983, in the *U/D-F, *F/G-E and *F/C-F modules.
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1. FORMULATION OF THE PROBLEM

In che region of unresolved resonances the ENDF/B library format provides

for the storage of the following characteristics of target nuclei and para-

meters of their interactions with neutrons: atomic weight A; target nucleus spin I;

effective scattering radius R f used for calculation of the scattering

phase * (see also the note at the end of section 2), and orbital moment i.
I

For a given state of the compound nucleus and its decay probability along

the different channels for each level system determined by the values of

moment J and parity IT, we give the average resonance parameters as a function,

of incident neutron energy: the average distance D between neighbouring

resonances; reduced neutron width T ; radiative capture width T ; fission

width Tf; and width F of all processes competing with those mentioned

earlier (usually inelastic scattering). The energy dependence of these para-

meters is given in tabular form.

In addition to the average values of the resonance parameters, the laws

governing their probabilistic distributions are also given: the Porter-Thomas

distribution with the parameter - number of degrees of freedom v for resonance

widths, and the Wigner distribution for distances between neighbouring resonances.

The Breit-Wigner formula is recommended for calculation of the energy dependence

of cross-sections(see section 2).

The purpose of the calculation is to find the values of functionals of

the shielded cross-section type and transmission functions as a function of.

parameters of the material: temperature T; dilution cross-section a ; and

target thickness t. For calculation of the shielded cross-sections they take

the form:

(1)

while for the transmission and self-indication functions

J/j (2)

where cr(E,T) is the total cross-section and a (E,T) the cross-section for

a reaction of type r; the line denotes averaging over the distribution of

resonance parameters; (• - •) is averaging over energy with the weight of the

standard spectrum in the group interval AE . Most of the quantities encountered
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in practice are associated with these functionals by simple relationships.

For example, the resonance self-shielding factors for the total cross-section

and for the r-type reaction cross-section are expressed in terms of functionals

as follows:

— —2—t fhw)*——-——— i—
2> J* <6>C£T)><i/[^£T)dJ> (2A)

2. CALCULATION MODEL

The calculations of the functionals of cross-sections (1) and (2) are

based on the assumption that there is no correlation in the energy dependence

of cross-sections of structures due to the different systems of levels. On

this assumption we can calculate the functionals independently for each cross-

section component determined by a particular system of levels, and obtain

the integral quantities sought by means of convolution procedures (see section 6)

Confining ourselves to one system of levels, we shall assume that the values

of cross—sections a(E) and a (E) at a given energy point E are determined by the

following factors:

The distance from point E to the two nearest resonances situated

below (L) and above (H) energy E: E-E and E -E (hereafter we shall
Li tl

also use an equivalent set of variables: S = E-E the position of
Li

the L-resonance and D = Eu-E the distance between neighbouring

resonances);

- The value of the resonance widths of the two nearest resonances:

neutron r . and r , 'radiative F and r and so on; the total
nL nH yL YH

sets of these widths for each resonance will be denoted in the form
-* -*•

of vectors I1 , I" .
Li n

The contributions of all other resonances over the energy range limited,

by these two resonances will be regarded as small. We write the Breit-Wigner

formula for the J-system of resonances at T = 0 with allowance for the above

limitations and the data of Ref. [15] in the form:

(3)
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where x = (E-E )/r ; a (E), a (E), o.(E) are the total-inceraccion, r-type
X. \ \ r x.

reaction and elastic-scattering cross-sections, respectively;

Up = 4** g sin $ is the potential-scattering cross-section; 50 , 5or are

the contributions of distant resonances to the total cross-section and the

r-type reaction cross-section; * is the incident-neutron wavelength;

g = (2J + 1)/[2(2I + 1)] is a statistical factor; G , H are terms for the

interference of the two resonances:

subscript \ has the values of L and H.

The elastic scattering phase $ can be calculated by the equation
2

* = p; * = p-arctg p; «„ = p-arctg[p/(3 - p )], where p = kRgf; Rgf is the

effective scattering radius given in the data library and k the wave number.
Z 0

Neutron widths r are associated with the reduced neutron widths r by the
n n

relation Yl = r°7fv v, where E is incident-neutron energy, eV, v the number
n n» 1

of elastic-scattering channels, v the penetrability factor for a neutron

with orbital moment &. To calculate v we can use the approximation of an
2 2 4 2 4

even spherical nucleus: v = 1 , v = p / ( l + p ) , v = p / ( 9 + 3 p + p ) .

Here p = kR, R being the radius of interaction calculated by the'formula

R = (1.23 A + 0.8)10~ cm, where A is ratio of nuclear mass to neutron

mass.

Hereafter we shall consider only one system of levels and subscript J

will be dropped.

