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LEVEL DENSITIES

The bulk of our modern ideas on the properties of atomic nuclei are

based on studies of the ground and low-lying states of nuclei. With refine-

ment of the theory of the nucleus the observed spectroscopic data on the

structure of the low-lying nuclear level density have been explained with

increasing success. However, as the excitation energy increases the number

of nuclear levels rises so rapidly that it becomes virtually impossible to

make a detailed analysis of each level. Under these conditions it is quite

natural and legitimate to resort to an averaged statistical examination of

the properties of excited nuclei. The first part of this monograph is devoted

to discussing the main statistical characteristic of nuclear spectra - the

density of excited levels.

Chapter 1

THE INFLUENCE OF THE SHELL STRUCTURE OF A SINGLE-PARTICLE SPECTRUM
ON THE STATISTICAL CHARACTERISTICS OF NUCLEI

The progress achieved by the shell model in explaining the laws of change

in the quantum characteristics of the low-lying levels of nuclei is well

known [1,2]. In this chapter we discuss the extension of the shell model con-

cepts to cover the region of statistical description of the properties of

excited nuclei.

1.1. The Fermi-gas model and its use in analysing experimental data

Let us consider methods of analysing the level density of excited nuclei,

using the Fermi-gas model as an example. Although many of the concepts of

this model are extremely simplified, it is the most convenient one for demon-

strating the basic features of the theoretical methods of the nuclear level



- 2 -

density calculations. Moreover, because of their simplicity the relationships

of this model were, and are still, widely used in the analysis and systematics

of experimental data on the statistical properties of nuclei.

The density of the excited states of nuclei as a function of energy and

number of particles can be defined in the general case as

p (Z, A', S) = Z 6 (Z - Zj)b (N - Nj)b (S - £/),

and N. neutrons. Using the integral representation of 6-functions, we rewrite

where C . is the energy of the j-th state of a nucleus consisting of Z. protons

and N. neutrons. Usin

Eq. (1.1) in the form

p(Z,N,
z

C-ioo
(1 2)x Q(P,az,aN)d(SdazdaN,

where

Q(P,<*Z>aN)= 2 exp(-/3S/+azZ/ +aNNf). ( 1 > 3 )

The latter expression, well known in statistical physics, is the relationship

for the statistical sum of a large canonical ensemble, while Eq. (1.1) is a

similar definition of the statistical sum of a microcanonical ensemble (MCE) [3],

Although neither definition of level density yet uses any model concepts of

the nucleus, their equivalence to the general formulae of statistical physics

demonstrates the statistical nature of the level density value itself, and

also indicates that the methods used in the study of other physical systems

can be used to consider the level density of nuclei.

Even at the early stage of development of nuclear physics Bethe suggested

that the statistical properties of atomic nuclei could be described by repre-

senting the excited nucleus as a gas of non-interacting Fermi particles [4].

This suggestion was further developed in the light of the success of the shell

model of the nucleus, and was widely applied in subsequent years to calculate

the density of the excited levels of nuclei [5-7].

If, for the sake of simplicity, we consider only one type of particle,

the statistical sum of non-interacting Fermi particles can be written in the

form

v, (1.4)
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where e is the energy of single-particle levels in the self-consistent
V -1

single-particle potential, g the degree of degeneracy of levels; g = t and

a = x/t are directly connected with thermodynamic temperature t and chemical

potential X of the system. The statistical sum (1.4) can be calculated in

the analytical form if the continuous-spectrum approximation is used.

Similar calculations are considered in many textbooks of statistical physics

for the analysis of the heat capacity of the degenerate electron gas [3].

We rewrite (1.4) as
ln0(0,a) = (1.5)

Here g(c) is the density of single-particle states. Using the low-temperature

approximation t << X and regarding g(e) as a fairly smooth function of the

energy, we obtain

(1.6)

where g" is the second derivative of the density of states. With the help of

(1.6) it can be easily shown that the integrand in the initial formula for

level density (1.2) has a sharp extremum for certain values of the variables

B and a ; because of this property, the saddle-point method can be used for

calculating the corresponding integrals [3].

Within the framework of the saddle-point method the position of the

extremum point is determined by the equations

6= ; N=d\nQ/da. (1.7)

Expanding in the neighbourhood of this point the exponent of the inte-

grand in a series with an accuracy of up to second-order terms, we obtain a

double Gaussian integral, the result of calculation of which we write in the

form

(1.8)

where

det =

a2 In Q d2 In Q

30'

32 lnfi
30da

da 30
3 2 Ing

3a2

(1.9)

= «0
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If we substitute (1.6) into Eq. (1.7) determining the saddle point, by

neglecting the terms containing the derivatives of g(e) we can write them

as

8= / eg (e)de + -Hl--g(\0)- N= j g(e)de. (1
0 60* 0

These equations connect the energy and number of atoms in a system with

thermodynamic temperature t = B and chemical potential X , i.e. they are

in no way different from the thermodynamic equations of state for the degen-

erate Fermi gas [3], At zero temperature the first equation in (1.10) is

used to determine the energy of the ground state of the system £• and the

second equation to determine the energy of the last filled level or, as it

is usually called, the Fermi energy E , = X (t = o). Substituting (1.10)

into formula (1.8) and calculating the determinant of the second-order deriva

tives, we obtain a simple relationship for the state density

p ( v O , (1.11)
U

2
where U = £ - £, is the excitation energy and a = IT g(ef)/6, the so-called

level density parameter of the Fermi gas. The connection between the excita-

tion energy and temperature and entropy for the given system can be expressed

conveniently in terms of that parameter:

U=dt2; S = 2at = 2y/JlT. (1.12)

It will be seen from the above formula that it is entropy which actually

determines the density of the excited states of the system.

Similarly, it is easy to consider a Fermi gas consisting of two types

of particle: protons and neutrons [4-7]. For the density of excited states,

in this case we obtain the relationship

(1-13)

which differs from (1.11) only by the pre-exponential factor. The expressions

for excitation energy and entropy retain their earlier forms (1.12), while the

level density parameter is now defined simply as the sum of the respective

parameters of the proton and neutron gas.
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For many problems there is interest not only in the total density of the

excited states of nuclei but also in the distribution of states over angular

momentum J or its projection M. Introducing an additional Lagrangian multi-

plier, corresponding to the new characteristic of the system, into the defini-

tion of the statistical sum of the large canonical ensemble, we obtain by the

above method the following Gaussian distribution for the density of states of

the Fermi gas with a fixed angular-momentum projection

p(Z.N,U,M) = 1&JLEL expMfW). (1.14)

The distribution width is determined by the spin cut-off parameter of level

density

2 l (1.15)

2
where m. is the average value of the square of the projection of the angular

momentum of single-particle states near the Fermi energy. The quantity
2

Crf = g(e )m , is usually called the moment of inertia of the Fermi gas.

In analysing the different experiments we would be interested not only

in the density of the states of the nucleus but also in the density of excited

levels, each of which (2J + 1) times degenerate along the angular-momentum

projection. We find the relationship for the density of levels with a speci-

fied value of angular momentum by differentiating the density of states

p(Z,N.U,J) = p(Z,N,U,M = J)-p(Z,N,U,M =/ + l) «

2 y/2 7T o 3

For the total level density we accordingly obtain

y/lrT

In order to understand the dependence of the Fermi-gas model parameters

on the number of nucleons in the nucleus, we consider a quasi-classical
2

evaluation of g(ef) and mf for a spherical potential well. The quantization

conditions which determine the spectrum of single-particle levels in such a

potential take the form

J° \^L-^Bl]\r, (1.18)
nir. L » 2 r2 J
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where y is the nucleon mass and R = r A the nuclear radius. The
o oo

dependence of the density of single-particle states on energy and angular

momentum is determined by the relation

where g = 4 is a statistical factor characterizing the spin and isospin

degeneracy of single-particle states. For simplicity, we consider nuclei

with Z = N = A/2. In this case,

i 2 \ 3 A?

\ n2 I 3» '

and determining the Fermi energy from the condition

(1.21)

for the density of states on the Fermi surface, we obtain

g{eA= ZUL A. (1.22)
* 2(377 2) 1 / 3

We write the corresponding level density parameter a, MeV , in the

form

'"* 2/i0r0 A_ A (1.23)
*2 13,5 '

where the numerical evaluation is made for r = 1.2 fm.

o

Similarly, we find the average value of the square of the projection

of angular momentum for single-particle states on the Fermi surface

rr,2 - X I2 ~ l

; 3 7 3

We note that in a quasi-classical approximation the moment of inertia of the

Fermi gas

#"-,(.,)«$ .i-i!£L»/» (1.25)

*/
coincides with the rigid-body value of the moment of inertia of the nucleus— .

*/ By this we mean the moment of inertia of the nucleus rotating as a
rigid body.
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The relationships for the Fermi-gas model given above have repeatedly

been discussed by many authors [5-7] and the interested reader will find a

more detailed description of the calculations in those references.

The most direct information on the level density of highly excited

nuclei can be obtained from the experimental data on the density of neutron

resonances. Lists of data on the observed mean distance D between
o

resonances are contained in Refs [7-9]. Since for most nuclei the observed

resonances correspond to neutrons with zero orbital momentum (the so-called

s-neutrons), the value of D is linked to the density of the excited levels
o

of the compound nucleus by the relationship

i { p ( S n + A£/2, I0 + U2)+p(Bn + AEI2, /„ - 1/2)} for / 0 *0;
• v 1 • Z. D )

, 1/2) for Io = 0,

where B is the neutron binding energy, &E is the energy interval over which

the resonances were studied, and 1 is the spin of the target nucleus.

Coefficient 1/2 preceding the sum takes it into account that s-neutrons form

resonances only of a particular parity. Similarly, if necessary, resonances

for p-neutrons can also be included in the consideration.

The experimental values of D (Fig. 1) are normally used as the initial

data from which the level density parameter is determined with the help of

Eqs (1.16) and (1.26). An analysis of this type has repeatedly been per-

formed [6-10]. Even in early studies on the systemization of experimental

data it was noted that there were regular differences for identical excita-

tion energies of the level density of even-even, odd and odd-odd nuclei, and

that the differences were similar to those in the binding energies of such

nuclei. This effect is usually taken into account by substituting into the

Fermi-gas model relationships the so-called effective excitation energy

defined as

+ &N for even-even nuclei;

&Z for nuclei with eve

&N for nuclei with eve

0 for odd-odd nuclei,

iT*-rj_j ^2 for nuclei with even Z; (1.27)

&N for nuclei with even N;
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where 6 is the corresponding phenomenological correction for the odd-even

differences in the binding energy of nuclei [6,7]. Figure 1 shows the values

of the level density parameter obtained by this analysis. The values found

differ very considerably from the quasi-classical evaluation (1.23). The

dependence of parameter a on mass number clearly exhibits steep dips in the

region of nuclei with magic numbers of protons or neutrons, these dips

directly indicating the significant role played by the shell effects in

describing the statistical characteristics of the nuclei.

It should be pointed out that the values of parameter a obtained in this

manner depend, in a specific manner, on the description used for the spin
2 2

cut-off parameter a . For the determination of o the early studies used
2 2 /3

mf = 0.146 A [6,7], which corresponds to mean-square averaging of the

angular-momentum projections over all the occupied states of the nucleons,

but not over the states in the neighbourhood of the Fermi energy. Later
2 2/3

studies usually took a different value of m = 0.24 A or directly used the

rigid-body value of the moment of inertia [8-10]. The differences in the
2

choice of the spin cut-off parameter o , as well as the ambiguities in deter-

mining the corrections for odd-even differences in the binding energy of

nuclei [6,7], have appreciable influence on the values of parameter a, and

this should be borne in mind while comparing the results of analysis obtained

by the different authors.

With accumulation of measurements of the spectra of low-lying levels in

a large number of nuclei it became possible to use the data on the observed

rate of growth in the total number of levels for analysis of the low-energy

sector of the level density behaviour [5,6,9]. Extrapolation to this region

of the Fermi-gas dependence with the parameters found from the analysis of

the density of neutron resonances does not normally describe the experimental

data. It has been noted that the energy dependence observed in the cumulative

number of levels JV(U) can be described much more satisfactorily by the

expression

a/V(.U)=exp[(U-U0)IT], (1.28)

where U and T are free parameters determined by fitting to the corresponding

data of Ref. [5]. </(*(U) is connected with level density by the relation
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It will be seen that in its physical sense parameter T corresponds to

nuclear temperature. Since the value of this parameter is assumed to be

constant in the energy range considered, Eq. (1.29) is called the constant-

temperature model.

In Refs [6,10] the low-energy dependence (1.29) was matched with the

Fermi-gas dependence of level density (1,17) in order to have a description

of level density covering the whole excitation energy region from zero to

the neutron binding energy. From the condition of continuity of the function

itself and the first derivatives at the matching point U we can in this case

find the relationship between the parameters of the two models

Uo = Ux - T In p (Ux), -= /H-J—, (1.30)
*•§• T Jux* iu;

where U* is the effective energy of the matching point with allowance for

corrections in (1.27) for even-odd effects. This phenomenological approach

was used in Refs [6,10] to analyse the experimental data, and Fig. 2 shows

the systematics of the nuclear temperature T and energy U values found.

The U value determines the energy below which the level density cannot be

satisfactorily described by means of the Fermi-gas model on the basis of

definition of effective excitation energy adopted in the region of neutron

resonance. It will be seen that this energy is fairly high for most nuclei.

In Ref. [ll] a somewhat different approach was developed to deal with

the problem of simultaneous parametrization of the density or neutron

resonances and the density of the low-lying levels of nuclei. It was shown

that both sets of experimental data could be described on the basis of the

Fermi-gas model relationships, provided not only the level density parameter a

but also the shift 6 f were used as free parameters for each of the nuclei in

the definition of effective excitation energy (1.27). Since for odd-odd

nuclei the shift thus found was negative, this approach was called the Fermi-

gas model with backshift. This model was used to analyse the whole set of

experimental data on the low-lying levels of nuclei and on the density of

neutron resonances, and to find the empirical values of parameters a and 6

for the entire region of mass numbers [9]. Naturally enough, as a result of

redefinition of the effective excitation energy the a values obtained are

somewhat lower than those given in Fig. 1. However, this does not essentially

alter the general trend of the dependence of the level density parameter on

mass number.
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Experimental data available on the spin of the low-lying levels of some

nuclei can be used to analyse the angular momentum distribution of excited

levels. Examples of such an analysis are given in Fig. 3. It will be seen

that the law governing distribution of excited levels (1.16) obtained within

the framework of statistical consideration shows, on the whole, fair agree-
2

tnent with experimental data. Here, parameter a is chosen in each case from

the condition of the best description of the observed distribution. Since

the number of levels with identified spins is comparatively small, the errors

of the spin cut-off parameter values obtained are quite large and the experi-

mental data are still clearly insufficient to analyse the energy dependence of
2

parameter a (U).

On the basis of the foregoing discussion it can, on the whole, be con-

cluded that the experimental data on the level density of nuclei can be para-

metrized rather simply with the help of the Fermi-gas model relationships.

It is not possible, however, within the framework of this model, to explain

the excitation energy shift and the even-odd differences in level density nor

the differences of the experimental values of the level density parameter from

quasi-classical evaluations. An interpretation of all these effects can be

obtained from more rigorous models, which are considered below.

1.2. Influence of shell inhomogeneities in the single-particle spectrum on
the energy dependence of thermodynamic functions

To obtain a more realistic model for consideration of the statistical

characteristics of nuclei, we have to discard the continuous spectrum approxi-

mation used in deriving the relations of the Fermi-gas model and calculate

the level density and thermodynamic functions of nuclei taking into account

the discrete shell structure of the single-particle level spectrum. We find

the general form of the relationships for the density of states of a nucleus

having an excitation energy U and a given angular momentum projection M, as

we did above, by the saddle-point method

p(U,M) = (2jr)"Idet"1/2 exp(5), (1.31)

where S is the entropy of the excited nucleus and det = \d2ln Qldajda] — the

determinant for the second derivatives of the logarithm of the statistical

sum. For a discrete level spectrum these values are determined by:

(1.32)

30,3^.
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where n = [l + exp(B£ - a - awm )] indicates the Fermi occupation
VT

 K
 VT T M VT r

numbers of single-particle states with energy e and with single-particle

angular-momentum projection in the given direction m ; sub-scripts i and j

in the equation for the second derivatives take the values of Z, N, M or 0

and the coefficients: C ( Z ) = 6 _, C ( N ) = 6 H, C
( M ) = m and C ( 0 ) = E

VT TZ VT VN VT VT VT VT

correspond to them.

The state equations in this case take form:

& = 2 2 epj-n^; M= 2 2 m^ nVT;
T = Z.N v T = Z,Nv

Z = 2 nV2 i N - 2 nVff,
v v

and excitation energy U is connected with total energy & by the relationship

U = & - £ where g is the energy of the cold nucleus at zero temperature.

The calculations of the state density are appreciably simplified

in the approximation of small momenta. In this approximation the equation

for M can be solved analytically and the dependence of the state density

of the nucleus on angular momentum will take the form of the Gaussian
2

distribution (1.14), in which the spin cut-off parameter a n and the

moment of inertia if<< corresponding to it are determined by

j 2 ^Kr»VT{\-nVT). (1.34)
" ' T = Z,NV V1 ,

These equations can be used to calculate, in the case of a given

single-particle level scheme, the thermodynamic functions and the density

of states of excited nuclei without introducing any additional parameters.

Applying this approach it is possible to investigate the interconnection

between the characteristics of the highly excited nucleus and the shell

effects which are reflected in the properties of the ground and low-

lying states of nuclei. This method of calculating the statistical

characteristics of nuclei was first introduced in Refs [12,13], and

in subsequent years similar calculations came to be used widely [14-20].

In order to demonstrate the influence of the shell effects more clearly

and to investigate the difference of the thermodynamic functions determined
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by Eqs (1.32)—(1.34) from the equivalent functions of the Fermi-gas

model, we introduce the following quantities

a" = U/t*; a'"=Sj2t;

— _ « y y —

6at T = Z.N V

These relations are so chosen that in the continuous-spectrum approximation

all the quantities in (1.35) are transformed into the Fermi-gas model
~2 2

level density parameters: a into a and m into m_.

The results calculating the density of states p(U), thermodynamic

temperature t and nuclear temperature T, together with the quantities (1.35)

for the doubly magic Pb nucleus, are shown in Fig. 4 [14]. The

calculations were carried out with the use of the level schemes for

the two commonest single-particle potentials - the Nilsson potential [21]

and the Saxon-Wood potential [22]. The sequences of the quantum charac-

teristics of single-particle levels in the two potentials are similar

but there are some differences in the value of the shell gap. The values

obtained for a', a", a'" and a differ noticeably from one another and

depend very strongly on excitation energy. The behaviour of the thermo-

dynamic temperature, moment of inertia ĵii and parameter m also differ

substantially from that of the Fermi gas. All these results reflect

a very important effect - the dependence of the average density of the

single-particle states near the Fermi surface on excitation energy.

This effect is absent in the traditional Fermi-gas model. The obtained

dependences of the different thermodynamic characteristics of the Pb

nucleus are identical in their main features for both the level schemes

although, of course, certain differences are found in the values.

The dependence of the different thermodynamic characteristics of

the Pb nucleus on angular momentum shown in Fig. 5 was obtained from

a strict solution of the state equations (1.33). The figure also gives

the results of calculating similar characteristics in the approximation

of small angular momenta:

S(M)=S(M = 0) -i
(1.36)

U-M2/2jt
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where parameters a", oTj. and a are calculated for M = 0. The results

of the calculations presented show that substantial differences from

the approximation of small momenta arise only at fairly high values

of M, which can apparently occur only in reactions with heavy ions.

The dependence of the shell effects on mass number can be observed
- ~2 -rin Fig. 6, which presents the results of calculations of a1, a, m and <y"ty

performed for the level scheme of the Nilsson potential [14]. At a

low excitation energy of U = 7 MeV the behaviour of a1 and a clearly

show characteristic shell dips - an effect which is well known from

the analysis of experimental data (see Fig. 1). The moments of inertia

<ffa and quantities m behave similarly. However, at fairly high

excitation energies (U = 100 MeV) the shell inhomogeneities of the single-

particle spectrum cease to have any appreciable influence on the thermo-

dynamic characteristics of nuclei and the values obtained in the calcu-

lations can be approximated by simple quasi-classical dependences:

5-= 0,105.4 MsV"1; ] (1.37)

^ = 0,290 A2'3 (1-3/31);

/,= 1,85 • IC

Here £, in the deformation parameter characterizing the ratio between

the major semi-axis c and minor semi-axis b of an axi-symmetric spheroid

c/b = (1 + 1/35X1 - 2/35) [21].

