

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР АКАДЕМИЯ НАУК СССР АКАДЕМИЯ НАУК УССР ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ АН УССР

НЕЙТРОННАЯ ФИЗИКА

TOM 1

MOCKBA-1984

.

Государственный комитет по использованию атомной энергии СССР Академия наук СССР Институт ядерных исследований АН УССР

Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике

НЕЙТРОННАЯ ФИЗИКА

.

Материалы 6-й Всесоюзной конференции по нейтронной физике, Киев, 2-6 октября 1983 г.

Том І

Москва - 1984

НЕЙТРОННАЯ ФИЗИКА. Материалы 6-й Всесовской конфе-ренции по нейтронной физике, Киев, 2-6 октября 1983 г. Т.І. — М.: ШНИЙатоминформ, 1984. — 404 с. В конференции по нейтронной физике участвовало око-ло 300 чел., из них 18 зарубежных ученых. Советские и зарубежные научно-исследовательские организации представили на конференцию более 300 докладов, которые заслушаны на пленарных заседаниях и в секциях: Секция I. Потребности в ядерных данных. Методы

оценки ядерных данных. Теория нейтронных реакций. Физика деления атомных ядер.

Секция Ц.

Секция Ш.

Секция IV. Ядерные данные делящихся изотопов, трансактинидов и осколков деления.

Секция У. Свойства нейтронных резонансов. Секция УІ. Ядерные данные доактинидных нуклидов. Секция УП. Нейтронная физика и фундаментальные проб-

лемы атомного ядра. Секция УШ. Экспериментальные методы нейтронной физики. Доклады подготовлены к изданию Центром по ядерным данным Государственного комитета по использованию атом-ной энергии СССР.

Проведение очередной конференции предполагается в 1985 г.

Главный редактор Б.Д.Кузьминов

Редакционная коллегия:

В.П.Вертебный (зам.главного редактора), В.В.Возяков (ответственный секретарь). В.Н. Манохин. Н.П. Чихова

Центральный научно-исследовательский институт вноормания в технико-экономических исследований по атомной науке и технике (ШНИИатоминформ), 1984

Пленарное заседание

<u>Председатель</u> Л.Н. Прова Ученый секретарь К.И.Писанко

ОТКРЫТИЕ КОНФЕРЕНЦИИ

РАЗВИТИЕ НЕЙТРОННОЙ ФИЗИКИ В СССР (К 50-летию открытия нейтрона)

М.В.Пасечник

(ИЯИ АН УССР)

В 1982 году научная общественность отметила 50-летие открытия нейтрона. Датой его рождения обычно считают дату письма Дж.Чадвика (17.02.1932), напечатанного в английском журнале под названием "Возможное существование нейтрона" /1/.

Нейтронная физика как раздел ядерной физики сформировалась в тридцатых годах. В последующие годы ее содержание значительно расширилось. В ее недрах зародилась физика реакторов – основа современного реакторостроения и атомной энергетики.

Волновые свойства нейтрона позволили применить пучки нейтронов для изучения структуры и свойств вещества - кристаллов, жидкостей, молекул. Уникальные возможности нейтронных методов проявились в создании структурной и магнитной нейтронографии, в нейтронографических исследованиях структуры биологических макромолекул.

Из раздела ядерной физики нейтронная физика преобразовалась в самостоятельную науку о свойствах нейтрона и его взаимодействиях с ядрами и веществами. Вместе с тем она играет важную роль в изучении свойств элементарных частиц и астрофизических проблем.

Следует подчеркнуть, что широкий спектр задач нейтронной физики связан, в частности, с широтой диапазона энергий, с которыми мы имеем дело в нейтронных экспериментах. Сегодня он простирается от 10⁻¹⁰ зВ (ультрахолодные нейтроны - УХН) до 10¹⁰ зВ (ускорители высоких энергий).

Бурное развитие нейтронной физики последних десятилетий было вызвано в основном практическими потребностями, связанными с развитием атомной энергетики, радиационным материаловедением, термоядерным синтезом, внедрением нейтронного активационного

анализа в науку и технику, использованием действия радиации на живые объекты, дозиметрией и метрологией нейтронных потоков.

Не менее важны достижения нейтронной физи. и в изучении строения атомного ядра, закономерностей ядерных процессов и свойств ядерных, электромагнитных и с: «бых взаимодействий, развитии теории ядра и других фундаментальных проблем.

Нейтронная физика (как и вся ядерная физика) развивелась цутем взаимообогещения экспериментальных и теоретических подходов. Настоящий обзор мы ограничили ядерно-физическими и прикладными аспектами нейтронной физики.

I. Предыстория. Открытие нейтрона

Мысль о существовании нейтральной частицы возникла в связи с созданием ядерной модели атома и развитием квантовой теории Периодической системы химических элементов Менделеева.

Харкинс (в 1915 г.) и Резерфорд (в 1920 г.) высказали предположение о сущеотвовании "нулевого элемента", который должен стоять в таблице Менделеева перед водородом и обладать свойствами благородных газов. Ядро этого элемента мыслилось Резерфордом в виде компактной системы из протона и электрона, сжатой до размеров 10⁻¹²- 10⁻¹³см. Оно обладало бы огромной проницаемостью при прохождении через вещество и другими необичными свойствами. Вслед за этим ученики Резерфорда начали длительные поиски ядер нулевого элемента, которому сразу же было дано наименование "нейтрон".Им казалось, что образование таких ядер, если они существуют, может происходить в газовом разряде в атмосфере водорода. Но опыты каждый раз заканчивались отрицательным результатом.

Резерфордовская модель нейтрона наталкивалась на принципиальные трудности. Путь к преодолению этих трудностей, как и "азотной катастрофы", Н.Бор видел в создании "суперквантовой теория", а Гайзенберг – в квантовании пространства малых областей.

Открытие нейтрона произошло совсем на другом пути – при изучении ядерных реакций. Известно, что в двадцатые годы нашего века интенсивно проводились исследования ядерных реакций на легкых ядрах под действием *d*-частиц, испускаемых тяжелыми радиоактивными ядрами. Было установлено, что большинство легких элементов при бомбардировке частицами испускают протоны. Среди исклю-

чений оказались литий, бор, бериллий и еще несколько элементов. При бомбардировке этих ядер протоны не обнаружены, но было обнаружено излучение огромной проникащей способности. Оно было названо по имени одного из авторов экспериментов "излучением Боте" /2/.

Естественным было предположение, что "излучение Боте" является гамма-излучением. Но измерение коэффициента поглощения показало, что он искличительно низок и составляет всего 0,22 см⁻¹.

Расшифровкой природы излучения Боте занялись супруги И.Кори и Ф.Колио /3/. При помощи ионизационной камеры они установили, что обнаруженное излучение выбивает из парафина протоны, пробет которых в воздухе достигал 26 см, что соответствует энергии крантов 47 МэВ. "Агент, приводящий в движение атомные ядра, - не фотон"заключают авторы.Это и был решахщий шаг на пути к открытию нейтрона. По свидетельству Чадвика, сообщение Кюри и Жолио произвело огромное впечатление на Резерфорда и его учеников. И хотя Резерфорд не поверил, что в этих опытах обнаружил себя нейтрон, Чадвик продолжил французские опыты. Повторив опыт Кюри и Жолио и измерив ионизацию среды "гэлучением Боте", Чадвик пришел к выводу, что оно представляет собой частицы конечной массы, сравнимой с массой протона, и с зарядом, в тысячу раз менышим заряда протона. Эта частица была отождествлена с нейтроном.

Следует подчеркнуть, что открытая в этих опытах частица существенно отличается от "нейтрона" Резерфорда. В открытом в опытах Жолио-Кюря-Чадвика нейтроне Иваненко усмотрел элементарную частицу.

Первое сообщение об опытах И.Кюри и Ф.Колио было сделано на заседании Парижской академии наук II января 1932 года и опубликовано в Докладах академии IS января 1932 года /3/, второе - 23 февраля /4/. 27 февраля в английском еженедельнике "Природа" появилось письмо Чадвика к редактору о подтверждении и интерпретации опытов французских ученых. Спустя 30 лет, имея в виду опыти Кюри и Колио, Чадвик писал /5/: "Надеюсь, что не буду неправильно понят, если добавлю послесловие к этой истории. Нет необходимости говорить о моем удовлетворении и восторге с тем, что продолжительные поиски нейтрона в конце концов увенчались успехом. Репакций шаг, однако, был сделан другими. В этом нет ничего необичного: прогресс знания в общем является результатом деятельности многих умов и рук. И все же я не могу избавиться от чувства, что должен был добиться цели быстрее. Я мог бы выдвануть в свое оправдание ряд извиняющих обстоятельств: нехватку оборудования и т.д. Но, несмотря на все это, я должен признать, хотя бы для себя, что не смог достаточно глубоко продумать свойства нейтрона, особенно те из них, которые наиболее ясно свидетельствуют о его существовании. Это учищающая мыоль. Утешаю себя тем, что всегда гораздо труднее сказать первое слово о предмете, каким бы очевидным он впоследствии ни казался, чем последнее слово. Это общая истина, а может быть, лишь извинение".

Роль Чадвика в открытии нейтрона отмечена присуждением ему Нобелевской премии.

2. Нейтрон и начало атомной эры

Открытие нейтрона знаменовало собой вступление науки в ядерную эпоху, решанций поворот от квантовой теории атома к квантовой теории поля и элементарных частиц. С открытия нейтрона начинается бурное развитие ядерной физики в ряде стран, где до тех пор ядерная физика не имела своих традиций, появляются один за другим новые ядерные центры.

В нашей стране исследования свойств ядер, в особенности радиоактивных, велись в Радиевом институте (В.Г.Хлопин, В.И.Вернадский) и других рентгено-радиологических институтах, созданных по инициативе В.И.Ленина в начале 20-х годов.

По предложению АН СССР советское правительство в начале 30-х годов принимает дополнительные меры для широкого развития ядерной физики в нашей стране, выделяет огромные по тем временам средства для сооружения крупных установок в ЛФТИ и Украинском физико-техническом институте, РИАН и ФИАН им. Лебедева АН СССР. А.Ф.Иоффе и С.И.Вавилов предпринимают организационные меры создают лаборатории ядерных исследований, учреждают научные семинары по ядерной физике.

Приказом от 15.12.1932 года в ЛФТИ учреждается Отдел ядерной физики во главе с И.В.Курчатовым.

В 1933 году состоялась первая Всесоюзная конференция по ядерной физике (Ленинград, 24-30 сентября 1933 года), на которой присутствовало 60 человек. Половина из них активно работала в ядерных лабораториях ХФТИ и ЛФТИ. Она началась докладом Ф.Жолио о нейтроне.

На второй ядерной конференции (Москва, 20-26 сентября 1937 года) уже присутствовало 250 человек, свыше сотни из них вели ядерные исследования. В программе этой конференции важное место занимали доклады по нейтронной физике. С обзорным докладом "Взаимодействие нейтронов с ядрами" выступил И.В.Курчатов. Результаты исследований взаимодействия фотонейтронов с ядрами, проводимых в ХФТИ, были изложены в докладе А.И.Лейцунского и др.

А.К.Вальтер, К.Д.Синельников и А.И.Таранов представили подробный доклад о разработке и сооружении в ХФТИ крупной ядерной установки – электростатического генератора и электронной трубки на 2,5 МВ. На этой же конференции было сообщено о запуске циклотрона в Радиевом институте АН СССР, позволиншего ускорить ионы гелия до 1,2 МэВ.

Как в I--й, так и во 2-й конференциях приняли участие ряд крупнейших зарубежных ученых.

"Известия АН СССР" посвятили этой конференции специальный выпуск своей физической серии за 1938 год.

В 1935 году в СССР появляются первые монографии по нейтронной физике, в которых обобщены результаты днухлетних нейтронных исследований /IQ/. Раздел о расщеплении ядер нейтронами содержится в монографии /II/.

К концу первого десятилетия нейтронной физики был построен первый ядерный реактор. Мир вступил в век ядерной энергии. Енстрое развитие экспериментальных исследований свойств нейтрона вызывало к жизни новые идеи, гипотезы, стимулировало разработку теории ядра, проблемы большого научного и практического значения.

Д.Д.Иваненко и Е.Н.Ганон (СССР) предложили оболочечную модаль ядра (1932), К.Гутенхеймер и В.Эльзассер (Францая) и И.П.Селинов (СССР) ввели представление о "магических" числах протонов и нейтронов в ядрах (1934). Е.Е.Тамм и Д.Д.Иваненко высказали гипотезу об обменном характере ядерных сил/8/, на основании которой Х.Ккава (Япония) предсказал существование мезонов, Н.Бор (Дания) обосновал модель составного ядра для объяснения механизма взаимодействия нейтронов с ядрами (1936), а также капельную модель ядра (1937). Брейт и Вигнер развили теорию нейтронных резонансов. Я.И.Френкель (СССР) и Н.Бор (Дания) развили теорию деленкя ядер (1939). Л.Д.Ландау и Г.Бете развили теорию нейтронных ядерного вещества (1939). Я.Б.Зельдович и Ю.Б. Харитон теоретически исследовали цепную реакцию деления на бистрых и медленных нейтронах и сформулировали условия осуществления цепной ядерной реакции.

Проблема деления тяжелых ядер и связанный с ней вопрос о возможности осуществления цепной ядерной реакции подробно обсуждался на днух последущих совещаниях по физике атомного ядра.

15-20 ноября 1939 года в УФТИ состоялась сессия Отделения физико-математических наук АН СССР, посвященная физике атомного ядра. На ней обсуждались доклады о результатах исследования деления ядер урана и тория. Состоялся доклад Ю.Б.Харитона о совместных с Б.И.Зольдовичем работах по теории цепных реакций на быстрых и тепловых нейтронах в уране. Показано, что для осуществления цепного процесса необходимо природный уран обогащать изотопом урана-235. Указано на необходимость получения экспериментальных данных об энергетической зависимости сечений деления и неупрутого рассеяния нейтронов для делящихся ядер.

Состояние решения этой проблемы к началу 1940 года изложено в известной статье И.В.Курчатова /13/. В последний раз урановая проблема обсуждалась открыто в СССР на Всесовзном совещании по физике атомного ядра в ноябре 1940 года в Москве. Она почти полностью была посвящена условиям осуществления цейной ядерной реахции, под действием быстрых и медленных нейтронов. Поставлен вопрос о сооружении уранового котла. Н.Н.Семенов выходит в Наркомтяжиром СССР с предложением начать практические работы по использованию атомной энергии. Налествие на нашу страну фашистской Германии прервело работы по практическому осуществлению цепной ядерной реакции в калей стране в начале сороковых годов.

Јсилиним римской школи Э.Ферми, кембриджской школи Резерфорда, парижской школи И. и Ф. Колио-Кюри,ленинградской школи И.В.Курчатова, копентатенской школи Н.Бора и других пионеров атомного века всего за одно десятилетие были созданы основы нейтронной физики – науки о свойствах нейтрона и его взаимодейстрий с ядрами.

Во втором десятилетии нейтронной физики были заложены основы физики ядерных реакторов и фругих размножающихся систем.

Третье десятилетие особенно богато прикладными аспектами нейтронной физики - практической реализацией атомных программ. В 1954 году была запущена первая в мире атомная электростанция. В 1955 году по решению ООН была созвана I-я Меддународная конферекция по мирному использованию атомной энергии. Она положила начало пирокому сструдничеству стран мира в области использования атомной энергии. Годом позже было учреждено Международное агентство по атомной энергии МАТАТЭ, призванное организовать это сотрудничество.

3. Свойства нейтрона и фундаментальные проблемы физики

Сведения о свойствах нейтрона получают путем изучения взаимодействия его с другими частицами и силовыми полями. Изучение распада нейтрона позволило выбрать варианты слабого взаимодействия. Сегодня в физике рассматриваются четыре вида взаимодействий - гравитационное, электромагнитное, слабое и сильное и соответственно этому четыре вида сил.

Нейтрон – одна из немногих элементарных частиц, падение которой в гравитационном поле Земли можно наблюдать экспериментально. Изучение движения нейтрона в гравитационном поле показало, что нейтрон ведет себя как обычное макроскопическое тело. Это позволило развить гравитационные методы в физике УХН, которые успешно применяются в последние годы.

Механические характеристики свободных нейтронов, как и протонов, достаточно хорошо изучены. Масса нейтрона примерно на 2,5 электронной массы больше массы протона и составляет I,008665 а.е.м. Нейтрон и протон имеют одинаковый по величине спин,равный I/2, и подчиняются статистике ферми-Дирака.Малое различие в массах нейтрона и протона, совпадение спинов и некоторых других их характеристик, а также возможность взаюмного превращения нейтронов (в свободном состоянии) и протонов (в связанном, а онть может, и в свободном состоянии) и протонов (в связанном, а онть может, и в свободном состоянии) позволяют рассматривать протон и нейтрон как два различных состояния одной и той же частици -- нуклона. При этом нуклону приписывается дополнительная внутренняя координата – так называемая изоспиновая, или зарядовая, координата.

Все еще остается предметом изучения электромагнитное взаимодействие нуклонов. Понятие электромагнитной структуры нейтрона также возникло на базе сравнения экспериментальных данных с расчетами рассеяния точечных зарядов.

Наибольший интерес для фундаментальной физики представляют аномальные значения магнитного момента и поиски электрического дипольного момента (ЭДМ). Как известно, наиболее реэко нейтрон от протона отличается по магнитным моментам, которые (в ядерных магнетонах) равны:

 $\mathcal{M}_{n} = -$ I,9I307 \pm 0,00006;

 $M_{\rm P} = 2,7928 \pm 0,0008.$

Это различие имеет фундаментальное значение для теория. Теория Дирака, например, для частиц с половинным спином предсказывает магнитный момент I или О. Это означает, что с помощью этой теории не может быть дано полное описание нуклонов. Существование у нейтрона магнитного момента, противоречащее уравнению Дирака, говорит о сложной внутренней структуре нейтрона.

Современная техника эксперимента позволяет экспериментально отобрать адекватные модели. Так, модель магнитного диполя (модель Блоха) и модель внутренних токов (модель Швингера) приводят к разным формулам, описывающим отражение нейтронов от намагниченных зеркал, рассеяние нейтронов на ферромагнетиках и т.д. Вся совокупность экспериментальных данных по рассеянию медленных нейтронов однозначно говорит в пользу модели Швингера и противоречит модели Блоха.

Вместе с аномалиями магнитных моментов вопросы структуре нуклонов рассматриваются в полевой теории, а также в кварковой модели нуклонов, зародившейся в 1963-1964 гг. Предполагая, что оператор магнитного момента нуклона является сумлой операторов магнитных моментов всех составляющих нуклонов кварков, и считая, что магнитный момент кварка пропорционален его заряду, находят значения отношения магнитного момента протона к магнитному моменту нейтрона:

$$\mu_{p}/\mu_{n} = - 3/2,$$

что находится в хорошем согласии с экспериментальных значением, равным 1,47.

Электрический дипольный момент. Вопрос о существовании и величине ЭДИ нейтрона имеет фундаментальное значение, так как он связан со свойствами силметрии. Для их изучения существенное значение имеет теорема Людерса-Паули, связывающая между собой преобразования С.Р и Т. Обнаружение СЕТ у нейтрона было бы прямым доказательством нарушения Т-инвариантности.

В настоящее время существует большое число различных Т-инвариантных моделей, предсказывающих существование ЭД! у нейтрона.

К сожаления, значение 300 в разных моделях отличается на несколько порядков.

No Mapuary $\sqrt{147}$ $\lambda_{n} \simeq 10^{-20} e.$

Определение ЭДЛ: с применением УХН снизило этот предел до 10⁻²⁴ см /157.

<u>Слабое взаимодействие</u> ответственно за *β*-распад нейтрона.Процесс *β*-распада свободного нейтрона можно представить в виде

 $n \rightarrow P + \overline{e} + \widetilde{v}$,

где $\widetilde{\mathbf{v}}$ -антинейтрино. Суммарная масса частиц, входящих в правую часть уравнения, меньше массы нейтрона,и, следовательно, этот процесс энергетически возможен.

Изучение β -распада свободного нейтрона позволяет получить информацию о слабом взаимодействии, свободном от влияния на процесс распада ядерных структурных эффектов, которые сказываются при изучении β -распада ядер. Изучение β -распада нейтрона позволило определить фундаментальные константы β -распада. Тщательное изучение распада нейтрона позволило сделать вывод о справедливости (γ - Λ)-варианта теории β -распада, установить ыд лагранжиана слабого взаимодействия, а также получить информацию о значениях констант связи.

Сильное взаимодействие - короткодействующее взаимодействие барионов с мезонами. Согласно критерию Блохинцева взаимодействие считается сильным, если в процессе взаимодействия плотность кинетической энергии частиц намного меньше абсолютной плотности энергии их взаимодействия. Посредством сильного взаимодействия происходят все ядерные реакции под действием нейтронов.

Изучению взаимодействия нейтронов с ядрами в СССР за последние десять лет посвящены 16 книг трудов Киевских нейтронных конференций, тысячи публикаций и ряд монографий.

межнуклонный потенциал, не сохраняющий пространственную

четность

В связи с обнаружением несохранения четности в слабых взаимодействиях начались поиски потенциала разплодействия нуклонов, не сохраняющих пространственную четность. Эти попштки исходили из допущения, что гамильтоники взаимоденствия нуклона в ядре состоит из лиух частей. Одна из них относится и спльноку взаимодействий, ответственному за сохраненые простичнственной четности, вторая х слабому взаимодействию, отретственной за несохранение пространственной четности. При этом вторая часть предсталяют собой мылую добавку, которая составляет **F**-ю честь. В периях сиспери-

ij

ментах /17/ для нахождения F измеряли угловое распределение 7 - квантов, испускаемых ядрами при захвате поляризованных нейтронов. Это распределение в соответствии с теоретическими соображениями должно иметь вид

$$W(Y) = I + Pn Cos Y,$$

где P_n -поляризация нейтронов, J-угол между направлением сцина нейтронов и направлением вылета χ -квантов, d-коэффициент асимметрии, пропорциональный искомой величине f. Указанные авторы выпол – нили исследования на ядрах кадмия, серебра и индия. Экспериментальное значение коэффициента асимметрии $d = (1, 2 \pm 7, 8) \cdot 10^{-4}$ не выходило за пределы экспериментальной ошибки и не позволило сделать определенные выводы о существовании межнуклонного потенцияла, не сохраняющего P - четность. Такой же эксперимент на более высоком техническом уровне выполнили Абов, Крупчицкий и Оратовский /18/. Была измерена асимметрия в испускания γ -квантов при захвате поляризованных нейтронов. С ошибкой, в 4 раза меньшей величины эффекта, для коэффициента асимметрия была найдена следущая реличина:

 $\mathcal{A} = -(3,7 \pm 0,9) \cdot 10^{-4} \,\mu$ $F = 4 \cdot 10^{-7}$

В последувщем Р -нечетные эффекти наблидались в (n_{cd}) реакциях на легких ядрах, в процессах испускания осколков целения ядер и при упругом рассеянии нейтронов. Обзор данных был представлек на 5-ю Киевскую конференцию по нейтронной физике, к трудам которой мы отсылаем читателей /197. Существенное усиление эффектов несохранения четности вблизи компаундсостояний наблядалось в нейтронных резонансах на олове-118 и лантане-139 /207. Роли цейтрона в решении фундаментальных проблем физики посвящена работа /217.

4. Нейтрон, атомная энергетика и ядерная технология

Становление атомной энергетики, ее развитие, а также роль нейтронной физики в СССР показаны в трудах И.В.Курчатова, А.П. Александрова и других советских первопроходцев атомной науки и техники [21-25].

В соответствии с решениями XXVI съезда КПСС в планах экономического развития СССР на XI пятилетку и на перспективу до конца 80-х годов важное значение придается опережанщему развитию энергетики вообще и атомной энергетике в особенности.

В озуществлении гтих планов по-прежнему большая роль отводится науке, в частности физике реакторов и нейтронной физике. К настоящему времени нейтронная физика достигла высокого уровня развития и оказала большое влияние на прогресс атомной техники.

Приводим краткий перечень полученных нейтронных данных, важных для атомной техники и реакторной технологии:

а) получены основные нейтронные даные для ядер деляцихся и конструкционных материалов и хладагентов [сечения $(n, f), (n, f), (n, f), (n, n), (n, n' \gamma), (n, p), (n, d), (n, 2n) и числа <math>\forall, d$ и η , утловые и энергетические распределения нейтронов, резонансные параметры ядер и др.], необходимые для нейтронно-физических расчетов реакторов и защиты, для расчетов ядерной безопасности реакторов;

б) измерены сечения активации ядер под действием нейтронов и характеристики распада изотонов, необходимые для разработки средств контроля за накоплением новых изотопов, для расчетов остаточного тепловыделения в активной зоне;

в) детально изучены характеристики гамма-квантов(сечения образования, рассеяния и поглощения, энергетические и угловые распределения) для тех же целей;

г) получены данные о запаздывающих нейтронах (выходы, спектры, периоды полураспада запаздывающих нейтронов) для расчета кинетики реакторов. Той же цели послужили данные о фотоядерных реакциях с вылетом нейтронов;

д) получены выходы и начаты измерения сечений некоторых продуктов деления;

 е) развиты методы расчетов и оценок нейтронных данных. И наконец, создана новая область технической физики - физика реакторов.

Трудно перечислить всех ученых, с именами которых связано получение этих результатов, как на стадии создения научно-технических основ атомных реакторов, так и на современном этапе. Их сотни.

Говоря об основных достижениях нейтронной физики в области прикладных проблем, следует отметить классические работы ИАЭ им. И.В. Курчатова по развитию физики и техники реакторов на тепловых нейтронах (И.В.Курчатов, А.П.Александров и их коллектив), а также работы ФЭИ по созданию теории и физики быстрых реакторов (И.А.Бондаренко, О.Д.Казачковский, А.И.Лейпунский, (Л.Н.Усачев), развитию теории нейтрон-ядерных взаимодействий, разработке методов и алгоритмов расчетов атомных реакторов и оценок ядерных сечений. На Украине плодотворно трудятся коллективы ядерщиков ХОТИ и ИНИ АН УССР, ИТФ АН УССР и кафедр вузов.

Получению приведенных выше результатов благоприятствовало развитие теории ядра и ядерных превращений. Если говорить о работах советских теоретиков последних лет, то следует прежде всего указать работы Н.Н.Боголюбова по теории сверхтекучести ядерной материи, А.Б.Мигдала по теории конечных ферми-систем, С.Б.Беляева, А.С.Давыдова, В.Г.Соловьева по обобщенной модели ядра, А.И.Ахиезера и А.Г.Ситенко по дифракционной теории ядерных реакций, В.М.Струтинского по теории деления ядер.

Дальнейшее развитие получила теория ядерных реакций: учет прямых процессов, предкомпаундных состояний, связи каналов, флуктуации ширин уровней, а также оболочечной структуры ядер. Мощным средством проверки этих теорий стали исследования взаимодействия нейтронов с ядрами методами нейтронной спектрометрии по врежени пролета.

Развитие наносекундной нейтронной спектрометрии на импульсных источниках позволило в качестве зонда энергетических ядерных уровней использовать быстрый нейтрон, что дало возможность получить существенно новые результаты. Для широкого круга ядер установлено влияние статической и динамической деформации ядер на взаимодействие нейтронов с ядрами. Установлена изоспиновая зависимость параметров деформации, а также различие параметров в неупругом рассеянии нейтронов и заряженных частии.

Количественную форму приобрела концепция иногоступенчатых процессов. Флуктуации парпиальных сечений обнаружены на ядрах в области A = 50+70.

В нашей лаборатории экспериментально обнаружена периодичность в плотности уровней изотопов по числан *N*, Z, A, коррелирукцая с замкнутыми оболочками, обнаружены новые оболочки в нуклидах редкоземельных элементов с числом нейтронов ~100. Изучены реакции с вылетом *d*-частиц под действием резонанскых нейтронов. Экспериментально установлена изоспиновая записимость оптического ядерисго потенциала, получены эмпирические формули, связывающие его параметры [26]. Основные задачи прикладной нейтронной физики можно сформулировать следующим образом:

I. Повышение точности измерений нейтронных сеченый адер атомного горичего и консурукционных материалов, расширение треграммы измерений на новые материалы, а также изотопы - оснолич

 $\mathbf{i4}$

деления. Существующие неопределенности в нейтронных данных приводят к завышенным запасам по многим параметрам, т.е. к удорожанию реакторной части АЭС.

2. Получение нейтронных данных для термоядерных и гибридных реакторов. Еще более важным является развитие физики таких реакторов, формулирование научно обоснованных требований к ядерным данным.

3. Получение нейтронных данных для уран-ториевого цинла, направленных на создание тепловых бридеров.

4. Заполнение пробелов в системе нейтронных данных для разработки электроядерных реакторов и электроядерных методов получения горючего. Особенно это относится к изучению взаимодействия нейтронов с энергией до IOC МэВ.

5. Дальнейшее развитие приложений нейтронной физики в "неядерных" областях:

а) физике твердого тела – развитие методов использования дифракции и неупругого рассеяния нейтронов в комплексе с другими ядерно-физическими методами (эффектом теней, эффектом Meccoayэра, оарьерной спектроскопией электронов и др.);

б) материаловедения - нейтронное легирование полупроводников, развитие ядерных методов автоматизации, контроля и управления при создании конструкционных материалов;

в) химии, геологии - новые методы элементного анализа;

г) астройизике - получение данных, необходимых для расчета свойств и процессов в нейтронных звездах, синтез элементов в звездах и др.;

д) биологии и медицине – разработка нейтронных методов селеклии и изучение биологических структур, нейтронной терапии и диагностики, а также решение экологических проблем. В этой связи особое значение имеет концентрация усили: на решении задач, связанных с ускоренным решением продовольственной программи.

Начиная с 1971 года в г.Киеве систематически проходят конференции по нейтронной физике, которые по предложению МАГАТЭ включены в цикл Международных конференций по ядерным данныл для науки и техники. 16 томов трудов этих конференций представляют собой весомый вклад в нейтронную физику.

Из сказанного видно, насколько возросло значение нейтронной физики как самостоятельной науки для современного естествознания и техники.

Список литературы

- I. Chadwick J. Possible Existence of a Neutron. Nature, 1932, <u>129</u>, 312.
- Bothe W., Becker H. Künstliche Ergegung von Kern d-Stralen. Zs f. Phys., 1930, 66, 289.
- Curie I., Joliot F. Emission de protons de grande vitesse les Substances Hidrogénés sous l'influence des *A-rayons*. CR, 1932, <u>194</u>, 273.
- Curie I., Joliot P. Effet d'absorbtion de A-rayons tres haute frecuence par prosection de noyaux legers. CR, 1932, <u>194</u>, 708. New evidence for the Neutron. Nature, 1932, <u>130</u>, 57.
- 5. Чедвик Дж. Воспоминания о поисках нейтрона. Сб. Нейтрон, Наука, 1975, с.5-8.
- Iwanenko D.D. The Neutron Hypothesis. Nature, 1932, <u>129</u>, 789; Sow. Phys., 1932, <u>1</u>, 892.
- 7. Heisenberg W. Über die Bau der Atom Kerne. I.Zs f. Phys, 1932, <u>17</u>, 1; II.Zs f. Phys., 1932, <u>78</u>, 156; 111.Zs f. Phys. 1932, 80, 1933.
- Tamm 1.E. Exchange Forces between Neutrons and Protons and Fermi Theory. Nature, 1934, <u>134</u>, 98.
- Wigner E. Über die Straung von Neutronen und Protonen.
 Zs f. Phys., 1933, <u>32</u>, 259.
- 10. Лукирский П.И. Нейтрон. ОНТИ, М-Л., 1935, с.91.
- 11. Корсунский М.И. Нейтрон. ОНТИ, М.Л., 1935, с.225.
- 12. Курчатов И.В. Расшепление атомного ядра. 1935. с. 153.
- 13. Курчатов И.В. Деление тяжелых ядер.Изв.АН Э.Э.Р., сер. физ. 1941
- 14. Murchack E.L., Riuzuddin, Kian C.P. Wesle. Interaction of Elementary Particles. N.Y. Wiley, 1969, p.210.
- 15. Александров D.A. О возможности улучшения экспериментальной оценки электрического дипольного момента нейтрона. Нейтрон-

ная физика. М., ЦНИИатоминформ, 1980, ч.1, с.138.

- 16. Ерозолимский Б.Г. Измерение угловой корреляции спин нейт рона - импульс антинейтрона в распаде поляривованных нейтронов. ЯФ, 1970, <u>12</u>, 323.
- 17. Haas R. at ol. Phys, Rev., 1959, 116, 1959.
- 18. Абов D.Г., Крупчицкий П.А., Оратовский D.А. Несохранение четности при захвате нейтронов. ЯФ, 1965, <u>19</u>,20.
- 19. Данилян М.М. Эффекты несохранения четности в реакциях захвата медленных нейтронов ядрами. Нейтронная физика. Труды У конференции по нейтронной физике (Киев 15-19.09. 1980), ЦНИИатоминформ, 1980, ч.1, 12-23.
- 20. Алфименков В.П. Наружение пространственной четности во взаимодействия медленных нейтронов с ядрами. Лекции ІУ Международной школы по нейтронной физике. Дубиа, 1982, с.38-57.
- 21. Франк И.М. Пятьдесят лет нейтронной физике. Лекции IV иколы по нейтронной физике. Дубиа, 1982, с.7-24
- Курчатов И.В. Атомная энергия на благо человечества.
 М.Атомиздат, 1982, с.360.
- Александров А.П. Ядерная энергия на благо человечества.
 М., Наука, 1978, с.260.
- 24. Сб.Атомная наука и техника в СССР. М., Атомиздат, 1977, с.357.
- 25. Петросянц А.М. Атомная энергетика. М., Наука, 1976, с.263.
- 26. Пасечник М.В. Нейтронная физика 80-х годов. Нейтронная физика, Труды У конференции по нейтронной физике. М.: ШНИИатоминформ, 1980, ч.І. с.3-10.

<u>Секция</u> I

ПОТРЕНОСТИ В ЯДЕРНЫХ ДАННЫХ. МЕТОДЫ ОЦЕНКИ ЯДЕРНЫХ ДАННЫХ

Председатель В.Н.Манохин

Ученый секретарь Ж.И.Шисанко

ПОТРЕБНОСТИ В ЯДЕРНЫХ ДАННЫХ ДЛЯ РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ

В.Н.Манохин, Л.Н.Усачев

(Физико-энергетический институт)

В докладе дан обзор целевых точностей и потреоностей в нейтронных данных для реакторов на быстрых нейтронах.

The review of target accuracies and neutron requirements for fast breeder reactors is given in this report.

I. Введение.

I.I. Ядерные данные нужны для многочисленных областей науки и техники и, в первую очередь, для атомной энергетики. Для удовлетвореныя потребностей была организована система национальных, региональных и международных организаций (комитетов и центров) с целью объединения усилий по сбору и оценке, выявлению и обоснованию потребностей в ядерных данных.

В рамках МАГАТЭ под руководством Международного комитета по ядерным данным в течение более чем 15 лет успешно функционирует система центров данных, каждый из которых осуществляет сбор всей числовой информации по нейтронной физике по своей зоне и обменивается ею с другими центрами.

В результате деятельности центров данных создана мировая машинная библиотека нейтронных данных, содержащая в настоящее время экспериментальные нейтронные данные по сечениям и другим параметрам ядерных реакций для ~ 400 элементов и изотопов (около 3 млн. чисел). Эта библиотека служит основой для создания библиотек оцененных ядерных данных, которые затем непосредственно или в групповом представлении используются в расчетах параметров ядерных установок.

В настоящее время существует достаточно много нашкональных библиотек (общего и специализированного назначения) оцененных ядерных данных.

Работа по оценке данных, развитию существующих и созданию новых библиотек ядерных данных ведется во многих странах, а также в рамках МАГАТЭ на основе международного сотрудничества.

Следует отметить, что важную роль в обеспечении работы по оценке играет дальнейшее развитие экспериментальных и теоретических исследований структуры атомного ядра и ядерных реакций.

Существенной составной частью деятельности ... «ждународного комитета по ядерным данным, соответствующих национальных и региональных комитетов и системы центров данных является выявление и обоснование потребностей в ядерных данных. Результатом этой работы является издание международного списка запросов ВРЕНДА, который включает запросы на данные для реакторов, термоядерной проблемы и системы гарантий.

I.2. В применении к проблеме реакторов на быстрых нейтронах ядерные данные нужны для понимания физических процессов, лежащих в основе работы атомных электростанций, для расчета оптимизации параметров реакторов и АЭС в целом, для задач внешнего топливного щикла, для выбора альтернативных направлений развития ядерной энергетики. Ядерные данные нужны с требуемой точностью, поскольку погрешности в ядерных данных приводят к неопределенностям в предсказании реакторных параметров. Большие неопределенности. в свою очередь, ведут к большим и дорогостоящим запасам в проектах. Это требует дальнейшего уточнения данных. С другой стороны, чрезмерное уточнение ядерных данных также требует чрезмерно больших вложений в развитие экспериментальной техники. Поэтому и возникает задача об обосновании требуемых точностей ядерных данных. Иними словами, возникает задача вноора оптимальной совокупности экспериментов (микроскопических и интегральных), характеризуемых допустимой погрешностью для определения каждой величины и обеспечивающих требуемую точность расчета реакторных параметров при минимальных затратах.

I.3. Проблема неопределенностей ядерных данных и требований к ним рассматривалась многими авторами /1-14/. Положение с выявлением и удовлетворением потребностей в ядерных данных обсуждалось на большом числе конференций и совещаний: рассматривались методы определения потребностей, целевые точности реакторных параметров и характеристик, анализировались расхождения в измерениях и оценках, формировались потребности для реакторов и других приложений в науке и технике.

В рамках МАГАТЭ проводятся также рабочие и консультативные совещания по различным аспектам деятельности по ядерным данным.

Потребности в точности ядерных данных, выработанные в разных странах и одобренные национальными и региональными комитетами по ядерным данным, включаются в мировой список запросов на ядерные данные ВРЕНДА, издаваемый МАГАТЭ. Каждые два года проводится пересмотр и переиздание списка.

ВРЕНДА 81/82 включает около 1700 запросов от 15 стран и международных организаций. Список запросов дает достаточно полное представление о потребностях в оцененных ядерных данных и может быть руководством для планирования оценки и измерений ядерных данных.

I.4. Сравнивая потребности в точности ядерных данных, сформулированные разными специалистами, можно заметить различия в величинах (часто до фактора 2), которые объясняются различием в подходах к определению потребностей. Разные авторы дают разные предположения о величине целевых точностей, о ролк интегральных экспериментов, о корреляционных свойствах погрешностей ядерных данных к т.д.

Первым шагом в определении потребностей в точности ядерных данных является формирование на основе технико-экономических сообракений целевых точностей, т.е. потребностей в точности предсказания тех или иных параметров установок, для расчета которых требуются ядерные данные. Для определения целевых точностей привлекаются соображения технологического и экономического характера, которые позволяют с большой долей уверенности определить величину пелевых точностей.

Следующим шагом в процедуре определения потребностей в точности ядерных данных является расчет коэффициентов чувствительности этих параметров к изменениям в ядерных данных /18/.

Это дает возможность спределить, какие ядерные данные требуются с большей точностью, а какие о меньшей. На этом этапе формируются (реакторииками) требования к точности оцененных ядерных данных, обеспечивающие заданную точность расчета характеристик реактора.

Требуемув погрешность нужно понимать как погрешность оцененных ядерных данных, скоррелированную в заданных энергетических интервалах. Вопрос об определения погрешностей подробно обсуждается в работе /15/. Что же касается потребностей в новых измерениях, то выявляются они в процеосе оценки ядерных данных и должны формироваться оценщиками.

Для выработки потребностей в точности оцененных ядерных данных нужно располагать информацией о целевых точностях и о существующем уровне погрешностей оцененных ядерных данных. Поскольку число величин, к точности которых предъявляются требования, больше числа характеристик, точность которых гребуется обеспечить, то задача с первого взгляда является неоднозначной. Однако наложение требования минимума затрат на совокупность измерений и оценок с одновременным принятием зависимости стоимости определения каждой величины от погрешности (например, пропорционально 1/ ε^2) делает эту задачу однозначной.

Нужно принять также определенную модель относительно коррелящионных свойств погрешностей. Важность учета корреляций между сечениями при определении требуемых точностей подчеркивалась разными авторами давно. В работах 27. I?, I8/ дан обзор истории вопроса и развит формализм выработки потребностей, обеспечивающих точность расчета нескольких реакторных параметров с учетом как микроскопических, так и макроскопических экспериментов при определенных предположениях о корреляционных свойствах погрешностей. Удобно принять, что погрешность скоррелирована полностью в пределах выбранных интервалов, а погрешности в разных интервалах являются независимыми. Использование общих стандартов при относительных измерениях приводит к тому, что погрешность сечений различных изотопов оказывается скоррелированной.

Требования к точности оцененных данных существенно зависят от предположений о корреляционных интервалах.

Для понимания перехода от точности оцененных ядерных данных: требования на которые выставляются, к требованиям на постансвку эксперимента надо отметить следующее. Для удовлетворения требований надо как повызать точность отдельного эксперимента, В максимальной степени анализируя и исключая погрешности, так и вводить новые методики эксперимента. Дело в том, что систематические погрешности выявляются лишь при сравнении результатов. полученных разными методиками. Именно эти систематические погрешности обычно принадлежат не отдельной экспериментальной точке, а области энергий. Именно на эту погрешность мы и выставляем требования.

Использование интегральных экспериментов в ряде случаев соверпенно необходимо, так как требуемые точности в микроскопических данных могут превышать достижимую точность измерений ядерных данных и дальнейшее уточнение приведет к существенному увеличению расходов на измерение. Роль интегральных экспериментов обсуждалась во многих работах (достаточно полный список пан в обзоре /97).

Дальнейшее изложение будет посвящено обсуждению целевых точностей реакторных параметров, значений достигнутых погрешностей оцененных ядерных данных, процедуры выработки потребностей в точности с учетом и без учета интегральных экспериментов.

2. Целевые точности.

2.1. Эффективный коэффициент размножения (К_{эф}). Характеристики топлива выбираются так, чтобы реактор был критическим в конце кампании при выведенных регулирующих стержнях. Погрешность расчета эффективного коэффициента размножения или расчета критиассы вследствие погрешности ядерных данных должна составлять ~1%. Это требование обосновывается, исходя из возможностей без переделки конструкции реактора скомпенсировать соответствующую ошибку.

Неопределенность в К_{эф} обусловлена, главным образом, неопределенностями в ядерных данных основных делящихся изотолов и конструкционных материалов. Требование к точности К_{эф} в I% ведет к высоким требованиям к точности основных делящихся и сырьевых изотолов.

2.2. Коэффициент воспроизводства (КВ). Объем добичи урана и его обогащения, объемы переработки топлива, необходимого для обеспечения развивающейся энергетики, основанной на реакторах на быстрых нейтронах, определяются задаваемым темпом развития энергетики и временем удвоения реакторов с расширенным воспроизводством. Время удвоения обратно пропорционально величине (КВ-I). Время удвоения нужно знать с точностью ±10%. На погрешность КВ накладываются требования ±2% (исходя из 10% во времени удвоения и 1% К_{Эф}).

2.3. Изменение реактивности в процессе кампании. Изменение реактивности из-за выгорания топлива и накопления актинидов и продуктов деления в процессе кампании определяет требования к органам регулирования, а также реактивность топлива в конце кампании. Целевая точность ±5%. Суммарний эффект реактивности продуктов деления должен быть известен с точностью ±10%, чтобы удовлетворить этим требованиям.

Неопределенность в изменении реактивности связана с неопределенностями в сечениях захвата продуктов деления и балансе тяжелых ядер воледствие их накопления.

2.4. Реактивность стержней регулирования. Целевая точность реактивности стержней регулирования <u>+</u>5%. Существующая погрешность +10%.

2.5. Тепловиделение. Теплофизические расчети предельной мощности, снимаемой с реактора, требуют знания коэффициента неравномерности отношения максимального тепловиделения к среднему.

Эта величина прямо влияет на максимальную мощность, так как она лимитируется температурой наиболее горячего элемента реактора. Из экономических соображений следует потребность в точности ±1%, существухщая погрешность ±2%. Гамма-излучение топливных элементов вносит значительный вклад в нагрев регулирующих стерхней и бланкета. Это приводит к потребностям в данных по гамма-спектрам и сечениям взаимодействия гамма-излучения с ядрами.

2.6. Эффекты радмационного поврежденыя. Радмационные повреждения оказывают прямое воздействие на экономику, проектирование и безопасность ядерных реакторов. Величина максимального облучения может зависеть от радмационной стойкости конструкционных материалов. Радмационные повреждения вызывают распухание и ползучесть материалов. Радмационные повреждения вызывают распухание и ползучесть материалов и изменение их характеристик. Для оценки распухания и деформаций элементов реактора нужно предсказывать дозы и градиенты дов радиационных повреждений. Нужно предсказывать скорости смещеныя атомов, образования гелия и водорода, температуру материалов. Имеются потребности в определении потока и спектра нейтронов так, чтобы наблюдаемые изменения в свойствах материалов моглы быть соотнесены с режимом облучения. Это приводит к потребностям в сечениях для внутриреакторной дозиметрии. Потребности в точности предсказания флюенса и дозы радиационных повреждений ±5%, дозсвых и температурных градиентов ±10%.

2.7. Козффициенты реактивности. Ряд козффициентов реактивности определяет кинетику реактора. Наиболее важный параметр, связанный с ядерной безопасностью реакторов на бистрых нейтронах – доплеровский эффект реактивности. Он обусловлен преимущественно уширением резонансов ²³⁸U в диапазоне энергий 0,5-10 кэВ. Делящиеся изотопы и конструкционные материалы также вносят заметный вклад. Предсказание доплеровского эффекта требует энания резонансных парамет-

ров и сечений рассеяния и поглощения, которые определяют величину потока в области энергий резонансов. Потребность в точности предсказания доплеровского эффекта IO-I5%. Существующая точность близка к требуемой. Другой параметр, связанный с ядерной безопасностью в реакторах на быстрих нейтронах с натриевым охлаждением, - натриевый эффект реактивности. Рассеяние нейтронов в натрим приводит к замедлению нейтронов и уменьшению их утечки. Эффект реактивности от потери натрия зависит от типа топлива и его обогащения. С точки зрения нейтронных данных эффект зависит от формы энергетической зависимости сечений деления и захвата, так же как и от сечений натрия. Потребности в точности предсказания максимального положительного натриевого эффекта IO-I5%. Требуемая точность может быть достигнута, главным образом, улучшением метода расчета и, в меньшей стецени, улучшением точности сечений рассеяния натрия. Существующая погрешность в определении натриевого эффекта <u>+</u>20%.

2.8. Остаточное тепловиделение и активность облученных материалов. Знание остаточного тепловиделения топливных элементов нужно для проектирования систем аварийной остановки реактора и экстренного расхолаживания. Требуемые точности - 2-5%.

Важное значение имеет знание активности облученного топлива, теплоносителя и конструкционных материалов для определения условий доступности оборудования и обращения с элементами реактора, для проектирования залити при транспортировке топлива на переработку, залити регенерационных установок. Нужно знать нейтронную активность топлава, которая обусловлена спонтанным делением изотопов кирия и реакцией (<, в) на легких изотопах (С, О). Это требует знания сечений деления и захвата актинидов, определяющих их баланс в реакторе, и сечение реакции (, п). Для определения доступности для обслуживания технологического оборудования надо знать активацию натрия после выдержки, которая определяется процессом (n,2n), активацию компонент стали за счет процессов (n,p), (n, α) , (n, 2n) и др. Texнология изготовления топливных элементов из плутония, полученного химической переработкой отработавшего топлива, определяется накопленной активностью изотопов 236 ри и 238 ри. Необходимо знать сечения их образования.

Требования к точности предсказания общей активности 20-30%.

3. Метод определения потребностей точности микроскопических ядерных данных.

Для определения погрешностей в ядерных данных, обеспечивающих предсказания реакторных величин с заданной точностыя, был предложен метод, учатывающий корреляционные свойства погрешностей в простой, но реалистической модели /7/. Этот метод позволяет определять количественно требуемые точности.

Относительная вариация реакторного параметра $\delta C/C$ выражается линейно через относительные вариации ($\delta S/\sigma$)_{сі} групповых величин типа сизотопа с в группе јс козффициентами пропорциональности или чувствительности S_{cij} :

$$\delta C/C = \sum_{\alpha_{ij}} S_{\alpha_{ij}} \left(\delta \delta' / \delta' \right)_{\alpha_{ij}}. \quad (I)$$

Коэффициенти S., вичисляются с помощью обобщенной теории возмущений /I6, 18/.

Для определения погрешности в реакторном параметре надо сделать предположение о том, как складываются вклады от многих погрешностей, входящих в формулу (1). Если принять, что эти вклады являются случайными величинами, нескоррелированными маду собой, то дисперсия реакторного параметра выражается через дисперсии групповых микроскопических величин $d^2_{\alpha(i)}$ следущим образом:

$$\mathcal{D}^{2} = \sum_{\alpha_{ij}} S^{2}_{\alpha_{ij}} d^{2}_{\alpha_{ij}}. \qquad (2)$$

Почти каждой ядерной константе можно поставить в соответствие 2-3 корреляционных интервала на всей энергетической оси, поэтому важен учет корреляций в погрешностях. Предложено было также погрешности разбивать на компоненты, различающиеся своими корреляционными CBORCTBAME /7, 187. Чаще всего это тре компоненты: 1) статестическая - некоррелированная; 2) компонента ошиски, перенесенная со стандарта при его использовании (эта компонента присутствует в погрешностях всех величин, измеренных с помощью этого стандарта; 3) предполагаемая ощебка в нормировке кривой, постоянная в пределах выбранного корреляционного интервала и проистеканцая от возможности систематической ошибки. Представление 06/6 B BRIE TDEX компонент приведено в уравнении (I), и члены с одинаковыми компонентами, описывающими корреляционную ошибку, объединяются таким образом, что новые коеффициенти чувотвительности ZB данной корредяционной компоненти погрешности оказываются суммами козойициентов $S_{\alpha(i)}$ по области скоррелированности. Теперь $\delta C/C = \sum Z_{\beta} (\delta 5/5)^{\beta}$, где компоненты погрешности $(\delta 5/5)^{\beta}$ между собой счетаются статистическе независимных и на этом основании производится переход к формуле (3), аналогичный переходу от формулы (I) к формуле (2):

$$\mathcal{D}^{2} = \sum_{\beta} \mathcal{Z}_{\beta}^{2} d_{\beta}^{2}.$$
⁽³⁾

Задавая левур часть (погрешность реакторного параметра), надо определять совокупность погрешноотей отдельных величин $o_{\ell^2}^2$.

Очевидно, что задача в такой постановке неоднозначна, можно по-разному распределить вклади погрешностей разных величин в погрешность реакторного нараметра. Однако достаточно наложить условие минимума затрат на совокупность экспериментов, делая одновременно предположение об относительных величинах затрат для измерения различных величин с достигнутыми к данному моменту точностями и экстраполируя стоимость эксперимента в зависимости от величины погрешности ξ , например по закону I/ξ^2 , как задача становится однозначной.

Выражение для стоимости экспериментов запишем в виде

$$\sum_{\beta=1}^{N} \lambda_{\beta} / d_{\beta}^{2}.$$

Здесь λ_{β} — конотанта, характеризукцая стоимость экспериментов по определению величины, характеризуемой индексом β . Пример определения λ_{β} дан в работе [7]. А именно, в предноложении равной пробивной способности экспериментаторов, можно считать, что на получение достигнутых погрешностей d_{β_0} различных величин произведены одинаковые затраты и поэтому $\lambda_{\beta}/d_{\beta}^2 = const, \beta = 1,...$..., N. Если иметь в виду, что искомне погрешности должны быть ограничены сверху достигнутыхи точностями, то задача о планировании оптимальной совокупности микроэкспериментов и оценок, обеспечиварщей требуемую точность расчета К реакторных параметров, сводится к решению следующей экспериментальной задачи:

$$\begin{split} & \sum_{\beta=1}^{N} \lambda_{\beta} / d_{\beta}^{2} \rightarrow \min , \\ & \sum_{\beta=1}^{N} \tilde{\mathcal{L}}_{\beta \ell}^{2} d_{\beta}^{2} \leq \tilde{\mathcal{D}}_{\ell}^{2} , \ \ell = 1, \dots, L, \\ & 0 < d_{\beta}^{2} \leq d_{\beta_{0}}^{2} . \end{split}$$

При одном ограничении на дисперсию только одного реакторного параметра задача решается аналитически [7]. В работе [17] развит алгоритм решения задачи планирования оптимальной совокупности микроэкспериментов и оценок, обеспечивающих требуемые точности произвольного числа реакторных параметров. В той же работе алгоритм расширен и для учета интегральных экспериментов.В случае одновременного использования информации по интегральным и микроскопическим измерениям, точность расчета \mathcal{D}_{ℓ} реакторного параметра C_{ℓ} с коэффициентом чувствительности \overline{Z}_{ℓ} может быть записана следующим образом:

$$\mathbf{D}_{1}^{2} = \mathbf{\overline{Z}}_{1} \mathbf{D} (\mathbf{N} + \mathbf{K}) \mathbf{\overline{Z}}_{1}^{\mathrm{T}},$$

$$D(N+K)=(I-U(N)F^{T}(V+FD(N)F^{T})^{-1}F)D(N).$$

Здесь D(N) - коварнационная матрица только микроскопических экспериментов, F - матрица размером (N + K), коэффициенты чувствительности используемых интегральных экспериментов, V - матрица экспериментальных ошибок интегральных экспериментов. Матрица D(N) может быть сделана диагональной, причем диагональными элементами этой матрицы являются квалраты точностей макроскопических данных.

Следовательно, задача о планировании совокупности микроскопических экспериментов при наличии К интегральных может быть сведена к такой экстремальной задаче:

$$\begin{split}
& \sum_{\beta=1}^{\sum} \lambda_{\beta} / d_{\beta}^{2} \rightarrow \min, \\
& \overline{Z}_{\ell} D(N+K) \overline{Z}_{\ell}^{T} \leq D_{\ell}^{2}, \ \ell = 1, \dots, L, \\
& 0 < d_{\beta}^{2} \leq d_{\beta_{0}}^{2}.
\end{split}$$
(4)

Искомые точности d_{Δ}^{2} входят в ограничение (4) как элементы диагональной матрицы D(N).

Для решения этой задачи были разработаны эффективные численные методы.

4. Требуемие и достигнутые точности в ядерных данных.

Требуемая во ВРЕНДЕ точность ядерных данных характеризуется одним стандартным отклонением. Смысл погрешности. однако, определен только в запросах от СССР. Так, в запросах Усачева Л.Н. предполагается, что погрешность в данной точке представляется как сумма компонент с разными корреляционными свойствами. Требования на точность выявлены для наиболее важной компоненты погрешности. скоррелированной по энергетическому интервалу. указанному в запросе. Эта компонента погрешности определяет точность интеграла под кривой по этому интервалу. В запросах на измерения прдполагается использование стандартов сечения ^{IO}B (n,ot) (ниже IOO кэВ) и сечения реакции ²³⁵U(n,f). Во всех запросах, за исключением запросов для стандартов, точность определяется по отношению к измерениям относительно стандартов и требуемые точности стандартов определены отнельно.

Ниже приведени требуемые и достигнутые точности для микросколических ядерных данных. Часть величин взята из обзора Роувлендса /9/. Точности данных для актинидов и продуктов деления взяты из работ Усачева Л.Н. и др. /12-14/.

4.1. Основние делящиеся и сирьевие изотопи [9]. Требуются данние с высокой точностью по сечениям деления и захвата, величине для 2350, 2380, 239ро, по сечениям неупругого рассеяния ²³⁸0. Эта точность определяется, в первую очередь, потребностями предсказания K_{30} (1%) и КВ (2%). Для тепловой области энергий нейтронов нужны следующие точности: $\sqrt{-\pm0.3\%}$, $\mathcal{5}_{f}$, $\mathcal{5}_{c}$, $\mathcal{5}_{t}$, $\mathcal{5}_{g}$ - ±1%. Для области энергий спектра реакторов на онстрых нейтронах существуют определенные потребности (табл.1).

Trademon T

Велечина	Делящиеся изотопы,	ł	Сырьевне изотопи,		
) _f	0,3		I		
Gr	2		2		
ଟ୍	4		3		
ଟ _t , ଜୁ	2		5		
$\overline{\sigma_{in}}$	10		5		
$G_{n,2n}$	10		10		

Для реакторов с ториевым циклом нужны те же потребности для ²³²ть н ²³³U, как и для ²³⁸U и ²³⁵U.

4.2. Конструкционные материалы. Потребности в ядерных данных для материалов теплоносителя и конструкционных материалов нужны для определения эффектов реактивности, нейтронных спектров, баланса нейтронов, радиационных повреждений, активации материалов и нагрева. Для натрия нужно знать сечение рассеяния и захват. Нужны данные по захвату и неупругому рассеянию Fe, Cr, Nd (в первую очередь), Ті, V, Mn. Потребности в точности сечений захвата составляют Co, Zr, Nb, Mo. 5-10%, сечений неупругого рассеяния - 5%. Нужны данные по резонансной структуре сечений, поскольку существенными являются эффект резонансной самоэкранировки и эффект Доплера. Это является одной из причин, почему нужны данные по сечениям отдельных изотопов. С точки зрения проблемы радиационных повреждений, экономии нейтронов нужны данные peakerunt $(n, p) \in (n, \alpha)$.

4.3. Поглотители. В реакторах на быстрых нейтронах используются естественный и обогащенный бор, испытывается Та и изучаются возможности Еu. Имеются следующие потребности в ядерных данных для поглотителей B, Cd, Eu, Gd, Er, Hf, Ta:

- сечение захвата - +5%;

- сечение рассеяния - +10%.

Нужны данные для отдельных изотопов, чтобы предсказывать изменение реактивности с выгоранием и активацию и нагрев поглотителей.

4.4. Реакции активации. Данные по реакциям активации нужны для расчета радиоактивного загрязнения (активация теплоносителя и массоперенос стали) первичного контура, насоса и теплообменников для расчета активации элементов реактора, подлежащих в дальнейшем извлечению, транспортировке, хранению, переработке. Основные реакции активации даны ниже:

$54_{\rm Fe(n,p)} 54_{\rm Mn}$	$50_{Cr(n,T)}$ 51_{Cr}	$58_{Ni(n,\gamma)}$ 59 _{Ni}
58 _{Ni(n,p)} 58 _{Co.}	54Fe(n.d.) 51 Cr.	54Fe(n.7)55Fe.
59 _{Co(n.)} 60 _{Co.}	58 Co(n, 7) 59 Co.	22 _{Na(n. 7)} 23 _{Na.}
⁵⁸ Fe(n,7) ⁵⁹ Fe,	$62_{Ni(n,7)}63_{Ni,7}$	$40_{Ar(n,7)}^{41}Ar.$

Нужны данные, усредненные по спектру реактора. Требуемая точность - IO-IS%.

4.5. Внутриреакторная дозиметрия. Дозиметрические реакции используются для измерения потоков и спектров нейтронов в реакторе. Знание условий облучения нужно для интерпретации результатов экспериментов

по сблучению, для предсказания активации материалов и для сопоставления свойств облученных материалов с условиями облучения. Два основных фактора влияют на свойства материалов: смещение атомов и образование гелия в (n, d)-реакциях. Предсказание скоростей смещения атомов и образования гелия требует знания полного потока, спектра потока и сечений указанных процессов. Ряд реакций указан ниже:

$27_{A1(n, \alpha)}^{24}$ Na.	²³⁷ Np(n,f) F.P.,
$56 \mathbf{r}_{\mathbf{e}(n,p)} = 56 \mathbf{M}_{n}$	$58_{Ni(n,2n)}57_{Ni}$
63 _{Cu(n,2n)} 62 _{Cu}	$197_{AU}(n,7)^{198}AU$
²³⁸ U(n,f) F.P.,	²³⁹ Pu(n,f) F.P.

В рамках МАГАТЭ организована активная деятельность по отбору и оценке дозиметрических реакций и создан международный файл данных.

4.6. Трансактиниды. Ядерные данные для трансактинидов нужны для определения накопления и выгорания актинидов и предсказания нейтронной активности топлива. Нужно знать сечения реакций захвата. деления и (n, 2n).

Некоторые трансактиниды накапливаются в энергетических быстрых реакторах в достаточно большом количестве. Нейтронные сечения этих изотопов нужно знать с высокой точностью, сравнимой с точностью, требуемой для основных делящихся и топливных изотопов. В процессе работы реактора накапливаются такие изотопы, которые из-за сравнительно малого периода полураспада и распадных свойств (эмиссия жестких γ -лучей или нейтронов) представляют главные трудности в обращении с топливом при его перевозке и переработке. К таким изотопам относятся 232 U, 238 Pu, 242 Cm, 244 Cm. Реакции, которые существенны для образования 232 U : 233 U(n,2n) и 237 Np(n,2n), а в случае образования 238 Pu, 242 Cm, 244 Cm : 237 Np(n, 3), 241 Am(n, 3), 243 Am (n, 3).

В работах /10, I3, I4/ исследовался вопрос о требуемых точностях ядерных данных актинидов для расчета накопления. Ниже даны основные выводы.

Точности предсказания некоторых параметров, рассчитанных с использованием достигнутых точностей ядерных данных, приведены (для расчета накопления) в табл.2.

Таблица 2

TIOTOR	Gairbat		Де	Деление		(n, 2n)	
<i>N30101</i>	Дост.	: Tped.	Дост.	: Tped.	:	()	
238 _U	8	8	5.	4	20	15	
239 _{Pu}	10	3	4	4	50	50	
²⁴⁰ Pu	20	4	IO	IO	50	50	
241 _{Pu}	20	7	8	5	50	50	
242 _{Pu}	50	15	30	30	50	50	
243 _{Pu}	50	50	50	50	50	50	
242 _{Am}	30	20	30	20	50	50	
241 Am	15	15	15	15		-	
242 _{Am}	30	30	30	30	-	-	
243 _{Am}	50	20	50	50	-	-	
242 _{Cm}	50	50	50	50			
237 _{Np}	50	I5	10	ĬŬ	50	25	

В табл.3 данные из работы /10/ показывают достигнутые и требуемые точности расчета накопления: Таблица 3

Изотоп	Требуемне	Достагнутые
236 _{Pu}	30	55
238 _{Pu}	20	60
240 _{Pu}	5	12
²⁴¹ Pu	4	24
242 _{Pu}	IO	31
241 _{Am}	5	24
242 _{Am}	20	28
243 _{Am}	20	59
242 _{Cm}	20	28
244 _{Cm}	30	71

Из таблиц видно, что достигнутая точность ядерных данных трансактинидов не обеспечивает требуемой гочности расчета накопления для

1.1

быстрых реакторов. Более строгие требования формулируются для сечений захвата ²⁴⁰Ри, ²⁴¹Ри, ²⁴²Ри, ²⁴³Ав.Требования к реакции (n,2n) для ²³⁸U, ²³⁷Np, ²³⁸Pu являются существенными. Достигнутая точность сечений деления почти достаточна.

Требуемые точности в данных трансактинидных изотопов определяются из обеспечения необходимой точности расчетов производства изотопов, выхода нейтронов и тепловыделения в реакторе. В работе /14/ дополнительно к целевым точностям накопления ряда нуклидов учтены еще целевые точности: 5% для энергии *d*-распадов и 10% для выделения нейтронов. В результате получены более жесткие требования на точность ряда ядерных данных: сечение захвата ²⁴³ Am, ²⁴¹ Am, ²⁴² Pu и кожфияциента ветвления ²⁴² сm. Наиболее жесткие требования предъявляются к сечениям захвата ²³⁷ Np, ²⁴² Pu, ²⁴³ Am, ²⁴¹ Am и сечениям реакций (n, 2n) на ²³⁷ Np и ²³⁶ U.

Висшим приоритетом требуемых точностей обладают величины, приведенные в табл.4.

Таблица 4

Величина	Функциона.	1
²³⁷ Np(n,2n), ²³⁸ U(n,2n)	Накопление	236 _{Pu}
$238_{U(n,2n)}, 237_{Np(n,3)}$	n	238 _{Pu}
$^{242}Pu(n, 1), ^{243}Am(n, 1)$	Π	244 _{Cm}
$^{242}Pu(n, 3)$	"	243 _{Am}
$243_{Am}(n, \chi), \frac{242_{Pu}(n, \chi)}{242_{Cm}}$	Общее произ	зводство нейтронов

Численные значения указанных точностей существенно зависят от целевых требований расчета интересующих величин.

В работе /13/ проанализированы потребности в ядерных данных, связанных с расчетами накопления 232 U в ядерных реакторах. Наиболее важными являются ядерные константы для расчета накопления 232 U в быстрых реакторах – реакция (n,3n) на 234 U, (n, χ) на 235 U, (n,2n) на 238 U и 237 Np.

4.7. Продукты деления. Для определения суммарного эффекта реактивности продуктов деления (5-10%) нужно знать сечения захвата с точностью ±10%, сечения рассеяния с точностью ±30%. Нужны детальный ход сечений и усредненные по спектру реактора величины.

В работах /I2, I3/ показано, что если погрешности всех сечений захвата одинаковы и равны 30%, а погрешности выходов продуктов деления также одинаковы и составляют 3% (на самом деле значения большинства выходов известны более точно), можно получить оценку требуемой погрешности среднего сечения <u>+</u>7%. Если во всех сечениях захвата отдельных продуктов деления предположить наличие систематической погрешности, равной 10%, то оценка погрешности среднего сечения захвата продуктов деления <u>+</u>12%. Разброс различных оценок этой величины примерно такой же.

Из требований к ядерным данным, полученным при рассмотреним задач физики активной зоны /17/, следует необходимая погрешность среднего сечения захвата продуктов деления, равная 10%.В предположении отсутствия корреляций между погрешностями различных сечений можно считать такую точность уже достигнутой. Если предположить наличие в них систематической ошибки, то следует допустимая величина такой ошибки 7%.

Здеоь мы имеем наглядный пример того, как важно точное определение смысла погрешности. В зависимости от предположения о корреляционных свойствах погрешности можно сделать два противоположных вывода. Предполагая статистическую независимость погрешностей сечений разных нуклидов, можно сделать вывод о том,что уточнять сечения продуктов деления не надо,так как можно считать, что 30%-ная погрешность в захвате на каждом продукте деления уже достигнута, а это ведет к удовлетворению IO%-ного требования на псевдопродукт деления. Однако, если погрешности скоррелированы, то для достижений той же цели надо добиваться ?%-ной погрешности в оечения каждого нуклида, для чего требуётся еще очень большая работа как в эксперименте, так и в оценке. Второе предположение, по-видимому, ближе к истине.

Перечень изотопов, уточнение сечений захвата которых важно для правильного расчета среднего сечения захвата продуктов деления в быстрых реакторах. (Изотопи расположены по величине вклада в среднее сечение, которое составляет 80%). Вклад в среднее сечение кахдого изотопа первой группы (133 са, 101 Ru, 99 тс, 143 Nd) не менее 5%, второй группы (103 Ru, 145 Nd, 97 Mo, 149 Sm, 102 Ru, 131 хе, 98 Mo, 95 Mo, 151 Sm, 135 Cs, 93 zr)- 5-2%, третьей группы (105 Pd, 141 Pr, 100 Mo, 153 Eu, 103 Ru, 104 Pu) - 2%, для остальных - менее I%.