In the unresolved resonance region there is no information about the

exact position and width of resonances and therefore parameters E , E ,•

rT , ru are regarded as random quantities governed by the well-known theoretical
Li H

probabilistic distributions [16]. For resonance widths r (components of

vector r) it is the Porter-Thomas distribution (Fig. la):

2
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For distances D between neighbouring resonances we have the Wigner distribution

(Fig. lb); Pg(y) = (ir/2)y exp (~rry /4); y = D/D, ye[0,o>); for resonance

shift S we shall assume an equiprobable distribution over the whole range

of variation from 0 to D: $ (z) = 1; z = S/D, Ze[0,l]. We write the expected

value of the functional of cross-section in the form of a multiple integral

(5)

where the form of function F is determined by relationships (1) and (2); P

is the set of parameters of the functional, R the set of resonance parameters

and <̂ .. .y averaging over resonance shift S.

The group average values of the functionals can be obtained by averaging

with the weight of the standard spectrum <j>(E) over the group interval AE

( 5 A )

3. FLUCTUATIONS IN RESONANCE PARAMETERS

The multiplicity of the integral in expression (5) is determined by the

number of fluctuating resonance widths N and equals 2N + 1. The ENDF/B library

format allows N = 4. Calculation of the integrand is a laborious operation,

which includes computing the complex functions for Doppler broadening and

integration over the resonance parameters. Under these conditions it is natural

that the nine-fold integral can only be calculated by taking careful account

of the behaviour of the integrand. So far in the calculation programs for

constants only the form of the weighting function has governed the selection

of the system mesh points for integration, the number of those mesh points

being generally ten [17, 18]. An attempt was made in Ref. [19] to take into

account the special form of the integrable function for the given problem

in constructing the quadrature formulae. It was shown that to attain an accuracy

of about 1% in evaluating the average values of cross—sections one could use

two to six mesh points, instead of ten, depending on the value of parameter \>

for any ratios of the average resonance parameters. When determining the

parameters of the quadrature formulae the new version of the GRUCON package

takes into account not only the shape of the dependence of-the integrand on

the integration parameters, but also the ratios between the average resonance

parameters. For example, let us consider the dependence of the expected value
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of the radiative-capture cross-section on the parameter a = r /r , which
Y n

characterizes the ratios between the average resonance parameters for elastic

scattering and radiative capture. We will assume that r does not fluctuate

(r = T )• The expected value of the radiative capture cross-section can
Y Y

then be represented in the form

where x = r / r , a is a constant. Figure 2 shows the dependence of the
n n_ y°

cross-section <̂cr ̂  on parameter a for v = 1 degrees of freedom. As will

be seen from the figure, the fluctuation effect can be as much as 30% approxi-

mately.

The integration on the right-hand side .of Eq. (6) can be performed with

the help of the quadrature formula

where a., x. are the weights and mesh points of quadrature formula (7), which

we shall determine by the Gauss scheme [20]. Considering the form of the

integrable function in formula (6), we redefine the weighting function as:

1 ' Ok)

where a , L are the optimization parameters (the choice of their values is

discussed below);

, ~ P_cx)
Cn « \ -.— ' - ctX normalization constant. (7B)
0 J (X + <X)

The moments obtained for the weighting function are expressed in terms

of the degenerare hypergeometric functions [21] and can be calculated by the

formula (see section 9)

(7C)

The parameters sought a., x. are determined from the system of non-linear

equations:

aixi> "-0,1,...,2AM ; (8)
i-f
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where N is the number of mesh points. The values of the optimization parameters

can of course be made equal to: a = F /? , L = -1 since in this case the cross-
o Y n

section can be expressed in terms of moment M. ( \ a 7 = a C M.) and calculated
1 Y Y° ° 1

accurately by formula (7) for N = 1.

If there are several fluctuating widths, the expected value of the cross-

section can be represented in the form of a multiple integral over each of

the variables x = r IV . Let x , be one of the variables x . When considering
r r r r' r °

the dependence of the cross-section on resonance parameters (see Eq. (3))

we can see that the integrand in formula (6) retains its form if we take

parameter a to mean not simply the ratio of average widths but the linear

combination of all integration variables except the one selected

z L i z t . z z/z • (9)

Thus, in the presence of several fluctuating widths, parameter a in the

integrand will no longer be a constant but a variable lying in che interval

[0, • ), and the calculation accuracy of the expected cross-section value will

be goverened by the accuracy of the quadrature approximation of dependence (7) on

parameter a in some range of its variation. This range is determined by the

distribution width of random parameters x entering into a and by the ratio

of the average resonance parameters a (see formula (9)). From the form of

the distributions (see Figs la, lb) it follows that the distribution of the

random quantity a has a clearly expressed maximum, the position of which we

shall denote by x (x is the most probable value of x ). For the Porter-

Thomas distributions from Eq. (4) we obtain x = 1-2/v for v > 2,

x = 0 for \) < 2 and ct = ^ , a x for the most probable value of a. It

is this value which we shall use to determine the moments and parameters of

the quadrature formulae for the selected variable x ,.