For the level scheme of the Saxon-Woods potential the results of

the calculations of the similar quantities take the form:

a = 0,090 A MeV"1 ;

^ = 0,263 A2'3 (1-2/30;

/j= 1,44- Ur*A*l* (1-2/30 *

The difference between the numerical coefficients in (1.37) and the

coefficients in (1.38) is accounted for by the difference in the nucleon

density distribution for the corresponding potentials.

Figure 7 shows the dependence of a' and moment of inertia jf. on

the deformation of the single-particle potential for the most typical
0 f*\ ft H T/l

Pb and Hf nuclei. In order to observe the changes in these values
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for anomalously large deformations corresponding to the dumb-bell shape

of fissioning nuclei at the point of scission, we have included in Fig. 7

the results of calculations of a' and if* for nuclear configurations

in the form of two symmetric spheroids, each of which is characterized

by the deformation parameter £..

Above we have given only the most characteristic examples demonstrating

the influence of the shell structure of the single-particle spectrum

on the behaviour of the thermodynamic functions of nuclei. Various

aspects of this method of calculating the statistical characteristics

of excited nuclei have been discussed in recent years by many authors [15-20],

The studies have shown that the shell effects in the behaviour of the

thermodynamic functions of nuclei are closely associated with the shell

correction characterizing irregular variations in the masses and energies

of deformation of nuclei. V.M. Strutinsky's studies [23] have shown

the decisive role played by these corrections in the formation of many

properties of atomic nuclei.

Within the framework of the initially proposed formulation the

shell correction 6 & was determined for the cold nucleus as the difference

between the total single-particle energy and a similar energy found

for the averaged density of single-particle states:

€fT "I
<W " / egT{e)de . (1.39)

where e, is the Fermi energy for the given single-particle level scheme

and e, the equivalent energy determined by the conditions of conservation

of particle number for the averaged spectrum.

A quantity similar to (1.39) can be likewise introduced for the

heated nucleus

- 7



- 15 -

Since at fairly high temperatures t £ 1.5-2.0 MeV the shell inhomogeneities

of the single-particle spectrum cease to have any substantial influence

on the temperature dependence of the thermodynamic functions, 6S(t > 2 MeV) ~0.

Using this result, we rewrite (1.39) in the form

6£0 =

where U(t) = 6(t) -•£,-. is the excitation energy of the nucleus, and U(t)

is defined as

oo

1/(0= 2 J egT(e)[nT(€)-n°r(e)]de *
T = Z.N -~ (1.42)

Thus, the shell correction can be defined as the difference between

the "true" excitation energy U and the excitation energy U obtained

from the asymptotic relationships of the Fermi-gas model. When the

approximating polynomials needed for calculation of the averaged density

of single-particle states g (e) are chosen correctly, the results of

thermodynamic calculations of shell corrections (1.41) agree satisfactorily

with the corrections obtained on the basis of Eq. (1.39). Their results

are considered in Refs [16-20], where the details are described more

fully.

The development of the shell correction method encouraged a large

number of experimental and theoretical studies on the various aspects

of the shell effects in nuclei. Even the earliest calculations of

deformation energy by this method [23] show that the value of the shell

corrections determine, to a considerable extent, the equilibrium

deformations of nuclei and the form of barriers of heavy nuclei which

inhibit their spontaneous decay. We shall discuss these problems below

when considering the equilibrium shapes of highly excited nuclei, and

analyse the statistical characteristics of nuclei during fission. Readers

wishing to know more about the various aspects of the shell correction

method should refer to the review paper by Brack et al. [24], and also

to the original literature cited therein.
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The relationship between the shell corrections and the statistical

characteristics of excited nuclei stands out clearly in the experimental

data for the level density parameter a obtained from the analysis of

the density of neutron resonances. These data are shown at the top

in Fig. 8 in the form of the ratio parameter a/mass number A. The bottom

part of the figure gives the experimental values of shell corrections

to the mass formula

= M (M)UM(M.«o),
^ (1.43)

where M is the experimental value of the mass defect and M, _,. its
exp v LDM

liquid-drop component, as calculated with the Myers-Swiatecki parameters [25],

for the equilibrium deformation of the nucleus £_. The close inter-

relationship between these values is reflected by the clearly expressed

correlation of the shell correction with the experimental values of

parameter a. This relationship was used in Refs [26,27] to plot the

phenomenological systematics of changes in the level density parameter

of the Fermi-gas model.

In Ref. [26] these systematics are based on the relation

where a(A) corresponds to the asymptotic value of the level density

parameter at a high excitation energy, and the dimensionless function f(U)

determines the energy behaviour of the parameter at lower excitation

energies. The form of the function

is found on the basis of the approximation of the above calculations

of thermodynamic functions using the level spectrum of the shell model

potential. For the subsequent semi-empiricial description of parameter a(U)

only the form of the functional dependence f(U) was fixed, while para-

meter y was chosen directly from analysis of the experimental values.

To take into account the possible differences in the behaviour of the

asymptotic value of the level density parameter from the quasi-classical

evalution (1.23) we used two forms of the functional dependence

*"*+'*'' (1.46)
S = aA + PA2'3.

(1.47)
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On the basis of Eqs (1.43)-(l.47) the experimental values of the

level density parameter of the Fermi-gas model a (B*) were analysed

and, the sets of coefficients (in MeV units) corresponding to different

definitions of the asymptotic level density were obtained by the method

of least squares:

a(A) a 6 Y

-5
(1

(1

.46)

. 4 7 )

0 .

0 .

154

114

- 6 .

0 .

3 x

162

10 0 .

0 .

054

054

In the case of both sets, the calculated values of parameter a(B*)

satisfactorily reproduce all the main features of the observed changes

in the experimental values of the level density parameter of the Fermi-

gas model [26].

It should be pointed out that the derived relationships can be

used with greater justification at excitation energies exceeding the

neutron binding energy. Extrapolation of a(Bv") to the region of energies

far lower than the neutron binding energy requires a certain amount

of caution. Since the given description is based on the relationships

of the Fermi-gas model, in accordance with the data on the density of

the low-lying levels of nuclei considered in the preceding paragraph,

the Fermi-gas systematics of the level density parameter should therefore

be used only at excitation energies U > U (see Fig. 2). The systematics

developed in Ref. [27] differ from those considered above only by having

a somewhat different parametrization of the energy dependence of the

level density parameter, and should have the same limits of applicability.

It should be borne in mind that the asymptotic value of the level

density parameter a = 0.154 A MeV found in the phenomenological

description greatly exceeds the theoretical evaluations of this parameter

(1.37)and (1.38). This difference in the parameters indicates the

substantial role played by factors which are not taken into account

in the theoretical calculations using the single-particle level schemes.

As will be shown in Chapter 3, this difference is an empirical reflection

of the influence exerted by the collective effects on the density of

the excited levels of nuclei.
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1.3. Changes of the single-particle spectrum with temperature

The considerable differences between the energy of the low-lying levels

of nuclei and the predictions of the simplest single-particle shell model

indicate that even after subtraction of the mean field the residual inter-

actions between nucleons are sufficiently strong. Hence, nucleons moving

in a self-consistent single-particle potential should, strictly speaking,

be regarded as a gas of strongly interacting Fermi particles. But in his

studies on the theory of the Fermi liquid Landau showed that even for strong

particle interaction the behaviour of the thermodynamic characteristics

of a system at low temperatures was to a large extent similar to the thermody-

namic characteristics of an ideal Fermi gas [28]. The role of ideal Fermi-

gas particles in a normal Fermi liquid is taken over by quasi-particles,

which may be regarded as particles moving self-consistently in a cloud

of other particles. The energy of the whole system in this case is by

no means equal to the sum of energies of the individual quasi-particles

but is a complex functional of their distribution.

It is usually not the system's energy which is of physical interest

but rather changes in that energy when there is variation in the quasi-

particle distribution. At low temperatures the free energy F(t) of the

system of interacting Fermi particles can be written in the form [28]

F(t)-F0= 2(e°v-\)6nv+- Z /„„• bnvbnv< + ..., (1.48)
v 2 v< v'

where F is the energy of the ground state, e are energies of quasi-particles

at zero temperature and 6n (t) are changes in the quasi-particle distribution

during heating. The quadratic term in Eq. (1.48) describes the interaction

of quasi-particles and f , is the second derivative of the ground-state

energy with respect to quasi-particle distribution. The most important

feature of Eq. (1.48) is the presence of the quadratic term reflecting

particle interaction. No such term is contained in the formulae for the

ideal Fermi gas.

Using the simplest example, let us analyse the role of interaction

in the description of the thermodynamic functions of the system. In a

heated system the quasi-particle energy can be determined as a variational

derivative of free energy

ev -e°v + Zfvv,Snv> = €^ + 8ev. (1 .49)
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We write the expression for entropy in the form

S =- 2 [nv In nv + (1 - nv) In (1 - nv) ]. (1. 50)
v

It is purely combinatorial in origin and does not depend on the interaction.

The Fermi quasi-particle distribution function corresponds to the condition

of the maximum of entropy with conservation of particle number and energy.

where n = n (E = e ). The changes in quasi-particle energy 6e with tempera-

ture in the approximation of a continuous homogeneous spectrum are determined

by

7
be'

(1.52)
e'=0

where f(e,e') is the quasi-particle internation amplitude averaged over

angular variables. For entropy we obtain in this approximation the relationship

5 = 1 1 / en(e,r)de-— J en(e,t) [1 -n(e,t)]de»
f _oo t2 -oo

V2 .7 _ (1.53)
• —*of[l-—*o'V"(O,O)]. "

3 6

At low temperatures the second term in square brackets makes a negligibly small

contribution, and the entropy of the system of interacting particles will be

similar to that of an ideal Fermi gas. In this case, the density of quasi-

particles on the Fermi surface

/ » 3 (1.54)

differs from that of the single-particle states of non-interacting particles

only by the effective mass of quasi-particles \x*.

Thus the relationships of the Fermi-gas model can quite satisfactorily

describe the temperature dependence of the thermodynamic functions of inter-

acting Fermi particles provided the parameters g of level density are

determined phenomenologically from the analysis of experimental data. This



- 20 -

conclusion is also valid for calculations using realistic level schemes of

the shell-model phenomenological potential, which is based on the systematics

of the observed levels of nuclei. The above statements naturally only

refer to the normal phase of the excited nucleus, i.e. to the temperature

region for which there are no correlation effects of the superconducting

type in the excited quasi-particle spectrum. The role of the superconducting-

type effects is considered in the next chapter.

It is important, however, to bear in mind that apart from renormalization

of parameters the quasi-particle interaction also leads to the appearance

of a new branch of collective excitations, which has no analogue in the

ideal Fermi gas [28]. In a Fermi liquid at low temperatures such excitations

make a negligibly small contribution to the temperature dependence of the

thermodynamic functions. The situation in nuclei is more complex since

the collective excitations in nuclei, unlike those in a Fermi liquid, lie

at low energies. This problem is discussed in greater detail in Chapter 3

and also during the subsequent analysis of the experimental data on nuclear

fission.

The changes in quasi-particle energy with temperature, just as changes

in other characteristics of the mean nuclear field, can be determined more

strictly on the basis of the theory of finite Fermi systems [29]. In this

theory the phenomenological amplitude f(0,0) of the local interaction

of quasi-particles near the Fermi surface is determined from analysis of

a wide range of nuclear phenomena, and can be used to find the values

of 6c (t) for realistic single-particle level schemes. Such studies were

made in Ref. [30]. Figure 9 shows the changes in the proton and neutron
214

level schemes of the Po nucleus obtained for temperature t = 3.5 MeV.

Although all levels shift downwards to a slight extent, the shell structure

of the spectrum changes very little. Since this shift is proportional

to the square of temperature, at nuclear excitation energies of up to 100 MeV

the changes of the single-particle level energy with temperature can generally

be neglected when considering the statistical characteristics of nuclei.

As the analysis in Ref. [30] showed, the decrease in the single-particle

level energy for a heated nucleus is directly related to the increase in

the mean-square radius of the nucleus with temperature. In the case of
-4 2

heavy nuclei this increase can be evaluated as 6R(t)/R * 5 x 10 t .
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The changes in single-particle level energies with temperature and

those in the nucleon density distribution in the heated nucleus were also

studied on the basis of the Hartree-Fock approximation [31, 32]. In this

approach to the problem the nucleon-nucleon interaction is parametrized

in the form of effective forces dependent on nucleon density, and the equili-

brium distribution of nucleon density in the nucleus and the characteristics

of the single-particle levels corresponding to this distribution are deter-

mined by the subsequent self-consistent diagonalization of the single-particle

Hamiltonian. All the parameters of the effective interaction are determined

during the description of the ground states of nuclei and do not vary in

the calculations of nucleon distribution in heated nuclei. The results

of these calculations, as well as the above-described calculations in the

theory of finite Fermi systems, demonstrate fairly small changes in the

shell structure of the single-particle spectrum of nuclei at temperatures

of up to 2 MeV [31]. Above 2 MeV the shell inhomogeneities in the single-

particle spectrum no longer have any great effect on the dependence of

the thermodynamic functions of nuclei on mass number, and this fact accords

satisfactorily with the calculation results given in the preceding section.

In this temperature region the changes with temperature in the volume and

surface components of the excitation energy and free energy, MeV, which

were obtained in the self-consistent approach [32], can be approximated

by

Uv{t) +Us(t) = (0,055A+0,15A
2'3)t3 MeV; 1

FV(0 +^s( ' ) =-(0,055/1 +0,12A2/3)ti MeV. J (1-55)

Similar relations were found in Ref. [32] for changes in the Coulomb

energy and in the energy of the symmetry of nuclei with temperature. The

results of these calculations can be regarded as an evaluation of the expected

changes with temperature in the different components of the liquid-drop

description of the energy of nuclei. The coefficients in brackets of the

temperature dependence of excitation energy and free energy (1.55) determine

the asymptotic values of level density parameter "a. obtained in the given

approach. By comparing with (1.38) we can see that, in the case of heavy

nuclei, calculations by the Hartree-Fock method give appreciably lower

values of the parameters a than those calculated with the empirical shell

potential. These differences obviously stress the need for a fuller study

of the dependence of the self-consistent calculation results for the thermo-

dynamic characteristics of nuclei on the parametrization of the nucleon-nucleon
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interaction. Of primary interest from the standpoint of describing heated

nuclei would be the sets of strength constants which give the maximum possible

effective nucleon mass inside the nucleus and consequently a higher value of

the volume component of the level density parameter.

1.4. Equilibrium deformations of excited nuclei

It is well known that the nuclei in the region of rare-earth elements

(150 -$ A ^ 190) and actinides (A > 230) are quite strongly deformed in the

ground state, and that this property is of primary importance for a

description of the low-energy nuclear spectra. Accordingly, there is

naturally a problem of equilibrium deformation of highly excited nuclei. If

we relate this problem to the equilibrium deformation averaged over many

states of the excited nucleus, its solution can be obtained on the basis of

a statistical analysis of the shape of the excited nuclei.

For fixed energies and number of particles the thermodynamic potential

determining the statistical properties of a system is the entropy of the micro-

canonical ensemble, or which is the same thing, the logarithm of the density

of excited states. Thus, if we study the dependence of entropy on the de-

formation of the nucleus, the maximum of entropy will correspond to the most

probable equilibrium shape of the excited nucleus. In the presence of fairly

complete single-particle level schemes of the deformed shell potential the

entropy for a fixed excitation energy can be found from Eqs (1.31)-(l.33)

considered above. It is obvious that the results of such calculations are

greatly influenced by the deformation energy of cold nuclei. For a fixed

total energy the surface of the deformation energies directly determines

the excitation energy of the heated nucleus and, consequently, the dependance

of entropy on the deformation of the nucleus.

The shell correction method has proved extremely helpful in describing

deformations of cold nuclei [23, 24].

Under this method, the deformation energy of nuclei can be represented

in the form of two components:

)+5£o(5), (1.56)

where § nM(£) is the smooth energy component equivalent to the phenomenological

liquid-drop model, and 6§ (£) is the irregular component due to the shell

inhomogeneities of the single-particle spectrum. Written in this manner,
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Eq. (1.56) implies that pair correlations have been taken into account in both

its terms. In practical calculations the parameters of the liquid-drop

deformation energy are determined empirically from the analysis of masses

and fission barriers of nuclei [25], and the fluctuating shell correction

is calculated from specific single-particle level schemes on the basis of

relations of type (1.39). By this method a satisfactory quantitative descrip-

tion was obtained for experimental data on the equilibrium deformations of

nuclei, and by including mirror-asymmetric and non-axial deformations of

the shell potential in the calculations it was also possible to arrive at

fairly good agreement with experiment in the analysis of the double-humped

fission-barrier structure of actinide nuclei [24]. In view of all these

results we can regard the deformation energy found by the shell correction

method as a reliable basis for the study of entropy changes during variations

in the shape of the nucleus.

A qualitative evaluation of the expected effects can be obtained even

by the simplest analysis of Eqs (1.44) and (1.56). We determine the excitation

energy of the nucleus for a particular deformation in accordance with (1.56)

as

(1.57)

If we now use the relationships of the Fermi-gas model but take account in

them the shell changes in the level density parameter (1.44), the dependence

of the square of entropy on deformation of the nucleus can be represented

in the form

(1.58)

It will be seen from this that at low excitation energies a decisive role is

played by the last term and that entropy is maximum when the deformation

corresponds to the minimum value of shell correction. Thus for low

excitation the equilibrium deformation of the nucleus remains the same as

in the ground state. But when we go on to the region of high excitation

energies, the last term in Eq. (1.58) asymptotically tends to zero, and the

dependence of entropy on deformation is then determined by the liquid-drop

component of the deformation energy. The maximum of entropy in this case

corresponds to the spherical shape of the nucleus. Therefore, regardless of



- 24 -

the equilibrium deformation of the ground state, the highly excited nuclei should

be spherical.

A fuller picture of the changes in the shape of the nucleus with its

excitation is given by direct microscopic calculations of entropy and other

thermodynamic potentials using specific single-particle level schemes [33, 34].

As thermodynamic potentials characterizing the properties of excited nuclei,

apart from entropy S(£,£), we can also consider the free energy

F(t,$)=&(t,l-)-tS (1.59)

or the energy at a fixed entropy

) = F(t, 5) + tS. (1.60)

In the description of the equilibrium characteristics all the potentials

mentioned are equivalent, and the equilibrium shape of the nucleus can be found

from the extremum condition for any of them. However, potentials (1.59) and

(1.60) are more convenient for analysing the rigidity of the shape of the

nucleus

'
. ( )

It should be noted that the two methods of defining rigidity will coincide only

in the case of equilibrial shapes but may differ appreciably for non-equilibrial

shapes. At zero temperature both thermodynamic potentials F(t,£;) and %(S,E,)

are transformed into the deformation energy (1.56) of the non-excited (cold)

nucleus.

Figure 10 gives the calculated maps of the free energy equipotential

surfaces of the Yb nucleus for three temperatures [34]. Deformation

parameter y determines the non-axiality of the shape of the nucleus y = 0

corresponds to the prolate ellipsoid shape and y = 60 to the oblate ellipsoid

shape. At a temperature of t = 0.2 MeV the excitation energy U < 1 MeV,

and the given map of the free-energy surface virtually coincide with the

deformation-energy maps discussed in Ref. [24] in the case of cold nuclei.

It will be seen from the maps in Fig. 10 that at temperatures of up to 1 MeV

there is only a comparatively small shift of the minimum towards smaller

deformations but in the neighbourhood of the minimum the density of equi-

potential lines, which characterizes the rigidity of the equilibrium shape,

changes very noticeably. With a further increase in temperature to 2 MeV the
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nucleus assumes a spherical shape and the map of the free-energy surface of

the heated nucleus becomes similar to the deformation-energy map of the liquid-

drop model.