Заключение

Обеспечение требуемой точности расчета ряда параметров. важных при работе реактора и выборе его перспективных концепций, для тех-

нологии внешнего топливного цикла, включая транспортировку, переработку облученного топлива и изготовление новых тепловыделящих элементов (твалов), при исследованиях отойкости твалов в зависимости от потока нейтронов в реакторе, нажагает требования на точность оцененных микроскопических нейтронных данных, которые еще не удовлетворены, несмотря на прогресс в области экоперимента и оценки.

Надо подчерянуть также, что для эффективного достижения целевых точностей реакторных параметров, необходимо совершенно точно и ясно определять корреляционные свойства допустимых погрешностей, что, к сожалению, еще не сделано во ВРЕНДЕ.

Список литератури

- I.T.P.Moorhead. The effects of errors in cross section data on calculations for a large dilute fast reactor. Seminar on Physics of Fast and Intermediate Reactors, vol. II, Vienna, 1962.
- 2. P.Geebler, B.A.Hutehins. User Requirements for Cross Sections in the Energy Range from 100 ev to 100 kev: Proc. Conf. on Neutron Cross Section and Technology, Washington, 1966.
- 3. R.D.Smith. Nuclear Data Requirements for Fast Reactor Design and Operation Proc. Conf. on Nuclear Data for Reactors, Paris, 1966.
- 4. P.Greebler, B.A.Hutchins, C.L.Cowan e.a. Implication of nuclear data uncertainties to reactor design. Proc. Conf. on Nuclear Data for Reactors, Helsinki, 1970.
- 5.С.М.Зарицкий, М.Ф.Троянов.О требованиях к точности констант для расчета реакторов. В сб. "Физика ядерных реакторов", вып.2, М., Атомиздат, 1970.
- 6.С.М.Зарицкий, М.Н.Николаев, М.Ф.Троянов. Потребности в ядерных данных для расчета быстрых реакторов. В сб. "Нейтронная физика", т.1. Кжев, 1973.
- L.N.Usachev, Yu.G.Bobkow. Planning of on optimum Set of microscopic experiment and evalution, INDC(CCP)-19/U, Vienna, 1972.
- 8. Л.Н. Усачев, В.Н. Манохин, D.Г. Бобков. Точность ядерных данных и ее влияние на разработку быстрых реакторов. Подход к выработке требований на точность ядерных данных. Proc. Conf. on Nuclear Data in Science and Technology, Vienna, 1973.
- J.L.Rowlands. Nuclear Data For reactor design, operation and safety. Proc. Conf. on Neutron Physics and Nuclear Data, Harwell, 1978.
- IO. L.N.Usachev, Yu.G.Bobkov, V.E.Kolesov, A.S.^Krivtsov. Determination of Transactinide Nuclear Data Required Accuracy for Burn-up Calculation in Fast Reactors. Proc. Conf. on Neutron Physics and Nuclear Data, Harwell, 1978.
- II.Ph.Hammer. Nuclear Data Needs Plutonium Breeders. Proc. Conf. on Nuclear Cross Sections for Technology, Knoxville, 1979.
- 12. D. Г. Бобков, А. С. Кривцов, А. Н. Усачев. Теория возмущений и анализ чувствительностей - эффективный подход к исследования задач кинетики продуктов деления в реакторе. Вопросы атомной науки и техниии. Сб. серия "Адерные константы", вын. 3(38), 1980.
- 13. D. Г. Вобков, А.С. Кривцов, І.Н. Усачев. Потребности в ядерных данных продуктов деления и трансактинидов для реакторов на быстрых нейтронах. Сб. Нейтронная физика, т.З., Киев 1980, с.234.
- 14.Л.Н.Усачев, И.В.Кравченко, А.С.Кривцов. Требуемые точности ядерных данных трансаятнийдов для бистрых реакторов с точки эрения внём него топливного цяхла. ПУ совещание по взаимному сравнению ядерных данных для трансактинидов. Вена, 1981.
- 15. Л.Н. Усачев. 0 едином определении погрешности в ядерных данных. В кн.: Ядерные константы, вып. 16, М., Атомиздат, 1975.
- 16.Л.Н.Усачев. Теория возмущений для коэфициента воспроизводства и других отношений чисся различных процессов в реакторе. Атомная энергия, 15,472 (1963).
- I7. Yu.G.Bobkov, L.T.Pyatnitskaya, L.N.Usachev. Planning of Neutron Data Experiments and Evaluations for Reactors, INDC(CCP)-46L, Vienna, 1974.
- 18.Л.Н.Усачев, D.Г.Бобков. Теория возмущений и планирование эксперимента в проблеме ядерных данных для реакторов. М., Атомиздат, 1980.

ТЕРМОЛЛЕРНЫЙ СИНТЕЗ И НЕЙТРОННЫЕ ПРОПЕССЫ

В.В.Орлов, Г.Е.Маталов, К.Б.Шерстнев (ИАЗ им. И.В.Курчатова)

Обсуждаются вопросы обеспечения разработок проекта опытного термоядерного реактора необходимыми нейтронно-физическими данными.

NUCLEAR FUSION & NEUTRONIC PROCESSES. The problem of providing the development of project of Experimental Fusion Reactor with necessary neutronic data is discussed.

Возможность вспользования той или иной реакции ядерного синтеза в термоядерном реакторе определяется условнем положительности энергетического баланса. При этом нагрев рабочей средн реактора осуществляется за счет энергии заряженных частиц, образующихся в результате реакции синтеза (энерговыделение в результате частичного замедления нейтронов в обычных условиях значительно ниже), а основные механизмы потерь энергии в условнях эффективного удержания плазым связаны с электроматнитным излучением плазым. Один ИЗ ВИДОВ ЭТОГО ИЗЛУЧЕНИЯ Обусловлен торможением электронов плазмы кулоновским полем нонов. Этот выд излучения (называемый тормозным) неизбежно возникает в любой нагретой плазме и не зависит от способа ее удержания. В основе другого вида излучения. так называемого MATHETOTODMOSHOPO (MT) или циклотронного, лежит эффект торможения заряда, движущегося в магнитном поле. Такое излучение возникает в системах с магнатным удержанием плазмы.

Нагрев термоядерного топлива в результате выделения в плазме энергии заряженных частиц реакции синтеза характеризуется величиной удельного энерговыделения, отнесенного к квадрату плотности иснов, $w_{TH} \sim E \langle \mathcal{C} \mathbf{v} \rangle$ эрг.см⁻³.с⁻¹, где Е – энергия заряженных частиц в одной реакции синтеза и $\langle \mathcal{C} \mathbf{v} \rangle$ – усредненное по энергетическому спектру иснов произведение сечения реакции синтеза \mathcal{T} на относительную скорость v реагирующих ядер. По существу во всех практически важных ситуациях эффект самоноглощения тормозного излучения в плазме является малым и это излучение носит объемный характер. Вынос из плазмы внергии за счет тормозного излучения описывается удельными потерями на единицу объема плазмы, отнесенными к квадрату плотности иснов:

$$W_{\text{TN}} = 1, 1.10^{-22} \frac{(z_1 + z_2)}{2} \frac{(z_1^2 + z_2^2)}{2} \left(\frac{z_1^2 + z_2^2}{2}\right)^{1/2} \text{ spr.cm}^{-3} \cdot \text{c}^{-1}.$$

где 2₁ и 2₂ – заряды участвующих в реакции синтеза ядер (для простоты термоядерное топливо считается двухисмионентным и предполагается его полная очистка от продуктов реакции), Т – температура и п – масса электрона. Потери энергии плазмы за счет магнитотормозного излучения также можно охарактеризовать величной удельной энергии этого излучения, отнесенной к квадрату плотнооти ионов

$$W_{MT} = \frac{3, 2, 10^{-20}}{2} \frac{(Z_1 + Z_2)}{2} \left(\frac{T}{mC^2}\right) \left\{ \left(\frac{T}{mC^2} + 1\right)^2 \right\} \operatorname{spr. cm}^{-3} \cdot c^{-1}$$

где $\beta = \frac{2kTn_i}{H^2/8\pi}$ – параметр, характеризущий эффективность удержания плазми в магнитной системе. В отличие от тормозного излучения интенсивность и эффективная частота выходящего из плазми МТ-излучения существенно зависят от параметра $\Lambda = \frac{\omega_p}{C} \begin{pmatrix} \omega_p \\ \omega_n \end{pmatrix} \begin{pmatrix} \omega_p$

Условие положительности энергетического баланса "_{МП}- "ти - " практического использования в термоядерном реакторе. Так, например, в системах типа токамаков или стеллараторов, характеризущихся малой эффективностью магнитного удержания плазмы ($\beta \sim 0.05$) можно рассчитывать лиць на осуществление реакции D+T--" " He+n. В системах с высокой эффективностью магнитного удержания плазмы ($\beta \sim 1$) наряду с указанной реакцией могут быть осуществлены также реакции - " Пе+п

 $D + D \leftarrow T+F$ $M = D + ^{3}He - A^{4}He + P.$ q_{TO} Ka-

сается систем с инерционным удержанием плазмы, то в них ввиду отсутствия МТ-излучения число возможных реакций ядерного синтеза значительно больше, но остается открытым вопрос о возможности их реализации в рамках концепции "микровзрыва".

Реакция D-Т синтеза является эффективным источником I4-МэВ нейтронов. Вероятность деления изотопа ²³⁸0 нейтронами этой энергии в несколь- раз выше, чем для нейтронов спектра деления. Что

позволяет получить значительную дополнительную мощность в урановом бланкете, окружающем зону термолдерной реакции, и приводит к существенному увеличению числа нейтронов в расчете на один акт синтеза. Более полонини этих нейтронов может быть копользована для получения ядерного горичего – плутония-239. Расчети показывают, что энергия, которая может быть получена при сжигании наработанного плутония в реакторах деления (типа ВВЭР), в 4-6 раз превышает энергию, выделяющуюся в бланкете гибридного термолдерного реактора (ITP). Это обстоятельство и определяет ту роль, которую могут играть ITP в атомной энергетике: производство наряду с энергией больших количеств ядерного горичего для тепловых реакторов деления, периодически нуждающихся в подпитке извне.

Гибридный реактор не реализует всех преимуществ ядерного синтеза, однако вследотеще дучшего энергобаланса задача его создания более проета по сравнению с созданием чистого реактора синтеза. Решая одну из сотрых проблем атомной энергетики деления, ITP может стать одновременно практическим шагом к конечной цели работ по УТС – созданию чистого термоядерного реактора.

При учете реальных требований к бланкету ITP можно рассчитнвать на производство в нем I.2-I.6 ядер плутоныя на акт синтеза при использовании металлического уранового топлива. В топливе происходит при этом ~ 0.6 делений ядер урана-238 (из них 60-70% при внергиях, близних к энергим нейтронов источника), и I.0 заквата в ядре лития 6 с воспроизводством одного ядра трития. Наработка делянихся изотопов, отнесенная к полной тепловой мощности бланкета, слабо зависит от вида уранового топлива и количества конструкционных материалов в бланкете и составляет 0.8-I кг/(МЭт.т) в год в начале кампании реактора, понижаясь до 0.6-0.8 кг/(МЭт.т) в год при накоплении плутония до I0 кг/т.

С точки зрения баланоа нейтронов в бланкете ITP нанболее существенны реакции (n, f), (n, 3n) и (n, 2n) в первую очередь на ядрах урана-238. В настоящее время сечения этих реакций при энергиях ~ I4 МаВ известны с точностью 2-5%, что, по-видимому, достаточно для расчетов. Значительно больше неопределенность в информации относительно спектров вторичных нейтронов. Так, например, чувствительность полного числа делений к температуре спектра нейтронов деления составляет 0,5, и при условии равного вклада в суммарную погремность с данными по сечениям точность значения температуры спектра должна быть не куже ~ 5%, что ныше точности именцикоя данных. Уточнение спектров вторичных нейтронов для реакций (n, 2n) и (n, 3n) необходимо также для ряда материалов-размножителей (в первую очередь - свинца) и конструкционных материалов (Fe, Ni и и Cr).

В ряде конструкций ITP часть бланкета не содержит делянихоя материалов или же имеет слой лития, расположенный перед ураном. В этих композициях заметный вклад в воспроизводство трития может давать реакция ⁷L1(n, n%)Т. Точность измерения ее сечения в известных экспериментах может приводить к ощибке в ложальном воспроизводстве трития ~ 10-15%, что недостаточно для проектирования.

Спектр нейтронов в бланкете ITP не слышком сильно отличается от спектра, быстрого реактора. Полный поток нейтронов в урановой зоне составляет ~ 8-20 см⁻² с⁻¹ нри единичном токе нейтронов источника на первую стенку реактора. Доля нейтронов с энергией выше 5-6 МеВ в нем составляет 5-10%, что позволяет экстраполировать дан ные относительно скорости редиационных повреждений материалов, полученные на быстрых реакторах.

Радиационная зажита ITP должна выполнять две функции: Предохранать магнити от воздействия излучения и уменьшать активацию материалов внешних конструкций реактора до уровня, разрешающего ограниченный доотуп к нему через несколько суток пооле остановки. Для достижения первой цели требуется ослабление в 10⁵-10⁶ раз, второй в 10⁷-10⁸ раз. Расчетные значения ослабления нашболее чувотвительни к полным сечениям и сечения расседния нашболее чувотвительни к полным сечениям и сечения расседния на тяжелых влементах зацити. Например, для железа козфумищент чувствительности потока бис трых нейтронов к вариациям сечения расседния при характерном составе защити достигает 6,4, и ошибка 5% в сечения приводит к погрешности для потока в 30%. Велика также чувствительность потока к ненулевым гармоникам сечения расседния. Для того же железа козффициент чувствительность потока за защитой к первой гармонике сечения расседния составляет 1,3, ко второй - 0,6.

Остаточная активность внешних слоев защити и материалов магнитных катушех определяется в первув очередь потоком бистрых нейтронов. Для характерных композиций защити типичны реакции 56 pe(n, p) 56 Mn; 54 pe(n, p) 54 Mn; 55 Mn(n, 2n) 54 Mn; 58 Ni(n, p) 58 Co; 58 Ni(n, 2n) 57 Ni; 60 Ni(n, p) 60 Co и т.д.

Точность определения уровня остаточной активности определяется в первую очередь сечениями пороговых реакций для конструкционных материалов. ГТР предназначен для наработки ядерного топлива (в первую очередь плутония из урана-238). Благодаря наличию высокоэнергетических нейтронов скорости реакций (n,2n) и (n,3n) в бланкете ГТР для больщинства изотопов значительно выше, чем в тепловых и бистрых реакторах деления. Это приводит к значительным отличиям в изотопном составе плутония: в бланкете ГТР накапливается относительно много нуклидов с A < 239 (например, 236 Ри) и мало нуклидов с A>239 (240 Ри, 241 Ри, 242 Ри).Содержание 239 Ри в наработанном плутонии составляет 96-98%. Изотопный состав плутония определяет радиоактивность топлива на стадии его повторного использования и требует специального анализа, для которого необходимо знать сечения пороговых реакций для 237 Np, 238 Ри и ряда других изотопов.

Облученше конструкционных материалов в бланкете ITP приводит к изменению их свойств.В первом приближении эти изменения можно охарактеризовать числом смещений атомов материала и скоростями образования в них газов – гелия и водорода. Число смещений в сталях обично составляет I3-I7 с.н.а. Х/год (при флюенсе ~3.10²² нейтр.см⁻²/год), что не сильно отличается от соответствующих значений для бистрых реакторов. Это объясняется тем, что доля I4-МэВ нейтронов в опектре ITP составляет 5-I0%, а скорость образования дефектов для них только в 3-5 раз выше, чем для нейтронов спектра деления.

Скорости образования гелия и водорода в материалах бланкета ITP значительно выше, чем в реакторах деления. Характерные значения для стали составляют ~500 арри/год по водороду и ~100 арри/год по гелию. Точность определения окорости образования газов соответствует погрешности в данных по сечениям реакций (n,p) и (n,d) и конструкционных материалах бланкета. Быстрий прогресс в изучении плазмофизических закономерностей позволил в последние годы перейти к концептуальному проектированию термоядерных энергетических реакторов,а по наиболее разработанной схеме ТОКАМАК - к детальной разработке проектов опытного термоядерного реактора (международный проект ИНТОР, национальные проекты).

На экспериментальных токамаках уже достигнути реакторные температури и плотности плазмы. На серии вводимых и строящихся крупных токамаков (TFTR, JET, T-I5, JT-60) в ближайшие несколько лет параметры, близкие к реакторным, будут достигнути в комплексе. Разработка и создание опытного энергетического реактора становится таким образом ближайшей задачей программы УТС. Наряду с другими сложными

х Смещений на атом.

физическими и техническими проблемами решение этой задачи потребует осуществления общирной программы нейтронно-физических исследований, включая измерения с требуемой точностью нейтронных сечений, развитие методической, программной и константной базы нейтронных расчетов и макроскопические эксперименты на нейтронных источниках.

Таблица I

НАВЕДЕННАЯ РАДИОАКТИВНОСТЬ РЕАКТОРА

конструкционный материал - сталь, материал обмоток - медь

Основные изотопы с Т.	_{/2} выше I часа	Активность останов	на IO ⁵ с после а [Ки]
Te ⁵⁴ (n,v) 24 ⁵⁴	312 , 3 дня		10 ⁵
${ m Fe}^{56}({ m a},{ m p}) \ { m tn}^{90}$	2,6 yaca	're ⁵⁵	1•10 ²
Pe ⁵⁸ (n, r) 20 ⁵⁵	2,72 года	00 ⁵⁸	0,8•10 ⁸
0 r⁵⁰(n, 2n) ⊙r ⁵¹	27,7 дня	00 ⁵⁷	0,8.10 ⁸
21 ⁵⁸ (n,2n) 21 ⁵⁷	36,16 часа	Cr ⁵¹	0 ,7. 10 ⁸
N1 ⁵⁰ (n,p) 00 ⁵⁸	70,8 дня	En ⁵⁴	2•107
11 ⁶⁰ (n,p) Co ⁶⁰	5,27 года	00 ⁶⁰	1,5•10 ⁶
and (apply at	312,5 дня	31 ⁵⁷	?∙10 [€]
11 (11,00) 10 ⁶⁶	, года	полная	4∙1o ^S
and the states	1,7 года		
i min	день		

Taonnua 2

Изотопный состав отработанного топлива в бланкете ITP [выгорание ~4,5.10³ МВт сутки (т.т.)] и быстром реакторе (I) (II)

[КТ НУКЛЕДА (Т.Т. Н В %)]

	u 232	U 23	3	U ²³⁴	U 235	U 236	ບັ238	Np 237	Pu 230
IKL/T	3 · 10 ⁻⁵	2,3 · 1	0 ⁻⁴ I,	8 · 10-3	2,96	0,58	98,27	1,0	1,6'10 ⁻⁴ 2 · 10 ⁻³
азона П (Ф) экран								0,02	6 · 10 ⁻⁶ 0.02·10 ⁻⁶
	238 Pu	Pu ²³⁹ P	240	Pu 241	Pu	242	Am 241	Cm 242	Cm 243
I ^{RT/T}	3,6·10-4 0,37	8,42 97,6	0,14 1,6	3,2·10-2 0,38	1.0·1 2·10	<u>0</u> 2 ³ Ⅰ,	2.10-3	0,2.10-5	1,2.10-8
азона 7 (%) экран	0,6 0,02	64,0 96,0	24,0 4,0	8,0 0,2		0,0	94-0,05	0,01	1,3.10-4
			Схема	рас па да	236 Pu				

					Cxe	Ma	pacne	да Pu	~~~				~~~~~~~~~~~			
22 Pu 92	36 1	2,85r «	U	232 92	7I, ∝	7r Th	22 8 90	I,9Iг «	Ra	224 88	Rh Bi	220 212	Po ²¹⁶ , Fb ²¹ Po212	12	268 82	J~~r

Pmc.I.

Нейтронный баланс реактора с Li-бнанкетом

Нейтронный баланс реактора с Рв размножителем

Упрощенная схема баланса нейтронов и энергия в бланкете гнбридного ТЯР

Поток нейтронов на стенке камеры 10¹⁵ н/см²с

I. Радиационная защита магнитов Поток нейтронов на обмотках магнитов – 10^9 н/см²с Материал защиты: сталь + H_20 ; Рв., сталь + Ослабление 10^6 раз, толщина 80 – 100 см.

Коэффициенты чувствительности	1	1	De I	
Для схематизированной защиты	2 38 U	^{'L1} 17	^ເ ື83	80%сталь 20% Н ₂ 0
	8cm	-30сы		—100 см —

Σ,	Pø	Σι	Pø
Zel l=0 I	- 6,4 I,3	\sum_{i}^{r}	- 0,7
2	0,6	Ztot	- 1,6
S ^{fe} Snon	-5,I	E tot	- 1,2
E tot	-4,2		

2. Биологическая задита

Материал -бетон, тяжелый бетон (F_{ℓ} , H_2O , Ca, M_3 , Al) Ослабление 10^6 - 10^9 раз Толщина I,5 - 2,5 м

Pmc.5.

РАЗРАЗОТКА РЕКОМЕНДУЕМЫХ И СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ ДЛЯ ЗАДАЧ РАСЧЕТА ПОЛЕЙ НЕЙТРОНОВ И СОПУТСТВУЮЩИХ ЭФФЕКТОВ В АТМОСФЕРЕ ЗЕМЛИ И В СРЕДАХ³ ИЗ ОСНОВНЫХ ПОРОДООБРАЗУЮЩИХ ЭЛЕМЕНТОВ

Г.Я.Труханов

(Госстандарт)

Рассьятривается проблема выработки рекомендуемых и стандартных справочных данных для задач переноса нейтронов в атьосфере Земли и в средах из породробразующих элементов.

The developing of recommended and standard reference data for neutron transport in Earth athmosphere and in media of rockforming elements is discussed.

В последнее время значительно возрос интерес к проблеме ядерно-физических констант, в первую очередь нейтронных, в задачах физики защиты от излучений, ядерной геофизики, метрологии иснизируюцих излучений, биофизики, физики реакторов и др. Это объясняется необходимостью совершенствования и повышения эффективности методов расчета полей иснизирующих излучений и сопутствующих эффектов в связи с возросшими со стороны практики треованиями к их точности.

Сдной из важнейших задач проблемы ядерно-физических констент следует считать создание фонда оцененных ядерных данных, которые можно было бы рекомендовать к использованию в расчетах в каждом конкретном случае, на их основе возможны разработка соответствующих рекомендуемых и стандартных справочных данных (РСД и ССД). Последнее ныляется главной гелью при разработке проблемы ядернофизических констант.

ыслаботка РСД и СОД для конкретной физической проблезы - пронесо сложный и в высшей степени: трудоенкий. Он предполатает спенку данных, определение чувствительности результатов расчетов в данной чирическог проблеме к неточности в константах, формулирование на их основе требований к точности ядерных данных в зависимости от требований к точности результатов расчетов, проведение новых измерений тех сечений, погрешность которых необходимо уменьшить, критический анализ и оценку данных на новом более высоком уровне и т.д.

Очевидно, что требования, предъявляемые к ядерным данным со стороны различных задач даже одной и той же отрасли науки и техники, сильно различаются. Это оправдывает объединение задач в определенные классь (в рамках одной страсли науки и техники или на стыке отраслей) не по их отраслевой принадлежности, а по потребностям в ядерных данных. Такой межведомственный подход быстрее удовлетворит потребности каждой отрасли в ядерны. данных. Этот принцип был положен в основу нашей работы по оценке данных и выработке соответствующих РСД и ССД. Выбор элементов (водород, углерод, азот, кислород, алюминий, гоемний, аргон, кальций, железо) и констант для них (нейтронные данные, сечения генерации и интенсивность вторичных частиц и т.д.) обусловлен потребностями определенного класса задач, встречающихся в различных отраслях науки и техники. Предыявляющих к ядерным данным близкие или совпадающие требования и связенных с расчетом полей ней тронов и сопутствующих эффектов в атмосфере Земли и в средах из основных породообразующих элементов. Существенной для этого класса задач является необходимость расчета не только полей нейтронов, но и порождаемых ими вторичных эффектов (Подробнее см. в /1/).Важность задач, относящихся к рассматриваемому классу, очевидна. Тем не менее потребности этих задач в ядерных данных, особенно по сечениям неупругого рассеяния нейтронов и захвата с испусканием заряженных частиц, а также данным, характеризующим вторичные частицы до недавнего времени были не удовлетвогены. В последнее время ситуация изменилась. Широкое использование малинных библиотек оцененных и экспериментальных ядерных данных позволило проводить оценку для гораздо большего круга элементов, чем это делалось раньше. Число теоретических и особенно экспериментальных работ по нейтронным сечениям и параметрам испускания вторичных частиц (В том числе заряженных) для рассматриваемых элементов значительно возросло. Назрела настоятельная необходимость в осмыслении этих данных, их критическом анализе и выработке РСД и ССД для рассматриваемого круга задач.

В 1976 г. Госстандарт начал соответствующую работу. В настоящее время:

- сформулирован и реализован на практике оригинальный комплексный подход к проблеме, включающей в себя систематизацию и оценку данных, развитие эффективных методов расчета полей нейтронов для определения чувствительности результатов расчетов к неточностям в константах, формулирование требований к точности ядерных данных с использованием базовых экспериментов и расчетов модельных задач;

- систематизированы и оценены данные по нейтронным сечениям и характеристикам вторичных частиц для основных элементов атмосферы и земной коры;

- развиты эффективные вероятностные и детерминистские (численные и аналитические) методы решения кинетического уравнения, позволяющие определить чувствительность результатов расчетов к неточностям в константах [2];

- сформулированы требования к точности ядерных данных для проблемы переноса нейтронов в атмосфере Земли и в средах из основных породообразующих элементов (список потребностей в ядерных данных передан в ЦЯД ГКАЭ);

- с привлечением результатов базовых экспериментов и решений модельных задач разработаны системы констант АТМОСФЕРА и ЗЕМЛЯ. Соответствующие ядерные данные включены в банк данных АТМОСФЕРА – ЗЕМЛЯ (37;

- аттестованы в качестве РСД данные по полным сечениям взаимодействия нейтронов с водородом, углеродом, азотом, кослородом и кальщием;

- опубликован справочник [3].

На рисунке представлена схема нелинейного итерационного процесса, в рамках которого происходит выработка РСД и ССД для конкретной физической проблемы. В этом процессе существенны все этапы. Особо следует подчеркнуть важность этапа, связанного с количественным определением погрешностей в ядерных данных, которыми можно удовлетвориться в соответствующем классе задач на сегодняшний день. Корректное формулирование требований к точности ядерных данных в зависимости от требований к точности расчетов позволяет экономить средства на экспериментах (если погрешность в данных не превышает требуемого уровня), затраты на которые растут с уменьшением допускаемых погрешностей, а также минимизировать объем информации по константам [3]. Расчет коэффициентов чувствительности, анализ базовых экспериментов и модельных задач проводили с помощью методов, основанных на эффективном комбинировании вероятностных и детерминистских (включая аналитические) методов [4]. Эти методы реализованы в программах ЭГИЛА, КЧ. НАТА. В частности, ксмплекс программ НАТА содержит блоки расчета полей нейтронов, в основе которых лежат модифи-

Функциональная схема комплексного подхода к выработке рекомендуемых и стандартных нейтронных сечений

Б

капии метода Монте-Карло и быстро вычисляемые аналитические соотношения (для промежуточной области энергии). Тепловая область рассчитывается с помощью блока, являющегося обобщением программы ЛЕМЕТРА.

Банк данных АТМОСФЕРА-ЗЕМЛЯ можно использовать на всех сталиях итерационного процесса по выработке соответствующих РСЛ и ССЛ. Последняя ревизия данных была выполнена автором в 1982 г. Результать ревизии записаны на магнитную ленту EC ЭВМ в формате ENDF, что позволяет производить обмен данными как внутри страны, так и с международными центрами.

Выработанные РСД по полным нейтронным сечениям для водорода, углерода, азота, кислорода и калыция включены в банк АТМОС-ФЕРА-ЗЕМЛЯ. Информация, входящая в банк данных, может быть получена по знпросу в ЦЯД ГКАЭ.

Список литературы

- I. Труханов Г.Я. Информационный бюллетень ГСССД, вып. 10-11, М., Изд-во Стандартов, 1982, с.4-8. 2. Труханов Г.Я.- В кн.: Вторая всесоюзная научная конференция по
- Груханов Г.л. Б Кн., Бторая всессизная научная конференция по защите от ионизирующих излучений ядернотехнических установок. Тезисы докладов. М., Изд. МИФИ, 1978, с.30.
 Медведев Б.А., Степанов Б.М., Груханов Г.Я. Ядерно-физические константы взаимодействия нейтронов с элементами, входящими в состав атмосферы и земной коры. Справочник. М., Энергоиздат, 198I.
- 4. Труханов Г.Я.-В кн.: Третья всесоюзная научная конференция по защите от ионизирующих излучений ядернотожнических установок. Тезись докладов. Тойлиси, 1981, Изд. ИЛМ ТГУ, с.41-42.

БИБЛИОТЕКА СЕЧЕНИЙ АДРОНОВ НА ЯДРАХ СРЕДНИХ И ТИЖЕЛЫХ ЭЛЕМЕНТОВ В ДИАПАЗОНЕ ЭНЕРГИЙ 20 МЭВ – IO ГЭВ

А. В. Даниэль, В. Г. Матвеев

(Радиевый институт им. В. Г. Хлопина)

Описана библиотека полных и упругих сечений адронов на ядрах средних и тяжелых элементов, организованная в формате библиотеки нейтронных данных ENDF/B.

Library of hadron total and elastic cross sections on nuclei of midlle and heavy elements made in ENDF/B format is described.

В задачах моделирования переноса частиц высокой энергии важным вопросом являются наличие и представление сечений различных реакций адренов с атомными ядрами. В множестве данных сечений естественным образом были выделены три подмножества, отличающиеся по типу сечений, возможным способам их представления и целям использования в процессе моделирования. Первое подмножество включает полные и упругие сечения взаимодействия адронов с атомными ядрами. Эти сечения необходимы для моделирования переноса адронов от места появления до места взаимодействия, остановки, распада или вылета за предель установки, а также розыгрыва типа взаимодействия (упругого или неупругого). Второе подмножество состоит из сечений, необходимых для моделирования неупругих взаимодействий адронов с атомными ядрами. Для проведения расчетов накопления изотопов выделено третье подмножество, включающее сечения образования отдельных нуклидов.

Рассмотрим существующие формы представления сечений первого подмножества. В настоящее время существуют две такие формы: представление сечений с помощью ряда аппроксимирующих выражений, являющихся функциями типа и энергии налетающей частиць и атомной массы ядра-мишени, и библиотечная форма организации сечений. Первая форма организации, реализованная, например, в работе /Ц/, может быть легко использована для проведения расчетов на ЭВМ, обладарших сравнительно малой еперативной панятью. Использование второй формы организации сечений, библиотечной, требует значительно больших объемов оперативной памяти ЭВМ. Но вторая форма организации сечений обладает рядом важных преимуществ по сравнению с первой. В данном случае снимаются ограничения на описываемые интервалы энергий налетающих частиц и атомных масс мишений, они определяются только потребностями поставленных задач и наличием исходной информации о сечениях. В случае уточнения или появления новых данных о сечениях библиотека сечений может быть легко модифицирована; уточнение аппроксимирующих выражений в данном случае требует повторного расчета, часто весьма сложного, входящих в используемые аппроксимирующие выражения подгоночных параметров.

В настоящее время различными группами, выполняющими расчеты по переносу высокоэнергетического излучения, используются собственные библиотеки сечений, организованные в различных форматах и имеющие разное наполнение. Отсутствие единой библиотеки сечений в области высоких энергий затрудняет сопоставление результатов различных расчетов и обмен данными по сечениям.

Далее описана структура библиотеки данных первого подмножества. Формат библиотеки был максимально приближен к формату библиотеки нейтронных данных ENDF/B [2]. Была сохранена структура файлов, секций и отдельных записей, принятая в библиотеке ENDF/B. Единственным дополнением было введение пяти новых файлов представлявщих собой сечения нейтронов, протонов, \overline{n}^+ , \overline{n}^- , \overline{n}^- мезонов.

Был разработан ряд упроценных программ для обслуживания библиотеки и для выборки из нее необходимой информации. Использование формата библиотеки ENDF/B позволяет, очевидно, в случае необходимости использовать для ведения библиотеки адронных сечений весь комплекс программ, созданный для библиотеки нейтронных данных ENDF/B.

В настоящее время библиотека наполнена данными, собранными в работе [3]. В дальнейшем планируется уточнение данных сечений как с использованием последних экспериментальных данных, так и выполнения ряда расчетов сечений на основе решения квантово-кинетических уравнений [4].

Библиотека адронных сечений созданная в общедоступном формате может служить хорошей основой для создания единой системы ядернофизических констант в области энергий выше 20 МэВ. Дальнейшее развитие библиотеки преполагает включение в нее сечений из третьего подмножества.

Список литературы

- I. Елпидинский А.В. Эмпирические формулы для двойных дифференциальных сечений при облучении ядер нуклонами средних энергий., ИЯИ АНСССР, П-0055, М., 1977.
- 2. Khalil M.A. ENDF/B Format., Jan., 1975, IAEA-NDS-10.
- 3. Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами., Атомиздат, М., 1972.
- 4. Бунаков В.Е., Матвеев Г.В. В кн. Тезисы докладов XXXII совещания по ядерной спектроскопии и структуре атомного ядра., Киев, 1982.

РАСЧЕТ КОЭФРИЦИЕНТОВ ЧУВСТВИТЕЛЬНОСТИ ХАРАКТЕРИСТИК ТЕПЛОВОГО РЕАКТОРА К ПОГРЕШНОСТИ МИКРОСКОПИЧЕСКИХ НЕЙТРОННЫХ ДАННЫХ

В.К.Осипов, В.В.Тебин

(ИАЭ им.И.В.Курчатова)

Описана методика и приведены результаты расчета коэффициента чувствительности эффективного коэффициента размножения и вероятности избежания резонансного поглощения к погрешности микроскопических данных для реактора LEOP-440.

The method and results of calculation of sensitive coefficients are given. They are recived for multiplication factor and resonance escape probability in WWR-440 reactor lattice.

В настоящее время при расчетах ядерных реакторов все чаще предпринимаются попытки использовать в качестве информации о нейтронных сечениях непосредственно библиотеки оцененных данных, полученные на основе обработки микроэкспериментов. Результаты таких расчетов, точнее их отклонение от результатов макроэкспериментов на критических оборках, дают полезную информацию для дальнейшего повышения точности оцененных сечений.

Работы в этом направлении для реакторов на быстрых нейтронах ведутся уже давно /1, 2/. кнализ результатов макроэкспериментов позволил провести корректировку библиотек групповых констант [3,4] в пределах неопределенности микроданных и тем самым заметно повысить точность предсказания основных реакторных функционалов.

Бажным этапом при корректировке констант является расчет коэффициентов чувствительности интегральных характеристик ко всем входным параметрам и в том числе к погрешности используемых в расчетах приближений.

Коэффициент чувствительности определяется следующим образом:

$$\hat{V}_F = \frac{\mathrm{d}F}{\mathrm{d}x} / \frac{F}{x} = \frac{f}{z} ,$$

где F – функционал, полученный в макроэкспериментах, X – входной параметр, $Z = \frac{dX}{r}$, $f = \frac{dF}{F}$.

Величина γ может, вообще говоря, зависеть от χ или других входных параметров. Поэтому важно сценить также производные $\frac{d^n f}{dx}$, где n > 1, причем не только в точке $\chi = 0$. Сравнение производных позволяет определить диапазон χ , в котором применима теория малых возмущений.

Как правило, для систрых реакторов корректируют не первоначальные оцененные данные, а полученные на их основе библиотеки групповых констант. Е области высоких энергий нейтронов, наиболее важной для быстрых реакторов, этот прием оправдан. В этом случае диапазон неопределенности микроданных больше погрешности используемых при расчете приближений, в частности ошибки учета резонансной самоэкранировки.

При расчетах тетерогенных реакторов на тепловых нейтронах ситуация долгое время была несколько иная. Резонансная самоэкранировка, в первую очередь пространственная, как правило, приводит к изменению значения групповых сечений относительно неблокируемых в несколько, а иногда в десятки раз. Точный учет резонансной самоэкранировки с использованием подробной информации о резонансной структуре сечений в условиях реальной геометрии ячеек тепловых реакторов довольно трудоемкая задача. Поэтому в большинстве методик расчета тепловых реакторов используются эффективные групповые параметры, подогнанные под конкретный тип реактора. Елияние неточности задания этих параметров на интегральные характеристики реактора является малоинформативной величиной для корректировки оцененных данных [1].

В настоящее время имеется принципиальная возможность вычислять коэффициенты чувствительности, сохраняя информативность к резонансной структуре сечений, с помощью прецизионных программ, основанных на методе Монте-Карло /5/. Однако для этого требуются очень большие затраты расчетного времени.

Ниже кратко описана программа SCOCRT, предназначенная для расчета скоростей реакций в ячейке теплового гетерогенного реактора. Программа построена на детерминированном алгоритме с сохранением основных особенностей резонансной структуры сечений. Интегральное уравнение переноса нейтронов релается методом вероятностей первых

столкновений. В области высоких энергий (выше I Мав) решение проводится в групповом приближении. В области резонансных энергий для решения уравнения переноса используется обобщенный подгрупповой под-[6], который позволяет корректно учесть замедление и гетероход генную резонансную блокировку для резонансов произвольной лирины. В области замедления нейтронов (выше I эЕ) используется 26-групповая биолиотека констант БНАС-78 [3] с дополнениями, необходимыми цля реализации обобщенного подгруппового подхода. В области термализации нейтронов уравнение переноса решается в многогрупповом прибликонии программой WERTER 7 . Данные о сечениях. в том числе и матрицы неупругого рассеяния, готовятся программой TERMAK ICI . В приведенных ниже примерах в области термализации (ниже I эВ) использовалось 40-групповое представление сечений.

Исходная информация о сечениях [3] в программе SCOCRT полностью идентична информации комплекта программ MTK-FK [10]. Тестирование программы SCOCRT по программе MKFRT, входящей в MK-FK, показало, что погрешность расчета скоростей реакций в области замедления нейтронов не превышает 0,5%, а коэффициент размножения вычисляется с точностью не хуже 0, %. В программе SCOCRT предусмотрен автоматический вывод на критичность путем подбора утечки с границы рассматриваемого объема. Энергетическая зависимость утечки определяется в приближении баклинга.

Программа ЗСОСКТ была использована для расчета коэффициентов чувствительности эффективного гоэффициента размножения нейтронов (\mathcal{J}_{K}) и вероятности избежания резонансного поглощения (\mathcal{J}_{φ}) для регулярной решетки реактора DBOP-440. В таблише приведены значения коэффициентов чувствительности и их отношение к первой производной при различных значениях возмущения \mathcal{Z} . Варьиросали сечения радиационного захвата и деления для 235 U и 235 U в различных диапазонах по энергии и по величине полного сечения. Для срагнения приведены значения \mathcal{J} при вариации обогащения топлива.

На основании полученных результатов можно сделать следующие выводы:

- при получении коэўўщнентов чувствительности пользоваться теорией малих возмущений нужно осторожно; в ряде случаев линейная зависимость у от и нарупается в интервалах, меньших, чем неопределенность соответствущего иходного наранотра;

- следует обратить внижние на относительно большое значение γ при вариации 6°_{c} в области наимиения полного сечения 200 U 0-12 б (межрезонинсная область).

Барнация	Z (%)	Зĸ	18.18:1	×,	18.18:1
$X = 6_c^{\prime}$	-20	-0,136	I70	-C,I22	I52
в области энергий	G	-0,131	II5	-0,IIO	193
200 0 I эв-I0,5 МэВ	20	<u>-0.113</u>	85	-0.ICI	252
x = 6	-20	-0,038	8	-0,033	62
в области сечений	0	-0,035	I22	-0,026	I8 -
$0.000 0_{t} > 500 0_{t}$	20	-0,032	246	-0.028	∞
X = 6	-20	-0,050	8	-0,048	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
в области сечений	С	-0,050	~	-C,045	155
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	-0.050	~	-0.046	~
x = 6.	-20	-0,102	152	-0,077	285
в области энергий	C	-0,09I	I60	-0,070	~
1-465 95	20	-0.001	203	-0,063	<u>158</u>
$X = 6^{3}$	-20	-0,026	I ₂₅	-0,02I	78
в области энергий	0	-0,025	86	-0,02I	37
~~~0 465 эВ-IC кэВ	20	-0.024	~	-0.020	I54
$\mathbf{X} = \mathbf{G}_{\mathbf{f}}^{\mathbf{x}}$	-20	0,040	00	-0,02I	03
0.2-10 5 MaB	С	0,040	80	-0,020	37
	20	<u>0.04</u> ú	\sim	-0.020	I54
$X = G_c^s$	-20	-0,032	∞	-0,020	I3
в осласти энертия 2350 Тарні (Гкар	С	-0,03I	51	-0,027	~
	<u>2C</u> _	<u> </u>	<u></u>	-C.025	I56
$x = 6^{s}_{t}$	-20	6,073	27	-0,049	3770
в ооласти энергии	С	C,056	40	-0,048	130
1 эн-то кэз	20	<u>0.052</u>	400	-0.048	253
$X = \mathcal{P}^{s} / (\mathcal{P}^{s} \cdot \mathcal{P}^{s})$	- I5	0,290	73	-0,080	∞
oooragenue.	C	0,231	C4	-0,077	193
	15	0.100	70	-0.072	90

Коэффициенты чувствительности для решетки реакторе RBЭР-440

Список литературы

- I. Ваньков А.А., Воропаев А.И., Юрова Л.Н. Анализ реакторно-физического эксперимента. М., Атомиздат, 1977 г.
- 2. Дулин В.А. Возмущение критичности реакторсь и уточнение групповых констант. М., Атомиздат, 1979 г.
- 3. Абагян Л.П. и др. Групповые константы для расчета реакторов и зациты. М., Энергоиздат, 1981 г.
- 4. Усачев Л.Н., Казанский В.А., Дулин В.А., Бобков Ю.Г. Подгонка оцененных микроскопических данных на основе оцененных интегральных экспериментов. - В кн.: Нейтронная физика 4.1. П., ШНИИатсминформ, 1977 г.
- Майоров Л.В., Ильяшенко А.С. Программа ККРАТ расчета реакторов методом Монте-Карло с учетом термализации и резонансной структури сечений. В сб.: "Вопросы атомной науки и техники". Серия "лизика и техника ядерных реакторов", вып. 5 (27), 1982, стр. 77.
- 6. Тебин В.В., Клкевич М.С. "Подгрупповые параметры в области разрешенных резонансов". Препринт ИАЭ-3395/5, 1921.
- Гомин Е.А., Шийоров Л.В. Аннотация программы WERTER. В сб.: "Вопросы атомной науки и техники". Серия "Физика и техника ядерных реакторов". вып. 5 (27), 1982, стр. 83.
- 6. Гомин Е.А., Майоров Л.В. Комплекс ТЕRМАК иля расчета групповых сечений нейтронов в области термализации. Г сб.: "Doпросц атомной науки и техники". Серия "чизика и техника ядерных реакторов", вып. 5 (27), 1982, стр. 70.
- Зайоров Л.В., Паталов Г.Е., Едневич М.С. Константное обеспечение реакторных расчетов методом Понте-Карло. В сб.: "Допросы атолной науки и техники". Серия "Гизика и техника ядерных реакторов", вып. 8 (21), 1981, стр. 21.
- 10. Пайоров Л.В. Програмный комплекс ММКРК, разработанный А.Д. Эрани-Каменецкий. В сб.: "Бопросы атомной науки и техники". Серия "лизика и техника ядерных реакторов", вып. 8 (21), ISCI, стр. 7.

ΟΙΙΕΉΚΑ ΠΑΡΑΜΕΤΡΟΒ ΠΟΓЛΟЩЕНИЯ ΡΕΑΚΤΟΡΗЫХ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ С ПОМОЩЬЮ ИНТЕГРАЛЬНОГО ОПЫТА НОВОГО ТИПА

Б. Бёмер, К. Дитце, К. Фэрманн, Г. Хюттель, Г. Кумпф, Е. Леманн

(Центрельный институт ядерных исследований АН ГДР, Россендорф)

Для определения эффективных сечений поглощения конструкционных материалов быстрых реакторов в ЩИИ Россендорф проведен интегральный опыт нового типа. Его сущность в том, что в специальной быстрой вотавной решетке SEG-IV с независящей от энергии функцией ценности нейтронов сечения поглощения можно определить непосредственно из измеренных центральных коэффициентов реактивности денного материала.

В докладе описываются параметры системы, метод измерений и преимущества метода по сравнению с"методом k = I". Приводятся результаты измерений для Fe.Cr.Ni.Mn мб м w. Оссуждаются вопросы зависимости от массы осразда.

разца. В заключение, путем сравнения результатов измерений со значениями, рассчитанными на основе различных наборов групповых данных, а также ядерных файлов, проводится тестировка этих данных.

A new kind of integral experiment, aimed at the determination of effective absorption cross-sections of structural materials for FBR, has been designed. The method uses measurements of central reactivity worths in a special fast substitution lattice (SEG-IV) beeing characterized by an energy-independent adjoint flux.

After a description of the system lay-out the techniques of the measurements and the advantages of the method in comparison with integral experiments of the " $k_{cr} = 1$ " type are explained. The results of measurements with Fe, Cr, Ni, Mn, Mo and W and the problem of the macroscopic behaviour are illustrated.

By means of a comparison of measured cross-sections with values calculated from various sets of group constants and data files the available absorption data could be checked. Для широкого внедрения быстрых реакторов-размножителей и их безопасной и экономичном эксплуатации необходимо знать точные значения их нейтронных параметров /1/. Существующие в наютоящее время неопределенности обусловлены прежде всего неточностями ядерных данных веществ, содержащихся в активной зоне. В частности, не удовлетворителен достигнутый уровень знаний о параметрах поглощения конструкционных материалов, продуктов деления и траноактинидов.

Для тествровки и корректировки данных, используемых при расчете реакторов, часто привлекают интегральные методы. Тестировка сечений поглощения конструкционных материалов (Fe, Cr, Ni, Mn, Mo и др.), на доло которых приходится примерно четверть объема типичного реактора, основывается общчно на измерениях в системах с ker I /2.3/. Однако, эти исследования имеют некоторы: недостатки:

- I. Требуется значительное количество исследуемого материала, который входит в состав самой системы.
- Для каждого материала надо создать особенную конфигурацию со свойственными только ей характеристиками.
- 3. Чувствительность интегрального параметра относительно искомого сечения поглощения небольшая.
- Необходимо применять парадлельно разные измерительные методы, такие, как измерения реактивностей, скоростей деления и активации.

Метод, развитий Фэрманном и Леманном [4], обходит эти неудобства и позволяет измерить сечения поглощения, усредненные по спектру, для всех материалов.

Предложенные метод использует прецизионные измерения центральных реактивностей с помощью техники реакторного осциллятора.

Конструкционные материалы осладают небольшими сечениями поглощения, но зато значительными сечениями рассеяния. Поэтому в типичных бистрых сборках вклад замедления в их реактивность во много раз превышает вклад поглощения. Только в специальной сборке, в которой в месте измерения ($\tilde{r} = 0$), функция ценности нейтронов Ø⁺ (решение сопряженного уравнения Больцманна) не зависит от энергии, т.е.

$$\mathscr{G}^+$$
 (E, $\vec{r} = 0$) = const,

вклад замедления сводится к нулю и измеренная реактивность соответствует эффективному сечению поглощения. Именно это условие выполняется в конфигурации SEG-IV кольцевого реактора RRR в Россендорбе.

CACTEMA SEG-IV

Бнотрая вставная релетка - цилиндрическая алиминиевая матрица с 72 отверстиями. Загрузив таблетки из разных материалов в эти каналы, можно создавать системы с переменным составом.

Для получения постоянного $p^{+}(E)$ рассматривалось множество конфигураций. Оказалось, что для снижения ценности в области низких энергий необходимо добавить поглотитель нейтронов, например кадмий. Рост ценности при высоких энергиях можно сократить уменьшением содержания ²³⁸ u, а также некоторым замедлением.

После общирных ресчетов с помощьо программы салыкы /6/ (расчет ячейки) и диффузионной программы МСО /6/ на базе данных БНАБ-78 /7/ вкврак-3 /8/ (для кадмия) были созданы три конфигурации, различанииеся содержанием кадмия. Кроме него эти системы содержали уран обогащения 36%, грефит и алиминий (материал матрици).

Экспериментальная проверка постоянства 9⁺ проводилась:

- доказательством того, что реактивности замедлителей (графит, полиэтилен, дейтерированный полиэтилен) близки к нулю;
- непосредственным измерением Ø⁺(E) с помощью источников нейтронов (Ra-Be, Na-Be, Na-D, Sb-Be).

Эти исследования показали, что в центре одной из систем (SEG-IV), элементарные ячейки которой изображены на рис. I, условие $\emptyset^+(E) = \text{const}$ выполняется.

Кроме функции ценности исследовался также спектр нейтронов, входящий в качестве весовой функции и в эффективное сечение. Для этой цели использовались пропорциональные счетчики /9/ и стильоеновне сцинтилляторы /10/. Результаты измерений хорошо согласуются с расчетами. На рис.2 приводятся расчетные и подтвержденные измерениями спектры пстока и ценности в SEG-IV.

Измерения реактивности в SEG-IV

Исследования в SEG-IV посвящены прежде всего компонентам стали: Fe, Cr, Ni, Lin и Mo. Во всех случаях наблюдалось уменьшение значения удельной реактивности с ростом массы образца:

$$r(m) = Q(m)/m$$
, rge

Рис. I. Состав элементарной ячейки системы skg-iv: I - графит; 2 - кадмий; 3 - обогащенный уран; 4 - алюминий

Q-коэффициент реактивности, m-масса образца.

В качестве примера рис.З показывает этот макроскопический ход для молибдена в SEG-IV. При этом величина образца характеризуется длиной хорды 1.

Появление макроскопических эффектов обусловлено тем, что спектр нейтронов существенно распространяется на резонансную область исследуемых материалов. Главная причина этого эффекта - резонансная самоэкранировка образца. Эффективное сечение поглощения определяется пределом

$$r_{o} = \lim_{m \to 0} \varphi(m)/m.$$

Коэффициенты экранировки a(m) = r(m)/r_о определяются с помощью модели (программа ABFAKT /II/), учитывающей резонанскую структуру сечении поглощения в приближении f -факторов Бондаренко. Исправленные с помощью расчетных a(m), измеренные значения удельной реактивности r(m) имеют вил:

$$r_0 = r(m)/a(m)$$

и не должны зависеть от размера образца.

1 -Факторы, как и групповые сечения, взятие из разных библиотек нейтронных данных, заметно различаются. В качестве примера рис.4 показывает зависимость a(1) для Fe. С помощью измеренной зависимости реактивности r(m) можно проверить 1 -факторы из разных источников, так как непостоянный r_0 говорит об ошибочных факторах самоэкранировки. Эффективные сечения поглощения получаются из r_0 , причем в качестве стандарта служит r_0 для 10° В. Табл. I содержит значения $\widetilde{O}_{a exp}$ для некоторых наборов данных.

Тестировка данных

Цутем сравнения измеренных сечений поглощения с эффективными значениями, полученными на базе данных из разных источников, можно проводить тестировку этих наборов. Кроме стандартных групповых наборов ЕНАБ-64 /12/, ЕНАБ-78 /7/, JFS-II /13/и вакс /14/ рассматривались также групповые данные, выведенные с помощью пакета FEDGROUP /15/ из нейтронных файлов керак-3 /8/, UKIDL /16/, и NDL-78 /17/.

Рис. 3. Макроскопический ход реактивности при измерении на молибдене: — эксперимент; о, +, у исправленные ходы

Рис. 4. Коэффициенты поправки эффекта экранировки в образце

Таолица 1

	1			Сис	стема гр	уп повых	констант			
		ABBN-64 [12]	abbn-78 [7]	JFS-11 /13/	Ва.RC-2 [14]	UKNDL [16]	KEDAK-3 [8]	τυρ	endl-78 [17]	BARC-1 [14]
	Cr	14,6 <u>+</u> 1,4	14,6 <u>+</u> 1,4	14,6 ± 1,4	13,8 + 1,4	13,8 ± 1,4	13,8 ± 1,4	-	13,8 ± 1,4	13,8 ± 1,4
	Ma	~	225 ± 20	225 <u>+</u> 20	-	-	-	-	225 ± ²⁰	-
цал	Pe	12,6 ± 1,3	14,1 ± 1,3	15,7 ± 1,3	11,0 ± 1,3	-	11,0 ± 1,3	13,6 ± 1,3	11,0 <u>+</u> 1,3	13,0 ± 1,3
цатеј	Ni	32,0 ± 3,5	32,0 ± 3,5	32,0 ± 3,5	31,5 <u>+</u> 3,5	-	32,0 ± 3,5	-	31,5 ± 3,5	31,5 ± 3,5
	Мо	260 • 25	-	269 + 25	-	-	-	-	265 ± 25	-
		1118 ± 60	-	-	-	-	-	-	-	-

Экспериментальные значения средних сечений поглощения

Эти сечения $\overline{\mathcal{D}}_{a \ cal}$, усредненные по спектру, собраны в табл.2. Следующие результаты тестировки для отдельных элементов относятся как к сечениям поглощения, так и к факторам самоэкранировки, использованным для учета экранировки образца.

<u>Железо</u>

Навлучшее согласие с измереннями дает БНАБ-64. Сечения из БНАБ-78, JFS-II и TUD выше, но согласуются в рамках эксперементальных ошибок.

В противоположность этому, КЕДАК-3, ВАКС-2 и ЕNDL-78 недооценивают влияние резонансов железа. С другой стороны, особенно ВАКС-1 и КЕДАК-3 содержат завышение групповые сечения поглощения. Причиной этого являются скорее всего повышенные вклады реакций (n, p) и (n, α).

Никель

Сечения для N1 в JFS-II, БНАБ-64, БНАБ-78 и КЕДАК-3 меньше различаются, чем в случае Fe, и хорошо согласуются с измерением.

Самоэкранировка никеля в BARC-2 и ENDL-78 заметно недооценивается. ENDL-78 и BARC-1 содержат нереально большие сечения поглощения.

IDOM

Сечения в БНАБ-78 и JFS-II примерно на 50 % выше измеренного, который однако хорошо согласуется с сечением из БНАБ-64.

КЕДАК-3, ВАЕС-2, ENDL-78 и UKNDL занижают резонансную самоэкранировку. Это приводит к малым г_о, что может повысить отношение С/Е.

По сравнению с экспериментом сечения КЕДАК-3 и ENDL-78 слишком малы. Зато сечения BARC-1 намного больше. В BARC-2 эта тенденция ослаблена, но измеренное значение все еще ниже.

Марганец

Сечения и резонансные данные в наборах JFS-II и SHAE-78 отлично согласуются с измерениями. В противоположность этому, ENDL-78 совсем не описывает резонансное поведение. Самоэкранировка, а также среднее поглощение занижены по сравнению с экспериментом.
Таблица	2
	~

		Система групповых констант								
		ж ВЗ N-64 <i>[</i> 127	a DBN-78 [7]	JFS-II [13]	BARC-2 [14]	UEN DL 2167	KEDAK-3 287	TUD	ENDL-78 [17]	BARC-1 [14]
	Or	13,3	21,8	23,5	23,4	20,1	13,0	-	11,9	27,1
материал	in	-	217,6	251,1	-	-	_	~	54,3	-
	70	11,6	17,8	19,5	20 , 6	-	23,5	16,9	16,7	33,3
	Ni	31,9	41,0	37,6	36,2	-	36,1	-	58,8	96,5
	Mo	302,8	-	342,7	-	-	-		254,8	-
	W	1385	-	-	-	-	-	-	-	-

Средние сечения поглощения по различным групповым данным

.

17

...

Молноден

В рамках точности измерения сечения EHAE-64, JFS-II и ENDL-78 дают удовлетворительное согласие, хотя значения JFS-II слегка завышени. Недооценка резонансного поведения Мо в ENDL-78 очевидна.

<u>Вольфрам</u>

Для вольфрама только БНАБ-64 содержит данные. Они корошо описывают экранировку образца. Однако указанное сечение поглощения превышает измеренное значение на 24%.

Результати наших исследований показали, что метод независящей от энергии функции ценности нейтронов представляет собой универсальный способ определения параметров поглощения. Дальнейшие исследования будут направлены на другие материалы (V, ті, продукты деления) и на создание других конфитураций этого типа.

Список литературы

M.F. Trojanov, At. Energ. <u>50</u> (2), 1981.
 V.I. Golubev et al., Jad. Konst. 28, 1, 41 (1978).
 P. Azzoni et al., NSE <u>76</u>, 70 (1980).
 K. Fährmann, E. Lehmann, Kernenergie <u>24</u>, 431 (1981).
 K. Fährmann, G. Hüttel, H. Krause, Kernenergie <u>17</u>, 70 (1974)
 C. Reiche, ŽfK-286 (1975).
 L.P. Abagjan et al., Energoizdat Moskau, 1981.
 B. Goel, B. Krieg, KFK 22381/1 (1979).
 D. Albert, H. Koepernik, W. Vogel, Kernenergie <u>19</u>, 287 (1973).
 D. Albert et al., Nucl. Instr. Meth. 200, 397.
 K. Dietze, K. Fährmann, Interner Bericht 2fK - RPP -20/79.
 J.J. Bondarenko et al., Group Constants for Nuclear Reactor Caculations, New York, 1965.
 Takano et al., JAERI 1255 (1978).
 S.B. Garg, B.A.R.C. - 892 (1976), B.A.R.C. - 1002 (1980).
 F. Vertes, INDC(HUN)- 13.
 K. Parker, AWRE/0-70/63 (1973).
 J. Rowlands, Harwell-Konferenz 1978.

АНАЛИЗ ЭКСПЕРИМЕНТОВ НА КРИТИЧЕСКИХ СБОРКАХ С ЦЕЛЬЮ ПРОВЕРКИ КОНСТАНТ ДЛЯ РАСЧЕТА ТЕЦІОВЫХ РЕАКТОРОВ

М.С.Юдкевич

. .

(ИАЭ им.И.В.Курчатова)

Анализируются результаты прецизмонных расчетов характеристик критических сборок. Обсуждаются нейтронно-физические константи урана-235 и -238 применительно к расчетам тепловых реакторов.

The critical assembly precision calculation results are analised. Neutrons data of 235,238 _{IJ} for thermal reactor calculation are discussed

Расчет основных нейтронно-физических характеристик энергетических реакторов ведется с использованием небольшого числа конотант апробированных и подогнанных на расчетах критических сборок и действурщих аппаратов. Поэтому вопрос о точности микроконстант здесь не так актуален, ках для реакторов на бистрых нейтронах. Тем не менее, интересен вопрос, с какой точностью можно предсказать критичность реактора, коэффициент воспроизводства и т.д., опираясь только на результати измерений микросхопических характеристик взашмодействия нейтронов с ядрами. Этот интерес подогревается наличием программ, позволяющих рассчитывать характеристики реактора без каких-либо приближений в описании его геометрии. При достаточно надежном константном обеспечении таких программ они могут, по крайней мере частично, заменить реакторные эксперименты.

Для проверки константного обеспечения прецизионных программ и выработки требований к ее уточнению используют сравнение результатов расчетов и измерений на критических сборках. В мировой практике для сравнения широко используются сборки, рекомендованные для этой цели в США (1,2).

В ИАЭ для прецизионных расчетов реакторов используется метод Монте-Карло. Применительно к тепловым реакторам наиболее точной является программа МКРЕТ /37, которая и была использована для анализа экспериментов на критических оборках. В основных для тепловых реакторов энергетических областях – низколежащих резонансов и термализации – взаимодействие нейтронов с ядрами рассматривается с той точностью, о какой известны константы взаимодействия.

73

При E < I эВ дифференциальные сечения рассеяния нейтронов вычисляются с учетом химической связи и теплового движения атомов [4].

В области полностью разрешенных резонансов после каждого розыгрыша энергии нейтрона определяются сечения его взаимодействия с ядрамы. Сечения рассчитываются по резонансным параметрам в соответствии с моделью, заложенной при оценке конкретного изотопа (5/.

В области неразрешенных резонансов используется подгрупновой подход /6,7 и др./.При розытрыше истории нейтрона, помимо энергии, определяется и какой подгруппе он принадлежит. т.е. какое имеет полное и парциальное сечение /8/. Это позволяет учесть структуру сечений и их экранировку в той области, где известны только статистические характеристики сечений.

Область спектра деления и неупругого рассеяния рассматривается в групповом приближении с использованием констант системы БНАЕ [7].

Константное обозначение программы MKPRT сформировано в 1978 г., сосредоточено оно в нескольких библиотеках /9/.

По программе МКРВТ были проведены расчеты коэффициента размножения К /3/ 28 описанных в литературе урановодных решеток. Некоторые результаты приведены в табл. I. Статистическая точность каждого расчета невелика (~0,5%), но общая картина хорошо прослеживается: значение К систематически занижается на величину до ~ I%. Для анализа причин расхождения рассмотрим константы урана-235 и -238.

Таблица І

Коэффициент	размножения	решеток
-------------	-------------	---------

K Coopka BETTIS		WINFRITH	WAPD	BNL	
MKH.	0,987 <u>+</u> 0,004	0,988 <u>+</u> 0,005	0,988 <u>+</u> 0,005	0,984+0,005	
Make.	0,998 <u>+</u> 0,006	0,997 <u>+</u> 0,004	I,006 <u>+</u> 0,005	0,992 <u>+</u> 0,005	
средн.	0,993 <u>+</u> 0,002	0,995 <u>+</u> 0,003	0,995 <u>+</u> 0,002	0,987 <u>+</u> 0,002	

Уран-235

В табл.2 приведены результаты нескольких оценок тепловых констакт. Все оценки основаны практически на одних и тех же измерениях. Единственно важная информация за последние примерно 10 лет – это уточнение значения V^{252} сг,что привело к увеличению V^{255} и на ~0.6%. Наиболее современной и "надежной" представляется оценка центра по ядерным данным США NNDC (8/82) /13/.

Таблица 2

Константы ²³⁵0 при V = 2200 м/с

Константа	Lenmel (75) /IO/	COKPATOP (75) /II/	ENDF/B-V (79) /12/	NNDC (8/82) [13]	MKPRT (78) /13/
6 _a	680,: <u>+</u> 1,7	679,2	681,9	681,5+1,2	683,0
ga	0,980 <u>+</u> 0,003	0,9758	0 ,97 81	0,9781 <u>+</u> 0,0009	0,981
Gf	583,5 <u>+</u> 1,3	577,7	583,5	582,9 <u>+</u> I,I	582,I
9 _f	0,976 <u>+</u> 0,002	0,9807	0,9775	0,977 <u>1+</u> 0,001	0,981
ź	2,071 <u>+</u> 0,006	2,051	2,085	2,078 <u>+</u> 0,003	2,071
d	0,167 <u>+</u> 0,003	0,176	0,1686	0,1692 <u>+</u> 0,0017	0,173
V	2,416 <u>+</u> 0,005	2,408	2,437	2 ,430<u>+</u>0,00 4	2,430
K	0,991 <u>+</u> 0,005	0,981	0,9993	0,994 <u>+</u> 0,003	0,9925

Б работе $\angle 14/$ определена критическая концентрация ²³⁵U в воде $H/^{235}$ U = 2110±10. Неопределенность в концентрации урана прыводит к неопределенности в расчете К на ~0,25%, и с такой точностью можно интегрально проверить различные наборы констант.

Вычисленное К_с приведено в последней строке табл.2. Все оценки, кроме ENDF/B-V, дают К_с < I. Для NNDC разница составляет (0,6±0,3)%. Константы ENDF/B-V предсказывают К_с практически точно. Это следствие того, что при оценке ϑ был учтен анализ результатов расчета критических размеров гомогенных систем [15].

Данные МКРЕТ занижают K_{∞} на ~0.8%, т.е. на такую же величину, что и К гетерогенных сборок. Их отличает от ENDF/B-V и NNDC главным образом значение γ . Увеличение γ , до 2,085 (ENDF/B-V) приводит K_{∞} практически к I.

На рисунке приведены результати расчета гомогенных урановодных сборок с практически чистым ²³⁵U /14/. В тепловой области использовались те же исистанты, что и в табл.2 с заменой) на 2,45.

Из вышесказанного ясно, что неопределенность в константах ²³⁵U не должна приводить к существенной ошибке при расчетах тепловых реакторов. Тем не менее еще остались неразрешенные вопросы.

Леммель еще в 1977 г. указал на расхождение в результатах спектроскопических измерений тепловых констант и измерения их же на спектре Дакорелла [.49] (табл.?). Существуют различия в результатах измерений « как отношения сечений в прямых измерений по выгоранию (см.табл.З, данные из работы (17/).

На наш взгляд, было бы полезно провести прявые измерения энергетической зависямости с. при E <I эВ с точностью лучшей, чем 1%, например по методике работы /18/.

I - H/235v=2052; 2 - H/235v=1835; 3 - H/235v=1604; 4 - H/235v=1379; 5 - H/235v=972; 235v/10B=0,037

Неопределенность в тепловых константах 2350

Таблица З

Кон стан- та	Измерения при V= =2200 м/с,расчет бг. бс	Измерения на спектре Максвелла	Измерения « разными методами
5 4 4 0 1	665, I <u>+</u> 2,0 574,9 <u>+</u> 2,0 90,3 <u>+</u> 2,3 0, 157 <u>+</u> 0,004 2,077 <u>+</u> 0,008	663,6+ 4, 566,0 <u>+</u> 3,8 97,5 <u>+</u> 0,8 0,172 <u>+</u> 0,004 2,090 <u>+</u> 0,016	$ \frac{G_{\pm} - G_{5}}{G_{1}} : 0, I58\pm0,005 $ $ \sqrt[3]{7} : J_{\pm}I55\pm0,006 $ Критичерина эксперанент : 0, I53\pm0,003 Среднее: 0, I55\pm0,003 облучение: 0, I65\pm0,003

Сейчас нет удовлетворяющей всех методики описания резонансной структуры сечений делящихся изотопов. Для ²³⁵0 в области полностью разрешенных резонансов (Е \leq IOO эВ) нами используется формализм Капура-Шайерса, параметры оерутся из расоты /197. В отличие от ENDF/B-V такой подход не требует введения фона. В неразрешенной области данные целиком взяты из ЕНАБ-78 /7/. Вычисленный по дифференциальным данным резонансный интеграл деления на несколько барн выше, а захвата – ниже оцененных из интегральных измерений.

<u>Уран-238</u>

Выполненные неоколько лет тому назад измерения сечений в области основных резонансов и их тщательный анализ привели к существенному повышению точности расчета резонансного захвата.

В МКРЕТ при E < 500 эВ сечения рассчитываются по формуле Брейта-Вигнера с учетом интерференции между резонансами. Используются резонансные параметры, принятые в системе БНАБ-78 [7].

Принятые в МКРВТ константы ²³⁸0 позволяют удовлетворительно описать небольшое число экспериментов по измерению резонансного поглощения в решетках /1/. Однако их точность находится на грани современных требований к расчету и желательно выполнить новые более точные измерения.

Существующие в настоящее время программы позволяют вычислять непосредственно измеряемые величины с точным рассмотрением геометрии установки. Это позволяет избавиться от неопределенности при интерпретации экспериментальных данных и повысить надежность сопоставления результатов расчета и измерения.

В заключение приведем результаты расчета характеристик двух критических сборок TRX (табл.4). Для сравнения даны также результаты расчета с константами ENDF/B.

Таблица 4

Характеристики	1	Измерения [2]		! Расчет			
COOPOR 21/	(1)			MEPRT		ENDE/B-V [2]	
		велич.	!ошиб.%	велич.! !	откл.% (2)	! велич. ! ! !	откл. % (2)
TRX-1	K	1,0		0,996 (3)		0,9961	-0,39
R=0,4915 cm	2 ⁸ م	1,320	1,5	1,351	+2,3	1,359	+3,0

Интегральные характеристики сборок TRX

Окончание табл.4

Характеристики		1 Manen	Monopourg 1		Расчет			
COOPOR Z1/	(1)	/2/	CUIN	M	KPRT	ENDF/1	3-√	
		велич.	ошио.%	велич.	откл.% (2)	велич.	откл.% (2)	
I,3% ²³⁵ U	828	0,0946	-4,3	0,100	+5,7	0,0989	+4,5	
V3/VT=2,35	0.23	0,0987	-I,O	0,0983	-0,4	0,1003	+I,6	
B ² =57,0 M ⁻²	C.	0,797	-1,0	0,804	+0,9	0,798	+1,3	
TRX-2	ĸ	1,0		1,003		0,9984	-0,16	
В =0,4915 см	25	0.837	-I,9	0,844	+0,8	0,846	+I,I	
1,3% 235U	5	0,0693	-5,I	0,0719	+3,7	0,0699	+0,8	
$\nabla_{3} / \nabla_{T} = 4,02$	825	0,0614	-I,3	0,0602	-2,0	0,0614	0,0	
В ² =54,69 м ⁻²	c•	0,647	-0,9	0,646	-0,2	0,6 4 2	-0,8	

Примечания: I. Отношения: $\mathcal{P}^{\bullet 1}$ – захват в ²³⁸U при $E > E_c$ к захвату при $E < E_c$; \mathcal{O}^{28} – деление ²³⁸U к делению ²³⁵U; \mathcal{O}^{25} – деление ²³⁵U при $E > E_c$ к делению при $E < E_c$; C[•] – захват в ²³⁸U к делению ²³⁵U; $E_c = 0.625$ эВ.

2 - расчет/измерение - І.

Список литературы

- Cross Section Evaluation Working Group Benchmark Specification, ENDF-202, 1974.
- 2. ENDF/B-V Data Testing Report, ENDF-202, 1981.
- Ильяшенко А.С., Майоров Л.В. В сб. ВАНТ, серия: Физика и техника ядерных реакторов, 1978, вып.5(27), с.77.
- 4. Лиман Г.Ф., Майров Л.В. В со. ВАНТ, серия: Физика и техника ядерных реакторов, 1981, вып.8(21), с.32.
- 5. Теоин В.В., Идкевич М.С. В сб. ВАНТ, серия: Идерные константы, 1978, вып.2(29), с.2.
- 6. Николаев М.Н. и др. Атомная энергия, ч.1-29, 1(970), ч.2-30 (1971).
- 7. Абагян Л.П. и др. Групповые константы для расчета реакторов и защиты, М., Энергсиздат, 1981.
- 8. Франк-Каменецкий А.Д., Коробейников В.В. В сб. БАНТ, серия: Сизика и техника ядерных реакторов, 1981, вып.8(21), с.70.

- Майоров Л.В., Шаталов Г.Е., Юдкевич М.С. В сб. ВАНТ, серия: Физика и техника ядерных реакторов, 1981. вып.8(21). с.21.
- H.D.Lemmel. Proc. Conf. Nuclear Cross Sections and Technology, Washington, 1975, v.1, p.286.
- 11. Анципов Г.В. и др. В сб. ВАНТ, серия: Ядерные константи, 1975, вып.20, ч.2, с.3.
- 12. ENDF/B Summary Documentation, ENDF-201 (1979). BNL-NCS-17541.
- Stehn e.a. Nuclear Data for Science and Technology. Proc. Conf., 1982, Antwerpen, p.685.
- 14. Gwin R., Magnuson D.W. Nucl. Sci. Eng., v.2, p.364 (1962).
- 15. Hardy J., Jr., Pinch D.R. Proc. Simp. Nuclear Data for Thermal Reactor Applications, 1978, BNL-NCS-25047.
- Lemmel H.D. Proc. Int. Specialists Symp. Neutron Standarts and Applications, 1977, CONF 770321, NBS N 493, p.170.
- 17. Weston L.W. Proc. Symp. Nuclear Data for Thermal Reactor Applications, 1978, BNL-NCS-25047.
- Adamchuk Ju. V. e.a. Nuclear Data of Science and Technology, Proc. Conf., 1982, Antwerpen, p.730.
- Saussure e.a. Proc. Second IAEA Conf. on Nuclear Data for Reactors, 1970, Helsinki, IAEA, v.2, p.799.
- 20. Mughabhab S.F., Divadeenam M. BNL-NCS-30130.

СИСТЕМНАЯ МОДЕЛЬ ИНТЕГРАЛЬНЫХ ЭКСПЕРИМЕНТОВ ПО НАРАБОТКЕ РАЦИОН/КЛИДОВ

Н.С. Шиманская, Б.Ф. Герасименко, В.Н. Дулин, В.Т. Ипполитов, Е.В. Королев, Г.В. Матвеев, С.Г. Авшиц

(Радиевый институт им. В.Г. Илопина)

Принципы системного подхода предлагается применять при рассмотрении задачи расчета наработки радионуклидов в различных ядерно-физических устройствах (нфУ). Модель реализована в виде пакета программ TRIZOT (фОРТРАН-ЕС).

Large-scale system model principles are proposed to the problem of the radionuclides production calculations in various nuclear assemblies. This model is realized in TRIZOT codes packet (FORTRAN-ES).

Динамика радионуклядного состава в реакторных нейтронных полях полностью описывается системой линейных дящеренциальных уравнений

$$\frac{dni(t)}{dt} = Aik(t)nk(t), \qquad (I)$$

где n_i - концентрация ядер нуклида i; элементе трансмутационной матриць Â есть

 $A_{ik}(t) = \lambda_{ik} + \int \delta_{ik}(E) \Psi(E, t) dE$. (2)

Здесь λ_{ik} - постоянные распада, вероятности радиоактивного перехода изотопа к в изотоп i, δ_{ik} - сечения ядерных реакций k - i, g (E,t)- плотность потока нейтронов. Выбор способа наработки данного нуклида включает выбор лФУ с таким спектром нейтронов g (E), чтобы энергетические зависимости полезных сечений $\delta_{ik}(E)$ и g (E) перекрывались в наибольшей степени. Для тепловых реакторов основную роль играет реакция (n, y), сечение которой максимально при низких энергиях, где велика и плотность потока нейтронов. Использование реакторов с более жестким спектром нейтронов существенно расгиряет пути получения радионуклидов, так как с увеличением энергии растут сечения пороговых реакций (n,n'), (n,2n), (n,p), (n, a) и др. Сравнительный анализ возможностей ЯФУ, обладающих качественно различными нейтронными спектрами, должен проводиться теоретикорасчетными методами. Хорошим примером такого анализа, иллюстрирующим, в частности, сложность этой задачи, является работа $\langle \bar{1} \rangle$.

Расчет наработки изотопов, претендующий на достаточную полноту и точность, сейчас сталкивается с рядом серьезных проблем. Укажем основные из них.

I. Анализ существующих оцененных и новых экспериментальных данных. В случае отсутствия ядерных данных, расчет их по феноменологическим анпроксимационным формулам или на основе современных теоретико-модельных представлений.

2. Расчет флюэнса и спектра нейтронов в условиях реальной геометрии облучателя (и образца). Конструирование модельных спектров различных жау, когда это необходимо. Учет временной структуры нейтронного потока.

3. Формирование библиотек групповых сечений для всех типов реализующихся спектров нейтронов и реакций.

4. Наряду с решением прямой задачи трансмутации изотолов, решение сопряженной задачи для расчета коэффициентов чувствительности рассчитываемых функционалов, с целью составления списка запросов на измерения ядерных данных и нейтронных полей в ноу.

5. Выработка критерин и сравнение различных жиу между собой с точки зрения их возможностей в наработке конкретных изотопов. Это можно было бы считать началом пути к точному экономическому анализу.

Объединение локальных описаний, перечисленных в пунктах I-5, целесообразно проводить на основе системно-модельного анализа [2]. Действительно, сложность (в том числе вызываемая неопределенностью дункции, представляющей предпочтение выбора) и динамическая взаимосвязь потоков информации, незамкнутость в отношении использования исходном информации, моделей вычисления сечений и характеристик чейтронных полей, информационная избыточность локальных описаний -

8I

все это приближает расчет к системной модели, предъявляет высокие требования к уровню автоматизации расчетов.

По принципам системно-модельного подхода, разрабатывается пакет программ TRIZOT, который функционально можно разделить на З части: подготовка ядерных данных ($\delta_{ik}, \lambda_{ik}$), решение уравнений трансмутации, определение коэффициентов чувствительности к параметрам расчета. Условная блок-схема TRIZOT (программ, реализованных к настоящему времени) имеет вид, представленный на рисунке.

Используемые наборы данных: І. Осредняемые сечения; 2. Файл спектров осреднения; 7. Файл коэщишиентов чувствительности.

Подготовка ядерных данных осуществляется программами RESTU и INTU. Первая предназначена для работы с библиотеками сцененных данных формата ENDF/B и обрабатывает файл резонансных параметров (программы RESEND или RECENT). Если резонансные параметры отсутствуют, то исходный файл может непосредственно обрабатываться программой получения средних сечений INTU. В программе предусмотрена возможность обработки массивов данных (в кормате ENDF/B), создаваемых на перфокартах.

При отсутствии необходимых сечений в библиотеках оцененных данных, TRIZOT предусматривает теоретико-модельный расчет недостающих сечений. Одним из способов расчета сечений ядерных реакций, применяемых на практике, является модицицированная наскадно-испарительная модель (МКИМ). Теоретической основой МКИМ для описания реакций с нуклонами являются квантовые кинетические уравнения для открытых конечных систем (3). Комплеко програми расчета сечений ядер-

82

ных реакций, использующий МКИМ, состоит из двух основных программ INNUCA и RISSA. Программа INNUCA рассчитывает сечения на каскадной (п/п саясар) и испарительной (п/п еva) стадиях, алгоритм аналогичен описанному в /4/, но с учетом изменений, предложенных в работах /5-7/. Программа RISSA была специально разработана для учета однократных столкновений методом искаженных волн. Она позволяет улучшить гочность вычислении выходов ядер-остатков с массовым числом, близким к массовому числу ядра-мишени, что особенно важно для прогнозирования сечений реакций (п,2n), (п,3п), (п,пр).

Для приближенных оценок экономнее использовать феноменологические формуль /3/. Ь этом случае расчет сечений производит п/п FOMA; энергии порога реакций вычисляются по полувыпирической формуле масс /9/.

Спектры осреднения сечений задаются п/и SPRAY, предусмотрено поточечное задание спектра (одновременно до I5 типов, 200 точек в каждом). При необходимости, реальный спектр ЯФУ может быть представлен в виде разложения по I5 базисным модельным спектрам. При наличии липь ограниченной индормации о нейтронных полях в ТВС, предполагается использовать комплекс программ CASPAR /IQ/ (расчет методом Монте-Карло нелтронных полем и их функционалов в реакторных кассетах).

Результать работы программы INTU - одногрупповые и многогрупповые сечения записиваются в файл АРІЗХХО (XX - текущий номер). Решения уравнений, трансмутации осущаствляются в программе TRANSMUT, система прямых и сопряженных дифференциальных уравнений решается с помощью п/п RK 45. Результаты записываются в наборы данных GTOMIX (решения прямого и сопряженного уравнений) и ОФУУНІ (временная библиотека яцерных данных), которая используется для проведения вариантных расчетов и при ыбчислении коефщидентов чувствительности программой SENSI. Определяется чувствительность по отношению к сечениям реакции, постоянным распада и параметрам разложения спектра нейтронов.

Зписок литературы

I. Бобков К.Г., Усачев Л.Н. и др. – Ат. энергия, 1980, т. 48, вып. 3. с. 325.

^{2.} пастя Аж. Больще сястемн. Ш., Мир. 1982. 3. Бунаков Б. . - ЭЧАЛ, 1980, т. II, вып. с. с. 1285.

4. Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнергети-4. Барашенков В.С., Тонеев В.Д. Взаимодействия высокознергети-ческих частиц и атомных ядер с ядрами. М., Атомиздат, 1972. 5. Бунаков В.Е., Нестеров М.М. и Тарасов Н.А. - Изв.АН СССР, сер. физ., 1977, т.41, с.2187. 6. Бунаков В.Е., Матвеев Г.В. и Тарасов Н.А. - Изв.АН СССР, сер. физ., 1981, т.45, с.165. 7. Бунаков В.Е. и Матвеев Г.В. - Изв.АН СССР, сер. физ., 1981, т.45, с.2047. 8. Бичков В.М., Манохин В.Н. и др. Сечения пороговых реакций, вызываемых нейтронами. Справочник. М., Энергоиздат, 1982. 9. Liran S. and Zeldes N. - Аt. Data and Nucl. Data Tables, 1976, v.17, р.431. 10. Королев Е.В. Препринт Радиевого ин-та, РИ-155, Л., 1982.

УСТОЙЧИВЫЕ МЕТОДЫ ОЦЕНКИ НЕЙТРОННО- РИЗИЧЕСКИХ ХАРАКТЕРИСТИК НУКЛИДОВ НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Н.Г.Волков, А.В.Крянев

(Московский инженерно-физический институт)

Рассматриваются устойчивые методы восстановления функциональной зависимости и оценки нейтрокно-физических характеристик

The robust methods of the restorations of the function dependence and estimations of the neutron-physic parameters are studied

Общензвестно значение методов обработки экспериментальных данных в связи с оценкой параметров изучаемых физических систем.

В последние годы значение этих методов еще более возросло, поскольку были созданы достаточно точные и надежные численные алгоритмы решения сложных математических моделей исследуемых систем и теперь, зачастую, проблема точности конечного результата может быть решена, по оуществу, только за счет повышения точности экспериментально определяемых параметров, входящих в математические модели физических процессов.

Одним из наиболее существенных резервов повышения точности оценок параметров является создание и применение эффективных и надежных статистических методов обработки данных физических экспериментов.

Традационные методы обработки страдают тем недостатком, что в них заранее предполагается известным закон распределения ошибок измерений. Такая жесткая априорная фиксация закона распределения ошибок, как правило, предполагает его нормальность, приводит на практике к резкому снижению эффективности оценок, а часто и к существенному их отличию от истинных значений.

В настоящей работе издагается методика получения оценок нейтронно-физических характеристик нуклидов на основе разработанных в последвее время устойчивых методов оценивания.

Пусть для восстановления функциональной зависимости y = f(E)имеется ряд серий экспериментальных замеров (E_{ij}, y_{ij}) , c = 1, ..., $N; j = 1, ..., c_N$, где индекс с относится к фиксированной серия экспериментов, проведенных определенной группой авторов. c_N - количество экспериментальных точек с-й серия. Обычно наряду с парой чисел (E_{ij}, y_{ij}) авторами указывается погрешность измерений величин у., а именно среднеквадратичные ошибки измере-HER Guil .

Традиционный подход при восстановлении функциональной зависимость основан на объединение всех измерений и применении или всей совокупности измерений взвещенного метода наименьших квадратов (ВМНК). При этом в качестве весов используются величины $W_{c_i} = 1/6$ [1,27. Такой подход обоснован лишь в том случае, когда ошибки измерений, даваемые авторами верны, т.е. не являются ни завышенными, ни заниженными. Однако на практике навболее типичной является ситуация, когда в отдельных сериях ошибки измерений либо завышены, либо занижены. Более того, типичным является наличие систематической ощибки в экспериментальных замерах некоторых серий.

В предполагаемой методике восстановления функциональной завискмости используется метод исправления неверно заданных ошибок измерений бу;; и выявления систематических ошноск с последущим их учетом. Методика предусматривает также борьбу с большими выбросами по схеме Хубера /3-4/, обобщенной на случай неравноточных измерений. В качестве аппроксимирунцей функциональной зависимости удобно вспользовать либо систему ортогональных на множестве экспериментальных точек полиномов /5/, либо систему ортогональных оплай-HOB.

Ниже приводятся пояснения для случая аппроксимации ортогональ-HUMM HOUTHOMANNE.

Аппроксимирунцая регрессионная зависимость имеет вид

$$y = \sum_{k=0}^{n} \beta_k \Phi_k (E), \qquad (1)$$

где $\{ \Phi_k(E) \}$ – система ортогональных на множестве $E \in [E_{\min}, E_{\max}]$ полиномов; A_k – подлежащие оценке козффициенты. Система ортогональных полиномов $\{ \Phi_k(E) \}$ строитоя по схеме

Copcantra /5/.

В соответствии с методом Хубера для неравноточных измерений регрессконнной зависимости (I) должны быть параметры выбраны из соотношений

$$\sum_{i=1}^{N^*} f_o\left(\frac{y_i - \sum_{i=0}^{M} \beta_{\kappa} \varphi_{\kappa}(E_i)}{\sigma_{y_i}}\right) \frac{1}{\sigma_{y_i}} \mathcal{P}_j(E_i) = 0 \qquad (2)$$

$$j = 0, 1, \dots, M,$$

Введя три множества индексов \dot{c} :

$$\begin{split} & \mathbb{H}_{-} = \left\{ i : y_{i} - \sum_{\kappa=0}^{m} \beta_{\kappa} \, \mathcal{P}_{\kappa}(E_{i}) < -K \, \delta y_{i} \right\}; \\ & \mathbb{H}_{0} = \left\{ i : |y_{i} - \sum_{\kappa=0}^{m} \beta_{\kappa} \, \mathcal{P}_{\kappa}(E_{i})| \leq K \, \delta y_{i} \right\}; \\ & \mathbb{H}_{+} = \left\{ i : y_{i} - \sum_{\kappa=0}^{m} \beta_{\kappa} \, \mathcal{P}_{\kappa}(E_{i}) > K \, \delta y_{i} \right\}, \end{split}$$

соотношения (2) можно переписать в виде

$$-K\sum_{H_{-}} \frac{\varphi_{i}(\mathcal{E}_{i})}{\sigma_{\mathcal{Y}_{i}}} + K\sum_{H_{+}} \frac{\varphi_{i}(\mathcal{E}_{i})}{\sigma_{\mathcal{Y}_{i}}} + \sum_{H_{0}} \frac{(\mathcal{Y}_{i} - \sum_{\mathcal{E}_{0}} \beta_{\mathcal{F}} \varphi_{\mathcal{F}}(\mathcal{E}_{i}))}{\sigma_{\mathcal{Y}_{i}}^{2}} \varphi_{j}(\mathcal{E}_{i}) = 0.$$
(3)

Используя ортогональность системы полиномов $\{ \Phi_k(E_i) \}$. из (3) определяем итерационный процесс нахождения устойчивых оценок параметров $\{ \beta_k \}$:

$$\begin{split} \rho_{j}^{(m+i)} &= \frac{1}{\sum_{i=1}^{M^{*}} \frac{\varphi_{j}^{2}(E_{i})}{\sigma_{j}}} \left[\sum_{H_{j}^{(m)}} \frac{-\overline{K} \, \overline{G}_{ji} \, \varphi_{j}(E_{i}) + \sum_{K \neq 0} \varphi_{k}^{(m)} \varphi_{K}(E_{i}) \varphi_{j}(E_{i})}{\sigma_{j}^{2}} \right] + \sum_{H_{j}^{(m)}} \frac{\overline{K} \, \overline{G}_{ji} \, \varphi_{j}(E_{i}) + \sum_{K \neq 0} \varphi_{K}^{(m)} \varphi_{K}(E_{i}) \varphi_{j}(E_{i})}{\sigma_{j}^{2}} \sum_{H_{j}^{(m)}} \frac{\varphi_{i} \, \varphi_{j}(E_{i})}{\sigma_{j}^{2}} \right], \end{split}$$

$$\end{split}$$

где

$$\begin{array}{l} \prod_{i=1}^{(m)} \left\{ i : y_{i} - \sum_{k=0}^{m} \beta_{k}^{(m)} \varphi_{k}(E_{i}) < -K \sigma_{y_{i}} \right\} ; \\ \prod_{i=1}^{(m)} \left\{ i : y_{i} - \sum_{k=0}^{m} \beta_{k}^{(m)} \varphi_{k}(E_{i}) > K \sigma_{y_{i}} \right\} ; \\ \prod_{i=1}^{(m)} \left\{ i : |y_{i} - \sum_{k=0}^{m} \beta_{k}^{(m)} \varphi_{k}(E_{i})| \leq K \sigma_{y_{i}} \right\} . \end{array}$$

В качестве нулевого приближения $\{\beta_{j}^{(o)}\}$ удобно брать МНК-оценку параметров $\{\beta_{j}\}$:

$$\beta_{j}^{(o)} = \frac{1}{\sum_{i=1}^{n^{*}} \frac{\mathcal{P}_{j}^{2}(\mathcal{E}_{i})}{\sigma_{j}^{*}}} \sum_{i=1}^{n^{*}} \frac{\mathcal{Y}_{i} \mathcal{P}_{j}(\mathcal{E}_{i})}{\sigma_{j}^{*}}$$

87

где

Итерационный процесс (4) легко реализуется на ЭЕМ. Значение параметра Хубера K зависит от процента засорения [3]. Если определение процента засорения вызывает трудности, то рекомендуется выопрать K ~ 1,7 - 2,1.

Изложенный метод устойчывого оценжвания функциональной зависимости обобщается и при наличии корреляции между отдельными измерениями. В этом случае необходимо предварительно перейти от коррелируемых переменных $\{y_i\}$ к некоррелируемым переменным $\{v_i\}$, используя известные методы канонического разложения [6].

На сснове разработанной методики устойчивого оценивания параметров (в том числе и оценка положения) была создана комплексная программа восстановления регрессии, с помощыю которой были даны оценки среднего числа нейтронов на один акт деления V(E) и некоторых сечений $\mathcal{O}(E)$ как функций энергии E для изотопа ²³⁵U.