The possibility of a local approximation in the neighbourhood of a is

illustrated in Fig. 2, from where it will be seen that the number of mesh

points N = 3 enables us to describe the exact curve with an error of up to

17, for a variation of parameter a by a factor of about 10 for any values of a .

To compensate for the integration error we have made the approximation for

a sign-variable by choosing the right value of parameter L = -3 (in the general

case L = -N).
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We have so far been looking at calculation of the expected values of the

linear functionals of cross-sections. It is natural to ask how far the inte-

gration schemes given above are applicable to the evaluation of functions

of a more complex form, which determine the values of the self-shielding factors

(for example, functional (1)). It was shown in Ref. [19] that the n-th moment

of cross-sections of form (1) for a selected integration variable x could

be represented in the form of a linear combination of integrals

M

where o, S are the linear combinations of integration variables which do not

coincide with the selected variable.

The form of the integrand in Eq. (10) shows that the systems of mesh

points found for the linear functionals will be sufficiently effective here

also. The verification was performed in the most critical case (for zero

temperature and undiluted material) for the resonance width ratio and the

form of distribution corresponding to the maximum fluctuation effect. The

moments of (l/o) and <JJ /CT) were calculated for different numbers of mesh

points: N = 2, 3, ..., 10. The results are shown in Fig. 3a. In the critical

case considered an accuracy of about 1% is attained for N = 5.

Distributions with higher values of v and the Wigner distribution require

a smaller number of mesh points. In particular, N = 2 is always sufficient

for averaging over the Porter- Thomas distribution with v > 5 and over the

Wigner distribution (Fig. 3b). For calculation of moments up to and including

the second order at approximately 1% required accuracy the GRUCON package

uses the following dependence of the number of mesh points on the form of

distribution:

( 5 - E(v/2) for v < 5

, 2 for v >, 5

( 2 for the Wigner distribution

4. THE DOPPLER EFFECT

In order to allow for the dependence of the cross-section on the temperature

of the material, we need to integrate its energy dependence over the energy

distributions of the target nuclei o(E,T) = 'a(E')F(E-E',T)dE*. In the

ideal-gas model this distribution takes the form
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where A = 2VK-TE/A; iC = 8.61735 x 10~ eV is the Boltzmann constant; T the

target temperature, K; E the incident neutron energy, eV; and A the ratio

of the target nucleus mass to the neutron mass.

For the Breit-Wigner formula (3) consideration of the target temperature

ts to replacement of functions

the resonance shape by the functions

2 2
amounts to replacement of functions 1/(1 + x ) and x /(I + x ) determining

11 21

where C = T/A; u(z) and v(z) are the real and imaginary parts of the complex

probability integral:

(12A)

The method proposed in Ref. [22] is used to calculate functions ¥(x,O and

When the temperature dependence is taken into account, the calculation

volume increases because of the multiple calculations of functions f(x,C)

and x(x,O and also because of going over from the explicit expression of

the integral to the numerical integration scheme in the calculation of functionals

of form \a I {a +• a ) / (only the numerical scheme is applicable in any case

to functionals of form \a exp(-at)/). Changing to the numerical integration

scheme involves an increase in the amount of calculation by several factors

of 10, thereby making it necessary to optimize the computational scheme even

at this stage of calculation. In the GRUCON package the optimization problem

is solved by selecting a more or less rigorous approximation for the cross-

section calculations, depending on the calculation accuracy for a particular

cross-section component. Since the sensitivity of the resulting functional

to the different corss-section components varies by several orders, the

possible approximations may have a very wide spectrum. Below we give only

those which have at present been used in the program.

Approximation by the Lorentz function

Kolesov and Luk'yanov [23] suggested an approximate method for consideration

of the Doppler effect, which enables us in some cases to avoid the laborious
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calculations of functions v(x,$) and x(x»O- Essentially, it consists of

the following. In integral (12) we replace distribution (11) by the
•- 2 2

Lorentz function: F(E-E') = X/2IT{1/[ (E-E1 ) + 5 /4]}. The resonance shape
•*" — 1 2 1 7

functions will then take the form: <f(x,z) = (1 + l~ )/[x + (1 + l~ ) ],
2 ~—1 2 - ~

x(x,O = x/[x + (1 + t ) ] » ! = r/&, and this is equivalent to the replacement

in Eq. (3) of the total resonance widths: r * T = r + A. The question

is only how to determine the effective Doppler width X. The authors of

the method suggested the determination of X from the equality

(12B)

which gives us the dependence X (O = ¥ (O,5/2)-l. This method of' determining

5 was verified by comparison with the results of exact calculations of the

temperature dependence of the moments of cross-sections, i.e. using

functions V(x,^) and x(x,O (Fig. 4a, 4b).