In the case of the most typical nuclei the changes in equilibrium de-

formation and axial rigidity with temperature are shown in Fig. 11. In the
208

magic spherical nucleus of Pb the rigidity changes monotonically with

temperature and exceeds approximately by a factor of two the evaluation ob-

tained in the liquid-drop model, even at t = 2.0 MeV. Thus, in a spherical

nucleus the weakening of the shell effects is comparatively slow. The situa-

tion is quite different in the originally deformed Ba and Er nuclei,

where upon weakening of the shell effects with temperature there is destructive

competition between the shell and liquid-drop deformation behaviours, as

a result of which in the temperature region of t -. 1.2 MeV the rigidity decreases

strongly and the shape of the nucleus may fluctuate considerably. Only with

further increase in temperature is the liquid-drop rigidity of the equilibrium

spherical shape restored.

The statistical approach formulated here can also be used to study the

influence of angular momentum on the shape of heated nuclei. It is obvious

from the above discussion that at high temperatures t > 2 MeV the changes

in the shape of nuclei due to the angular momentum should correspond to the

concepts of the rotating-liquid-drop model [35]. According to this model,

with increase in the speed of rotation the nucleus will take the shape of

an increasingly oblate ellipsoid. This deformation behaviour is maintained

right up to the critical values of angular momentum J = 70-80, at which

the drop loses resistance to scission into two fragments. At the same time,

studies on the shape of fast-rotating cold nuclei have shown that, owing

to the influence of the shell effects, the equilibrium deformations of the

states of the yrast band can differ considerably from the predictions of

the liquid-drop model [36], Thus, with excitation of the nucleus above the

yrast band there should occur a transition from the shell deformations of

fast-rotating nuclei to the liquid-drop deformations, which is similar to

the transition considered in Figs 10 and 11 for non-rotating nuclei. The

calculations - given in Ref. [34] - of the thermodynamic potentials for heated

fast-rotating nuclei enable us to observe the corresponding changes in deforma-

tion for specific nuclei. The properties of nuclei with high angular momentum

have in recent years been studied intensively in reactions with heavy ions.

Since at the initial stage the products of these reactions generally have a
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rather high excitation energy above the yrast band, it is very important for

a consistent theoretical analysis of such experiments to take into consideration

the changes in shape during the subsequent de-excitation of nuclei.

1.5. Parity distribution of excited states

In an analysis of experimental data on the level density of excited

nuclei it is generally assumed that levels of positive and negative parity

have an equiprobable distribution. Ericson's evaluation of the parity distri-

bution of states of a non-interacting Fermi-particle system is regarded most

often as justification of this assumption [5]. The evaluation is based on

a simple combinatorial analysis of the probability of the occurrence of multi-

particle configurations of different parity in a system of n-particles.

If in the negative-parity states such a system has an even number of particles,

the resultant parity of the multi-particle state of the system is positive,

whereas in the case of an odd number of particles in such states the parity

is negative. We denote the probability of one of the particles having the

negative-parity state by p and one having the positive-parity state by p = 1-

In the absence of any additional limitations the probability of finding k

from n-particles in negative-parity states and the remaining n-k-particles in

positive-parity states is determined by the product of the corresponding single-

particle probabilities

*!(n-*)!'-"* U

We obtain the resultant probability of the occurrence of negative parity

in the system of n-particles by summing (1.62) over all values of k which

lead to negative-parity states

P - S
" *= 1,3,...

Equation (1.63) is rigorous only for whole numbersof particles n. It

can also be used, however, for probability evaluations of the parity distri-

bution of the states of a system characterized by an average non-whole number

of excited quasi-particles. For this purpose, we rewrite (1.62) in a form

which is also valid for non-integer n:
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where m is determined as

• 1 for even-even and odd-odd nuclei

m = ' 1 for p <l/2 ]
f for odd nuclei

-1 for p_ > 1/2 i

Within the framework of the Fermi-gas model the average number of excited

quasi-particles is described by the expression

and, in the case of non-magic nuclei excited by resonance neutrons, n can

be evaluated as n z 0 . 8 ^ s 8-12. For such numbers, even when p and p

differ considerably, P is close to 1/2 (to p = 0.1 correspond, for example,

the values of P = 0.42 for n = 8 and 0.46 for n = 12). Hence for most nuclei

the deviations from the equiprobable parity distribution of excited states

should be sufficiently small even at energies corresponding to the neutron

binding energy.

The above evaluation may, however, turn out to be oversimplified for

*/near-magic nuclei—, where the influence of the shell effects is strong and

the number of excited quasi-particles comparatively small. The possibility

of considerable irregularities occuring in the distribution of positive-

and negative-parity levels in such nuclei is indicated in particular by the

results of combinatorial calculations of level density carried out within

the framework of the non-interacting particle model [37] as well as those

based on the more rigorous quasi-particle-phonon model, which takes into

account the collective excitations of nuclei [38, 39]. As a typical example

of the latter model's results we can look at the histograms for the number

of levels with angular momentum and parity I = 1/2 and 1/2 in the 400 keV

region in the Fe nucleus [38]. Although the general trend of the exponential

growth of level density with increase in excitation energy is in satisfactory

agreement with the traditional statistical description, in the local energy

sectors the level density fluctuations are fairly high and there are quite

considerable differences in the number of positive- and negative-parity levels.

For instance, at excitation energies close to neutron binding energy these

calculations yielded a ratio of P /P = 0.5 for the Fe nucleus and the
+ ~ 58

value of P /P = 6-8 for the neighbouring even-even Fe nucleus. Similar

irregularities in the energy and parity distribution of levels have also

been demonstrated in Refs [38, 39] for some other spherical nuclei. In the case

*/ Nuclei differing from the magic nuclei by one or two nucleons.
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of deformed nuclei, the deviations from monotonic statistical dependences were

substantially less and occurred only in the region of comparatively low

excitation energies.

The quasi-particle-phonon model and the role of the collective excitations

in the energy dependence of the level density of nuclei will be discussed in

more detail in Chapter 3; at this juncture we shall try to investigate to

what extent the above-mentioned deviations from the equiprobable parity

distribution of excited states are due to the shell inhomogeneities of the

single-particle spectrum. For this purpose, we determine the following

quantities within the framework of the shell model

n = 1g,tl{\ p ± = I p y
( ± )

g j n- jn, (1.66)

where g. is the degree of degeneracy of the single-particle levels and n.

the Fermi function of the excited quasi-particle population of single-particle

states; and probabilities p.~ = [l-(-l) J]/2, p.+ = 1 - p. are determined

by the orbital momentum of level 1.. Equatiore (1.66) can be used to calculate

the dependence of n and p on temperature (or excitation energy) and Eq. (1.64)

to find the contribution of the states with different parities to the total

excite'd state density. For the most typical nuclei the calculation results

for the dependence of n, p and P on excitation energy are shown in Fig. 13 [40],

The calculations were based on the level scheme of the Saxon-Woods potential

and took into account the influence of the pair correlations on the occupation

number and the equation of state linking the temperature of the nucleus to its

excitation energy (see below). It should be noted, however, that allowance for

the pair correlations has little effect on the calculation results since

the characteristics of the behaviour of n and p are determined mainly by

the single-particle level scheme. In the case of Fe and Te nuclei,

the values of P derived are close to the results of the above-mentioned

microscopic combinatorial calculations of the corresponding values averaged

over a fairly wide energy region (Fig. 13). Such averaging is necessary

for eliminating energy fluctuations in the density of the positive- and

negative-parity levels which occur in the combinatorial calculations.

The calculations of the quantities (1.66) performed in Ref. [40] for

a wide group of nuclei show that although the differences of probability

p from 1/2 are, as a rule, rather large for the proton and neutron single-

particle level schemes, in the case of most spherical nuclei near the stability

valley, these probabilities add together in a destructive sense and the parity

distribution of the excited states of nuclei is very close to equiprobable.
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Marked deviations from equiprobable distribution occur only in the region

of nuclei with Z * N = 26-30, where p -»• 1 and the number of excited quasi-

particles n for U = B is comparatively small. Thus, the combinatorial and

statistical calculations of level density show that considerable deviations

from the equiprobable parity distribution of the highly excited states of

nuclei should evidently be expected only in nuclei of the iron group. In

the case of heavier and especially deformed nuclei, these deviations at exci-

tation energies comparable with the neutron binding energy should be small

or else totally absent.

Experimental data on the parity distribution of the highly excited states

of nuclei may in principle be obtained by analysing the mean distance D.

between the neutron resonances corresponding to s- and p-neutrons. For equi-

probable distribution of the excited states we should have D /D « 3, and

noticeable differences between the observed relation and this evaluation

would be the most direct proof of deviations in the parity distribution.
233 239

In the case of the Th and U isotopes the experimental values of D /D =

2.96 +_ 0.22 and 2.86 _+ 0.25 [41], respectively, are in satisfactory agreement

with the concepts of equiprobable parity distribution of the excited states
57 59

of deformed nuclei. For the Fe and Fe compound nuclei the observed
1 c 9ft

relationships 4.1 + *Q and 4.0 + *_ [42] do not seem to confirm the con-

siderable deviations from the equiprobable contribution of states of different

parity as predicted by microscopic calculations [39]. However, the errors

in experimental determination of D and D for the above-mentioned nuclei

and also for other spherical nuclei are still so high that it is evidently

premature to draw any conclusions on their basis with regard to deviation

from the equiprobable contribution of the positive- and negative-parity states.

1.6. Density of states for a fixed number of excited quasi-particles

In the description of level density considered above the energy and

angular momentum or its projection in a given direction were chosen as the

integrals of motion determining the state of the excited nucleus. There

has recently been interest in the states of the nucleus which are characterized

by the number of excited quasi-particles or some other equivalent quantity.

Such states may occur in nuclear reaction cross-sections in the form of inter-

mediate structures or in the form of the hard part of the evaporation spectrum

during pre-equilibrium decay of the compound nucleus. These processes will

be discussed below. Here we consider the results of analysing the statistical

characteristics of the corresponding states within the framework of the non-

interacting particle model.
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Simple analytical expressions for the density of states of a nucleus with

a fixed number of excited particles p and holes h can be obtained if the

excited nucleus is regarded as a two-component ideal gas consisting of Boltzmann

particles [43]. The statistical sum of such a gas in the continuous-spectrum

approximation can be represented in the form

p+h

and for the density of states of a system with a given excitation energy

we can find a simple relationship

Pr,h (W = tfJTi)"1 f expOJtOGn/,^)^ = — - — — - — — • (1.68)
fph * > r^- P" p\h\(p+h -1)!

The spin dependence of the density of the particle-hole states can be

easily derived within the framework of the model of Boltzmann particles with

a homogeneous spectrum of single-particle states (i.e. equidistant single-

particle levels which are doubly degenerate with respect to the sign of pro-

jection of angular momentum and have an identical absolute value of projection m),

The statistical sum in this case takes the form [44]:

p + h

y7. p\h\

x 2 2 C* C* npblm(p+A-2*-2v)]. (1.69)
Jt=O v=0

where C = p!(p - k)!k!. Calculating the integrals of the corresponding

inverse Laplace transform for the density of states, we obtain

1 / M \

It is obvious that in the given model the angular-momentum projection M should

always be a multiple of the projection of the single-particle momentum m

and vary in steps of AM = 2m. By summing (1.70) over all possible values

of M, we obtain the total density of the particle-hole states (1.68).

With the help of (1.70) we find the density of levels with the given

angular momentum

(- + I)PPA<W UP*h-L
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Equations (1.70) and (1.71) can be easily transformed into a simpler

form if we used the Stirling formula and the small-momentum approximation

M « m (p + h):

pph(U,M) = ~—— pph(U)exp[-M
2(p+h-l)/2m2(p+h)]. (1.72)

1T(p + « )

If we go on to the density of states per unit of projection M, i.e. divide

(1.72) by 2m, we get

^exp(tf2/2o£a) (1.73)

This equation has a form similar to the spin dependence of the density of

states of the Fermi-gas model (1.14). The spin cut-off parameter for a nucleus

with a fixed number of excited particles and holes equals

p+ h -
(1.74)

Let us now go on to consider a more realistic model of non-interacting

Fermi particles. We are interested in states with a specified number of

excited particles and holes n = p + h. The statistical sum of the corresponding

large canonical ensemble can be written in a form similar to (1.4) if we

introduce an additional quantum number descrbing the presence of a particle

or a hole in the v-th single-particle state. We determine this number as

_ f-l, if ev<ef;
1v |+1, if ev>ef, ( 1 > 7 5 )

where e, is the Fermi energy. For a homogeneous single-particle spectrum

in the low-temperature approximation the saddle-point equation can be written

in the form

n2 12U= g +
6 2 m-T

(}M=

(1.76)
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and the entropy of the nucleus can be represented as

where y is a Lagrange multiplier fixing the mean number of excited particles

and holes. These relations can serve as the basis for the different approxi-

mations .

Let us consider the small-momentum approximation. Expanding (1.76)

in a series in pm « 1, for the density of states p (U,M) we obtain a relation

of type (1.73), in which the total density of the particle-hole states is

determined by the relationships

1+e -7
(1.78)

and 3 and y by the equations of state

7

0

2
The spin cut-off parameter o in the small-momenturn approximation takes

the form

a2n =M/H =2*m
2/0(l+e-')r). (1.80)

The solution of Eqs (1.79) and the behaviour of p (U) were studied in detail
2 n

in Ref. [45] and the behaviour of a in Ref. [46].

For Y = 0 the expressions for entropy (1.78) and excitation energy (1.79)

coincide with Eqs (1.12) of the Fermi-gas model considered earlier, and the

second equation in (1.79) in this case determines the average number of particles

and holes excited at the given temperature

(1.81)

For M = 0 the ratio of thermodynamic functions to those at y = 0 depends

only on the n/n ratio, i.e. the corresponding curves have a universal shape

independent of the parameters of the system considered. The behaviour of
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the quantities determining the density of states (1.78) in the dimensionless

form is shown in Fig. 14. Comparison between the p (U) values found and

the much simpler calculations of the Boltzmann-gas model demonstrates very

close agreement of the calculation results [44, 45]. There are differences

only in the region of low-excitation energies for a fairly large number of

excited particles, when the Pauli principle makes a substantial contribution.

In Ref. [47] it was shown that the description of the density of the Fermi-

gas particle-hole states by relationship of type (1.68) can be improved con-

siderably if we use in them the effective excitation energy

U*=U- \p(p-l)+h(h -l)]/4*. (1.82)

The accuracy of such a description is sufficiently high over the entire energy

range, excluding a small region near the threshold of the n-particle excitations.

Let us consider the problem of the maximum projection of the angular

momentum in a system with a fixed number of excited quasi-particles. At

the limity • _""> the first equation in (1.76) determines the temperature

of the system

f=<3-1=t//n, (1.83)

which coincides with the temperature of the Boltzmann-particle gas. The

maximum value of M in this case is determined by the number of quasi-particles

=mn. (1.84)

Thus, for n « n the Pauli principle does not impose any great limitations

on the system, and the statistical characteristics of the n-quasi-particle

excitations are described satisfactorily by the Boltzmann-particle gas model

relationships.

For y + °° Eqs (1.76) can be transformed into

U- g + —

M = 2gm2—.
0
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For entropy and the maximum value of the angular momentum in this case we

obtain the relations

(1.86)

From Eq. (1.86) we can easily find the maximum possible value of the

angular-momentum projection for a given U:

Mmax =>»\f2Fu=-^ ™- (1.87)

The solution of the system of Eqs (1.76) over the whole range of possible

changes in the angular momentum was found by the authors of Refs [44], and

Fig. 15 shows for different values of n/n the obtained dependence on M/mn

of the ratio between the entropy S (M) of the system with a fixed number
"- 2 1/2

of quasi-particles and the entropy S - (2tr gU/3) , corresponding to the

average number of quasi-particles n for M = 0. The dot-dash curves limit

the region of permissible values of M in accordance with conditions (1.85)

and (1.86) derived above. Maximum angular momentum (1.87) at the given excitation

energy is attained for n/n = 1.31. The dashed curve represents the results

of calculation in the approximation of small angular momenta (Fig. 15).

It will be seen that this approximation quite satisfactorily describes the

entropy of the system for any M and n/n, except for the region of large momenta

for n > n, i.e. when M is close to M" . Since the behaviour of the state
max

of density of the system is determined mainly by the dependence of entropy

on the integrals of motion, the approximation of small angular momenta quite

satisfactorily describes the density of the particle-hole states virtually

throughout the region of permissible values of M.

In the relationships considered above the effects due to nucleon pairing

can be taken into account if it is assumed that additional energy 2A has

to be expended in order to excite the particle-hole pair [43]. This assumption

is equivalent to using in the above relations the effective excitation energy

{ U - nA for even n; |
( 1\ A t AA I (1.88)

U - (n - 1) A for odd n. J
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The next chapter gives a more rigorous analysis of the influence of the correla-

tion interaction of nucleons on the density of states with a fixed number

of excited quasi-particles.

The influence of the shell effects on the state density of a nucleus

with a fixed number of excited particles and holes can be considered if the

corresponding thermodynamic functions are calculated for a realistic spectrum

of single-particle states. The results of such calculations were analysed

in Ref. [48]. Consideration of the shell structure of the single-particle

spectrum is qualitatively equivalent to introducing the level density para-

meter g(U), dependent on excitation energy, into the relations considered

above. However, this dependence is much less universal for states with a

fixed number of excited particles than in the case of the excited nuclei

in thermodynamic equilibrium considered above.

As has already been pointed out, the statistical properties of n-quasi-

particle states are of interest for the study of the characteristics of excited

nuclei which are in thermodynamic non-equilibrium. At present, the theory

of non-equilibrium phenomena in nuclei is clearly still at an early stage

of development and it is difficult to say what experimental material can

be used to verify the relationshipsconsidered. These relationships are applied

extensively to the model of pre-equilibrium evaporation of particles; however,

as is shown below, even many of the assumptions of this model need verification

as well as a sounder basis.
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Chapter 2

THE ROLE OF SUPERCONDUCTING-TYPE PAIR CORRELATIONS

The strong influence exerted by the pair correlations of the interacting

Fermi particles on the macroscopic properties of a system is seen most

clearly in the case of superconductivity of metals at low temperatures.

The microscopic theory of superconductivity developed by Bardeen, Cooper

and Schriffer [49] and Bogolyubov [50] has not only explained this interesting

phenomenon but also provided the basis for successfully solving a large number

of general problems of the many-body theory. In atomic nuclei the theory

of pair correlations of the superconducting type was developed at the end

of the fifties by V.G. Solov'ev [51] and S.T. Belyaev [52]. It initiated

an extensive study of the nuclear structure on the basis of the microscopic

approach. Within the framework of this theory it was possible to explain

such general properties of nuclei as the gap in the spectra of quasi-particle

excitations of even-even nuclei and the increased density of single-particle

excitations in odd nuclei, considerable decrease in the moments of inertia

of deformed nuclei in relation to the rigid—body value and the numerous strength-

ening factors of the a-, £>- and Y-transit:>-ons [51-53]. From the standpoint

of a statistical description of nuclei it is quite legitimate to wonder to

what extent the correlation effects occurring in the low-lying states will

be reflected in the statistical properties of nuclei. The present chapter

is in fact concerned with this particular question.

2.1. Description of the thermodynamic functions in the superfluid model of
the nucleus

We will consider the relationships basic to the theory of superconductivity

as applied to a description of the statistical characteristics of excited

nuclei. Let us take the simplest form of pairing interaction between nucleons

which corresponds to the Hamiltonian

H-\N= Z (ek-\)a+ksaks-G 2 ,4+4-V-
a*V (2.1)

Kf S &t K

where E, is the energy of single-particle levels in the self-consistent mean

field, a, and a, are the particle creation and annihilation operators and

G is the effective interaction constant. This relationship contains in an

explicit form the sign s = +_ of the projection of the single-particle angular

momentum on the symmetry axis together with an implicit assumption that the
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single-particle levels are doubly degenerate with respect to s. We have a

level spectrum of this kind in deformed axially symmetric nuclei [53], and

there is no difficulty in generalizing this consideration for the case of

spherical or non-axial nuclei.