```
Список литературы
```

- I. Статистические методы в экспериментальной физике. Пер. с англ. М., Атомиздат, 1976.
- 2. Яноши Л. Теория и практика обработки результатов измерений. Пер. с англ. М., Мир, 1965.
- 3. Смоляк С.А., Титоренко Б.П. Устойчивые методы оценивания. М., Статистика, 1981.
- 4. Димиденко Е.З. Линейная и нелинейная регрессии. М., Статистика, 1981.
- 5. Себер Дж. Линейный регрессионный анализ. М., Мир. 1980.
- 6. Пугачев В.С. Теория вероятностей и математическая статистика. М., Наука, 1979.

БАЕСОВСКИЙ ПОДХОД К ПАРАМЕТРИЗАЦИИ НЕЙТРОННЫХ СЕЧЕНИЙ СОВМЕСТНО С ФУНКЦИЯМИ ПРОГУСКАНИЯ

Б.Марковски, Н.Янева

(Институт ядерных исследований и ядерной энергетики, БНАБ)

> Применяется баесовский подход для совместного анализа парциальных нейтронных сеченый и функций пропускения нейтронов для больших толщин образцов. Рассматриваются дна метода - интерференционный анализ на основе формализма Адлер-Адлера в области разрешенных резснансов и моделирование нейтронных сечений и их функционалов с применением приолижения Рейха-Мура для неразрешенных резонансов. В качестве промекуточного результата сравниваются дисперсии оцениваемых параметров с учетом и без учета информеции, получаемой из функций пропускания и самоиндикации. Для оценки параметров используется их апостериорное распределение, при вариации параметров получается явный вид поправки к априорному значению. Оценивается уточненное значение резонансных параметров за счет включения в анализ резонансной структуры экспериментальной информации о пропускании нейтронов толстыми образцами

The method of Bayes is applied to the analysis of the partial neutron cross-sections simultaneously with the neutron transmission and selfindication by the thick samples. Two different formalisms are taken for the resolved and unresolved energy region. The useful formulae are obtained for the evaluation of the optimization of resonance parameters values (for individual levels and for an average value over many levels) due to the complementary experimental information about the transmission and selfindication functions

I. Баесовский метод, как известно, рассматривает апостериорное распределение параметров, исходя из которого путем вариации независимых параметров получаются обобщенные уравнения максимального правдоподобия с учетом нетривиального характера априорной плотности распределения. Он является удобным методом нахождения небольших поправск к известным значениям параметров, полученных в других экспериментах или при совместной обработке

89

результатов нескольких исследований, учитывая надлежащим образом систематическое отклонение. Такие поправки к априорным значениям параметров можно получить практически не решая задачу оптимизации функции максимального правдоподобия (функцию наименьших квадратов). Возможность реализации такого приближения связана с предложением о близости оценки \measuredangle к ее априорному значению $\mathring{\measuredangle}$. Всегда, когда рассчитанное таким образом значение поправки $\delta \measuredangle = | \measuredangle - \mathring{\measuredangle} |$ окажется больше допустимого (в единицах дисперсии апостериорного распределения параметров), это автоматически может означать как неприменимость линейной аппроксимации к вычислению поправки, также и значимость отклонения \measuredangle от его априорного значения $\mathring{\And}$. Мерой отклонения от этого значения является дисперсия, рассчитанная по гауссовскому распределения.

2. Формулировка задачи

В данной работе баесовский метод применяется для анализа парциальных нейтронных сечений и функций пропускания резонансных нейтронов для больших толщин поглощающих образцов. Целью настоящего рассмотрения является дальнейшее развитие методики /// и оценка того, насколько полученные по методу наименьших квадратов резонансные параметры отличаются существенно от их априорных значений. Кроме того, в качестве промежуточного результата сравниваются дисперсии оцениваемых параметров с учетом и без учета информации, получаемой из функций пропускания и самоиндикации.

В области разрешенных резонансов применяется многоуровневый интерференционный формализм, подходящий для описания энергетической зависимости нейтронных сечений тяжелых делящихся

90

ядер. Согласно известным соотношениям Адлер-Адлера /27 сечение реакции г равно

$$\sigma_{r}(E) = \frac{\pi}{3} \sum_{k} \left\{ \frac{G_{k}}{V_{k}} \gamma\left(\frac{E-\mu_{k}}{V_{k}}, \frac{\nu_{k}}{\Delta}\right) + \frac{H_{k}}{V_{k}} \chi\left(\frac{E-\mu_{k}}{V_{k}}, \frac{\nu_{k}}{\Delta}\right) \right\}, \quad (I)$$

где μ_{κ}^{\sim} , ν_{κ}^{\sim} , G_{κ}^{\sim} и μ_{κ}^{\sim} - параметры резонанса κ , а Δ - так называемая доплеровская ширина резонанса, которая необходима для расчета доплеровского уширения резонансных максимумов.

Если $x = \frac{\mu_{\kappa}-E}{\nu_{\kappa}}$ и $\xi_{\kappa} = \frac{\nu_{\kappa}}{\Delta}$, функции доплеровского уширения γ и χ равны:

$$\begin{aligned} & \Psi(\xi_{\kappa}, x) = \frac{\xi_{\kappa}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp\left[-\xi_{\kappa}^{2} \left(x-y\right)^{2}\right]}{1+y^{2}} \, dy; \\ & \chi(\xi_{\kappa}, x) = \frac{\xi_{\kappa}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{y \exp\left[-\xi_{\kappa}^{2} \left(x-y\right)^{2}\right]}{1+y^{2}} \, dy. \end{aligned}$$
(2)

Полное сечение \mathcal{O}_t выражается аналогичным образом (I), где индекс \sim заменяется t и добавляется потенциальное сечение.

уункция пропускания в полном сечении $T_{\mathcal{E}}$ и в определенном парциальном сечении $\mathcal{C} = \tilde{I}_{\mathcal{P}}$ (самоиндикация) рассчитывается согласно

$$T_{t} = \int_{\Delta E} \mathcal{R}(E,\bar{E}') \exp\left[-\sigma_{t}(E') x\right] d\bar{E}'$$

$$T_{r} = \int_{\Delta \bar{E}} \mathcal{R}(E,E')\sigma_{r}(E') \exp\left[-\sigma_{t}(\bar{E}') x\right] d\bar{E}',$$
(3)

где \mathfrak{X} – толщина пропускающего образца; \mathfrak{k} (\mathfrak{E} , \mathfrak{E}') – функция разрешения по энергии, нормированная на единицу: $\int \mathfrak{K}(\mathbf{E}) = \mathbf{I}$.

В области неразрешенных резонансов, где невозможно определить вклад отдельных резонансных уровней, измеряются средние значения σ и τ , а выражения (3) превращаются в

$$T_{e} = \int_{\Delta E} exp\left[-\sigma_{e}(\bar{e}) x\right] N(\bar{e}) d\bar{e} / \int_{AE} M\bar{e} d\bar{e};$$

$$T_{r} = \int_{\Delta E} \sigma_{r}(\bar{e}) exp\left[-\sigma_{e}(\bar{e}) x\right] N(\bar{e}) d\bar{e} / \int_{AE} N[\bar{e}] d\bar{e},$$
(4)

где N (E) - нейтронный спектр, который обычно принимается в виде I/E.

Для расчета нейтронных сечений моделируется *S*-матрица с применением известного приближения Рейха-Мура /3/ и законов распределения резонансных парамотров:

$$S = e^{-2iF} (1+iK) (1-iK)^{-1};$$

$$Kem = \frac{1}{2} \frac{\overline{2}}{\overline{2}} \frac{\sqrt{F_{2}eF_{2}m}}{\overline{E_{2}}-\overline{E_{-}iF_{0}/2}} = \frac{1}{2} \frac{\overline{F_{n}}}{\overline{D}} \frac{\overline{2}}{\overline{D}} \frac{\overline{\beta_{2}e}}{\overline{D}} \frac{\overline{\beta_{2}m}}{\overline{D}};$$
(5)

Здесь $\overline{\Gamma_n}$ - средние парциальные нейтронные ширины; \overline{D} - среднее расстояние между резонансами; β_{Ji} - случайные числа, распределенные нормально (0,1); \overline{Z}_J - случайные числа интервала (0,1), подчиняющиеся закону Вигнера; γ - фаза потенциального рассеяния *.

92

Ł

^{*} методы параметризации резонансной структуры нейтронных сечений с использованием информации о пропускании нейтронов толстыми образцами соответственно в разреченной и неразреченной области (включая необходимые программы) описаны в ^(4, 5).

Параметры резонансной структуры сечений получаются путем сравнения с экспериментальными данными. В так называемой разрешенной области по методу наименьших квадратов получаются параметры индивидуальных резонансов, а в неразрешенной - средние резонансные параметры, т.е. усредненные по энергии и соответствующим сталистическим распределениям.

3. Статистический анализ

Исходным пунктом наших рассмотрений является набор точечных оценок параметров сечений, полученный МНК ^[4]. Рассматриваем выражение

$$Q = \chi^{2} = \frac{1}{2} \sum_{i=1}^{M} \left[\sigma(\bar{e}_{i,\alpha}) - \sigma_{i} \right]^{2} / \Delta_{i}^{2} + \frac{1}{2} \sum_{i=1}^{M} \sum_{q=1}^{q} \left[T(\bar{e}_{i,\alpha}) - T_{iq} \right]^{2} / \Delta_{ai}^{2}.$$
(6)

В (6) суммирование распространяется по числу значений энергии $\{E_i\}_{i=1}^M$ и по числу разных толщин пропускания ($T_a, a = \overline{i, q}$).

Отметим, что учет дополнительной информации, содержащейся в измерениях с разными толщинами, приводит к увеличению информации и уменьшению дисперсии точечной оценки. Действительно, информационная матрица эишера при использовании только одного парциального сечения \mathcal{O} в окрестности оптимального решения ыНы – \mathcal{A}^{*} имеет вид

$$\widetilde{\prod}_{ke} = \sum_{i=1}^{M} \frac{1}{\Delta_{i}^{2}} \frac{\partial \sigma_{i}}{\partial \alpha_{k}} \frac{\partial \sigma_{i}}{\partial d_{e}} \Big|_{x=x^{*}} + O\left(\left\|\alpha - \alpha^{*}\right\|^{2}\right), \quad (7)$$

$$\left(\kappa_{i} \ell = 1, 2, N\right),$$

тогда как с учетом функций пропускания имеем

$$\frac{1}{2\kappa \epsilon} \frac{M}{\epsilon_{1}} \left(\frac{1}{\Delta_{1}^{2}} \exp\left(\frac{1}{2\kappa \epsilon} \frac{1}{\epsilon_{2}} + \frac{1}{2}\right) \exp\left(\frac{1}{2\kappa \epsilon} \exp\left(\frac{1}{2\kappa \epsilon_{1}} + \frac{1}{2}\right) \exp\left(\frac{1}{2\kappa \epsilon_{2}} + \frac{1}{2}\right)$$

Оценка максимальной дисперсии в этих двух случаях дается следующим выражением. Пусть

$$\widetilde{\Delta} = \max_{i} \Delta_{i}; \quad \widetilde{\delta} = \max_{a} \Delta_{a}; \quad \Delta = \max_{i} (\widetilde{\Delta}, \delta).$$

Тогда согласно общей теории оценок МНК.

$$\hat{\widetilde{\Delta}}^{L} = \frac{Q_{mim}}{H-N}; \quad \hat{\Delta}^{L} = \frac{Q_{mim}}{H-N+qM}; \left\{ \widetilde{Q} \equiv \widetilde{\chi}^{L} \equiv \chi^{2} - \frac{1}{2} \sum_{a,i} \left[T(ia) - T_{a,i} \right]^{2} / \Delta_{a,i}^{L} \right\}, \quad (9)$$

т.е.

$$\hat{\Delta}^2 \approx \hat{\Delta}^2 \frac{qM}{M-V} \cdot$$

Максимальная оценка зависит от числа 9 использованных образцов с разными толщинами и для реальных рассматриваемых случаев она уменьшается в 4-5 раз.

Баесовская оценка оптимальных ∞ получается из апостериорного распределения параметров:

$$P(\alpha|\sigma,T) \propto \exp\left[-\frac{1}{2}(\alpha \sigma D \mathcal{K} + \Delta T \tilde{D} \mathcal{C}) \left(\tau^{T} \tilde{D} \tau + \mathcal{K}^{T} D \mathcal{K} + W^{-1}\right) \times \left(\mathcal{K}^{T} D \alpha \sigma + \tau^{T} \tilde{D} \tilde{\alpha} + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + W^{-1}\right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K}^{T} D \mathcal{K} + \tau^{T} \tilde{D} \tau + \frac{1}{2} \delta \alpha \right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K} + \tau^{T} \tilde{D} \tau + \frac{1}{2} \delta \alpha \right) \delta \alpha + \frac{1}{2} \delta \alpha \left(\mathcal{K} + \tau^{T} \tilde{D} \tau + \frac{1}{2} \delta \alpha \right$$

Очевидно матрица ковариаций равна

$$C(\delta \alpha) = \left(\mathcal{K}^{\mathsf{T}} \mathcal{D} \,\mathcal{K} + \tau^{\mathsf{T}} \tilde{\mathcal{D}} \,\tau + W^{-1}\right)^{-1}. \tag{II}$$

і тем варьирования по бы получаем явный вид поправки к априор-... у значению μ :

$$\mathcal{L} = \mathcal{L} + \left(\mathcal{K}^{\mathsf{T}}\mathcal{D}\mathcal{K} + \mathcal{C}^{\mathsf{T}}\tilde{\mathcal{D}}\mathcal{K} + w^{-1}\right)^{-1} \left\{\mathcal{K}^{\mathsf{T}}\mathcal{D}\left[\sigma_{e,\mathsf{T}} - \sigma(\alpha')\right] + \mathcal{C}^{\mathsf{T}}\tilde{\mathcal{D}}\left[\tau_{e,\mathsf{T}}\mathcal{K}^{\mathsf{T}}\right]\right\}. (12)$$

Для правильного учета вклада неразрешенной области можно применить два способа: либо вставить средние значения параметров в этой области в (12) и принять, что они не дают вклад в дисперсию (II), либо учитывать обстоятельство, что средние значения получаются последовательно при помощи статистической модели ядра. В первом случае получаются формулы (12) в (II) для параметров и ковариационной матрицы соответственно. Во втором случае параметризация $\mathcal{K}_{\ell m}$ (5) осуществляется посредством $\overline{\Gamma}$ в \overline{D} . Для получения этих величин проводится моделирование методом Монте-Карло, а результати сравниваются с экспериментальными значениями для \mathcal{C} и T_{α} . $\mathcal{K}_{\ell m}$ являются случайными величнами, так как $\int \beta_{\lambda n}, \overline{c}_{\lambda}$ - случайные числа, подчиняющиеся определенному распределению. Тогда вместо (I2) для поправки априорного значения находим

$$\vec{x} = \vec{L} + E\left\{ (\mathcal{K}^T \mathcal{D} \mathcal{K} + \mathcal{C}^T \tilde{\mathcal{D}} \mathcal{C} + W^{-1})^{-1} [\mathcal{K}^T \mathcal{D} (\sigma_{ac} - \sigma_{bc}^{ac})] + \mathcal{C}^T \tilde{\mathcal{D}} [\mathcal{T}_{ex} - \mathcal{T} (d^{c})] \right\}$$
(13)

Здесь E { } обозначает среднее по распределению моделей, для конкретного случая процедуры Монте-Карло этс дается приолиженно суммой:

$$\vec{x} = \vec{\lambda} + \frac{1}{N} \sum_{j=1}^{N} \left\{ \left[\mathcal{X}^{T} \mathcal{D} \mathcal{K} + \mathcal{C}^{T} \mathcal{D} \mathcal{C} + W^{-1} \right]^{-1} \left[\mathcal{X}^{T} \mathcal{D} \left(\mathcal{D} \sigma \cdot \mathcal{O} \left(\boldsymbol{\lambda} \right) \right] + \mathcal{C}^{T} \mathcal{D} \left[\mathcal{T} \sigma \mathbf{x} - \mathcal{T} \left(\boldsymbol{\lambda} \right) \right] \right) \vec{a} \right\}$$
(14)

где $(...)_{d}$ обозначает, что фиксирована модель (с номером d). В технике Монте-Карло N выбирается настолько большим, чтобы ошибка, зависящая от числа розыгрышей, была меньше (примерно на порядок) экспериментальной. Приближенное выражение для матрицы ковариаций во втором случае дается средним значениям $E[c(\delta A)] = \frac{4}{N} \sum_{n=1}^{N} [c(\delta A)]$ (в неразрешенной области W определяется дисперсией bn величин f_n около f_n , $W_{pn'} = b_n^2 \delta_{nn'}$). В работе даны формулы, дающие возможность оценить уточнение значений резонансных параметров, которые получаются за счет включения в анализ резонансной структуры сечений экспериментальной информации о пропускании нейтронов образцами конечной толщины. Это относится как к параметрам индивидуальных резонансов в разрешенной области, так и к средним резонансным параметрам, характеризующим энергетическую структуру сечений в неразрешенной области.

Список литературы

- I. Ваньков А.А. В кн.: Ядерные константы. Вып. 16. М.: Атомиздат, 1974, с. II.
- Adler F., Adler D. In: Proc. Conf. Neutron Cross-Sections and Technology, Washington, 4-7 March 1978, p.929.
- 3. Reich C.W., Moore M.S. Phys.Rev., v.111, 1958, p.929.
- 4. Бакалов Т., Илчев Г., Тошков С. и др. Атомная энергия, 1983, т.55, вып. I. с.34-37.
- 5. Ваньков А.А., Илчев Г. и др. ОИЯИ РЗ-83-51. Дубна, 1983.

ОЦЕНКА НЕЙТРОННЫХ СЕЧЕНИЙ ²³⁶U В ОБЛАСТИ НЕРАЗРЕШЕННЫХ РЕЗОНАНСОВ В.П.Лунев, Г.Н.Мантуров, А.О.Типунков, В.А.Толстиков

(ФЭИ)

Получены оценки радиационных и нейтронных силовых функций из анализа современных экспериментальных данных по сечению радиационного захвата ²³⁶0 в области энергий нейтронов I-500кэВ

The estimations of radiation and neutron strength functions of 236_U are obtained from and analysis of contemporary experimental data on the radiation capture cross-sections of 236_U in the energy range of neutrons 1-500 keV

Захват нейтронов ядром ²³⁶U является одним из процессов в цепочке ядерных превращений, приводящих в итоге к накоплению в отработанном топливе ядер ³⁵²U и ²³⁴Pu, оказывающих существенное влияние на технологические характеристики регенерированного топлива, затрудняющие обращение с ним и использование его в многократных циклах переработки. Экспериментальных данных по сечению радиационного захвата для ²³⁶U мало.

В последние годы был предпринят ряд экспериментальных исследсваний [1, 2], которые дали значительное отличие от ранее опубликованных данных [3-5].

Упомянутые исследования были проведены независтмо методом замедления в свинце[I] в интервале энергий нейтронов 0, I - 55 кэВ и методом активации [2] в интервале энергий 0, I6 - I, I5 МэВ. Данные [2]получены в измерениях относительно \overline{Sng}^{-rg+Hu} (градуировка эффективности гамма-спектрометрической аппаратуры проводилась по тепловым сечениям²⁵⁶U и ¹⁹⁷Au и абсолютно) и по отношению к сечению рассеяния на водороде (определение эффективности тракта активации - абсолютно, метоликой $4\pi/3$ δ -совладений). Результаты измерений хородо согласуются между собой в пределах погрешностей, которые составили в измерениях относительно $\overline{Sng}^{-rg-2}Au = 5, I - I0, 7$ %, а в измерениях по отношению к $\overline{Sng} - 3, 2 - 4, I\beta$.

В данной работе в рамках статистической модели Хаузера-Фешбаха-Молдауэра методом максимального правдоподобия по программе *EVPAR* (методика, применявшаяся для ряда продуктов деления, ядер редкоземельной области, ²³²Ль и ²⁴⁴U [6]) проведен анализ данных работ [I, 2] с целью определения средних резонансных параметров — силовых радиационных и нейтронных функций. Расчетно-теоретическое описание экспериментельных данных показано на рисунке.

Теоретическое описание сечений 2360 в области энергий 1-500 ков в сравнении с экспериментом:--- расчет по средним резонансным параметрам;---- ENDF/B-5; - /1/; - /2/; о- абсолютные измерения

Полученные значения силовых функций в сравнении с другими Аанныии приведены в таблице. Расчёты по оптической модели проводились методом связанных каналов по программе ССКот [7]с параметрами несферического потенциала из [8]. Оценки силовых функций для ²³⁶ согласуются с аналогичными дая ²³⁶ и ²³⁶ и ²³⁶ к полученными при совместном анализе результатов измерений полного сечения, сечений радиационного захвата, упругого и неупругого рассенния н области энергий нейтронов I+1000 кэВ.

Как видно из рисунка, расчет с использованием полученных значений силовых функций (малый вклад *f* -волны учитывался в приближении S₁ · S₁) короно описывает экспериментальные данные [I, 2] по бых в области энергий нейтронов 1-500 кэВ. Существенные резличия с оценкой

	Sno,	Sni,	Sn2,	Sro,	⊅₀,	F.o.,
	10-4	10-4	10-4	10-4	эВ	МэВ
BNL - 325	± 1,3 ± 0,2	$\pm 0,6$			± 15,4 ± 1,0	± ²⁷ ± ³
ENJF/B-5	0,994	2,8+ 4,6	I, 0	14,4	16,2	23,3(8) 26,0(p)
Оп тическая модель	0,962	2,27	I, 55			
Настоящая работа	± 0,954	± 0,15	± 2,8 ± 0,6	± ^{I4,5} 1,0	I5 , 4	±22,3 ±2,0
Для ²³⁸ U	± 0,93 ± 0,03	± 2,30	± 3,0 ± 0,3	11,0 ± 0;3	20,8	±22,9 ±0,7
Для ²³² Th	± 0,93 ± 0,03	± 0,08	± 2,0	±11,7	17, 0	±22,0 ±0,8

Сравнение различных денных по средним резоненсным пареметрам ²³⁶U

ЕNDF /B-5 [9] объясняются тем, что последняя основывается на старых данных [3 - 5], отличающихся от [I, 2] в области энергий выше 200кзВ на 30- 50%. На рисунке приведены также расчеты сечений лолного (\mathfrak{S}_{ted}) и неупругого рассеяния (\mathfrak{S}_{te}). Сравнивать эти расчёты с экспериментом трудно, так как последные отсутствуют или имеют очень большие неопределенности.

Выводы. І. Получены средние резонавсные параметры, описывающие современные экспериментальные данные по сечению радиационного захвата ²³⁶U в широкой области энергий нейтронов I - 500 кэВ. 2. В настоящее время по сечению S_{Ng} ²³⁶U имеются две группы экспериментальных данных [I, 2] и [3-5] так что для получения более надежной оценки сечений и параметров необходимы дополнительные измерения средних сечений захвата независимыми методиками в области энергий ниже 500 кэВ. 3. Желательно проведение измерений сечения неупругого рассеяния вблизи порога реакции, что позволило бы более надежно сценить силовые функции для *P*- и *d*- нейтронов.

99

Список литературы

- Бергмен А.А. и др. Вопросы атомной науки и техники. Серия: Ядер-ные константы. М., ЦНИИатоминформ, 1982, вып.1(45), с.3.
 Грудзевич О.Т. и др. Вопросы атомной науки и техники. Серия: Ядер-ные константы. М., ЦНИИатоминформ, 1983, вып. 2(51), с.3.

- 3. Stupegia D.C., Heinrich R.R., McCloud C.H. J. Nucl. Energy, 1961, part A/B, V.IS, p. 200.
- 4. Barry J.F., Bunce J.L., Perkin J.L. Proc. Phys. Soc., 1961, V. 78, p. 801.
- 5. Carlson A.D. e. a. Nucl. Phys., 1970, V. 141, p. 577.
- Мантуров Г.Н., Николаев М.Н. Препринт ФЭИ-666, 1976.
 Игнаток А.В., Лунев В.П., Шорин В.С. Вопросы атомной науки и тех-ники. Серия: Ядерные константы. И., ЦНИИатоминформ, 1974, вып.13, c.59.
- 8. Hacuat G. e.a. Report CEA-N-2197,1981. 9. Divadeenam M. e.a. In: ENDF/B Summary Documentation (ENDF-201), BNL - NCS - 17541, 1979.

ТОЧНОСТЬ ОЦЕНКИ ЭФФЕКТОВ РЕЗОНАНСНОЙ САМОЭКРАНИРОВКИ СЕЧЕНИЙ В ОБЛАСТИ НЕРАЗРЕЛЕННЫХ РЕЗОНАНСОВ

В.Н.Кощеев, Г.Н.Мантуров, М.Н.Николаев, В.В.Синица (ФЭИ)

> Рассмотрен вопрос оценки точностей расчета сечений и факторов самоэкранировки в области неразрешенных резонансов на примере ядра 200

The question about accuracy of cross-sections and shelf-shielding factors in unresolved region is investigated for example of nuclei 2501.

С точки зрения физики быстрых реакторов область неразрешенных резонансов топливных нувлидов является весьма важной. Большая доля поглощений нейтронов в реакторах этого типа происходит именно в этой области. С другой стороны, те данные о нейтронных сечениях в области неразрешенных резонансов, которые получены в дифференциальных нейтронно-физических экспериментах, зачастую подвергаются сомненых и корректируются так, чтобы обеспечить приемленое согласие PEBUJATATOB PACHETOB PEARTOPHEX XAPARTEPHETER & COOTBETCTBYKUNX 9Xсперементальных данных. Навболее ярким и важным примером служит ядро 238 и, сечения раднационного захвата и неупругого рассеяния которого в области энергий ниже примерно 100 коВ при расчетах реакторов принимаются сейчас более низкими, чем это следует из оценки дифференциальных экспериментов /1/. В связи с этим вопрос о точности оценки нейтронных сечений тяжелых ядер в области неразрешенных резонансов по данным дифференциальных экспериментов оказывается весьма актуальным. Поскольку реакторно-физические эксперименты, чувствительные к нейтронным сечениям того или иного топливного нуклада, проводятся в средах, где концентрация этого нуклида велика, в расчетах используются нейтронные сечения, в которые введена поправка на DESCHARCHYD CAMOSKDAHNDOBKY:

Bon = f(Bo,T),

где $\langle G \rangle$ - сечение, усредненное по резонансной структуре, измеряемое в экспериментах с низким разрешением, а f(G,T) - фактор резонансной самоэкранировки, учитывающий то обстоятельство, что в среде, содержащей данный нукляд в высокой концентрации, резонансных нейтронов меньше, чем в пучке, на котором измерялось $\langle G \rangle$. Фактор самоэкранировки зависит от сечения разбавления G рассматриваемо-

IOI

го нуклида другими нуклидами, вкодящими в состав среды, и от температури среды Т. Расчети средних сечений и фактор резонансной самоэкранировки в области неразрешенных резонансов основываются на теоретических представлениях – статистической модели Хаузера-Фешбаха-Молдауэра, параметрами которой являются нейтронные $S_{n\ell}$ и радиащионные $S_{n\ell}$ силовые функции, а также эффективный радиус рассеяния

R', определящий сечение потенциального рассеяния. Оценка параметров модели проводится методом максимального правдоподобия, который в предположении о нормальном распределении погрешноотей анализируемых данных сводится к методу наименьших квадратов (МНК). Нелинейные уравнения МНК решаются итерационно методом линеаризации. В качестве нулевого приближения используются обычно результаты оценки R', S_{ho} и S_{ko} , а иногда и S_{n4} из области разрешенных резонансов. Задачей МНК является подбор такого набора значений параметров, который наименьшим образом уклоняясь от заданного обеспечивает наилучшее (в смисле МНК) описание экспериментальных данных в области неразрешенных резонансов.

Чем же определяются погрешности результатов расчетов средних сечений и факторов самоэкранировки, основанные на определенных таким образом параметрах?

Прежде всего, конечно, погрешностями параметров расчетной модели. Носледние, в свою очередь, зависят от того, сколь шерожий круг экопериментальных данных в области неразрешенных резонансов был включен в анализ. Погрешности, обусловленные неточным знанием параметров, могут быть легко оценены, поскольку МНК одновременно с параметрами дает и ковариационную матрицу их погрешностей, которая, правда, определяется в рамках линейной гипотезы, т.е. в предположения, что погрешности сечений линейно связаны с погрешностями параметров. Эта гипотеза нуждается в проверке.

Вторым источником погрешностей являются отличия параметров (резонансных ширин и раостояний между резонансами), усредненных по конечному числу резонансов, попавших в пределы той или иной энергетической группы, от генеральных оредних, оценками которых являются параметры модели, определенные с помощью МНК с привлечением всей имеющейся информации. Эти погрешности также несложно оценить, поскольку распределения отклонений ширин и расстояний от средних значений известны.

Третым источником погрешностей могут быть некорректности используемого варжанта статистической модели: например, неправильный выбор раднуса ядра при определении проницаемостей потенциального барьера или применение модели "черного ядра" (а не оптической модели) для оценки энергетической зависимости проницаемостей.

Наконсц, четвертым источником погрешностей является возможная неадекватность используемой расчетной модели. В нашем олучае - это проявления нестатистических, т.е. прямых и "полупрямых" процессов, таких, как валентный захват, ведущий к резкому увеличение флуктуаций радиационных ширин по сравнению со статистически олидаемами; входные состояния, усиливаниие флуктуании нейтронных нирин и увеличивалище связанные с ними погрешности, корредиции входных нейтронных вирин с выходными ширинами (радационными, делительными, "неупругами"). Наличие и влияние нестатистических эффектов можно установить путем сопоставления результатов статистических расчетов с экопериментальными данными.

Ниже дан пример анализа точности оценки сечений и факторов самоэкранировки ²³⁸U - основного резонансного поглотители в современных реакторах.

Коэффециенты	чувствительносте	і оредных	COTOHYN

и факторов самоэкраниронии к оредним резонанским параметрам

и их погрешности, 🖇 (T=3	ло н
--------------------------	------

Показатель	ль		Øc	<i>f</i> t (s.	.,T)	€ (e	ь., <i>т</i>)
				6, =I	ರ್ <u>ಡ</u> =I0_	c _o =I	G₂=I0
	Ds	-0,3I	-0,56	0,25	0,23	0,14	0,11
	De	-0,04	-0,44	0,00	-0,00	-0,16	-0,13
Козфінциен-	[#s	0,31	0,13	-0,31	-0,29	-0,11	-0,10
ты чувстве- тольностей	2 Tap	0,04	0,31	-0,00	-0,00	-0,07	0,05
	1 Trs	0	0,44	0	0	-0,I5	-0,12
	(FTP	0	0,13	0	0	0,04	0,03
TOMERO Co		5,3	5,0	5,3	5,I	2,0	I,8
Все данные		0,8	1,2	0,8	0,8	0,6	0,6
Флуктунрушине	{ Г	2,7	I,7	2,7	2,5	0,9	0,9
факторы	١D	I,I	2,1	0,9	0,8	0,5	0,4
Полные погревности		3,0	3,6	3,3	3,I	I,6	I,6

В первой части таблицы приведены коэффициенты чувствительности величин $\langle G_t \rangle$, $\langle G_c \rangle$, $f_t (G_o, T)$, $f_c (G_o, T)$ к силовым функциям – S_{no} , S_{n_1} , S_{fo} , S_{g1} , а также \overline{D}_o и \overline{D}_1 – средним расстояниям между s- и ρ -резонансами. Расчет сеченый и факторов самоэкранировки проводился для энергетической группы 4.65-10 кзВ. Средние сеченыя нечувствительны к \overline{D} , определяющему при фиксированных S_n и $S_{\overline{J}}$ липь энергетический масштаб резонансной структуры. Чувствительность к \overline{D} факторов самоэкранировки обусловлена тем, что при T \neq 0 этот энергетический масштаб сопоставляется с доплеровской шириной резонансов. Коэффициенты чувотвительности рассчитывались численно с помощью пакета прикладных программ ГРУКОН.

В середние таблицы приведены погрешности названных величин, обусловленные погрешностями параметров. Использованы 2 варианта ковариационных матриц этих параметров: в случае, когда с помощью МНК анализировались лишь данные по сечению захвата в области I-300 кеВ, и в случае, когда в анализ включались также данные по полному сечению и сечениям упругого и неупругого рассеяния. Учет данных по полному сечению резко снижает погрешности оценки сечений и факторов самоэкранировки, в то время как учет данных по сечениям рассеяния на результаты оценки полного сечения и сечения захвата в области ниже ~ 100 кеВ (где вклад *d*-волны мал) практически не сказывается.

В работе [2] уже исследовался вопрос справедливости линейной гипотезы в оценке погрешностей. Была выполнена серия расчетов, в которых "экспериментальные" данные генерировались путем разбрасывания оцененных значений, рассчитанных по оцененным параметрам, в соответствии с ковариационными матрицами экспериментов. В каждом таком расчете с помощью МНК находились наборы параметров, описывающие полученные таким образом совокупности "экспериментальных" данных, и рассчитывались групповые сечения. Оцененные по полученной выборке стандартные отклонения сечений оказались вдвое больше полученных в рамках линейной гипотезы.

В третьей части таблици приведени погрешности рассматриваемых величин, обусловленные флуктуациями нейтронных ширин и расстояний между резонансами. Для влияния последних получена лишь нижняя оценка, поскольку корреляции между соседними расстояниями не учитывались.

Наконец, в последней части таблици приведени полние погрешности, оцененные как $\mathcal{S}_{\text{полн}} = \sqrt{(2\mathcal{S}_{\text{стат}})^2 + \int^2 \phi_{\text{лукт}}}$. Двойка перед $\mathcal{S}_{\text{стат}}$ учитывает влияние нелинейности.

Что касается нестатистических эффектов, то валентный захват нейтронов тяжелыми ядрами практически отсутствует, что подтверждается спектрами у-излучения захвата.Флуктуации полного сечения и сечения захвата, отмечавшиеся, например, в работе /3/, на наш взгляд, не настолько велики, чтобы для их объяснения необходимо было привлекать гипотезу о наличии промежуточной структуры (даже если определенные статистические критерии ее и не отвергают). Гипотеза о корреляции входных и выходных ширин необходима для объяснения вноских значений сечений неупругого рассеяния, полученных в дифференциальных измерениях /4/, противоречащих, однако, данным интетральных экспериментов /1/. Как бы то ни было, эта гипотеза не сказывается на результатах оценки ни самих рассматриваемых величин, ни их точностей.

Таким образом, нам не удалось найти аргументи, ставящие под сомнение высокую точность современной оценки сечений и факторов самоэкранировки в области неразрешенных резонансов. Коэффициент корреляции между погрешностями средних сечений и их факторов самоэкранировки отрицателен, так что погрешность в блокированном сечении $\overline{\triangleleft} \epsilon_{\Lambda}$ (например, захвата) оказывается ниже или примерно равна погрешности $\langle \overline{\triangleleft} \rangle$.

Следует отметить, что Ваньковым А.А. и др. оценивались фактори резонансной самоэкранировки для 238 U исходя из анализа экопериментальных функций пропускания также с високой точностью оценки. Максимальние погрешности составили: для f_t ($\leq =0$) 7-15% (в зависимости от энергетической группы), а для f_c ($\leq =0$) от I,5 до 3%. С ростом сечения разбавления погрешности резко падают. Полученные Ваньконым А.А. и др. оценки точностей согласуются с выводами настоящей работы.

Список литературы

- I. Абагян Л.П. и др. Групповые константы для расчета реакторов и защиты. Справочник. Под ред. М.Н.Николаева. М., Энергоиздат, 1981.
- Николаев М.Н. и др. Нейтронные данные для урана-238. Часть І. Аналитический обзор ОБ-45. Обнинск, 1978.
- 3. Perez R.B. e.a. Phys.Rev., 1979, v.20, p.528.
- Lynn J.E. In: Proc.Conf. on Nuclear Data for Reactors, Helsinki, 15-19 June 1970. Vienna, IARA, 1970, p.93.

I05

ОЦЕНКА СЕЧЕНИЯ ЗАХВАТА U В ИНТЕРВАЛЕ ЭНЕРГИЙ I №9В ≤ E § I, I МЭВ На ОСНОВЕ ПАДЕ-АППРОКСИМАЦИИ

С.А.Бадиков, Е.В.Гай, Н.С.Работнов, А.О.Типунков, В.А.Толстиков

(NGD)

По результатам измерений сечения захвата ²³⁶ U в интервале энергий I кэВ ≤ E_n ≤ I,I МэВ на основе Падеаппроксимации получено выражение для оцененного сечения в виде рациональной функции энергии. Методом опорных ординат построен коридор оцененной погрешности аппроксиманты, которая оказывается в 2-2,5 раза меньше экспериментальной

The Pade-approximation is applied to obtain the evaluated $^{236U}(n, \gamma)$ cross-section for 1 keV $\leq E \geq 1,1$ MeV by fitting the measured values with a rational function of energy. The method of "supporting ordinates" allow to estimate the error of evaluation which is 2-2,5 times smaller than experimental one

Результаты экспериментальных исследований [1,2] и предварительных теоретических оценок [2] говорят о необходимости пересмотра оцененных сечений радиационного захвата нейтронов ядром²³⁶ U в области энергий свыше I кэВ.

Оценка ENDF/B-V основывается на экспериментальных данных работ [3,4], которые с точки эрения недавно проведенных измерений [1,2] представляются заметно завышенными.

В работе [2] измерения были проведены методом активации для $E_n = 0,15 - I,15$ МэВ. Величина потока облучающих нейтронов определялась по активации образца ¹⁹⁷ Ач и с помощью пропорционального счетчика протонов отдачи. Эффективность Ge- Li гамма-спектрометра определялась абсолютно - с использованием метода β - γ -совпадений и по тепловым сечениям захвата ядер²³⁶ U и ¹⁹⁷ Ач. Полная погрешность, достигнутая в экспериментах с использованием сечения захвата ¹⁹⁷ Ач быстрых нейтронов в качестве стандарта, находится в пределах IC, 7-5, IX. а с использованием сечения - 4, I-3, 2%. Данные, полученные методом времени замедления в свинце [I], имеют погрешность не свыше 3, 2%.

При использовании полученных экспериментальных делных ядернофизических и нейтронно-физических расчетов необходямо иметь возможность вычислять значение сечения в произвольной точке рассматриваемого интервала, т.е. получить оцененную кривую вместе с оценкой
погрешности соответствующих значений. В настоящем докладе такая оценка производится с помощью метода, основанного на аппроксимации рациональными функциями (приближение Паде) и описанного в работах [5-8]. При этом для оцененного сечения как функции энергии получается следующее аналитическое выражение;

$$\delta(E) = C + \sum_{i=1}^{l_1} \frac{a_i}{E - p_i} + \sum_{k=1}^{l_2} \frac{d_k (E - E_k) + \beta_k}{\gamma_k^2 + (E - E_k)^2}, \quad (I)$$

где C, α_{i} , ρ_{i} , α_{k} , β_{k} , γ_{k} , и \mathcal{E}_{k} -постоянные. Тогда $\Delta \mathcal{C}(\mathcal{E})$ погрешность $\mathcal{C}(\mathcal{E})$ при произвольном значении \mathcal{E} - выражается через так называемые опорные абсциссы \mathcal{E}_{V} и погрешности опорных ординат $\Delta \mathcal{C}_{V} = \pm \Delta \mathcal{C}(\mathcal{E}_{V})$. \mathcal{E}_{V} при этом выбираются таким образом, чтобы ковариационная матрица величин $\mathcal{C}(\mathcal{E}_{V}) \equiv \mathcal{C}_{V}$ (опорных ординат), рассматриваемых как параметры аппроксиманты, была диагональна, а $(\Delta \mathcal{C}_{V})^{2}$ и являются диагональными элементами этой матрицы. Подробнее об этом способе задания погрешностей аппроксиманты см. в работах [7,8].

Для $\Delta C(E)$ справедливо следующее выражение:

$$\left[\Delta G(E)\right]^{2} = \sum_{M} \left(\Delta G_{M}\right)^{2} \left[\frac{Q^{2}(E_{M})}{Q^{2}(E)} \prod_{V \neq M} \frac{(E - E_{V})}{(E_{M} - E_{V})}\right], (2)$$

2

где E_{V} - упомянутые выше опорные абсциссы, а Q(E) - знаменатель аппроксиманты (I), т.е.

$$Q(E) = \prod_{i=1}^{l} (E - p_i) \prod_{k=1}^{l} [Y_k^2 + (E - E_k)^2], \qquad (3)$$

методом дискретной оптимизации, описанным в [5], была получена десятипараметрическая формула, аппроксимируюцая полную совокупность экспериментальных данных [I,2] в предположении статистической независимости погрешностей. Оптимальная кривая соответствовала C = 0, $\ell_{\star} = 3$ $\ell_{\perp} = I$. Подстановка численных значений полученных параметров в (I) дает следующую формулу для энергетической зависимости $G_{n,Y}(E)$ на ²³⁶ U (сечение в барнах, энергия в кэВ):

$$G_{N,Y}(E) = \frac{62,01}{E+316,2} + \frac{12,45}{E+14,87} + \frac{1,749}{E-0,25} + \frac{15,99(E-767,1)+18854}{420,5^2} + (E-767,1)^2$$

Результат аппроксимации сравнивается с экспериментальными данными на рис. I.

Рис. I. Сравнение экспериментальных данных /I,2/ с оцененной кривой (4). Экспериментальные погрешности в левой части рисунка не указаны, поскольку они там примерно соответствуют размеру точек

На рис.2 проводится сравнение экспериментальных погрешностей с относительной погрешностью оценки $\Delta G(E)/G(E)$, полученной методом опорных ординат для двух случаев с учетом и без учета данных, которые были получены поэже остальных результатов.

Видно, что оцененная погрешность на большей части интервала примерно вдвое ниже экспериментальной. Рисунок иллюстрирует также влияние "добавления информации" на оцененную погрешность. Пунктирная граница коридора в правой части рис.2 соответствует оценке погрешности без учета более поздних данных, и в этом случае результат практически совпадает с экспериментальной погрешностью. Добавление данных уменьшает погрешность оценки.

В таблице приведены значения E_{V} и ΔG_{V} , позволяющие по формулам (2-3) вычислять значение оцененной погрешности при произвольном значении энергии.

Рис.2. Сравнение погрешностей оцененной кривой (коридор с двойной штриховкой) с экспериментальной погрешностью (коридор с одинарной штриховкой). Пунктирная граница в правой части рисунка соответствует оценке погрешности без учета данных, обозначенных треугольниками. Ссь абсцисс, от которой отсчитано значение погрешности, соответствует оцененной кривой рис. I

Е, кэВ	1,139	2,270	6,837	23,48	73,72
∆เร้ง . พถ	26,3	I6,I	8,25	6,87	10,0
Е, кэВ	280,3	315,3	717,8	924,5	II25,0
Δ бу, мб	5,92	4,65	7,38	5,04	4,17

В заключение отметим, что настоящая оценка, основанная на недавних измерениях, отличается от оценки $ENDF-B/\bar{y}$ на 30 - 60% в сторону уменьшения в области энергий нейтронов 0,2 ~ I, I5 МэВ.

Список литературы

- I. Бергманн А.А., Медведев А.Н., Самсонов А.Е. Вопросы атомной науки и техники.Серия: Ядерные константы.Нейтронные константы и параметры. Выпуск I (45), стр. 3-7. М., ЩНИМатоминформ, 1982.
- Грудзевич О.Т., Давлетшин А.Н., Типунков А.О. и др. Вопросы атомной науки и техники. Серия: Адерные константы. Нейтронные константы и параметры. Выпуск 2(51), стр. 3, М.ЦНИМатоминформ, 1983.
- Stupegia D.C., Heinrich R.R., McCloud G.H. Reactor Sci. and Technology. - J.Nucl.Energy, parts A/B, 1961, v.15, N 4, p. 200.
- 4. Barry J.F., Bunce J.L., Perkin J.L. Proc. Phys. Soc., 1961, v.78, N 503, p.701.
- 5. Виноградов В.Н., Гай Е.В., Работнов Н.С. Препринт ФЭИ-384. Обнинск, 1974.
- 6. Виноградов В.Н. Обзор ФЭИ ОБ-125. Обнинск, 1981.
- 7. Баликов С.А., Гай Е.В., Работнов Н.С. Определение погрешностей резонансных кривых при аппроксимации рациональными функциями. См. наст. сб. с. III-II5.
- 8. Бадиков С.А., Биноградов В.Н., Гай Е.В., Работнов Н.С. Аналитическая аппроксимация данных в нейтронной физике. - Атомная энергия, 1984, т.56, с.20.

ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТЕЙ РЕЗОНАНСНЫХ КРИВЫХ ПРИ АППРОКСИМАЦИИ РАЦИОНАЛЬНЫМИ ФУНКЦИЯМИ

С.А.Бадиков, Е.В.Гай, Н.С.Работнов

(AGA)

Предлагается метод оценки погрешности аппроксиманты при аппроксимации экспериментальных зависимостей рациональными функциями (Паде-приближение). Метод основан на параметризации опорными ординатами и в случае статистически независимых измерений в различных точках позволяет подучить диагональную ковариационную матрицу этих параметров и явное выражение для оценки погрешности.

A method is proposed to determine the approximant's error for the rational function fit of the experimental curves (Padeapproximation). The method is based on the parametrisation by "supporting ordinates" and results in the diagonal covariance matrix of these parameters and in explicit expression for the error if measured values are statisticaly independent.

При аналитической аппроксимации нейтронных данных в задачах их обработки, анализа и оценки часто наряду с самой аппроксимирущей функцией $f^{(L)}(Z, \rho_1, \rho_2, \dots, \rho_4)$, где Z -независимая переменная; ρ_i -параметры, а L - их полное число, требуется знать Δ (Z) оценку погрешности значения этой функции в зависимости от Z. Обычно предполагается, что Δ (Z) - стандартное отклонение, являющееся квадратичной формой погрешностей параметров $\Delta \rho_i$. В работах [1,2]показано, что при обработке резонансных кривых весьма удобны рациональные аппроксиманты (отношения полиномов), получаемые с помощыю приближения Паде второго рода, а в качестве параметров естественно выбирать опорные ординаты - значения аппроксиманты в L = точках. Варыруя выбор точек, его можно подчинять различным требованиям оптимальности. В настоящей работе показано, как можно выбрать опорные точки, чтобы получить диагональную ковариационную матрицу опорных ординат и простое явное выражение для $\Delta (Z)$.

Паде-аппроксимантой называется рациональная функция, совпадающая с аппроксимируемой в *L*=точках, т.е. удовлетворяющая системе уравнений

 Π

 $f_{N,M}^{(U)}(z_V) = P_N(z_V)/Q_N(z_V) = f(z_V) = f_V; V = f, 2, ..., 4, (I)$ где R_N и Q_N - полиномы степеней N и M. Параметры P_V , определяющие функцию $f_{N,M}^{(U)}$ можно выбрать многими способами – взять коэффициенты или корни полиномов, параметры полосного разложения и т.д. Однако, поскольку система (I) однозначно определяет вектор (P_V) как функцию вектора (f_V), то значения f_V сами можно рассматривать как независимые параметры. Их мы и назовем опорными ординатами. Погретности опорных ординат непосредственно задают "коридор ошибок" вдоль кривой. Кроме того, эти параметры имеют все одинаковую размерность, и аппроксиманта является в достаточно общем случае их однородной функцияй первого порядка. Последнее весьма важно. По теореме Эйлера об однородных функциях первого порядка справедливо следующее их представление:

$$f(\mathbf{z}, f_1, \dots, f_L) = \sum_{i=1}^{L} f_V \frac{\partial f}{\partial f_V}. \qquad (2)$$

Хотя оно и не линейно по f_{V} (производные также зависят от f_{V}), но как будет показано ниже, в некоторых отношениях может сыграть роль линейного разложения по ортогональным функциям. Для производных (\mathcal{Z}) существует простое выражение (см. [2])

$$\frac{\partial f^{[L]}(z)}{\partial f_{V}} = \frac{\prod_{u \neq V} (z - \overline{z}_{u}) Q_{N}^{2}(\overline{z}_{u})}{Q_{N}^{2}(\overline{z}) \prod_{u \neq V} (\overline{z}_{u} - \overline{z}_{v})}.$$
 (3)

Пусть F_{ℓ} – экспериментальные значения аппроксимируемой функции, измеренные при значениях аргумента \mathcal{F}_{ℓ} с независимыми нормально распределенными погрешностями, дисперсии которых заданы и равны G_{ℓ}^2 . Тогда статистическая сумма, минимизируемая в МНК, информационная матрица $A_{\mu\nu}$ и обратная ей ковариационная матрица $V_{\mu\nu}$ определяются соотношениями

$$S = \sum_{l=1}^{Me_{x}} \frac{\left(f^{[l]}(\overline{z}_{l}) - \overline{f}_{l}\right)^{2}}{\overline{\sigma}_{l}^{2}}; \quad A_{MV} = \sqrt{-1} = \frac{\overline{\partial S}}{\overline{\partial f_{M}}} \frac{\overline{\partial S}}{\overline{\partial f_{V}}}.(4)$$

Здесь усреднение ведется по распределению отклонений экспериментальных значений от истинных. Для диагональности Уму необходимо и достаточно. чтобы

$$A_{\mu\nu} = \sum_{i=1}^{Nex} \frac{1}{5_i^2} \left[\frac{\partial f(z_i)}{\partial f_{\mu}} \frac{\partial f(z_i)}{\partial f_{\nu}} \right] = \lambda_{\mu} \delta_{\mu\nu} \cdot (5)$$

Тогда погрешности опорных ординат независимы, а $\Delta^{\mathcal{L}}(\mathcal{Z})$ равно

$$A^{2}(\vec{z}) = \sum_{\mathcal{M}=q}^{b} \left(\frac{\partial f^{\left[\mathcal{L} \right]}(\vec{z})}{\partial f_{\mathcal{M}}} \right)^{2} / \hat{\mathcal{A}}_{\mathcal{M}}$$
(6)

Используя известные свойства ортогональных полиномов (см. [3]), нетрудно убедиться, учитывая (3), что для выполнения равенства (5) достаточно выбрать в качестве \vec{z}_{M} корни полинома $\beta_{L}(\vec{z})$ из системы полиномов $\rho_{0}(\vec{z}), \quad \rho_{1}(\vec{z}), \ldots, \quad \rho_{2}(\vec{z}),$ ортогональных на множестве \vec{z}_{i} с весом $1/\sigma_{i}^{2} \mathcal{Q}_{M}^{*}(\vec{z}_{i}), \quad \text{т.е. удовлетворящих соотно-$

Пениям

Non

$$\sum_{i=1}^{Nex} P_{K}(\overline{z}_{i}) P_{\ell}(\overline{z}_{i}) / \overline{G}_{i}^{2} Q_{M}^{*}(\overline{z}_{i}) = N_{K} S_{K\ell}. \qquad (7)$$

Способы рекурсивного построения таких систем полиномов хороно известны /3/.

Проиллострируем описанный метод вычисления погрешностей алироксиманты на модельном примере. Функция

$$f(z) = \frac{1}{(z+0.5)^2+0.5^2} + \frac{1+0.2z}{(z-0.5)^2+0.5^2}$$
(8)

была рандомизирована в 41 эквидистантной точке на интервале -I,I с погрешностью, которая задавалась датчиком случайных чисел, выбирающим их из нормального распределения со средним значением 0 и дисперсией, соответствующей стандартному отклонению в 5%. Результаты аппроксимации и оценки ее погрешности приводятся на рис.I и 2.

Рис. I. Результат Паде-аппроксимации функции (8), рандомизированной с постоянной относительной погрешностью 5%. Точки с ошибками - результат рандомизации, сплощная кривая - аппроксиманта

Рис.2. Оценка погрешности аппроксыманты рис.1 по формулам (3) и (6) (коридор с двойной штриховкой). Коридор с одинарной штриховкой – "экспериментальная" погрешность. Сплошная кривая – аппроксиманта, отсчитакная от истинной кривой

Как и следует ожидать, точки аппроксиманты укладываются во второй, примерно вдвое более узкий коридор с вероятностью, соответствующей стандартному отклонению.

На рис.З приведены результаты подобной обработки для практического сдучая оценки сечения реакции ²³⁸ ((1,2*m*) в интервале энергий от порога до I9 МэВ (пример взят из работы [4]). Хотя число параметров в этом сдучае такое же, как в первом (восемь), резкие скачки в зависимости экспериментальной ошибки от энергии (обрабатывались совместно данные многих работ с разной точностью) ухудшают условия численного построения нужной системы ортогональных полиномов, тем не менее это осложнение не вызвало затруднений.

Издоженный метод построения рациональных аппроксимант и получения их статистических характеристик является достаточно удобным и универсальным. Если учесть, что экспоненциально-гармонический анализ также сводятся к рациональной аппроксимации, только не самой функции, а результатов применения к ней преобразования Фурье и Лапласа, то область применения этого метода охватывает практически все важнейшие системы аппроксимирующих функций. Разложение (2) при выборе

Рис.3. Результаты построения оцененной кривой $G_{n,2N}(\mathcal{E})$ и ее погредности $\Delta 5$ (\mathcal{E}) для ^{M2}V по совокупности экспериментальных данных (библиография источников приведена в [4]). Одененная погредность аппроксиманты изображена защтряхованным коридором

абсписс опорных точек, диагонализукаем информационную матрицу, с успехом может играть для аппроксимации рациональными функциями роль ортогонального раздожения. Предполагается провести широкую практическую проверку этого метода.

Список литературы

- Виноградов В.Н., Гай Е.В., Работнов Н.С. Курнал вычислительной математики и математической физики, 1981, т.21, Мб, с.1577.
 Виноградов В.Н., Гай Е.В., Работнов Н.С. Препринт ФЭИ-1328, Обнинск, 1982.
 Сегё Г. Ортогональные многочлены. М., ГИФМЛ, 1962, с.38.

- N.V.Kornilov et al. Nuclear Data for Sci K.H.Bockhoff (ed), Brussels, 1983, p. 679. Nuclear Data for Science and Technology.

КОМПЛЕКС ПРОГРАММ РАСЧЕТА СЕЧЕНИЙ ДВУХЧАСТИЧНЫХ РЕАКЦИЙ

Н.Н.Титаренко (ФЭИ)

> Описывается общая структура комплекса программ РЕАК-АВ, предназначенного для расчета на ЭВМ двухчастичных ядерных реакций в диапазоне энергий вплоть до IOO МэВ.

The general structure of computer program PEAK-AB for calculations of binary reactions in a range to 100 MeV is described.

В настоящее время для описания механизма двухчастичных ядерных реакций в области исследования до IOO МэВ широко используются оптическая и статистическая модели, метод искаженных волн, приближение сильной связи каналов. Создано довольно много сложных програмы расчета на ЭВМ, в которых, как правило, в основе реализована одна из указанных моделей механизма ядерной реакции. Однако разнообразные задачи из области фундаментальных исследований, а также жесткие требования к оценкам ядерных данных привели не только к усложнению этих моделей и схем расчета, но и к необходимости их объединения в рамках единой самосогласованной программы. Использование такого комплекса программ позволит поднять уровень теоретических исследований на более высокую ступень, так как в одном варианте расчетов можно будет при необходимости в любом кинематическом диапазоне учесть сразу оба механизма реакции, быстро и эффективно анализировать все возрастающий сбъем экспериментальной информации, одновременно привлекать к анализу различные бинарные реакции.

Рассматриваемый ниже комплекс программ РЕАК-АВ является первой попыткой такого объединения. Он предназначен для описания на современном уровне двухчастичных ядерных реакций с легкими частицами в диапазоне энергий вплоть до IOO Маб с охватом областей доминирования статистического и прямого механизмов реакции.

Основой для объединения оптической, статистической моделей, метода искаженных волн и сильной связи каналов может служить прежде всего заложенный в них единый квантовомеханический аппарат. В этих подходах используются одни и те же функции Кулона, полиномы Лежандра, козффициенты Клебша-Гордана, Вигнера и т.д. необходимо вводить в программы много общей информации, решать одно уравнение или систему несколькых связанных дифференциальных уравнений Шрединтера.

Базовые программы комплекса РЕАК-АВ для расчета бинарных реакций по оптической (РОМ-78)[I], статистической (СМТ-80)[2] моделям, методу искаженных волн (ВАР-82)[3] и сильной связи каналов (ССА-83) написаны на языке ФОРТРАН-ГУ для ЭВМ типа БЭСМ-6 и ЕС-1060. По этим программам можно рассчитывать различные угловые распределения двухчастичных ядерных реакций такие, как дифференциальные сечения, параметры векторной и тензорной поляризации, а также интегральные сечения и силовые функции. Предусмотрен анализ данных по реакциям с поляризованными частицами и мишенями в начальном состоянии, а также имеется возможность автоматического поиска феноменологических параметров моделей по различным экспериментальным данным в широком кинематическом диапазоне. Предполагается, что в расчетах по базовым программам комплекса участствующие в реакции частицы могут иметь спин 0, I/2 и I (это нуклоны и в основном легкие составные частицы). Схема комплекса приведена на рисунке.

Основные характеристики комплекса РыЖ-АВ определяются прежде всего возможностями составляющих его основу базовых программ РОМ-78,СМТ-80,ВАР-82,ССА-83. Ранее в работах [1,2,3] достаточно подробно были изложены алгоритмы и схемы расчетов по указанным программам, там же было проведено сопоставление результатов расчетов с соответствующими версиями отечественных и зарубежных программ, давались рекомендации относительно их использования на различных ЭВМ. Поэтому здесь перечислим только основные особенности базовых программ.

<u>РОМ-78 [1]</u>. Программа позволяет рассчитывать дийференциальные и интегральные сечения, параметры асимметрии, вращения, векторной и тензорной поляризации, а также силовые функции в упругом рассеянии легких частиц и ионов (10 B, 12 C, 16 O,...) на сферических ядрах. Предусмотрен вариант корректирования экспериментальных данных по упругому рассеянию на вклад изобар-аналоговых состояний с учетом изотопного состава мишени

II7

Блок-схема комплекса программ РЕАК-АВ для расчета на ЭВИ -двухчастичных ядерных реакций

<u>CMT-80. [2]</u>. Программа расчета сечений бинарных реакций по статистической модели. Учитываются любые двухчастичные каналы распада составного ядра с вылетом легких или тяжелых фрагментов, а также радиационный канал и канал деления. Распад составного ядра может проходить как на дискретные состояния ядра-остатка с известными квантовыми характерицтиками, так и в область статистически рас-

II8

пределенных неразрешенных уровней. Возможен расчет сечений в рамках традиционной статистической модели Хаузера-Фешбаха, а также в приближениях Хаузера-Фешбаха-Молдауэра и Хаузера-Фещбаха-Тепела.

<u>ВАР-82 [3,4]</u>. Программа используется для описания прямого одноступенчатого механизма широкого круга двухчастичных ядерных реакций в рамках первого борновского приближения метода искаженных воли. Можно рассматривать неупругое рассеяние на основе коллективных моделей и микроскопического подхода, реакции перезарядки, однонуклонного и двухнуклонного срыва и подхвата. Предусмотрена возмохность коррекции искаженных воли и водновых функций связанных одночастичных состояний на предмет учета недокальности потенциалов.

<u>ССА-83</u>. Программа расчета сечений бинарных реакций в приближении сильной связи каналов [5,6,7]. Возможна работа программы в трех основных режимах: расчет сечений упругого и неупругого рассеяния частиц на ядрах с учетом связи нескольких коллективных состояний [5]; учет прямых многоступенчатых эффектов во входном и выходном каналах в реакциях перестройки [6], а также расчет волновых функций одночастичных состояний в потенциале деформированного ядра [7].

Комплекс программ РЕАК-АВ реализован в блочном исполнении, передача и хранение всей введенной и промежуточной информации осуцествляется через соммой-область, а также для этой цели широко используются внешние устройства. Основные блоки работают с удвоенной точностью; для ускорения расчетов отдельные участки программы написаны на машинном языке, предусмотрен режим работы с многократным использованием заранее подготовленной информации. Модульность и совместимость всех блоков системы, динамический способ загрузки позволяют головной программе легко организовывать заданный во входных данных путь расчета.

Такая мобильная структура комплекса с широким спектром рассчитываемх характеристик кроме очевидных преимуществ проведения в рамках одного задания полных и самосогласованных расчетов на едином базисе параметров и констант предоставляет пользователю дополнительные возможности:

-испытывать новые подходы в теории ядерных реакций и структуры ядра, а также другие схемы и пути расчетов двухчастичных реакций; -однозначно выбирать при автоматическом поиске самосогласованный по различным реакциям и механизмам набор феноменологических параметров моделей; -получать богатую и разнообразную теоретическую информацию о механизме реакции и структуре ядра.

Проведенные на основе базовых программ комплекса расчеты [8-II] показали, что реализованная структура легко модернизируется и расширяется, система может быть использована в качестве належного инструмента в фундаментальных исследованиях. Например, в рамках описанного комплекса программ можно более детально, с разных позиций изучать структуру ядра, одновременно привлекая для этого разнообразную информацию по нескольким бинарным реакциям (неупругое рассеяние, срыв, подхват) с различной степенью поляризации системы в начальном состоянии.

Единые принципы подготовки входной информации для работы программ. возможность автоматического поиска параметров молели по широкому кругу экспериментальных данных, наряду с перечисленными выпе воэможностями комплекса, существенно облегчают его использование в оценках ядерных данных, когда необходимо получить полные как по типам процессов, так и по энергиям наборы нейтронных сечений.

Система программ РЕАК-АВ также может применяться для проведения разного рода поисковых и методических расчетов. Особенно это важно на начальной стадии подготовки трудоемких и дорогостоящих экспериментов по бинарным реакциям с малой статистикой. Предварительные расчеты позволят заранее выбрать для исследования наиболее критичные к механизму реакции или структуре ядра распределения.

Список литературы