The nature of the deviations of the quantity being approximated from

the exact curve indicates that it is possible to obtain a better approximation

by introducing an adjusting parameter y: ?~ (?) = V~ (0,y£) - 1. For y = 2.0

the deviation of the quantity being approximated from the exact curve decreased

by several factors and did not exceed 57o.

Approximation of equidistant identical resonances

Consideration of the Doppler effect through redetermination of resonance

widths does not change the shape of the dependence of the cross-section

on energy for T = 0 so that the explicit expressions for the integrals over

energy can be used to calculate-the functionals (l/(a + a )n) and (a I {a + a ) / .
o ^ r o

It is most convenient to obtain these expressions in the approximation of

equidistant identical resonances proposed in Refs [16, 24]. Assuming

I"x = ?, r^^ = rf, x^ = 2(S - XD)/r, Sa = 5a = 0 in Eq. (3), we sum over al-1 the

resonances. The resonance shape functions with allowance for the Doppler

effect take the form

(13 )

- I
Xa-oo

_fx_ m £T sin(2gS/P)
1 + x* 22 ch(JT/7'l?)-cos(2JIS/iJ)
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The interference terms

r £ C ( £ £ ) ] ; H~-sin20 (14)

after substitution into Eqs (3) enable them to be written in the form:

( 1 4 A )

The functionals of the cross-sections sought are calculated by the

equations

Here C-6m{Xrn/2Dy, C8-C(rt/Oth<a/*/D); B-i/chixF/D); R p

where rf-i4 + («j, + fl^)O+B)/Cf jfl—2B/T, ^-M+(ffp+^-BVC, >1-(j°°th(JI/7i?).

(For calculation of the integrals on the right-hand side of equalities (15)

see section 10).

Approximation of fluctuation factors

Let us consider as an example the functional <l/a(E,T,S, r,D)]>. We

will write down for i t the identity

( 1 5 A )

where f, D are the average values of resonance widths and distances between

levels. The ratio of the functionals

= <i^£(E17Vs1rLD)>_
' <W(ffnsrB)>

is the fluctuation factor for the moment of cross-section <jL/a(E,T,S,r,D)/.

The fluctuation factors for any of the functionals of interest to us are
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determined similarly. There are grounds to assume that the dependence of

factor R(E,T) on temperature T of the material is weaker than the dependence

of the functionals of cross-sections entering into the factor. This means

that for evaluation of its value the accuracy of the approximate methods

given earlier may be quite sufficient. The example in Fig. 5a and b confirms

this assumption. The second multiplier <(l/a(E,T,S, r,D))> can be calculated

by any exact, though laborious, algorithm since it does not require multiple

integration over the resonance parameter distributions.

5. CONTRIBUTION OF DISTANT RESONANCES

In order to calculate Sa and 5a in Eqs (3) we use the approximation

of identical equidistant resonances. Excluding from sums (13) the two terms

corresponding to the L-resonance (x = 0) and H-resonance (x = 1) for the

line shape function due to the contribution of distant resonances in the

interval [E , E ] we obtain
L rl

(15C)

and, respectively, for the contributions of distant resonances to cross

sections :

<56~ <S6°° - 6m(dW°°cos20 + rfx^sln Z<p),

When calculating &a and 5a the effect of fluctuations in the resonance

parameters is not taken into account. This is "quite acceptable since the

ratio of the contribution of distant resonances to that of the nearest two

is about r/D and it is consequently small in the sphere of application of

the Breit-Wigner equation.

6. CONVOLUTION OF FUNCTIONALS

The functionals of cross-sections obtained for some systems of

equations v = J are used for the calculation of the functionals sought

by convolution procedures corresponding to their forms. This procedure appears



- 14 -

to be the simplest for the transmission and self-indication functions. On

the assumption that the distributions of the energy structures of cross-sections

due to independent systems of equations are independent we write:

rjU) (i6)

Tv(t) .

For functionals of form / 1 / (a + a ) /• and ^a"~7Ta~"+~~a~Ty the convolution
v o r o

procedure is based on the use of an intermediate representation of the cross-

section structure in the form of sub-group parameters. To obtain sub-group

components a. and cross-sections a., a . ie is convenient to use the scheme

proposed in Ref. [25] with modifications to suit the specific features of

the problem in- hand: here, in the convolution procedure the sub-group parameters

can be determined independently for each reaction r, dilution cross-section a
o

and temperature T. Having set these values, we consider the following system

of non-linear equations as the initial system
. /v

(16A)