The methods of the theory of superconductivity are based on determining

the transformation with the help of which calculation of the properties of

a system of interacting particles with Hamiltonian (2.1) can be reduced to

a model Hamiltonian for interacting particles [50]. This transformation is

the transition from particle operators to quasi-particle operators

ak-= ukak+-vk4-- (2.2)

In order for the new operators to satisfy the same commutation relationships

as the particle operators, coefficients u, and v must satisfy the condition

«4+v£=l. (2.3)

The remaining relationships needed to determine the transformation coefficients

(2.2) can be found from the conditions of the best approximation of the system's

thermodynamic potentials of interest to us by the model Hamiltonian.

We determine the model Hamiltonian in the form

H0 = UQ+ 2 Eka\saks (2.4)
k.s

and we denote the corresponding thermodynamic averages for it by

(2.5)

Using the canonical transformation (2.2), we can easily show that when

averaging with the model Hamiltonian different from zero, there will only

be the averages of the following pairs of particle operators:

+ v\{\ -nk); 1
l-2nk), J(aUak->o=(ak_ak+)o=ukvk(l-2nk), J (2.6)

where n = \a, a / = [l + exp(BE )] is the occupation number of the quasi-

particle levels. For the average value of the Hamiltonian (2.1) we obtain

the following relation as a result of transformation
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In this form of notation we disregarded the renormalization of the mean-field

levels made necessary by the interaction, since in the self-consistent

selection of the mean field the corresponding effects are included in the

definition of e, .

From the variational conditions

8<H - \N)0 5<#- \N)0 _ 6<«o>o

' 5 hnk

we obtain the equations

2{ek- X)ukvk- G(ul- vl) 2 u,, v , (1 -2n.,) =0:K K k, k k k

2(eA - X) (u\ - v\) + Gukvk S u^, v^ (1 - 2^ , ) = Ek,
k'

(2.9)

which, jointly with condition (2.3), determine the coefficients u , v and

the quasi-particle energy E .

Let us derive the correlation function

A = G Z ukvk(\-2nk). (2.10)

It will be easily seen that Eqs (2.9) have two solutions: a trivial u, v = 0

and a non-trivial u, v ^ 0. The trivial solution corresponds to the coefficients

uk=l,vk=0, if ek>\; 1

1^ = 0, vk = l, if ek < X J
(2.11)

and to the quasi-particle energy E, = |E, - xl> i.e. this solution is simply

a change-over in the non-interacting particle model to the language of particles

and holes.

For the non-trivial solution we have

Ek= (2.12)
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Substituting coefficients u, and v into Eq. (2.10) and applying the

condition of conservation of the number of particles, we find the system of

equations to determine the chemical potential X and correlation function A:

Ek J G jt Ek
(2.13)

Applying (2.12), we rewrite the expression for the energy of the system

in the form

£ - \N= 2 (ek - X) f 1 - - (1 - 2flk) ]- — ,
k I Ek i G

(2.14)
k

and we also obtain the entropy corresponding to the model Hamiltonian

5 = 2 X[(3Eknk-]n(l-nk)). ( 2 1 5 )

At zero temperature Eqs (2.13) determine the correlation function A of the

ground state of the system, while Eq. (2.14) gives us the energy of the ground

state.

To be used in the analysis of the thermodynamic functions of nuclei,

the relations considered above need to be generalized for a two-component

system. If we apply the traditional assumption of the theory of the nucleus

that pair interaction occurs only between identical nucleons [53], the corre-

sponding generalization reduces simply to independent consideration of the

proton A, and neutron A correlation functions on the basis of Eqs (2.13)

and to the additive summation of energy and other thermodynamic functions.

In order to make a qualitative analysis of the influence of the correlation

effects on the behaviour of the thermodynamic characteristics of the nucleus,

we can use the results of solving Eqs (2.13) in the continuous-spectrum approxi-

mation. Let us consider the dependence of the correlation function on tempera-

ture. For this purpose, we rewrite the second equation in (2.13) in the form

i J dl_'//^^,-2g/(-), (2.16)
0
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where E is the boundary of the single-particle spectrum, and

/ C O M dx (2.17)

(in view of the rapid convergence of the integral the integration limit has

been extended to infinity). In the region of low temperatures t « A, the

integral (2.17) can be calculated comparatively simply by expansion in a series

with respect to 1/y. For the correlation function in this region we obtain

the temperature dependence

(2.18)

Calculations of the integral (2.17) for A « t are more cumbersome, but

they are considered in detail in the literature on the theory of superconduc-

tivity [3]. Retaining the first terms of the expansion of the integral in

a series for A/t, we rewrite the correlation function equation in the form

where lny = C = 0.577 is the Euler constant and c(3) = 1.202 the Riemann zeta

function. It will be seen from (2.19) that A vanishes at the critical

temperature t determined by

(2.20)

Near the critical temperature, in the first order in 1-t/t we obtain

from (2.19)

Similarly, we can consider the basic characteristics of the behaviour

of energy, entropy and other thermodynamic functions of the system. At zero

temperature the inclusion of pair correlations leads to a reduction in the

energy of the ground state of the system, and the gain in energy with respect

to the energy of the ground state of non-interacting particles (the so-called

energy of condensation) can be easily evaluated for the model of homogeneous

single-particle spectrum 0

cond =nonint.~ ̂  inter,~ 8 f xdx -
-e
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(2.22)

In this evaluation use is made of the traditional assumption e » A . Above

the critical temperature, Eqs (2.14) and (2.15) are equivalent to the ex-

pressions for the interacting-particle model and the temperature dependence

of entropy S and excitation energy U is determined by the relationships of

the Fermi-gas model

2ar>, I forf>'cr. (2.23)
U=at2+ ±gA20 j

The shift in the excitation energy directly reflects a shift in the energy

of the ground state of the system (2.22).

For t < t the calculations of the temperature dependence of the thermo-

dynamic functions are similar to those considered above for the correlation

function. Near the critical point this dependence is described by

[l—ii
L 7ff(3) x .cr,

(2.24)

'cr/J 4

In this way the characteristics of the temperature dependence of the correlation

function have a direct effect on the behaviour of the thermodynamic functions

of the system. On an analogy with superconductors, the temperature t in

nuclei is called the point-of-phase transition from the superconducting (or

superfluid) state to the normal Fermi-gas state. Considering the finite

dimensions of nuclei, the concept of phase transition should not be understood

in the literal sense of the words. This problem is discussed below in greater

detail.

In the continuous-spectrum approximation the temperature dependence of

the correlation function over the entire temperature range t ̂  t can be

found by expressing the integral (2.17) in terms of the Macdonald function:

: Z (-1)^*0 I — . (2.25)
v= l \ t
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Similarly, we can write the relationships for entropy and excitation energy

A2 °°

t «=]

U'-St +l

(2.26)

These expressions were tabulated in the studies on the theory of super-

conductivity [54], and the corresponding temperature dependences of the thermo-

dynamic functions are given in Fig. 16 in comparison with the dependence of

the similar functions of the Fermi-gas model.

We will now discuss some of the features involved when applying the

relationships of the superconductivity theory to the problem of describing

the level density of excited nuclei. The solution of this problem in the

general case can be obtained by the saddle-point method, and the results

thereof can be represented in a form similar to (1.8). Thus, in addition

to the thermodynamic functions considered above, we further need to obtain

relationships for the pre-exponential factor. In the determination of the

latter relationship the problem of sequence in the behaviour of the variational

transform of the superconductivity theory and calculation of contour integrals (1.2)

is very important. If we perform the variational transform up to the integration

point, there may be spurious terms in the model-Hamiltonian derivatives during

the calculation of the pre-exponential factor through the dependence of the

model Hamiltonian on the integration variables.

In order to avoid such terms, we need to formulate the variational procedure

directly for the density of states. There are various alternatives for solving

this problem. The result can be obtained in a fairly simple form by the saddle-

point method, which should be applied, however, before using the transition

to the model Hamiltonian. For a single-component system the determinant of

the second derivatives in the pre-exponential factor for the density of states

within the framework of this approach takes the form

det =
{H2)0-Uf)\

<H)0 (N)o - <HN)0
(2.27)

where the averages for the model Hamiltonian should be calculated at temperature

and chemical potential values corresponding to the saddle point. Performing
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the calculations of the averages and dropping the insignificant terms pro-
2

portional to G , we obtain

det = [2 2 4 nk (1 - nk)\ J2 2 [nk (1 - nk) +

+ —(l-2»k)
2\}-[2 Znk(\-nk)]\ ( 2 . 2 8 )

lEl i k

The temperature dependence of the determinant of the second derivatives is

shown in Fig. 16, together with a similar dependence for the Fermi-gas model.

There is no difficulty in generalizing Eqs (2.27) for a two-component particle

system, and we will not dwell on this point.

The specific characteristics of the temperature dependence of the thermo-

dynamic functions resulting from pair correlations of the superconducting

type are most pronounced in the behaviour of the moment of inertia c/,,, directly
o II

associated with the spin cut-off parameter of level density on. In the small-

momentum approximation the relationship for this parameter is written usually

on the analogy of the independent-particle model in the form of (1.34). For

a homogeneous single-particle spectrum in this case we have

Jy= /o i dxch'2 V*2+(A/2r)2' , (2.29)
0

where J?~ = gm . We find the behaviour of the moment of inertia in the region

of very low temperatures by obtaining the asymptotic dependence of the inte-

grand for A » t:

rrAo
exp(-A0/r). (2.30)

In the neighbourhood of the phase-transition point, using the expansion

of integral (2.29) in a series in A < t, we obtain

-2(1-///)] for t<t
cr cr (2 31)

for t > rcr.
 U * J i ;

The behaviour of the moment of inertia (2.29) over the whole temperature range

in shown in Fig. 16.
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The above relationships of the superconductivity theory began to be used

in the analysis of the statistical properties of nuclei, first of all, to

describe the behaviour of the angular anisotropy of the induced-fission products

of transuranium nuclei [55], and then to analyse the density of excited states [56],

In all these studies the thermodynamic functions were calculated in the con-

tinuous-spectrum approximation. Although this approximation is quite convenient

for qualitative consideration of the effects due to pair correlations, we

cannot confine ourselves to it in many cases for quantitative analysis of

the level density of excited nuclei. The shell inhomogeneities in the single-

particle spectrum lead to a strong modulation of the correlation effects,

and it is very important to take account of this fact in the self-consistent

consideration of the characteristics of the low-lying and highly excited states

of nuclei. The presence of shell inhomogeneities in the single-particle spectrum

leads to the dependence of the level density parameter a and the average
_2

value of the angular momentum projection m on the excitation energy of the

nucleus. Consideration of this dependence is equivalent to non-linear deforma-

tion of the scales on the axes in Fig. 16. An evaluation of the effects expected

in this connection can be made on the basis of calculation data for shell
_2

changes in the behaviour of parameters a and m , shown in Fig. 6. For a stricter

consideration of the influence of the shell effects on the behaviour of the

thermodynamic characteristics of the superfluid model it is necessary to solve

Eqs (2.13)-(2.15) directly for the single-particle spectrum of levels for

specific nuclei. Numerous examples of such calculations were analysed in

Refs [12-18].

It should be noted that in the different studies [12, 18, 56] describing

level density in the superfluid model of the nucleus the relationships for

the pre-exponential factor differ markedly. The derivatives with respect

to the intensive variables 3 and a of the correlation function of the system

are, as a rule, taken into account by these relationships, and this gives

rise to a discontinuity in the energy dependence of level density at the phase-

transition point. Relationships (2.27) obtained by the method considered

above contain no such derivatives, and the calculated level density at the

critical point has only a break, as indeed there should be for phase transi-

tions of the second kind [57].

The above relationships were obtained for the simplest form of the Hamiltonian

for the superfluid model of the nucleus (2.1). If we use an interaction of

a more general form
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Hint = - 2, Gkk' "*+ "*-V- V+' (2.32)

we get almost the same formulae (2.12) for the coefficients of variational

transformation but with the correlation function A, dependent on the states.

The earlier form will be retained also by the expressions for the number of

particles, entropy and pre-exponential factor, and it is only the relation

for the energy of the system that will alter slightly

-XJV= 2 Uek-\) \l-— U-2"*)] * U -
k [ L Ek \ ^k

(2.33)

The correlation functions for the form of interaction used are determined

by the integral equation

l-2n ,
i t = J C , * A^. (2.34)

*' ** Ek, *

At zero temperature the solutions of this equation for the matrix elements

of interaction in the form of 6-forces or Gaussian forces of a finite radius

were analysed in Refs [58]. It was found that for realistic forces the

diagonal matrix elements are systematically larger than the non-diagonal ones

by a factor of 2-5 and, consequently, that the configuration mixing is weaker

than in the approximation of G = const. These differences appear mainly in

the changes in the spectroscopic factors of the states far away from the Fermi

surface, and consideration of the corresponding effects can be important for

describing the cross-sections of single-nucleon transfers or the factors for

forbidden a-transitions.

Figure 17 shows the temperature dependence of correlation functions A, (t)

obtained for the proton level scheme of the Ba nucleus and the matrix elements

of 6-forces [59], The same figure gives, as a comparison, the temperature

dependence of the correlation function A(t) corresponding to the same critical

temperature in the approximation of G = const. It will be seen that, in spite

of considerable differences in the values of A, for different single-particle

levels, their temperature dependence is similar to A(t) found in the continuous-

spectrum approximation for the simplest form of pair interaction. In Fig. 17

we also give the results of calculation of entropy corresponding to the two

models. The level density parameter a = 6.85 MeV needed for calculations of
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entropy in the continuous-spectrum approximation is determined from the con-

dition of coincidence of entropy values at the critical point. Because of

the satisfactory agreement between the derived temperature dependences of

entropy below the phase-transition point we can conclude that the fluctuations

of the matrix elements of interaction have little effect on the behaviour

of the thermodynamic functions of the system. This result is quite natural

since the thermodynamic functions reflect the integral effect of the influence

of pair correlations on the properties of the excited states of nuclei.

The universal shape of the temperature dependence of the correlation

functions A, (t) can be used to plot approximate solutions for Eq. (2.34).

In particular, the solution can be sought in a separable form

(2.35)

where A(e ) describes the dependence of the correlation functions on the

energy of the single-particle states and function f(t) determines their

temperature dependence. The use of this approximation to describe the thermo-

dynamic functions of superconductors was considered in Ref. [60] and those

of the nucleus in Ref. [61].

If we substitute the separable expression for A,(t) into Eq. (2.34),

we get a system of equations for the determination of A(e, ) . Since the left-

hand side of such equations does not depend on temperature, the relationship

(1 - 2n, )/E, on the right-hand side of the equations cannot be expected to depend

on temperature either. By a direct comparison with the results of the above

calculations of A, (t) it can be demonstrated that, although this statement

is not very strict, it holds good with an accuracy of a few per cent. If

we take it as an additional approximation, we can then write the relationships

(2.. JbJ

with the help of which it is easy to calculate the different thermodynamic

functions of the system.

Transforming (2.36), we find the energy dependence of the correlation

functions

C*~X (2.37)
«h[(ejfc-\)/2f] '
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Thus, in the given model the critical temperature is related to the correlation

function on the Fermi surface as

'cr
=7A(e/>- (2.38)

Substituting (2.37) into (2.34), we obtain the equation determining the

temperature dependence of the correlation functions

(2.39)

In the continuous-spectrum approximation it is easy to find an explicit form

of the relations for the thermodynamic functions of the system. Thus, for the

energy of condensation which determines reduction in the ground-state energy of

the system as a result of the correlation effects, we have

,,-7 *** *2 ,
gi > >_, -~rr*rcr- (2.40)

For the excitation energy and the remaining thermodynamic functions which

determine the level density of the excited nucleus in the given model below

the phase transition point we get

det =~g2t4

3 cr

(2.41)

The temperature dependence f(t) of the correlation functions and of thermo-

dynamic characteristics is shown in Fig. 18. It also gives the results of

calculations of similar values obtained in the model with a constant matrix

element. Since the temperature dependences of the correlation function and

of the moment of inertia in these models differ very little, their differences

shown in the figure have been multiplied by 100.

The models considered suggest that the principal characteristics of the

behaviour of the thermodynamic functions of the superfluid model do not depend

on the assumptions made regarding the form of the matrix element of the

correlation interaction. The change in its functional dependence, in the



- 48 -

energy representation, merely leads to a renormalization of the constants

determining the interrelationship between the phase-transition temperature

and the correlation characteristics of the ground state of the system. Since

relationships of the superfluid model for the thermodynamic functions of the

system in the superconducting phase (2.41) are much simpler than in the model

with G = const, their use can in many cases greatly simplify the analysis

of experimental data in the region of low excitation energies. For the purpose

of selection of the correlation function A(e ) it is advisable to use Eqs (2.20)

and (2.38). In this case, the behaviour of the thermodynamic characteristics

of the system below the phase-transition point in both models will be equivalent

not only in temperature but also in energy scale.

2.2. Even-odd differences in level density

The specific feature of the pairing interaction is that it occurs only

for levels filled with nucleon pairs and that the reduction in the ground-

state energy caused by it will be maximal in a system with an even number

of nucleons. It can be easily seen from the definition of the model

Hamiltonian (2.4) that this state corresponds to a quasi-particle vacuum.

When considering a system with odd Z or N we shall always have an extra

particle occupying one of the levels and preventing population of this level

by a nucleon pair. The simplest states of the system in this case correspond

to single-quasi-particle vacuum excitations, and excitation with the minimum

energy is the ground state of a system with an odd number of particles. If

the above-described variational procedure is performed with allowance for

blocking of the level nearest to the Fermi energy by the unpaired particle [53],

we shall obtain the following equations for determining the correlation function,

chemical potential and ground-state energy of the system

2= x -L,
G *#* Ek

N= 1+ 2

es + 2 e* (1 ) - —
f#i \ Ek J G

(2.42)

The same equations determine the energy and correlation function of the lowest

excited states of the system which are formed during blocking by the unpaired

particle of levels further away from the Fermi energy.
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The role of the blocking effect can be seen by comparing the solutions

of Eqs (2.42) in the continuous-spectrum approximation with the solution of

similar equations for the ground state of the system with an even number of

particles. Let us represent the equations for correlation functions in the

form

(2.43)
0 y/x2 + Ajf V(e, -X)'+Ajf

and for e z. \, we obtain

A, «Aoexp(-l/^1Ao)
s«Ao- — . (2.44)

g\

Here g. determines the density of single-particle states of the component

under consideration, and according to the above evaluation g. = g(ef)/2 x A/45 MeV

For nuclei in the region of the rare-earth elements this value of g corresponds

to a 20-25% reduction of A in comparison with A .

We find the condensation energy of the system with odd N:

£odd ,
cond

(2.45)

Substituting (2.44) here, we obtain

,,even odd
cond ~ cond

(2.46)

Thus, the pair correlations lead to splitting of the ground-state energies

of the system with an even and an odd number of nucleons, and this effect

shows up directly in even-odd differences in the binding energies of nuclei.

Let us now consider the main characteristics of the spectra of excited

states. For a system with an even N the simplest excitation is the creation
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of a pair of quasi-particles from a vacuum. We will represent the energy

of such excitations, neglecting corrections for the blocking effect, in the

form

-£ 0 * V(e, - X)
2 +AV+ V(ef.-X)

2 +AJ >2A0. (2.47)

For a system with an odd N the lowest excitations correspond to displacement

of the unpaired particle to levels farther away from the Fermi energy, and

their energy is determined by the relationship

(2.48)
( , , ) .1 Ao

The expressions obtained demonstrate a very important result - the existence

of an energy gap 2A in the excitation spectrum of a system with an even number

of particles and the absence of a gap in a system with an odd N. It will

be seen from the last relationship that the pair correlations even lead to

compression of the low-energy spectrum, in comparison with the non—interacting—

particle model. The characteristics described here show up clearly in the

level spectra of the even-even and odd nuclei, and a more detailed analysis

of these data will be found in the monograph [53].

Let us go on to consider the odd-even differences in the level density

of nuclei in the region of higher energies. It can be seen from the analysis

of the relationships of the superfluid model in the preceding section that

above the phase-transition point the influence of the pair correlations on

the behaviour of the thermodynamic functions of the nucleus is reflected only

by a shift in the reference point of the excitation energy (2.23). The magnitude

of the shift is determined directly by the condensation energy, and the

difference in the condensation energies of systems with an even and an odd

number of particles (2.46) is the cause of the corresponding even-odd differences

in level density and other statistical characteristics of nuclei.