```
Список литературы

1. Титаренко Н.Н. Препринт ФЭИ-I230.06нинск.1981.

2. Титаренко Н.Н. Препринт ФЭИ-I260.06нинск.1982.

3. Титаренко Н.Н. Препринт ФЭИ-I356.06нинск.1982.

4. Батсhler G.R. Nucl.Phys.,1964,v.55,p.1;1966,v.77,p.481.

5. Ташига Т.-Rev.Mod.Phys.,1965,v.37,p.679.

6. Ташига Т.-Phys.Lett.,1974,v.14C,p.60.

7. Rost E. Phys.Rev.,1967,v.154,p.994.

8. Gurbich A.F., Titarenko N.N. J.Phys.G.Nucl.Phys.,1981,v.7.p.L237.

9. Барьшников А.И.,Гурбич А.Ф., Титаренко Н.Н. Адерная физика,1981,

т.33, вып.5.с.II6L; Ядерная физика,1983,т.37, вып.3,с.529.

10. Ловчикова Г.Н., Дунев В.П., Сальников О.А., Симаков С.П.,

Титаренко Н.Н. Адерная физика,1983,т.37, вып.3,с.533.

11. Титаренко Н.Н., Адерокий Е.Л. Препринт ФЭИ-I409.06нинск,1982.
```

I20

ПАКЕТ ПРИКЛАДНЫХ ПРОГРАММ ГРУКОН

В.В.Синица, Е.В.Долгов, В.Н.Кощеев, М.Н.Николаев

(ФЭИ)

Рассмотрены структура и возможности пакета ГРУКОН для переработки оцененных нейтронных данных в групповые микроскопические константы

Structure and opportunities of the pocket of applied programms GRUCON for processing evaluated neutron data into group microscopic constants are considered

Под пакетом прикладных программ понимается совокупность взаимосвязанных прикладных и снотемных программ, обеспечивающих адекватное покрытие некоторой прикладной области /1/. Для пакета ГРУКОН такой областью является расчет групповых микроскопических нейтронных констант на основе оцененных данных по нейтронным сечениям. Необходимость пакетной организации программ для задачи подготовки микроконстант обусловлена:

- СЛОЖНОСТЬЮ СТРУКТУР ДАННЫХ ПО СЕЧЕНИЯМ, ПРЕДСТАВЛЯЮЩИХ СОбОЙ ПРАКТИЧЕСКИ ПРОИЗВОЛЬНЫЕ СОВОКУПНОСТИ РАЗЛИЧНЫХ СПОСОБОВ ПАРАМЕТ-РИЗАЦИИ РЕЗОНАНСНЫХ ОСОБЕННООТЕЙ;

- большим разнообразием расчетных цепочек, предназначенных для решения широкого круга задач константного обеспечения, начиная с задач анализа и оценки экспериментальных данных, формирования библиотек оцененных данных и кончая автоматическим преобразованием оцененных данных в групповые микроконстанты;

- потребностью постоянного расширения функциональных возможностей программы по мере развития задач расчета реакторов и радиационной защиты и совершенствования методов подготовки констант.

Архитектура пакета ГРУКОН. в соответствии с общим определением пакета прикладных программ характеризуется тремя компонентами;

функциональным наполнением - модулями пакета, разработанными
 учетом задач константного обеспечения;

 языком заданий - "программой преобразований" и "параметрами операторов";

 системным наполнением, которое для пакета ГРУКОН состоит из монитора, реализующего расчетные цепочки в соответствии с программой преобразований, и процедур обмена данными, обеспечивающих информационное сопряжение модулей.

Модули пакета ГРУКОН пишутся на ФОРТРАНе, но с соблюдением заранее выработанных правил.Это позволяет квалифицировать ГРУКОН как пакет со стандартизованным функциональным наполнением. Инструкции по пользованию ШШ ГРУКОН содержатся в работах /2-47.В основу разбиения данных по сечению на классы в пакете ГРУКОН положен тип параметризации резонансной структуры.Для библиотек оцененных данных это:

•R• - параметры разрешенных резонансов;

- •U• средние значения ширин и ресстояний между уровнями, характеризующие структуру сечений в области неразрешенных резонансов;
- •S• таблицы энергетической и температурной зависимости сечений.

Библиотеки групповых мекроконстант используют:

•F• - таблицы значений интегралов от параметрических функций сечений в зависимости от параметров среды - температуры и сечения разбавления \mathcal{G}_{0} (функциональ сечений);

P - подгрупповые параметры.

Данные •R•, •U•, •S•, •P• образуют группу "преобразуемых данных".

Функциональное наполнение пакета ГРУКОН включает четыре группы модулей или "операторов преобразования":

I) Модули ввода данных в рабочую библиотеку пакета – "библиотеку стандартных представлений" (БСП):

•UNPUT - ввод данных перфокарт;

- ENDF извлечение данных из библиотеки в формате ENDF/В /5/ с переводом в стандартный вид и записью в ЕСП.
- 2) Расчетные модули:
- *R/T-S ВОССТАНОВЛЕНИЕ ДЕТАЛЬНОГО ХОДА СЕЧЕНИЯ ИЗ ПАРАМЕТров разрешенных резонансов при заданных значениях температуры средн по указанной резонансной формуле;
- •S/T-S приведение детального хода сечения к заданной температуре среды;
- •S/C-S приведение нескольких сечений, заданных детальным ходом, к одной системе опорных точек и сложение сечений одинаковых типов с указанными весами-концентрациями ("свертка" сечений);

- •S/A-S ~ осуществление операций сложения и вычитания сечений разных типов, задажных в виде детальных ходов (например, нахождение сечения из баланса);
- •S/I-S ~ Приведение детального хода сечения к заданному закону интерцоляцик;
- •S/E-S удаление взоиточных спорных энергий по заденной точности интерполяции;
- *S/U-S ~ распаковка табляц детальных ходов остення по типам реакция;
- •S/G-F Вичисление групповых функционалов сечений на основе детального хода сечений;
- •U/D-F ~ вичисление ожидаемых значений функционалов сечений на основе средних резонансных дараметров;
- •F/G-F уореднение функционалов сечений в заданном групповом разбиении;
- F/C-F ВИЧИСЛЕНИЕ ФУНКЦИОНАЛОВ СУММАРНЫХ СЕЧЕНИЙ НА ОСНОВЕ ИЗВЕСТНЫХ ЗНАЧЕНИЙ ФУНКЦИОНАЛОВ КОМПОНЕНТ-СЛАГАЕМЫХ ("Свертка" функционалов);
- •F/-S ОПРЕДеление значение сечение на основе известных значение функционалов.
- 3) Модули вывода данных:
- ОПТРИТ- ВЫДАЧА ДАННЫХ ИЗ ОКОЛНОТСКИ БСП НА АЦПУ В ВИДС СПЛОШНОЙ ПСЧАТИ;
- •TABLE выдача преобразуемых данных на АШГУ в виде аннотированных таблиц;
- ENDF перевод данных по сечениям из представления •S• в формат ENDF/B;
- 4) Модули обслуживания БСП:
- •TRANS Копнрование данных;
- •TRANC КОЛИРОВАНИЕ О ДОЗАЛИСЬЮ К УЖЕ ИМСКЦИМСЯ ДАННЫМ;
- SELEC отбор данных по стандартному имени с последующим копированием;
- EXTRA отбор данных по номеру материала с последующим копированием;
- •CONDE удаление промежутков между данными в ВСП ("уплотиение" данных);
- •OEDER упорядочение данных в БСП по номеру материала;
- *CONTE ВЫДАЧА НА ПСЧАТЬ ЗАГОЛОВКОВ ДАННЫХ, СОДЕРЖАЩИХСЯ В БСП.

Большинство операторов преобразования имеют свои параметры. Например, для оператора "R/T-S должны быть заданы: NFORM - номер резонансной формулы; NT - число значений температур; EPS - точность вычислений; EL - нижняя и ER - верхняя границы энергетического интервала, для которого требуется выполнить расчет; T(NT) - массив значений температур.

Для некоторых параметров допускается задание их значений по умолчанию. Операции • INPUT, • OUTPUT, • TRANS, • TRANC, • SELEC, • CONTE вообще не требуют параметров.

Преобразуемые данные и параметры операторов хранятся в БСП и имеют одинаковую формальную структуру. Данные, вводимые в БСП с помощью операторов ввода либо образующиеся в результате работы расчетных моцулей, каталогизируются: в специальную соммом-область, "каталог всп", в виде "строки" каталога финсированной длины, заносятся имя и адрео данных в ЕСП. Таким образом. сущестнует однознач-HOE COOTBETCTBRE MEXILY LAHHAME B BCI & HOMEDOM CTPOKE KATAJOFA. На основе этого соответствия и построен специализированный язык для организации расчетных цепочек. Расчетная цепочка на этом языке задается в виде "программы преобразований", вводимой с перфокарт в самом начале работы пакета. Программа состоит из команд. имеющих следующую структуру: I, J, K, <-имя k-данных), <адрес k-данных), где I, J, K - номера строк каталога, в которых зарегистрированы соответственно исходные данные, параметры оператора и должны быть зарегистрированы результаты преобразования. Результатам присваивается имя, указанное в команде. Запись результатов в БСП выполняется в соответствии с заданным адресом. Если адрес в команде опушен (задан "по умолчанию"), результаты заносятся в ЕСП, начиная с первого свободного слова.

Помимо команд на преобразование данных существует группа служебных команд:

Системное наполнение пакета ГРУКОН состоит из двух компонент: программы-монитора и процедур обмена данными с БСП.

- В функции монитора входит:
- ввод программы преобразования и установление порядка отработки модулей;
- формирование значений "регистров обмена" данными с БСП (установление номеров внешних устройств, адресов, данных, характера обмена - чтения, записи и т.п.);
- вызов очередного модуля в оперативную память.

Информационное сопряжение модулей обеспечивается стандартизацией обмениваемых единиц информации и соблюдением правил использования при программировании модулей системных процедур.

Область приложения пакета ГРУКОН охватывает:

 анализ данных михроскопических экспериментов (расчет экспериментально измеряемых функций пропускания и самоиндикации, полученных в условиях "хорошей" геометрии; учет экспериментального разрешения и температуры мишени при сравнении детальных ходов сечений);

2) формирование файлов библиотек оцененных нейтронных данных (приведение таблиц сечения к требуемому закону интерполяции, удаление избыточных опорных точек, вычисление сечений из баланса, приведение сечений разных типов к одной системе опорных энергий);

3) переработку библиотек оцененных нейтронных данных в групповые микроскопические константы с целью их анализа и сравнения;

тенерирование системы мультигрупповых (с числом групп более
 микроконстант на базе библиотеки оцененных нейтронных данных.

Последния задача является главной сферой применения ШШ ГРУКОН, поэтому опишем состояние дел в этой области подробнее. В настоящее время у нас завершена компиляция І-й верски библиотеки файлов оцененных нейтронных денных (библиотеки 40НД) для 67 важнейших материалов ядерных реакторов и радиационной защить. Источниками данных послужили результаты оценок, выполненных в Советском Союзе и за рубежом, Для хранения данных в ФОНДе принят формат ENDF/B. Надежность панных І-й версии ФОНЛа непостаточна для того. чтобы ее можно было рекомендовать для использования в проектных расчетах (главным образом потому, что принятые зарубежные оценки основываются на устаревших данных). Тем не менее в настоящее время ведется работа по генерации на основе этой версии системы мультигрупповых (250 групп в области замедления) констант МУЛЬТИК. Первая версия МУЛЬТИК будет использоваться для обработки соответствующего программного хозяйства, а в практическом плане - для проверки точности используемых многогрупповых приближений (21, 26, 28, 49 групп). Мультигрупповое разбиение получено путем разбиения групп БНАБ на 4, 6, 9 или 12 мультигрупп так, что оно имеет общие граници и с японской 70групповой системой констант /6/. Программы, обрабатывающие МУЛЬТИК, могут для части нуклидов брать 28-групповме константы БНАБ-78 /7/, чем обеспечивается возможность детальных сравнений результатов, полученных в мультигрупповом и традиционном многогрупповом приближениях.

спноок латературы

- I. Басс Л.П. и др. Препрянт ИПМ, 1979, # 44.
- 2. Сяница В.В. Препрянт ФЭИ, 1981, # 1188.
- 3. Там же, # 1189.
- 4. Tam me, 1982, # 1332.
- 5. Data Formats and Procedures for the Evaluated Nuclear Data File, EML-MCS-50496 (ENDF - 102), 2nd ed., 1979.
- Katsuragi S., Tone T., and Hasegawa A. JARRI Fast Reactor Group Constants Sistem. Part 1, JAERI 1195. Tokai-mura, Naka-gun, Ibaraki-ken, Japan, 1970.
- Абагян Л.П. и др. Групповые константы для расчета реакторов и защиты. - М.: Энергоиздат, 1981.

КОРРЕЛЯЦИИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО НЕЙТРОННЫМ СЕЧЕНИЯМ

В.И.Дорогов, В.П.Чистяков

(МИФИ, МИ АН СССР)

Рассматривается задача расчета козффициентов корреляции экспериментальных нейтронных сечений, полученных различными авторами. Предполагается, что корреляции возникают за счет обцих для авторов случайных параметров. Приводится пример расчета корреляций для сечения деления 2350.

The problem of the correlation coefficients calculation between experimental neutron crosssections of different authors is discussed. The correlations is supposed from common random perrameters are appeared. The correlation coefficients for ²³²⁰ cross-section are calculated

В задачах оценки нейтронных данных знание коэффициентов корреляции существенно как при нахождении самой оценки, так и реальных ошибок оцененных данных. Использование коэффициентов корреляции может привести к заметному ужучшению свойств оценки (см./1/, с.3).

Рассмотрим задачу оценки коррелированных данных. Пусть плотность распределения измерений х., $\dot{c} = I, \dots, n$ величини μ имеет вид

$$p(\vec{x},\vec{y}) = (2\pi)^{-n/2} \exp\{-(\vec{x},y)^{T} \psi^{-1}(\vec{x},\vec{y})\}, \quad (1)$$

где $\vec{x} = \{x_1, ..., x_n\}$ - вектор измерений; $\mathcal{U} = \{\mathcal{U}, ..., \mathcal{U}\}$ - л-мерный вектор математических ожиданий: $\mu - M(\vec{x}), w = \{w_{ij}\}, i, j = 1, ..., n$ -ковариационная матрица. Оценки математического ожидания $\hat{\mathcal{U}}$ и дисперсы $\hat{\mathcal{C}}_{\mu}^{\mu}$ метода максимального правдоподобия в этом случае имеют вид $\hat{\mathcal{U}} = \underbrace{\vec{c}^{\intercal} w^{-1} \vec{x}}_{p w^{-1} \vec{c}}; \qquad \hat{\mathbf{c}}_{\mu}^{\mu} = \underbrace{\frac{1}{\vec{c}^{\intercal} w^{-1} \vec{c}}}_{\mathbf{c}^{\intercal} w^{-1} \vec{c}}; \qquad (2)$ где \vec{e} - единичный вектор; T - означает транспонирование.

Обычно вектор \vec{x} составлен по измерениям разных авторов. Тогда, т.к. $w_{ij} = cov(x_{i}, x_{j}) = g_{ij} G_{ij} G_{ij}$, из (2) видно, что как величина самой оценки \mathcal{M} , так и ее дисперсии существенно зависит от коэффициента корреляции ρ между измерениями разных авторов. В реальных оценках нейтронных сечений коэффициенты корреляции определить затруднительно. Поэтому для получения их. из-за недостаточности экспериментальной информации иногда пользуются методами экспертных оценок /2/. Тем не менее в ряде случаев представляется возможным оценить корреляционную матрицу на основе рассмотрения методики обработки экспериментальных данных.

В настоящей работе предлагается метод расчета коэффициентов корреляции между измерениями сечения деления разных авторов. Корреляции между данными разных авторов обусловлены использованием ими общих случайных параметров при получении значений сечения.

Пусть значения сечений \mathcal{Z}_{k} , \mathcal{L}_{c} для К-го и ℓ -го авторов вычисляются с использованием m общах случайных оценок $\overline{\mathbf{u}}^{*}$ параметров $\overline{\mathbf{c}}$. Кроме того, при вычислении значения сечения \mathbf{k} -м автором используются p оценок $\overline{\mathbf{d}}_{k}^{*}$ параметров \mathcal{D}_{K} . Не являющихся общими для других авторов. Будем считать, что корреляции не зависят от энергии в каком-либо энергетическом диапазоне. Предположим, что компоненти векторов $\overline{\mathbf{d}}^{*}$ и $\overline{\mathbf{d}}_{k}^{*}$ некоррелированы, также некоррелированы любые компоненти вектора $\overline{\mathbf{d}}^{*}$ с любой компонентой вектора $\overline{\mathbf{d}}^{*}_{k}$. Тогда, если $\mathcal{Z}_{k} = f_{k}(a_{1}^{*},...,a_{m}^{*}, b_{k_{m}}^{*},..., b_{k_{p}}^{*}) \cong$

$$= f_{\kappa}(a_{1},...,a_{m}, b_{\kappa_{1}},...,b_{\kappa_{p}}) + \sum_{i=1}^{m} \frac{\partial f_{\kappa}}{\partial a_{i}}(a_{i}^{*}-a_{i}) + \sum_{i=1}^{p} \frac{\partial f_{\kappa}}{\partial B_{\kappa_{i}}}(b_{\kappa_{i}}^{*}-b_{\kappa_{i}}),$$
(3)
rge $a_{i}^{*}, b_{\kappa_{i}}^{*} - ouehkh a_{i}, b_{\kappa_{i}}, to$

$$\operatorname{cov}(\mathbf{z}_{y},\mathbf{z}_{\ell}) \cong \sum_{i=1}^{m} \frac{\partial \mathbf{I}_{x}}{\partial a_{i}} \left| a_{i}^{*} \frac{\partial \mathbf{I}_{\theta}}{\partial a_{i}} \right| a_{i}^{*} \Rightarrow a_{i}^{*} \left| a_{i}^{*} + \mathbf{z}_{i}^{*} +$$

$$\operatorname{cov}\left(\mathfrak{Z}_{\kappa},\mathfrak{Z}_{\kappa}\right)=\mathfrak{P}_{\mathbf{X}_{\kappa}}^{*}\cong\prod_{i=1}^{m}\left(\frac{\partial h_{i}}{\partial a_{i}}\Big|_{a_{i}}\right)^{2}\mathfrak{R}a_{i}^{*}+\sum_{i=1}^{r}\left(\frac{\partial f_{\kappa}}{\partial \mathfrak{E}_{\kappa_{i}}}\Big|_{\mathfrak{B}_{\kappa_{i}}}\right)^{2}\mathfrak{R}B_{\kappa_{i}}^{*}.$$
(5)

Тогда

$$g(\mathbf{x}_{k},\mathbf{x}_{\ell}) = \frac{\sum_{i=1}^{m} \int_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} \int_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} f(\mathbf{x}_{i})^{\mathbf{x}_{i}}}{(\mathcal{D}\mathbf{x}_{i}^{*})^{1/2} (\mathcal{D}\mathbf{x}_{i}^{*})^{1/2}} (\mathbf{x}_{\ell})^{1/2} (\mathbf{x}_{\ell})^{1/$$

Обозначим

$$g_{\text{NEi}} = \frac{\int_{\text{Ni}}^{\text{H}} \frac{f_{\text{Ni}}}{f_{\text{N}}} \frac{f_{\text{Ei}}}{f_{\text{M}}} \frac{f_{\text{O}}}{f_{\text{M}}} \frac{f_{\text{O}}}{f_{\text{M}}} \frac{f_{\text{O}}}{f_{\text{M}}}$$

коэффициент корреляции между измерениями K-го и L-го авторов за счет параметра Q₁. Если методика обработки измерений приведена полностью, можно найти функциональную зависимость f(a).

В качестве примера рассчитаем корреляции между измерениями сечения деления ²³⁵0 разных авторов. Данные разных авторов часто нормируются на общий интеграл деления или данные других авторов,

что является причиной появления корреляций. Пусть

$$\mathbf{x}_{\mathbf{K}} = \mathbf{x}_{0} \frac{1}{\mathbf{x}_{\mathbf{K}0}} \quad \mathbf{x}_{\mathbf{K}0} \left(\widetilde{\mathbf{a}}^{\mathbf{K}}, \widetilde{\mathbf{b}}_{\mathbf{K}}^{\mathbf{K}} \right), \tag{7}$$

где \mathcal{Z}_{g} - значение общего интеграла деления; \mathcal{Z}_{KO} - значение интеграла деления у K-го автора; \mathcal{Z}_{g} - экспериментальное значение сечения деления K-го автора (компонента выделена в (3) в явном виде). Из (6) и (7) получим

$$g_{\kappa}e_{x_{0}} = \frac{\chi_{e_{0}}}{\chi_{\pi o}} \frac{\chi_{e_{0}}}{\chi_{e_{0}}} \mathfrak{D}_{x_{0}}/(\mathfrak{A}_{x_{\kappa}}^{*} \mathfrak{D}_{x_{\kappa}}^{*})^{\frac{1}{2}} = \frac{\partial^{2}\chi_{0}^{*}}{\partial \chi_{\kappa}^{*} \partial \chi_{e}^{*}}, \quad (8)$$

где dy = 124 - относительная точность измерений.

Такого же типа корреляции возникают в относительных измерениях сечений при использовании разными авторами одинакового значения стандарта.

Приведем расчет коэффициентов корреляции, обусловленных нормировкой сечения деления ²³⁵U. Экспериментальные данные взяты из работи /3/. Номера ссылок /4-22/ соответствуют номерам ссылок в работе /3/ и здесь не приводятся.

Для оценки энергетической зависимости сечения деления ²³⁵0 данные работ (4, 7, 8, II/ были перенормированы к интегралу деления II в области 7,8-II кэВ (см. табл. I в (3/). Относительная точность 2, равна d_{2,0} = 0,028. Относительные точности работ и расчитанные коэффициенты корреляции приведены в табл. I.

Таблица I

Оцененные коэффициенты корреляции в области 0, I-0, 3 кэВ, обусловленные нормировкой к интегралу деления в области 7,8-II эВ

Относительная точность	! Номера ! работ из /3	7 /117	[1]	[4]	1 /87
0,043	[II]	I	0,52	0,38	0,55
0,035	[1]	0,52	1	0,47	0,68
0,048	[4]	0,38	0,47	I	0,49
0,033	<u>/</u> 87	0,55	0 ,6 8	0,49	I·

I29

Данные работ /14, 19, 20, 15, 6, 22/ были перенормированы к интегралу деления I, в области 0, I-I кэВ (табл. 2 в /3/). Относительмая точность Z₀ равна $d_{\chi} = 0.0375$. Относительные точности и рассчитанные коэффициенты корреляции приведены в табл.2

Табляца 2

Оцененные коэффициенты корреляции в области 0, I-0, 3 кэВ, обусловленные нормировкой к интегрелу деления в области 0, I-I кэВ

ОТНООНТЕЛЬНАЯ ТОЧНОСТЬ	Номера работ из /3/	[147	/19/	[207	<u>/</u> 15/	[22]	<i>[</i> 67
0,067	/147	I	0,45	0,30	0,26	0,43	0,38
0,045	/197	0,45	I	0,43	0,37	0,61	0,54
0,070	/20/	0,30	0,43	I	0,25	0,41	0,36
0,081	<u>/</u> 15_7	0,26	0,37	0,25	I	0,36	0 , 3I
0,049	[22]	0,43	0,61	0,4I	0,36	I	0,51
0,056	<u>/</u> 6/	0,38	0,54	0,36	0,31	0,51	I

Спесок лятературы

- К вопросу объединения оценок/В.М.Горожанкин, В.М.Колобашкин, М.В.Лепешким, В.Н.Покровский, Т.М.Телевинова, В.П.Чистяков.-ОИЯИ, 1980, 5-8-579. с.1-12.
- 2. Суховникий Е.Ш., Конышин В.А. Учет корреляций при определении оцененных данных. - Изв. АН СССР. Сер. физ.-энергетич. наук, 1976, и 3. с.19-23.
- 3. Коньшин В.А., Жарков В.Ф., Суховицкий Е.Ш. Оценка сечения деления ²³⁵U в энергетической области О.I кэВ-20 МэВ. - Вопросы атомной науки и техники. Сер.: Ядерные константы, 1979, вып.3(34), с.3-33.

DESCRIPTION OF ENERGY AND ANGULAR DEPENDENCES OF NEUTRON EMISSION CROSS-SECTIONS IN THE FRAME OF GEM AND DT

D.Hermsdorf, H.Kalka, D.Seeliger

(Technical University of Dresden, GDR)

A.V.Ignatyuk, V.P.Lunev

(Physics and Power Institute, Obninsk, USSR)

The present paper is devoted to the investigation of the validity of the Generalized Exciton model (GEM) in description of the angular dependence of neutron emission spectra. The double differential cross-sections for ND, Bi, and Pb have been studied in a wide range of neutron incidence energy from 5 to 26 MeV by comparing experimental data and theoretical predictions. Generally, a satisfactory agreement can be achieved by a careful adjugtment of the most important parameters g, M^{-} , and λ^{+} . However, contributions from direct collective transitions have to be taken into account to improve the description of as well as angular distributions and integrated cross-sections.

Данная работа посвящена исследованию применимости обобщенной экситонной модели к описанию углового распределения спектров эмисски нейтронов. Для этого анализировались дважди диференциальные сечения рассеяния нейтронов ядрами Nb, Pb, и Bi в диапазоне энергий налетанцих нейтронов от 5 до 26 МэВ. Показано, что можно достичь удовлетворительного согласки теоретических расчетов с экспериментальными данными, ссли тщательно отобрать основные Параметры модели g, [M]² и λ^+ . Однако для хорошего описания наблюдаемых угловых распределений и интегральных спектров очень важно добавить к экситонной модели также вклады прямых коллективных возбущений ядер.

1. Introduction

The knowledge of the angular dependence of neutron spectra produced by nonelastic processes (n, n'), (n, 2n), (n, n'p), and (n, n'A) is of essential importance for as well as practical applications in fission and fusion reactor concepts and fundamental physics in understanding the mechanism of fast neutron induced reactions. Up to now, only very few experimental data for the double differential neutron emission cross-sections $G_{\rm nM}({\rm S}_0; {\rm E}', \Theta)$ are available with the exception of more systematical investigations around 14 MeV. Therefore, the application of reaction models is aimed to fill the data gaps by the theoretical predictions.

Usually, different statistical models are used which can be differentiated according to the treatment of pre-equilibrium and equilibrium emission. The hierarchy of typical models and computer codes related therewith have been summarized and can be commented in table 1 as follows.

Table 1

Generation	Without angular dependence	With angular dependence			
0	Weisskopf - Ewing model	Hauser - Feshbach model			
1	Exciton model (V),	Leading - particle model /3/,			
	code STAPRE (2)	Momentum - depen- dent density model /4/			
2	Generalized Exciton models:				
	code AMALTHEE [5]	code PREANG [6],			
		code AMAPRE [7]			

Hierarchy of statistical models and some computer codes related therewith Fure equilibrium models basing on Bohr's compound nucleus hypothesis (CN) are called to be the 0th generation. Denoting the time necessary for the equilibration process by t_{eq} ($t_{eq} \approx 10^{-21}...10^{-19}$ s) then the particle evaporation takes place at $t \ge t_{eq}$. The emission of particles from pre-equilibrium states (PE) was introduced by Griffin's Exciton model (EM) for the first time /17. Such models including only particle emission at $0 < t < t_{eq}$ in the reaction time scale we call to be the 1st generation (closed-form-models). The total emission spectrum results from an incoherent superposition of both contributions from CN and PE emission.

Solving the problem of PE more rigorously by integration of the Master equation in the time scale $0 \le t \le \infty$ the 2nd generation of statistical models were created (5,6,7). The CN is represented by these models as a special state with an exciton number $\bar{n} \simeq \sqrt{2gE^{N}}$. Now, there is no need to distinguish emission from PE and CN in the frame of those Generalized exciton models (GEM).

In the present paper the GEM is applied to interprete the angular dependence of neutron emission spectra of 93 Nb, 209 Bi and ^{nat}Pb in an a consistent as possible formalism. Contributions from direct excitations of collective modes are also investigated.

2. Relations between GEM and direct reactions (DT)

After absorbtion of a fast neutron the nucleus will transit through different states during the time-evolution. The excitations of nucleus can be subdivided in an adiabatic approximation into two groups: the quasi-particle states (exciton-states) and the collective states respectivly.

Whereas the excitation of low-lying collective states are assumed to be fast direct processes, the description of complex quasiparticle excitations can be treated by statistical methods $(B)^2$. A purely microscopical treatment of them has been given in Feshbach's multi-step-direct (MSDR) and multi-step-compaund (MSCR) reaction formalism $(Q)^2$ in the representation of the shell-model. MSDR and MSCR include states of different complexity starting from the 2p-1h-doorway states up to the so-called compaund nucleus (CN). Therefore, an addition of excitations of internal degrees of freedom introduced in direct reactions is not necessary in this treatment. In contrast to the very complicated MSDR and MSCR formalism the

phenomenological Exciton-model can be solved by more simple numerical methods. Basing on the time-dependent perturbation theory and other orude assumptions, the fundamental equations of the Excitonmodels show a similar structure as the MSDR/MSCR. Exciton-models don't distinguish MSD and MSC processes because of the application of William's state densities which account for all states belonging to bound particles as well as particles in the continuum /107.

For a simulation of MSDR and MSCR an Exciton-model has to include pre-equilibrium and equilibrium emissions within an unified formalism. Therefore, any solution can't be given by "closed-form-models" but only by a "master-equation-approach" integrating the masterequations from t=0 to t = ∞ . This is done in GEM exactly [6]. GEM for spectra integrated over solid angle includes MSDR as well as MSCR, but angular distributions calculated in terms of the formalism of the "leading particle" [3] can only be compared with MSDR. Neglecting MSCR-contributions having symmetrical angular distributions all even coefficients of Legendre-polynomial series will be understimated by the GEM. With increasing incidence energy the increase of MSDR-component is expected yielding better agreements with experiments.

So the total emission spectrum and the angular distributions have to be incoherently superimposed from contributions;

- of quasi-particle excitations estimated by GEM using code AMAPRE and
- of direct excitation of low-lying collective states calculated by coupled channel (CC) or DWBA models.

3. The computer code AMAPRE

In order to investigate the statements pointed out above the computer code AMAPRE has been developed. This code is a new version of the program AMALTHEE /5/ extended by the formalism of GEM. In the program AMAPRE, the individual structure of the nucleus is described by the single-particle-state density g and the matrix element of two-body interaction $|\mathbf{M}|^2$. Because of a strict relation $\lambda^{\dagger} \sim g^3 |\mathbf{M}|^2$ also the transition rate from the initial exciton state λ can be used to express the nuclear properties. $|\mathbf{M}|^2$ or λ^{+} respectively are free parameters adjustable by fitting experimental data. For the prediction of angular dependence the Correlated-Emission model /117 was adopted. The eigenvalues of the scattering operator \mathcal{M}_1 including corrections for the Fermi motion and Pauli's principle have been obtained from Akkermans too. These \mathcal{M}_1 are dependent on the excitation energy E° but independent on the mass number A. As a convenient representation of angular distributions the normalized equation

$$\widetilde{G}_{nn'}(\mathbf{E}_{0}; \mathbf{E}', \theta) = \frac{\widetilde{G}_{n,n'}(\mathbf{E}_{0}; \mathbf{E}')}{4\mathcal{I}!} \left[1 + \sum_{l=1}^{L} (2l+1)_{l}(\mathbf{E}_{0}; \mathbf{E}') \mathbf{P}_{l}(\cos \theta) \right]$$

in terms of a Legendre' polynominal expansion was proved. The code AMAPRE predicts the coefficients $a_1(E;E')$ in that approach discussed above.

The GEM formalism is also applicable for treating multi-particle emission. Nevertheless, this implies the validity of the statistical assumptions in the second (or higher order) residual nucleus too.

Therefore, contributions from (n,2n) to the emission spectra have been calculated by the code STAPRE /27 below 20 MeV. Only above 20 MeV the inclusion of PE in the second of (n,2n) seems justified. Generally, the second chance neutron emission has been assumed to be isotopic in the CM-system in every case.

4. Results

4.1. Neutron emission from Niobium

Because of neutron emission spectra measurements in a wide range of neutron incidence energy from 5,23 to 25,7 MeV, the nucleus ⁹³Mb is a very convenient example for the study of the dependence of $|\mathbf{M}|^2$ on \mathbf{E}_0 . After a proper adjustment of $|\mathbf{M}|^2$ to fit the integral emission spectrum at 14,6 MeV the equation $|\mathbf{M}|^2 = \mathbf{K}\mathbf{E}^{\mathbf{e}-1}\mathbf{A}^{-3}$ obtained by Kalbach-Cline /127 was used to determine the matrix element at other incidence energies. Single-particle-state densities and pairing energies for the intermediate and residual nuclei have been taken from the systematics of Dilg et al. /137. Using these parameters compiled in table 2 the double differential orosasections $\mathcal{O}_{n\mathbf{M}}(\mathbf{E}_0; \mathbf{E}^*, \mathbf{0})$ were calculated at $\mathbf{E}_0 = 5,23;6,22;7,0;7,23;$ 8,01;9,0;12,3;14,6; and 25,7 MeV and compared with measuremts by

I35

kova et al./147, Schmidt et al./157, Hermsdorf et al. and Kammerdiener /167, Takahashi et al./177 and Marcinkowski et al./187. Results at 5.23, 14.6 and 25.7 MeV are shown in figs. 1 and 2.

Comparing all results the energy dependence of $|\mathbf{M}|^2$ according to Kalbach-Cline can be confirmed as a good approximation. On the other hand, contributions from collective excitations increase with increasing neutron incidence energy.

Relying on the parameters desoribed also the Legendre coefficients for angular distributions have been estimated (fig.2).

Fig. 2

Coefficients a₁ and a₂ of the Legendre polynomial expansion of neutron emission cross-sections of ⁹³Nb(solid line) in comparison with experimental data [14,16,18] From an inspection of the level scheme in the excitation energy range from 0.8 to 5 MeV roughly it can be demonstrated that the averaged characteristics of the excited states of the spherical oddeven nucleus 93 Nb may be described in terms of the model of weak coupling of the odd proton in the $g_{0/2}$ -shell and the vibrational excitations of the even-even core 92 Zr /197. Calculations in the CO and DWBA models have been carried out /197 using deformation parameters β for 92 Zr obtained from (p, p') reactions /207. Large deformations of the lowest-lying 2⁺ and 3⁻ states indicate a strong coupling between them and the 0⁺ ground state. Therefore the CC formalism has been applied for calculations of the direct transitions to this levels /21/.

For comparison with experimental data the theoretical values for the excitation of discrete levels have been smeared out assuming an experimental resolution of about 1 MeV.

A superposition of both components, direct collective transitions and GEM, really yields a satisfactory description of experimental spectra as shown in fig.1 and in other references / 9, 22, 23/.

4.2. Neutron emission from Bismuth

An analogous procedure for parameter adjustment done for Bi results in unsatisfactory description of experimental spectra available. In order to achieve a more reasonable agreement with measurement also the single-state density g has to be varied in dependence on the excitation energy. Pairing energies Δ have been fixed to zero in the intermediate and residual nuclei respectively.

The best-fit values obtained may have an uncertainty of 10% roughly. A more detailed analysis is hindered by discrepant, missing and insensitive experimental data. Basing on those parameters double differential emissin cross-sections have been calculated at 7,75, 14,6 and 25,7 MeV and compared with experiments taken from different authors /15, 16, 187 (see figs. 3 and 4).

The overall agreements is satisfactory. However, indications for contributions from collective excitations can be seen clearly.

The nucleus 209 Bi deviates from the double-magic nucleus 208 Pb by an additional proton. Employing this proton in the weak coupling model the spectrum of multipole intensities β_{1} can be estimated

I37

according to [23]. The direct contributuions predicted in this way at 14 MeV have been added to the GRM results. The agreement is encouraging.

Fig.3

Same as in fig.1 for ²⁰⁹Bi. Experiments at 7,75 MeV have been taken from Schmidt et al./15/. Calculations in the CC formalism were carried out by Ignatyuk et al./23/

Fig.4. Same as in fig.2 for 209 Bi. The coefficients a, and e_2 at 7,75 MeV have been obtained from experiments by Schmidt et al./157. The solid line represents the GEM predictions only

4.3. Neutron emission from natural Lead

An investigation of neutron emission spectra from natural Lead is difficult because of the absence of a consistent and compehensive experimental data base and the isotopic composition consisting of the double-magic nucleus 208 Pb and magic isotopes $^{206}, ^{207}$ Pb too. For all calculations in the frame of GEM an idealized nucleus corresponding to the natural composition has been used adopting an effective binding energy B_n of 5,5 MeV (see table 2). Fitting the experiments at 14 MeV the single-particles-state densities in the intermediate and final nuclei (g and g_1 respectively) have been adjusted to $10/MeV^{-1}$ and $8/MeV^{-1}$. These values agree very well with those $g = 9,85/MeV^{-1}$ estimated by Gadioli et al. /247 in terms of a "gap-model" developed for the treatment of state densities of double-magic nuclei or magic nuclei around A = 208. Calculations of the spectrum and the Legendre coefficients at 14 MeV

∦ig.5.

Same as in fig.1 for ^{nat}Pb. Experimental data obtained by Takahashi et al. [17] coinced within the error bars and the drawing resolution with those measured by Hermsdorf et al. [16]

Also direct contributions are necessary for an improved description of the hardest part of the neutron spectrum.

Transition strenghts leading to the excitation of lowest-lying collective states in 208 Pb have estimated using deformation parameters β from Wagner et al. (25). The incoherent addition of CC and GEM results yield a very satisfactory description of the experimental spectrum (see fig.5).

Fig.6. Same as in fig. 2 for ^{hat}Pb. Experimental coefficients have been derived from measurements done by Takahashi et al. /17/ and Hermadorf at al. /16/. The GEM prediction is represented by the solid line

5. Conclusions

From all results obtained for Nb, Bi, and Pb following conclusions can be drawn:

- 1. Using well-adjusted parameters the GRM predicts the neutron emission spectra in a broad range of neutron incidence energy in a surprisingly good agreement with measurements (see figs. 1,3 and 5). No longer contributions from equilibrium and pre-equilibrium emission have to be distinguished. Discrepancies appear only in that parts of the spectrum which will be disturbed either by second chance neutron emission or by enchanced transitions to low-lying levels of collective structure.
- 2. Whereas in the case of 93ND the single-particle-state densities are in the order of g = A/13 for all neutron incidence energies the emission spectra for nuclei around A = 208can only interpreted assuming increasing state densities

with increasing excitation energy as shown in table. According to Ignatyuk et al. /267 this results from a cancelation of shell-structure effects in the level density at high excitation energy. The level density parameters obtained by Dilg et al. /137 are no longer valid then. Assuming the intranuclear transition rate λ^+ to be an increasing function with increasing excitation energy an enlarged state density parameter g has to be corrected for by a decreasing factor K in Kalbach-Cline's relation to ensure the smooth dependence of $\lambda^+ \sim g^3 |\mathbf{M}|^2$ on energy \mathbf{E}^* . This may be a reason for the large spread of values K obtained by several authors from interpretation of emission spectra at very different energies, angles, and nuclei.

Table 2

Nucleus	E _o Mov	B Nov-1	Ej NoV	10 ⁵ MeV ²	Kew ³	<u><u>×</u> 10²²s⁻¹</u>	Bn MeV
	5,23	6,5	6,8	97	1000	0,4	7,2
98_	7,23	6,5	6,8	84	1000	0,5	7,2
)_IND	14,6	6,5	6,8	56	1000	0,8	7,2
	25,7	6,5	6,8	37	1000	1,2	7,2
209 _{B1}	7,75	7	6	74	8500	0,4	4,7
	14,6	9	8,5	23	4100	0,7	4,7
	25,7	10	10	7	2100	0,8	4,7
net _{Pb}	14,6	10	8	16	3000	0 ,7 5	5,5

Some important quantaties for calculations in the GRM

3. Contributions from second chance neutron emission, (n,2n) mainly, can be predicted very well by calculations in the frame of the simple statistical model taking into account PE emission in the first step of the reaction. Only above 20 MeV neutron incidence energy PE emission from the second step of multi-particle reactions may also be impor-

tant for an exact estimation of the energy spectrum of secondary neutrons.

- 4. Neutrons emission spectra show increasing asymmetric engular distributions above 5 MeV neutron incidence energy. Generally, the angular distributions of inelastically scattered neutrons can be described fairly well in the frame of the GRM (see figs 2, 4, and 6). Legendre coefficients a_1 (which is mainly responsible for forward-peaked angular distributions) and a_2 will be slightly underestimated indicating contributions from DT too.
- 5. Enhanced transitions to low-lying collective states in the residual nucleus can be predicted by DWBA or CC calculations. The adjustment of model parameter (β -values) may be the most crucial and problematic point especially for odd nuclei.

References

- J.J.Griffin. Phys. Rev. Lett., 17 (1966) 487.
 C.K.Cline, M.Blann. Nucl. Phys., A172 (1971) 225.
 C.K.Cline. Nucl. Phys., A193 (1972) 417.
- 2. M.Uhl, B.Strohmaier, Report IRK 76/01, 1976.
- G.Mantzouranis, D.Agassi, H.A.Weidenmüller. Phys. Lett., 57B (1975) 220.
 G.Mantzouranis, H.A.Weidenmüller, D.Agassi. Z.Phyzik, A276

(1976) 145.

- 4. P.Mädler, R.Reif. Nucl. Phys., A337 (1980) 445.P.Mädler, R.Reif. Nucl. Phys., A373 (1982) 27.
- 5. O.Bersillon, L.Faugere, Report NEANDC (E) 191 "L", 1977.
- J.M.Akkermans, H.Gruppelaar, G.Reffo. Phys. Rev., C22 (1980) 73;
 J.M.Akkermans, Report ECN 121, p.51, 1982.
 H.Gruppelaar et al. Report ECN 114, 1982.
- 7. J.M.Akkermans, H.Gruppelaar, Report BCN 60, 1979.
- A.V.Ignatyuk, V.P.Lunev, V.G.Pronyaev, Isv. AN SSSR, serva fiz., 39 (1975) 2144.
- 9. H.Feshbach, A.Kerman, S.Koonin. Ann. Phys., NY, 125 (1980) 429.
- 10. C.Kalbach, F.M.Mann. Phys. Rev., C23 (1981) 112.
- C.Costa, H.Gruppelaar, J.M.Akkermans, Report ECN 82 172,1982;
 J.M.Akkermans, Report ECN 121, p.51,1982.
- 12. C.Kalbach-Cline. Nucl. Phys., A210 (1973) 590.
- 13. W.Dilg et al. Nucl. Phys., A217 (1973) 269.
- 14. G.N.Lovchikova et al. Yad.Konst., 33 (1979) 77.
- 15. D.Schmidt et al. EXFOR 32001 and private communication, 1983.
- D.Hermsdorf et. al. Report 2fK 277 (U); EXFOR 30275 and 30397;
 F.L.Kammerdiener, Report UCRL-51232 (1972).
- 17. A.Takahashi et al. Proc. Conf. on Nuclear Data for Science and Technology, Antwerp., 1982.
- 18. A.Marcinkowski et al. Nucl. Science Engng., 83 (1983) 13.
- 19. S.P.Simakov et al. Yad. Fiz., 37 (1983) 801.
- 20. M.M.Stautberg, J.J.Kraushaar. Phys. Rev., 151 (1966) 969. J.K.Dickens et al. Phys. Rev., 168 (1968) 1355.
- 21. A.V.Ignatyuk, V.P.Lunev, V.S.Shorin, Yad Konst., 13 (1974) 59.
- 22. D.Schmidt, D.Seeliger. Proc. 3rd Conf. on Neutron Induced Reactions, Smolenice, 1982, Physics and Applications. Vol.10, p.115.
- 23. A.V.Ignatyuk, V.P.Lunev, V.G.Pronyaev. Iad Konst., 32 (1979) 3.
- 24. E.Gadioli et al. Nucl. Phys., A138 (1969) 321.
- 25. W.T.Wagner et al. Phys. Rev., C12 (1975) 757.
- 26. A.V.Ignatyuk et al. Yad Fiz., 21 (1975) 485.

Секция П

ТЕОРИЯ НЕЙТРОННЫХ РЕАКЦИЙ

Председатель П.Э.Немировский

Ученый секретарь В.С.Ольховский

ФОРМА ГИГАНТСКОГО ЭЛЕКТРИЧЕСКОГО ДИПОЛЬНОГО РЕЗОНАНСА В ОБЛАСТИ МАЛЫХ ЭНЕРГИЙ

В.А.Втюрин, D.П.Попов, В.И.Фурман (ОМЯИ)

> Обнаружено расхождение лоренцевской формы гигантского резонанса с данными реакции ⁽⁴³)//(*n*, *y* \propto) в области $E_y < 2$ МэВ. Получено выражение, учитывающее дисперсионные свойства поляризационного оператора и температурный характер спрэдирования гигантского резонанса по компаунд-состояниям, которое хорошо воспроизводит экспериментальные данные.

> SHAPE OF THE GIANT ELECTRICAL DIPOLE RESONANCE IN THE SMALL ENERGY REGION. A discrepancy is observed of data on the $^{143}\mathrm{Nd}(n,\sqrt{\sigma})$ reaction at $\mathrm{E}_{\chi}<2$ MeV with the Lorentz shape of the giant resonance. An expression is obtained which takes into account the dispersion characteristics of polarization operator and the temperature dependence of the giant resonance spreading over compound states. The expression describes well the experimental data.

Анализ формы гигантского дипольного резонанса при малых энергиях δ -дучей представляет интерес для понимания механизма δ -распада высоковозбужденных состояний. Знание его формы в области I-З МэВ важно также для расчетов полных радиационных ширин, δ каскадов и сечений различных двухступенчатых реакций типа ($n, \delta n$), ($n, \delta \rho$), ($n, \delta \delta$) и т.д.

В последние годы благодаря развитию исследований реакции $(n, \delta \alpha)$ на резонансных нейтронах (1, 2) был достигнут существенный прогресс в получении данных о первичных мягких J-переходах. В реакции $(n, \delta \alpha)$ сведения о первичных J-переходах между компа-

унд-состояниями получают, регистрируя вторичные α -частицы. Это позволяет полностью избавиться от фоновых δ -квантов иной природы. Поскольку энергия вторичных α -частиц равна разности энергий α -распада исходного захватного состояния и первичного δ -кванта, а вероятность такого двухстадийного процесса равна произведению вероятностей δ - и α -этапов процесса, то, зная зависимость выхода α -частиц в реакции ($n, \delta \alpha$) от энергии, можно по спектру вторичных α -частиц однозначно восстановить зависимость вероятности испускания первичных δ -квантов от их энергии.

В дальнейшем анализе данных о *б*-переходах воспользуемся более удобным понятием радиационной силовой функции

$$S_{\delta} = \frac{\langle f_{\delta} \rangle}{\mathcal{D}_{i} E_{\delta}^{2\lambda+1}}.$$
 (1)

Здесь </br>

 δ -квантов, а \mathfrak{D}_i - расстояние между распадающимся состояниями. Анализ формы экспериментальных спектров реакции ($n, \delta \propto$) показая, что $\langle f_{\delta} \rangle \approx E_{\delta}^3$, т.е. он в основном определяется $E \neq n M^{-1}$ переходами. В энергетическом интервале ΔE_{δ}^{*} радмационная силовая функция выражается через соответствующую доло площади спектра реакции ($n, \delta \propto$) в следующем виде I^{3} :

$$S_{\delta}^{cc}(E1) = \frac{\Gamma_{\delta\alpha} N_{\delta\alpha}^{k} \Gamma_{\delta}(B_{n}) \left[1 - E_{\delta}^{*} / (B_{n} - \delta)\right]^{n}}{N_{\delta\alpha} \mathcal{D}_{i} E_{\delta\kappa}^{3} \left\{ T_{\alpha j}^{E1} + T_{\alpha j}^{N1} S_{\delta}^{cc}(M1) / S_{\delta}^{cc}(E1) \right\}}$$
(2)

Здесь $\int_{\delta} (\beta_n)$ - полная радиационная ширина, а член в квадратных скобках учитывает ее зависимость от энергии возбуждения ядра.

 $\mathcal{T}_{\alpha_{j}}^{\mathcal{E}_{1}(M_{1})}$ - сумын проницаемостей барьера для α -распада уровней, заселяемых $\mathcal{E}_{1}(M_{1})$ -переходами с энергией \mathcal{E}_{δ}^{k} , $\mathcal{N}_{\delta\alpha}^{k}/\mathcal{N}_{\delta\alpha}$ - доля площади спектра в k -м интервале. Отношение силовых функций \mathcal{E}_{1} -и M_{1} -переходов в фигурных скобках выражения (2) определялось из соотношения полных пирин $\mathcal{I}_{\delta\alpha}$, измеренных в резонансах с разным спином, и оказалось близко к единице \mathcal{I}_{2} . В этом случае спектр вторичных α -частиц в захватном состоянии со спином 3⁻ на 2/3 определяется распадом уровней, заселяемых \mathcal{E}_{1} -переходами, и вклад мультипольности \mathcal{M}_{1} может учитываться как поправка.

На рисунке представлены все экспериментальные значения силовой функции *E1*-переходов 144 Nd, полученные к настоящему времени. В области 0,2 < E_{δ} < 1,6 МэВ представлены данные реакции (л, б сс), кружочек – оценка силовой функции по полной радиационной инрине из работы (4), в области 5МзВ < Ез < Вл приведены данные реакции (л, б) из работы (5), выше энергии связи нейтрона – данные фотоядерных реакций.

Кривая I - доренцевская экстраполяция ГЭДР в область малых энергий ⁽⁵⁾. Можно видеть, что она дает правильный порядок величи-

ны S_{χ} в районе $E_{\chi} \approx 0.5$ МаВ, но не описывает ее анергетической зависимости ниже энергии связи нейтрона. Используемая иногда для описания гигантского резонанса брейт-вигнеровская зависимость (кривая 2) также не согласуется с экспериментальными данными. В работе $\frac{1}{2}$ отмечалось, что лоренцевская экстраполяция дает зависимые значения силовой функции жестких δ -лучей для ряда сферических ядер, а в работе $\frac{27}{12}$ из данных реакции ($d, p \delta$) в области $E_{\delta} > 3$ МэВ была подучена суммарная силовая функция $\frac{199}{4}$ такой же формы, как я в случае $\frac{144}{2}$ Nd. Все это указывает на существование общей причины расхождения теории с экспериментом при малых энергиях δ -лучей.

С точки эрения теории конечных ферми-систем ⁽⁸⁾, ширина гигантского резонанса / является функцией энергии / -лучей и температуры конечного состояния ядра. Ранее в работах ^{(9), 10} предлагались модификации лоренцевской зависимости, учитывающие энергетическур ⁽⁹⁾ и температурную ⁽¹⁰⁾ зависимости / с. Авторам работ ^{(9), 10} таким путем удалось достичь удовлетворительного согласия

расчетов полных радиационных вирин с экспериментом, но полученные ими зависимости $S_{\chi}(E_{\chi})$ не согласуются с данными в области $E_{\chi} < 2$ МаВ. Причина расхождения зависимостей $Z^{6,9,10}$ с экспериментом рассмотрена в работе ZIL и связана, видимо, с тем, что вывод выражения для формы ГЭДР в работе ZI, а также в последующих работах противоречит дисперсионным свойствам поляризационного оператора /11,12/. Корректный учет фрагментации квазичастиц в поляризационном операторе приводит к существенно иной зависимости среднего сечения фотопоглошения при малых энергиях

$$\overline{\mathcal{O}}_{E_1}(E_{\mathcal{S}}) \approx E_{\mathcal{S}} \, \overline{\mathcal{G}}(E_{\mathcal{S}}). \tag{3}$$

Отношение получаемой, исходя из этого, силовой функции к доренцевской в области Ез < Вп оказывается равным

$$R = \frac{E_{s}^{2} + 4\pi^{2} T(E_{r})}{E_{x} E_{G}},$$
 (4)

где $T = \sqrt{\frac{\mu}{a}} - \tau$ емпература ядра в конечном состоянии, а E_X - энергия Х-излучения.

Полученная таким образом силовая функция (кривая 3 на рисунке) хорошо согласуется с экспериментальными данными. Общность полученного результата подтверждается согласнем экспериментальных значений полных редиационных ширин с ресчетами, проведенными с использованием радиационной сидовой функции такого же вида для имрокого круга сферических ядер /13/.

Список литературы

- Furman W.I. e.a. Phys. Lett., 1973, v.44B, N 3, p.465.
 Анджеевски Ю. и др. ОМЯИ РЗ-81-433, Дубна, 1981.
 Втюрин В.А., Попов Ю.П. ОМЯИ РЗ-82-309, Дубна, 1982.
 Втюрин В.А. ОМЯИ РЗ-82-305, Дубна, 1982.
 Втюрин В.А. ОМЯИ РЗ-82-305, Дубна, 1982.
 Raman S. In: Proc. IV the Int.Conf. on Neutron Capture Gamma-Ray Spectroscopy, Grenoble, 1982.
 Axel P. Phys.Rev., 1962, 126, p.271.
 Bartholomew G.A. e.a. Adv. Nucl. Phys., 1973, 7, p.229.
 Митдал А.Б. Теория конечных ферми-систем. Наука . М., 1965.
 Зарецкий Д.Ф., Сироткин В.К. ЯФ, 1978, 21, с.1534.
 Бондаренко В.И., Урин М.Г. ЯФ, 1982, т.35, 2, с.675.
 Кадменский С.Г., Маркушев В.П., Фурман В.И. ОМЯИ, P4-82-210, Дубна, 1982.

- Дубна, 1982. 12. Dover C.B. e.a. Ann. of Phys., 1972, 70, р. 478. 13. Кадменский С.Г. и др. В кн.: Тезисн XXXII совещания по ядер-Наука. 1983.c.404. ной спектроскопии и структуре ядра. Л., Наука , 1983, с. 404.

ВЛИЯНИЕ ВЫБОРА ГРАНИЧНЫХ УСЛОВИЯ R -МАТРИЧНОГО ФОРМАЛИЗМА НА ПРИВЕЛЕННЫЕ ШИРИНЫ, ПОЛУЧАЕМЫЕ ИЗ ЭКСПЕРИМЕНТА

В.Г.Няколенко

(MRMO)

Изменение выбранных граничных условий существенно изменяет приведенные нейтронные ширины у² и учитывающие удаленные уровни, параметры *А*-матрицы *А*, получаемые при параметризации экспериментального сечения. Поэтому выбор граничных условий должен определяться теорией.

A change of boundary conditions leads to the change of reduced neutron widths and of R-matrix parameters which take into account the distant resonances. Therefore, the choice of boundary condition should be defined by the theory.

Для параметризации сечения 6 на основе R-матричной теории необходимо выбрать раднус канала q и граничные условия B на нем для раднальной волновой функции $B = [\frac{2}{4} \frac{dU}{d2}]_{q}$. Фактически выбор q не произволен (например, $q = 1,35 A'^{3}$). Выбор же B обычно делается из соображений простоты математических соотношений. Например, чтобы занулить сдвиг уровня выбирают $B_{\ell} = 3_{\ell}$ ($3_{o} = 0$, $3_{\ell} = -1/[1+(\kappa a)^{2}]$), где 3_{e} - фактор сдвига ($B_{\ell} = 0$). Кроме этого, часто используют условия $B_{\ell} = 0$ и $B_{\ell} = -\ell$. Для $\ell = 0$ при $(\kappa a)^{2} <</$ все три вида условий практически совпадают. Но для $\ell \neq 0$ подучаемые параметры $\chi^{2}(B)$, R(B) сяльно меняются в зависимости от того, какое из этих B выбрано. Так между R(B), $R(0)^{1/2}$ и между $\chi^{2}(B)$, $\chi^{2}(0)$ существуют такие соотношения

$$R(B) = \frac{R(0)!}{I - BR(0)}, \ \ln \frac{\chi^2(B)}{\chi^2(0)} = 2R^2(0) + \frac{2}{B}R(0) \ln[I - BR(0)].$$
(I)

Реальные $\mathcal{R}(0)$ лежат приблизительно в интервале (-0,5; 0,5). При этом $\mathcal{R}(-I)/\mathcal{R}(0)$ принадлежат к интервалу (2; 0,6), а $\chi^{2}(-I)/\chi^{2}(0)$ - интервалу (0,8; I,I).

Кроме этого имеется еще один механизм зависимости параметров χ^2 , \mathcal{R} от \mathcal{B} . В самом деле, операция получения, χ^2 из ширины нейтронного резонанся \mathcal{I} сильно зависит от $\mathcal{R}(\mathcal{B})$ \mathcal{II} :

$$\delta^{2} = \frac{\Gamma}{2\rho_{e}} d_{e}, \rho_{o} = \kappa \alpha, \rho_{i} = \frac{(\kappa \alpha)^{3}}{(1 + (\kappa \alpha)^{2})}, d_{e} = \left[1 - (3_{e} - B_{e})R(o)\right]^{2} + \left[\rho_{e}R(o)\right]^{2}.$$
 (2)

Фактор d'существенно различается при разных \mathcal{B} . Как было показано в работе $\frac{f'}{2}$, учет этого фактора (при $\mathcal{B} = 0$) приводит к сильному изменению значений ρ -спловых функций S_i' (учтен d') в сравнении с приводимыми обычно значениями S_i (d' не учитывается). На рис.I кривая I соответствует значениями $S_i'(A)$, а кривые 2 и 3 – $S_i(A)$, рассчитенным из заданных $S_{ej}(A)$ и $R_{ej}(A)$ ($j = \ell \pm \frac{j}{2}$, $S_i' = = \frac{j}{3} S_{1\frac{j}{2}} + \frac{j}{3} S_{1\frac{j}{2}}$) для двух вариантов зависимости $R_{ej}(A)$: а) кривая 2 получёна с учетом того, что заполненные Ip и 2р одночастичные уровны не дают вклада в рассеяние из-за принципа Паули (значения $R_{1\frac{j}{2}}(A)$, соответствующие этому, представлены кривой I рис.2), б) кривая 3 получена без учета принципа Паули ($R_{1\frac{j}{2}}(A)$ – кривая 2 рис.2).