By simple transformations this system can be reduced to the form of (8) and

solved with the help of the same algorithms. The set of values of x. found

is then substituted into the system of linear equations

N
x " x - V , n — ft0f .,.,N-Z ,

from where the values of c. are determined. The sub-group parameters sought

are found from the relationships a. = c . a. = x . - a , a . = c ./c..

r
 I 1,1 i o n . ri i

For functionals dependent only on the total cross-section, parameters

a., a. are determined from the system of equations of the form of (17) which

is non-linear with respect to c. and x. but has variation limits n = N,N - 1,

..., -N +• 1. The functionals of cross-sections are calculated from the sub-

group components and cross-sections found in accordance with the values of

their parameters (type of reaction, dilution cross-section and temperature)

by the formulae

(17A)
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where a* = Ha. , a+ = Za. , a + = Zo . ; che summation is performed over
v v u

all possible positions of sub-group vector 1 = ji,i_,...,i j where i is the

number of the sub-group for the v-th system of levels and M the number of

systems of levels. The convolution procedure using the sub-group representation

of the cross-section structure does not presuppose any definite form for the

resulting functional and is in this sense more universal than the preceding

one. In particular, for the transmission and self-indication functions the

following relationships are valid

T(.t)

1 (18)

12

The dependences of these functions on target thickness't, as calculated

by expressions (18), can be regarded as sub-group approximations of exact

curves (16). In order to see how well the sub-group approximation describes

the exact functions, we obtained for the same set of resonance parameters

the values of the transmission functions T(t) and the self-indication function

for capture Ty(t) from exact Eqs (16) and approximate formulae (18) with a

number of sub-groups N = 2 and N = 3. The calculation results are shown in

Fig. 6a, 6b. Thus, the sub-group approximation satisfactorily describes the

exact dependences for a small target width and is sign-variable (since it

retains the exact values of the integrals of these functions) but yields ex-

ceedingly large relative errors for high values of t. This is understandable

if we take into account the fact that the asymptotic behaviour of the

transmission function cannot be represented by a finite number of sub-groups

since it Cakes the form

( 1 8 A )

where a . , a are the minimum and. maximum values of the cross-sections
nun max

over the averaging interval and C is a constant with respect to t [24].

7. PROGRAMMING

The calculation of the group functionals of cross-sections on the basis

of the unresolved resonance parameters in the GRUCON applied program package

is made with the help of three modules.performing the following operations:

calculation of detailed behaviour of the functionals of cross-sections from

the unresolved resonance parameters for some systems of levels (module *U/D-F);
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calculation of group average values of Che functionals of cross-sections

on the basis of the detailed dependences for a given group structure and

shape of the standard spectrum (module *F/G-F); convolution of the func-

tionals of cross—sections obtained for some systems of levels into

functionals of total cross-sections (module *F/C-F). When the sub-group

convolution scheme is used, it is possible to transform the functional.

The basic part of the calculation work is performed with the *U/D-F

module; it is therefore quite sufficient to consider this module in order

to have an idea of the way in which the approximations and calculation

schemes described in the preceding sections are used and the interrelation-

ships between them. Figure 7 shows a schematic of the functional

module *U/D-F. The individual p'rogram modules have the following functions:

UXDXF - general command of the calculation; organization of loops

for systems of levels and energy points;

LOADU

LOADF

FMOM

OPTIM

SUM

UBRWI

retrieval of average resonance parameters from the GRUCON

data library;

recording of calculation results in the GRUCON data

library;

calculation of moments at a given energy point by one of

the possible schemes (for selection logic see end of

section 7);

calculation of parameters of quadrature formulae for

integration over distributions of resonance widths and

distances between levels;

calculation of sums of arbitrary multiplicity with given

boundaries of variation of summation indices;

calculation of.functionals of cross-sections of form

+ 'a )

DELTA

UFORM

and ^a / (a +• a ) ̂  by analytical formulae

in the approximation of identical equidistant resonances

for given resonance parameter values;

calculation of effective values of total widths for a

given temperature T of the material;

calculation of functionals of cross-sections having any

of forms {¥} given in the task, with the use of the

numerical scheme of integration over energy;
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FBF - selection of energy points over the integration interval

in accordance with the given calculation accuracy;

UFUN - calculation of functions of cross-sections at some energy

point indicated by the FBF program for a given set of

parameters of the material (the form of the dependence F on

cross-sections and parameters of the material is deter-

mined by the type of functional being calculated);

BRWI - calculation of cross-section values by the Breit-Wigner

equation for a given energy point and a given set of

temperatures;

PSICHI - calculation of resonance shape functions *

REMO - calculation of cross-section values by the Reich-Moore

formula for non-fissioning nuclei.