As has already been pointed out, many properties of nuclei are influenced

substantially by the shell structure of the spectrum of single-particle states;

therefore, for a more rigorous analysis it is necessary to calculate the con-

densation energies for realistic proton and neutron level schemes. The results

of such calculations for the single-particle level spectra of the Nilsson (a)

and the Saxon-Woods (b) potentials are shown in Fig. 19 [62]. The pair

interaction constants used in these calculations for the proton G and
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neutron GN systems were found from the description of experimental data for

the even-odd differences in the binding energies of nuclei [63]. On the

whole, the derived values of the constants G, MeV, are close to the following

values

22,5 ± 0,5 19,5 ± 0,5
GZ — ' • G N = — — • (2.49)

The results of these calculations show that although the condensation

energy changes sharply as we approach the magic numbers, a long way from the

latter the difference in the condensation energies of the even and odd systems

is approximately equal to the correlation function, and this result is hardly

dependent at all on the choice of the single-particle level scheme. The

correlation functions vary much more smoothly than the condensation energies,

and the A_ and A., values found are fairly close to the pairing energies used

for a phenomenological description of the even-odd differences in the level

density of nuclei.

Thus, the superfluid model of the nucleus gives a natural explanation

of the even-odd differences observed in level density. At the same time,

it should be borne in mind that a description of effective excitation energies

obtained on the basis of this model differs considerably from their phenomeno-

logical description in the Fermi-gas model (1.27). The condensation energy

generally exceeds the value of the phenomenologically derived correction 6,

and the difference of these values can be especially large for nuclei of the

transition region (Fig. 19). This should be kept in mind when comparing the

experimentally derived values of the Fermi-gas level density parameter with

the theoretical calculation results.

In recent years experimental data on level density have been obtained

over a wide range of excitation energies for a number of nuclei near A ~ 50-70 [64],

and these data can be used for direct verification of the applicability of

the above relationships of the superfluid model. Figure 20 shows the experimental

data and the results of calculation within the framework of the superfluid

model of the level density of even-even, even-odd and odd-odd nuclei [62].

It will be seen that the theoretical curves quite satisfactorily reproduce

the differences observed in the level density of nuclei with odd and even

numbers of nucleons and the changes in level density for different excitation

energies.
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One of the most, characteristic features of the superfluid model is phase

transition. In nuclei this transition should not be interpreted too strictly

to mean that there actually exist two clearly separate phase states: we can

only say that there are two regions of different energy dependences for the

thermodynamic characteristics of the nucleus. A similar effect is indicated

to some extent by the results - presented in Chapter 1 - of the phenomenological

systematics of the neutron resonance density and of the cumulative number

of the observed low-lying levels. In particular, the data given in Fig. 2

on the position of the point of change in the Fermi-gas dependence agree,

on the whole, with the evaluation of the critical energy of the phase transition

*5-^6 MeV, (2.50)

which is obtained for the quasi-classical value of the level density parameter (1.22)

and the empirical value of A = 12/A2 MeV. However, too much significance

should not be attached to the agreement obtained since the systematics of

the experimental data in Fig. 2 have been obtained on the basis of a phenomeno-

logical determination of the effective excitation energies, which only reflects

the concepts of the superfluid model in a highly simplified manner.

Attempts were made in some studies to describe the observed neutron reso-

nance density on the basis of the relationships of the superfluid model con-

sidered above [13, 65, 66]. In these calculations satisfactory agreement with

experiment could generally be achieved only for near-magic nuclei. In the re-

maining regions theory correctly reproduced the basic trends of the dependence

of neutron resonance density on the isotopic composition of nuclei although it

strongly reduced the absolute resonance density value. This shows up directly

in the difference between the theoretical values of the asymptotic level density

parameter (1.37) and (1.38) and the similar phenomenological parameter (1.46).

Since in the theoretical calculations based on realistic shell level schemes

all parameters of the model are obtained from the analysis of the ground and

low-lying states of nuclei, the calculations of the density of the highly

excited states do not contain any free parameters by changing which one could

eliminate the difference between the theoretical and experimental results.

It may be assumed that the effects which are not considered in the relationships

presented above make a substantial contribution to the observed neutron resonance

density of nuclei far away from the magic nuclei. As we have shown in Chapter 3,
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it would be quite natural to associate these effects with the collective motions

of highly excited nuclei.

2.3. Moments of inertia of heated nuclei

Above we considered the relationships of the superfluid model of the

nucleus for the parallel component of the moment of inertia (2.29) characterizing

the distribution of the angular-momentum projections for excited states on

the symmetry axis. For the analysis of deformed nuclei it is necessary also

to know the distribution of the angular momentum projections on the axis per-

pendicular to the symmetry axis. This distribution is determined by the magnitude

to the perpendicular component of the moment of inertia. At zero temperature

this moment of inertia directly characterizes the level spectrum of the rotation

band plotted in the ground state of the deformed nucleus, and the difference

between the observed moments of inertia and the rigid-body value is a clear

example of the manifestation of the superfluid properties of nuclei [67, 68].

Let us look into the behaviour of the perpendicular component of the

moment of inertia in the heated nucleus. For this purpose, we derive the

average value of the angular-momentum projection in the direction perpendicular

to the symmetry axis and denote this direction as axis x. In accordance with

the general definition of thermodynamic averages, we write

where Q(u) = Sp exp -J-BCH - XN - U>J ){• is the statistical sum of the rotating

nucleus. The moment of inertia characterizes the reaction of the system to

rotation, and it can be defined as

<£=</,>/«. (2.52)

Approximation of small momenta

We first calculate the statistical sum and other thermodynamic functions

of the nucleus for small rotation velocities. We shall regard quantity OJJ

in this case as a perturbation, and within the framework of the thermodynamic

formulation of the perturbation theory [3] we represent Q(co) in the form of

a series in powers of u

r

1̂

Pv-1
d0W(P)J(P))\ (2.53)

o J
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Here we have introduced the notation

Jx(0) = «p [p (H - \N)] Jx exp [-0(H - \N)], (2.54)

and statistical sum Q and averaging {.. •) correspond to the unperturbed

Hamiltonian H - AN. If pair correlations of the superconducting type are

taken into account for calculation of statistical sum Q and the corre-

sponding averages, it is necessary to use model Hamiltonian (2.4).

We write the operator of the angular momentum taking into account its

symmetry properties in relation to time inversion in the form

/ ' % Z / » ' ( J * * ° ^ " < - V J - (2-55)

Let us go on to the quasi-particle operators, (2.2), and performing for the

model Hamiltonian cumbersome but basically simple calculations of the terms

quadratic with respect to u> in the expansion (2.53), we obtain the following

relationship for the moment of inertia

\f$\ {("*V-"*"*')2

n -

1 - rtj.- flV.'

-—1- +
Ek+ Ek'

(2.56)

~ Ek'

At zero temperature this relationship retains only the first term, which is

a known expression for the moments of inertia of the ground states of deformed

nuclei in the small-momentum approximation [53].

The influence of pair correlations on the moments of inertia of cold

nuclei has been investigated by many authors [52, 67, 68]. The basic features

of the temperature dependence of the perpendicular moments of inertia have

been studied within the framework of quasi-classical evaluations of matrix

elements in Refs [55], and on the basis of calculations with a realistic single-

particle level scheme in Refs [69-71]. The results of such calculations for

the single-particle level scheme corresponding to the equilibrium deformation

of the U nucleus and also to its deformation at the fission-barrier peak

are shown in Fig. 21. The figure also gives the results of calculations of

the parallel If,, and effective J' f moments of inertia, determined by the relation
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It is just this combination of moments of inertia which is part of the descrip-

tion of the angular-distribution anisotropy of nuclear fission fragments.

It follows from the results presented here that during the break-up of pair

correlations with change in temperature the value of the moments of inertia

tends to the rigid-body value; however, this general tendency in the behaviour

of the moments of inertia can be greatly distorted by the shell effects [69, 71].

The characteristics of the behaviour of the effective moments of inertia

obtained by analysing the angular anisotropy of nuclear fission have been

shown by many authors to be a direct manifestation of the phase transition

predicted by the superfluid model [55, 72]. Figure 22 gives the experimental

results for the polonium isotopes which have been studied in most detail at

present. The figure also shows the theoretical curve. In the region of pre-

actinide nuclei £? , does not differ significantly from S,i , and the behaviour

of the effective moment of inertia below the critical temperature is determined

mainly by the temperature dependence of the parallel moment of inertia. Satis-

factory agreement between the theoretical and experimental results confirms

the validity of describing the statistical characteristics of excited nuclei

by means of the superfluid model relationships and demonstrates the high sensitivity

of the experimental data under consideration to the characteristics of the

behaviour of the thermodynamic functions of the transition states of the fissioning

nucleus. Both these factors make the study of the angular distributions of

fragments a highly effective tool for studying the correlation functions of

anomalously deformed transition configurations of fissioning nuclei. The

results of such studies are considered in more detail at the end of Chapter 5.

In the relationships given above the moment of inertia is defined as

the reaction of the system to external rotation (2.52), which is equivalent

to the traditional definition of the moments of inertia of the ground states

for nuclei in the cranking model [52]. The relationships for the parallel

moment of inertia (2.29) are obtained similarly. It is commonly thought that

the moment of inertia is associated with the corresponding spin-dependence

parameters as follows

of = fit. (2.58)

This definition of the parameters a. is somewhat simplified since it does

not take into account the microcanonical nature of the level density problem.

In this problem we are interested in the dependence of the density of the
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excited states of nuclei on the angular-momentum projection at a specified

excitation energy, and the spin-dependence parameter should be defined as

d In p (U. M)
2

ffMCE= (/= const ' ( 2 . 5 9 )

We shall show that in the presence of correlation effects the definitions

(2.58) and (2.59) do not coincide. For this purpose, we will confine ourselves

to an analysis only of parameter p•• , for which a considerable part of the

calculations can be performed in the analytical form [57].

First of all, we find the dependence of the correlation function on the

frequency of rotation. For a homogeneous single-particle level spectrum the

corresponding equation can be written in the form

(2.60)

where n±(x) = ll + expP^— ' )| is the population of quasi-particle states

with positive and negative angular-momentum projections on the symmetry axis.

In the approximation of small angular momenta, expanding the occupation numbers

in a series in w and retaining the terms up to, and including, the second

order, we rewrite Eq. (2.60):

i/=i \ , /I (2.61)

At temperatures close to the phase-transition temperature we can expand
2

the Macdonald functions in a series in (A/t) and find the explicit form of

the dependence of the correlation function on the rotation frequency

t 2n - 1
Here we have introduced the notations 8 = 1 - — ; f(») = f(")» where c(")

rcr 2"
is the Riemann function. It will be easily seen that rotation leads to a

reduction in the correlation function at a specified temperature and, con-

sequently, to a fall in the critical temperature in the rotating system in

comparison with critical temperature (2.20) in the absence of rotation.
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Similarly, we can find the dependence of excitation energy and entropy

on the rotation frequency:

V= *.,,» + _L g£ • Lg«Jm
2 - A1) S

6 4 2

IT2 1 A* x if, <T_ T •.
= —gt g — + — { j / o e/\\)>S

3 " 2 " t t
(2.63)

where the parallel moment of inertia cJ» is determined by (2.29). Using the

link between rotation frequency and angular-momentum projection M = ugu as

well as between temperature and excitation energy (2.63), we rewrite the re-

lation for entropy in the form

It will be seen from this formula that the dependence of entropy on angular

momentum at a specified excitation energy is determined by the moment of

intertia

for t <fcr;

(2.65)
for

t

According to the definition (2.59) given above, it is this moment of inertia

which is related to the spin cut-off parameter of level density (the difference

of entropy from lnp(U,M) is associated only with the pre-exponential factor,

which is of little interest for the present consideration).

The behaviour of the moment of inertiag « over the whole temperature
II

range is shown in Fig. 16. The relationships needed for these calculations

were examined in Ref. [57], and we shall not discuss them here. It can be

seen that the temperature dependences of the moments of inertia^jj andff«

are qualitatively very similar although the differences existing between them

can become important in a fairly rigorous quantitative analysis of level density

parameters. It should be noted that similar differences should occur also

in the case of the perpendicular moments of inertia.

The status of the above experimental data on the effective moments of

inertia of fissioning nuclei does not yet permit a sufficiently reliable

identification of these differences in the theoretical descriptions of moments

of inertia. This is due to errors in the actual experimental data as well as
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to problems entailing distortion of the obtained theoretical curves by the shell

effects. The shell inhomogeneities in the single-particle spectrum lead to

the dependence of the level density parameter g and the average value of the

square of angular-momentum projection m on the excitation energy of the nucleus.

Although there is not much difficulty in calculating the moments of inertia

considered above for specific single-particle level schemes, the reliability

of such schemes is still insufficient in the case of anomalously large nuclear

deformations corresponding to the fission barriers of pre-actinide nuclei.

Arbitrary momenta

Let us consider the basic characteristics shown by the behaviour of the

thermodynamic functions of the nucleus for large angular momenta, when we

cannot confine ourselves to the first terms of the expansion in a series of

the occupation numbers of the single-particle states. Here we shall limit

ourselves to analysis of the simplest scheme of equidistant doubly-degenerate

single-particle levels characterized by the identical value of the single-

particle angular-momentum projections.

For such a homogeneous level scheme we can easily obtain the correlations

determining the influence of angular momentum on the correlation characteristics

of nuclei at zero temperature [73]. The occupation numbers for t = 0 are

determined by

. „». / . "t_ = 0, (2.66)

and Eq. (2.60) for the correlation function A , just as the similar equation
OM

for the average value of angular-momentum projection on the symmetry axis

can be transformed into

M =mg^m>-AlMyi>. J (2.67)

The solution of these equations

(2.68)

determines the correlation function of the lowest level with a given M. At

M > M = gmA . the correlations in the system vanish, and the behaviour

of the different characteristics of the system is determined by their behaviour
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in the non-interacting-particle model. The relationship for the energy of this

level takes the form:

— — T — — — — =- l -r —

Im 2 2 Jo- \ M
o (2'69>
cr-

With the help of the relationships obtained it can be shown that even

in this simple case there are differences in the value of moments of inertia

which are equivalent to those considered above in the approximation of small

momenta. If we use definition (2.52), we find the following relationship

for the moment of inertia

(2.70)
cr*

Another method of finding the moment of inertia is based on determining the
2

"rotation" energy proportional to M in the expression for the excitation

energy of the system. In this case, for the moment of inertia we obtain

I U ^L - l^for M < M°cr;

f0 for M>M0
cr*

(2.70')

It will be seen that in the non-interacting-particle model or above the phase-

transition point the two definitions of the moment of inertia coincide, while

below the critical point the behaviour of G/,, and^7,| differ considerably.

The break-up of the pair correlations for large angular momenta was con-

sidered in Ref. [74] for a more realistic single-particle spectrum scheme.

Comparing Eqs (2.67)-(2.69) with the results of Ref. [74], we see that the

simple homogeneous model gives the correct functional dependence of the correla-

tion function A , moment of inertia yM and low-lying level energy Uw on the

OM || M

value of the angular momentum. In this model, however, the value of the critical

angular momentum is too low. This disagreement is due to a substantial difference

in the distribution of the projections m, in the single-particle level spectrum

of the shell model from that of the homogeneous model. In the case of the

spherical potential well, the following relations were obtained in Ref. [74]

for the critical angular momentum and the critical rotation frequency:



- 60 -

(2.71)

If these values are used in Eqs (2.69), on their basis we can obtain in spherical

nuclei a simple evaluation of the characteristics of the lowest level with

a given angular momentum.

The solution of the equations of state of a rotating heated nucleus at

a non-zero temperature was obtained in Ref. [57] by the numerical method for

a homogeneous single-particle level scheme, and the results of these calcula-

tions are shown in Figs 23-25. The curves are given in a dimensionless uni-

versal form, independent of the parameters of the system, using the critical

values of the corresponding quantities.

Let us note the basic characteristics of the results obtained. Figure 23

shows, for different temperatures, the relationship between rotation frequency u>

and the corresponding integral of motion - projection of angular momentum M.

The ratio between these quantities, which determines the dynamic moment of

inertia <^\|(t,w), and the correlation function of the system A(t,u) are also

given here. It will be seen that for low temperatures there is a region of

high-rotation frequencies within which the superconductivity equation has

two non-zero solutions for the correlation function A(t,to). In this region,

two values of the angular-momentum projection correspond to the intensive

variable ui. Similar two-valued behaviour is also found in the case of the

dependence of all other extensive thermodynamic functions of the system on

rotation frequency. But if the state of the system is determined with the

help of extensive variables, the dependence of the thermodynamic quantities

of interest to us will be single-valued. This will be evident from Fig. 24,

which shows, for fixed temperatures, the behaviour of excitation energy, entropy

and correlation function of the system with changes in the value of the angular-

momentum projection. Here the dotted line is the curve for phase transition

from the superconducting to the normal state - the state to the right of the

curve corresponds to A = 0 and is determined by the equations of the non-inter-

acting-particle model.

Since the state of the excited nucleus is described by a microcanonical

ensemble, the behaviour of the thermodynamic characteristics of the system

for a fixed excitation energy is of primary interest. The results of the

solution of the equations of state in these variables are shown in Fig. 25.
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The dotted line is the phase-transaction curve. For a fixed excitation energy

the curve t = 0 determines the maximum value of the permissible angular-momentum

projections. The dot-dash curve represents the behaviour of the system's

entropy obtained in the small-momentum approximation

(2.72)

2
where the spin cut-off parameter o M r F is calculated for M = 0 (see Fig. 16).

It will be seen that this approximation is valid in a sufficiently wide region

of angular momenta and gives strongly distorted results only for momenta close

to the maximum possible momentum, where almost the whole excitation energy

is expended on the rotation of the system, and the dependence of the moment

of inertia on rotation frequency plays a major role in determining the position

of levels with a high momentum (2.69).

It should be noted that for the normal phase (i.e. to the right of the

phase-transition curve) the approximation (2.72) can be improved considerably

if for large M we use a more accurate expression for the equation of state

of the Fermi-gas model

1/2
(2.73)

In the normal phase this expression is valid in the whole region of angular

momenta. No such simple relation exists for the superconducting phase.

The curves derived can be used to investigate the behaviour of the thermo-

dynamic characteristics of the nucleus throughout the angular-momentum

region. For a given set of parameters g, m and A we can obtain with their

help the density of excited states in the neighbourhood of the so-called yrast

line, i.e. the line of the largest possible momenta. Here for calculation

of M and GO we should use Eqs (2.71) and not the results of the homogeneous
cr cr

model. Calculations of the dependence of the thermodynamic functions of nuclei

on angular momentum for a realistic level scheme of the deformed single-particle

potential were considered in Refs [75],

The behaviour of level density for large angular momenta is of interest

in the study of multi-cascade particle evaporation processes in reactions

with heavy ions. The use of the small-momentum approximation in these calcula-

tions can considerably distort the results. At the same time, the relationships

obtained in this approximation are sufficient in the overwhelming majority

of cases for an analysis of reactions induced by lighter particles.
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2.4. Pair correlations for a fixed number of quasi-particles and
their relationship with the average statistical characteristics
of nuclei

Let us look at the influence of the residual interactions of the correlation

type on the thermodynamic characteristics of a system with a fixed number of

excited quasi-particles. In order to solve this problem we need to add one

more equation to Eqs (2.13) considered above

""2J"*' (2.74)

which fixes the number of excited quasi-particles n. The Lagrange multiplier y

corresponding to this equation will be part of the definition of the average

occupation numbers of single-particle states n = [l + exp(f}E - y)] but

this will not change the form of Eqs (2.13) and (2.14), which determine the

correlation function and energy of the system. The relationship for entropy

in the system with a fixed number of quasi-particles will take the form

Sn=l 2 [&Ek-y)nk-]n(l-*),)]• (2.75)

The expressions for the pre-exponential factor are presented in Ref. [76],

so we shall not discuss them here. For y = 0 Eq. (2.74) determines the average

number of excited quasi-particles in a system with a given temperature or

excitation energy. If we switch off the residual interaction, Eqs (2.74)

and (2.75) are transformed into similar equations for the non-interacting-particle

model, and in this case n is equal to the sum of the number of excited particles

and holes.

Let us consider the behaviour of the thermodynamic functions for a fixed

number of quasi-particles in the case of the model of the equidistant spectrum

of doubly-degenerate levels [76, 77]. At zero temperature the system should

be at the lowest of the possible states with the given macroscopic characteristics.