К рассмотренному влиянию фактора d на S надо заметить следующее: при большой энергии нейтронов (Ka сравним с I) d имеет заметную энергетическую зависимость (см. таблицу) и пренебрежение им в (2) может приводить к ложной зависимости силовой функции от энергии.

Рассмотренные эффекты, связанные с фактором d (при B = 0), практически не существенны при выборе B = S, если Kq << I. Т.о. параметризация сечения существенно зависит не толь-

ко от выбора α , но к от выбора B. Значат, если мы котим не только параметризовать экспериментальное G, но к сравнить получаемые параметры с теоретическими, то теория должна давать при некотором α к граничные условия \mathcal{B}_{τ} , с которыми необходимо обрабатывать G в цалях получения χ^2 к R, Параметры χ^2 ,

		Табли	ца.	
Е, ков	e R	0 ±0,4	7 0,3	-0,3
I		I	I,7	0,5
100		I,05	Ι,5	0,6
200		I,I	I,4	0,7
500		I,25	I,3	0,84

R, повлеченные из G при $B \neq B_T$ не будут согласовываться, вообще говоря, даже с правильной теорией. Если же мы не интересуемся разделением сечения на резонансное (χ^2) и потенциальное (R), то нам не надо знать реальное значение B. Это касается сравмения полных сечений с ресчетами оптической модели. Но если мы хотим, чтобы χ^2 и R были как можно блике к средним параметрам, харалтеризущим нейтронные резонансы, то надо стараться при дамном α выбрать B, близкое к реальному. Необходимое B можно пытаться получить, обрабатывая G с разными B и отбирая правдоподобное B по совпадению "экспериментальных" параметров χ^2 и R с теоретическими.

Непоторое заключение о выборе *B* ислно сделать из общих соображений. Пусть X_{λ} - собственные функции (компаунд-состояний) некоторой граничной задачи с реальным гамильтоннаном, χ_{ρ} - собственные функция для нейтрона в потенциале среднего поля, ψ_{c} - волновая функция мишени в состоянии ε . Разложив X_{λ} при $2 \leq \alpha$ по базасным функциям $\psi_{c} \chi_{\rho}$, получим разложение амплитуды приведенной ширины компаунд-состояния с данными квантовыми числами n (ℓ_{j}) по одночастичным амплитудам:

 $X_{\lambda} = \sum_{p \in \mathcal{L}} \alpha_{p \in}(\lambda) \Psi_{e} \chi_{p} , \quad Y_{\lambda} = \sum_{n} \alpha_{n}(\lambda) \zeta_{n}.$

При этом граничные условия, используемые для подучения второго разложения, должны быть теми же, что для одночастичного базиса \mathcal{X}_n . Значит, для параметризации \mathcal{G} мы должны пользоваться граничными условиями, имеющими место для одночастичных волновых функций \mathcal{X}_n . Если $\mathcal{B} = const$, то набор \mathcal{X}_n является базисом. Тогда можно говорить о фрагментации одночастичной амплитуды по амплитудам компаунд резонансов и о правиле суми $\sum \mathcal{Y}_{\lambda}^2 : \sum^2$ вблизи одночастичного состояния. В случае $\mathcal{B} \neq const$ это, вообще говоря, не так. И выбор $\mathcal{B}_e = \beta_e$ оправдан только при формальной параметризации \mathcal{G} в узком знергетическом интервале. Тем не менее, таким \mathcal{B} часто пользуются как раз в икроком интервале энергий /3. Постону к сравнению S и R, полученных при таких условиях, с теоретическими надо подходить весьма осторожно.

Список литературы

I. Томас Р., Лейн А. - Теория ядерных реакций при инэних энергиях. ИЛ, М., 1960. 2. Николенко В.Г. - Сообщение ОИЯИ, Р4-83-225, Дубна, 1983. 3. Horan D.J., e.a. Phys. Rev., 24C, p.1951, 1981.

О РАЛИАЦИОННЫХ И НЕЙТРОННЫХ СИЛОВЫХ ФУНКЦИЯХ СФЕРИЧЕСКИХ ЯДЕР

В.В.Воронов, В.Г.Соловьев

(NRRNO)

В рамках квазичастично-фононной модели рассчитаны нейтронные и радиационные силовые функции некоторых сферических ядер. Исследован вклад валентных переходов в парциальные ЕІ- и МІ-ширины в ^{59,61}N1. Получено правильное описание энергетической зависимости нейтронных силовых функций в ^{207,208}Pb в области энергий на 0,9 МэВ выше энергии связи нейтрона.

ON THE RADIATIVE AND NEUTRON STRENGTH FUNCTION OF SPHERICAL NUCLEI. The radiative and neutron strength functions of some spherical nuclei are calculated within the quasiparticle-phonon model. The contribution of the valence transitions to the partial E1- and M1widths in 59,61 Ni is investigated. The energy dependence of neutron strength functions in 207,208 Pb is correctly described up to 0,9 MeV above the neutron binding energy.

Изучение взаимодействия нейтронов с ядрами позволяет получить общорную информацию об усредненных характеристиках нейтронных резонансов. К ним относятся радиационные и нейтронные скловые функции. В последние годы проводятся интенсивные исследования фрагментации малоквазичастичных компонент волновых функций оферических ядер в рамках квазичастично-фононной модели (КФМ) ядра /1/. Энание распределения силы малоквазичастичных компонент в пироком интервале энертий позволяет успешно рассчитывать нейтронные и радиационные скловые функции /2-4/. В данной работе мы на ряде примеров продемонстрируем достоинства микроскопического расчета силовых функций.

Гамильтониан КФМ включает потенциал среднего поля, спаривательное взаимодействие и факторизованные мультипольные и спин-мультипольные силы, генерирующие в четно-четных ядрах фононные состояния, с соответстнующими значениями спина и четности.Большая часть пара-

метров гамильтонкана фиксируется по экспериментальным данным для низколежаних состояний /2-47.

В случае *N*-нечетного сферического компаунд-ядра его волновые функции зеписываются в виде:

где Уо - волновая функция основного состояния четно-четного ядов. *x* + в *Q*⁺- операторы рождения квазичастиц и фононов соответственно. В волновых функциях низколежених состояний доменноуст первый член формулы (I). В случае четно-четных ядер волновые функции записываются в виде супериозники одно- и днухфононных компонент, При расчете энергетической зависимости коэфициентов C_{JV} и D_{J}^{AC} использу-ется метод силовых функций /I/. Зная функции L_{JV} и D_{J}^{AC} можно рас-считать радиационные силовые функции для γ -переходов на низколежашие уровни с большими спектроскопическими факторами /47.Первый член волновой функции (I) ответствен за велентный у-переход. Результа-. TH DECRETOB DELINATIONHELY CELOBELY DYNKING $\langle K(E1) \rangle$ is $\langle K(\mathcal{M}1) \rangle$, BSSтне из работи [4], продемонстрировани в табл. I. Как видно из табл. I. вклад валентных ЕІ-переходов в силовые функции колеблется от 20 дс 100%. Следует полчеркнуть, что даже в области максимума 5-синовой функции невалентные переходы, идущие через компоненты квазичастица плюс фонон волновой функции (I), могут играть заметную роль. В слу чае МІ-переходов также компоненти доминируют и вклад валентного неxahasma he npessaet 10%.

Величина нейтронной силовой функции S_{ℓ} также определяется коэффициентом C_{JV} :

$$S_{\ell} = \frac{\int g(J)}{\Delta E} \sum_{J} g(J) \sum_{V \in \Delta E} \mathcal{U}_{J}^{2} / \mathcal{C}_{JV} / \mathcal{L}_{J}^{2}$$
(2)

где \mathcal{U}_{3} - коэффициент преобразования Боголюбова, $\int_{3,\rho}^{0}$ - одночастичная приведенная нейтронная ширина. В табл.2 приведены результаты расчетов нейтронных силовых функций (4,57. Наряду с хорошим описанием нейтронных силовых функций КСМ правильно воспроизводит величины спектроскопических факторов низколежащих состояний [4].

Таблица І

	- T T		(E1)>×10	⁹ <i>МэВ</i> ⁻³	π π	$\langle \mathcal{K}(\mathcal{M}1) \rangle \times 10^9 \mathcal{M} \rightarrow B^3$				
Ядро	$I_i \rightarrow I_f$	310-	Расче	eT	$]I_i \rightarrow I_i$	Экс-	Расчет			
		пери- мент	Полная величина	Валент- ная сос- тавляюцая	(пери- мент	Полная величина	Валент- ная сос- тавляющая		
55	1/2 - 3/2 g.s.	-	I.7	0,6	$3_{2} \rightarrow 3_{2}$. ~	6,6	0,1		
Эe	1/2 → 1/2 ·	_	0,3	0,25	$\frac{1}{2} \rightarrow \frac{3}{2}g$	s. –	13	0,1		
59 Ni	1/2 - 3/285	-	0,5	0,I	$\frac{3}{2} \rightarrow \frac{3}{2} $.≾	1,3	0,1		
					1/2 → 3/28	.5	9,8	0,07		
61 Ni	$\frac{1}{2}^{+} \rightarrow \frac{3}{29.5}$	0,96 <u>+0</u>	42 0,27	0,27	3/2 → 3/2 g	.s. 12	4,4	0,3		
					42 - 1/28	.5. 27	3,4	0,2		

Таблица 2

Составное	Перциальная	Se * 10 4				
ядро	BOJIHA	Эксперимент	Расчет			
^{ss} Fe	S 1/2	5,6 <u>+</u> I,7	8,8			
59	5 1/2	3,I <u>+</u> 0,8	2,0			
М	ρ	0,04 <u>+</u> 0,03	0,I			
61 V:	\$ 1/2	2,4 <u>+</u> 0,6	3,I			
Л	Ρ.	-	0,2			
	Si	I,06	0,8			
207 PK	ds,	I,8I	2,4			
, 0	ds	I,24	I,I			
	P	0,32	0,3			
208 De	542	I,4	I,I			
10	d	2,8	2,0			

Энергетическая зависямость приведенных нейтронных ширин S, ρ – и d-резонансов в $2^{or}\rho_{\delta}$, точки – эксперимент, сплошная линия – расчет КФМ

В работе /6/ экспериментально иссленовани S. P-и d-волновые нейтронные скловые функции в области энергий нейтронов Е.=0-900 кэВ 206 ранов энергетической B Deakinki **BROHMOCTH** CYMмарных привеленных нейтронных ширин $\Sigma \Gamma_n^{oc}$ проявляются подструктурн. На рисунке приведены экспериментельные и рассчитанные нами энерте-THYECKNE SERVICIMOCTH $\sum \Gamma_n^{\circ}$ для L =0, I, 2 в 207 рв. Наклон гисто-TOAMM ILLS $\sum \int_{n}^{\infty}$ определяет величных силовых функций S. В рассчитанных нами величинах, как в экспериментальных, имеются изломи, но они менее ярко выражени. Как показано в работе /5/ существование таких подструктур обусловлено наличнем локальных максимумов в энергетической зависимости (. Изломы в энергетической зависимости приведенных нейтронных ширин также наблидались и в 208 рь. Расчети КФМ /5/ правильно воспроизводят экспериментальные данные и для ²⁰⁸гь. Паршиальные нейтронные силовые функции цля ^{207,208}рь показаны в табл.2. Из табл.2 вилно .что получено хорошее описание экспериментальных данных. Наряду с нейтронными силовыми функциями одновременно правильно описывается распределение сили липольных возбужленай в 208 рь /7/. Микроскопический подход позволяет объяснить существование подструктур в сечениях фотопоглощения в 206,208 рв.

Из приведенных выше примеров видно, что в КФМ с единым набором параметров гамильтониана удается описать широкий спектр ядерных характеристик. В отличие от традиционных статистических подходов КФМ позволяет описать не только усредненные характеристики, но и нестатистические эффекты, проявляющиеся в виде подструктур.

Список литературы

- I. Соловьев В.Г. ЭЧАЯ, 1977, т.9, вып.4, с.580.
 - Soloviev V.G., Stoyanov Ch., Voronov V.V. Nucl. Phys., 1978, v.A304, p.503.
 - 3. Воронов В.В., Соловьев В.Г., Стоянова 0. Ядерная физика, 1980, г.31. с.327.
 - 4. Soloviev V.G., Stoyanov Ch. Nucl. Phys., 1982, v. A382, p.206.
 - 5. Soloviev V.G., Stoyanov Ch., Voronov V.V. JINR, E4-82-389, Dubna, 1982.
 - 6. Horen D.J. e.a. Phys. Rev., 1978, v.C18, p.722; 1979, v.C20, p.478; 1981, v.C24, p.1961.
 - 7. Soloviev V.G., Stoyanov Ch., Voronov V.V. JINR, E4-81-422, Dubna, 1981.

G. Reffo, F. Fabbri

ENEA, CRE "E. Clementel", Bologna, Italy

Detailed calculations are presented of E1 and M1 contributions to average total radiative width and to average total γ -ray spectra following s-. p-, d- wave neutron capture in the resonance region of $53,60_{N1}$ and 56_{Fe} .

Рассчитан вклад ЕІ- и МІ-переходов в Ту и средние спектры у-лучей при радиационном захвате нейтронов ядрами ^{58,60}міи ⁵⁶ ге для s-, р-и d-волн в резонансной области.

In the literature in general one assumes that E1 transitions dominate the Y-ray decay of composite systems. Here we have selected some structural materials of interest in reactor technology, where the necessity of accounting also for M1 transitions is shown by means of detailed model calculations.

We have estimated the E1 and M1 contributions to the total and partial average cadiative widths and to the average total γ -ray spectra following s-, p-, d- wave neutron capture in the resonance region of 58,60 Ni and 56 Fe.

The Brink-Axel model [1], [2] was used for γ -ray transitions taking place via compound nucleus mechanism. The adopted parameterization is shown in table 1. The level schemes adopted were taken from ref. [3] while missing γ -ray branching ratios of discrete levels were estimated by means of the well known Weisskopf transition

probabilities. Level density parameterization was done according to [1].

table i

Model param. Isotope	a Mev ⁻¹	U X MeV	T MeV	ß	σ²	D _{OBS} keV	E ₁ MeV	Г 1 MeV	σ ₁ mb	E ₂ MeV	Г ₂ MeV	⁰ 2 mb	E Mi MeV	^Г м1 MeV	ิ M1 mb
⁵⁸ Ni	7.32	8.2	1.31	. 17	7.3	14.	16.0	3.7	53	18.6	5.1	75	11.8	2.36	10.6
60 _{Ní}	8.4	7.3	t.2	.17	4.5	14.	16.0	3.7	55	18.4	5.1	78	11.7	2.34	11.0
56 Fe	8.52	6.9	1.14	25	5.1	19.	17.5	4.8	77	21.4	4.95	39	12.0	2.4	10.3

Summary of adopted parameters for the calculation of level densities and radiative widths.

M1 transition probabilities were estimated in terms of a giant resonance model the parameterization of which was determined (see table 1) by normalization of the strength to the systematics of ref. [4].

Calculated average total E1 and M1 radiative widths are shown in table 2 for the various ℓJ^{Π} quantum numbers involved in the respective resonance regions of $58,60_{\text{Ni}}$ and 56_{Fe} . The effective number of degrees of freedom of the lumped χ^2 distributions are also given in order to quantify the size of the statistical fluctuations characterizing the various calculated as well as measured radiative widths.

Isotope	e	J ^Π	Γ _γ (E1)	^v eff	τ _γ (M1)	^v eff	Γ γ	Ref.	EXP eff
58 Ni	0	$\frac{1}{2}$ +	2200+883	12	113 <u>+</u> 38	17			
	1	$\frac{1}{2}$ -	766 <u>+</u> 244	20.	456 <u>+</u> 234	8			
		<u>3</u> -	726 <u>+</u> 230	20	380 <u>+</u> 153	12			
	2	$\frac{3}{2}$ +	1823 <u>+</u> 602	18	106 <u>+</u> 36	18			
		$\frac{5}{2}$ +	1387 <u>+</u> 444	20	97 <u>+</u> 32	18		•	
60 _{Ni}	0	$\frac{1}{2}$ +	1050 <u>+</u> 420	12	59 <u>+</u> 21	16	1300 <u>+</u> 70	[5]	
	1	$\frac{1}{2}$ -	443 <u>+</u> 148	18	208 <u>+</u> 98	9]			
		$\frac{3}{2}$ -	401 <u>+</u> 132	19	190 <u>+</u> 69	15	1200	[5]	
	2	$\frac{3}{2}$ +	1109 <u>+</u> 353	20	53 <u>+</u> 18	17			
		$\frac{5}{2}$ +	896 <u>+</u> 268	22	45 <u>+</u> 15	18]			
56 Fe	0	$\frac{1}{2}$ +	1070+428	11	34+12	15	850+410	[6]	9.6
	1	$\frac{1}{2}$		16		9	-		
		$\frac{3}{2}$ -	231+75	19	162 <u>+</u> 64	13	500 <u>+</u> 180	[6]	17.1
	2	$\frac{3}{2}$ +	900 <u>+</u> 313	17	32 <u>+</u> 11	18]		1.1	10.5
		$\frac{5}{2}$ +	652 <u>+</u> 224	17	25 <u>+</u> 8	18]	730+250	[6]	18,5

Calculated sverage E1 and M1 contributions to the total radiative width for s-, p- and d- wave resonances compared to results evaluated from experimental data.

On the whole a good agreement, within statistical fluctuations, is obtained between the calculated and experimental quantities given in table 2.

In table 3 we quote the calculations for one well known s-wave resonance E_{λ} for each isotope considered. For each resonance the total as well as the partial radiative width for the transitions to the first two excited level of energy E_{μ} are given. Γ_{λ}^{0} is the reduced neutron width.

table 3

Calculated partial and total gamma widths	for s-wave resonances.	Quoted
uncertainties are the standard deviation of the	respective statistical	x ²
distributions.		

Isotope	E _λ (kev)	E _μ (keV)	Γ ⁰ (eV)	С.N. Гү (meV)	Γ <mark>γ</mark> (meV)	TOT Γγ (meV)	F F (meV)	Ref.
58 Ni	12.4		9.19	2200+40%	62	1745+50%	1530+7%	[10]
		0			35	150	124+17	[7]
		465		305	18	176		[7]
60 _{Ni}	12.3		23.98	1050 <u>+</u> 40 2	127	1670 <u>+</u> 50 %	2920 <u>+</u> 7 %	[10]
		0		178	60	444	514 <u>+</u> 72	[7]
		283		150	57	380	289+46	[7]
56 Fe	27.7		8.72	1070+40%	145	650+50 %	1090+57	[10]
		0		183	12	103	145+25	[7]
		14		182	71	26	35+13	[7]

For the valence mechanism we found a negligible M1 contribution, but an E1 contribution which seems to affect rather significantly the total radiative width Γ^{TOT} , provided on interference term is accounted for

 $(r_{\gamma_{\lambda\mu}}^{\text{TOT}})^{1/2} = (r_{\gamma_{\lambda\mu}}^{\text{CN}})^{1/2} + (r_{\gamma_{\lambda\mu}}^{\text{VAL}})^{1/2}$

like in ref.[4].

The valence model adopted, namely is the one by Lane-Mughabghab [8] according to the specifications in ref. [9].

Percentual error quoted with calculated quantities are the standard deviations

of the corresponding χ^2 lumped distributions.

. v being the effective number of degrees of freedom.

As an example, in fig. 1, the average compound nucleus total Y-ray spectrum (full line) and separately only the E1 contribution (dashed line) are given for $\frac{58}{Ni}$ in the resonance region.

In fig. 2, again for the same case, the different shapes are shown of the s-(full line) and p-wave spectra (J=1/2,=3/2 dotted and dashed line, respectively). Due to the parity selection rules of γ -ray transitions the s- and d- spectra are dominated by E1 transitions, while the p- spectrum by M1 ones.

From the model calculations illustrated one can realize that M1 contributions cannot be neglected in the theoretical estimate of any of the quantities here discussed, where a nuclear structure which favours M1 transitions via the play of JH selection rules couples to M1 transition strength comparable to that of E1 transitions

REFERENCES

- G. Reffo, Parameter systematics for statistical theory calculations of neutron reaction cross sections. Lectures held at ICTP Trieste "Winter Course on Nuclear Physics and Reactors", 17 January - 10 March 1978. Report IAEA, SMR 43 (1980) pag. 205.
- V. Benzi, G. Reffo, M. Vaccari, contributed paper to the IAEA "Fission Product Nuclear Data Meeting", Bologna 26-30 Nov.1973. Report IAEA 169, pag. 123 (1974).
- C.M. Lederer and V.S. Shirley, Tables of isotopes, 7th ed., John Wiley & Sons, Inc. New York (1978).
- J. Kopscki, Proc. of the 4th (n,γ) Int. Symp., Grenoble 7-11 Sept. 1981, psg. 423. Inst. of Phys. Conf. Series n. 62 Bristol and London.
- C.M. Perey, J.A. Harvey, R.L. Macklin, R.R. Winters and F.G. Perey, "Neutron transmission and capture measurements and analysis of ⁶⁰Ni from 1 to 450 keV, ORNL-5893, ENDF-330, Oak Ridge National Laboratory, November 1982.
- F. Corvi, A. Brusegan, R. Buyl, G. Rohr, R. Shelley and T. Van der Veen, Proc. Int. Conf. on Nuclear Data for Science and Technology, Antwerp 6-10 September 1982.
- H. Beer, R.R. Spencer and F. Käppeler, Zeitschrift für Physik A 284, 173 (1978).
- 8. A.M. Lane, S.F. Mughabghab, Phys. Rev. C 10 (1974), 412.
- A. Mengoni, G. Reffo, International Conf. on Nuclear Data for Science and Technology, pag. 755, Antwerp 1982, K.H. Böckhoff (ed.).
- K. Wisshak, F. Käppeler, G. Reffo, F. Fabbri, Neutron capture in s-wave resonances of ⁵⁶Fe, ⁵⁸Ni and ⁶⁰Ni, KfK report 3516, July 1983.

G. Reffo *, F. Fabbri *, A. Mengoni **

* ENEA, CRE "E. Clementel", Bologna, Italy ** Guest researcher at ENEA, Bologna, Italy

The role and the importance of the valence mechanism in neutron capture is illustrated at the example of the neutron radiative capture calculation at 30 KeV on 86 Kr.

Роль в важность валентного механизма при захвате нейтронов покавана на примере расчета сечения радшационного захвата ³⁰кг при энергии 30 КэВ.

Recently measurements for the average cross section of neutrons with maxwellian energy distributions peaked at 30 KeV are made available for $\frac{86}{Kr}$:

 $\langle \sigma_{n,Y} \rangle = (5.6 \pm .7) \text{mb} [1]; \langle \sigma_{n,Y} \rangle = (4.6 \pm .7) \text{mb} [2]; \langle \sigma_{n,Y} \rangle = (4.8 \pm 1.2) \text{mb} [3].$

In addition ⁸⁶Kr neutron resonance characteristics are also svailable from ref. 3.

All these experimental information makes possible the study of ⁸⁶Kr KeV neutron capture to test the validity and the role played by compound nucleus and valence capture mechanisms.

In Table a selection, out of ref. 3, is reported for the ⁸⁶Kr neutron resonances of known characteristics.

Experimental and calculated neutron resonance characteristics in ⁸⁶Kr.

Én	ΓL	8 ^۲ n	EXP r JII Y	< rd>EXP TJ> Y L	$< \frac{\text{STAT}}{\Gamma_{Y}} + \text{S.D.}$ M1.E1	VAL rj M1,E1	TOT _Γ JΠ Υ
36.93	$\frac{1}{2}$ +	53	300 <u>+</u> 80	250 <u>+</u> 80	200+80 ¹⁰	40	240 <u>+</u> 80
43.91	$\frac{1}{2}$ -	125	390 <u>+</u> 100	360 <u>+</u> 100	340 <u>+</u> 200 ⁶	20	360 <u>+</u> 200
49.64	$\frac{1}{2}$ +	42	200 <u>+</u> 60	250 <u>+</u> 80	200 <u>+</u> 80 ¹⁰	15	215+80
54.37	$\frac{3}{2}$ -	402	550 <u>+</u> 150	550 <u>+</u> 150	390 <u>+</u> 200 ⁸	210	600 <u>+</u> 200
78.86	$\frac{1}{2}$ -	95	330 <u>+</u> 120	3 60<u>+</u>120	340 <u>+</u> 200 ⁶	15	355 <u>+</u> 200
	-						

In order to determine the expectation value of n, γ cross section at 30 KeV the usual Hauser-Feshbach theory with width fluctuation correction has been used. This was parametrized using the mean spacing of s-wave resonances, $D_{OBS} = (40+14)$ KeV, deduced from the complete set of data of ref. 3 and normalizing the calculated $\Gamma_{\gamma}^{J\Pi}$ to the corresponding average values in column 5 (see Table). It is important to note here that the adopted values for D_{OBS} is in perfect agreement with the local systematics of the level density parameter "a" deduced for the families of Kr, Se, Br isotopes.

So far the value which can be obtained in terms of statistical model is $\langle \sigma_n \rangle$ (30 KeV)>= 20 mb, 4 times greater than experimental ones.

The idea to overcome the discrepancy found by assuming a valence contribution comes from the large value $\rho = .94$ of the correlation coefficient between the measured values for Γ_{n} and Γ_{γ} . In particular, from the comparison of experimental and calculated quantities in table 1 one can see that the large Γ_{γ}^{EXP} observed at 54.37 KeV comes from the large E1 valence transitions correlated to the large Γ_{n} value. Differently, the fluctuations observed for the Γ_{γ} of the other quoted resonances mostly are denominated by statistical fluctuations according to the very low number of degrees of freedom characterizing the lumped width distribution in all cases, see Column 6. The very good overall agreement between columns 4 and 8 suggests that the appropriate average $\langle \Gamma_{\gamma}^{JI} \rangle$ values to be used in capture calculations are just the Brink-Axel model ones [4] quoted in column 6, without any normalization to the experimental ones.

One finds that at 30 KeV the valence contribution to neutron capture is negligible because it affects only a few channels feeding the lower lying levels in $\frac{87}{7}$ Kr, out of the bulk of all other innumerable statistical channels.

On the contrary the compound nucleus contribution dominates and is so found to be $\langle \sigma_{n,Y} \rangle$ (30 KeV)> = (8+2.7)mb, the quoted uncertainty being due to that of D_{OBS} , according to error propagation.

The model adopted for valence calculations is namely the Lane-Mughabghab one [5] with the specificationsgiven in ref. [6].

From the example illustrated one may conclude that even if valence mechanism do not contribute appreciably to neutron capture cross section nevertheless, in specific nuclei, it may be of great help in explaining apparently ambiguous situations and in determining the appropriate model parameterization.

The case considered also gives additional evidence for the validity of the adopted models for radiative decay of compound nucleus and capture cross section calculations.

REFERENCES

- 1. G. Walter, F. Käppeler, Z.Y. Bao, p.c. 1982.
- 2. G. Walter, H. Beer, F. Käppeler, R.E. Penzhorn, p.c. 1982.
- S. Raman; B. Fögelberg, J.I. Harvey, R.L. Macklin, P.H. Stelson, H. Schröder, K.-L. Kratz to appear in Phys. Rev. C 1983.

- G. Reffo, Parameter systematics for statistical theory calculations of neutron reaction cross section. Lectures held at ICTPT Trieste "Winter Course on Nuclear Physics and Reactors", 17 January-10 March 1978 -Report IAEA, SMR 43 (1980) pag. 205.
- 5. A.H. Lane, S.F. Hughabghab, Phys. Rev. C 10 (1974) 412.
- A. Mengoni, G. Reffo, International Conf. on Muclear Data for Science and Technology pag. 755 Antwerp 1982, K.H. Böckhoff (ed.).

О ЕКЛАДЕ ПРЯМОГО ОДНОСТУПЕНЧАТОГО МЕХАНИЗМА В РЕАКЦИО ПЕРЕЗАРЯДКИ ПРОТОНОВ НА ЦИРКОНИИ-90 ПРИ E_р =22,2 МЭВ

Н.Н.Титаренко, Е.Л.Ядровский

(<u>0</u>000)

На основе микроскопического метода искаженных волн оценен вклад примого одноступенчатого механизма в полный спектр нейтронов реакции 9022(p,n) для энергии протонов 22,2 МаВ.

The singlestep direct emission in the 90 sr(p,n) reaction with 22.2 MeV protons are estimated by the microscopic DWBA method.

В работе f1/2 в рамках микроокопического метода мокаженных волн на основе конфигурации $10g_{g/2}(n) 1g_{g/2}(\rho)$; 7^{7} , ядра 90NB был проведен анализ жесткой части спектра нейтронов реакции $90Z_{2}(\rho,n)$ при $E_{p}=22,2$ МэВ. Было получено хорошее согласже расчетов с экспериментальными угловыми распределениями нейтронов при возбуждении изобар-аналогового состояния ядра $90NB(0^+, E_x=5, 14 \text{ МэВ})$, а также 1^+ , E = 2, 126 МзВ.

В этой работе проводится сценка доли прямого механизма реалции $90\mathbb{Z}_2(\rho,n)$ во всем спектре нейтронов $E_n \sim 2415$ МэВ. Мы рассчитали вклад в спектр более 30 частично-дырочных конфигураций $I_{J_1}(n) \otimes J_2(\rho) >$ ядра $90\mathcal{N}_6$, когда были учтены все переходы из нейтронных оболочек (2 β , If, I $g_{9/2}$) на протонные 3S, 2d, Ig, In II/2). По программе ВАР-82 [2] получены дифференциальные и янтегральные характеристики возбуждения состояний ядра $90\mathcal{N}_6$ с \mathcal{J} =049 обеих четностей.

Расчет проводился в рамках следующих приближений. На основе микроскопического подхода МИВ учитывался только прямой одноступенчатый механизм (β , β) реакции. Параметры оптического потенциала во входном канале были выбраны по наилучшему описанию упругого рассеяния протонов на 927 при энергии 22,5 МэВ [3], в выходном нейтронном канале использовалась глобальная систематика оптических параметров из работы [4]. Потенциал нуклон-нуклонного взаимодействия содержал только центральные статические компоненты, параметры которых были взяты из других работ по лучшему описанию возбуждения изобар-аналоговых и гемов-теллеровских состояний в широкой области ядер и в процессе расчетов не варьировались ($V_{\mathcal{T}}$ =I9 МэВ, $V_{\mathcal{CT}}$ =I2 МэВ, взаимодействие Бжавы с радиусом \mathcal{T} =I.0 ф.) [I]. Волновые функции состояний ⁹⁰Nв определялись в приближении I дырка-I частица $|J_1(n) J_2(p) : \mathcal{J}^{\mathbb{Z}}$ без учета смешивания конфигураций. Энергии "центров тяжести" конфигураций находились по положению однонуклонных уровней [5]: $\mathcal{E}_{J_1} J_2 = \mathcal{E}_{J_2} - \mathcal{E}_{J_1}$ Как показали расчеты при энергии \mathcal{E}_p =22,2 МэВ, величина сече-

Как показали расчеты при энергий $E_{\rho} = 22,2$ МэВ, величина сечения прямой реакции перезарядки слабо зависит от положения возбуждаемого состояния остаточного ядра, поэтому для упроцения везде предполагалось, что энергии частично-дырочных возбуждений равны энергиям соответствующих уровней мультиплета $I g_{g/2}(n) I g_{g/2}(p) : \mathcal{J}^{m} > [6]$.

В таблице приведены рассчитанные сечения (в мбн) реакции перезарядки протонов, идущей с возбуждением простых состояний ядра 90/8.

Ţ	0	I	2	3	4	5	$\sum_{j=0}^{g} G_j$
Точный расчет	3,56	10,79	7.77	5.96	2,98	1.82	34.25
Прибли- жение	.8.91	13.11	10.79	5.70	3.32	2.13	45 .3 0

Верхняя строка таблицы соответствует полному расчету всех переходов в рамках приближений указанных выпе. Для каждого эначения \mathcal{I} показана сумма всех возможных частично-дырочных переходов, приводящих к возбуждению состояния с данным спином \mathcal{I} . Суммарный вклад состояний с \mathcal{I} = 6+9 составляет ~1,33 мбн или менее 3%, в таблице эти переходы не указаны.

Нижняя строка таблицы соответствует расчетам, в которых вклад произвольного мультиплета оценивался на основе вклада конфигурации $Ig_{q/2}(n)g_{q/2}(p) > с$ использованием соотношения:

$$\mathcal{O}(j_{1n}, j_{2p}; \mathcal{J}^{\mathcal{T}}) = \left(\frac{2j_{1}+1}{10}\right) \mathcal{O}\left[1g_{g_{2}}(n), 1g_{g_{2}}(p)\right]. \quad (1)$$

Формула (I) получена в предположении, что угловые распределения продуктов прямой реакции перезарядки в основном определяются спином возбуждаемого состояния и не зависят от других квантовых чисел частично-дырочных конфигураций рассматриваемого мультиплета.

Как видно из таблицы, в рамках упроценного варианта удовлетворительно описывается возбуждение состояний с $\mathcal{J} > 2$. Такое приближение может оказаться очень полезным при оценках вклада в сечение состояний с большим значением \mathcal{J} . Прямое вычисление на ЭЕМ-сечений возбуждения состояний с большим спином приводит к существенному увеличению времени расчетов. Приближение (I) позволяет довольно простым способом учесть верхнюю границу вклада прямого одноступенчатого механизма вреакции перезарядки при возбуждении состояний высокой мультипольности. Однако оно не годится для описания сечения возбуждения состояния 0⁻ на основе расчетов 0⁺ (ИАС) перехода, так как возбуждение состояния 0⁻ связано часто с изменением радиального квантового числа ($\Delta N = \pm 1$) в переходах типа ($f_{b,5/2}(n) 2d_{5/2}(\rho):0$), что приводит к существенному подавлению сечения. Такое же подавление переходов с $\Delta N = \pm 1$, ± 2 наблюдается и для возбуждения состояний с большими спинами ($\mathcal{J} = I, 2, ...$), что приводит к завышенным значениям сечений, рассчитанных по $\phi.(I)$.

На рисунке приведены результаты расчетов спектра нейтронов из реакции ${}^{90}Z_7$ (β ,n) для E_{β} = 22,2 МэВ, обусловленных прямым одноступенчатым механизмом [гистограмма 3 – точный расчет по МНВ, гистограмма 2 – оценка по ф.(I)].

Эти гистограммы получены следующим образом. Весь спектр был разделен на интервалы $\Delta E_{\mu} = 3 - 4$ МэВ,и среднее по интервалу сечение определялось как сумма попадающих в него отдельных переходов, деленная на ширину интервала.

Гистограммой I показан вклад в сечение перезарядки прямых процессов, выделенных из полных спектров по асимметрии угловых распределений нейтронов [7].

Из рисунка видно, что интенсивность жесткой части наблюдаемого спектра нейтронов из реакции $90 Z_{\mathcal{L}}(\rho, \mathcal{R})$ можно объяснить в основном вкладом прямого одноступенчатого возбуждения состояний 90 16, лежащих ниже ИАС 0⁺ E = 5, I4 МэВ. Результаты приближенного и точного расчетов этой части спектра практически совпадают. Это означает, что ф. (I) можно применять для оценок вклада прямого одноступенчатого процесса в жесткую часть спектра реакции (Д. Л.) на других ядрах.

Отличие результатов наших расчетов от экспериментального спектра при Е₀ = 2 - 9 МэВ может быть обусловлено несколькими причинами. Из-[8], что в области энергий возбуждения выше ИАС О+ большой вестно вклад в спектр реакции (Д, Л) дает двухступенчатый механизм возбуждения двухфононных аналогоь коллективных состояний ядра мишени. В эту область спектра могут дать вклад статистические прямые многоступенчатые процессы [9], [10]. Выход нейтронов с асимметричным угловым распределением возможен в реакциях выбивания нуклонов [II], пороги которых равни I2 и I6.6 МэВ для реакций 9072 (D. Dn) и $(\rho, 2n)$ соответственно. В литературе [12] обсуждаются и другие механизмы реакции (ρ ,n). Заметим, что анализ всех этих механизмов в рассматриваемом процессе $90 Z_2$ (ρ ,n) при E_D = 22,2 МэВ осложняется тем, что при энергии нейтронов Е < 9 МэВ в полный спектр основной вклад вносит механизм статистического распада составного ядра.

В заключение отметим, что успех использованных нами моделей независимых частиц и метода искаженных волн при описании жесткой части спектра данной реакции не исключает важности смешивания конфигураций и вклада многоступенчатых процессов при возбуждении отдельных состояний ядра 90 // , расположенных ниже энергии ИАС 0+.

Список литературы

- Титаренко Н.Н., Япровский Е.Л. Препринт 104-1425, Обнинск, 1983; см. также доклад данной конференции.
 Титаренко Н.Н. Препринт 104-1331; 404-1356, Обнинск, 1982.
 Gray W.S. et. al., Phys. Rev. 1966, v.142, p. 735.
 Rapoport I. et. al. Nucl. Phys., 1979, v. A330, p.15.

5.	Shröder A. Nuovo Cim., 1958, v.7, p. 461.
6.	Yoshida Y. et. al., Nucl. Phys., 1972, v. A187, p. 161.
7.	Бирюков Н.С. и др. Препринт ФЭИ-941. Обнинск. 1979.
8.	Brown V.R. et. al., Phys. Rev. lett. 1972, v. 28, p. 629.
9.	Feshbach H. et. el. Aun. of Phys., 1980, v. 125, p. 429.
10.	Avaldi L. et. al., Phys. lett., 1980, v. 94b, p. 463.
II.	Cohen B.L. et. al. Phys. Rev. 1957, v. 108, p. 768.
ĪŹ.	The (p, n) reaction and the nucleon-nucleon force, ed. by
	C.D. Goodman et. al., Plenum Press, New. York, 1980, 539 p.

МОЛЕЛЬНОЕ ОПИСАНИЕ СПЕКТРОВ ФОТОНЕЙТРОНОВ

М.В.Савин, М.К.Сараева

,

Проведено описание спектров фотонейтронов по каскадной теории испарения нуклонов с учетом предравновесного распада ядра.

Photoneutron spectra description on cascade theory of evaporation nuclides subject to the preequilibrium nuclear decay was done.

В работах /1,2/ было показано, что энергетическое распределение функции возбуждения ядра влияет на форму сцентра фотонейтронов. Неучет этого фактора при анализе экспериментальных данных может привести к неправильным значениям извлекаемых параметров плотности уровней возбужденных ядер.

В настоящей работе проведено описание спектров фотонейтронов в рамках статистической теории каскадного испарения нейтронов с учетом предравновесного излучения, используя формализм, изложенный в работе /3/. Спектр фотонейтронов с учетом деления ядер представлялся в виде:

$$N [\delta n, E_{\gamma}]^{z} d_{1} Ner (\delta n, E_{\gamma}]^{z} d_{4} Nup (\delta n, E_{\gamma})^{z} d_{3} \overline{V} \cdot N_{f} (\delta n, E_{\gamma}),$$

$$d_{1} + d_{4} + d_{3} = 1,$$

$$d_{3} = \frac{\delta_{\gamma f} (E_{\gamma})}{\delta_{\gamma n} (E_{\gamma}) + \delta_{\gamma f} (E_{\gamma})}.$$
(I)

Суммарное по каскадам энерготическое распределение нейтронов, испускаемых составным ядром A в состояния термодинамического равновесия, можно записать /3/:

$$N_{cT}(\mathbf{6}, E_{y \max}, A) = \sum_{k=1}^{Z} \int X_{k-1}(E_{k-1}) Y_{c}(\mathbf{6}, E_{k-1}) dE_{k-1}, \qquad (2)$$

где веронтность излучения К-го нейтрона о кинетической энергией & ядром с энергией возбуждения Е_{к-Г} есть

$$\mathcal{Y}_{K}(\delta, E_{K-1}) = \mathcal{L}_{K}(E_{K-1}) \, \mathcal{G}_{C}(\delta) \, p(E_{K-1} - Q_{NK} - \delta). \tag{3}$$

Фуниция возбуждения Х. имеет вид:

$$\sum_{k=1}^{k} \mathcal{B}_{nj} = \int \mathcal{X}_{k-1} (E_{k-1}) \cdot \mathcal{P}_{k} (E_{k}, E_{k-1}) dE_{k-1}$$

$$(4)$$

Вероятность P_{κ} для ядра, имеющего энергию возбуждения $\mathcal{E}_{\kappa-4}$, после излучения нейтрона оказаться с энергией возбуждения \mathcal{E}_{κ} получается из $\mathcal{Y}_{\kappa}(\delta_{\kappa}, \mathcal{E}_{\kappa})$ путём замены δ_{κ} в соответствии с законом сохранения энергии $\mathcal{E}_{\kappa-4} = \mathcal{E}_{\kappa} + \mathcal{O}_{n\kappa}$. Первоначальная функция возбуждения ядра \mathcal{X}_{o} для $\mathcal{E}_{gmax} = 15$ МэВ принималась в виде гауссовского распределения и для $\mathcal{E}_{gmax} > 15$ МэВ в виде лоренцовской линии. Положения и ширины распределений определялись по экспериментальным дакным.

При поглощении J-кванта ядром образуется двухквазичастичное возбужденное состояние IpI h (число экситонов n = p + h = 2), которое в дальнейшем распадается либо испусканием нуклона (при этом ядро остаётся в I h состоянии), либо вследствие рождения ещё пары частица-дырка (ядро переходит в 2p2 h состояние) и т.д. Спектр неравновесных фотонейтронов, усреднённый по функции возбуждения ядра X_o , оудет иметь вид

$$N_{H\rho}\left(\mathcal{E}_{,E_{\chi}}\right)=const\cdot\int_{a_{n}\in\mathcal{E}_{x}}^{H}\frac{q}{r}\left(n^{2}-i\right)\left(\frac{\mu}{E^{*}}\right)^{n-2}X_{\sigma}\left(E_{\chi}\right)d\cdot E_{\sigma},$$

$$a_{n}\in\mathcal{E}_{x}$$
(5)

где \mathcal{E}^* и $\mathcal{U} = \mathcal{E}^{*} - Q_n - \mathcal{E}$ энергии возбуждения составного и остаточного ядер соответственно.

Спектр нейтронов фотоделения и их доля \checkmark_3 определялись, используя зависимость Террела $\bar{\mathcal{E}} = f(\bar{\mathcal{V}})$ и систематику [4]. Предполагалось, что энергетическое распределение нейтронов фотоделения такое же, как при делении ядер нейтронами при равных энергиях возбуждения делящегося ядра.

Результаты расчётов вместе с экспериментальными данными [5-8] приведены на рис. І и 2. В расчётах зависимость плотности уровней от энергии возбуждения ядра принималась в виде: $\rho(4) \sim exp \sqrt{2\pi a \mu}$, значения параметра a находились из систематики/IO7. Величина и энергетическая зависимость d_a определялись на основании данных работы [9]. Из рис.I-2 видно, что расчёты, в основном, хорошо согласуются с результатами эксперимента. Систематическое превышение данных [6] в области энергий $\mathcal{E}_{\alpha} > 5$ МэВ может быть связано с двумя обстоятельствами:

В области En > 5 МэВ спектр нейтронов, в основном, обусловлен

предравновесным излучением и прямым взаимодействием У-квантов с нуклонами в ядре. Последний процесс здесь не учитывался. Можно улуч ~ шить согласие путём увеличения dz до 0,5 - 0,6. Однако такое значение dz будет чрезмерно большим с точки зрения динамики взаимодействия У-квантов с ядром.

Спектры нейтронов /6/ измерены под углом $\theta = 90^{\circ}$ к направлению потока Х-квантов. Угловое распределение высокоэнергетических нейтронов ($\varepsilon_{r} > 5$ МэВ) имеет максимум при $\theta = 90^{\circ}$, при этом анизотропия может достигать ~ I,5 и более, особенно при высоких энергиях Х-квантов. Это могло привести к отличию расчётных (интегральных по углу) и экспериментальных данных.

Из проведенного анализа видно, что статистическая теория распада составного ядра в фотоядерных реакциях, в основном, хорошо воспроизводит энергетическое распределение вылетающих нейтронов. Однако для более полного понимания механизма протекания реакции и получения количественных характеристик необходимы экспериментальные данные в широком диапазоне энергий нейтронов и особенно в области $\mathcal{E}_n < 2 M_3B$.

Список литературы

- I. Шубин D.H., Ставинский В.С.-Нейтронная физика. (Материалы 3-й Всесоюзн.конф. по нейтр. физике. г.Киев, 1975г.). М., ЦНИИатоминформ, 1976, ч.З., с.133.
- Ставинский В.С., Шубин Ю.Н.-Нейтронная физика. (Материалы 4-й Всесоюзн.конф. по нейтр. физике. Киев, 1977г.). М., ЩНИМатоминформ, 1977, ч.І., с.89.
- 3. Савельев А.Е.-Бюллетень ЦЯД, вып.7, приложение I, Атомиздат. 1977.
- 4. Howerton R.J.-Nucl.Sci.Eng., 1977, v.62, p.438.
- 5. Евсеев В.С. и др.-Ядерная физика, 1975, т.21, вып. 2, с.245.
- 6. Cortini G. et al.-Nuovo Cim., 1958, v.9, p.85.
- 7. Глазунов Ю.Я., Савин М.В. и др.-ЖЭТФ, 1964, т.46, # 5, с.1906.
- 8. Gayther D.B., Goode P.D.-J.Nucl. Engng, 1967, N 21, p.733.
- Зелигер Д. и др.-Нейтронная физика. (Материалы 2-й Всесовзн. конф. по нейтр. физике. Киев, 1973). Ознинск, 1974, ГКАЗ, ч.1, с.269.
- 10. Cook J.L. et al. Aust.J. Phys., 1967, v.20, p.477.

ВЛИЯНИЕ ЗАКОНА СОХРАНЕНИЯ МОМЕНТА И ЧЕТНОСТИ НА РАСЧЕТН СПЕКТРОВ ЭМИССИИ НЕЙТРОНОВ

В.М.Бычков, А.Б.Пащенко, В.И.Пляскин

(ФЭИ, Обнинский филиал МИФИ)

В рамках формализма Хаузера-Фешбаха-Моддауэра исследовано влияние эмисски у-квантов и законов сохранения углового момента и четности на расчет функций возбуждения (~,2~) и слектров эмиссии нейтронов.

The influence of χ -ray emission and the laws of conservation of parity and angular momentum upon calculations of (n2n) reaction exitation function and emission spectra have been investigated in the framework of Hauser-Feshbach-Moldauer's formalism.

Ранее [1] нами было показано, что при энергиях падающих нейтронов~7+15 Мэв в широком цианазоне массовых чисел (А~ 50+200) с единым набором параметров удается хорошо описать спектры эмиссии нейтронов и сечения реакции (~,2~) по испарительной модели Вайскоща с учетом интегрального вклада неравновесных процессов в рамках экситонной модели. Однако в испарительной модели не учитываится законы сохранения углового момента и четности при распаде составного и последовательно образующихся остаточных ядер, что может привести к ощибке в расчетах сечения реакции (~,2~) и спектров эмиссии нейтронов. В связи с этим возникия необходимость количественно оценить влияние учета законов сохранения углового момента и четности распадающейся системы при разных энергиях возбуждения и проверить в рамках более строгой теории выводы, сделанные в работе [1]. Здесь в качестве примера все расчеты выполнены для ядра ⁵⁶ с. Основное внимание уделено следующим вопросам:

- а) влиянию учета законов сохранения углового момента и четности на вычисление спектров эмиссии нейтронов.
- б) влиянию конкуренции гамма-квантов на вероятность эмиссии нейтровов в каскадных реакциях.

Расчети проводились по программе "STAPRE "[2], в которой реализован алгориты расчета сечений ядерных реакций по статистической теории в формализме Хаузера-Фенбаха-Молдауэра (ХФМ) с учетом неревновесных процессов в рамках эксятонной моделя. Коэффициенты проницаемостя для нейтронов, протонов к альфа-частиц вичнолялись в рамках оптической модели (программа [3] с потенциалами из расот [4 - 6]. Плотность ядерных уровней рассчитывалась по модели. ферми-таза с "обратным смещением" [7]. Схемы низколежащах уровней бралноь из компиляции [8], а энергии связя нейтронов, протонов и \propto -частиц в составном в остаточном ядрах – из работи [9]. На рис. I приведены спектры эмиссии нейтронов, рассчитанные по соотномениям испарительной модели (программа [8]) и формуле XGM при энергиях падалиях нейтронов (\mathbf{E}_{\perp} I4,5 и 20,6 МеВ), достаточных для испускания двух частиц. Учет закона сохранения углового момента приводит к заметному изменению формы спектра вторых нейтронов (меньше нейтронов низких энергий) только в случае, когда энергия падалиям нейтронов близка к порогу реакции ($\sim, 2 \sim$).

Учет конкуренция процессов (κ, κ'_f) в $(\kappa, 2\kappa)$ в испарительной модели приводит к уменьшению сечения реакции $(\kappa, 2\kappa)$, особенно на тяжелых ядрах [I]. Здесь вопрос о конкуренции гамма-квантов в нейтронов рассматривается в более строгом подходе с использованаем формализма XGM. Влияние конкуренции ў-квантов на вероятность эмисски нейтронов во втором каскаде реакции представлено на рис.2 (спектры эмисски нейтронов) и рис.3 [функция возбуждения реакция ($\kappa, 2\kappa$)]. Нанбольший эффект при включении канала эмиссии гаммаквантов набилдается вбинзи порога реакции ($\kappa, 2\kappa$), при этом изменяется даже форма спектров эмиссии нейтронов. При достаточно большом превыжения (порядка нескольких МэВ) энергии падающих нейтронов над порогом реакции влияние конкуренции гамма-квантов на спектр эмиссии нейтронов мало. Для функции возбуждения реакции ($\kappa, 2\kappa$) учет гамма-конкуренции равносилен увеличению эффективного порога соответствущей реакции (расчетная криван сдвигается по оси энергий)."

Рис.2 Влаяние конкуренции канала (м, м/) на форму спектров нейтронов: - - расчет без учета конкуренции /-квантов, - с учетом. 1,2 - сцектры эторого нейтрона и суммарный соответственно.

Интересную информацию с точки эрения изучения механизма реакпин (~,2 ~) могут дать нарциальные сечения с возбущением отдельных уровней остаточного ядра (в данном случае ⁵⁵с). Результати таких расчетов для девяти уровней, включая основное состояние, показани на рис.4. Видно, что преимущественно заселяются уровни с високим значением спина, что подтверждает высказанное ранее [10]слецующее качественное объяснение этому:так как испускаемые первый и

I79

второй нейтроны уносят в среднем небольшую энергию и соответственно малые угловые моменты, то остаточное япро полжно оставаться в состояниях, имеющих высокое значение спина.

Из вышеизложенного можно сделать вывол. что описание спектров нейтронов в испарительной модели хорошо согласуется с аналогичными расчетами по формуле Хаузера-Фешбаха-Молдауэра при энергиях на несколько MaB превышающих порог реакции (M,2 m).

CHECOR JHTODATYDH

- I. Бичков В.М., Лащенко А.Б., Пляскин В.И. Вопросы атомной науки и техники. Сер.: Ядерные константы, 1978, вып. 2 (29), с. 7.
- 2. M.Uhl., B.Strohonaier, STAPRE-A.Computer Code for particle In-duced Activation Cross-Sections and Related Quantities.
- вание и контурацион стояв-Sections and Related Quantities.
 вание колоникали в составляет стоявание скледования в сссер Атомиздат, 1975, вып.20, с. 39.
 Бычков В.М. и др.В со. "Нейтронная физика" (Материалы 3-й Всесоряной конференции по нейтронной физике, Киев, 1975), Москва, 1976, Ч.1, с. 160.
- Becchetti F.D., Greenless Ir and G.W.Nuclear-Nucleus Optical-Mo-del Parameters, A≥40, E ≤ 50 NeV. Phys.Rev., 1969, v. 182, p.II90.
- 6. Huizenga T.R. and IgoG. Theoretical reaction cross-sections for alpha particles with an optical model.Nucl.Phys. 1968, v. 29(3), p.462.
- 7. Dig W.et.al.Level density parameters for the back-shifted fermi gas in the mass range $40 \le A \le 250$. Nucl.Phys, 1973, A127, p.269.
- 8. Lederer C.M., Sl New-York, 1978. , Shirley V.S., Table of Isotopes. 7-th edition,
- 9. Gowe N.B. and Wapstra A.H. Nuclear reaction Q-values, Nuclear Data Tables, 1972, v.11, No 2, p.127.
- 10. Сальников О.А., Довчикова Г.П., Котельникова Г.В. и др. Всаммодействие 14 МэВ нейтронов с ядрами железа, меди, необия. Препринт ФЗИ-216, Обнинск, 1970.

Н.Н.Титаренко, Е.Л.Ядровский

(NGQ)

В рамках микроскопического МИВПБ проведен расчет сечения возбуждения состояний \\gamma_gamma_osign(\$): 7+> ядра \$\$ NB в реакции \$\$ 2r (\$p, \$n\$) с энергией протонов 22.2 МэВ. Результать расчета сравниваются с экспериментом.

The 90 Zr(p,n) cross section of the 22.2 MeV protons was calculated by the microscopical DWBA method. The 14 gat (n) 4 gat (n): 34 \rightarrow excitations of 30 Nb wer considered and the results of calculation were compared with the experiment.

В работе, выполненной на циклотроне ФЭИ для энергий протонов 22,2 МэВ, измерены полные спектры реакции (ρ , n) под несколькими утлами вылета нейтронов /1/.Анвлиз утловых распределений позволил определить доло прямых процессов в сечении данной реакции. Измерения проведены в широкой области ядер и показывают, что доля прямых процессов равномерно распределена по спектру, что может свидетельствовать о едином механизме прямого процесса во всем интервале энергий возбуждения остаточного ядра.

В этом докладе мы анализируем жесткую часть спектра нейтронов реакции 90 $\mathbb{Z}_{r}(\rho, n) \, {}^{90}$ Nb (E^{*}~0 + 2 MэB) и возбуждение изобар-аналогового состояния 0⁺(E^{*}=5,14 МэB). Низколежащие состояния 90 Nb имеют наиболее простую природу типа "нейтронная дырка – протонная частици [2,3]; для ИАС 0⁺(5,14 МэB), состояний 1⁺(2,126 МзB) и 2⁺(0,854МзB) известны угловые распределения нейтронов реакции (ρ, n) [4-I0]. Поэтому анализ вклада прямого механизма этой реакции нами начат с изучения жесткой компоненты спектра нейтронов.

Расчет дифференциальных и интегральных сечений реакции $90_{Z_r}(p,n)$ был проведен в рамках микроскопического метода искаженных волн в первом борновском приближении [II], [I2]по программе [I3]. Радиальная зависимость эффективного потенциала была выбрана в виде зависимости Вкавы с радиусом взаимодействия I.0 фм. [7], изоспиновой амплитудой $V_R = 19$ МэВ [7] и спин-изоспиновой, $V\sigma r = I2$ МэВ [I4]. В качестве волновых функций связанных состояний нуклонов в конфигурации $14g_{1}^{-1}$ (w) $1g_{1}(p): J^+ > ддра ^{90}$ Nb использовались функции нуклонов в потенциале Саксона-Вудса. Предполагалось, что основное состояние ядра 90 Zr имеет конфигурацию $14g_{1}(w)^{40}: O^{+7}$.

На рисунке показаны результаты расчета угловых распределений нейтронов и экспериментальные данные из работы [4].

Различные кривые отвечают различным наборам оптических параметров (табл. 2): кривая I – набор IV; 2 – набор II; 3 – набор I. Рассчитанные свчения возбуждения 2⁺, показанные на рисунке, умножены на фактор 2.

Как видно, расчеты для 0⁺ и I⁺ хорошо согласуются с экспериментальным угловым распределением. Тогда как для 2⁺ наблюдается отличие как по абсолютной величине, так и по характеру угловой зависимости. Нами исследована возможность увеличения сечения возбуждения за счет усложнения структуры волновой функции состояния 2⁺. Расчеты структуры состояния 2⁺ были выполнены в приближении Тамма-Данкова для основного состояния 9⁰ 2⁻ ψ_0 += 0,8 $\lfloor (2P_{1/2}, (P))^2 \rangle$ + 0,6 $\lfloor (1g_{2}, (P))^2 \rangle$, с δ -силами. Основные компоненты волновой функции состояния

2⁺ (больше 0,1) приведены в табл. 1. Там же показаны сечения возбуждения соответствующих чистых конфигураций.

Таблица I

Конфигурация	194(in) 1940	el 1 gay (in) 2 day	102 fstein 2 pute (0)	2px(u) 2px(p)
Коэффициент раздожения	0.902	-0.136	-0.350	-0.200
Сечение воз- бужд.мкбарн	998	424	69	155

Оценка показывает, что даже в случае полного когерентного сложения всех амплитуд сечение возбуждения 2^+ увеличивается менее, чем в I.I раза. При этом характер углового распределения такке практически не изменяется, по сравнению с чистой конфигурацией $14 q_{9b}(w)^{-1}$.

1 g_{γ2}(φ): 2⁺ 7. Поэтому вопрос о возбуждения 2⁺ требует дальнейшего теоретического и экспериментального изучения. В литературе [2,3] высказывается сомнение в том, что рассматриваемое состояние является 2⁺. В работе [15] обсуждается возможное увеличение амплитуды в области энергий протонов 22-24 МэВ за счет эффективного учета вклада квадрупольного изовекторного резонанса (до 30%).

Вариация оптических параметров, как видно из рисунка и табл.2, менее всего отражается на величине сечений возбуждения I⁺ и 2⁺. В табл.2 показано интегральное сечение возбуждения состояний 0⁺, I⁺, 2⁺ в зависимости от набора оптических нараметров (миллибарн).

Hador OII	V _P	Vn	0+	, I +	2+
I	[16]	[16]	2.97	I.49	0.83
П	[19]	[16]	3.29	I.6I	0.89
0	[13]	[17]	4.48	I.97	1.03
IУ	[18]	[17]	4.23	I.88	I.00
	эксперимент	[4]	5.6	I.9	2.3

Таблица 2

Одна из причин сильного отличия теории и эксперимента в сдучае 2^+ может быть связана с проявлением двухступенчатого механизма прямого процесса: 0^+ (p, p') 2^+ (p', n), 2^+ , где первая стадия процесса усилена коллективными эффектами возбуждения 2^+ в 902 г.

Суммируя вклады состояний $(4.9 \text{ m} (n)^{-1} 4.9 \text{ m} (n)^{-1} 7 \text{ для } 1^+ = 1^+, 2^+ \dots 9^+$ в интервале энергий возбуждения ⁹⁰Nb 0 + 2 МэВ, находим, что общий вклад этой конфигурации в сечение прямого процесса составляет~ 3 мбн. Эксперимент [1] дает в этой области ~ 8 мбн. Повидимому, отличие теории и эксперимента для 2⁺ является характерным и для состояний с большим спином: 3⁺, 4⁺, ... и т.д. В итоге это приводит к занижению в расчете выхода жестких нейтронов. К сожалению, для состояний 3⁺, 4⁺ и других нет экспериментальных данных по реакции (p, n), которые бы позволили понять особенности механизма их возбуждения на основе аналогичного теоретического анализа. 0 том, что такие особенности могут быть, указывает исследование этих состояний в реакции ⁹⁰Zr (³He, t) [9].

Авторы выражают благодарность Г.Я.Тертычному за помощь в проведении расчетов структуры низколежащих состояний ядра ⁹⁰ Nb.

Список литературы

```
I. Бирюков Н.С. и др., Препринт ФЭИ - 94I, 1979, Обнинск.
```

- 2. Hayakawa S.I., et.al., Nucl. Phys., 1969 v.A139, p.465.
- 3. Yoshida Y., et.al., Nucl. Phys., 1972, v.A187, p.161.

4. Bentley R.F., A fast neutron spectrometer (p,n) reaction studies, and microscopic analyses, Athesis for The degree of doctor of Philosophy, University of Colorado, 1972, p.157.

5. Jolly R.K., et.al., Phys.Rev., 1973, v.C7, p.1903.

```
6. Carlson J.D., et.al., Nucl. Phys., 1975, v.A249, p.29
```

```
7. Satchler G.R., Nucl. Phys., 1975, v.A95, p.1.
```

- The (p,n) reaction and the nucleon-nucleon force, ed.by C.D.Good man et.al. Plenum Press, New York, 1980, p.539.
- 9. Kunz P.D. in 287, p.451.

```
10.Rikus L. et.al., Nucl. Phys., 1977, v.A286, p.494.
```

- 11.Satchler G.R., Nucl. Phys., 1966, v.77, p.481.
- 12-Титаренко Н.Н., Ядровский Е.Л., Препринт ФЭИ-1425, Обнинск, 1983.
- 13.Титаренко Н.Н., Препринт ФЭИ-I33I, Препринт ФЭИ-I356, Обнинск, I982.