Within the framework of this structure we executed several calculation

schemes which can be used to compute functionals with different degrees of

accuracy for different times (varying from 0.1 to 1 min for one system of

levels, one energy point and the standard set of parameters of the material

containing 30 values). The scheme can be given as an instruction in the

task set, indicating one of the three possible calculation variants con-

sidered in section 4, namely:

Variant 1. The functionals are calculated by a numerical scheme for

integration over energy; the Doppler effect is taken into account with

the help of functions ¥(x,£) and ^(x,^) (the most exact, although the

most laborious, variant).

Variant 2. The functionals are calculated by analytical formulae in

the approximation of identical equidistant resonances with allowance

for the Doppler effect through effective resonance widths. Although it

is faster than variant 1 by several factors of ten, it can be used only

for calculation of functionals of the shielded cross-section type. The

Doppler effect is taken into account with an error of about 107..

Variant 3. The functionals are obtained by multiplying the fluctua-

tion factors obtained in the approximation of variant 2 by the values

calculated (disregarding fluctuations in the resonance parameters) by

the scheme of variant 1. This variant is a few times slower than

variant 2 and can be used only for functionals of the shielded cross-

section type. The Doppler effect is taken into account with an accuracy

of about 57..
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If the calculation scheme is not specified, a particular variant is

selected by the FMOM program, depending on the contribution of the system

of levels to the resulting functional. This contribution is evaluated

approximately from the ratio of the penetrability coefficient v. of the

system under consideration to that of the s-wave v = kR: if

r = v /kR > 0.05, variant 1 is taken; if r < 0.05, variant 2 is adopted.

Moreover, for r < 0.1 the single-resonance cross-section model is used and

the number of mesh points for calculation of integrals over systematic

distributions is taken to be the minimum: N = 2 for resonance widths and

N = 1 for distances between levels.

By virtue of this approach, the time requirements for the conversion

of evaluated data into group constants are satisfied.

8. THE MODEL'S POTENTIAL AND CALCULATION ERRORS

The model adopted for the calculation of the functionals of cross-

sections in the unresolved resonance region enables us to take into account:

the statistical fluctuations of resonance widths in one- and two-level

approximations using the Porter-Thomas distributions; the dependence of the

functionals on the temperature of the material by the methods of f- and x-

functions and redetermination of the total resonance width; the statistical

fluctuations in distances between the neighbouring levels using the Wigner

distribution; the effect of inter-level interference in the two-level

approximation of the Breit-Wigner formula; the contribution of distant

resonances in the multilevel approximation of identical equidistant reso-

nances. The main sources of calculation errors within the framework of this

model are: integration over resonance parameter distributions; considera-

tion of the temperature dependence of cross-sections; integration over

resonance shift; convolution of functionals using the sub-group representa-

tion of the cross-section structure; integration over the group interval.

We use the model problem proposed by Munoz et al. [26] in order to make a

quantitative evaluation of the physical effects and calculation errors.

After obtaining the resonance sequences by the Monte Carlo method, and on
238

the basis of the average resonance parameters for U from the ENDF/B-V

library (Table 1), they used a different method to obtain the values of the

resonance self-shielding factors for the total and radiative-capture cross-

sections as a function of temperature of the material (Table 2). This

method reduces the problem to calculation of the functionals of cross-sections

in the resolved resonance region; therefore it has almost no need for

special calculation schemes and highly accurate models can be used. Thus,
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che main source of error in its case is chat of integration over resonance

parameter distributions; for the Porter-Tho.mas distribution this error

depends on the number of resonances involved N. The form of this depen-

dence is /H/2. Here, for the necessary accuracy to be attained a much

larger number of resonances are required than in the proposed method, and

the time spent clearly exceeds the permissible limits for large-scale com-

putations. Nevertheless, the approach can be used with success for adjust-

ing the approximate methods.

238
Table 2 gives the self-shielding factors for U obtained by our

method. The maximum disagreement (about 37,,) is attained in the extreme case
238

of the even-even U nucleus, the low-energy boundary of the unresolved

resonance region (4 keV) as well as the minimum values of the dilution cross-

section (a = 1 b) and of the temperature of the material (T = 300 K). This

agrees with the stated 27, accuracy of de Saussure's results [26] and with

the specified accuracy of calculations by our method, which is approximately

17. for the cross-section moments entering into the self-shielding factors

(here the error in the factors themselves is also about 27,).

In Table 3 we give the relative deviations of the self-shielding fac-

tors obtained by the "standard" and "non-standard" calculation schemes for
238

U. By standard we mean the scheme which is selected by the program on

the basis of resonance parameter values and calculation conditions. The

latter conditions were taken to be: temperature T = 300 K, dilution cross-

section a = 1 b and calculation accuracy e = 17.. The following calcula-

tion schemes were chosen with allowance for the values of the average

resonance parameters.