A quasi-particle vacuum n = 0 corresponds to the ground state of the system,

and the correlation function A in this state is determined by Eqs (2.13)

for n, = 0. In the case of states with a non-zero number of excited quasi-

particles, transition to the zero-temperature limit requires some caution and

cannot be done formally. This is due to the fact that in the system under

consideration the single-particle levels are degenerate with respect to the

sign of angular-momentum projection. As a result of such degeneracy, at t = 0

there are two possible limiting cases of distribution of excited quasi-particles
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over levels: (1) n quasi-particles occupy n levels near the Fermi energy;

(2) the levels have two particles each, and n quasi-particles occupy n/2 levels

near the Fermi energy.

For small n the first case corresponds to the blocking of a large number

of single-particle levels; using the continuous-spectrum approximation to

solve the equations of state, we obtain the dependence of the correlation

function and excitation energy on the number of quasi-particles in the form

A "

/l-

(2.76)

As n increases the correlation function of the system decreases, and to

excite a large number of quasi-particles it is advantageous for the system,

from the energy standpoint, at first to destroy the condensate, i.e. to expend
2

the energy gA /4 on transition from the superconducting to the normal state,

and then to excite n non-interacting particles. In this case, a lower energy

corresponds to the second method of level distribution of excited quasi-particles

and the excitation energy takes the form:

(2.77)

We now calculate the thermodynamic functions of the system at a temperature

different from zero. The solution of the equations for y = 0 has been given

above (see (2.25) and (2.26)). For the average number of excited quasi-particles

for y = 0 we rewrite relation (2.74) in the form

(2.78)

We consider the state of a system with a given temperature and number

of excited particles smaller than the average. In this case (y < 0) the average

occupation numbers of levels n can be expanded in a series in Macdonald func-

tions. Then the system of saddle-point equations will take the form

A v=i

v=\

—) ;
t /

t } 4

(2.79)



- 64 -

For entropy and the spin cut-off parameter we obtain

2 r 1 2 j "I

vA
2 <-i

/ A

( — ).
(2.80)

If the number of excited particles n is much smaller than n, then y + _»

and in the expansions we can confine ourselves to the first terms alone. In

so doing we can determine the explicit form of the dependence of the system's

thermodynamic functions on n:

(2.81)

Equations (2.81) will have an especially simple form at the limit of high

temperatures A/t •+ 0, when we can use the expansion of the Macdonald functions

in a series:

gt

V" = nt; Sn

where C = 0.5722 is the Euler constant.

2n-n In

(2.82)

Thus, in a system with a fixed number of excited quasi-particles, as the

excitation energy increases the correlation function tends to that of the ground

state while the behaviour of the thermodynamic functions at high-excitation

energies is determined by the Boltzmann-particle gas equations. This result

also enables us to use the Boltzmann-particle gas relationships (1.68)-(l.73)

to calculate the density of the states of the system under consideration at

high-excitation energies.

Let us consider the behaviour of the thermodynamic functions in the general

case of an arbitrary number of excited quasi-particles. The main qualitative

characteristics of the system's behaviour can now be understood on the basis

of the limiting cases considered above. For a small number of excited

particles n < gA /2 the correlation function of the system is different from

zero at any excitation energy U, and it increases with U. For large numbers
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of quasi-particles n > gA /2 the correlation function for the lowest states

is equal to zero, and the behaviour of the system's thermodynamic functions

at low-excitation energies is determined by the equations of the non-interacting
2

Fermi-particle model with renormalized excitation energy U* = U-gA /4. However,

with increase in excitation energy a correlation function appears in such a

system, i.e. there is a change-over from the normal to the superfluid state,

and for sufficiently large n the system under consideration will behave as

a gas consisting of Boltzmann particles.

We have to solve a set of equations of state in order to obtain a quanti-

tative description of the thermodynamic functions of the system. Such a solution

was obtained numerically for the equidistant spectrum of doubly degenerate

single-particle levels [76], and the results are given in Figs 26 and 27.

The changes in the correlation function for a system with a fixed number of

quasi-particles are shown in Fig. 26. The dot-dash curve represents the results

of solution at zero temperature (2.76) and the hatched area is the region within

which a redistribution of quasi-particles over levels takes place and solution

(2.76) is transformed into (2.77). The dependence of the system's entropy

and spin-cut-off parameter on excitation energy is given in Fig. 27 which also

shows the energy dependence of similar values for a system with a non-fixed

number of quasi-particles; the dotted line is the phase-transition curve.

The calculation results given here confirm the above qualitative conclusion

regarding the general trends in the behaviour of the thermodynamic functions

of a system with a fixed number of quasi-particles.

Let us now consider the density of the excited states of the system.

The difference of In from entropy is due to the presence of the pre-exponential

factor, and since the latter is a weak function of the excitation energy, it

needs to be taken into account only to obtain the correct absolute value of

the density of states. If necessary, the pre-exponential factor can be calculated

with the help of the relationships given in Ref. [76], These calculations

are very cumbersome; therefore, for practical purposes, it is of interest to

obtain simpler relationships for the density of states. It can be seen from

the results presented in Figs 26 and 27 that for a system with n/n > 0.4

there is an energy region where the behaviour of the system's thermodynamic

functions is determined by the equations of non-interacting Fermi particles.

In this region the density of states will also take the form of the Fermi-gas
2

dependence with the effective excitation energy U* = U - gA /4. The density
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of states can be represented in the form (1.68) if a correction for the

Pauli principle (1.82) is introduced into the effective excitation energy.

Thus, when the latter is correctly determined, Eq. (1.68) satisfactorily

describes the density of states of the system in the region of both low- and

high-excitation energies. This relation can therefore be expected to be a

sufficiently good approximation for calculation of the density of states of

a system with a fixed number of excited quasi-particles for arbitrary values

of U and n if we define the effective energy in the form

U*= U- -/(A* - A2) - n (n - 2)l&g ( 2 .83 )

and use for calculation of A(U,n) the results obtained above in the numerical

solution of the equations (see Fig. 26). The calculations showed that the

accuracy of this approximation was fairly high and that an appreciable error

occurred only in the immediate neighbourhood of the excitation threshold for the

given n-quasi-particle configuration. It is, therefore, better to use the

accurate relationships (2.76) or (2.77) to determine the threshold.

The density of states with a fixed number of quasi—particles is used at

present for the statistical analysis of intermediate structures and for describing

the hard part of the spectra of particles emitted during the pre-equilibrium

decay of the compound nucleus. An analysis of this kind is usually performed

with the help of the Boltzmann-particle-gas model relationships without taking

into account pairing corrections (1.68). The results of the studies carried

out show the errors which occur in this description and give a more rigorous

model for analysing the corresponding phenomena.

Using the thermodynamic functions of the system with a fixed number of

excited quasi-particles to describe the averaged characteristics of nuclei

discussed earlier makes for a stricter examination of the problems of the nature

of phase transition in excited nuclei, the difference between the statistical

characteristics of even and odd nuclei and the possibly stepped structure of

the energy dependence of level density and spin cut-off parameter in the low-

energy region [62].

The total density of the excited statesp(U) can be obtained by summing

n-quasi-particle densities over all energetically possible configurations

(2.84)
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It is obvious that for a system with an even total number of particles N

the numbers of quasi-particles n in the superfluid model take even values,

while for a system with an odd N only odd values are possible. The density of

states p (U) determines the statistical weight of configurations with a given
n

number of quasi-particles, and can be used to obtain any average characteristic

of the system under consideration

O(U) = ZOn{U)pn(U)lp(U). (2.85)
n

Figure 28 presents the results of calculation of the total density of

states, the spin cut-off parameter and the average correlation function for

the excited nucleus obtained with the help of relationships (2.84) and (2.85),

together with the results of calculation of the same values on the basis of

the ordinary thermodynamic relationships (2.25)-(2.28) which do not explicitly

take account of the classification of excited states with respect to the number

of quasi-particles (the values taken for parameters g = 18.3 MeV and

A = 0.85 MeV correspond to the region of transuranium elements).

In the ordinary thermodynamic consideration the correlation function A(U)

decreases with an increase in excitation energy and at an energy above the
2

critical U = 0.778 gA it equals zero. At U the energy dependence of thecr & o cr e=j t-

density of states, spin cut-off parameter and other thermodynamic functions of

the system shows a break typical of phase transitions of the second kind. For

a system with a fixed number of quasi-particles the correlation function of

configurations with n < gA /3 is different from zero over the whole excitation

energy range, i.e. such systems only exist in the superconducting state.

Systems with n > gA /3 may exist either in the superconducting or in the normal

phase but the region of normal states lies at lower excitation energies than

that of the superconducting states, and the phase transition has an energet-

ically opposite direction in relation to the phase transition of the tradi-

tional description. In the case of states with any n, the correlation functions

A increase as the excitation energy rises and tend to A at high U (Fig. 26).

If we calculate the total density of states and the average statistical

characteristics on the basis of Eqs (2.84) and (2.85), no breaks occur at U
cr

in the energy dependence of the total density of states and of the spin cut-

off parameter. The average correlation function decreases with an increase in



- 68 -

excitation energy but does not vanish at U . These results indicate that,

strictly speaking, there is no phase transition for the average statistical

characteristics of the system.

The occurrence of phase transition in the traditional thermodynamic

description of the characteristics of excited nuclei is the price we pay for

the simplifications allowed in solving the problem. These simplifications are

associated with the fact that the Hartree-Fock-Bogolyubov variational trans-

formation is made in the simplest statistical variant, i.e. its coefficients

are obtained from the condition of the best description of the most probable

configuration of the system by the Hamiltonian for non-interacting quasi-

particles. The phase transition in this case only reflects the fact that above

the critical energy for the most probable n-quasi-particle configuration the

correlation function is zero. In superconductors described by a canonical

ensemble the state of the system is determined fully by the most probable con-

figuration (the most probable and the average characteristics virtually

coincide) and the temperature dependence of the correlation function is observed

directly in the experiment. In the case of a nucleus which is an isolated

system and is described by a microcanonical ensemble, the configurations dif-

ferent from the most probable make a substantial contribution to the total

density of states of the system, and this manifests itself in an appreciable

difference between the most probable and the average characteristics of the

system (see Fig. 28). During calculation of the total density of states of the

system on the basis of relationship (2.84) the Hartree-Fock-Bogolyubov transfor-

mation is carried out more rigorously, and this approach therefore corresponds

to a more accurate description of the statistical properties of the given

system.

However, the refinements obtained mainly concern the problem of the

essential difference between the thermodynamics of the nucleus and that of

superconductors, which shows up in the absence of phase transition and of any

corresponding breaks in the energy dependence of the statistical characteristics

of the nucleus. As for practical calculations of the density of states of the

excited nucleus, above the phase-transition point the average correlation

function is small (A < 0.1 MeV) and has little influence on the behaviour

of the system's thermodynamic characteristics. Therefore, the non-interacting-

2 -2
particle model with renormalized excitation energy U* = U - kg (A - A ) in
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this region quite satisfactorily describes the thermodynamic functions of the

superfluid system. The differences from the ordinary thermodynamic consideration
2

are here due to the correction gA /4, which has a negligibly small influence.

The traditional description gives, on the whole, the correct density of states

also in the region of low energies right down to 2A (see Fig. 28). Hence

if we do not associate the break with any physical phenomena occurring in

the nucleus, the traditional approach can be regarded as quite a satisfactory

approximation for the calculation of the density of excited states in the

superfluid model.

These calculations also enable us to draw some conclusions regarding

the relationship between the thermodynamic and combinatorial methods of cal-

culation. In a strictly combinatorial consideration the Hartree-Fock-Bogolyubov

transformations should be carried out independently for each excited state

of the nucleus. As a result, the correlation function A. for any i-th state

with a given number of excited quasi-particles n will differ from the thermo-

dynamically averaged correlation function A (U) considered in the present

study. However, when averaging over states the differences between the

combinatorial and the thermodynamic description will be manifested only with

regard to the phase transition for a configuration with fixed n, i.e. phase

transitions will be absent also for the configurations determined. The refine-

ments arising here in the density of states p (U) should be negligibly small.

Unfortunatley, in the combinatorial calculations which have so far been carried

out [37] the variational transformations were performed only in a simplified

variant without considering the question of connection with the thermodynamic

description.

Using the density o$ states with a fixed number of excited quasi—particles,

we can also more rigorously formulate the solution of the problem of even-

odd differences in the level density of nuclei. From the calculation results

presented in Fig. 28 for the total density of states, it will be seen that

at the chosen reference point for excitation energy (the zero-excitation

energy corresponds to a quasi-particle vacuum) the odd-even differences in

the total density of states exist only in the region of low-excitation energies,

when only one- and two-quasi-particle configurations are possible. The density

of states of odd and even nuclei averaged over these structures agree quite

satisfactorily with the results of the ordinary thermodynamic calculation

of the density of states. Thus, over a wide energy range the even-odd

differences in level density are determined only by the shift in the reference
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point of excitation energy, and when the reference point is properly chosen,

the thermodynamic description of the density of states is applicable to both

even and odd systems. It is indeed this result that is demonstrated by the

above (see Fig. 20) comparison of thermodynamic calculation with experiment.

Since configurations with a fixed number of quasi-particles occur only

at an excitation energy exceeding the minimum energy (2.76), the thresholds

of n-quasi-particle excitations should show up in the total density of states

and in the average statistical characteristics of the system in the form

of a step-like structure. At low single-particle-state density these structures

are small and, consequently, insignificant for nuclei of average atomic weight;

but in the region of heavy nuclei the thermodynamic functions have a fairly

pronounced step-like structure at low-excitation energies. Attention was

drawn a long time ago to the possibility that such structures might exist

in the energy dependence of level density and also that there might be other

statistical characteristics of excited nuclei [78, 79]. In experiment these

effects seem to show up most clearly in the near-threshold behaviour of
2

parameter K , which determines the angular distribution of fission fragments

and is associated with the spin cut-off parameter of level density

K ](i ̂
The relationships of the Boltzmann-gas model with the phenomenologically

introduced dependence of the thresholds of n-quasi-particle excitations (1.88)

are generally used to describe the observed non-monotonic changes of
2

parameter K . The results of calculation of the characteristics of n-quasi-

particle states in the Boltzmann-gas model and those in the superfluid model

of the nucleus are compared in Fig. 29. It will be seen that when describing
2

the structure in the dependence of O M at low-excitation energies, the

Boltzmann-gas model highly simplifies the picture we have of the contribution

of the different configurations to the average statistical characteristics

of the system and, with increase in the excitation energy, substantially
2

reduces the value of an in comparison with the superfluid model of the nucleus.

It should be noted that for a fuller description of the experimental data

it is also necessary to take into account the shell structure of the spectrum

of single-particle states of the nucleus for deformations corresponding to

the saddle point. The influence of the shell structure shows up in the
_2

dependence of parameters g and m on excitation energy, and this dependence

may weaken or strengthen the effects considered above.
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The foregoing discussion shows that the thermodynamic functions of systems

with a fixed number of quasi-particles are of interest not only for an analysis

of the pre-equilibrium decay of nuclei but also for refining to some extent

the statistical description of the average characteristics of excited nuclei.
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Chapter 3

COLLECTIVE PROPERTIES OF HIGHLY EXCITED NUCLEI

Collective phenomena in nuclei are receiving considerable attention in

the analysis of spectroscopic data on the characteristics of low-lying levels.

Within the framework of the unified model of the nucleus developed by A. Bohr

and B. Mottelson [82] it has been possible to explain and systematize the

extensive experimental material on the structure of these levels. Various

microscopic methods of describing the structure of collective levels [29,53,83]

are also widely used at present to consider the interrelationship between the

collective excitations and the single-particle motion of nucleons in a self-

consistent nuclear potential. In view of the success of the unified model it

is natural to raise the question of how collective effects influence the

statistical properties of highly excited nuclei. Below we discuss the existing

theoretical approaches to the analysis of these effects, together with the

experimental data which can be used to answer this question.

3.1. Adiabatic evaluation of the contribution of the rotational and vibrational
excitations to level density

The methods of level density calculation considered above are based on

representing the energy of the nucleus in the form of the sum of all possible

combinations of the energy of excited non-interacting quasi-particles. A long

time ago Ericson [84] drew attention to the substantial difference between

this approach and the phenomenological methods of constructing the spectrum of

low-lying levels in the unified model of the nucleus, according to which the

quasi-particle excitations of the nucleus are supplemented adiabatically by

collective excitations. However, as long as the methods of level density

analysis were purely empirical in nature, practically no questions arose con-

cerning the role of the collective effects in highly excited nuclei. But

after it was found that the microscopic calculations performed for realistic

single-particle level schemes were not in a position to explain the observed

density of neutron resonances, the matter of taking the collective effects

into account became very urgent. The possibilities for solving this problem

within the framework of the concepts of the unified model of the nucleus were

analysed in Ref. [85].
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If the nucleus has a deformation or any other characteristic which enables

us to speak of its spatial orientation, the spectrum of its energy states will

be determined not only by the internal excitations but also by the rotation of

the nucleus as a whole. This rotation may lead to a considerable increase in

the density of nuclear levels. If the rotation energy is regarded as inde-

pendant of internal excitations, the level density in the case of a deformed

axially symmetric nucleus is determined by the relationship

where K is the projection of the angular momentum of the internal excitations
JK 2

on the symmetry axis and E = [J(J + 1) - K ]/2jf the rotation energy. The

factor \ in Eq. (3.1) reflects the assumption regarding additional mirror

symmetry of the shape of the excited nucleus similar to the symmetry of the

equilibrium deformations of the ground states of nuclei. Using the above

Gaussian distribution for the density of the internal excitations of the nucleus

(1.14), we rewrite Eq. (3.1) in the form

( 3 > 2)

o
2

where a. = ^.t indicates the corresponding spin cut-off parameters of level

density. The summing over K in the last formula is evaluated on the assumption
—2 2

that K << 2o . Comparing (3.2) with the relationships of type (1.16) obtained

in the non-interacting quasi—particle model, we can easily see that allowance

for the rotation of the nucleus gives us an increase in the excited level
2

density by a factor of a .

The increase in level density due to rotation of the nucleus can be still

higher if the symmetry of shape in the excited nucleus is lower than in the

ground states of deformed nuclei. In the case of loss of mirror symmetry, the

factor \ should be dropped from Eq. (3.1), i.e. we shall have an additional

twofold increase in level density with respect to the definition considered

above. The increase will be still higher with loss of axial symmetry. For
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level density in this case we shall obtain the relation

(2/+ l>*lnt(0)exp(-V (/+ l)/2a
a).

—2 2 2 2
where o = (a + a + a )/3 is the averaged value of the spin cut-off parameter,

x y 2

By comparison with the mirror and axially symmetric shape of the nucleus (3.2)

we obtain an additional increase in level density by a factor of 2 V/2TTO,. .

The above analysis of the influence of the rotation of the nucleus on

excited level density is to a large extent similar to the adiabatic separation -

well known in statistical physics - of the statistical sum of a gas of poly-

atomic molecules into independent factors corresponding to the statistical sum

of the internal excitations of molecules and to the statistical sums of all

possible types of collective motion of molecules [3]. The rotational increase

in level density obtained above coincides directly with the adiabatic evalua-

tions of the rotational statistical sum for a given symmetry of the shape of

the nucleus:

K (0 =
rot

^ for mirror and axially symmetric shapes;

2 y\t for axially symmetric shapes;

2t3l2(2nfx ^ <fz)
112 for shapes having no symmetry. (3.4)

In addition to the rotational structure of levels, the nuclear spectra

also clearly show excitations of a vibrational nature reflecting collective

oscillations of the shape of the nucleus [86]. In the adiabatic approximation

the increase in excited level density due to these oscillations is determined

by the magnitude of the vibrational statistical sum

*vibr (0 = n [1 - exp (-wx/f)] ~*\ (3.5)

where u) is the energy and g the degree of degeneracy of the corresponding

vibrational excitations. In accordance with this evaluation the increase in

level density will be considerable only if low-energy vibrational excitations

with u < t exist in the nucleus. In particular, an increase in level density

in the neutron binding energy region of K ~ 4-6 corresponds to the observed

energies of quadrupole excitations of nuclei in the rare-earth region and
(3_)

K ., % 8-10 to the similar octupole excitations. These figures will be higher
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in the case of transuranium nuclei, where the octupole states drop noticeably

lower [86], Such evaluations are, of course, much on the high side since they

do not take into account, first, the well-known non-adiabatic nature of the

separation of vibrational modes in the cold nucleus [53] and, second, the

possible changes in the vibrational excitation energy in heated nuclei.