```
14.Austin S.M., in [8], p.203.
```

```
15.Poppe C.H., in [8], p. 461.
```

```
16.Bechetti F.D., Greenlees G.W., Phys.Rev., 1969, v.182,p.1190.
```

- 17.Rapaport J. et.al., Nucl. Phys., 1979, v.A330. p.15.
- 18.Gray W.S. et.al., Phys.Rev., 1966, v.142, p.735.
- 19.Ball J.B. et.al., Phys.Rev., 1964, v.B135, p.706.

МЕХАНИЗМ НЕУПРУГОГО РАССЕЯНИН БИСТРЫХ НЕЙТРОНОВ И ХАРАКТЕРИСТИКИ ВОЗБУЖИЕННЫХ УРОВНЕЙ ЯПЕР ⁵⁹с. И ²⁰⁹ВІ.

С.П.Симаков, Г.Н.Ловчикова, В.П.Лунев, О.А.Сальников, H.H.Титаренко (ФЭИ)

> Проведен теоретический анализ сечений неуиругого рассеяния нейтронов с энергиями от 5 до 8 МэВ на ядрах ⁹⁰Со и ²⁰⁹Ві.Расчети выполнени в рамках ракновесного и прямото механизмов по модели Хаузера-Фенсаха и в сорновоком приближения искаженных волн. Из анализэ равновесной части сечения определени параметри плотности ядерных уровней и моженты инерпан ядер ⁹⁰Со и ²⁰⁹Ві в возбужденном состоянии.

MECHANISM OF INELASTIC SCATTERING OF FAST NEUTEONS AND CHARACTERISTICS OF EXCITED STATES OF 5700 AND 209Bi. The theoretical analysis of neutron inelastic scattering cross-sections in the energy range 5-8 NeV are made. Calculations have done in the framework of equilibrium and direct mechanisms using Hauser and Feshbach model and Born' approximation of distorted waves.

Целью настоящей работи является ошисание дваждыдий реренциальных сечений неупругого рассеяния нейтронов с энергиями E₀=4,99; 5,97; 7,00; 8,09 МэВ, измеренные авторами работ /1/. Экспериментальные данные получены под нестью углами рассеяния в двашазоне энергий вторичных нейтронов от 0,6 МэВ до E₀ - (I-2) МэВ.

Теоретический анализ проведен в предположении, что в рассматриваемой области энергий реакция (л, л') протекает преимущественно посредством днух механизмов: равновесного и примого. Так как экспериментальное энергетическое разрешение (~0,4 МэВ) пренышает расстояние между уровнями ядер ⁵⁹Со и ²⁰⁹В1, то в результате анализа были получены интегральная (усредненная) оценка вкладов равновесного и прямого механизмов и параметры функции плотности ядерных уровней.

Метод расчета

Часть сечения реакции (n,n¹), обусловленная равновесным механизмом, рассчитывалась в рамках статистической модели Хаузера-Фенбаха (XФ) /2/ по программе СМТ-80 /3/. Коэффициенты проницаемости нейтро-

I85

нов вычислялись по сферической оптической модели (в программе СМТ-80) с нейтронными оптическими потенциелами (НОП), взятыми из работы [4] для ⁵⁹ Со в [5] для ²⁰⁹ бі.

В расчетах по моделя XФ учитывалнов переходи на отдельные уровни ядер, характеристики которых (положение, спин и четность) брались. на известных компиляций [6]. Для ⁵⁹Со было учтено I8 уровней до энергии U_M = 2,8 МаВ, для ¹⁰⁹ В1 - 24 уровня до U_M = 3,3 МаВ. Выше по энергии возбуждения вводилась функция плотности ядерных уровней, предсказываемая моделью независимых ферми-частиц [7]:

$$\rho(\bar{U}, J, \pi) = 0,0447 \quad \frac{\exp\left[2\sqrt{\alpha(U-b)}\right]}{(U-b)^{5/4}} \cdot \frac{(2J+4)}{G^3} \exp\left[-\frac{(J+42)^2}{2G^2}\right]$$

$$G^2(\bar{U}) = 0,0450 \cdot \eta \cdot \sqrt{U-b}, \quad A^{5/3}.$$

Злесь Q - параметр энергетической зависимости плотности уровней,

Δ - параметр, учитивающий четно-нечетные эффекти, 7 - относительний момент инерции ядра, выраженный в единицах момента инерции эквивалентного твердого шара. Параметри Δ, Δ и 7 находились из условия оптимального описания энергетической и угловой зависимости сечений неупругого рассеяния нейтронов. Полученные параметры плотности уровней для ⁵⁹ Со и²⁰⁹ В: приводятся в табл.1, а сечения - на рис.1 и 2. Таблица I

Параметры плотности ядерных уровней

Ядро	а, МэВ ⁻¹	Δ, МэВ	7
59 Co	7,9	0,6	I ,02
203 Bi	12,7	I,6	0,29

Реакция (n, n') на всследуемых элементах является практически единственным неупрутим каналом взаимодействия нейтронов [9]. При $E_o = 8,09$ МэВ становится заметным сечение реакции ²⁰⁹ Si (n, 2n)(Q = -7,45 МэВ): $\frac{Gn2n}{2n} \simeq 0.1$. Однако энергия второго нейтрона из реакции ²⁰⁹ Si (n, 2n) при $E_o = 8,09$ МэВ не превышает 0,6 МэВ. Нейтроны с такими энергиями в нашем эксперименте не регистрировались.

Часть сечения реакции (n,n'), обусловленная прямым механизмом, рассчитывалась в борновском приближении искаженных волн (БПИВ) [10].

Рис. I. Сечения неупругого рассеяния нейтронов на ⁵⁹Со. Точки – эксперимент; кривые – расчет по моделям: — — — ХФ, — — — ЕШИВ, — — ХФ + НГИВ

Структура исследуемых ядер рассматривалась в феноменологической обобщенной модели ядра (ОМ) /II/, согласно которой состояния сферических ядер характеризуются спином и четностью λ^{Γ} возбуждаемого вибрационного кванта (фонона) и параметром динамической деформации ядерной поверхности β_{λ} . Форм-фактор прямых переходов в ОМ имеет вид

$$F_{\lambda}(\Gamma) = \beta_{\lambda} \cdot \mathbb{R} \cdot \frac{\partial v(\Gamma)}{\partial \Gamma} \cdot (2\lambda + 1)^{-1/2}$$

I87

Рис.2. То же, что на рис. I для 205 Ві.

где R -раднус ядра, а V(r) - оптический потенциал. В расчетах в приближении БПИВ использовался тот же НОП, что и в расчетах по модели XQ.

Параметры обобщенной модели хороно известны для ядра ²⁰⁹ Ві из анализа сечений реакции ²⁰⁹ Ві (р, р') при Е_р = 35 МэВ [I2] (энергетическое разрешение, достигнутое в этом эксперименте, составило 7 каВ). В работе приводятся λ^{m} и β_{λ} нанболее сильно возбужда-

емых уровней в адре²⁰⁵ в до энергии $\simeq 5$ МэВ. К сожалению, столь исчернывающей информации для 59 Со в литературе, по-видимому, нет. Поэтому в настоящих расчетах сечений реакции 59 Со (n,n') использовались данные о структуре соседнего четно-четного ядра 60 Ni. найденные из анализа реакции 60 Ni (p,p') при E_p = 40 МэВ /13/.

Результати расчета вклада прямого механизма в сечение реакции (n, n') на ⁵⁹ G \mathbf{n}^{209} Ві приводятся в табл.2 и на рис. І и 2,

Таблица 2

Сечения прямого ($\vec{\sigma}^{5\Pi MB}$), равновесного ($\vec{\sigma}^{X\Phi}$) и полного ($\vec{\sigma}_{nn'} = \vec{\sigma}^{5\Pi MB} + \vec{\sigma}^{X\Phi}$) неупругого рассеяния нейтронов; вклад прямого механизма $\vec{\alpha} = \vec{\sigma}^{5\Pi MB} / \vec{\sigma}_{nn'}$. Сечения даны в миллибарнах

E	Кобальт - 59			Висмут - 209				
MaB	BRUNG	S×4	8 nn'	A	BEUND	(Qxa	Gnni	d
4,99	64	I488	1558	0,04	112	I466	2578	0,04
5,97	70	I489	1559	0,04	I40	2502	2642	0,05
7,00	75	1479	1554	0,05	170	2548	2718	0,06
8,09	72	1459	1531	0,05	163	2388	2551	0,06

Сравнение расчетных и экспериментальных сечений обнаруживает их удовлетворительное согласие, на основании чего можно сделать ряд выводов.

Реакция неупругого рассеяния нейтронов на ${}^{59}Co$ ${}^{209}Bi$ в области энергий 5 - 8 МэВ протекает преимущественно посредством двух механизмов: равновесного и прямого, причем вклад первого доминирует (~ 95%, см.табл.2). Нейтроны, рассеянные через стадию составного ядра, дают вклад в низкоэнергетическую часть спектров, хотя при $E_o =$ 5 МэВ (см.рис.I и 2) и высокоэнергетическая часть формируется за счет рассеяния посредством этого механизма. С ростом энергии налетающих нейтронов все больше становится заметным вклад в сечения возбуждения первых уровней ядер прямого механизма: высокоэнергетическая часть смектров рассеянных нейтронов становится слабозависящей от начальной энергии, а утловые распределенся приобретают направленность вперед.

Из анализа низкоэнертетической части дваждыдиф еренциальных сечений по статистической модели Хаузера-Фешбаха определены параметры плотности ядерных уровней и относительные моменты инерции ядер ⁵⁹Со и ²⁰⁹В: (найденные параметры удовлетворительно согласуются с данны-

I89

ми других авторов – сравнение проведено в работе $\begin{bmatrix} 8 \end{bmatrix}$). Малые зна-чения $\eta = 0,25$ и $\alpha = 12,7$ МаВ⁻¹ для ²⁰⁹Ві могут быть обънснены оболочечной структурой одначастичных уровней.

При сравнении расчетных и экспериментальных сечений обращает на себя внимание хорошее согласие (совпадение структур в интегральных спектрах) в тех областях энергий возбуждения, где в рамках моделя Хаузера-Фенбаха рассматривались переходи на отдельные уровни исследуемых ядер. Т.о., введение плавной функции плотности уровней не всегда является достаточно точным поиближением пля возоужленного ядра.

Расчети в экспериментальные данные обнаруживают, что в реакция (n,n') посредством прямого механизма с наибольщей вероятностью возбуждаются группы уровней в ядрах ⁵⁹Со и ²⁰⁹BL, расположенные около энергий возбуждения уровней со спинами 2⁺ в ⁶⁰Ni (I, 28 МаВ) и 3⁻ в ²⁰⁸рв (2,62 МаВ) соответственно. Исследования структуры ядра ²⁰⁹в! [12] показали, что природа уровней при U = 2,6 МоВ близка к коллективной (работает модель слабой связи протона в оболочке 9% с колебательными модами в ²⁰⁸Рв). В ядре ⁵⁹Со такая простая модель является более грубым приближением [14]. Т.о., сечение реакции (n,n') оказывается усиленным при возбуждении уровней коллективной природы.

Результаты настоящего анализа совместно с выводами работы [15]. в которой удовлетворительное описание сечения реакции ²⁰⁹Bi(n,n') получено в рамках испарительной модели и борновского приближения искаженных воля при Е_= 14,5 МэВ, указывает, по всей видимости, на то. что природа взаимодействия нейтронов с ядрами в широком диапазоне энергий (5 – 15 МэВ) исчерпывается равновесным и прямым механизмами.

Список литературы

- CHMGOK ANTERPRITYPH
 I. CRMAROB C.H., NORTHKOBA T.H. M MD. BOHDOCH ATOMHOÑ HAYKM M TEX-HAKM.Cep.: Hephwe Kohotahth, 1981, BMH.5(44), c.23; TAM Me, 1982, HMH.5(49), c.17.
 Hauser W., Feshbach H. Phys.Rev., 1952, v.87, p.366.
 TMTAPDEHRO H.H. HPEHDMHT Ø3M-1260, OCHMHCK, 1982.
 BHYKOE B.M., MAHOXMH B.H. M MD. "HEMTPOHHAM ØMNAKA", M., HHUMAN, 1976, v.1, c.160.
 Tanaka S. Report JAERI-M5984, 1975, p.212.
 Lederer C.M., Shirley. Tables of Isotopes.N.Y.Wiley Press, 1978.
 Bethe H.A. Phys.Rev., 1936, v.50, p.332.
 CHMAKOB C.H., HOFMKOBA T.H. M DD. AM, 1983, T.38, BHHI.I(7), c.3.
 Garber P.R., Kinsey R.R. BNL-325, 1976, v.2.
 Austern N. Direct nuclear reaction theories N.Y., Wiley Press, 1970.
 H. Bop O., MOTTELBCOH E. "CTPYRTYPA aTOMHORO ANDR", 1977, M., "MMP", T.2.
 Wagner W.T. e.s. Phys.Rev., 1975, v.C11, p.486.
 Lingappa N., Greenles G.W. Phys.Rev., 1971, v.C4, p.2131.
 Gomez J.M.G. Phys.Bev., 1972, v.C6, p.149.
 MITHATER A.B., JYHEB B.H., HDORBE B.F. BOHDOCH ATOMHOÑ HAYKM M TEX-HIKK.Cep.: Hgephwe KOHOTAHTH, 1979, BHHI.I(32), c.3.

ПРИМЕНИМОСТЬ ПОДХОДА НЕЗАВИСИМЫХ КАНАЛОВ ПРИ РАСЧЕТЕ ЭМИССИИ ЧАСТИЦ ИЗ КОМПАУНД-ЯДРА

С.Н.Ехов, Н.Е.Кабакова, В.А.Плойко (Киевский государственный университет)

> Исследуется ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ метода независимых каналов для расчета флуктуационных сечений. The possibility using the independent channel method for cross section calculation is investigated.

При анализе экспериментальных данных учет вылета частиц из компаунд-ядра в присутствии прямых процессов вплоть до недавнего времени проводился с помощью приближения независимых каналов /17, когда в качестве коэффициентов прохождения используются диагональные элементы матрицы проницаемости $P_{ab} = \delta_{ab} - \sum_{i=1}^{n} \langle S_{ab} \rangle \langle S_{ab} \rangle$ В работах Энгельбрехта, Вайденмюллера и Молдауэра /27 был развит точный метод учета вклада компаунд-реакции при наличии прямой связи между каналами. В этом случае средние билинейные комбинации флуктуационных составляющих **S**-матрицы выражаются через обобщенные коэффициенты прохождения r_a и элементы унитарной матрицы, диагонализующей матрицу **P**. Хотя, с формальной точки зрения, проблема учета прямых процессев строго решена в /27, однако, при практическом применении этого подхода возникает задача о численной диагонализации матрицы проницаемости. Это затрудняет анализ экспериментальных данных при большом числе открытых каналов **N**.

В этом случае недиагональные элементы матрицы проницаемости являются суммой большого числа бинарных произведений от средних элементов S -матрицы. Можно ожидать, что с ростом N недиагональные элементы C стремятся к нулю вследствие компенсации членов с различными фазами. В то же время на диагональные элементы этот фактор не влияет. Поэтому недиагональные элементы в среднем должны быть меньше диагональных. Условие N>> I также препятствует доминированию одного или нескольких слагаемых в C. Tak как 0 < C. I, то

можно получить следующую оценку: $|P_{ab}| \simeq |P_{aa}| / \sqrt{N}$.

На рис.І представлены гистограммы распределения абсолютных значений элементов средней S -матрицы и матрицы проницаемости, вычисленных в рамках обобщенной оптической модели /3/. Учитывалось взаимодействие нейтрона с ядром ¹⁵ Sm: E = 16 МэВ, $\ell_{max} = 8, J^{\pi} = 5/2^+$. Учитывалось пять первых состояний основной ротационной полосы. Число элементов, значительно отличающихся от нуля, мало. Средние значения недиагональных элементов этих матриц практически равны нулю, а сами распределения имеют вид распределения Гаусса. Дисперсия распределения элементов матрицы P меньше дисперсий соответствующих распределений для матрицы < S >, что отражает влияние случайности фаз. Таким образом, при N >> Для нахождения собственных значений матрицы P и диагонализующей матрицы C мы можем использовать теорию возмущения. В первом и во втором порядках теории возмущения имеем:

$$\begin{aligned}
\mathcal{U}_{ab} &= \frac{(1-\delta_{ab})}{P_{aa}-P_{bb}} \Big[P_{ab} + \sum_{c\neq a,b} \frac{P_{cb}P_{ac}}{P_{aa}-P_{cc}} \Big] + \delta_{ab} \Big[1 - \frac{1}{2} \sum_{c\neq a} \frac{|P_{ca}|^2}{(P_{au}-P_{cc})^2} \Big], \\
\mathcal{V}_{a} &= P_{aa} + \sum_{c\neq a} \frac{|P_{ac}|^2}{P_{aa}-P_{cc}}
\end{aligned}$$

В результате для среднего флуктуационного сечения (в единицах **ч Х ²)** получаем

 $\langle | S_{ab}^{fe} |^2 \rangle = \langle | \widetilde{S}_{ab}^{fe} |^2 \rangle + O(\varepsilon^3),$ где $\langle | \widetilde{S}_{ab}^{fe} |^2 \rangle$ - флуктуационное сечение, вычисленное с помощью метода независимых каналов, т.е. с $V_{ab} = \delta_{ab}$ и $\Gamma_a = P_{aa}.$

Таким образом, с точностью до членов первого порядка малости по $\mathcal{E} = \max \left(\frac{P_{ab}}{P_{ab}} \right)$ среднее флуктуационное сечение, как и в методе независимых каналов, является функцией диагональных элементов

Рад, Ръв матрицы прохождения.

Итак, при большом числе открытых каналов N >> I, т.е. в реакциях с нуклонами при энергиях налетающих нуклонов $\gtrsim 5-IO$ МэБ, когца $\mathcal{E} < I$, матрицу преобразования Энгельбрехта-Вайденмоллера можно аппроксимировать единичной и при расчетах флуктуационной части характеристик ядерных реакций использовать метод независимых каналов с коэффициентами проницаемости, равными P_{aa} .

На рис.2 на примере реакции ¹⁵²Sm (и, и') представлены результаты точного учета (кривые 1,3) прямых процессов при вычислении 5^{fl} в сравнении с расчетами по методу независимых каналов (кривые

2,4). Цифрами I,2 обозначено упругое флуктуационное сечение, а 3,4флуктуационная составлящая функции возбуждения состояния 2^+ . В данном случае среднее число каналов не велико $N \leq 5$. Если для упругого рассеяния расчеты по точному и приближенному вариантам отличаются лишь на 3%, то для сечения возбуждения состояния 2^+ это различие достигает ~ 20%.

Список литературы

- 1. Satchler G.R. Phys.Lett., 1963, v.7, p.55.
- Engelbrecht C.A., Weidenmuller H.A.-Phys.Rev., 1973, v.C8, p.859; Hofmann H.M. e.a. - Ann.Phys., 1975, v.90, p.403; Moldauer P.A. - Phys.Rev., 1975, v.C12, p.744.
- Иванова С.П., Цейпек Я. ЯФ, 1979, т.30, с.1270; Ташига Т. - Rev.Mod.Phys., 1965, v.37, p.679.

BINAHNE ULAWAY ULA CON HA DIAKLAUNOHHOE CEAEHNE

С.Н.Ежов, Н.Е.Кабакова, В.А.Плюйко

(Кневский государственный университет)

Исследуется вклад прямого и компаунд-ядерного процессов при неупругом рассеянии нейтронов низких энергий.

The contributions of direct and compound nuclear processes in case of inelastic scattering of neutrons are investigated.

Изучение нейтронных сечений на ядрах при низких энергиях служит важным источником получения информации о структуре ядер и о механизмах протекания реакций. В области энергий нескольких МэВ эти сечения чувствительны к деформациям, особенно на больших углах рассеяния /17, и прямые возбуждения основной ротационной полосы (ОРП) могут быть больше, чем вклад компаунд-процессов. Поскольку на некоторых ядрах /2,37 сечения возбуждения состояний ОРП не удавалось объяснить простой суммой сечений прямого и компаунд-процессов, особое эначение приобретает вопрос о возможно более точном учете совместного вклада этих процессов /47.

В данной работе представлены результаты реализации подхода, впервые предложенного в работе [5], когда в присутствии прямых процессов с помощью унитарного преобразования (т.н. преобразование Энгельбрехта-Вайденмоллера) вычисление флуктуационного сечения сводится к задаче без прямых процессов.

Вклад прямых процессов учитывался с помощью модифицированной программы **JUP1TOR-I**/6/, которая после расширения позволяла также вычислять обобщенную матрицу проницаемости Сэтилера **P** [7]

$$S = \langle S \rangle + S^{H}$$

 $P = 4 - \langle S \rangle \langle S^{+} \rangle,$
⁽¹⁾

где $\langle S \rangle$ - усредненная S -матрица, которая отождествляется с S -матрицей обобщенной оптической модели. Энгельбрехт и Вайденмюллер (5) показали, что если имеется унитарное преобразование v такое,

I95

что матрица

диагональна, то матрица

также диагональна. В новом канальном базисе, к которому приводит преобразование \mathbf{V} , прямые процессы отсутствуют (диагональность $\langle \hat{\mathbf{S}} \rangle$), и для нахождения флуктуационного сечения в этом базисе можно использовать существующие методы 28,97.

Для нахождения преобразования \mathbf{V} с помощью уравнения (2) можно использовать стандартные численные методы определения собственных векторов эрмитовой матрицы. Однако, если \mathbf{P} имеет кратные собственные значения, то матрица \mathbf{V} находится неоднозначно, а соответствующая матрица $\langle \tilde{\mathbf{S}} \rangle$ может быть недиагональной. Чтобы обойти эту трудность, для нахождения \mathbf{V} мы использовали уравнение (3), а не (2).

Заметим, что решение уравнения (3) эквивалентно нахождению собственных чисел и векторов следующей задачи:

$$\langle S \rangle \vec{z}_{a} = s_{a} \vec{z}_{a}^{*}, \qquad (4)$$

где S_{∞} - собственные значения $\langle S \rangle$, Z_{∞} - соответствующие собственные векторы, звездочка означает комплексное сопряжение. Хотя матрица $\langle S \rangle$ не эрмитова, для решения уравнения (4) можно применить методы, которые обычно используются для нахождения собственных значений и векторов эрмитовой матрицы. Действительно, комплексное векторное равенство (4) эквивалентно векторному уравнению в действительном пространстве удвоенной размерности с симметричной матрицей

$$\begin{pmatrix} A & -B \\ -B & -A \end{pmatrix} \begin{pmatrix} \overline{y}_{\alpha} \\ \overline{z}_{\alpha} \end{pmatrix} = S_{\alpha} \begin{pmatrix} \overline{y}_{\alpha} \\ \overline{z}_{\alpha} \end{pmatrix}, \quad (5)$$

где **A** и **B** - вещественные симметричные матрицы, определяющие соответственно действительную и мнимую части <**S**>, а **3** и **2** определяют действительную и мнимую части вектора **3**. Уравнение (5) решается стандартными методами. При этом все собственные числа уравнения (5) получаются с попарно противоположными знаками и для однозначного нахождения **U** можно отобрать собственные вектора, принадлежащие, например, всем положительным **S**.

Вычисление флуктуационного сечения в новом канальном базисе

I96

проводилось в соответствии с методами, развитыми в [8,9]:

$$\begin{split} & \left\{ \begin{array}{l} S_{ed}^{fe} \sim \langle | S_{ed}^{fe} |^{2} \rangle = \sum_{ef} \left\{ \begin{array}{l} U_{ec}^{*} U_{fd}^{*} \left[U_{ec} U_{fd} + U_{fc} U_{ed} \left(1 - \delta_{ef} \right) \right] \times \\ \times \left\langle | \widetilde{S}_{ef}^{fe} |^{2} \right\rangle + \left(1 - \delta_{ef} \right) U_{ec}^{*} U_{ed}^{*} U_{fc} U_{fd} \left\langle \widetilde{S}_{ee}^{fe} \widetilde{S}_{ff}^{fe} \right\rangle \right\}, \\ & \left\langle | \widetilde{S}_{ab}^{fe} |^{2} \right\rangle = \left\{ \begin{array}{l} V_{a} V_{b} \\ \overline{Z} V_{c} \end{array} \right\} \left(1 + \delta_{ab} W_{a} \right), \\ & \left\langle \widetilde{S}_{aa}^{fe} \widetilde{S}_{bb}^{fe} \right\rangle = \sqrt{(W_{a} - 2)(W_{b} - 2)} \left\langle | \widetilde{S}_{ab}^{fe} |^{2} \right\rangle, a \neq b. \end{split}$$
(6)

Параметры Va и Wa связаны соотношением унитарности

$$1 - s_a^2 = V_a + \frac{V_a}{Z_v} (W_a - 1).$$

На рис. I.2 представлены функции возбуждения состояний 0 и 4⁺ для реакции ^{I82} (\mathbf{n}, \mathbf{n}'), вычисленные в соответствии с изложенным методом. Экспериментальные значения и параметры потенциала были взяты из /I/. Кривая I показывает вклад прямых процессов, 2, 3 – флуктуационные сечения (3 – модель независимых каналов), кривая 4 –сумма сечений I и 2. При расчете упругого рассеяния нейтронов необходимо учитывать вклады прямых и компаундных процессов. Для неупругого рассеяния вклад прямых процессов не велик и монотонно увеличивается с ростом энергии. В данных расчетах $\mathcal{N} \sim I0$ и для флуктуационных сечений различия между точными вычислениями и расчетами в рамках модели независимых частиц не велики ($\lesssim I0\%$).

Список литературы

- I. Guenther P.T., Smith A.B., Whalen J.F.-Phys. Rev., 1982, v.C26, p.2433.
- 2. Ситько С.П., Андреев Е.А., Басенко В.К. ЯФ, 1977, т. 25, с. 1119.
- 3. Coope D., Tripathi S. e.a. ~ Phys. Rev., 1977, v.C16, p.2223.
- 4. Иванова С.П., Цейлек Я. ЯФ, т.30, с.1230.
- 5. Engelbreht C.A., Weidenmuller H.A.-Phys.Rev., 1973, v.C3, p.859.
- 6. Tamura T. Rev.Mod.Phys., 1965, v.37, p.679.
- 7. Satchler G.R. Phys.Lett., 1963, v.3, p.55.
- Hofmenn H.M., Richert J., Tepel J.W., Weidenmuller H.A. -Ann.Phys., 1975, v.90, p.403.
- 9. Moldauer P.A. Phys.Rev., 1975, v.C12, p.744.

МЕТОД ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ ЗАСЕЛЕНИЯ ВХОДНЫХ СОСТОЯНИЙ В ЯДЕРНЫХ РЕАКЦИЯХ

В.А. Плойко

(Киевский государственный университет)

Экситонная модель обобщается на случай входного состояния, являющегося суперисзицией частично-дырочных конфигураций.

The development of the exciton model for the case of doorway states which are the superposition of particle-hole configurations is given.

В экснтонной моделя обично полагают, что на первом ваге процесса установления равновесия в составной системе заселнется только одно частячно-дирочное состояние /1/. Однако,если, например, учесть парные корреляции сверхпроводящего типа, то элементарные возбуждения, вообще говоря, будут квазичастичными, являющимися суперпозицией частиц и дирок /2/.

Будем считать, что в начальный момент времени (t = 0) имеет место некоторое распределение вероятностей заселения экситонных состояний P_n, т.е.

$$P_n(o) = a_n , \quad \sum_n a_n = 1. \tag{1}$$

Используя подход, предложенный в /3,4/, для определения времен au_n жизни частично-дырочных состояний, получим следующую систему алгебранческих уравнений

$$\lambda_{n-2}^{+} t_{n-2} + \lambda_{n+2}^{-} t_{n+2} - (\lambda_{n}^{+} + \lambda_{n}^{-} + L_{n}) t_{n} = -a_{n},$$
(2)
$$n = h_{0}, n_{0} + 2, ..., n_{M},$$

где λ_{n}^{+} , λ_{n}^{-} - скорости переходов с $\Delta n = +2, -2$ из состояния с числом экситонов h, L, - суммарная вероятность распада в единицу времени h-й частично-дирочной конфигурации за счет испускаемых частиц.

Решения системы (2) можно записать в виде

$$t_n = \sum_e a_e t_n^e . \tag{3}$$

Здесь t_h^{ℓ} - времена жизни n -го экситонного состояния, когда в вачальный момент заселяется состояние с ℓ -экситонами. Величинн t_h^{ℓ} можно вычислять методом, изложенным в /5/. Откуда

$$t_{n}^{\ell} = \begin{cases} b_{1} \mathcal{X}_{n}^{(1)} / a_{\ell}, & n_{0} \leq n \leq \ell, \\ b_{2} \mathcal{X}_{n}^{(2)} / a_{\ell}, & \ell \leq n \leq n_{M} \end{cases}$$

где $\mathcal{C}_{n}^{(1)}$ в $\mathcal{C}_{n}^{(2)}$ определяется с помощью рекуррентных соотношений вз /67. в

$$b_{1} = a_{e} \mathcal{L}_{e}^{(2)} / [\mathcal{L}_{e}^{(2)} \sum_{k=n_{e}}^{L} L_{k} \mathcal{L}_{k}^{(L)} + \mathcal{L}_{e}^{(L)} \sum_{k=e+2}^{M} L_{k} \mathcal{L}_{k}^{(2)}],$$

$$b_{2} = b_{1} \mathcal{L}_{e}^{(1)} / \mathcal{L}_{e}^{(2)}.$$

Эти формулы можно значительно упростить, если предположить, что в начальный момент времени заселяются состояния с и 24 й (и – накоолее вероятное число экситонов при равновески). Тогда

$$t_{n} = a_{n_{o}} t_{n}^{h_{o}} + \sum_{\ell=n_{o}+2}^{h_{K}} a_{\ell} t_{n}^{\ell} \prod_{j=n_{o}}^{\ell-2} (1 - \delta_{n_{j}}), \qquad (4)$$

 $n_{\rm k}$ - критическое значение числа частично-дырочных пар (для $n > n_{\rm k}$ $a_{\rm h} = 0$).

Высокоэнергетическая часть спектра обусловлена испусканием частиц из состояния с минимальным значением n(n_o), для времени жизни которого можно использовать аппроконмацию $t_{n_o}^{n_o} \simeq 1/\lambda_{n_o}^+$ При этом первый член в выражении для спектра испускания нуклона с энергией ξ принимает вид

$$\frac{d G}{d \varepsilon} = N_{n_o}(\varepsilon) a_{n_o} / \langle |M|^2 \rangle, \qquad (5)$$

где $N_{n_o}(\varepsilon)$ - функция, описывающая энергетическую зависимость данной компоненты спектра.

Из анализа жесткой части спектра можно извлечь величину $h \ge \alpha_{N_0} / (|M|^2)$. В стандартном подходе $\alpha_{N_0} = I$ и нотождествляется со средним квадратом матричного элемента остаточного взаямодействия $< (M|^2 > \sqrt{3})$. В результате получается, что $< |M|^2 >$ для одного и того же составного ядра зависит от типа налетающей частици /6/. Так как $< |M|^2 >$ является характеристикой составной системы, то природа такой зависимости не понятна. Предположение $\alpha_{N_0} \neq I$ является достаточным условием для независимости $< (M|^2 >$ от типа налетающей частицы.

В этом случае, используя (5) и результаты работы /6/ можно

оценить вероятность образования 4 эксптонных состояний в реакциях, вызванных \mathcal{L} -частицами: $a_{4} \simeq < (M_{2})^{2} > / < (M_{p})^{2} > \simeq 0, 13$.

Для реакций с нужлонами также наблюдается разброс значений $< (M|^2 >$, связанный со отруктурными особенностями ядер-миненей. Если использовать систематику для вероятностей \succ_3 из /1/ и отождествить $m_{\text{Teop}} \equiv < |M|^2 > c < |M|^2 >$, извлеченным из \wedge_3^+ , мим / что согласуется с требованием малости $< |M|^2 >$, необходимым для возможности использования первого порядка теории возмущения при рассмотрения процесса доотижения равновесия составной системсй, то можно получить следующие значения для вероятностей образования 3 экситонных оостояний

$$a_{z} = I + 0.3.$$
 (6)

В рамках предлагаемого подхода были рассчитаны опектр неупругорассеянных нейтронов на ⁹³ N[§] при $E_n = 9,1$ МаВ (рис.1) и сечение реакции ⁹³ N[§] (n , N¹) (рис.2). Вычисления проводились с м₁ = $= < (Mi^2 > /7/1)$ при $a_3 = 1(-); m_2 = m_1/2$ при $a_5 = a_5 =$ = 0,5 (-0-) и $m_3 = m_1 /10$ при $a_3 = 0,1$, $a_5 = 0,9 (-x-)$. Для всёх этих параметров $a_3 / m_1 = 1/m_1$. Времена жизни вычаслялись с помонью (4). Остальные необходимые для расчета величины были взяты такими же, как и в /4/.

Из рис.І видно, что при $a_5 < I$ несколько увеличивается роль предравновесных соотояний с n > 3. Это приводит к нозрастанию S(n,n') при E $_{n} \lesssim 16$ МаВ и к более реакому, чем в случае Sс $a_{3} = I$, уменьшению вноскознергетической части сечения неупругого рассеяния. Однако для вероятностей заселения экситонных состояний, задаваемых (6), искажения спектра нейтронов и функций возбуждения невелика.

Из сравнения экспериментальных /8/ и теоретических валичин на pac.I вытекает, что при неупругом рассеянии нейтронов на нисбии входное состояние является трежквазичастичным.

В отличие от стандартного варианта экситонной модели данный подход без дальнейших модицикаций можно использовать в реакциях с тяжелыми ионами. В этом случае, в зависимости от характера взаимодействия между нуклонами ядер, в начальный момент времени могут заселяться состояния с $p = (A_{\pm} + d_{\pm})$ частицами и $h = d_{\pm}$ дырками, где I $\leq d_{\pm} \leq A_{\pm}$; A_{\pm} , A_{\pm} – чисма нуклонов в налетающем ядре и ядре-мищени, состветственно; d_{\pm} – число нуклонов, взаимодействующих при t = 0 с нуклонами иона. Коли ω – вероятность однократного отолкновения нуклонов, то, считая образование частично-дырочных

пар независимыми процессами, можно записать $a_n = \omega^p [p! \sum_{k=1}^{A} (\omega^k / k!)]$. Используя это выражение для a_N и взяв $< |M|^2 > \equiv M + reof$ ·, T.O. то же значение, что и в реакциях с нуклонами, мы можем вичнолить времена жизни экситонных состояний и составной системы, образованной в реакциях с тяжельных новами.

Список литературы

- 8. Барюков Н.С. я др. ЯФ, 1974, т.19, вып.6, с.1201.

ЭМИССИЯ ЧАСТИЦ ИЗ КОМПАУНД-ЯДРА ПРИ БОЛЬШОМ ЧИСЛЕ ОТКРЫТЫХ КАНАЛОВ

B.A.IIIDERO

(Кневский государственный уняверситет)

Получены выражения для описания вклада статистического механизма в ядерные реакции при большом числе открытых каналов N, когда ширины не флуктуируют.

The expressions for description of the statistical contribution in nuclear reactions in the case of many open channels are obtained.

В последние годы с помощью методов численного моделирования \leq -матрицы был получен ряд выражений для описания флуктуационного сечения $\Im_{a}^{+\varrho}$ /1/. В данной работе при N >> 1 и малых матричных элементах, связывающих состояния непрерывного и дискретного спектров, авалитически доказана независимость образования и распада ооставного ядре и получены явные выражения для билинейных комбинаций флуктуационных составляющих \leq -матрицы.

Будем считать, что взаимодействие между состояниями непрерывного спектра отсутствует, т.е. что прямые процессы отсутствуют. Тогда, согласно [2] унитариая \leq -матрица имеет вид:

$$\begin{split} S_{ab} &= S_{ab}^{(0)} - iexp(i(\phi_{a} + \phi_{b})) \sum_{k,e}^{\Lambda} \chi_{k}^{a} (B^{-1})_{ke} \chi_{k}^{b}, \\ B_{ke} &= (E - \varepsilon_{k}) \delta_{ke} - \widetilde{V}_{ke} + i \Gamma_{ke} / 2, \\ \widetilde{V}_{ke} &= \vartheta_{ke} + \frac{P}{2\pi} \int_{\varepsilon_{c}}^{\infty} dE' \Gamma_{ke} (E') / (E - E'), \\ \Gamma_{ke} &= \sum_{c=1}^{N} \chi_{k}^{c} \chi_{k}^{c}, \\ S_{ab}^{(0)} &= \widetilde{\delta}_{ab} e \times P(2i\phi_{a}); \quad \chi_{k}^{c} = \vartheta_{k}^{c} / (2\pi)^{k}, \end{split}$$
(I)

где $\tilde{V}_{k\ell}$ - матричные алементы остаточного взанмодействия мажду состояниями дискретного спектра, а \tilde{V}_{k}^{c} - между сост*ояниями* непрерызного и дискретного спектра; $K = \{m, m\}$, m - чесло возбужденных частиц и дирок в состоянии K, а μ - пересчитивает число состояний с данным m.

Численные исследования (3) показали, что при большом числе уровней и каналов матричные элементы остаточного взаимодействия можно считать независимыми случайными числами, распределенными по нормальному закону с нулевыми средними значениями и с заданными вторими моментами:

$$\langle \tilde{v}_{k\ell} \tilde{v}_{mn} \rangle = (\delta_{km} \delta_{\ell n} + \delta_{kn} \delta_{\ell m}) \langle \tilde{v}_{k\ell}^2 \rangle, \qquad (2)$$

$$\langle \tilde{v}_{m}^{a} \tilde{v}_{n}^{b} \rangle = \delta_{ab} \delta_{mn} \langle \tilde{v}_{am}^{a} \rangle, \langle \tilde{v}_{m}^{a} \tilde{v}_{k\ell} \rangle = 0.$$

Величини < $\tilde{V}_{\kappa e}$ > и < $\tilde{V}_{\kappa m}$ > не завасят от индексов нумерующих состояния в частично-дырочных конфигурециях.

В соответствие с центральной предельной теоремой и выражением (2) при N>> I мнимая часть матрицы В распределена по нормальному закону со средним значением

$$\langle e_m \rangle = \begin{cases} \Gamma_e = \sum_{e \in V} \langle g_{ee}^2 \rangle, e = m, \\ 0, e \neq m \end{cases}$$
(3)

и лисперсяей

$$\mathcal{D}(\Gamma_{em}) = \begin{cases} \mathcal{D}(\Gamma_{e}) = 2 \sum_{i=1}^{n} \langle y_{ee}^{i} \rangle^{2}, e = m, \\ \mathcal{D}(\Gamma_{e})/2, e \neq m. \end{cases}$$

Следовательно, когда оредние квадрать матричных элементов взаимодействия между состояниями непрерывного спектра малы, а именно

$$\delta_{c\ell}^{\epsilon} > \lesssim \text{const. } N^{-\frac{1}{2}-\epsilon}, s > \omega,$$
 (4)

то флуктуацией Гет можно пренебречь и считать их равными своям средним значениям. Отметим, что несмотря на условие (4) ширины Ге могут быть и большими.

Учитывая тот факт, что при статистическом равновесии составная система находится в конфигурации с 5 -частицами и дырками /4/, ыкражение (I) для 5 -матрицы с возбуждением состояний компаунд-ядра запишется

$$S_{ab} = S_{ab}^{(0)} - i \sum_{j} q_{\mu a} q_{\mu a} (j \in E_{\mu} + i T/R).$$
 (5)

Если O' – вещественная ортогональная матрица, диагонализующая действи тельную часть матрицы В $(O_{\mu\nu}) \neq f(\chi^{\alpha})$, то

$$g_{\mu\alpha} = e \times \rho(i \phi_{\alpha}) \sum_{\nu} \mathcal{O}_{\mu \nu} \vee \mathcal{V}_{\nu}^{\nu},$$

$$E_{\mu} = \sum_{\nu} \mathcal{O}_{\mu \nu}^{2} \varepsilon_{\nu} + \sum_{\nu, \chi} \mathcal{O}_{\mu \nu} \mathcal{O}_{\mu \chi} \stackrel{\sim}{\nu}_{\nu \chi}, \qquad (6)$$

$$\Gamma = \sum_{\nu} < \mathcal{V}_{cF}^{2} \rangle.$$

Используя при усреднении по энергия весовую функцию в виде кривой Лорентца, получаем следующую формулу для расчета средних значений от билинейных комбинаций S -матрицы (5) для интервала усреднения $\Sigma >> \Gamma$, D

$$\langle S_{ab} S_{cd}^{*} \rangle = \langle S_{ab} \rangle \langle S_{cd}^{*} \rangle + \langle S_{ab}^{fe} S_{cd}^{fe*} \rangle,$$

$$\langle S_{ab}^{fe} S_{cd}^{fe*} \rangle = 2 \Re \langle g_{\mu a} g_{\mu b} g_{\mu c}^{*} g_{\mu d}^{*} \rangle / (D \Gamma) +$$

$$(7)$$

$$2 \Re i \langle \sum_{\mu \neq \nu} \frac{g_{\mu a} g_{\mu b} g_{\lambda c}^{*} g_{\lambda d}^{*}}{(E_{\lambda} - E_{\mu} + i\Gamma)} \rangle / D + 2 \Re \langle g_{\lambda c}^{*} g_{\lambda d}^{*} \rangle [\langle S_{ab}^{*} \rangle - S_{ab}^{(0)}] / D,$$

где символом < ... > - обозначено усреднение по энергии, а D - среднее расстояние между компаунд-уровнями.

Заменяя усреднение по энергии усреднением по ансамолю /5/ и учитывая (2), находим

где коэффициенты W и Va выражаются через параметры распределения амплитуд X^A и V_A

$$W = 3 + \Gamma \left[i < \sum_{\mu+\nu} (E_{\nu} - E_{\mu} + i\tau)^{3} > - \Pi (1 - i < (E_{\mu} - E)/I > / D \right],$$

$$V_{\alpha} = 2 \Pi < \chi_{\alpha}^{2} > / D , \quad \Gamma = Sp \lor D / 2 \Pi ,$$

$$< \hat{s}_{\alpha \beta} > = \delta_{\beta} \exp(2iq_{\alpha}) \delta_{\alpha} , \quad \delta_{\alpha} = 1 - \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} (E_{\mu} - E)/I > / 2 .$$

Соотношение (8) показывает, что при N>> I флуктуационные сечения представляются в факторизованном виде, т.е. справедливе типотеза Бора о независимости распада и образования составного ядра.

Поскольку при N >> I и справедлявости условий (4) S -натрица (5) подчиняются условно унитарности

$$\sum_{c} < \beta_{ac}^{fe} \beta_{bc}^{fe*} > = \delta_{ab} - \sum_{c} < \delta_{ac} > < \delta_{bc}^{*} > = \delta_{ab} P_{a}$$

то получаем следующее соотношение, связивающее коэффициенти 🗸 я 🗛

$$V_{a} [1 + V_{a} (W-1)/ \leq p V] = p_{a}.$$
 (10)

При 🕰 差 выражения (8) и (10) совпадают о предвоженными и изученными численно в работе [6].

Выражение для $< \frac{540}{66} \frac{560}{10}$ (8) отличается от водользованно-TO B METORE XPTB (67.

В случае равномерного распределения энергий Е " относитель-BO E

$$< \beta_{aa} + \beta_{bb} = \frac{\sqrt{b} \sqrt{b}}{5p \sqrt{b}} (w-2) \exp \left[i(arg(\beta_{aa}) - arg(\beta_{bb})) \right].$$
 (II)

В формулах (8)-(II) козффициент упругого усиления 😾 не зависит от индекся жалала но-за того, что в нашем олучае вое < ус. мели н примерно одляжовы.

В случае разных 📈 формулу (8) по аналогии можно записать B BRIE

$$< S_{ab}^{fe} S_{cd}^{fe*} > = \left[\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right] V_a V_b / S_p V +$$

$$\delta_{ab} \delta_{cd} \frac{V_a V_c}{S_p V} (W_a - 2)^{2} (W_c - 2)^{2} exp\left[i(arg < S_{aa} - arg < S_c - 2)\right],$$
(12)

где

$$V_{a}[1 + V_{a}(w_{a}-1)/S_{p}V] = P_{a}$$
 (13)

Хотя второе слагаемое стличается от использованного в ХРТВ, но оно текле связено с флуктувлюнным сеченяем как и в реботе Моллауэра /7/.

На рисунке представлени результати численного моделирования , на основе К-матричной параметризации для матрипы расоеяныя [87.

TO TRANS OF OBBAYONS BALLYNNY X_a ($1 < S_{aa}^{e} S_{bb}^{e} > 1 = X_a X_b$) согласно (67, крестиками - Д., вычисленные с помощые (12), т.е. $X_a = X_a = V_a \sqrt{(W_a - 2)/s_o V}$ (I4)

где для Wa в Va были взяти значевия, полученные в [6]. Видно, что результати согласуются между собой. Следовательно, для расчета $< S_{aa}^{fe} S_{BB}^{fe*} > (a \neq b)$ Х по (I4), что упро-MOREO ICIONESOBETE нает численные расчеты угловых распределений продуктов янерных реакmat.

Список литературы

- 1. Mahaux C., Weidenmuller H.A. Ann. Rev. Nucl. Part. Sci., 1979. v.29, p.1.
- Mahaur C., Weidenmuller H.A. Shell-model approach to nuclear reactions.Amst., North-holl., 1969, 347 p.
 Forter C.E. Statistical theories of spectra: Fluctuations.

- Porter C.K. Statistical theories of spectra: Fluctuations. New York. Academic Press, 1965, 576 p.
 Зайдель К., Зелигер Д., Райф Р., Тонеев В.Д. ЭЧАЯ, 1976, т.7, с.499.
 Richert J., Weidenmuller H.A. Phys.Rev., 1977, v.C16, p.1309.
 Hofmann H.M., Richert J., Tepel J.W., Weidenmuller H.A. Ann.of Phys., 1975, v.90, p.403.
 Moldauer P.A. Phys.Rev., 1975, v.C12, p.744.
 Hofmann H.M.Richert J., Tepel J.W. Ann. of Phys., 1975, v.901, p.391.
- v.90, p.391.

УГЛОВЫЕ КОРРЕЛЯЦИИ ПРОДУКТОВ РАСПАЛА БЫСТРОВРАЩАЮЩЕГОСЯ ЯЛРА

В.П.Алешин, С.Р.Офенгенден

(NAIN WH ACCD)

Получена квазиклассическая формула для двухчастичной функции угловой корреляции продуктов распада компаунд ядра. Проведено сравнение с экспериментом. Получено хорошее согласие.

The quasiclassical expression is obtained for the two-particle angular correlation function of compound nucleus decay products. The calculations are compared with experimental data. Agreement is fairly good.

В последние годы в связи с изучением механизмов реакций с тяжелыми ионами появился новый интерес к квазиклассическому приолижению в статистических процессах, развитому в работах /1,2/. При этом оказалось, что этот подход нельзя непосредственно применять к описанию распада ядер с большим угловым моментом I₀, поскольку в нем при вычислении средней энергии испущенной частицы, ее орбитального момента, а также температуры остаточного ядра I₀ предполагалось малым.

Существенный вклад в приспособление квазиклассического статистического приближения к реакциям с тяжелыми ионами был сделан в работах /3,4,57, в которых были получены аналитические выражения для указанных выше величин, не ограничсные малыми I₀. Это удалось сделать благодаря использованию так называемого приближения испарения, которое включает (1)- температурное приближение для плотности уровней и (11)- приближение резкого обрезания для коэффициентов прохождения.

В настоящей работе в рамках этого подхода получены некоторые новые соотношения и, в частности, найдено очень простое аналитическое выражение для функции утловой корреляции. Дальнейшее изложение мы провоцим на примере испускания двух частиц. Однако подход применим и к эмиссионному делению, когда изучается угловая корреляция между испущенной частицей и осколком деления оставлегося ядра.

Рассмотрим испускание двух частиц из компаунд ядра, образованного в результате реакции слияния тяжелого кона с ядром мишени. Обозначим волновой вектор тяжелого кона в системе центра масс через $\vec{k}_{\rm HT}$,

направление вылета частиц 1 и 2 через \vec{n}_1 , \vec{n}_2 . Систему координат выберем так, что ось Z направлена по \vec{k}_{HI} , ось x лежит в плоскости, образованной осью z и вектором \vec{n}_1 , причем $n_{1X} > 0$. Обозначив вероятность испускания двух частиц из ядра с энергией возбуждения E_0 и вектором углового момента \vec{l}_0 через $P(\vec{n}_1, \vec{n}_2; E_0, \vec{l}_0)$, сечение реакции можно записать в виде $\sqrt{6}$

$$\frac{d^{2}\sigma}{d\vec{n}_{1}d\vec{n}_{2}} = \frac{\pi}{k_{\text{HI}}^{2}} \int_{0}^{1} \sum_{2I_{0}dI_{0}}^{1} \frac{1}{2\pi} \int_{0}^{2} d\Psi P(\vec{n}_{1},\vec{n}_{2};E_{0},\vec{I}_{0}(\Psi)) , (1)$$

где $\vec{I}_0(\boldsymbol{\phi})$ – вектор, длиною I_0 , расположенный в плоскости ху под углом $\boldsymbol{\phi}$ к оси х.

Вероятность $P(\vec{n}_1, \vec{n}_2; E_0, \vec{l}_0)$ можно представить как произведение одночастичных вероятностей. Вероятность испускания частицы і из ядра с заданными E_0 , \vec{l}_0 в направлении \vec{n} обозначим через $P_1(\vec{n}; E_0, \vec{l}_0)$. В приближении испарения се можно найти аналитически (4)

$$P_{i}(\vec{n}; \mathbf{E}_{o}, \vec{I}_{o}) = G_{i} \exp(-\alpha(\vec{I}_{o}\vec{n})^{2}) , \qquad (2)$$

$$G_{i} = \frac{1}{4\pi} \frac{\Gamma_{i}(\mathbf{E}_{o}, \mathbf{I}_{o})}{\Gamma_{tot}(\mathbf{E}_{o}, \mathbf{I}_{o})} \frac{\gamma \vec{a} \cdot \mathbf{I}_{o}}{\operatorname{Erf}(\gamma \vec{a} \cdot \mathbf{I}_{o})} ,$$

гдө

 $\Gamma_{i}(E_{O}, I_{O})$ – ширина иопускания частицы і, $\Gamma_{tot}(E_{O}, I_{O})$ – полная ширина распада, « зависит от ядерной температуры дочернего ядра \mathcal{T} , его момента инерции J, массового числа A, приведенной массы испускаемой частицы \mathcal{M} и радиуса эффективного барьера R:

$$d = 1/2J_{eff}, J_{eff} = J_p J J_g, J_p = J + J_g,$$

$$J_a = MR^2/h^2, \beta = J_a J_p, J_b, J = 0.6139A^{5/3}.$$
(3)

Вероятность испускания частицы 1 получим из (2) подстановкой индекса 1 к величинам, характеризующим вылетающую частицу и дочернее ядро. Формулу (2) можно использовать и для вычисления вероятности испускания второй частицы. Для этого величины, относящиеся к частице и второму дочернему ядру, нужно пометить индексом 2, а E_0 , I_0 и \vec{I}_0 заменить на E_I , I_I и \vec{I}_I – средние значения энергии возбуждения, углового момента и вектора углового момента первого дочернего ядра. Величины E_I , I_I определим несколько ниже, а \vec{I}_I найдем из соотношения $\vec{I}_I = \vec{I}_0 - \vec{I}_I$, где \vec{I}_I – средний орбитальный момент частицы 4. При его вычисления в качестве усредняющей функции берем скорость распада $\Gamma(\epsilon, \mathbf{i}; E_0, \vec{I}_0)$ из работы $\langle \mathbf{I} /$, нормированную на единицу. Интегрирование проводится сперва по энергии частицы ϵ , а затем по d³1, а результат имеет вид

$$\vec{1}_{1} = \mathcal{I}_{1}(\vec{1}_{0} - \vec{n}_{1}(\vec{1}_{0}\vec{n}_{1})) \quad . \tag{4}$$

Вероятность испускания двух частиц получаем как произведение двух указанных вероятностей. Ее можно представить в виде

$$P(\vec{n}_{1}, \vec{n}_{2}; \vec{E}_{0}, \vec{I}_{0}) = G_{12}(\vec{E}_{0}, \vec{I}_{0}) \exp(-B(\vec{I}_{0}\vec{n}_{1})^{2} - C(\vec{I}_{0}\vec{n}_{2})^{2} - D(\vec{I}_{0}\vec{n}_{1})(\vec{I}_{0}\vec{n}_{2})(\vec{n}_{1}\vec{n}_{2}))(5)$$

где

$$G_{12} = G_1 G_2$$
, $B = a_1$, $C = a_2 - 2a_2\beta_1$, $D = 2a_2\beta_1$

Первый и второй экспоненциальные множители в (5) характеризуют корреляцию направлений \vec{n}_{I} и \vec{n}_{2} с направлением \vec{I}_{0} . Корреляция между самими \vec{n}_{I} и \vec{n}_{2} содержится в последнем сомножителе. В системе очень больших размеров $\beta_{I} \rightarrow 0$, и вклад этого сомножителя пренебрежимо мал по сравнению с первыми двумя.

Подставляя (5) в (1), выполняя элементарное интегрирование по $d \phi$ и опуская множитель $2\pi/\kappa_{\rm HI}^2$, получим квазиклассическую функцию двухчастичной угловой корреляции

$$W(\theta_{1},\theta_{2},\varphi) = \int_{0}^{I} I_{0} dI_{0} G_{12} exp(-HI_{0}^{2}/2) \mathcal{J}_{0}(\sqrt{H^{2} + M} I_{0}^{2}/2) , \quad (6)$$

где $\mathscr{F}_{o}(x)$ - модифицированная функция Бесселя нулевого порядка,

$$H = Bsin^{2}\theta_{1} + Csin^{2}\theta_{2} + Dcos\theta_{12}sin\theta_{1}sin\theta_{2}cos \varphi ,$$

$$M = (D^{2}cos^{2}\theta_{12} - 4BC)sin^{2}\theta_{1}sin^{2}\theta_{2}sin^{2}\varphi ,$$
(7)

 $\Theta_{\rm I}$, $\Theta_{\rm 2}$ — полярные углы векторов $\vec{n}_{\rm I}$, $\vec{n}_{\rm 2}$, $\Theta_{\rm I2}$ — угол между этими векторами, $\varphi = \varphi_{\rm I} - \varphi_2$ — разность азимутальных углов $\vec{n}_{\rm I}$ и \vec{n}_2 . При испускании двух одинаковых частиц соотношение (6) является окончательным. Если частицы 1 и 2 разные, то к (6) нужно добавить слагаемое, в котором порядок испускания противоположный.

Остановимся на процедуре вычисления величин E_1 , I_1 , а также \mathcal{C}_1 и R_1 , причем индекс 1 для простоть опускаем. Величину I определим как I_j^2 , где j^2 – средний квадрат утлового момента дочернего ядра. Следуя общему предписанию работы I'I, при вычислении средних в качестве весовой функции возьмем скорость распада $\Gamma(\epsilon, 1, j; E_0, I_0)$, нормированную на единицу. Интегрируя сперва по $d\epsilon$, а затем по d_j и d_1 , получим

$$\overline{E} = E_{0} - B - B_{c} - \beta^{2} I_{0}^{2} / 2 J_{B} - \mathcal{C} (1 + (1 - \beta)(1 + p)/2) , \qquad (8)$$

$$j^{2} = (1 - \beta)^{2} I_{0}^{2} + 2 J \mathcal{I}(\beta/2 + 1 + (\beta/2 - 1)p) , \qquad (9)$$

где В - энергия отделения частиць, В - высота барьера для в -волны,

$$p = \sqrt{a} I_{o} \exp(-\alpha I_{o}^{2}) / \operatorname{Erf}(\sqrt{a} I_{o})$$

Комбинируя формулы (8), (9), находим средною тепловую энергию дочернего ядра

$$\vec{Q} = B_0 - B - B_c - I_0^2 / 2 J_c - \mathcal{T}(5 - p) / 2.$$
 (10)

Это соотношение вместе с уравнением состояния позволяет получить уравнение для ядерной температуры. Если для определенности взять плотность уровней компаунд-ядра в форме Ланга (87, то уравнение состояния получит вид $\mathbf{Q} - \Delta \approx \mathbf{a} \tau^2 - 4 \tau$, где Δ - поправка на спаривание, а для τ находим

$$a\tau^2 = E_o - \Delta - B - B_c - I_o^2/2J_p + \tilde{c}(3 + p)/2$$
 (11)

Следует отметить, что при вычислении радиуса эффективного барьера величину 1² в центробежном потенциале мы заменяем средным значением

$$\overline{1^{2}} = \beta^{2} I_{0}^{2} + \beta J \tilde{\tau} (1 + p)$$

приведенным в работе [4]. При этом значение R зависит от \mathcal{T} . С другой стороны, в уравнение (11) для \mathcal{T} неявно входит R: через J_g и $B_C = V(R)$, где V – сумма кулоновского и реальной части ядерного потенциала. Поэтому при каждом I_O мы имеем систему двух уравнений для вычисления \mathcal{T} и R.

Нам осталось дать выражения для ширины испускания частицы. В приближении испарения она имеет вид

$$\Gamma_{\mathbf{i}}(\mathbf{E}_{o},\mathbf{I}_{o}) = \frac{g}{\pi} \beta J t^{2} \frac{\mathbf{w}(\mathbf{E}_{o} - \mathbf{B} - \mathbf{E}_{c} - \mathbf{I}_{o}^{2}/2J_{p})}{\mathbf{w}_{o}(\mathbf{Q}_{o})} \frac{\operatorname{Erf}(\mathbf{w}'\mathbf{I}_{o})}{\mathbf{w}_{o}'\mathbf{I}_{o}},$$

где g – число спиновых подсостояний частицы, w , w_o – приведенные плотности уровней дочернего и материнского ядер соответственно: w = = $(2j + 1)^{-1} \rho(E, j)$, где ρ – обычная плотность уровней, и аналогично для w_o. Отметим, что w и w_o зависят от энергии и углового момента только через тепловую энергию. И, наконец, укажем, что ширины испускания у-квантов можно нычислять с помощью формулы (3) из работы /9/, заменив в ней энергию возбуждения на тепловую.

Для проверки точности квазиклассического приближения было прове-

дено сравнение с квантовыми расчетами и с экспериментом. Вычисления от-

носятся к реакции ¹⁶0(⁵⁸мі, dd) при энергии Е_{даб}=70 МэВ, которая изучалась в работе /3/. Угловые корреляции двух d – частиц измерялись в плоскости, перпендикулярной пучку, что в системе центра масс соответствует полярным углам частиц $\theta_I = \theta_2 = 110^\circ$. Квантовые расчеты проведены с использованием программы GROG12 /10/. Из рисунка, на котором даны расчеты для I_{omax}= 32,26, видно, что квазиклассические функции угловой корреляции (----) близки к квантовым (- - -) и что при

I_{отех} = 32 обе близки к экспериментальной кривой (₹).

Параметры потенциалов частиц при квазиклассическом расчете были взяты из работы /11/, а для параметров плотности уровней в соответствии с /3/ принимались значения a = A/7.5, Δ = 1.2 и 2.4 МэВ для А-нечетных и четно-четных ядер соответственно.

Также были сделаны вычисления в предположения, что все температуры не зависят от I_0 и равны своим значениям, взятым при $I_0=I_{Omax}/\sqrt{2}$. Оказалось, что такой расчет хорошо воспроизводит результаты с τ , зависящими от I_0 .

Как указано вначале, изложенный подход применим не только к испусканию частиц, но и к случаю эмиссионного деления для изучения угловых корреляций частица – осколок. Необходимо только заменить параметр а на 1/2 K₀², где K₀² – дисперсия К в седловой точке барьера деления. Экспериментальные данные по угловым корреляциям частица – осколок можно найти в /127.

Список литературы