For calculation of the s-wave we use the Breit-Wigner formula with

allowance for incer-level interference, making a correction for the contri-

bution of distant resonances. The resonance widths of the neighbouring

resonances fluctuate independently of each other, and the. fluctuation of

the distance between "resonances is taken into account; allowance is made

for the Doppler effect by means of the ¥- and x-functions; the numerical

scheme of integration over resonance shift is used; the number of mesh

points for integration over neutron width distribution N = 5 and over the

distribution of distances between levels N_= 2; the number of sub-groups

for representation of the cross-section structure N = 2.
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For calculation of the p-wave we use the Breit-Wigner formula in the

approximation of identical equidistant resonances. The temperature depen-

dence is taken into account by the method of redetermination of the total

width; the integrals are calculated by a shift method with the help of

analytical formulae; N = 3, N^ = 2, N = 2.

For calculation of the d-wave we use the Breit-Wigner formula, as in

the case of the p-wave, with N = 2 , N = l , N = l . From the data given in
238

Table 3 for U we can draw the following conclusions:

- The Doppler effect and neutron width fluctuations have the strong-

est influence on the values of the self-shielding factors;

- The values of the resonance self-shielding factors for the total

cross-section are affected by the correlations of the widths of

the neighbouring resonances and by fluctuations in distances

between resonances; for this reason, the approximation of iden-

tical equidistant resonances cannot be used for calculating the

s-wave component;

The values of the functionals are not affected substantially by the

use of more accurate calculation schemes (increasing the number of

integration mesh points and the number of sub-groups) and of numeri-

cal integration for calculation of the p- and d-waves, and this

confirms that the calculation scheme is chosen correctly;

- The calculation time can be roughly halved by optimizing the

calculation scheme.

9. CALCULATION OF MOMENTS FOR RESONANCE PARAMETER DISTRIBUTIONS

The general expression for moments takes the form

If P(x) is the Porter-Thomas distribution, the moments are represented

in terms of the degenerate hypergeometric function M = x (x v/2)

U(\)/2, \»/2 + n + 1; x v/2). To calculate U(a,b,z) we use the recurrence
o

formula (b-a-l)U(a.b-l;z)+(l-b-z)U(a,b;z)+zU(a,b + l;z) = 0 with the initial

values: U(a,a + l;z) = z , U(a,a;z) = e r(l-a,z) where r(a»z) is an

incomplete gamma function. Parameter a = v/2 can take only integer and

semi-integer values. Function r(a,x) is calculated by the recurrence

formula r(a +• l;x) = F(a,x) +• x e with the initial values:
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r ( 0 . 5 , x ) = / 7 r e r f c ( / x ) ; r (O,x) = E ( x ) . To c a l c u l a t e e r f c ( x ) for x$ 2
2 -> *

we use the r a t i o n a l approximat ion: e e r f c ( x ) = a . t + a t + a . t +

a 4 t 4 + a . t 5 , where t = 1/(1 + px ) , a =.0.254829592, a 2 = -0.284496736,

a3 = 1.42141374, a 4 = -1 .45315203, a 5 = 1.06140543, p = 0.3275911. For

x > 2 we use an expansion i n t o a cont inued f r a c t i o n

(18C)

In order to calculate function E. (x) we use the rational approximations:

x ^ I , £<(x)+fo(x)«*af+a2x+a3x
2+a4x

5 + asX4p + a 6x
3
)

a ,» -0,57721566; a 2 = 0.99S99I93; a 3 = -0,24991055; a + » 0.05519968; a5= -0,00976004;
a6=* 0,00107857;

~ 2 • 5,;

^=2,334733; 6 j . 0,250621; 53= 3,330657; 54= 1,681534;

10 < X ,

'3**-
(18D)

6, = 4,03640; 62=I,I5I98; 53=5.03637; 64. = 4,19160.

To calculate the moments of the Wigner distribution we use the recur-

rence relationships M = (2r/ir) M ., n = 1,2, ... with the initial values
n n— L

M . = nil, M = 1.
-1 o

10. CALCULATION OF INTEGRALS

We consider the calculation of integrals of form

x2mdx ,-„

Wich the help of the recurrence formula
I:

f
(18E)

the problem can be reduced to calculation of the integrals

Ji J Rn (18F)

To calculate the integral \ we use the recurrence formulae

J R«(l+xZ)

a)rdx f dx gf dx 1
Jfi" JU+x2)/?n-f Ja+x2)/?H

dx (ca)rdx dx gf dx 1
(18G)

{ f 6(c-aH2ag C dx gC dx , ( c a) C
(c-a)2+62L 2 J /?rt JU+x2)/?'1-' J

xdx
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For chese che initial integrals are

calculated by the formulae

f dx _ i

dx

R(l + x )
and

xdx

R(l + x )
, whicn are

6*-2a(c-a)f da a)J'
c xdx i |"_ 5(c-a)+2a6 C dx +xg~\
J R U + X » ) *(c-a)4+62 L~ 2 J /? J*