Since the properties of the observed low-energy vibrational excitations

are influenced considerably by the shell inhomogeneities of the single-particle

spectrum, the value of the statistical sum K. ., obtained on the basis of theK vibr

liquid-drop model can be taken for an evaluation reflecting the weakening of

the shell effects in the heated nucleus. In this model the surface oscillation

energy of the nucleus is determined by the relation

^ 2), (3.6)

where a is the coefficient of surface tension, p the density of the nuclear

matter and X the multipolarity of the oscillations. To simplify the analysis,

we have omitted in Eq. (3.6) the terms associated with the Coulomb energy of

the charged drop. From (3.6) we can find the surface oscillation density of

the drop

and determine with its help the energy and entropy of the surface oscillations

of the heated nucleus

.. T / • \ UdU) 4 _ / Po \ p3,2/3.u*= s *(w) —r~^—; = T 4/3 r^~) ° •
0 exp(cW') - 1 3 \ B2

O /

\ dt' *Ui 7 aVI c

0 *"*r *—*• * - - \ » » « * # / o Q \

The integral contained in these expressions

C4/3 " / — — = 1,694
0 exp(x) - l

is well known from analysis of the thermodynamic functions of a degenerate

Bose gas [3]. For the statistical sum of the surface oscillations we find

f Pox2 /3

Kt = cxp(S, - U,lt) = exp ) C4/3 ( — - ) R7
ot

4'3{ . ( 3 . 9 )
L \H a / J
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The equations of the liquid-drop model considered here were used to

analyse the level density of nuclei even in the early studies on the statistical

theory [4]. However, initially they were discussed as an alternative to the

Fermi-gas model, whereas in the concepts of the unified model they should be

treated as a contribution by the surface oscillations of the nucleus to the

internal quasi-particle oscillations. If, in (3.9), we substitute the value
2

of the surface tension coefficient a £ 1.2 MeV/fm corresponding to the pheno-

menological parameters of the mass formula, we obtain an increase of K = 2.4
s

for the level density in the neutron resonance region. This evaluation may be

somewhat on the low side since consideration of the Coulomb energy of the drop

reduces the surface oscillation energy (3.6) and consequently increases K .

s

Strictly speaking, any separation of collective variables should be

accompanied by a corresponding decrease in the number of internal degrees of

freedom. But since collective motions are formed owing to deep-lying nucleons,

while internal excitations are determined basically by the single-particle

levels adjacent to the Fermi surface, exclusion of the extra degrees of freedom

in the low-temperature region should not strongly affect the density of the

internal excited states. Under these conditions, adiabatic consideration can

be fully justified, at least as a first step in the analysis of the rotational

and vibrational increases, in the level density of nuclei.

Inclusion of the rotational increase of level density in the calculations

based on the above thermodynamic relationships of the superfluid model greatly

improves the agreement between the theoretical values and the observed density

of neutron resonances [65,66]. In particular, by including this increase in

the calculations with the single-particle spectrum of the Nilsson oscillator

potential, Huizenga obtained a satisfactory description of the experimental

data for both spherical and deformed nuclei [66]. The use of more realistic

level schemes of the Saxon-Woods potential, however, gave a less satisfactory

accordance with experiment, and the theoretical values of the density of the

resonances in the case of deformed nuclei were systematically lower than those

observed by a factor of 2-5 [65]. The deviation from experiment was still

higher in the region of nuclei 100 <_ A <̂  150, which have no equilibrium deform-

ation in the ground state and for which there are consequently no grounds for

introducing a rotational increase of level density. It may be assumed that all

these differences reflect, to some extent, the role of the collective vibra-

tional excitations not included in the calculations under consideration. This
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assumption tallies with the above adiabatic evaluations of the vibrational

increase of level density. A more convincing quantitative analysis of the

influence of vibrational effects is considered in the following sections.

On the basis of the adiabatic evaluation of the coefficients of vibra-

tional and rotational increase in level density, an attempt can be made to

obtain the phenomenological systematics of experimental data which would not

only reproduce the observed neutron resonance density but also incorporate the

main results of the theoretical concepts about the shell and correlation

effects. Systematics of this type were considered by us in Ref. [87]. In

order to describe the level density above the point of phase transition from

the superconducting to the normal state, we used the Fermi-gas model relation-

ships with the excitation energy shifted by the value of condensation energy

(2.22), and the influence of the shell effects on the value of the level

density parameter a(U) was taken into account on the basis of relationships

equivalent to (1.44). The equations of the superfluid model (2.41) were used

to describe the energy dependence of level density below the phase-transition

point, and the ground-state correlation functions A = 12A/A* MeV were taken

in accordance with the systematics for even-odd differences in the masses of

nuclei. When calculating the rotational increase in the level density of

deformed nuclei, we took the rigid-body value of the perpendicular moment of

inertia in the normal phase and took into account the corresponding changes

in the moment of inertia with temperature in the superfluid phase. The vibra-

tional increase in level density was considered on the basis of the liquid-

drop evaluation (3.9). The relations of this approach are, of course, more

cumbersome than the simple equations of the Fermi—gas model. But we cannot

avoid making the model more complicated if we want to gain a uniform and self-

consistent description of level density and also of other statistical charac-

teristics of nuclei over a wide range of excitation energies.

Within the framework of the model considered, from the description of

experimental data on the density of neutron resonances of nuclei with A >_ 150

we found the values of the level density parameter a(B ) at an excitation

energy equal to the neutron binding energy and the asymptotic values of para-

meter a corresponding to the region of high excitation energies. The results
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obtained are presented in Fig. 30, together with data from a similar analysis

within the framework of the Fermi-gas model. From the systematics of the

parameters obtained with allowance for the collective increase in the level

density of nuclei we also determined the coefficients

a/A = 0,0931 Me\T»; y = 0,064Me\T1, (3.10)

which give the best approximation for correlation of the energy changes in

the level density parameter with shell correction (1.44). The calculated

values of the parameters a(B ) corresponding to the given set of coefficients

are also presented in Fig. 30.

It may seem at first sight that both the systematics of resonance data

shown in Fig. 30 are equally valid since they give approximately the same

description of level density at excitation energies close to the neutron

binding energy. However, these descriptions were obtained at different absolute

values of the level density parameter. Consideration of the collective effects

appreciably reduces the value of a(B ) and the asymptotic values of parameters

a, which consequently show satisfactory agreement with the results of theoretical

calculations of the level density parameters using the realistic level schemes

of the Saxon-Woods potential (1.38). As we have already pointed out in

Chapter 1, the Fermi-gas systematics of the parameters give no such agreement.

But this means that the predictions of the two models will differ markedly as

we move away from the binding energy, and the analysis of the differences can

serve as a method of studying the collective increase in the excited nuclei

level density. There is obviously a dire need to take the collective effects

into account when describing the observed energy dependence of the fission-

ability of heavy nuclei. This problem will be discussed in more detail in the

final chapter.

3.2. Phonon excitations of nuclei and combinatorial analysis of the density
of multiphonon excitations

Although the phenomenological collective models are very useful for

describing many properties of nuclei, it is natural to wish for an explanation

of these properties at a deeper microscopic level. The microscopic considera-

tion generally enables us not only to establish the limits of applicability of
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the phenomenological models but also to gain a better understanding of the

nature of the phenomena under study.

A common property of the interacting Fermi-particle systems is that they

have a branch of collective excitations caused by the coherent motion of a

large number of particles. We come across this property not only in nuclei

but also in quantum fluids, plasmas and so on. The method of linearizing

equations of motion, with all sorts of modifications worked out by many

authors [88,89], is widely used in branches of physics to analyse these excita-

tions. In the theory of the nucleus this approach is successfully employed

for the microscopic description of the low-lying states of nuclei - collective

as well as single-particle states [83,86]. For the purpose of the problems

discussed here, it would be of great interest to obtain an equivalent descrip-

tion of the statistical characteristics of nuclei.

Before considering the possible ways of solving this problem, let us take

a simple example and discuss the basic features of the microscopic methods of

analysis of the coherent effects. The general idea of the method of lineari-

zation of equations can be formulated as the self-consistent separation, within

a system of interacting particles, of elementary excitations which seem to be

more or less independent. The corresponding equations determining the creation

Q and destruction Q operators of such excitations are usually written in the
A A

form

where H is the Hamiltonian of the given system and the square brackets denote

a commutator. The elementary excitations may correspond to excitations of

individual particles but they may also be collective fluctuations of density,

shape or another equilibrium characteristic of the system. Such collective

fluctuations are called phonons in solid-state physics, and this name is

generally used also when considering collective excitations of nuclei.

According to the concepts of elementary excitations, the wave function for the

ground states V of even-even nuclei should, in this case, be defined as a

phonon vacuum, i.e. Q ! = 0, and the excited states as one-phonon states Q f ,
A O A O

two-phonon states Q. Q ' ¥ and so on. To orthonormalize the wave functions of
A A O

the ground and excited states, the phonon operators should satisfy the commuta-

tion relations:
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IQ\> Q{>] = «x\' • I

Let us consider, as an example, the model nuclear Hamiltonian, in which

the effective interaction of particles moving in a self-consistent mean field

is represented in a separable form

H= S eva+vav - - * - / 2 frfa^ayX. (3.13)
j; 2 VJ/J;' /

Here f(r) indicates form factors and x the strength constant of the effective

forces, and for the sake of simplicity we shall assume that all the matrix

elements of the form factors f ' are real. It is also implicit that the
vv r

effective interaction no longer contains components which could be included
in the levels of the mean field E .

v

Let us seek the phonon operators in the form of a linear superposition

of particle-hole excitations of the nucleus:
rX

ph

ph

(3.14)

Here, the subscript h denotes the states below the Fermi level corresponding

in the non-interacting quasi-particle model to hole excitations, and subscript p

the states above the Fermi level corresponding to particle excitations. When

calculating commutators [H, Q ] we shall regard operators a a, as boson opera-
A Oil

tors, i.e. we shall assume that the following commutation relationships are

valid for them

This approach is usually called the quasi-boson approximation or random-

phase approximation. Within its framework, the equations of motion (3.11)

give us a system of linear algebraic equations for the transformation coeffi-

cients (3.14):

(3.16)
F/p

P l>

- eh + <ox)Zp\ = xfph Zf f v



- 81 -

From these equations we find the secular equation for phonon self-

energies

1= 2x £ flh Ji^L , (3.17)
ph (J

1
h _ (^

where w = e -E . Using commutation relations (3.12) we can also easily
p h P h AX

obtain the explicit form of the expressions for coefficients Y , and Z

The solution of Eq. (3.17) for the schematic model of a degenerate single-

particle spectrum, when all differences u are equal to u , is well known [83].

In this case, we have

CJ = \u>\ - 2xcoo £ fphV'2 (3.18)

ph

for the energy of the lowest phonon excitation (x > 0) and u> = u for the others.

It will be seen from (3.18) that the interaction of all particle-hole pairs is

reflected coherently in the energy of the lowest excitation alone. With increase

in the value of the strength constant this coherent excitation moves increasingly

further away from the particle-hole excitation energy, i.e. becomes increasingly

more collective. We will not involve ourselves in a discussion of the solutions

of secular equation (3.17) since the relevant problems have been treated fairly

exhaustively in the literature [83,86]. The monograph [53] also gives numerous

examples of the practical application of the quasi-boson approximation to

describe the low-lying collective states of spherical and deformed nuclei.

Let us now return to the statistical description of the properties of

excited levels and consider how the approach outlined above can be applied to

the analysis of these properties. In Ref. [90] direct combinatorial calcula-

tions of the density of possible multiphonon excitations of nuclei were suggested

for this purpose. Here, of course, it is not assumed that the structure of the

highly excited states of the nucleus corresponds to the picture of ideal phonons.

Interaction of the various types of nuclear excitations makes the structure of

nuclear levels much more complex even at small excitation energies, and the

complexity increases sharply as one moves up the energy scale. However, studies

[90] on the dispersion equations which take into account the interaction of

quasi-particles with phonons have shown that the number of roots of these

equations over a not too small energy interval is equal, with good accuracy, to

the number of multiphonon base states in the same interval. So it can be

assumed that an integral characteristic such as level density is not affected
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significantly by the complication in the structure of multiphonon excitations.

Thus, the problem of calculating the level density of realistic nuclei can be

reduced to combinatorial recombination of all multiphonon excitations lying

within the energy interval considered. Although such combinatorial calcula-

tions are extremely laborious, they are perfectly feasible with the use of

modern computer techniques.

The approach formulated above was developed in Refs [38,39] and has been

applied to a wide range of problems associated with nuclear level density.

These calculations took into account, first of all, that in spherical nuclei

considerable fluctuations existed in the energy dependence of level density

and that there were specific differences in the density of levels with positive

and negative parity (see Fig. 12). Moreover, it was evidently for the first

time that within the framework of this approach a realistic evaluation of the

vibrational increase in level density had been obtained. For this purpose,

the results of level density calculations performed for empirical values of

the strength constants of the effective multipole-multipole and spin-multipole

interactions generating collective phonons were compared with similar calcula-

tions for zero constants, where the collectivity effect totally vanishes. The

derived coefficients for vibrational increase in level density are shown in

Fig. 31, together with the liquid-drop evaluation given above and the statis-

tical calculation results, which will be discussed in more detail in the next

section. Unfortunately, in the combinatorial calculations the analysis of

the coefficients of increase in level density was made for a comparatively

small number of nuclei. It is therefore difficult at this stage to draw any

conclusion on their basis about the laws of change in these values with the

excitation energy and shell structure of nuclei.

Since the phonon excitations determine only the density of the internal

non-rotational states, in the level density calculations for deformed nuclei

the phonon states obtained in the combinatorial approach with a fixed value

of the angular-momentum projection on the symmetry axis were supplemented in

the adiabatic approximation of (3.1) with a rotational band. This approach

was adopted in Refs [38,39] to calculate the level densities of all nuclei for

which experimental data on the density of neutron resonances were available.

It was found that the results of this approach, without any special adjustment

of parameters, agreed with experiment to within a factor of 1.5-2.0 in deformed
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nuclei and a factor of 2-4 in spherical nuclei. This agreement is undoubtedly

satisfactory, especially if we take into account that in many spherical nuclei

the disagreements between the different experiments reach a factor of 2-3.

Together with the many advantages which have been mentioned, this approach

has a number of disadvantages, the influence of which increases with excita-

tion energy. They include not only the laboriousness of the combinatorial

calculations, the elimination of which is basically a technical problem - more

important are the limitations imposed on the multiphonon states by the Pauli

principle. Because of violation of the Pauli principle, spurious states occur

among the multiphonon excitations, and the number of them rises rapidly with

increase in the number of excited phonons. Moreover, in complex multiphonon

states it is important to take into account the changes in phonon structure

due to weakening of the pair correlations and to the possible changes with

excitation energy in the characteristics of the mean field. Rigorous considera-

tion of all these effects is an extremely complex problem, to which no satis-

factory solution has yet been found. It is, therefore, advisable to use the

combinatorial description of multiphonon excitations only at energies of the

order of, or lower than, the neutron binding energy, where the errors of the

method are still small. At higher energies we have to take into account, at

least approximately, all the above effects and this can be done at present only

within the framework of a thermodynamic description of excited nuclei.

3.3. Thermodynamic description of the collective motions of heated nuclei

The above method of linearization of the equations of motion in the many-

body theory is widely used, not only for analysis of the elementary excita-

tions of the ground state of the system but also when considering the coherent

effects at a non-zero temperature [88,89]. The coherent phenomena in highly

excited nuclei can be studied in a similar manner [91]. In this approach,

temperature is a statistical characteristic of the excitation (heated state)

of the nucleus. The problem reduces to a self-consistent determination of

phonons, whose thermodynamic properties reflect the role of the coherent

effects.

To solve this problem we can use, as before, the equations of motion (3.11)

and the commutation properties of phonons (3.12); but we have to calculate the

phonon states taking into account the changes with temperature in the population

of quasi-particle levels in the heated nucleus. More particularly, for the

model Hamiltonian (3.13) considered in Section 3.2 we shall seek the phonon

operators in the form



Q\=
V>V (3.19)

This definition differs from (3.14) only by the absence of limitations

on the population of single-particle states. We will also take into account

similar changes in the commutation relationships of the random-phase approxi-

mation, which we can represent in the form

vl-nV:t), (3-20)

where the angular brackets denote statistical averaging and n the occupation

numbers of single-particle states corresponding to this averaging. Using (3.20)

for calculation of the commutators (3.11), we obtain the following equations

for the coefficients of phonon transformation (3.19)

v'i> v\

n > -n,,i) t r
u v + ^ •

Vj V\ Vf>2

(3.21)

The secular equation for the self-energies of phonons in the heated

nucleus takes the form:

l=2x l v (3.22)

It will be seen that at zero temperature relationships (3.2O)-(3.22) coincide

with the similar formulae in Section 3.2.

On the basis of commutation relationships (3.12) and (3.20) we can find

the transformations inverse to (3.19), and write the initial Hamiltonian (3.13)

in the phonon representation

"vibr = Uo * 1 Z
* A

(3.23)

These transformations determine the phonon Hamiltonian with an accuracy up to

the constant term U . However, the value of U can be fixed by requiring that

when the interaction is switched off, the influence of the formally introduced

phonons should not in any way be reflected in the thermodynamic functions of

the system. This condition can be written as
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o
<"vibr>X=O = t/o + y Z* X <4 c t h — = °.

where u denote the poles of the secular equation (3.22), which coincide with
A

the solutions of the equation for zero-strength constant, and g the degree
A

of degeneracy of the solutions.

Since the phonon representation of the Hamiltonian (3.23) corresponds

to an ideal gas made of Bose particles, the changes associated with phonons

in the entropy and excitation energy of the nucleus are determined by

5 5 =
X 1 2f It \ 2t

X I 2f It \ It
(3.24)

If we disregard similar changes in the pre-exponential factor, the

influence of the coherent effects of a vibrational nature associated with

phonons on nuclear level density can be represented in the form

-exp<-a>x/'>
(3.25)

When the difference between w and u> is small, the ratio of the corresponding
A A

components of (3.25) tends to unity; hence, a substantial contribution to the

coefficient of vibrational increase in level density is made only by the

collectivized excitations, for which the roots of the secular equation are

quite strongly shifted relative to the poles. The occurrence of the statistical

sum of poles in (3.25) reflects the non-adiabatic character of the effects

under consideration. It should be noted, however, that if the roots and poles

of the secular equation have a dense spectrum, a situation may possibly occur

where none of the solutions of the equation is sufficiently collectivized but,

as a whole, the increase in level density is appreciable. A study of such

situations could be of considerable interest for the analysis of coherent

effects which are not associated with a particular collective mode.



- 86 -

In Ref. [91] it is shown that this consideration is equally valid for a

more general Hamiltonian than (3.13). Inclusion in the Hamiltonian of corre-

lation interactions of the superconducting type, just as the use of effective

interactions of a non-separable form, will make the secular equations more

complex but the relationships for the thermodynamic functions (3.24) will

remain the same. There is no need here to write out the corresponding secular

equations since their explicit form is not really important for the problems

under discussion.

Study of the structure of the low-lying levels of nuclei within the frame-

work of the microscopic approach has shown that in the formation of the

collective properties of levels the greatest role is played by the quadrupole-

quadrupole and octupole-octupole components of the effective residual quasi-

particle interaction [53,86]. For analysis of the statistical characteristics

of excited nuclei it is therefore important, first of all, to study the influence

of precisely these components of interaction.