```
    Ericson T., Strutinsky V. - Nucl. Phys., 1958, v.8, p.284;
Nucl. Phys., 1958/1959, v.9, p.689 (addendum).
    Halpern I., Strutinsky V. - Proc. 2-nd Intern. Conf. on Paceful
Uses of Atomic Energy, N.Y.: United Nations, 1958, v.15, p.408.
    Tai Kuang-Hsi, Døssing T., et al. - Nucl.Phys.A, 1979, v.316, p.189.
    Catchen G.L., Kaplan M., et al. - Phys.Rev.C, 1980, v.21, N3, p.940.
    Rivet M.F., et al. - Phys. Rev.C, 1982, v.25, N 5, p.2430.
    CrpyTHCKME B.M. - M3TG, 1964, v.53, p.577.
    Lang D.W. - Nucl. Phys., 1964, v.53, p.577.
    Lang D.W. - Nucl. Phys., 1966, v.77, p.545.
    Mansukw X., HONDB A.B., THELMAR K. - HØ, I983, T.37, BHR. 2, c.284.
    Glat J., Grover J.R. - Phys. Rev. C, 1971, v.3, N 2, p.734.
    Kurthy K.H.N., et al. - Z. Phys. A, 1982, v.305, p.73.
    Utsunomiga H. et al. - Phys. Lett. B, 1981, v.105, p.135.
```

РАССЕЯНИЕ БЫСТРЫХ НЕЙТРОНОВ ЯДРАМИ С УЧЕТОМ ИХ "МЯГКОСТИ" И НЕАКСИАЛЬНОСТИ

И.Е.Кащуба, М.В.Цасечнык, Е.Ш.Суховицкий (ИЯИ АН УССР)

> Теоретически рассмотрена задача рассеяния оистрих нейтронов и протонов четно-четными деформируемыми неаксиальными ядрами. Получено обцее выражение для матричных элементов связи радиальных уравнений Предингера в рамках метода связанных каналов. Сделаны некоторые закличения о применимости предоженной модели.

A problem of fast neutrons and protons scattering by deformed nonaxial even-even nuclei is considered. A general expression for made elements of coupling within the framework of a coupled-channel method is obtained. Some conclusions on the applicability of the method proposed are made.

Широко используемые в настоящее время методи вычисления сечений рассеяния нуклонов атомными ядрами /1,27 предполагают, что ядро обладает вибрационным или ротационным спектром возбуждения и не изменяет своей форми в процессе возбуждения. Выполненные общирные расчеты /37 показали, что энергетический спектр большого числа четночетных ядер достаточно хорошо описывается в рамках модели "мяткого" по /3-колебаниям неаксиального ротатора. Поэтому исполизование этой модели в задаче рассеяния нуклонов – непосредственная связь динамики рассеяния с феноменологическими структурными свойствами ядра.

Запишем гамильтониан системы ядро плюс нелетакций нуклон в виде

$$\hat{H} = \hat{T} + \hat{H}_{t} + V (\mathcal{I}, \theta, \varphi), \qquad (I)$$

где \tilde{T} - оператор кинетической энергии нуклонов; \hat{H}_t - оператор внутреннего движения ядра [4], зависящий от проекций углового момента I на собственные оси ядра, массового параметра В модели, параметра неаксиальности γ , эффективно учитыващего поперечные колебания ядра. Ориентация собственной системы координат относительно лабораторной описывается углами Эйлера θ_T , θ_2 , θ_3 . Собственные
функции оператора \hat{H}_t определяются в пространстве с алементом объема $d \tau = \beta^3 \sin \theta_2 d \beta d \theta_1 d \theta_2 d \theta_3$ и удовлетворяют уравнению Пределяютера

$$(H_t - E_{IT}) \Phi_{IT} (\beta, \theta_1, \theta_2, \theta_3) = 0.$$
⁽²⁾

В качестве потенциала $\forall (r, \Theta, Y)$ выбирается локальный оптеческий потенциал со спин-орбитальной связыю, а потенциальную энертию \mathcal{B} -колебаний ядра задаем в форме

$$V(\beta) = \frac{1}{2} C \left(\beta - \beta_0\right)^2 \tag{3}$$

с параметрами С и β_o , которые соответственно характеризуют постоянную упругости ядерного вещества и деформацию ядра в его основном соотоянии.

В приолижении квадрупольных деформаний радкус ядра в его собственной системе может бить записан как

$$R_{i}(\theta', \varphi') = R_{o} \left\{ 1 + \beta \cos \beta \cdot \mathcal{Y}_{2,o}(\theta', \varphi') + (4) + \frac{1}{\sqrt{2}} \beta \sin \beta \cdot \left[\mathcal{Y}_{2,2}(\theta', \varphi') + \mathcal{Y}_{2,-2}(\theta', \varphi') \right] \right\},$$

что позволяет записать потенциал $V(\tau, \theta, \gamma)$ в виде сумми диагонального $V_{guas}(\tau)$ и недиагонального $V_{cs}(\tau, \theta, \gamma)$ членов. При этом

$$V_{cl.}(\gamma,\theta,\varphi) = \sum_{t=1,2} \beta^{t} \mathcal{V}^{(t)}(\gamma) \sum_{\lambda,\mu} Q^{(t)*}_{\lambda,\mu}(\theta_{i}) \mathcal{Y}^{(\theta,\varphi)}_{\lambda,\mu}(\theta,\varphi).$$
(5)

Вкодящие в (5) оператори связи каналов рассеяния $\mathcal{Q}_{d,M}^{(c)}(\mathcal{O}_i)$ определяются в модели неаконального ротатора через коллективние переменные и угли Эйлера \mathcal{O}_i оледущим образом:

$$Q_{\lambda,\mu}^{(1)}(\theta_{i}) = \left\{ \Delta_{\mu,0}^{2}(\theta_{i})\cos\beta + \Delta_{\mu,2}^{2}(\theta_{i})\sin\beta \right\} \delta_{\lambda,2} ; \qquad (6)$$

$$Q_{\lambda,\mu}^{(2)}(\theta_{i}) = \frac{5}{\sqrt{4\pi(2\lambda+1)}} (2200|\lambda 0) \left\{ \Delta_{\mu,0}^{\lambda}(\theta_{i})(2200|\lambda 0)\cos^{2}\beta + \Delta_{\mu,0}^{\lambda}(\theta_{i})(22-22|\lambda 0)\sin^{2}\beta + \Delta_{\mu,2}^{\lambda}(\theta_{i})(2202|\lambda 2)x \right\}$$

$$\times \sin 2\beta + \frac{1}{\sqrt{2}} \Delta_{\mu,\gamma}^{\lambda}(\theta_{i})(22-22|\lambda \gamma)\sin^{2}\beta \right\}.$$

Здесь введено обозначение через функции нрещения $\mathcal{D}_{\mathcal{M},\mathcal{X}}^{\Lambda}(^{\Theta_i})$

$$\Delta^{\lambda}_{\mu,\chi}(\theta_i) = \frac{1}{\sqrt{2(1+\delta_{\chi,0})}} \left[\mathcal{D}^{\lambda}_{\mu,\chi}(\theta_i) + \mathcal{D}^{\lambda}_{\mu,-\chi}(\theta_i) \right].$$

Коллективная волновая функцая возбужденного состояния "мягкого" неаксиального четно-четного ядра в случае учета связи β -колебаний поверхности ядра о его нращением может быть зашисана в виде произведения функцая для "жесткого" ротатора на функцию, учитыварщую β -колебания. Решение уравнения (2) определяет и волноную функцию, и энертик возбуждения ядра согласно методике, наложенной в работе [4]. При этом параметр "мягкости" ядра $\mathcal{M} = \beta^{-1} (\hbar^2 / (BC))^{//4}$ нходит в алгорити нычноления энергий возбуждения ядра и его функций черев значение корни $\gamma_L \gamma_R$ функции Вебера $\mathcal{D}_{\gamma}(\infty)$

$$\mathcal{D}_{\mathbf{y}_{ITN}}\left(-\sqrt{2}\,\mu^{-1}P_{IT}\left(\frac{y-3}{P_{IT}}\right)^{1/y}\right) = 0 \qquad (8)$$

(определение обозначений дано в работе (37).

Радиальная волновая функция взаимодействия нуклона с ядром удовлетворяет скотеме связанных уравнений /1/, матричные элементы связи которых отражают физическое содержание используемой модели рассеяния. В одучае копользования представления о ядре как о "мятком" неакожальном ротаторе они будут иметь вид

$$\langle i | V_{cl.}(n,\theta_{1},\Psi)| f \rangle = (-1)^{J-I'-\frac{1}{2}} (\Psi_{\pi})^{-\frac{1}{2}} \left[(2\ell+1)(2j+1)(2\ell+1) \times (2\ell+1) \times (2j'+1)(2\ell+1) \right]^{\frac{1}{2}} \sum_{t=1,2} \mathcal{V}^{-\binom{t}{t}}(t) \mathcal{J}_{\beta} \sum_{\lambda=0,2,N} (\ell\ell') \partial_{\lambda} \partial_$$

Вкодещие в (9) приведенные матричные элементи $(i^{(i)}G_A^{(i)})^{(j)}$ завиоят от параметра эффективной неаксиальности j и квентовых чисел "деоткого" ротатора, карактеризущих состояния $\langle i| u < f|$, межну которным рассматривается связь. Величина $\mathcal{J}_{\beta}^{(c)}$ учитивает "миткость" ядра относительно β -колосаний и определяется как

$$J_{\beta}^{(t)} = \beta_{0}^{t} N_{i} N_{f} \int_{0}^{t} \mathcal{D}_{y_{i}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{i}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(4 - \frac{3}{P_{j}} \right)^{\frac{1}{2}} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(-\frac{\sqrt{2}}{\mu} \left(y - F_{i} \right) \right) \mathcal{D}_{y_{f}} \left(y - F_{i} \right)$$

 N_{i},M - нормирунине множители; $V^{(t)}(\tau)$ определяется из разложения потенциала $V(\tau, \theta, \varphi)$ по степеням параметра деформации.

Полученное нами наражение (9) отличается от аналогичных наличием множителя $\mathcal{J}_{\beta}^{(t)}$, учитыващего "мяткость" ядра, а также зависплостью приведенных матричных алементов оператора (6) и (7) от квантовых чисал, свизанных с неаксиальностью ядра. "Мяткость" ядра ($\mu > 0$) ведет к увеличению матричных алементов (9) связи каналов. Следовательно, предложенная нами модель рассеяния ведет к усилению связи между каналами, причем это усиление зависат от квантовых чисел состояний, между которыми рассматривается связь. Тем самым в модели отражаются также свойства ядра как вероятности алектромагнитных переходов, квантовые характеристики состояний ядра, информация о форме ядра и модах возбуждения. Существенной чертой предложенной модели является то, что по сравнению с другими моделями она дает более окльное различие в козфициентах связи между каналами рассеяния.

В качестве примера рассмотрым рассеяние нейтронов с энергией 3,9 МэВ на ядре ${}^{48}Ti$. Использун один и тот не набор параметров оптического потенциала работи [5], в которой ядро рассматривалось в рамках коллективной нибрационной модели, нами были вниколени сечения рассеяния в случае чистого неаконального ($\chi = 21^{\circ}$ 30'; $\mu = 0$) и "мягкого" неаксиального ($\mu = 0,9027$) ротатора. Результати вычиолений и их соцоставление с данными работи [5] приведени в табл.1.

Таблица I

Интегральные сечения рассеяния нейтронов с энергией 3,9 МэВ на ядре ⁴⁸7*i*, вичисленные по различным моделям

Сечения, !	Эксцеримент !	I Молельные расчеты				
мо	/5/	[5]	$I \mathcal{J}^{\mu} = 0$	I µ ≠ 0		
Gs. el			I,82	I,67		
Gt	3,72±0,05	3,77	3,78	3,71		
ප් _{in} (21)	0,589	0,561	0,529	0,570		

Внчисленные утмовые распределения собственно упругого рассяния отличаются между собой для случаев $\mathcal{M} = 0$ в $\mathcal{M} \neq 0$. Так, при $\theta = 180^{\circ}$ $\mathcal{C}_{s} \ el(\mathcal{M} = 0) = 0,022$ б в $\mathcal{C}_{s} \ el(\mathcal{M} \neq 0) = 0,004$ б. Для \mathcal{M}^{H} с параметреми $\gamma = 21^{\circ} 30'$ в $\mathcal{M} = 0,9027$ вычисленные значения поправочного множителя $\mathcal{J}_{\beta}^{(e)} \mathcal{J}_{\delta}^{(e)}$, учитиващего усиление связи каналов расселения, соответствущих состояниям ядра $\langle i |$ и $\mathcal{L}_{j}^{(e)}$, приведени в табл.2. В модели "жесткого" ротатора $\mathcal{J}_{\beta}^{(e)} \mathcal{J}_{\delta}^{e} = 1$.

1	t = I			t = 2			
	0+	2+	4+	0+	2+	4+	
0+	1,342	I,42I	I,428	2,076	2,330	2,551	
2+	I,42I	I,55I	I,635	2,330	2,681	3,040	
4+ 1	I,428	I,635	I,85I	2,551	3,040	3,687	

Значения множителя $\mathcal{J}_{\mathcal{S}}^{(t)}/\mathcal{B}_{o}^{t}$ для $\mathcal{U}^{8}T_{i}$

Предложенная модель может онть применена для описания рассеяния быстрых нейтронов четно-четными ядрами, энергетический спектр которых описывается модельв Давыдова-Чабана /4/. При этом в едином теоретическом подходе решается задача рассеяния нейтронов и вопросы спектроокопии ядра.

Список литературы

- I. Tamura T. Rev.Mod.Phys., 1965, v.37, N 4, p.679.
- Игнатик А.В., Лунев В.П., Шорин В.С. Вопросн атомной науки и техники. С^ор.: Ядерные константы, 1974, вып.13, с.59.
- 3. Кашуба И.Е., Котишевская Э.Ю. Изв. АН СССР. Сер.физ., 1975, т.39, и 3, с.617.
- Давидов А.С. Возбужденные состояния атомных ядер. Атомяздат. М., 1967, с.262.
- 5. Smith A. e.a. Nucl. Phys., 1978, v.A307, N 2, p.224.

О РАСПРЕДЕЛЕНИИ ПАРЦИАЛЬНЫХ ШИРИН И ВОЗМОЖНЫХ РАЗЛИЧИЯХ ПОТЕНЦИАЛОВ ПОГЛОЩЕНИЯ В РАЗНЫХ КАНАЛАХ НУКЛОН-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЙ

И.Е.Кашуба, В.С.Ольковский, В.А.Чинаров (ИЯИ АН УССР)

> В рамках метода связанных каналов рассматривается возможное отклонение закона распределения парциальных ширин уровней составного ядра от закона $\mathcal{K}_{\mathcal{V}}$ с \mathcal{V} =1+2 и различий потенциов поглощения в разных открытых каналах.

> The possible deviation from the law χ_{\downarrow}^2 distribution of the partial widths of the compound nucleus with γ =1+2 and distinctions of the absorption potentials in different open channels are considered in the frame of the coupled-channel method.

В работах Мольдауэра /1,2/ было показано, что в случае, если вещественные и мнимые части амплитуд парциальных ширин уровней составного ядра некоррелированы друг с другом и распределены по нормальному закону, то парциальные ширины распределяются по закону \mathcal{X}_{0}^{2} с числом степеней свободы \mathcal{V} =1+2. В случае небольшого числа открытых каналов в общем случае возможны корреляции между амплитудами парциальных ширин (вследствие связи каналов, а также, в частности, условия унитарности). Каким образом это может сказаться на законе распределения парциальных ширин?

Представим амплитуру парциальной ширинн $\sum_{n=1}^{J,2'}$ в виде матричного элемента от остаточного взаимодействия \mathcal{W} на волновых функциях Φ_{i}^{J} компаунд-состояния и волновых функциях \mathcal{P}_{i}^{J+} $\sum_{n}^{J} n, J > R_{ni}^{J+}$ контенуума (1n, J > - свертка волновой функции n-го возбужденного состояния ядра мяшени и сцин-угловой функции налетаищей частицы; R_{ni}^{J+} – радиальная функция кавала, описыванцая относительное движение рассемваемой частицы и ядра мишени в n-м состоянии для i -го входного канала с асимптотикой; помемо плоской волны при n = i, расходящиеся волны; J - квантовое число полного момента). Тогда i -я парциальная ширина в соответствии с

/3/ имеет вид (для кратности индекс J опускаем)

$$\Gamma_{\mu}^{i} = \left| \gamma_{\mu}^{i} \right|^{2} \sum_{n,n'} \langle \Phi_{\mu} | \mathcal{V} | n, R_{n,i}^{\dagger} \rangle \langle \Phi_{\mu} | \mathcal{V} | n', R_{n',i}^{\dagger} \rangle^{*}.$$

Представляя волновые функции $R_{n,i}^{+}$ внутри ядра раднуса $R \ (\ell \leq \leq R)$ приближенно в виде

$$\mathcal{R}_{n,i}^{\dagger} \approx \mathcal{Y}_{n}(\mathbf{k}_{n}, \mathbf{r}) \mathcal{B}_{n,i}^{\dagger}(\mathbf{k}_{n}),$$

где $\mathcal{V}_{n}(k_{n}, t)$ - регулярное решение радиального уравнения Предингера для n-го канала в приближении нулевой связи канала; $\mathcal{B}_{n,t}^{+}$ коэффициенти нормировки, которые определяются из условий симвии волновых функций на границе ядра (k_{n} - волновое число в n -м канале), и предполагая, что знаки матричных элементов $\mathcal{I}_{M,n} \equiv \langle \mathcal{P}_{\mu} | \times \mathcal{V}(n, \mathcal{Y}_{n}(k_{n}, t))$ меняются случайным образом при изменении не только индекса \mathcal{M} , но и n, нетрудно видеть, что

$$\int_{\mu}^{i} \approx \sum_{n=1}^{N} \left[\langle \Phi_{\mu} | \mathcal{V} | n, \Psi_{n}(h_{n}, v) \rangle \right]^{2} \left| \beta_{n,i}^{\dagger}(h_{n}) \right|^{2}.$$
(1)

Из (I) ясно, что если величини $I_{,\mu,n}$ распределены по нормальному закону о нулевами оредними и некоррелированы друг с другом (корреляция имеется между коэффициентами $B_{n,i}^{+}i$), то парциальные ширины \int_{μ}^{i} при неслучайном характере зависимости $B_{n,i}^{+}i$ от n будут, вообще говоря, распределены по закону $\chi^{2}\gamma$ с числом степеней свободы $I \leq \gamma < N$, где N – число открытых каналов, а при случайной зависимости будут распределены по более сложному закону, явный вид которого зависит от закона распределения $B_{n,i}^{+}$. Ясно, что это распределение может быть даже близким к закону распределения полных ширин $\int_{\mu} = \sum \Gamma_{\mu}^{i}$. Этот результат обобщает выводы $\langle I, 2 \rangle$, справедливые без учета прямой овязи каналов.

Выполненные в работе /4/ феноменологические расчеты сечений рассеяния бистрих нейтронов ядрамя ${}^{56}F_{e}$ через стадию составного ядра подтверидают возможность флуктуации нейтронных ширин с эффективным числом степеней свободы N > 2. Более того, выбор оптимальных параметров оптического потенциала сказывается существенно зависящим от значения N_{30} , используемого в расчетах. N_{30} увеличивается с ростом энергии нелетающего нейтрона от I до 3, когда открыто достаточно большое число каналов неупругого рассеяния (E > 3 МаВ). Накболее чувствительной величиной к значению γ_{30} в рамках оптико-статистической модели является сечение неупругого рассеяния с возбуждением первого 2^+ - состояния.

Наблидаемое отклонение от закона Портера-Томаса $\mathcal{F}_{\mathcal{N}}^{2}$ цля парциальных нейтронных ширин в рассеянии нейтронов на ядре ^{232}Th не могут быть объяснены отсутствием уровней с малой шириной, неучетом значений $\mathcal{L}>0$ кли возможной систематической ошибкой в эксперименте. Если же учесть, что в этом случае открыто много каналов деления и, следовательно, $\mathcal{N}\gg$ I, то наблюдаемое отклонение может быть объяснено в рамках высказанных нами предположений.

В соответствии с работой /3/ вклад составного ядра в обобценный оптический потенциал, который описывает амплитуды рассеяния, усредненные по разбросу энергии \triangle E, определяется как

$$\widehat{W}_{(r)} = \left\{ \underbrace{\frac{i \, \mathcal{F}}{\cdot \Delta E}}_{R} \sum_{A} \left[1 - \frac{i \, P}{\Delta E} \sum_{\mu} W_{A\mu} \right] \left\{ \underbrace{\frac{\varphi_{e\mu} \, \hat{V}_{(c|0)} \, \hat{V}_{c}^{+}}{\langle \varphi_{eA} \, \hat{V}_{(c|0)} \, \hat{V}_{c}^{+} \rangle} \right]_{X}^{-1} \\
\times \, \widehat{V}_{(c|0)} \, \varphi_{eA} \left\{ \varphi_{eA} \, \hat{V}_{(c|0)} \, \hat{V}_{c}^{+} \right\}, \qquad (2)$$

$$\widehat{W}_{A\mu} = \left\{ \varphi_{eA} \, \hat{V}_{(c|0)} \, \frac{1}{E - A_{o}^{TD}} \, \hat{V}_{(o|c)} \, \varphi_{e\mu} \right\},$$

где

 $\sqrt{(c/o)}$ – потенциальная матрица связи открытых (0) каналов с закрытыми (C); $\hat{\gamma}_o^+$ – матрица решений уравнени – единтера в полпространстве открытых каналов без учета компаунд-резонансов; $\hat{H}_o^{(H)}$ – гамильтоннан системы в подпространстве открытых каналов (с учетом связи с закрытыми каналами, но с вычеркнутыми членами, отвечащими компаунд-резонансам); $\hat{\Phi}_{eM}$ – волновые функции компаунд-резонансов, формируемые в пространстве закрытых каналов. Здесь предполагается, что отделены все спин-утловые переменные и, следовательно, все величины в (2) отвечают одному и тому же значению \mathcal{Y}^{π} . Следует отметить, что выражение (2) справедливо только при слабо перекрывающихся резонансах ($\langle \Gamma \rangle / \mathcal{D} \ll$ I, где $\langle \Gamma \rangle$ и \mathcal{D} – усредненные в интервале ΔE соответственно ширина и расстояние между ревонансами).

Из простого анализа выражения (2) видно, что в области $\langle l \rangle$: $\mathfrak{D} \ll \mathfrak{l}$ глубина мнимой части потенциала в каждом открытом канале будет тем больше, чем больше вовлечено компаунд-состояний, т.е. чем больше $\rho = \mathfrak{D}^{-\prime}$

Если число однонуклонных степеней свободы существенно больше числа коллективных степеней свободы, то в предположении, что небольшое возбуждение последних мало сказывается на относительном распределение однонуклонных уровней (адиабатическое приближение), можно, ограничиваясь учетом закрытых каналов с возбуждением только однонуклонных степеней свободы, показать что *i* -му открытому каналу с возбуждением коллективных мод ядра мишени отвечает своя плотность ρ_i резонансов, распадащихся в данный канал. В приближения N-эквивалентных каналов 57 все величины ρ_i одинаковы и равны

 \mathcal{P}/N . Однако в нацем приближении величины $\mathcal{P}i$ для одного и того же компаунд-ядра должны зависеть от энергия возбуждения $E_i = E - \varepsilon_i + B$, где E – полная энергия; $\mathcal{E}i$ – энергия возбуждения ядра мишени в *i*-м канале; \mathcal{B} – энергия связи нуклона с ядром.

Поскольку при не очень большом удалении от поверхности Ферми величина ρ_i с ростом f_i растет приблизительно по закону

 $\rho_i \sim e^{\chi} \rho^{\sqrt{k+i}}$, глубина мнимой части W_{ii} оптического потенциала при фиксированной энергии E должна быть меньше в тех каналах, где больше \mathcal{E}_i . Это следует иметь в виду при использовании обобщенной оптической модели, хотя неполный учет открытых каналов может заметно исказить глубину и форму потенциала поглощения в тех каналах, которые наиболее сильно связаны с неучтенными явно открытыми каналами.

Список литературы

- I. Moldauer P.A. Phys.Rev., 1975, v.C11, p.426.
- 2. Moldauer P.A. Phys.Rev., 1975, v.C12, p.744.
- 3. Feshbach H. Ann. Phys., 1958, v.5, p.357.
- 4. Голубова А.А., Кашуба И.Е. УФЕ, 1976, т.21, № 3, с.414.
- 5. Любошиц В.А. Ядерная физика, 1978, т.27, с.948.

СРЕДНИЕ ВРЕМЕНА ВЗАИМОДЕЙСТВИЯ БЫСТРЫХ НЕЙТРОНОВ С АТОМНЫМИ ЯДРАМИ ПРИ РАССЕННИИ И ИХ ДИСПЕРСИИ

А.П.Дегтярев, Г.А.Прокопец

(Киевский государственный университет)

Рассмотрена возможность определения среднего времени задержки и дисперсии распределения нремен при упругом рассеянии по экспериментальным данным о функциях возбуждения. Обсужданися результати для рассеяния оыстрых нейтронов ядреми углерода.

The possibility to calculate the mean delay time for the elastic scattering and the variance of the durations distribution by means of the experimental data on excitation functions is investigated. The results for fast neutrons scattering by carbon nuclei are discussed.

В последние годи проявляется возрастанций интерес к проблеме временных характеристик ядерных реакций как в теоретическом /[-3], так и в экспериментальном плане /4/. Трудности сущестнущих методов измерения, связанные с измерением коротких интервалов времени ядерного масштаба, общензвестны и далеко еще не преодолены полностью. В работах /5/ было показано,что в ряде случаев имеются возможности определения времен протекания ядерных реакций, исходя из данных об эффективных сечениях, полученных в опытах с высоким энергетическим разрешением.

В данной работе сбращается внимание на одну из такого реда возможностей, которая практически может быть реализована при изучении временных характеристик процесся упругого рассеяния в области разрешенных резонансов. Для нейтронов это ограничивает применимость процедуры относительными энергиями $\mathcal{E} \leqslant 4$ МэВ и атомными ядреми с массовыми числами $\Lambda \leqslant 30$.

В предположении, что энергетическое разрешение эксперимента ΔE заметно меньше интернала энергий Γ , на котором происходит существенное изменение амплитуди f_{ji} реакции $i \longrightarrow j$, для среднего времени задержки C_{ji} в области взаимодействия и дисперсии распределения версятности этих времен D_{ji} ^(t) имеем [1, 2]:

$$\mathcal{I}_{ji} (\Theta_{j}, \varepsilon_{j}) = \hbar \frac{\partial arg \mathcal{F}_{ji}(\Theta_{j}, \varepsilon_{j})}{\partial \varepsilon_{j}}, \qquad (1)$$

$$\mathcal{D}_{ji}^{h}(\Theta_{j},\varepsilon_{j}) = \hbar^{2} \left(\frac{\partial \ln |f_{ji}(\Theta_{j},\varepsilon_{j})|}{\partial \varepsilon_{j}} \right)^{2}. \tag{2}$$

Для упругого рассеяния (i = j) в направлении вперед ($\Theta = 0^0$) при наличии и других открытых каналов реакции справедлива оптическая теорема

$$Im f(O, \varepsilon) = \frac{K(\varepsilon)}{4\pi} G_{\varepsilon} \equiv I(\varepsilon), \qquad (3)$$

где: $\mathcal{G}_t(\mathcal{E})$ - полное сечение взаимодействия с ядром падающей частицы с волновым числом $\mathcal{H}(\mathcal{E})$, отвечающим энергии относительного дружения \mathcal{E} .

Соотношения (I)-(3) срезу позволяют получить простие формулы:

$$\left|\mathcal{T}(0,\varepsilon)\right| = \hbar \frac{\left|R^{2} \frac{\partial I}{\partial \varepsilon} - \frac{1}{\varepsilon} I \cdot \frac{\partial R^{2}}{\partial \varepsilon}\right|}{G(0) \cdot \sqrt{R^{2}}}; \qquad (4)$$

$$\mathcal{D}^{(l)}(\mathcal{O},\mathcal{E}) = \frac{\hbar^2}{\mathcal{F}} \left[\frac{\partial \ln \mathcal{O}(\mathcal{O})}{\partial \mathcal{E}} \right]^2, \tag{5}$$

где $G^{\downarrow}(0^0)$ – двійеренциальное сечение упругого рассеяния вперед при энергии \mathcal{E} ; $\mathcal{R}^2(\mathcal{E}) \equiv [\mathcal{E}(\mathcal{O}) - \bar{J}^2]$. Таким образом, абсолютная величина средней продолжительности взаимодействия при упругом рассеяник нперед и присущая распределению времен этого процесса дисперсия выражаются через измеряемые функции возбуждения для двійеренциальных сечений упругого рассеяния и полных сечений. Следует отметить, что значения $G(0^0)$ могут быть оценены или путем экстраполяции к $\mathcal{O} = 0^0$ данных, полученных в малоугловых измеренцях, вли из результатов измерений в широком диапаконе углов, как $G(\mathcal{O}) =$ $= \sum_{K} \mathcal{B}_{K}(\mathcal{E})$. Здесь $\mathcal{B}_{K}(\mathcal{E})$ – коэфінциенты разложения экспериментальных утловых распределений в ряд по полиномам Лежандра: $G(\mathcal{O}, \mathcal{E}) =$ $= \sum_{K} \mathcal{B}_{K}(\mathcal{E}) \mathcal{P}_{K}(\cos \mathcal{O})$. Формули (4), (5) были использовани для определения / \mathcal{T} / и $\delta_t = \sqrt{\mathcal{D}^{(U)}}$ при упругом рассеяния нейтронов на ядрах углерода в интервеле относительных энергий $\mathcal{E} \approx 2,7-4,3$ МэВ. Необходимая экспериментальная информация взята из компиляции /6/.

Результаты показаны на рисунке (•) ныесте с исходными данными для $\mathcal{C}(0^{0})$ (×). Приведенные погред. эсти включают как неопределенность в данных по сечениям, так и неопределенность, связанную о операцией численного дийференцирования. Кривые на рисунке проведены по точкам от руки и призваны передать в общих чертах характер энергетической зависимости соответствущих величин. Как вилно из рисунка. модуль среднего времени задержки при рассеянии / 7/ и его ореднеквадратичная флуктуация бt оказываются более сильно осщиллярующими функциями энергии. чем соответствущие осчения. Обсужлаемая поонелура не позволяет найти знач ${\mathcal T}$, тем не менее изменение знака числителя формули (4) является детектором перехода /7/через нудевое значение. Аналогичное положение имеет также место для δ_t и нули δt очевилным образом должны отвечать экстремумам \checkmark (0°). Положение нулей / Z / заранее не очевидно и соответстнует. вероятно. изменению знака \mathscr{T} . Максимуми / \mathcal{T} / отвечают как максимумам, так и минимумам дифференциального сечения (нулям $d\tilde{q}$). Хотя/ $\mathcal{T}/$ и δ_{f} достигают сравнимых значений, тем не менее равенство $|\mathcal{T}(\xi)| = \delta_{t}(\xi)$, присущее экспоненциальному закону распределения времен задержек.вообще говоря не имеет места и может выполняться только при надлежашем усреднении по широкому энергетическому интервелу $\Delta E \gg \Gamma$. Максимальные величины / Г/ в энергетических точках волизи циков инфференциального сечения оказываются меньще, чем $\mathcal{T}_{r} = 2 \frac{\hbar}{\Gamma_{r}}$, где Гу - резонансная ширина соответствущего компаунд-состояния. Это

обстоятельство отражает тот факт, что в рассматриваемой области энергий при рассеянии нейтронов на ^{I2}С вклады резонансного и прямого механизма соизмеримы.

Точность приводимых данных $o/\mathcal{T}/$ и \mathcal{S}_t может быть улучшена по мере накопления более детальной информации по утловым распределениям. Таким образом эта процедура может стать источником калибровочных данных для других методов измерения \mathcal{T} или \mathcal{S}_t , именщих обычно непрямой характер и где извлекаемые значения сильно зависят от многих плохо контролируемых параметров. Представляет также интерес сравнение с модельными расчетами на основе, например, формализма R-матрицы в качестве дополнительного испытания, фиксирующего параметры матрицы рассеяния, наряду с расчетами сечений и поляризации.

Список литературы

- I. Ольховский В.С. Препринт КИЛИ-81-3, Киев, 1981, 39 с.
- Ольховский В.С., Прокопец Г.А. Определение длятельностей ядерных реакций и энергетическая занисимость сечений. См. наст. сб. с.233-237.
- 3. Kadmensky S.G., Furman V.I. In: Neutron Induced Reactions, Proc. of the Europhys. Top.Conf., June 21-25, 1982, Smolenice, Phys. and Applications, v.10, Bratislava, 1982, p.67. Indomna B.J. - Sty, 1983, T.37, BMH.2, C.292.
- 4. Воротников П.Е. и др. ЯФ, 1982, т.36, вып.5(II), с.1073.
- 5. Ольховский В.С., Прокопец Г.А. Известия АН СССР, серия физ., 1980, т.44, # 7, с.1510.
- 6. Fu C.I., Perey F.G. At. Data and Nucl.Data Tables, 1978, v.22, N 3. p.249.

ИССЛЕДОВАНИЯ НЕЙТРОН-ЯДЕРНЫХ СТОЛКНОВЕНИЙ С ПОМОЩЫО АНАЛИЗА НРЕМЕН ЖИЗНИ И ЭВОЛЮЦИИ РАСПАЛА КОМПАУНД-ЯДЕР

B.C. ONLYOBCKER

(NHN AH YCCP)

Дан обобщенный анализ методов определения времен жизни и исследований зволиции распада компаунд-ядер. В случае максимальной корреляции перекрыващихся резонансов получено явное аналитическое выражение для дисперсии времен жизни компаунд-ядер. Теорема Крылова-Фока обобдена на олучай некогерентных ансамблей состояний.

The generalized analysis of the investigations of the compound-nucleus lifetimes and decay evolution is given. The new analytical expression for the compound-nucleus lifetime dispersion at the range of the maximal correlation of the overlapping resonances is obtained. The Krylov-Fock theorem is generalized for incoherent state ensembles.

Исследования длительностей и эволиции ядерных реакций представляют собой развивающуюся область ядерной физики. В настоящее время уже вошли в практику четыре и предложены еще два метода экспориментального измерения длительностей ядерных реакций в интервале $\sim 10^{-21}$ + 10^{-15}_{cen} /I-67. Кроме того, известны и два косренных метода определения длительностей ядерных реакций, использующих анализ эриксоновских флуктуаций [7] и связь длительностей с энергетическим повелением сечений в области малых энергий /8/. Развитие систематических теоретических исследований временных свойств ядерных процессов долго тормозилось наличием пробелов в математическом аппарате квантовой теорин. По мере изучения свойств времени как наблюдаемой в квантовой механике, а также длительностей столкновений и распадов постепенно выяснялось, что длительность столкновения (распада) представляет многосторонний интерес, в частности, как (а) одна из важнейших характеристик механизма ялерных процессов. (б) наблодаемая, непосредственно связанная с прутими наблипаемыми и характеристиками квантовых систем (, /-матриней, сечением, вероятностью распада. ПЛОТНОСТЬЮ СОСТОЯНИЙ КОНТИНУУМА И ДАЖЕ ЧИСЛОМ СВЯЗАННЫХ СОСТОЯний системы), (в) источник информации о свойствах систем, которую не всегда практически возможно извлечь из других наблюдаемых/9,10/. В работах /9-127, исходя из определения, впервые предложенного в работе /13/. был выведен ряд рабочих формул для средних длительностей $\langle \tau_j i \rangle$ столкновений $i \rightarrow j$ и соответствущих средних времен изни $\langle \tau_j^c i \rangle$ компаунд-ядер.

В реальних экспериментах измеряется не непосредственно величина $\langle \mathcal{T}_j i \rangle$ или $\langle \mathcal{T}_j i \rangle$, а величины, связанные с $\langle \mathcal{T}_j i \rangle$ на основе того или иного физического эффекта. В ряде случаев такая связь может быть установлена на основе простых применений теоремы Эренфеста. Так, основываясь на результатах работ $\langle I \rangle$ и $\langle \mathcal{T} \rangle$, нетрудно установить, что в методе теней при $\Delta E \gg \Gamma \mathcal{D}$ смещение распадарщегося компаунд-ядра χ_c связано с $\langle \mathcal{T}^c \rangle$ соотношением $\langle \langle \chi_c \rangle^n \rangle \approx$ $\approx \langle (V_c)^n \rangle \langle \langle \mathcal{T}^c \rangle^n \rangle$, где $\langle V_c \rangle$ – средняя скорость движения компаундядра. В методе, использущем эффекти перерассеяния в трехчастичных реакциях, также используется это соотношения $\langle 9 \rangle$. В методе, основанном на измерении магнитного возмущения углового распределения резонансно рассеянных χ -лучей $\langle I4 \rangle$, используется соотношение $\langle \Delta \vartheta \rangle = \omega \langle \mathcal{T}^c \rangle$, где $\langle \Delta \vartheta \rangle$ – средний угол поворота спина ориентированных ядер, испытыващих χ -распад, ω^2 – частота процессии ядер в магнитном поле.

Исследования эволиции ядерных процессов и, в частности функций распада ядерных состояний, становятся одним из наиболее интересных направлений развития ядерной физики. Обычно используемая экспоненциальная форма закона распада является приближением даже в случае одиночного резонанса, когда элемент *S* -матрицы хорошо описывается выражением

$$S_{ji}(E) = \widetilde{S}_{ji}(E) \cdot \frac{E - E_{z} - i\Gamma/2}{E - E_{z} + i\Gamma/2},$$
(1)

где $S_{ii}(E)$ - гладкая функция энергии E, $\int = const \sqrt{E}$, $\triangle E \gg \Gamma$. Действительно, для произвольного начального волнового пакета в процессе столкновения образуется суперпозиция резонансного (метастабильного. квазистационарного, радиоақтивного) состозатухащего со временем, и волнового экспоненциально яния. пакета, весовая функция которого в основном определяется весовой функцией начального пакета и который дает неэкспоненциальный член распаданцегося состояния /I57. Такое явление физически неизбежно. Более того, из теоремы Крылова-Фока /16/ следует, что даже при использовании пакета, представляющего собой полный набор решений стационарного уравнения Предингера (с множителем $c_{\perp}p(-iEt/\hbar)$, неэкспоненциальность распада обусловлена ограниченностью непрерывного спектра энергий снизу нулем. ЭкспоHOHIMAJIHOCTI ČODMH SAKOHA DACIAJA NSOJNOBAHHOTO DOSOHAHCHOTO COстояния хорошо выполняется в промежутке времени, ограниченном сниву величиной $t_1 \sim t_0 \cdot \Gamma/E_x$ и сверху – величиной $t_2 \sim t_0 l_n(E_x/\Gamma)$, где $t_o \sim \hbar/\Gamma_a$ точность описания экспоненциальной формой тем лучше, чем меньше отношение Γ/t_z . При временах t, ме́ныших t_z и бо́льших t2, могут наблидаться заметные отклонения от экспоненциальности. Завновность $f'(\xi)$, отличная от \sqrt{E}' , может вызвать дополнительные искажения экспоненциальной формы. Наконец, наличие полюсов 🖉 -матрици, отвечающих другим резонансам, а также других особенностей **5-матрины в плоскости комплексных значений** *E* (например, полюсов, отвечающих виртуальным и связанным состояниям системы, разрезов и т.д.) также обусловливает отклонения от экспоненциальной формы закона распада. Последние две причины, в отличие от первой, харак-Теризурт неэкспоненциальность, являющурся следствием только внутренних динамических свойств распадающегося ядра, независимых от начальных условий столкновения.

Если в области изолированного резонанса (I) $\triangle E \ll \Gamma$, то, как показано в работах $[8,97], \langle \tau_{ji}^c \rangle \approx (\hbar \Gamma/2) [(\ell - \ell_i)^2 + \Gamma^2/4]^{-1}$, а функция распада будет, вообще говоря, неэкспоненциальной, форма которой определяется в основном весовой функцией g(E)начального волнового пакета. При этом следует иметь в виду, что в силу соотношения неопределенностей эффективная временная длина конечного волнового пакета $\Delta \tau_j \sim \hbar / \Delta E \gg \langle \tau_j^c i \rangle$, т.е. с точностью до малой величины порядка $\triangle E / \Gamma$ совпадает с эффективной временной длиной начального волнового пакета.

В случае перекрывающихся резонансов ($\mathcal{D}^{(Jn)} \ll \Gamma^{(Jn)} \ll \Delta E$) парциальные длительности ($\tau_{ji}^{(Jn)} >$, отвечающие различным значения ям квантовых чисел спина и четности, могут принимать значения в интервале от $\hbar \langle \Gamma^{(Jn)} \rangle$ до $2\pi\hbar/\mathcal{D}^{(Jn)}$, доститая в среднем одинакового для всех *п* открытых каналов значения $2\pi\hbar/n\mathcal{L}^{(Tn)}$ только в приближении равноправных входных каналов при $\langle \Gamma^{(Jn)} \rangle \gg n\mathcal{D}^{(Jn)}$ (II, I27. При этом могут реализоваться случай как экспоненциальной, так и неэкспоненциальной функции распада компаунд-ядер. В частности, в приближении одинаковых $\hat{P}_{i}^{(Jn)} = \langle \hat{P}^{(Jn)} \rangle$ ($\mathcal{V} = I, 2, ...$) в \mathcal{S} -матрице вида /177

$$\hat{S}^{(Jn)} = \hat{U}^{(Jn)} \prod_{i} \left(1 - \frac{i \left[\overline{s}^{(Jn)} \hat{R}_{i}^{(Jn)} + \overline{s}^{(Jn)} \right]}{\overline{E} - E \sqrt{m} + i \left[\overline{s}^{(Jn)} \right]} \hat{U}^{(Jn)T} \right), \qquad (2)$$

когда корреляция между резонансами макоимальна, величина $\langle \tau_{ii}^{c(37)} \rangle$ равна $2\pi\hbar/\mathcal{D}^{(37)}$, а дисперсия длительности $\mathcal{D}\tau_{ii}^{c(37)} = \langle (\mathcal{T}_{ii}^{c(37)})^2 \rangle - \langle \mathcal{T}^{c(37)} \rangle^2$ в приближении случайных фаз $\mathcal{J}^{c(37)} = \langle \mathcal{J}^{(37)} \rangle \langle \mathcal{J}^{(37)} \rangle$ оказывается ранной

$$\mathcal{D}_{\tau_{ji}}^{c(m)} = \langle (d | S_{ji}^{c(m)} | / dE)^{2} \rangle / | S_{ji}^{c(m)} |^{2} \rangle \approx 2 (\pi h / \mathcal{D}^{(m)})^{2} \exp(-2\pi f^{(m)} / \mathcal{D}^{(m)}).$$
(3)

Качественно распределение длятельностей $\hat{P}(t)$ и зависимость числа распадащихся компаунд-ядер N(t) от времени t изображены на рисунке.

Неэкспоненциальность закона распада типа представленной на рисунке можно уяснить следущим образом. Волнонур функций компаунд-ядра во внутренней области можно, по крайней мере качественно, представить в виде суперпозиция зависящих от времени многомерных осцилляторных функций, отвечающих уровням, которые отстоят друг от друга на расстоянии \mathcal{D} . Если в некоторый момент времени центр тяжести такого пакета по координате влетающей частицы ι -го входного канала находится на поверхности ядра $\tau_i = R$, то с течением времени он будет смещаться по закону $\tau_i - A_{cos} (\mathcal{D}/\hbar) t$, т.е. доститнет снова поверхности ядра через интервал времени $2\pi\hbar/\mathcal{D}$. Именно в этот момент и становится возможным распад всей системы по t-му каналу.

Все изложенное в разделах 2-5 можно обобщить на обичный в экспериментальной практике случай некотерентного ансамбля пар "одна налетащая частица + одно ядро-мишень". В соответствии о работами /9,117 выражения для сечений, длительностей и дисперсий длительностей ядерных реакций должны содержать усреднение не только по разбросу энергий в отдельном пакете, но и по разоросу средних энергий пакетов ансамбля. В этом случае результати оказываются такими же, как и в случае пакета одной пары с эффективной весовой функцией, описыванцей полный разброс энергий всего ансамбля. Соответственно обобщается и теорема Фока-Крылова: закон распада ансамбля состояний $\rho_o = \int dE \omega(E) / \Psi_E(x,o) / 2$, где $\Psi_E(x,o) = \int_C (E-E) \Psi_{E'}(x) dE'$, $\int W(E) dE = I$ зависит только от функций распределения энергии в этом ансамбле состояний и выражается формулой:

$$\mathcal{L}(t) = |P(t)|^{2}, \text{ rme } P(t) = \int w(t) [\int \psi_{t}^{\bullet}(x, 0) \, \Psi_{t}(x, t) \, dx] \, dt,$$

$$\mathcal{V}_{t}(x, t) = \int c(t - t) \, \Psi_{t}'(x) \, exp(-t) \, (-t) \, dt'.$$

Нетрудно видеть, что закон распада ансамбля состояний совпадает с законом распада волнового пакета, модуль квадрата эффективной весовой функции которого равен $\int w'(t) |c(t t')|^2 dt$.

Список литературы

- I. Карамян С.А. и др. ЭЧАЯ, 1973, т.4, с.456.
- 2. Chemin J.F. e.a. Nucl. Phys., 1979, V.A331, N 2, p.407.
- 3. For R. Phys.Rev., 1962, v.125, N 1, p.311; Lang J. e.a. Nucl. Phys., 1966, v.88, N 3, p.576.
- 4. Maroni C .e.a. Nucl. Phys., 1976, v. A273, N 2, p. 429; Trail C.C.
 e.a. Phys. Rev., 1980, v. C21, N 5, p. 2131; 1982, v. C26, N 2, p. 723.
- 5. Теммер Г.В. В со.: Прямые процессы в ядерных реакциях. М., Атомиздат, 1965, с.124.
- 6. Soff G. Phys.Rev.Lett., 1979, v.43, N 27, p.1981.
- 7. Ioshida S. Ann. Rev. Nucl. Sci., 1974, v.24, N 1, p.1.
- 8. Ольховский В.С., Прокопец Г.А. Ядерная физика, 1979, т.30, вып. I . с.45.
- 9. Ольховский В.С. Препринт КИЯИ-81-3. Киев, 1981, 39 с.
- IO. Olkhovsky V.S. Preprint KINR-81-30, Kiev, 1981, 8 p.
- II. Olkhovsky V.S. Phys.Lett., 1982, v.B116, N 5, p.305.
- Любовиц В.Л. Ядерная физика, 1978, т.27, вып.5, с.948.
- I3. Ohmura T. Progr. Theor. Phys., 1964, Suppl. N 29, p.108.
- I4. Давыдов А.В. и др. Препринт ИТЭФ-I57, М., I980, 47 с.
- I5. Базь А.И. и др. Рассеяние, реакции и распады в нерелятивистской квантовой механике. М., Наука, 1971, 544 с.
- I6.Крылов Н.С., Фок В.А. ЕЭТФ, I947, т.I7, вып.2, с.93.
- I7. Simonius M. Nucl. Phys., 1974, v.A218, N 1, p.53.

ОПРЕДЕЛЕНИЕ ДНИТЕЛЬНОСТЕЙ ЯДЕРНЫХ РЕАКЦИЙ И ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ СЕЧЕНИЙ

В.С.Ольховский, Г.А.Прокопец (ИЯИ АН УССР. Кневский государотвенный унавесситет)

> Получено выражение, связывающее дисперсию распределения длительностей ядерных реакций с энергетической зависимостью их сечений. Определены дисперсия длительностей для нейтронпроизводящих реакций $t(d,n)^4$ не m ⁷ L1(p,n)⁷Be.

The variance of the durations distribution in nuclear reaction has been connected with energy dependence of the corresponding differential cross section. These variances have been determined for the reactions $T(d,n)^{4}$ He and $^{7}Li(p,n)^{7}$ Be.

Наряду со средним значением длительности ядерной реакции, нахождение вероятностного закона этой физической величины требует знания также и временной дисперсии. Для двухчастичной ядерной реакции эта дисперсия распределения длительностей может быть введена следующим образом

$$\mathcal{D}_t = \langle t^2 \rangle - \langle t \rangle^2 \quad , \tag{1}$$

где $\langle t \rangle > -n$ -я степень момента прохождения волнового пакета через сферу, окружающую область взаимодействия, усредненная по длительности и размерам пакета в канале вылета частиц.

Определение (I) учитывает флуктуации длительности, обусловленные только взаимодействием частиц в процессе столкновения. Используя технику расчетов, основанную на понятии оператора времени $\mathcal{F} = -i\hbar \partial \mathcal{F} [I]$, получаем для временной дисперсии следующее выражение:

$$\mathcal{D}_{t}(j,i) = \langle \mathcal{D}_{t}'(j,i) \rangle + \mathcal{D}_{t}'(j,i); \qquad (2)$$

$$\langle \mathcal{D}_{t}'(j,i) \rangle = \langle |f_{ji}|^{2} \left(\frac{h}{h} \frac{\partial ln|f_{ji}|}{\partial \varepsilon_{j}} \right)^{2} / \langle |f_{ji}|^{2} \rangle;$$

 $\begin{aligned} & \mathcal{D}_{ji}(j) = \left\langle \left| f_{ji} \right|^{2} \left(\frac{h}{h} \frac{\partial arg f_{ji}}{\partial \varepsilon_{j}} \right)^{2} \right\rangle \left| \left\langle \left| f_{ji} \right|^{2} \right\rangle \right. \\ & \left. - \left[\left\langle \left| f_{ji} \right|^{2} \left(\frac{h}{h} \frac{\partial arg f_{ji}}{\partial \varepsilon_{j}} \right) \right\rangle \right| \left\langle \left| f_{ji} \right|^{2} \right\rangle \right]^{2} \right. \end{aligned}$

Здесь $\int_{i} (E, O_i)$ - амплитуда реакции i - j, E - полная энергия системы, а O_i и E_j - угловые переменные и кинетическая энергия относительного движения в канале вылета частиц j. При выводе (2) изменение формы водновых пакетов в ходе реакции не учитывалось, так же как и время свободного пролета в пределах сферы взаимодействия. Из (2) следует, что дисперсия времен зависит от степени монохроматизации пучков частиц. Составляющая $\langle \mathcal{D}_{t}^{(O)} \rangle$ не исчезает и в экспериментах с высоким разрешением, в то время как составляющая $\mathcal{D}_{T}^{(C)}$ при этом стремится к нулю.

Учитывая известное выражение для дифференциального сечения реакции

$$\mathcal{G}_{ji}(E, \mathcal{O}_{j}) = \frac{K_{j}}{K_{i}} \left| f_{ji}(E, \mathcal{O}_{j}) \right|^{2} \tag{3}$$

 $\begin{bmatrix} K_{i}(j) - волновое число относительного движения в канале <math>i(j) \end{bmatrix}$ не трудно преобразовать формулу (2) для случая хорошего энергетического разрешения и $\Delta E < < E_i$, i > k виду:

$$\mathcal{D}_{\ell}(\varepsilon, \Theta) \approx \mathcal{D}_{\ell}^{(O)}(\varepsilon, \Theta) = \frac{\hbar^{2}}{4} \left[\frac{\Im \ln \Theta(\varepsilon, \Theta)}{\Im \varepsilon} \right]^{2}$$
(4)

Выражения (2) - (4) получены без учета спина. Однако поскольку поляризация в направлении вперед тождественно равна нуло, следует ожидать, что они будут пригодны при $\mathfrak{O} = 0$ и для реакции с участием частиц, обладающих спином.

Экспериментальная информация об энергетической и угловой зависимости сечений нейтронпроизводящих реакций $7(d, \pi)^4$ Не и $4L_i(P,\pi)^7 Be$ [2] была использована для нахождения временной дисперсии. Рисунок демонстрирует энергетическую зависимость среднеквадратичной флуктуации $d_i = (D_i)^{1/2}$ времени протекания этих реакций для вылета нейтронов под углом 0° в системе центра инерции.

Представление о распределении вероятности времен может быть получено из сравнения среднеквадратичных флуктуаций со средними временами задержек в ядерной реакции.

В реакции $T(d, \pi)$ ⁴Не для относительных энергий $\mathcal{E}_{i} \leq 0.3$ МэВ не наблюдаются эффскты прямого взаимодействия, и реакция идет через возбуждение резонанса $\mathcal{E}^{*}(\mathcal{J}^{*}) = 16,7$ МэВ $(3/2^{+})$ ядра ⁵Не с $\Gamma = 8I$ кэВ [3]. Соответствующее среднее время жизни уровня

$$\langle \widetilde{C} \rangle = \frac{\pi}{\Gamma} = 8,15 \cdot 10^{-21} c.$$
 (5)

Следует заметить, что для изолированного резонанса Брейта-Вигнера в опытах с плохим разрешением ($\Delta E \gg \Gamma$) должны выполняться равенства :

$$\langle \mathfrak{D}_{t}^{(0)} \rangle = \mathfrak{D}_{\widetilde{C}} = 0.5 \langle \widetilde{C} \rangle^{2} \quad _{H} \quad \mathfrak{D}_{t} = \langle \widetilde{C} \rangle^{2} , \quad _{(6)}$$

что отвечает экспоненциальному закону распределения вероятности. Усреднение полученной из (4) величины $\mathcal{D}_{\ell}^{(*)}$ по интервалу $\mathcal{E}_{\ell}^{(*)} = (0,021 + 0,33)$ МэВ (на уровне I/IO максимума сечения в резонансе) ведет к

$$\langle \mathcal{D}_{t}^{(0)} \rangle^{1/2} = 6, 4 \cdot 10^{-21} c.$$
 (7)

Сравнение (5) и (7)дает

$$\langle \mathcal{D}_{t}^{(o)} \rangle = 0, 6 \langle \mathcal{C} \rangle^{2}$$
 (8)

Некоторое различие между (6) и (8) обусловлено, возможно, энергетической зависимостью ширин и сдвигов уровня, включающей эффект кулоновского взаимодействия.

новского взаимоденствия. Для резонансов, возбуждаемых в реакции $2((P,n)^{T}Be$, подобного рода оценка непосредственно сделана быть не может, т.к. здесь вклад прямого механизма соизмерим с вкладом составного ядра. Тем не менее, необходимо еще раз подчеркнуть, что экспоненциальность распределения времен возникает как следствие усреднения по энергии в соответствующих экспериментах. Для экспериментов с высоким разрешением этот результат, вообще говоря, не обязателен. Так, например, из рисунка видно, что вблизи резонансных максимумов сечений обсуждаемых реакций, когда среднее время жизни достигает намбольшего значения, близкого к $\langle C \rangle \approx 2 \frac{1}{T}$, временная дисперсия D_{t} стремится к нуло.

Список литературы

- 1. Ольковский В.С. Препринт КИЯИ-81-3, Кнев, 1981, 39 с.
- Liskien H., Paulsen A. Nucl. Data Tables, 1973, v.11, H 7, p.569. Liskien H., Paulsen A. Atomic Data and Nucl. Data Tables, 1975, v.15, H 1, p.57.
- 3. Lauritsen T., Ajzenberg F. Selove. Nucl. Phys., 1966, v.78, M 1, p.1.

ВРЕМЕНА ЖИЗЕИ ПОРОГОНЫХ СОСТОЯНИЙ И ВОЗМОЖНОСТИ ИХ ИЗМЕРЕНИЙ В.С.Ольковский, В.В.Колотый (ИЛИ АН УССР)

> Развивается теория особой разновидности компаунд-ядер – порогових состояний, образуопихся при рассеяния с -нейтронов в области порога неупругого рассеяния с возбуждением изомерного уровня ядра-мишени. Анализируется возможность измерений времён жизни таких ядер.

The theory of the pecular kind of compound nuclei - the threshould states formed by the s-neutron scattering at the threshould range of the inelastic scattering with the excitation of a target-nucleus isomeric state is developed. The possibility of the lifetime measurements for such nuclei is analysed.

В идеализированном случае строго определённых уровней возбуждённых состояний ядра-мишени вблизи порога неупругого рассеяния нейтронов (скажем, в области КСО) элемент Л -матрици упругого рассеяния можно представать в виде /1,2/

$$S_{e}^{r}(K_{0},K_{1}) = S_{e}^{r}(K_{0}) \cdot \frac{1+d(K_{0})\cdot K_{1}^{2l+1}}{1-d(K_{0})\cdot K_{1}^{2l+1}}, \quad (I)$$

где волновне числа \mathcal{K}_0 в \mathcal{K}_1 связаны соотношением $\mathcal{E} = \mathcal{E}_0 + \frac{1}{2}\mathcal{K}_0^2/2\mu = \mathcal{E}_0 + \frac{1}{2}\mathcal{K}_0^2/2\mu$, \mathcal{E} – энергия системы, \mathcal{M} – приведенная масса нейтрона и ядра-мишени, \mathcal{E}_0 и \mathcal{E}_1 – уровни основного и первого возбужденного состояний ядра-мишени, $\mathcal{J}_0^2(\mathcal{K}_0)$ обладает темя же аналитическими свойствами, что и \mathcal{N} -матрица одноканального рассения, $\mathcal{O}(\mathcal{K}_0)$ – регулярная на вещественной оси функция \mathcal{K}_0 , которур в простейлих случаях можно выбрать вещественной для вещественных потенциалов. Длительность рассеяния (время задержки) для

$$\chi = \hbar d \left[\arg f_{e}(E) \right] / dE \underset{K_{q} \to 0}{\longrightarrow} \left\{ \widetilde{\tau}_{e} + \hbar (-1)^{e} d d |\kappa_{q}|^{2e+1} / dE, \kappa_{q}^{2} < 2\mu (\xi - \xi_{q}) / \hbar^{2}, (2) \right\}$$

где $f_e(E)=i[1-J_e(E)]/k_o, \tilde{\tau}_e=\frac{4}{3}d(org J_e)/dE$. В случае плавной завнонности arg $\tilde{f}_e(E)$ от E, т.е. малой величины $\tilde{\tau}_e$ для $\ell=0$

величина ζ_0 при подходе к порогу снизу ведёт себя как $\zeta_0 \simeq \frac{\omega}{2} - \frac{d\mu}{2} \frac{k}{2} \frac{k}{2}$, т.е. при $\alpha \neq 0$ время жизни такого порогового состояния неограниченно возрастает при приближении к пороговой точке ($\kappa_4 = 0$) онизу (величина α не может быть положительной в силу условий причинности и унитарности) $\frac{1}{2}$.

В [4] указано на необходимость учёта метастабильности (конечности времени жизни) возбуждённых состояний реальных ядер. Если уровни таких состояний представить в виде комплексных величин $\tilde{E}_n = E_n - ig'_n / 2$, где g'_n — пирина (обычно радиационная) уровня, то вместо точки порога следует ввести понятие пороговой области пирины $\sim g'_n$ и в (I) заменить E_n на \tilde{E}_n и, в частности, κ_n на [$2\mu (E - \xi_{+}ig'_n/2)/\hbar^2$]^{1/2}. Тогда в пороговой области функция $T_o(E)$ остаётся конечной и непрерывной. Она определяется выражением

$$\tau_{o}(E) \simeq \hbar \beta_{o} \quad \frac{1 - (E - E_{n})/d_{n}}{[d_{n} - (E - E_{n})]^{\eta_{2}}}, \qquad (3)$$

$$\sum_{k=1}^{rae} E_{0} = (1 - Re \tilde{S}_{0})^{-1} Re \tilde{S}_{0} \alpha_{0} (\mu/\pi^{2}) E_{n} = \varepsilon_{1} - \varepsilon_{0}, \ d_{n} = [(E - E_{n})^{2} + g^{2}/4]^{1/2}$$

B IDE INDOMORDANCE HERE, STO $|1 - Re \tilde{S}_{0}| \gg |\alpha| \cdot [|E - E_{n}|] \mu/\pi^{2}]^{1/2}$

и $|\kappa_{\ell}| \rightarrow 0$. Ясно, что $\tau_{o} > 0$ только при $\mathcal{R} \in \int_{0}^{\infty} < 0$. Величина (3) характеризует среднее время задержки в общей совокупности процесса потенциального рассеяния, описиваемого парциальной амплитудой $f_{0}^{(\ell)} = i [1 - |J_{o}|]_{0}^{\ell} J/2\kappa_{o}$, и процесса образования соботвенно порогового состояния, описиваемого амплитудой $f_{0}^{(\ell)} = i [1 - |J_{o}|]_{0}^{\ell} J/2\kappa_{o}$, и процесса образования соботвенно порогового состояния, описиваемого амплитудой $f_{0}^{(\ell)} = i [1 - |J_{o}|]_{0}^{\ell} J/2\kappa_{o}$, и процесса образования соботвенно порогового состояния, описиваемого амплитудой $f_{0}^{(\ell)} = i [1 - |J_{o}|]_{0}^{\ell} J/2\kappa_{o} - - \tau_{o}^{\ell} J/2\kappa_{o} = i |J_{o}|[exp(iarg J_{o}) - exp(iarg J_{o})]/2\kappa_{o}$. Очевидно, в пределе $d \rightarrow 0$ величина $f_{0}^{(\ell)} \rightarrow 0$, т.е. пороговые явления исчезают. Поскольку величина $\tau_{o}(E)$ зависит от соотношения виладов и времён задержек обоих процессов в общем процессе рассеяния, целесообразно отдельно расомотреть сечение $e_{0}^{(\ell)}(E)$ образования и время задержки $\tau_{0}^{(\ell)}(E)$ в процессе распада порогового состояния $(\tilde{S} \rightarrow 1)$.

$$\begin{aligned} & \text{Benarquina} \quad \mathcal{B}_{o}^{(t)}(E) = \frac{16\pi}{\kappa_{o}^{2}} \left| \int_{0}^{\infty} \left| J_{o}^{0} \right|^{2} - \int_{0}^{0} \left|^{2} = \frac{4\pi}{\kappa_{o}^{2}} \left| J_{o}^{0} \right|^{2} \sin^{2} \delta_{t}^{2}(E) = \frac{16\pi}{\kappa_{o}^{2}} \frac{\lambda^{2} (Im\kappa_{1})^{2}}{[1+\lambda^{2}]\kappa_{t}|^{2} - 2\lambda \operatorname{Re} \kappa_{t}]^{2}} , \end{aligned}$$

$$\int_{L}^{TIP} (E) = (1/2) \left[\arg \int_{0}^{1} - \arg \int_{0}^{1} \right] = \operatorname{arety} \frac{d \operatorname{In} K_{1}}{1 + d \operatorname{Re} K_{1}} + \operatorname{arety} \frac{d \operatorname{In} K_{1}}{1 - d \operatorname{Re} K_{1}},$$

 $Re \, \kappa_{+} = [\sqrt{\mu}^{*}/\hbar] [d_{n} + E - E_{n}]^{1/2} \, Im \kappa_{+} = (\sqrt{\mu}/\hbar) [d_{n} + E_{n} - E]^{1/2}$ $IIDIN E = E_{n}$

$$\delta_{0}^{(t)}(E_{n}) = \frac{8\pi}{\kappa_{0}^{2}} \frac{d^{2}\mu y_{1}/\hbar^{2}}{[1+d^{2}\mu y_{1}/\hbar^{2}-d(2\mu y_{1}/\hbar^{2})^{\frac{1}{2}}]^{\frac{1}{2}}}$$
(4a)

Если $\mathcal{L}_{\mu\gamma}^{2}/\hbar^{2} \sim 1$, то $\mathcal{L}_{0}^{(t)}(E_{\gamma}) \sim \mathcal{L}/\kappa_{0}^{2}$. Величина $\mathcal{L}_{0}^{(t)}(E)$ при пренебрежении зависимостью алу $\tilde{\mathcal{J}}_{0}^{\prime}$ от

BEEPTHE PEBHA $\chi(t)/F) \simeq t dd /dE =$

$$= \frac{-d\sqrt{\mu^{2}}}{2[d_{n}+E_{n}-E]^{1/2}} \cdot \frac{[1+(E_{n}-E)/d_{n}][1+d^{2}|x_{1}|^{2}]+2d^{2}\mu y_{1}^{2}/\hbar^{2}d_{n}}{(1+d^{2}|x_{1}|^{2})^{2}-4d^{2}\mu (E-E_{n}+d_{n})/\hbar^{2}} .$$
 (5)

При $E \rightarrow E_n$ выражение (5) переходит в

$$\mathcal{T}_{o}^{(t)}(E_{n}) \simeq - d \int \mu [2\gamma_{*}[1 + (a)\mu\gamma_{*}]^{k} [1 + 2]^{2}]^{-1} (1 + 5 a)\mu\gamma_{*}/h^{2}).$$
(5a)

Очевидно, при $d^2(\mu_{f_1}/\hbar^2) \ll 1$ величина $\tau_o^{(t)}(E_n) \approx -d_1\mu^{-1}/2f_1$, а при $d^2(\mu_{f_1}/\hbar^2) \gg 1$ величина $\tau_o^{(t)}(E_n) \approx 2.5 \cdot k^2 \hbar^2/d_{\mu} \hbar^{1/2} f_1^{-3/2}$. При $d^2(\mu_{f_1}/\hbar^2) \sim 1$ величина $\tau_o^{(t)}(E_n) \sim 1.5 \cdot k^2 \hbar^2/d_{\mu}$. Точнее, при $d^2 = 1,223 \hbar^2/M_f$ величина $\tau_o^{(t)}(E_n)$ принимает максимальное значение, равное $2,27 \hbar^2/f_1$. Возрастание величины $d^2\mu_{f_1}/\hbar^2$ до значений порядка I и более может быть обусловлено появлением резонанса d/k_o). Таким образом, при $f_1 \Rightarrow 0$ время жизни $\tau_o^{(t)}(E_n)$ образующегося нейтронноактивного составного ядра может оказаться довольно большим, превышая время жизни возбуждаемого изомерного состояния ядра-мишени. Физически это явление можно интер претировать как следствие двухкратного перехода нейтрона из входного в почти закрытый канал неупругого рассеяния и образованием медленно рассасывающегося нейтронного "облака" и обратно во входной канал в условиях отсутствия кулоновского и центробежного барьеров.

Представляет интерес обобщение теории рассмотренного здесь эффекта в случаях комплексных значений \prec , присутствия в пороговой области резонансов $\tilde{J}'_{o}(\kappa_{o})$ и $\prec(\kappa_{o})$. В более полной теории целесообразно также исследовать вблизи порога величины сечения и длительности неупругого рассеяния нейтронов с почти нулевой конечной энергией и возбуждением изомерного состояния ядра-мишени.

Оценим число А нейтронноактивных ядер, образующихся при облучении толстой мишени потоком $J_{\mathcal{J}}$ (1/44) нейтронов с разбросом

энергай бЕ вокруг пороговой энергия Е, за время о с превышалцее величину 2 (+) (когда практически каклый из налетаниях нейтронов успеет провзаямодействовать хотя бы с однам из ядер мишени). Очевилно.

$$oN \leq I_o ot (F_A / SE) W,$$
 (6)

где $W(E) = |S_0|^2 4 \sin^2 S_{+}(E)$ - вероятность образовання порогового состояния (нейтронноактивного ядра). При $\Delta t \sim \mathcal{Z}_{0}^{(t)}(\mathcal{E}_{n})$ $W(E_n) \sim 1$

$$\delta N \leq I_{a} t / \delta E.$$
 (6a)

ВСЛИ I~10" (1/сек) и dE~1+В, то

$$a_{N} \lesssim 10^{-5}.$$
 (60)

Реальность обнаружения нейтронноактивных ядер, образующихся при рассеянии нейтронов в пороговой области энергий возбуждения изомерных состояний ядер мишени, определяется возможностью регистрации распада этих ядер на фоне сопутствующих излуче-HAR. При $\mathcal{C}_{(f, c)}^{(t)}(\mathcal{E}_{c}) \lesssim 10^{-2}$ скорость регистрации $\Delta N/\mathcal{C}_{(f')}^{(t')}(\mathcal{E}_{c}) \gtrsim 10^{-2}(1/\alpha_{ex})$

В настоящее время готоватся постановка эксперимента, который позволял он наблюдать этот весьма слабый эффект, в частности, при облучении мишени из ядер ⁷⁵As, у которых имеется изомерное состояние с энергией 0,305 МаВ и временем жизни 17.1 MC /57.

Список литературы

- Базь А.И. и др. Рассеяние, реакции и распалы в нерелятивисто-кой квантовой механике. М. Наука "1971, 544 с.
 Зайченко А.К., Ольховокий В.С.- Укреинский физический курнал, 1979, т.24, вып.5, с.605.
 Ольховокий В.С. Препринт КИЛИ-81-3, Киев, 1981, 39 с.
 Ольховокий В.С. Тезисы Конференции по ядерно-физическим ис -следованиям, посвящённой 50-летию осуществления в СССР реак-ции расшепления атомного ядра. Харьков, изд-во ХУТИ, 1982, с. 72.
 Ключарев А.П. и др.- Атомная энергия, 1978, т. 44, вып.1, с.36.

24I

ЭМИССИЯ НЕСКОЛЬКИХ НЕЙТРОНОВ ПРИ БЕТА-РАСПАЛЕ ЯЛЕР

D.C.Лютостанский, И.В. Панов, В.К.Сироткин (МИФИ, ИТЭФ)

> Показано, что открытый недавно процесс эмиссии двух нейтронов, сопровожданний бетараснад летких япер, может идти в более тяжелых япрах с А=50-150. Анализируется возможность эмиссии более двух запаздыващих нейтронов. Оцениваются вероятности эмиссии нейтронов в микроскопическом подходе.

FEW NEUTRON EMISSION AFTER BETA-DECAT. It is shown that two neutron emission recently found in light nuclei can be observed in nuclei with A=50+150. The emission possibility of more then two neutrons is investigated. The neutron emission probability is evaluated in microscopic approach.

Ранее в работах $(\tilde{1},2)$ было показано, что процесс эмиссии днух нейтронов, сопровоядающий бета-распад сильно нейтронно-избыточных ядер ¹¹Li и ^{30,31,32} Na /3,4/ [(β ,2n)-процесс], может идти и в более тяжелых ядрах, доступных в ближайшее время для экспериментальных исследований. В настоящей работе рассматривается возможность эмиссии трех и более нейтронов при бета-распаде ядер с $A \ge 50$.

Возможность $(\beta, 3_n)$ -процесса, аналогичного случав хороно известного процесса эмиссии одного и днух запаздыващих нейтронов, определяется тем, что с увеличением числа изонточных нейтронов для изотопов одного элемента разница масс между соседними ядрами-изобарами Q_{β} растет и при $Q_{\beta} > B_{3n}$, где B_{3n} - энергия отрыва трех нейтронов, возможен ($\beta, 3n$)-процесс (рис.1). Этот процесс уже наслидался для ядра ¹¹ Li [5]. Анализ энергетических соотношений, полученных по известным массовым формулам [6] показывает, что при $Q_{\beta} > B_{\kappa n}$, где $\beta_{\kappa n}$ - энергия отрыва к нейтронов, возможен процесс эмиссии к нейтронов. Например, для изотопов Ab (рис.2) ($\beta, 3n$)-процесс возможен при $A \ge 102$, а ($\beta, 4n$)-процесс – при $A \ge 106$.

Анализ энергетических соотношений показал, что среди идентифицированных ядер с известным цериодом полураспада существуют ядра ${}^{44}L_i, {}^{32,33,39}N_a, {}^{52}N$, а также ${}^{62}Ab$ возможные ($\beta, 3n$)-излучатели. Вероятность ($\beta, \kappa n$)-процесса $P_{\kappa n}$ существенно зависит как от

Вероятность (ρ , кл)-процесса $P_{\kappa n}$ существенно зависят как от энергетических соотношений, так и от структуры силовой функции бета-распада $S_{\rho}(E)$, причем влияние оказывает и высоколежащая резонансная часть силовой функции, особенно гамов-теллеровский (ITP) ре-

Рис. I. Схеме эмисони одного, неух и трех нейтронов, сопроводдащей А-распад ядер. В дочернем ядре схематически показана силовая функция А-распада $S_{\rho}(\mathbf{R}_{\mathbf{X}})$, именцая резонансную структуру

зонанс [7], далани вклад в непрерывную часть функции $S_{\beta}(E)$.

Влинние непрерывного опектра учитывается в $S_{\mathcal{B}}(E)$ при $E > B_{1n}$ усреднением по энергетическому интервалу, содержащему большое число уровней компаунд-ядра [8], и для окловой функции бета-переходов в изобарическое состояние ј получаем при $E > B_{1n}$.

$$S_{\beta}^{i}(E) = |\mathsf{M}_{j}^{(\omega)}|^{2} \frac{|j|}{(E_{\beta} - \omega_{oj})^{2} + l_{j}^{-2}} Const, \qquad (1)$$

где матричный элемент $M_j^{(\circ)}$ определяется через вычеты эффективного поля $V_{\mathcal{B}}$ в квазыклассической ВЕТА-модели [7] без учета уровней комнаунд-ядра. Шаряна \int_j связана с мнимой частью собственно-энергетического оператора Σ соотношением

$$\int_{J}^{=} 2 \operatorname{Im} \sum (E^{\dagger} i I) \approx \mathcal{A} |E|E, \quad \mathcal{A} \sim 1/\mathcal{E}_{F}. \tag{2}$$

Получаемая окловая функция непрерывна для $E > B_{1n}$ и дискретна ($S_{\beta}^{J} \sim |M_{j}^{(2)}|^{2}$) при $E < B_{1n}$ (примеры расчетов S_{β} см. в работе [2]). Расчеты величины P_{3n} проводились в рамках микроскопического

⁷Расчеты величины Р₃₀ проводились в рамках микроскопического подхода, основанного на теории изобарических состояний [7], которые, являясь заряженными коллективными возбуждениями исходного ядра A (N,Z) определяют структуру силовой функции бета-распада.

Вероятность P_{3n} рассчитывается аналогично (см./I,27) в предноложении каскадного механизма эмиссии нейтронов через состояния ядер А-I (Z+I), А-2 (Z+I) и А-З (Z+I) (см.рис.I).Спектр испущенных нейтронов на каждой стадии каскада можно рассчитать, пользуясь теорией Хаузера-Фелбаха /9/. В предположении, что испускаются только 5-нейтроны, макоимум спектра нейтронов будет соответствовать энергии T/2, где T - температура ядра. Если выполняется условие $T \ll Q_{kn}$ ($Q_{kn} = Q_{\beta} - B_{kn}$), то выражение для вероятности $P_{\kappa n}$ сильно упрощается:

$$P_{Kn} \approx \int_{B_{Kn}}^{Q_{(K+1)n} + J_{K+1}} W_{\beta}(E) dE, \qquad (3)$$

где $W_{3}(E)$ – вероятность заселения при бета-распаде состояний с энергией E в дочернем ядре, а величина $\delta \approx (\kappa - 1)T/2$ учитывает влияние спектра испущенных нейтронов на вероятность P_{nn} . В настоящих расчетах величин P_{2n} и P_{3n} использовалась верхняя оценка, полученная при $\delta \approx 0$. Заметим, что вероятность $P_{\kappa \alpha}$ зависит, в основном, от поведения функция $W_{\beta}(E)$, определяемой силовой функцией бета-распада.

Ядро	!Экоперимент			Pacter			
	T _{1/2} !	P _{1p} ! P _{2n}	P_{3n}/P_{n}	T _{1/2} 1	P _{1n} I	P _{2n}	1 P 30
31 _{Na}	17,7	30 0,70	10-3	30	24,9	0,45	0,003
32 _{Na}	I4,0	IO 5,0		18,0	23,8	3,4	0,08
33 _{Na}	8,2			18,3	57,6	19,4	0,19
ንዓ _{ዝል}	4,6			13,4	I6 , 3	69,7	13,1
52 _K	175			16 0 -	43,7	2,3	
100 _{Rb}	51,0			54	26,3	1,2	
102 _{Rb}				40	42,4	3,43	10-4

Результати расчетов периодов полураощада T_{1/2}, мс, и вероятностей эмиссии защаздывающих нейтронов Р_{ко}, \$

В таблице предотавлены результаты расчетов периодов полураспада и вероятностей эмиссии запаздыващих нейтронов для нескольких идентифицированных нейтронно-избиточных ядер, возможных (β , 3α)излучателей. Сравнение с экспериментальными данными работи $f10^7$ по величинам $T_{1/2}$, β_{10} и β_{20} позволяет надеяться на удовлетворительную точность оценок β_{40} .

Экспериментальные исследования (β , 2n)-и (β , 3n)-процессов позволят выяснить детели механизма эмиссии нейтронов и определить вклад каскадного процесса эмиссии с образованием динейтронной пари.

Список литературы

- I. Лютостанский Ю.С., Панов И.В., Сироткин В.К. Ядерная физика, 1983, т.37, вып.2, с.274.
- Лютостанский Ю.С., Панов И.В. Известия АН СССР, сер.физ. 1983, т.47, вып.5. с.880; z.Phys., 1983, v.313, N 3.
- 3. Asuma R.E. e.a. Phys. Rev. Lett., 1973, v.43, N 22, p.1652.