The following recurrence formula is used to calculate the integrals

(18H)

xradx

f xmdx x (m-Qc
d n

(n-m)6

With the initial integrals \ gjj and \ calculated by the formulae

( 1 3 J )

For n = 1 we obtain
I dx _ 2ir ̂  I xdx _
J R ~ 7P J R " ~ , where A = 4ac - b > 0.
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Table 1. Values of average resonance parameters

Orbital
moment

I

0

1

2

Total
moment

J

1/2

1/2

3/2

3/2

5/2

Average distance
between levels

D

20.0

20.0

10.0

10.0

6.67

Reduced neutron
width

T°
n

0.0221

0.021549

0.037745

0.0225

O.O2167

Radiative
width

7
Y

0.0235

0.0235

0.0235

0.0235

0.0235

N.B. Ratio of nuclear mass to neutron mass A = 236.006; effective scattering

radius R c = 8.9 x 10~ cm; value of the cross-section of the back-
er

ground for elastic scattering ACT = 1.444 b.

Table 2. Resonance self-shielding factors for total cross-section f and

radiative-capture cross-section f

Dilution cross-,
section

b

ft

300

Temperature

f
Y

i

of surrounding material,

1000

f
Y

2000

- ft

K

f -
Y

10

100

55+01

57+01

64+01

65+01

79+01

79+01

.52+01

51+01

60+001

60+01

83+02

83+01

62+01

63+01

69+01

70+01

84+01

84+01

62+01

61+01

70+01

70+01

89+01

89+01

67+01 •

67+01

72+01

72+01

87+01

87+01

69+01

68+01

76+01

75+01

92+01

92+01

N.B. Figures after the decimal point are given; the first value is data from

Ref. [26] and the second is results of calculation by the proposed

method.
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Table 3. Analysis of deviations in the self-shielding factors for the total

cross-section and the radiative-capture cross-section

Calculation conditions

Deviations,

lft/ftCT

Calculation time,

*/relative units—

Neutron widths do not fluctuate

Distance between resonances does
not fluctuate

Doppler effect absent (T = 0)

Neutron widths of neighbouring
resonances are correlated

Resonances do not interfere

'Contribution of distant
resonances absent

Contribution of p- and d-waves
absent

s-wave is calculated by the scheme
for p- and d-waves: N-r- = 5,

NQ = 2, U - 2 (see section 8)

Number of mesh points N = 6

Number of mesh points N = 3

Accuracy of integration over
energy increased by a factor of 10

p- and d-waves are calculated by
the scheme for s-wave (see
section 8)

11.5

-2.3

23.4

9 . 1

1.1

0 . 1

-6.8

12.2

-9.8

0 . 5

-46.3

-1.8

-0.8

0 . 0

-18.6

1.1

- 0 .

- 0 .

0.

0.

3

7

0—'

0

0.2

-0.6

0.0

0.8

0.1

0.6

1.3

0.2

0.6

0.9

0.9

0.03

2.0

1.4

2.8

2.0

^/ Relative to calculation time by the standard scheme.

**/ Deviations not exceeding 0.17. are taken as zero.
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0,0
4

0,0

Fig. 1. Shapes of distributions: (a) Porter-Thomas distribution as a func-
tion of the number of degrees of freedom v, (1) y = 1; (2) v> = 2;
(3) vi = 3; (4) vi = 4; (5) v = »; (b) Wigner distribution.

0,7

0,6 1

Fig. 2. Dependence of fluctuation factor F = (1 +a) for the radiative

capture cross-section on the ratio of the average resonance widths

a = r /r .
Y n
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Dependence of the accuracy of integration over the distributions of
resonance widths (a) and distances between levels (b) on the number
of mesh points N; moments of cross-sections
\l/(a+ff )); moments of cross-sections \a /(a+a )X

o Y o

0,10

I
0,05

0,05

+

1000 1000

a

Dependence of the values of functionals
on temperature T of the material: g
functions Y and x; -•- calculation by the method of ^determination

d f d i i

^ (a), (.Oy/io+o^y (b)
calculation using

functions Y and x; • calc y ^
of the total width; calculation by the method of redetermination
of the total width with adjusted parameter y.
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EJJ The dependence of fluctuation factors R for functionals \l/(a+a )^ (a)
o '

and functionals (p I{a+a )) (b) on temperature T of the material:

calculation using functions ¥ and x; calculation by the
method of redetermination of the resonance width.

0,5

0

v

t.aTo^a
0,05 0,05

a

Fig. 6. Sub-group approximation of the dependence of transmission function
T(t) (a) and self-indication function for capture T^(t) (b) on
target width t; —; exact curve; sub-group approximation
N = 2; -.- sub-group approximation N = 3.
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Fie. 7. Structure of the functional module *U/D-F.