The calculation results for the coefficients of increase in level density

(3.25) due to the quadrupole-quadrupole quasi-particle interaction are pre-

sented for the most characteristic spherical nuclei in Fig. 32 [92]. To

demonstrate the differences between the coherent effects in cold and hot nuclei,

the figure also shows the results of calculations of similar coefficients for

the spectrum of the roots and poles obtained at zero temperature. The value of

coefficients K ., in the latter case is determined almost entirely by the
vibr

energy of the first vibrational level and for practical purposes coincides with

the adiabatic evaluation of its value (3.5). The temperature dependence of

the spectrum for the roots of the secular equation is very important for the

analysis of the coherent effects. The non-monotonic dependence of the coeffi-

cients K ., for the Fe and Sn nuclei (see Fig. 32, lower part) is

associated with the decrease of the correlation functions of the nucleus in

the temperature region from 0.4 to 0.6 MeV and with the corresponding rearrange-

ment of the elementary excitation spectrum. The breakup of the correlation

effects of the superconducting type in the highly excited (heated) nucleus

leads to considerable weakening of the coherent effects in the quadrupole

excitation spectrum of the nucleus, and this is reflected directly by the value

of the coefficient of increase in level density. Figure 33 presents the calcu-

lation results for coefficients K due to octupole-octupole effective quasi-

particle interaction. The pair correlations have little influence on the octu-

pole excitation spectrum and their breakup in heated nuclei does not substan-

tially affect the temperature dependence of the corresponding coefficients.
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It should be pointed out that at temperatures exceeding the critical

temperature of breakup of pair correlations the spectrum of low-energy solu-

tions of the secular equations is very dense and may contain many roots with

to < t. As a rule, none of these roots is sufficiently collectivized but as
A

a result they can make an appreciable contribution to the coefficient of

vibrational increase in level density. To some extent, this result may be

due to errors in the approximation used for linearization of the equations of

motion for co = UJ . For a rigorous solution of the problem it is necessary
A A

in this case to go beyond the framework of linear approximation and to take

into account the damping of the temperature phonons under consideration. An

approximate evaluation of the role of damping can be made on the basis of the

similarity of the coherent excitations of the nucleus with zero sound in a

Fermi liquid. The region where the zero sound occurs is determined by the

inequality w > h/t, where T is the relaxation time or the mean lifetime of the

excited quasi-particles [93]. The relaxation time is inversely proportional

to the square of the temperature, and for the nucleus the proportionality

factor can be evaluated from the imaginary part of the optical potential.

On the basis of such an analysis we should limit the energies of the coherent
2

phonons in the nucleus by the inequality u> > (0.1 to 0.5)t MeV. If the
A

coefficient of vibrational increase in level density (3.25) is determined by

the higher-energy phonons, the results obtained can be regarded as sufficiently

reliable. If not, the results of calculations in the linear approximation are

hardly trustworthy. As the analysis showed, in calculations of the coefficients

this limitation is not important in practice for the bulk of the spherical

nuclei at temperatures below 1.0-1.5 MeV. In the case of the transitional and

deformed nuclei the situation is less favourable but depends on the consistency

of the choice of single-particle level schemes and strength constants of

effective interaction.

The results of thermodynamic description of the vibrational increase in

level density can be compared with those of combinatorial analysis of the

density of multiphonon excitations of nuclei considered in the preceding section.

Conceptually, both approaches are fairly close to each other and are based on

an identical effective Hamiltonian. However, the relationships utilized in the

level density calculations differ appreciably, and this definitely affects the

results. In the combinatorial analysis of the multiphonon excitations the

phonon spectrum is determined by the solutions of secular equations similar
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to (3.17), and the values of K ., given at the top in Figs 32 and 33 should

correspond to this approach. Consideration of the rearrangement of the quasi-

particle excitation spectrum in the thermodynamic description leads to a

change in these values (see the lower parts of Figs 32 and 33). However, when

calculating the increase due to the combined influence of all vibrational modes

the differences referred to are partially compensated for, and the integral

K obtained in the thermodynamic calculations of level density agree, on

the whole, satisfactorily with the combinatorial calculation results (see

Fig. 31). The quantitative differences in these results may be due to some

differences in the single-particle level schemes and to a difference in the

modelling of the effective forces. Unfortunately, the two approaches were not

compared under identical conditions.

Approximation of residual two-particle interactions of nucleons by

multipole-multipole forces is used widely in the microscopic description of

the collective excitations of atomic nuclei [53,86]. The choice of these

forces is justified mainly by the mathematical simplicity of the solution of

the equations which determine the energy and intensity of electromagnetic

transitions in nuclei in the random-phase approximation or in other equivalent

modifications of harmonic approximation. A more realistic form of the effec-

tive forces can be obtained if we use the invariance principles or other self-

consistency conditions to choose them. Various formulations of these conditions

have been considered by many authors for cold nuclei [86,94-98]. Similiar con-

ditions can be obtained also for the effective forces which determine the

coherent excitations of heated nuclei [99-102].

As the simplest self-consistency condition, we require that the changes

in time of the mean field 6V(T) determining the single-particle motion of

nucleons in the nucleus should occur self-consistently with changes in the

density matrix 6P(T) [86,95]. In the co-ordinate representation this condition

can be written in the form

5F(r,r)= JF(r,r')6p(r',T)dr', (3.26)

where V(r,r') is the effective residual interaction. To simplify further con-

sideration, we shall assume that the residual interaction does not depend on

particle type (on particle isospin) and that the mean field can be approximated

by the local single-particle potential. In the nucleus we do not know the
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true residual interactions resulting from subtraction of the self-consistent

field and we can only model them within the framework of the corresponding

approximation when describing different experimental data. In practical

applications it is very convenient to model the effective forces in the separable

form

K(r,r')= Z XXfX(r)fx(r')Y^n)YXli(Sl'). (3.27)

Applying condition (3.26), we can require that the effective forces (3.27)

should generate the same changes in the self-consistent field as the true

residual interactions. If this requirement is strictly met, then, within the

framework of harmonic approximation, the calculations of the characteristics

of collective modes (nuclear density oscillations in the nucleus) with effec-

tive forces (3.27) should give the same results as the calculations with the

realistic two-particle interaction.

When using the effective forces (3.27) to model the residual interactions,

we should not, of course, require detailed coincidence of all fluctuations in

the field and average density of nucleons in the nucleus. It is quite suffi-

cient if the basic components of their spatial oscillations are self-consistent.

If we assume that these oscillations can be described unambiguously by the set

of parameters 0 (T) characterizing a family of equipotential surfaces with

radius

r(«)=r[l+ 2 ^ I 0^(7)^(0)], (3.28)

then the variations in the mean field and density of nucleons can be repre-

sented in the form

dT A" (3.29)

2 P\n(T)Y\n(n)>

where p(r) corresponds to the steady-state nucleon density distribution in the

local mean field V(r). Using the self-consistency condition (3.26) and relation-

ships (3.29) we can easily show that the radial dependence of the form factors

of effective forces (3.27) should take the form

^ l . (3.30)
dr
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For the interaction constant we obtain the following relationship from

the self-consistency condition

FT * dv dp .y
L 0 dr dr J

(3.31)

Unlike the ordinary multipole-multipole forces [86], this constant does not

depend on A.

For the density matrix of the spherical single-particle potential of the

shell model we rewrite relationship (3.31) in the form

where n. is the population of single-particle levels at a given temperature t

and u. and v. are the coefficients of the variational transformation (2.2).
J J

At zero temperature the relationships (3.3O)-(3.32) coincide with the relation-

ships of a similar nature considered in Refs [86,95]. A simple evaluation of

the integral (3.31) can be obtained for the Saxon-Woods potential

I"4'3. (3.33)

where V is the potential well depth and g(r) = [l + expy(r - R )] its corre-

sponding form factor (R is the well radius and y the diffusivity parameter).

In order to find the temperature dependence of the interaction constant,

we obtain its evaluation for the harmonic-oscillator potential. Disregarding

the correlation interaction of nucleons, for the oscillator potential we find

4

V~ =

N = t

Here, N is the principal quantum number and eM = (N + 3/2)OJ its corresponding

single-particle level energy; e = (3A/2)2oi is the Fermi energy and
-1/3 °

to = 41.5 A MeV. At zero temperature the constant (3.34) coincides with
the constant of the traditional quadrupole-quadrupole forces [86].
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In the case of a number of nuclei, we carried out [99] numerical calcula-

tions of the interaction constant (3.32) for the spectrum of single-particle

states and the corresponding single-particle wave functions of the shell model.

The values obtained for the interaction constant in the cold nucleus are shown

in the lower part of Fig. 34 and the corresponding temperature dependence at

the top of the same figure. The absolute values of the interaction constant

show a fairly good agreement with evaluation (3.33), while the temperature

dependence of the interaction constant for the Saxon-Woods potential is even

weaker than for the harmonic oscillator. The characteristics of the behaviour

of the strength constants x(t) in the low-temperature region (see top of

Fig. 34) for nuclei with substantial pairing are due to correlation effects of

the superconducting type. On the whole, the changes in the constants with

temperature are sufficiently small, and consideration of these changes is not

reflected noticeably in the results of calculation of vibrational increase in

the level density of near-magic nuclei. However, if the shape of the nucleus

changes during heating, the self-consistent determination of the changes in

the interaction constants with temperature is very important under these con-

ditions .

The interaction constant of the traditional multipole-multipole forces

is usually adjusted with respect to the position of the first vibrational level

in the nucleus under consideration [53]. For modified effective forces the

values of the constants thus obtained are shown in the lower part of Fig. 34.

The difference between these values and those obtained on the basis of relation-

ship (3.32) is due, firstly, to some inaccuracy of the harmonic approximation

and, secondly, to the insufficient completeness of the base used in similar

calculations for the associated single-particle levels. To ensure completeness

of the base we should also include in the calculations the single-particle

states in the continuous-spectrum region. From the practical point of view,

this problem is extremely laborious. Therefore, although the basic qualitative

features of the change in the characteristics of vibrational excitations in

different nuclei represented by the calculations with theoretical values of the

constants are sufficiently accurate, for the purpose of a quantitative descrip-

tion of the coefficients of vibrational increase in level density it is better

to use the values of strength constants corrected by the available experimental

data on the energy of collective levels. Such a correction, to some extent,
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compensates for the drawbacks of the simple model Hamiltonians used in the

practical calculations. As the analysis performed in Ref. [99] shows, when

the strength constants are adjusted with respect to the position of the

vibrational collective level in the cold nucleus, the form of the radial

dependence of the effective forces does not strongly influence the calculation

results, at least for the vibrational excitations of low multipolarity.

For more complete modelling of the various components of the effective

forces we can also use the invariance requirements imposed on the nuclear

Hamiltonian by the laws of conservation of momentum, angular momentum and so

on. Use of the invariance principles was found to be very rewarding in the

study of the collective levels of cold nuclei [96-98], and the possibility of

utilizing similar methods for heated nuclei has been demonstrated in

Refs [100-102]. These methods enable us to introduce self-consistently

isoscalar and isovector components of the effective forces and also, if necessary,

to study the effective interaction of other types of symmetry. The problems of

self-consistent determination of interactions are important not only for the

analysis of vibrational increase in level density but also for study of the

spectral intensity of radiative transitions in highly excited nuclei [101].

At present, we are still at a comparatively early stage in the study of the

collective properties of highly excited nuclei and possess very scant experi-

mental data on the possible coherent effects.

The above analysis of the density of neutron resonances shows that a con-

sistent explanation of the observed values cannot be found without using the

rotational and vibrational increases in level density. Unfortunately, the

lack of sufficiently reliable experimental data on the absolute value of level

density at excitation energies exceeding the neutron binding energy substan-

tially restricts the possibilities of critically verifying the theoretical

description of the energy dependence of the vibrational increase in level

density.

It should be noted that during transition to the region of excitation

energies U > 50 MeV, the increase in the number of excited quasi-particles

and decrease in their mean lifetime causes the coherent effects in the motion

of particles to be weakened, and consequently the vibrational increase in

level density should vanish. As a result of transition to the spherical
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equilibrium shape in highly excited nuclei, the effects of rotational increase

in level scheme should also disappear. Thus, in the high-energy region the

level density of nuclei can again be described by the relationships of the

Fermi-gas model; however, the values of level density parameter a in this case

should correspond to the results of the shell model definition (1.38) or to

the systematics (3.10) considered above and not to the results of the Fermi-gas

analysis of the density of neutron resonances (1.46).
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Fig. 1. Experimental data on the mean distance between neutron
resonances (below) and the values of the Fermi-gas level
density parameter a obtained from their analysis (above):

o - even-even nuclei; 7 - even-odd nuclei; A - odd-even nuclei;
• - odd-odd nuclei.
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Fig. 2. The dependence of nuclear temperature T and excitation
energy U , below which the level density behaviour is

approximated by the constant-temperature model, on the
number of neutrons [10].

Fig. 3. Spin distributions of the identified low-lying levels
of nuclei (histograms) and their approximation by the
statistical distribution (1.6) (curves) [10].
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Fig. 4. The energy dependence of the thermodynamic characteristics
of the 2O8pt, nucleus as calculated for single-particle levels
of the Saxon-Woods potential (solid curves) and those of
the Nilsson oscillator potential (dashed curves).

10 20 M

208
Fig. 5. The dependence of the thermodynamic characteristics of the PI

nucleus on the angular-momentum projection as obtained from a
rigorous solution of the equations of state (sold curves) and
in the approximation of small angular momenta (dot-dash curves)
The numbers on the curves denote excitation energy in MeV.
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o - same for deformed nuclei.
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Fig. 7. The dependence of the level density parameters a' and moments

of inertia ^T at different excitation energies on deformation

£. The solid curves denote 7 MeV, the dashed curves 20 MeV

and the dot-dash curves 100 MeV.
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214
Fig. 9. Proton and neutron level schemes of the Po nucleus

at zero temperature (left) and at a temperature of

3.5 MeV (right).
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F iS" 10- Free-energy equipotential-surface maps for the 16°Yb nucleus

at different temperatures [34]. The free energy at the

point of the minimum is indicated below each map. The numbers

on the equipotential lines give the changes in free energy.
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Fig. 11. The temperature dependence of the axial rigidity (a) and

equilibrium deformation (b) of the Ba, Er and Pb

nuclei. The value of rigidity for the liquid-drop model

is shown by the dot-dash curve.
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Fig. 12. The histogram of the number of levels with J = 1/2 and

1/2 in the 400 keV region obtained in the combinatorial

calculations for the Fe nucleus [38]. The solid curve

corresponds to the Fermi-gas description of level density

with parameter a found from the density of neutron

resonances.
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Fig. 13. The dependence of the average number of excited quasi-particles n,

probability p and relative contribution P_ of the negative-

parity states to the level density of the nucleus. The black

dots denote the results of the combinatorial calculations for the

Fe and Te nuclei.

0 0,5 1,0 1,5 n/n

Fig. 14. The dependence of the thermodynamic characteristics of the

excited particle-hole states in the Fermi-gas model on the

n/n ratio.
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0.5 1,0 M/mn 1,0 M/mn

Fig. 15. The dependence of the S /S ratio on angular-momentum projection
— _ n _

M/mn. The number on the curves denotes the n/n ratio. The

dashed curve represents the dependence of entropy in the approxi-

mation of small momenta and the dot-dash curve the maximum

attainable values of angular momenta.

O,St/tcr 0 0,5 t/t cr
0,5 t/tc. 0 0,5 t/tcr

Fig. 16. The temperature dependence of the thermodynamic characteristics

of the superfluid model of the nucleus (solid curves) and of the

Fermi-gas model (dot-dash curves). For moments of inertia the
Vlpp

solid curve denotes ̂ ,, (2.59) and the dashed curve jpjt (2.29).
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I7' The temperature dependence of the correlation functions and
138

entropy of proton levels for Ba for pairing interaction

in the form of 6-forces (solid curves) and in the approxima-

tion of G = const (dashed curves).

Fig* The temperature dependence of the thermodynamic functions of the

modified superfluid model (solid curves) and of the traditional

model with G = const (dashed curves). In the case of the corre-

lation function and the moment of inertia, the dashed line shows

the difference between the respective values, multiplied by 100.
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50 70 90 110 N SO 70 90 110 130 . N

30 50 70 90 Z SO 50 70 . 90 110 Z

Fig. 19. Condensation energies for systems with an even (o) and an

odd (•) number of protons and neutrons.

5 10 15 U.HeV

Fig. 20. The energy dependence of the level density of nuclei with

even and odd numbers of neutrons and protons.
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1

0,5

0

J

2

1

Fig. 21. The temperature dependence of the perpendicular Jj_, parallel jr.,
— 216

and effective ̂ J- r moments of inertia of the U nucleus for
-J&i

equilibrium deformation (solid curves) and for transitional

configurations (dashed curves) corresponding to the fission

barrier peak [69]. The moments of inertia are given in units
2 2

of B= 4 V A R J ar*d the straight lines parallel to the abscissa
5 o o

axis determine the rigid-body values of the moments of inertia

for corresponding deformations.

Fig 22. The temperature dependence of the effective moment of inertia of
208

the transitional configurations of polonium isotopes: ̂ - Po;
210 211 212

o - Po; • - Po; and A - Po. The solid curve corre-

sponds to the predictions of the superfluid model in the con-

tinuous-spectrum approximation.
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Fig. 23. The dependence of correlation functions, moments of inertia and

angular-momentum projections on rotation frequency at a fixed

temperature. The numbers on the curves denote temperature in

units of t/t
cr

F iB- T h e dependence of thermodynamic functions on angular-momentum

projection at a fixed temperature. The numbers on the curves

denote temperature.
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Fig. 25. The dependence of thermodynamic functions on angular-momentum

projection for a fixed excitation energy. The dot-dash curve

shows the dependence of entropy in the approximation of small

momenta and the dashed line the phase-transition curve. The

numbers on the curves indicate excitation energy in units of

u/ucr.

05 10 1.5 2.0 t/tcr

0^ 0,5 1,0 1,5 2,0 U/Ucr

26. The dependence of correlation functions A on temperature and

excitation energy.



- Ill -

0,i 1,0 1,5 2,0 U/U

Fig. 27. The dependence of entropy and spin cut-off parameter on excita-

tion energy. The dot-dash curve represents the behaviour of

the average values of S ( Y = 0) and O ^ ( Y = 0 ) .

odd
.MeV

Fig. 28. The energy dependence of the correlation functions, spin cut-off

parameters and density of excited states for a system with an

even (solid curves) and an odd (dashed curves) number of particles,

The dot-dash lines indicate the results of the thermodynamic

description which takes no account of the discrete nature of the

quasi-particle excitations.
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6 8 i/HeV

Fig. 29. The energy dependence of the characteristics of n-quasi-particle

excitations in the superfluid model of the nucleus (solid curves)

and in the Boltzmann-gas model (dashed curves). The dot-dash

curve represents the thermodynamic description of the spin cut-

off parameter without a fixed number of quasi-particles; the

thresholds of n-quasi-particle excitations are also shown here.
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_L

0,15

0,10

0,10

0,05

V
• »

T-^Sw1".
_ i i i i _

s-^-.-p**- -rr<*r

Fig- 30. Level density parameters a(B ) and their asymptotic values a

obtained from the analysis of the density of neutron resonances

in the Fermi-gas model (•) and in the superfluid model of the

nucleus with allowance for collective effects ( • ) . The open

symbols indicate the results of the phenomenological description

(1.44) for sets of parameters (1.46) and (3.10).

31 .

\ibr

1 Mo

Pb

% I *l 0
Te . Dy Hg U

'50 700 150 200 A

The coefficients of vibrational increase in level density for

different nuclei at excitation energy U = B . The hatched region

corresponds to the evalution (3.9); 0 indicates the results of

combinatorial calculations [39] and • the results of thermodynamic

calculations [103].
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0 0,5 t, MeV

Fig. 32 . The temperature dependence of the coefficients of increase in

level density due to quadrupole coherent modes. The calculation

results for the spectrum of roots and poles of the cold nucleus

are shown above and those with allowance for the temperature

dependence of the roots of secular equation (3.22) are given

below.

2

1

6

4

2

4

1

i b r

^

\ , , , 1 i

Sn

y ^ b

Ni

Pb

/ /

0 0,5 t,MeV

Fig. 33. The same as in Fig. 32 for octupole modes.
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2-10

50 100 200 A

Fig- 34. The temperature dependence of the strength constant of effective

multipole interaction (above) and the dependence of the strength

constant on mass number for cold nuclei (below). The black

dots represent the results of calculation using relationship (3.32)

and the open symbols the same with the fitting of the solutions

of the secular equation to experimental data on the position

of the 2 (0) and 3 (A) levels. The dot-dash curves correspond

to quasi-classical evaluations of X and X/X on the basis of
o o

relationships (3.33) and (3.34).
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