```
4. Detras C. e.a. - Phys.Lett., 1980, v.94B, N 4, p.307.
```

```
5. Azuma R.E. e.a. - Phys.Lett., 1980, v.96B, p.31.
```

 Jänecke J., Rynon B.P. - Atomic Data and Nucl. Data Tables, 1976, v.17, N 5,6, p.467.

- 7. Гапонов D.B., Дитостанский D.C. ЭЧАЯ, 1961, т.12, с.1324; Письма в ЖЭТФ, 1972, т.I, с.173.
- Зарецкий Д.Ф., Сироткин В.К. Ядерная физика, 1977, т.26, с.1188.
- 9. Hauser W., Feshbach H. Phys.Rev., 1952, v.87, p.366.
- IO. Jonson B. e.a. Proc. 4 Intern. Conf. on Nucl. far from Stability (Denmark, Holsingor, 1981), CERN 81-09, p.265.

ОБ ЭФФЕКТАХ КОМПАУНДНЫХ И ПРЯМЫХ ПРОЦЕССОВ В УСРЕДНЕННЫХ СЕЧЕНИЯХ И ДЛИТЕЛЬНОСТЯХ ЯДЕРНЫХ РЕАКЦИЙ

В.С.Ольховский (ИЯИ АН УССР)

> Получены новые аналитические выражения для усредяённых элементов 5 -матрицы и сеченый ядерных реакций. Обсуждается возможность изучения компаундных и прямых процессов на основе данных по усреднённым сечениям и длительностям без использования оптической модели.

> The new analytical expressions for the averaged S-matrix and cross sections of nuclear reactions are obtained. The possibility of examining the compound and direct processes on the base of the data on the averaged cross sections and durations without the attraction of the optical model is discussed.

I. За последние 20 лет было предпринято много усилий по обоснованию и обобщению формули Хаузера-Фешбаха для сечений компаундных процессов (см., напр., обзоры /1,2/). В /3/ был поставлен вопрос о поиске такой унитарной параметризации *S* -матрицы, с помощью которой можно было бы получить аналитический вывод выражения для усреднённых сечений. В /4/ сделана первая попытка приблизиться к решению этой задачи исходя из выражения для *S* -матрицы в виде /5/:

$$\hat{S}^{(J\Pi)} = \hat{U}^{(J\Pi)} \bigcap_{\nu=1}^{\Lambda} \left(1 - \frac{i \int_{\nu}^{(J\Pi)} \hat{F}^{(J\Pi)}}{E - E_{\nu}^{(J\Pi)} + i \int_{\nu}^{(J\Pi)} 2} \right) \hat{U}^{(J\Pi)T}$$
(I)

где проекторы $P_{\mu}^{(3n)}$ и унитарная матрипа $U^{(3n)}$ практически не зависят от энергии E, Jи Π -квантовне числа спина и чётноста. В настоящем сообщении изложены первые аналитические результаты подхода к решению той же задачи на основе (I). Вначале отметим, что сопоставляя представление (I) с подходом Фешбаха (67 в области $\langle \Gamma^{(3n)} \rangle \ll D^{(3n)}$ -средние ширина и расстояние между $J\Pi$ -резонансами), можно показать: $(P_{\mu}^{(3n)})_{\kappa} = \chi_{\mu,i}^{(3n)} \chi_{D,\kappa}^{(2)} / \Gamma_{\mu}^{(3n)}$, где $\chi_{\mu,i}^{(3n)}$ -амплитуда парциальной ширины $\Gamma_{\mu,i}^{(3n)} = (\chi_{\mu,i}^{(3n)})_{\lambda}^{2}$ отвечающей iму каналу.

2. Усреднение элементов дессов Б^{((ЛП)} (Е) по интервалу энергий △, удовлетворяющему условию △≫ (ДП) Приводит в приближении симметричных и коммутирующих друг с другом проекторов В (ЛП) к следующим результа-

$$\mathsf{TBN:} \langle \hat{S}^{(tn)} \rangle = \hat{U}^{(tn)} \mathcal{C}^{(tn)} \mathcal{C}^{(tn)} \mathcal{C}^{(tn)} \hat{U}^{(tn)} \hat{U}^{(tn)}$$

$$(2)$$

где $\langle \hat{P}^{(jn)} | f^{(jn)} \rangle$ -усреднённая (в соответствии с процедурой, описанной в /7/) по всем резонансам в интервале Δ матрица $P_{\mu}^{(jn)} | f^{(jn)} | \mu$ при $y \equiv \pi \langle P^{(jn)} | f^{(jn)} \rangle / D^{(jn)} \ll 1$

$$\langle \mathcal{G}_{jl}^{(c(Jn))}(E) \rangle = \langle |\mathcal{G}_{jl}^{(Jn)}|^{2} \rangle - \langle \mathcal{G}_{jl}^{(Jn)} \rangle^{2} =$$

$$\xrightarrow{q \to 0} \frac{2\pi}{D^{(Jn)}} \sum_{\substack{K_{i}, K_{i}, K_{i}' \\ K_{i}, K_{i}, K_{i}'} U_{jK_{i}}^{(Jn)} U_{jK_{i}}^{(Jn)} - \langle U_{iK_{i}}^{(Jn)} \rangle^{(Jn)} U_{iK_{i}'}^{(Jn)} U_{iK_{i}'}^{(Jn)} + U_{iK_{i}'}^{(Jn)} U_{iK_{i}'}^{(Jn)} U_{iK_{i}'}^{(Jn)} + U_{iK_{i}''}^{(Jn)} + U_{iK_{i}''}^{(Jn)} + U_{iK_{i}''}^{(Jn)} + U_{iK_{i}''}^{(Jn)} + U_{iK_{$$

$$\prod_{ji} \prod_{ji} \hat{U}_{ji}^{(Jn)} = \delta_{ji} \exp(2i\eta_{j}^{(Jn)}), \eta_{j}^{(Jn)} = \operatorname{Re} \eta_{j}^{(Jn)}, (4)$$

когда нерезонансными неупругими столкновениями можно пренебречь, из (3) следует, что

$$\langle 6_{ji}^{c(JTI)} \rangle = \frac{2\pi}{D^{(JTI)}} \langle \Gamma_j^{(JTI)} \Gamma_i^{(JTI)} / \Gamma_i^{(JTI)} \rangle$$
(5)

что совпадает с формулой Хаузера-Фешбаха (Бете) с поправкой, учитывающей флуктуации парциальных пирми.

В приближения $\hat{\rho}^{(sn)} - \hat{\rho}^{(sn)} >$

$$\hat{P}_{\nu}^{(JII)} = \langle \mathcal{P}^{(JII)} \rangle \tag{6}$$

$$\langle G_{ji}^{c(Jn)} \rangle = |\alpha_{ji}^{(Jn)}|^{2} (1 - e^{-2\pi \langle \Gamma^{(Jn)} \rangle D^{(Jn)}}) \hat{\alpha}^{(Jn)} = \hat{U}^{(Jn)} \hat{U}^{(Jn)} \hat{U}^{(Jn)} \hat{T}^{(Jn)} \hat{U}^{(Jn)} \hat{U}^{(J$$

С учётом приближения (4) вырежение (7) приобретает форму (5), а при $\langle [m] \rangle / D^{(m)} \sim$ становится равным

$$\langle 6_{ji}^{c(Jn)} = | \alpha_{ji}^{(Jn)} |^2 = \langle f_j^{(Jn)} \rangle \langle f_i^{(Jn)} \rangle / \langle f^{(Jn)} \rangle^2$$
 (8)

т.е. заметно отличается от формулы Хаузера-Фешбака.

3. C YYETOM COOTHOMEHUM

$$< \mathcal{T}_{ji}^{c}(E, \mathcal{D}_{ji}) > = \overline{\lambda_{50}} < \mathcal{T}_{ji}^{c(30)}(E) > < \mathcal{G}_{ji}^{c(30)}(E, \mathcal{D}_{ji}) > / < \mathcal{G}_{ji}^{c}(E, \mathcal{D}_{ji}) > (9)$$

 $< \mathcal{T}_{ji}^{c}(E, \mathcal{D}_{ji}) > = \left[\mathcal{T}_{ji}^{d}(E, \mathcal{D}_{ji}) + \mathcal{G}_{ji}^{d}(E, \mathcal{D}_{ji}) + < \mathcal{T}_{ji}^{c}(E, \mathcal{D}_{ji}) > < \mathcal{G}_{ji}^{c}(E, \mathcal{D}_{ji}) \right] / < \mathcal{G}_{ji}^{c}(E, \mathcal{D}_{ji}) > (10)$
THE $< \mathcal{G}_{ji}(E, \mathcal{D}_{ji}) > = \mathcal{G}_{ji}^{d}(E, \mathcal{D}_{ji}) + < \mathcal{G}_{ji}^{c}(E, \mathcal{D}_{ji}) > \qquad \mathcal{G}_{ji}^{d}(E, \mathcal{D}_{ji}) = |< f_{ii}(E, \mathcal{D}_{ji}) > |^{2}$
 $f_{ji}^{c}(E, \mathcal{D}_{ji}) = \sum_{J \to 10} f_{ji}^{c}(E) g_{ji}^{c}(E, \mathcal{D}_{ji}), f_{ji}^{c}(E) = i \left[\mathcal{G}_{ji}^{c} - \int_{ji}^{c} (30) (E) \right]$

 $\langle \mathfrak{S}_{k}^{c}(E, \mathcal{Q}_{j_{i}}) \rangle = \sum_{J,II} \langle \mathfrak{S}_{j_{i}}^{c(JII)}(E, \mathfrak{Q}_{j_{i}}) \rangle = \sum_{J,II} \langle \mathfrak{S}_{J_{i}}^{c(JII)}(E, \mathfrak{S}_{j_{i}}) \rangle = \sum_{J,II} \langle \mathfrak{S}_{J_{i}}^{c(JII)}(E, \mathfrak{S}_{J_{i}}^{c(JII)}(E, \mathfrak{S}_{J_{i}}^{c(JII)}) \rangle = \sum_{J,II} \langle \mathfrak{S}_{J_{i}}^{c(JI$

Особенно просто обстоят дело в приближених одноканального расселния нейтронов в центральном потенциале (без учёта спинов), когда $\prod = (-1)^3 \quad Q_{ij}^{(JAII)} = \sqrt{2J+1} \quad Y_{ro}(B_{ij})$

$$\langle S_{ii}^{(JTI)} \rangle = \tilde{S}_{ii}^{(J)} \exp\left(-\pi \langle \Gamma^{(J)} \rangle / D^{(J)} \right), \quad \tilde{S}^{(J)} = \hat{U}^{(JTI)} \hat{U}^{(JTI)} + \left(\sum_{j=1}^{(JTI)} \sum_{j=1}^{(JTI)} \hat{U}^{(JTI)} \right)$$

и полное сечение

$$\langle \mathcal{G}_{ii}^{(JT)} \rangle = 2 \left[1 - \operatorname{Re} \widetilde{\mathcal{S}}_{ii}^{(J)} \exp\left(-\pi \langle \Gamma^{(J)} \rangle / \mathcal{D}^{(J)} \right) \right].$$

В случае вотройного рассеяния, когда доминирует вклад *S*-рассеяния, для практического определения зависимостей $Re \int_{ii}^{(0)} p_{i}(E) = p_{i}(E)$ от энергии достаточно ограничиться дамными по $\langle G_{ii}(E) \rangle$, аппрокоммируя $f_{i}(E)$ и $f_{2}(E)$ простейным функциями (скажем, полиномеми). В случае анцеотропного рассеяния можно воспользоваться данными по диференциальным сечением $G_{ii}(E, \partial_{ii}) > 0$ граничиваясь в последнем случае набором значений $\langle G_{ii}(E, \partial_{ii}) > 1.5$ случае анцеотропного рассеяния можно воспользоваться данными по диференциальным сечением $G_{ii}(E, \partial_{ii}) > 0$ граничиваясь в последнем случае набором значений $\langle G_{ii}(E, \partial_{ii}) > 1.5$ случае $(I, D_{ii}) = 0, 1, ..., J_{max}$ для каждого значения энергии E. При этом результати для $I_m \int_{ii}^{(J)} (J) (J) (J) = 0, 1, ..., J_{max}$ ная каждого значения энергии E. При этом результати для $I_m \int_{ii}^{(J)} (J) (J) = 0, 1, ..., J_{max}$ но величина $\langle G_{ii}(E, \partial_{ii}) >$ не меняется при одновре-

менном изменении знаков $I_m \int_{ii}^{i(J)} dля всех учитываемых значений <math>J$. Частично эта неоднозначность могла бы быть устранена при наличии данных по $\langle \tau_{ii} (\mathcal{E}, \vartheta_{ii}) \rangle$ путём использования соотношения (10).

Список литературы

- Mahaux C., Weidenmüller H.A.- Ann.Rev.Nucl.Part.Sci., 1979, v.29, n 1, p.1.
- 2. Brody T.A. et al.- Rev.Mod.Phys., 1981, v.53, n 3, p.440.
- 3. Moldauer P.A.- Phys.Rev., 1975, v.C11, n 2, p.426.
- 4. McVoy K.W., Mello P.A.- Nucl. Phys., 1979, v.A315, n 3, p.391.
- 5. Simonius M.- Nucl. Phys., 1974, v.A218, n 1, p.53.
- 6. Peshbach H.- Ann. Phys. (N.Y.), 1958, v.5, n 3, p.357.
- 7. Simonius M.- Phys.Lett., 1974, v.B52, n 3, p.279.
- 8. Olkhovsky V.S.- Phys.Lett., 1982, v.B116, n 5, p.305.
О СООТНОШЕНИИ КЛАССИЧЕСКОГО И КВАНТОВОГО ПОДХОДОВ ДЛЯ ОПИСАНИЯ УТЛОВЫХ РАСПРЕДЕЛЕНИЙ ПРОДУКТОВ КОМПАУНД-РЕАКЦИЙ

В.Ф.Заварзин, С.Ю.Кун

(MAIN AH YCCP)

Анализируется классический подход к онисанию угловых распределений продуктов компаундреакций. Сравнение с точными квантовыми выражениями показывает, что классический подход оказывается справедливым для широкого круга экспериментальных ситуаций.

The analysis of classical description of compound reaction angular distribution is given. The comparison with exact quantum mechanical expressions proves that the classical approach is valid for wide variety of experimental processes.

При исследовании испарительных процессов часто используется классическое рассмотрение /1-3/, которое дает наглядную физическую КАРТИНУ ПОСИСХОЖЛЕНИЯ ТАКИХ ЭФФЕКТОВ КАК УГЛОВАЯ АНИЗОТООПИЯ И УГловая корреляция продуктов распада компаунд-ядра и позволяет получить конечные аналитические выражения для этих величин. При этом вычисления оказываются существенно более простыми, чем при использовании квантового аппарата сложения угловых моментов. Используя классическое приближение удается определить зависимость угловой анизотропии, угловой корреляции частиц и т.д. от небольшого числа характерных параметров, которые являются простыми комбинациями входящих в задачу величин - углового момента ядра, орбитальных моментов испущенных частиц и т.д. В связи с этим представляет интерес анализ классического приближения, его сравнение с квантовым описанием угловых распределений продуктов компаунд-реакций, и, как результат, определение области применимости классического приближения. Эта задача была частично решена в работе /3/, где был установлен критерий применимости классического приближения для углового распределения испаряжнихся из ядра частиц при фиксированных значениях орбитального момента ? и энергии Е испущенной частицы. Как было показано в /37, этот критерий имеет вид

$$\Delta J\ell \leq 1$$
. (I)

В настоящей работе проведено сравнение классического и квантового описания углового распределения испущенных компаунд-ядром частиц как при фиксированных значениях ℓ и \mathcal{E} , так и для величин, усредненных по ℓ и \mathcal{E} .

При отсутствии интерференции различных парциальных волн квантовое угловое распределение частиц имеет вид /2,47

$$W_{\mathbf{J},\boldsymbol{\ell}}^{\mathbf{KB.}}(\boldsymbol{v}) \sim \sum_{j=|\mathbf{J}-\boldsymbol{\ell}|}^{\mathbf{J}+\boldsymbol{\ell}} \sum_{m=-\boldsymbol{\ell}}^{\boldsymbol{\ell}} |Y_{\boldsymbol{\ell}m}(\boldsymbol{v})|^2 |C_{\boldsymbol{\ell}mj\boldsymbol{G}}^{\mathbf{J}M}|^2 P_{\boldsymbol{\ell}}(\mathbf{E}-\mathbf{Q}-\boldsymbol{\epsilon},\boldsymbol{j}), \qquad (2)$$

где $Y_{\ell m}(\mathfrak{O})$ — сферическая функция (\mathfrak{O} — угол между направлением вылета частицы и осью квантования), $C_{\ell m j \epsilon}^{J M}$ — коеффициенть Клебша-Жордана; J, ℓ в j — соответственно угловой момент начального ядра, орбитальный момент испущенной частицы и момент остаточного ядра; M, m и G — их проекции на осъ квантования,

 $f_{f}(E-Q-E,j)$ - плотность уровней остаточного ядра. Классический аналог выражения (2) есть [2]

$$W_{\mathbf{J},\boldsymbol{\ell}}^{\mathsf{K}\Lambda}(\vec{n}) \sim \int d\vec{j} \int d\Omega_{\vec{\ell}} \int d\Omega_{\vec{J}} \mathcal{F}_{\mathbf{f}}(\mathsf{E}-Q-\varepsilon,\vec{j}) \times (3)$$

$$\times \delta(\vec{n}\cdot\vec{\ell}) \delta(\mathsf{J}\cos\vartheta_{\mathbf{J}}-\mathsf{M}) \cdot \delta^{3}(\vec{\mathbf{J}}-\vec{\ell}-\vec{j}).$$

Здесь трехмерная δ^3 -функция учитывает закон сохранения углового момента, функция $\delta(\vec{n}\cdot\vec{\ell})$ учитывает то обстоятельстве, что орбитальный момент $\vec{\ell}$ испущенной частицы перпендакулярен направлению \vec{n} ее движения, а функция $\delta(\mathbf{j}_{COS}\cdot\vec{v}_{J}-\mathbf{M})$ фиксирует проекцию \mathbf{M} углового момента \vec{J} начального ядра на ось квантования. Как видно из сравнения (2) и (3), классическое приближение основано на двух основных предположениях: 1) угловые моменты компаунд-ядра и испущенных частиц рассматриваются как классические векторы и вместо квантового аппарата сложения моментов используется простое классическое правило сложения векторов; 2) предполагается классическая связь орбитального момента испущенной частицы с направлением ее движения. Для плотности уровней ρ_f воспользуемоя стандартным выражением модели ферми-газа /5/

$$P_{f}(E-Q-E,j) = P_{0} e \times P(-\frac{E}{t})(2j+1) e \times P[-dj(j+1)],$$
⁽⁴⁾

где

$$\boldsymbol{\lambda} = \frac{\hbar^2}{2} \mathcal{F} t, \qquad (5)$$

 $\exists u t$ - момент инерции и температура остаточного ядра. Используя (4), выражения (2) и (3) для $W_{J,\ell}^{\kappa_0}(v)$ и $W_{J,\ell}^{\kappa_0}(v)$ можно преобразовать к удобному для анализа виду

$$W_{\mathbf{J},\ell}^{\mathsf{KB.}}(v) \sim \sum_{m=-\ell}^{\ell} |Y_{\ell m}(v)|^2 \langle \ell, -m|\langle \mathbf{J}M| \cdot e^{-2d\hat{\mathcal{J}}\hat{\ell}} |\mathbf{J}M\rangle |\ell, -m\rangle \tag{6}$$

$$W_{J,\ell}^{K\Lambda} (v) \sim \int dm \left(\ell^{2} \sin^{2} v - m^{2} \right) e^{2dMm} I_{0} \left(2d \sqrt{(J^{2} - M^{2})(\ell^{2} - m^{2})} \right).$$
(7)

Здесь $|lm\rangle$ и $|JM\rangle$ - собственные функции операторов l, l_2 и J, J_2 , I - модифицированная функция Бесселя. Как видно из (6) и (7), при переходе от квантового описания к классическому квадрат модуля сферической функции |Yem (v) 2 заменяется его квазиклассическим приближением, а, входящий в (6), матричный элемент заменяется его классическим аналогом. Последний получается путем интегрирования экспоненти $e \times \rho(2 d \vec{j} \cdot \vec{\ell})$ по всем возможным ориентациям векторов 7 и £ при фиксированных значениях их проекций М и т на осъ квантования. Непосредственным сравнением первых членов разложения выражений (6) и (7) по параметру J / можно убедиться, что классическое приближение справедливо при выполнении условия (I). Как было показано в [37, критерий (I) представляет собой условие хорошего "размешивания" различных квантовых состояний. При этом точность классического приближения тем выше, чем больше величина орбитального момента в испущенной частицы и, чем больше величина 1/2 л, которая, как видно из (?), является дисперсией распределения по проекциям *m* различных квантовых состояний.

проекциям m различных квантовых состоянии. Представляет интерес сравнение $W_{J,\ell}^{KB}$ и $W_{J,\ell}$ при значениях $\mathcal{A}J\ell > 1$. На рис. I представлена угловая анизотроция

 $W_{J,\ell}(0)/W_{J,\ell}(J_2)$ в зависимости от параметра $dJ\ell$. Расчет выполнен M = 0, т.е. когда угловой момент начального ядра изотропно распределен в плоскости, перпендикулярной начальному пучку падающих частиц. В классическом приближении угловая анизотропия имеет вид

$$W_{\mathbf{J},\boldsymbol{\ell}}^{\mathbf{K}\mathbf{A}.}(0) / W_{\mathbf{J},\boldsymbol{\ell}}^{\mathbf{K}\mathbf{A}.}(\mathbf{J}_{\mathbf{J},2}) = \frac{\prod_{o} (2d \mathbf{J}\boldsymbol{\ell})}{\prod_{o}^{2} (d \mathbf{J}\boldsymbol{\ell})}.$$
(8)

Квантовая угловая анизотропия вычислялась с помощью выражений (2), (4).

Рис. І. Угловая анизотропия $W_{J,\ell}(0)/W_{J,\ell}(\pi/2)$ нак функция параметра $J\ell$. Сплошная линия - классический расчет [ом. (8)]. Штриховые линии I, 2, 3 - квантовый расчет [см. (2)] соответственно при $\ell = I$, 3, 5.

Как видно из рис. I, классическое приближение применимо даже при значениях параметра $\angle J\ell$ в несколько единиц, если $\ell \gg 1$. То есть условие (I) справедливости классического приближения является достаточным, однако не является необходимым. Из сравнения расчетов $\bigvee^{K_B} H \bigvee^{K_A}$ следует, что классическое приближение с хорошей точностью справедлию также при условиях

 $2 \not a J \leq 1$, $\ell >> 1$. (9) Условие (I) является более сильным, чем условия (9). Так, при вынолнении (I) имеет место хорошее согласие $W^{KB}_{\mu}W^{KA}$ даже при $\ell=1$.

Рассмотрим теперь классическое и квантовое распределение, усредненные по величине орбитального момента и энергетическому спектру испущенных частиц. Используя (2) - (4), получаем после усреднения по ℓ и \mathcal{E}

$$W_{J}^{KB}(v) \sim \sum_{\ell=0}^{\infty} \sum_{j,m} e^{\frac{\pi}{X} \ell (\ell+1)} (2j+1) e^{-d j (j+1)} |Y_{\ell m}(v)|^{2} |C_{\ell m j-m}^{J0}|^{2} (10)} W_{J}^{KA}(v) \sim e_{X} \rho \left(-\frac{1}{2} d J^{2} \frac{X}{1+X}\right) \int_{0} \left(\frac{1}{2} d J^{2} \frac{X}{1+X}\right), \qquad (11)$$

$$254$$

$$X = \frac{M R^2}{4},$$

и R - приведенная масса испущенной частицы и раднус взаимодействия испущенной частипы и остаточного ядра.

Рис. 2. Угловая анизотропия в зависимости от параметра $\int J^2 \frac{X}{1+X}$. Сплошная линия - классический расчет, штриховые линии I,2,3 - квантовый pacter coordercreento nos x = 0, I. 0.2. 0.5.

Угловая анизотропия W₁(0)/W(4) для усредненных по в к Е распределений W. К.В. (10) и WT (II) представлена на рис. 2. Видно, что КВАНТОВЫЯ И КЛАССИЧЕСКИЙ DECTETH XODOBO COLTRACYDTOR в достаточно нарокой области изменения характерного пареметра $\mathcal{L}J^2 \frac{X}{f+X}$. Corласие тем дучие, чем сольше средний квадрат орбитального момента /2 исцуненной час-THERE $(\overline{\ell}^2 = X_{\ell})$, ROTOPHE XAрактеризует эффективную нирану интервала усреднения nol.

(12)

Таким образом, условия CIDABELLEBOOTH KARCCHVEOROFO приближения для усредненного пов и Е углового распреде-

ления совпадают с условиями (9) при замене $f \to f^2$. Иопользун реальные значения &, нетрудно убедиться, что хорошее согласие клас-CARECKOLO & REGHTOBOLO OUNCEHER MMCCT MCCTO UDE SERVEHERT VIGOBOLO момента Ј начального ядра вплоть до нескольких деоятков единиц, т.е. охватывает весьма широкий круг экопериментальных онтуаций.

Список литературы

I. Струтинский В.М. - В кн.: Ядерные реакции при малых и средних энергиях. М., Изд-во АН СССР, 1958, с.522.

- 2. Ericson T., Strutinsky V. Mucl. Phys., 1958, V.8, p.284. 3. CTPYTHICKAM B.M. AQ, 1965, T.I, BMH.4, C.588. 4. Douglas A.C., Macdonald N. Mucl. Phys., 1959, v.13, p.382. 5. Ericson T. Adv. of Phys., 1960, v.8, p.425.

ВЛИЯНИЕ ВРАЩЕНИЯ ЯДРА НА ИСПАРИТЕЛЬНЫЙ СПЕКТР ЛЕГКИХ ЧАСТИЦ

В.Ф.Заварзин, С.Ю.Кун

(ИЯИ АН УССР)

Анализируется влияние вращения ядра на испарительный спектр легких частиц. Показано, что форма испарительного спектра существенно зависит от величины углового момента распадающегося адра. Полученные результать используются при анализе данных из реакции ^{ми}se(⁴⁰Ar, d).

The influence of the nuclear rotation on the light particles evaporation spectrum is analyzed. It is shown that the spectrum form depends strongly upon the angular momentum of a nucleus under decay. The results are used for the analysis data from reaction $^{mat}Se(4^{0}Ar, d)$.

Известно, что энергетический спектр частиц, испаряющихся из ядра с нулевым моментом, дается выражением /1/

$$G(\varepsilon) \sim \begin{cases} 0, & \varepsilon < B \\ (\varepsilon - B) \, exp[-(\varepsilon - B)/t], & \varepsilon > B. \end{cases}$$
(I)

Здесь \mathcal{E} - энергия испаряющихся частиц, B - кулоновский барьер, a tтемпература остаточного ядра. Из (I) для средней энергии $\overline{\mathcal{E}}$ следует $\overline{\mathcal{E}} = B + 2t$. (2)

В случае, когда начальное ядро имеет момент, вид спектра видоизменяется. В частности, средняя энергия увеличивается [2,3] на величину порядка

$$\delta \varepsilon \sim \left(\frac{\mu R}{2}\right) E_{BP.}, \qquad (3)$$

где μ - масса испаряющейся частици, R - радиус остаточного ядра, 4 - момент инерции остаточного ядра, а E_{BP} вращательная энергия начального ядра. Представляет интерес рассмотреть другие характеристики энергетического спектра частиц, испаряющихся из ядра с большим угловым моментом.

Для исследования энергетического спектра частиц, испарающихся из ядра с угловым моментом I и энергией возбуждения Е, используем принцип детального баланса /2/. В результате вероятность испарения частицы с энергией \mathcal{E} в направлении \vec{n} и унссящей орбитальный

момент $\vec{\ell}$ равна

$$W(\varepsilon,\vec{n},\vec{\ell};E,\vec{I}) \sim \frac{1}{\Gamma(E,I)} \frac{\mathcal{P}_{+}(E-\varepsilon-Q,\vec{I}-\vec{\ell})}{\mathcal{P}_{i}(E,\vec{I})} \cdot \delta(\vec{n}\cdot\vec{\ell}) T_{e}(\varepsilon).$$
(4)

Здесь $\Gamma(E, I)$ – полная ширина распада начального ядра, P_i и P_f – плотности уровней начального и конечного компаунд-ядер, $T_\ell(E)$ – коэффициенти проницаемости для обратного процесса, а δ -функция $\delta(\vec{n}\ell)$ выражает тот факт, что орбитальный момент ℓ перпендикулярен к направлению движения \vec{n} . Поскольку, чаще всего, основной вклад в полную ширину даки нейтронный и протонный каналы, то зависимость полной ширины от момента слабая (47 и мы будем ею пренебрегать.

Для плотности уровней используем ферми-газовую зависимость от момента и энергии [5]

$$P(E,\vec{I}) = P_0 e \times P(-\alpha I^2), \qquad (5)$$

где

$$P_{o} = e \times P[S(E)].$$
 (6)

Здесь \measuredangle - параметр спиновой зависимости плотности уровней $\measuredangle = \frac{\hbar^2}{2} \frac{1}{2} t$, (7)

а S(E) - энтропия. Для коэффициентов проницаемости Т_e (E) используем приближение резкой ступеньки

$$T_{\ell}(\varepsilon) = \theta(\varepsilon - B - \frac{\ell^2}{\ell^2}t), \qquad (8)$$

где $\theta(x)$ - тэта-функция, а средний квадрат орбитального момента определяется как [2]

$$\overline{\ell^2} = 2/\mu R^2 t/\hbar^2.$$
 (9)

В результате (4) принимает вид

$$\begin{split} & \forall (\varepsilon, \vec{\ell}, \vec{n}; E, \vec{I}) \sim e^{x} p[-(\varepsilon \cdot B')/t] e^{x} p(-d\ell^{2} + 2d\vec{\ell}\vec{I}) \times \\ & \times \delta(\vec{n} \cdot \vec{\ell}) \theta(\varepsilon - B - \frac{\ell^{2}}{\ell^{2}}t). \end{split}$$
(10)

Интегрирование (10) по $\vec{\ell}$ дает

$$\begin{split} & \forall (\varepsilon, \vec{n}, \vec{I}) = \int d\vec{\ell} \ \forall (\varepsilon, \vec{n}, \vec{\ell}; E, \vec{I}) \sim \\ & \sim e \times p \left[-(\varepsilon - B)/t \right] \cdot \int_{0}^{(\varepsilon - B)\vec{\ell}^{2}/4} d(\ell^{2}) e \times p(-d\ell^{2}) I_{o}(2d\ell I \sin \ell), \end{split}$$
(II)

где Ψ - угол между \vec{n} и \vec{l} , а $I_0(x)$ - модифицированная функция Бесселя. При $\ell <<$ I имеем

$$W(\varepsilon,\vec{n},\vec{I}) \sim (\varepsilon - B) e \times p[-(\varepsilon - B)/t], \qquad (12)$$

С увеличением энергии & подинтегральная функция в (II) начинает убивать, и интеграл перестает зависеть от верхнего предела. Тогда жесткая часть спектра имеет вид

$$W(\varepsilon,\vec{n},\vec{l}) \sim e \times \rho[-(\varepsilon - B)/t]$$
⁽¹³⁾

Таким образом, изучение лесткого хвоста испарительного спектра дает возмолность определять усредненную температуру остаточного ядра.

Рассмотрим среднее эначение $\overline{\mathcal{E}}$ и среднеквадратичную флуктуацию $\overline{\mathcal{E}^2} - \overline{\mathcal{E}}^2$ энергии. Используя (II), можно получить

$$\overline{E}(\Psi) = B + t + t (1 + d \overline{\ell^2})^{-1} + t d^2 \overline{\ell^2} I^2 \sin^2 \Psi (1 + d \overline{\ell^2})^{-2}$$
(I4)

$$\overline{\mathcal{E}^{2}(\Psi)} - \overline{\mathcal{E}(\Psi)}^{2} = t^{2} + t^{2} (1 + \lambda \ell^{2})^{-2} + 2t^{2} \lambda^{2} \ell^{2} l^{2} \sin^{2} \Psi (1 + \lambda \ell^{2})^{-3} (15)$$

Видим, что вращение распадающегося ядра приводит не только к увеличению средней энергии, но и к увеличению среднеквадратичной флуктуации. Усредняя (I4) к (I5) по всем возможным ориентациям \vec{I} в плоскости, перпендикулярной пучку, а также по абсолютной величине I и учитивая, что $d e^{\vec{z}} \ll 1$, имеем

$$\overline{\mathcal{E}(\vartheta)} = B + 2t + t d^2 \ell^2 \overline{I^2} \left(1 - \frac{1}{2} \sin^2 \vartheta \right), \tag{16}$$

$$\overline{\mathcal{E}^{2}(\vartheta)} - \overline{\mathcal{E}(\vartheta)}^{2} = 2t^{2} + 2t^{2} \varkappa^{2} \overline{\ell^{2}} I^{2} (1 - \frac{1}{2} \sin^{2} \vartheta), \qquad (17)$$

...де 19 - угол между направлениями вылетевшей частицы и падающего пучка, а I^2 - средний квадрат момента распадающегося ядра. Видно, что среднеквадратичная флуктуация максимальна при $\mathcal{V} = 0, \mathcal{J}$ и минимальна при $\mathcal{V} = \mathcal{J}/2$.

В работе (6) содержатся данные по энергетическим спектрам и угловым распределениям из реакции $^{nat}Se(^{40}A_{7,a})$ при $E_{I_1,M_2}=I32$ МэВ. Измерения проводились при углах рассеяния 34, 54 и 91° в системе центра масс. Среднеквалратичные флуктуации энергий соответственно равны I2, I0,2 и 8,6 МэВ². Используя эначения среднеквадратичных флуктуаций, например, при $0^{\circ} = 34$ и 91° из (I7) можно одределить температуру остаточного ддра и величину параметра $d^{2} e^{2} I^{2}$. Имеем t = I,35 МэВ и $d^{2} e^{2} I^{2} = 2,6$. Подстановка этих значений для $0^{\circ} =$ = 54⁰ в правую часть (17) дает 10 МэВ², что хорошо согласуется с экспериментальной величиной.

В работе [6] в рамках оптической модели определен средний квадрат углового момента во входном канале. Получено $I^2 = 5500 \text{ h}^2$. Зная значение 12 и температуру остаточного ядра, можно определить момент инерции остаточного ядра 4. Вычисление дает 4= 1,45 4 тв. т. где 4 тв.т. - твердотельный момент инерции сферического ядра. Увеличенное, по сравнению с ${\mathcal F}_{{\rm TB},{\rm T}}$, значение момента инерции указывает на отклонение от сферической формы, а именно на "сплюснутость" остаточного ядра в направлении оси вращения. Последнее обстоятельство связано с большими угловыми моментами $I \simeq 50 - 100 \, \hbar$ остаточных ядер [7.8].

CHECOK JETCDATYDH

- Вайскопф В. Статистическая теория ядерных реакций. М., Изд-во Иностранной литератури, 1952, 94 с.
 Струтинский В.М. Доклад на Всесокозной конференции "Ядерные реак-ций при малых и средних знергиях", М., 1957 (Труды конференции, Изд-во АН СССР, 1958, с.522).

- в. Блісвоп Т. Аду. Ррув., 1960, v.9, p.425.
 в. Блісвоп Т., Strutinsky V. Цисі. Ррув., 1958, v.8, p.284.
 Ландау Л. и Смородинский Я. Лекции по теории атомного ядра. М., Гос. изд-во технико-теоретической литератури, 1955, Тос. изд-во технико-теоретической литератури, 1955, I40 c.
- 6. Galin J. et al. Phys. Rev., 1974, v.C9, p.1113. 7. Andersson G., Larsson S.E. et al. Nucl. Phys., 1976, v.A268, p.205.
- 8. Neergard K., Pashkevich V.V., Frauerdorf S. Nucl. Phys., 1976, v.A262, p.61.

УТЛОВЫЕ КОРРЕЛЯЦИИ ПРОДУКТОВ РАСПАДА КОМПАУНД-ЯДРА С БОЛНИИМ УТЛОВЫМ МОМЕНТОМ

В.Ф.Заварзин, С.Ю.Кун

(ИЯНИ АН УССР)

Получены аналитические выражения для статистической угловой корреляции частиц, испущенных компаунд-ядром с большим моментом, и корреляции частица-осколок деления. Получено хорошее согласие с экспериментальными данными для 2 «-корреляций в реакциях ¹⁶⁰ + ²⁷Al, ⁴⁰Ca, ⁵⁸Ni.

The analytical expressions for particle-fission fragment correlation and for statistical angular correlation of particles emitted from compound nucleus with high angular momentum are derived. The results are in good agreement with experimental data for dd-correlation in reactions 160 + 27Al, 40Ca, 58 Ni.

Классический подход /1,27 к описанию угловых распределений продуйтов компаунд-реакций позволяет достаточно просто рассмотреть задачу о статистических угловых корреляциях. Впервые такая задача на основе классического приближения была рассмотрена в работе /3/. Однако, в этой работе были сделаны приближения, связанные с малостью характерных параметров задачи. Возможны ситуации, когда такие приближения неприменимы, как это имеет место в реакциях с тяжелыми ионами. Этот случай наиболее интересен, т.к. при распаде составного ядра с большим угловым моментом (несколько десятков единиц) угловая корреляция частиц достигает значительной величины.

Угловая корреляция двух бесспиновых частиц, испущенных компаунд-ядром в направлениях $\vec{n_1}$ и $\vec{n_2}$ имест вид (3)

$$\begin{split} & \mathcal{W}(\vec{n}_{1},\vec{n}_{2}) = \int_{O}^{O} dJ G_{c}^{J} \frac{1}{2\pi} \int_{O}^{2\pi} d\varphi_{J} \frac{d\Gamma_{1}(E,\vec{J},\mathcal{E}_{1},\vec{\ell}_{1},\vec{n}_{1})}{\Gamma_{1}^{tot}(E,J)} \times \\ & \times \frac{d\Gamma_{2}(E-Q_{1}-\mathcal{E}_{1},\vec{J}-\vec{\ell}_{1},\mathcal{E}_{2},\vec{\ell}_{2},\vec{n}_{2})}{\Gamma_{2}^{tot}(E-Q_{1}-\mathcal{E}_{1},|\vec{J}-\vec{\ell}_{1}|)} , \end{split}$$
(I)

где G_c^J - сечение образования составного ядра с угловым моментом J,

 φ_{J} - азимутальный угол, определяющий ориентацию J. Система координат выбрана так, что ось Z совпадает с направлением начального пучка. $d\Gamma_{4}(E, \vec{J}, E_{1}, \vec{R_{1}}, \vec{n_{1}})$ - парциальная ширина испускания начальным ядром с энергией E и угловым моментом \vec{J} первой частицы с орбитальным моментом, $\vec{\ell}_{4}$ и энергией \mathcal{E}_{4} в направлении $\vec{n_{1}} \cdot d\Gamma_{2}$ - аналогичная величина для испускания второй частицы промежуточным ядром. Для $d\Gamma(E, \vec{J}, \varepsilon, \vec{\ell}, \vec{n})$ имеем

$$d\Gamma(\mathsf{E},\vec{\mathsf{J}},\varepsilon,\vec{\ell},\vec{n}) = \frac{\beta_{\ell}(\mathsf{E}-\mathsf{Q}-\varepsilon,\vec{\mathsf{J}}-\vec{\ell})}{\beta_{\ell}(\mathsf{E},\vec{\mathsf{J}})} \cdot \frac{m\varepsilon}{(\pi\hbar)^2} \cdot G_{\mathfrak{f}i} d\vec{\ell} d\varepsilon.$$
⁽²⁾

Для сечения обратного процесса G_{fi}воспользуемся квазиклассическим выражением [1,2]

$$G_{\mathfrak{f}\mathfrak{l}} = \frac{\lambda^2}{4\pi} T_{\mathfrak{e}}(\mathfrak{E}) \cdot \delta(\vec{\mathfrak{n}} \cdot \vec{\ell}). \tag{3}$$

Для коэффициентов проницаемости $\mathcal{T}_{\mathcal{C}}(\mathcal{E})$ в дальнейшем будем использовать приближение резкой ступеньки.

Для плотности уровней возьмем стандартное выражение модели ферми-газа (см., например, [4])

$$P(E^*) = \text{const}(aE^*)^{-\frac{7}{4}} exp(2\sqrt{aE^*}), E^* = E - \frac{\pi^2 J_2^2}{2}$$
 (4)

Подчеркнем следующее важное обстоятвльство. Для интересующей нас плотности уровней P_{\pm} остаточного ядра выражение (4) с хорошей точностью можно аппроксимировать выражением ____

 $P_4(E_f^*) = P_4(E_f^*) - e \times P[(E_f^* - E_f^*)/t_f]$ (5) даже при достаточно больших можнатах **I**. В этом можно убедиться непосредственным расчетом заселенности состояний с данными значениями энергии и углового_момента остаточных ядер после испускания одной и двух частиц. E_f^* и E_f^* - внутренняя энергия возбуждения ядра и ее среднее значение. Температура t_f остаточного ядра определена уравнением состояния

$$a_{f} = a_{f} t_{f}^{2}$$
(6)

Использование плотности уровней (5) позволяет получить результат, справедливый при больших (несколько десятков единиц) угловых моментах J.

При расчете угловой корреляции $W(\vec{n_1},\vec{n_2})(I)$ возьмем $\int_{2}^{1 \text{ tot}} (E - Q_1 - \varepsilon_1, |\vec{J} - \vec{\ell_1}|)$ при значениях $\varepsilon_1 = \vec{\varepsilon}, u \quad (\vec{J} - \vec{\ell_1})^2 = (\vec{J} - \vec{\ell_1})^2$. В этом случае интегрирование по $\varepsilon_1, \varepsilon_2, \vec{\ell_1}, \vec{\ell_2}$ и φ_J в выражении (I) удается выполнить точно. Конечный результат для $W(\vec{n_1}, \vec{n_2})$

26I

RMOOT BEI

$$W(\vec{n}_{1},\vec{n}_{2}) = \int_{a}^{J_{m}} dJ \cdot J \, w_{1} \cdot w_{2} \cdot t^{2} \cdot \vec{\ell_{1}}^{2} \cdot \vec{\ell_{2}}^{2} \, W_{J}(\vec{n}_{1},\vec{n}_{2}), \qquad (7)$$

где \vec{J}_m - краевой момент реакция, w_1 и w_2 - средние вероятности нопускания первой и второй частиц, t - температура ядра после испускания двух частиц, $\vec{\ell}_1^2$, $\vec{\ell}_2^2$ - средние квадрати моментов первой и второй частиц. Функция угловой корреляции W_J (\vec{n}_1, \vec{n}_2) имеет вид

$$W_{J}(\vec{n}_{1},\vec{n}_{2}) = P_{0}^{-\gamma_{2}} exp(-dJ^{2}P_{1}P_{0}^{-\gamma}) I_{0}(dJ^{2}P_{2}P_{0}^{-\gamma})^{2}$$
(8)

где $a = \hbar^2/2Jt$, J = момент инерации ядра после испускания днух частиц. Для P_0 , P_1 и P_2 имеем

$$\mathcal{D}_{\mathbf{q}} = \beta - \chi (\vec{n}_1 \cdot \vec{n}_2)^2 \tag{9}$$

$$P_1 = \frac{1}{2} \left[\chi \sin^2 \vartheta_1 + \lambda \sin^2 \vartheta_2 + \omega (\vec{n}_1 \cdot \vec{n}_2) \sin \vartheta_1 \cdot \sin \vartheta_2 \cos(\vartheta_1 - \vartheta_2) \right]^{(10)}$$

$$P_{2} = \frac{1}{2} \left[\gamma^{2} \sin^{4} \vartheta_{1} + \lambda^{2} \sin^{4} \vartheta_{2} + \omega^{2} \sin^{2} \vartheta_{1} \sin^{2} \vartheta_{2} (\vec{n_{1}} \cdot \vec{n_{2}})^{2} + \right]$$
(II)

+ 2
$$\lambda$$
 sin² ϑ_1 sin² ϑ_2 cos(2($\psi_1 - \psi_2$)) + 2 χ w sin³ ϑ_1 sin $\vartheta_2(\vec{n}_1, \vec{n}_2)$
 x cos($\psi_1 - \psi_2$) + 2 λ w sin³ ϑ_2 · sin $\vartheta_3(\vec{n}_1, \vec{n}_2)$ cos($\psi_1 - \psi_2$)]^{1/2}

 $\mathcal{V}_4, \mathcal{Y}_4$ и $\mathcal{V}_2, \mathcal{Y}_2$ - полярный и азимутальный углы векторов h_4 и $\overline{h_2}$. Коэффициенты β, \ldots, ω определены выражениями

 $\beta = (1 + X_{4})(1 + X_{2}), \quad \forall = X_{1}, X_{2}, \quad \downarrow = \frac{X_{1}(1 + X_{1})}{1 + X_{1} + X_{2}}, \quad \lambda = \frac{X_{2}(1 + X_{2})}{1 + X_{1} + X_{2}}, \quad \omega = 2 \frac{X_{1}, X_{2}}{1 + X_{1} + X_{2}}$ I'THE $X_{1} = \mu_{1} R_{1}^{2} / \frac{1}{2}$, $X_{2} = \mu_{2} R_{2}^{2} / \frac{1}{2}$, $\mu_{4} = \mu_{4} R_{1} - \mu_{1}$ Приведенная масса и радкус взаимодействия первой частицы и остаточного ядра, μ_{2} и R_{2} - аналогичные величины для второй частицы.

В работе (5/ измерялись угловые корреляции в реакциях ${}^{27}\mathcal{H}({}^{40},dd)$ при $E_{\rm ла0}$ =50,60 МэВ, а также ${}^{40}C\alpha$ (60 , dd) и ${}^{58}Ni$ (60 , dd) при $E_{\rm ла0}$ =70 МэВ. d-частицы регистрировались при $U_i = U_2 = \pi/2$, а $\Psi_i - \Psi_2$ изменялась от π до $\pi/2$. Экспериментальные данные и теоретические кривне приведены на рисунке.При этом значения краевых моментов I_m выокрались из систематики в работе (6/ и равнялись 23,26,27 и 32 в единицах \hbar соответственно.Наколее удачное согласие с экспериментом удается получить при следущих значениях моментов инерции остаточных ядер: ${}^{27}\mathcal{J}_{76} = 0.7, 0.7, 0.9, 0.9$ соответственно. Здесь ${}^{27}\mathcal{H}_{76} -$ твердотельные моменты инерции сферических остаточных ядер. Оссобого внимания заслухивает реакция ${}^{27}A\ell$ (${}^{16}0, dd$) при $E_{\rm ла0} = 50$ МэВ, т.к. угловая

Угловне корреляции в реакциях ⁴⁰Са(160, $\alpha\alpha$), $E_{лаб.} = 70$ MaB; $58_{N1}(160, \alpha\alpha)$, $E_{лаб.} = 70$ MaB; $27A1(160, \alpha\alpha)$, $E_{лаб.} = 50,60$ MaB - а,...d - соответственно. Кружки - экспериментальные точки, сплошные линии - теоретический расчет

корреляция в этом случае не зависит от краевого момента реакции

J.... Это объясняется тем, что начальные угловые моменты, близкие к Т., дают очень малый вклад в сечение процесса. В данной реакции при моментах J~ Jm процесс испускания двух d -частиц идет очень близко к ираст-линии и, поэтому, маловероятен. Таким образом, угловая корреляция в этой реакции определяется лишь моментом инерции остаточного ядра после испускания двух & -частиц.

Задача об угловой корреляции испущенной из компаунд-ядра частицы и осколка деления дочернего ядра формально эквивалентна задаче об угловой корреляции двух частиц. Предполагая, что распределение по проекции К углового момента $\overline{I} = \overline{J} - \overline{\ell}$ (J - момент начального ядра, (- орбитальный момент испущенной частицы) на ось симметрии ядра в седловой точке имеет вид [7]

 $P(K) \sim e \times P(-K^2/2K_o^2)$ (IЗ получим для корреляционной функции $W_J(\vec{n}, \vec{h_f})$ частицы к осколка (I3)деления выражения, совпадающие с (8)-(II). При этом следует заменить $\vec{n}_1 \rightarrow \vec{n}$ (направление вылета частицы), $\vec{n}_2 \rightarrow \vec{n}_f$ (направление разлета осколков деления). Коэффициенты В , ... , W имеют вид

$$P = (1+X_{\perp})(1+X_{\perp}+X_{eff}), \quad \chi = X_{eff}(1+X_{\perp}), \qquad (14)$$

$$\chi = d_{\perp}X_{\perp}(1+X_{\perp}+X_{eff}), \quad \chi = d_{eff}, \quad \omega = 2d_{\perp}X_{eff}, \qquad (14)$$

гле

$$X_{1} = \frac{\hbar^{2}}{2} J_{1} t$$
, $d_{eff} = \frac{\hbar^{2}}{2} J_{eff} t$, $X_{1} = \frac{\mu R^{2}}{J_{1}}, X_{eff} = \frac{\mu R^{2}}{M} J_{eff}$

 \mathcal{F}_{11} эффективный момент инерции ядра на барьере деления, \mathcal{F}_{1} компонента момента инерции относительно оси, перпендикулярной оси симметрии ядра на барьере деления.

Список литературы

- Струтинский В.М. В кн.: Адерные реакции при малых и средних энергиях. М., Изд-во АН СССР, 1958, с.522.
 Егісвоп Т., Strutinsky V. Nucl.Phys., 1958, v.8, p.284.
 Струтинский В.М. ЕЭТФ, 1961, т.40, вып.6, с.1794.
 Бор О., Мотельсон Б. Структура атомного ядра, М., Мир, 1971, т.I. с.287.
 Таі Киалд-неі е.а. Nucl.Phys., 1979, v.4316, p.189.
 Schröder W.V., Huizenga J.R. Алл. Кеч.Nucl.Sci.,1977, v.27, p.465.
 Струтинский В.М. ЯФ, 1965, т.І, вып. 4, с.588.

G. Reffo

ENEA, CRE "E. Clementel", Bologna, Italy

The principle of conservation of total angular momentum has been introduced into the unified model for equilibrium and preequilibrium emissions. The model has been used to analyse angular distributions and emission spectra in typical reactions of interest in fusion technology.

Рассмотрим уравнения сообщенной экситонной модели С учетом законов сохранения углового момента для равновесного и предравновесного испускания частиц. Данная модель использована для анализа угловых распределений и спектров эмиссии частиц из ядер, относящихся к конструкционным элементам термоядерных установок.

Carerul studies of the neutron induced reactions at 14-15 MeV on structural material are requested as a part of fusion neutronic. Model calculations on 56 Fe performed in this contest are presented illustrating the role of equilibrium and preequilibrium emissions and the limits and validity of the model.

Our results are obtained improving the unified exciton model [1] by the introduction of the principle of conservation of total angular momentum. This, also, implied the use of a suitable particle-hole spin dependent level density.

Since one can show that the master equations as well as the methods of ref.[1] still apply then the new occupation probability $q^{J\Pi}(n,\Omega,t)$ of the composite nucleus state (n,Ω,J,Π) (where n and Ω are the exciton number and the direction of the

projectile inside the nucleus, and J and N denote the total angular momentum and parity of the composite nucleus at time t) can be expressed as a Legendre polynomial series:

$$q^{J\Pi}(n,\Omega,t) = \sum_{\ell} \eta_{\ell}^{J\Pi}(n,t) P_{\ell}(\Omega)$$

The time-integrated master equation is then given by:

$$- n_{\ell}^{0J\Pi}(n) = \mu_{\ell} \lambda^{+}(n-2) Z_{\ell}^{J\Pi}(n-2) + \mu_{\ell} \overline{\lambda}(n+2) Z_{\ell}^{J\Pi}(n+2)$$
$$- [W^{J\Pi}(n) + \lambda^{+}(n) + \overline{\lambda}(n) + (1 - \mu_{\ell}) \lambda^{0}(n)] Z_{\ell}^{J\Pi}(n)$$

the λ^{+} , λ^{-} and λ^{0} are the intranuclear transition rates and w is the total emission rate.

Here we assume J-independent transition rates, but this generally adopted assump tion must be reconsidered.

The u_{g} are the eigenvalues of the intranuclear scattering Kernel, $n_{g}^{O}(n)$ refers to the Legendre coefficients of the initial (t=0) occupation probability, and $Z_{g}^{JI}(n)$ are the Legendre coefficients of the mean lifetime of the nuclear state (n, Ω, J, Π) .

The double differential cross section including equilibrium and preequilibrium emissions is

$$\frac{\delta^{2}\sigma(\mathbf{a},\mathbf{b})}{\delta\epsilon\delta\Omega} = \frac{\star^{2}\Pi}{(2\mathbf{a}_{a}+1)(2\mathbf{I}+1)} \sum_{J\Pi j a a} (2J+1) T_{a j a}(\epsilon_{a}) \sum_{n} W_{\mathbf{b}}^{J\Pi}(n,\Omega) \tau^{J\Pi}(n,\Omega)$$

where $T_{\substack{i \ a \ a}}(\epsilon_{a})$ are the optical model transmission coefficients, J and l denote the composite and target nucleus total angular momentum respectively, l_{a} , s_{a} and j_{a} are the orbital angular momentum, spin and total angular momentum of incident particle, $\psi_{b}^{J\Pi}(n,\epsilon_{b})$ is the probability of emission of particle b with energy ϵ_{b} from the exciton state (E,n,J, Π) and $\tau^{J\Pi}(n,\Omega)$ is the mean lifetime of this state and n run over all possible exciton configurations.

A particular mention must be devoted to the J dependent p-h level density involved in the model.

Namely a Williams' formula [2] was adopted normalized to reproduce the total level density observed.

Following ref. [3] the distribution of the p-h states on the spin projection M was assumed to be of a Gaussian type, with an exciton dependent spin cut off σ_{2}^{2} =.28 n A^{2/3}[3] which was found valid through the whole periodic table.

In the figs. 1-6, the contribution of the unified model to equilibrium and pre equilibrium emissions (namely the primary emissions) and of all the energetically possible secondary equilibrium emissions according to Hauser-Feshbach theory are the dashed and dotted hystograms respectively. The sum of the two contributions gives the total neutron emission spectrum, full line hystogram.

In fig. 1 the calculated total spectrum is compared to an average spectrum, full line curve, obtained averaging over all experimental data available. Here the model appears to overestimate the hard tail of the spectrum, where lower exciton state emissions are expected to dominate.

In figs. 2 to 6 the total spectrum at different angles is given, the dots representing the measurements of ref. [6]. In these figures one observes an agreement between the calculated and experimental spectra which is very good at backward angles while worsening at forward angles, again where the lower exciton contributions are involved.

The consistent answer obtained from the comparison of total and partial spectra, seems to suggest a wrong exciton dependence at the adopted p-h level density. (Really all statistical assumptions underlying Williams' formula breakdown at low exciton numbers, where more appropriate combinatorial calculations should be used).

In fig. 7 we show the results for the angular distributions of the neutrons with energy $\Delta E=2-3$ MeV (where equilibrium emissions dominate) and of the neutrons with energy $\Delta E=8-9$ MeV (where preequilibrium emissions dominate).

Dots and open circles are the measurements of ref. [6] and ref. [7] respective ly. In the lower part of fig. 7, to be consistent with previous results, one would expect that the spectrum calculated at forward angles be higher than the corresponding experimental one. This, however, is not the case for open circle data.

Fig. 7

This fact rise questions on a possible role of experimental uncertainties in the discrepancies found.

For curiosity in fig. 7 the results of calculations are shown (dashed curve) with no total angular momentum conservation.

From the sample calculation illustrated, which is not an evaluation, but a model test with no free parameters and thanks to the completeness of calculations, some conclusions may be derived.

One may say that the model, even as it is, is reliable in giving an overall picture of total and partial emission spectra as well as of angular distributions.

It appears very likely that the moderate discrepancies observed are due more to the very rough level density adopted, than to conceptual inadequacy of the model.

In particular, in order to achieve the best results, the necessity appears of a consistent treatment of equilibrium and preequilibrium contributions like the unified model can provide us with.

I wish to express my deep gratitude to Dr. Franca FABBRI who has done all the computer work.

REFERENCES

1. J.M. Akkermans, H. Gruppelaar, G. Reffo, Phys. Rev. C 22, 73 (1980).

2. F.C. Williams, Jr., Nucl. Phys. A166, 231 (1971).

- 3. G. Reffo, M. Herman, Nuovo Cimento Lett., 34, 261 (1982).
- F.D. Becchetti, G.W. Greenless, Phys. Rev. <u>182</u>, 1190 (1969).
- G. Reffo, Parameter systematics for statistical theory calculations of neutron reaction cross sections. Lectures held at ICTP Trieste "Winter Course on Nuclear Physics and Reactors", 17 January - 10 March 1978. Report IAEA, SNR 43 (1980), psg. 205.
- D. Hermsdorf, A. Neister, S. Sassonoff, D. Sceliger,
 K. Scidel, F. Shalvin, Zentralinstitut f
 ür Kernforschung,
 Rossendorf Bei Dresden, 2fK-277(U) (1979).
- 7. Y.L. Kamerdienen, report UCRL-51232 (1972).

В.П.Левашев

(Инотитут теоретической физики АН УССР)

На основе сформулированной ранее разрешимой модели четырехнухлонных систем изучено пороговое рассеяние нейтрона на ядрех ³Н и ³Не. Установлен ряд корреляционных соотношений, возникалщах между низкоэнертетическими четырехнуклонными характеристиками при варькровании формы сепарасельных парных потенциалов. Определены значения длин $n - {}^{3}$ Н и $n - {}^{3}$ Не м ссивия и проведено их сравнение с имехщимися экспериментальными данными.

The threshold scattering of a neutron on the 'H and 'He nuclei is studied using earlier developed solvable model for four-nucleon systems. A number of correlations between lowenergy four-nucleon characteristics are observed with separable potential form factors being changed. The values of the n-'H and n-'He scattering lengths are determined and compared with the available experimental data.

В последние годы проявился большой интерес к изучению нерелятивистских систем из четырех нуклонов. Он был вызван, с одной стороны, построением микроскопической теории таких систем на основе нуклон-нуклонных взаимодействий /1.2/ и, с другой стороны, наличием общирной экспериментальной информации о четырехнуклонных системах (см. ссылки в работе /2/). При этом результаты теоретических исоледований /1-3/ стимулировали постановку ряда новых экспериментов /4-9/, позволиниих существенно уточнить именшиеся ранее данные.

Настоящая работа выполнена в продолжение работ (1-3) и посвящена изучению взаимодействий, возникающах мажду низкоэнертетическими четырехнуклонными характеристиками при варьировании двухнуклонных взаимодействий. Установленные корреляционные соотношения использованы затем для предсказания одних величин по известным экспериментальным данным для других.

Теоретическое описание системы четырех нуклонов с парными силами основывалось на интегральных уравнениях типа Фадеева-Якубовского со строгим учетом принципа Паули /I,2/. Уравнения в работах /I,2/ получены в предположении, что NN-взаимодействие является зарядовонезависимым и карактеризуется произвольным (локальным) или нелокальным) центральным потенциалом обменного типа. Кулоновское взаимодействие между протонами не учитывалось. Численные расчеты проведены для ряда сепарабельных $\sqrt[5]{-волно$ $вых потенциалов с различными формфакторами: <math>g_{ij}(k) = [(k/\beta_{ij})^2 + 1]^{-C}$ (c=1,2,3), $g_{i}(k) = \exp(-\beta_{ij}^2 k^2)$ (гаусовский) и $g_{ij}(k) = \sin \beta_{ij} k/\beta_{ij} k$ (d-оболочечный потенциал, являщийся одновременно и локальным и сепарабельным). Параметры потенциалов фиксировались по низковнергетическим двухнуклонным данным $|\mathcal{E}_d|=2,225$ МаВ, $a_t=5,378$ Фм, $a_s=$ =-23,69 Фм и $V_s=2,7$ Фм. Путем решения уравнений методом, изложенным в работах $(2,3)^2$, рассчитаны значения энергий связи четырах нуклонов в основном и первом вовбужденном 0⁺-состояниях \mathcal{J}_3 и \mathcal{J}_3^* , длян рассеяния нейтрона на ядрах ³Н и ³Не, $\mathcal{A}_s(n-^3H) = \mathcal{A}_{s_i}$, $\mathcal{A}_s(n-^3He)=(\mathcal{A}_{so}+\mathcal{A}_{si})/2$ (\mathcal{A}_{sg} – длина рассеяния нуклона на трехнуклонном ядре в состоянии с суммарными спином S и изоспином \mathcal{T}), $\mathcal{A}_c = (\mathcal{A}_o + 3\mathcal{A}_i)/4$ и $\mathcal{A}_i = \sqrt{3}(\mathcal{A}_i - \mathcal{A}_o)/4$ и полных нейтронных сечений $\mathcal{E} = \mathcal{T}(|\mathfrak{s}_o|^2 + 3|\mathfrak{s}_i|^2)$). Часть полученных результатов предотавлена в таблице. Подробное их обсуждение содержится в препринтах (10,117). Данные первых днух столоцов таблицы были опубликованы нами ранее в работах (2,37).

Энергия связи тритона В к гелия-4 В и В, мэв, длины (Я, Фм) и сечения (С, он) рассеяния нейтрона на трехнуклонных ядрах Эн и Эне, рассчитанные для различных потенциалов

Потенциал		c=I	c=2	c= 3	G	8	G ^{a)}	δ^{a}
	B.	10,43	9,82	9,64	9,24	8,56	9,00	8,35
		IU,88	I0,08	9,86	9,39	8,62		8,40
	B	45, I8	39,83	38,35	35,69	3I,II		30,II
FA∞o		12,34	I4 , 95	16,09	18,87	27,72	19,11	27,90
Ha	AI	3,13	3,22	3,25	3,30	3,43	3,37	3,49
	No	3,77	3,89	3,94	4,02	4,20	4, IO	4,28
1	Яc	3,29	3,39	3,42	3,48	3,62	3,55	3,69
٢	G	I,36	I,44	I,47	I,69	I,65	I,59	I,7I
u- ³ He	AI	3,08	3,15	3,18	3,22	3,32	3,28	3,38
	A .	8,05	9,42	I0,0I	II,45	15,96	II,6I	<u>16</u> ,09
	S∦c	4,32	4,72	4,89	5,28	6,48	5,36	5,56
	ઠ	2,93	3,73	4, IO	5,09	9,04	5,25	9,2I

а) Нуклон-нуклонные данные отличаются от приведенных в тексте. главным образом значением синглетного радиуса V₃ = 2,76 Фм.

Из всех рассчитанных величин наибольщую чувствительность к форме NN- взаимодействия демонстрируют длины \mathcal{H}_{oo} и $\mathcal{H}_o(n-^3\mathrm{He})$.

При переходе от потенциала Яматучи (с=1) к δ -оболочечному потенциалу их относительные изменения составляют ~100%. (При этом \mathcal{B} изменяется на 30, \mathcal{B}^* и \mathcal{B} - на 20%, а относительные изменения \mathcal{A}_{01} , \mathcal{A}_{11} и \mathcal{H}_{10} составляют ~ 10%.) Зевисимость длин \mathcal{A}_0 (n^{-9} He) и \mathcal{A}_{00} от вида парных сил обусмовлена сильной коррелящей этих величин с положением околопоротового возбужденного 0⁺-уровня ядра ⁴He относительно порога n_{+}^{+9} He. Установленное в работе [2] фенеменалогическое соотношение $\mathcal{H}_{00} = \mathcal{L}^{-\frac{1}{2}} \mathcal{R}_{2} \mathcal{L}^{-} \mathcal{P}_{2} \mathcal{L}^{\frac{1}{2}}$ (где \mathcal{R} и \mathcal{P} – нараметри, а $\mathcal{L}^{2} = 3m_{\mu}(\mathcal{R}^{*} - \mathcal{B})/2\hbar^{2}$) сехраниет оправедливость в изроком интервале изменения формы потенциала [11] и подтверящается также расчечеми в рамках диспероконного подхода [12].

Анализ резуньтатов для длян \mathcal{R}_{od} , \mathcal{R}_{ii} и \mathcal{R}_{io} и энергий связи \mathcal{B} , \mathcal{B}^{*} и \mathcal{B} указнвает на наличие корреляций линейного вида между этими величинами и днухчастичным параметром Г, определяемым интегралом перекрития триплетного и синглетного формфакторов ($\Gamma^{-1} = \int_{0}^{\infty} g_{io}(\mathbf{k}) \cdots g_{oi}(\mathbf{k}) d\mathbf{k}$).

Зависимость четирехнуклонных характеристик от формы петенциала связана главным образом с различнем в поведения соответствущих днухнуклонных t -матриц на энергетической поверхности. При этом С-оболочечный потенциал, обеспечиващий наклучшее описание фаз NNрассеяния, дает также слизкие к эксперименту значения и для четирехнуклонных величин.

По своей чувствительности к у -окнглетному эффективному радиусу NN-сил рассчитанные величны различаются в меньшей степени: при увеличении и на 10% В. В^{*}и В уменьшаются на 8%, а Яст и Ят увеличиваются на 5%, Ясо и Ято - на 3%.

Варьнрование форми /// взаимодействий позволяло обнаружить существование линейных корреляций между длинами Λ^{-3} Н рассеяния $\mathcal{A}_{\mathcal{S}} (J=0,I)$ и энергией связи тритона \mathcal{B} (³H), а также между трициетной длиной $\mathcal{A}_{\mathcal{I}}(n^{-3}\text{He})$ и \mathcal{B} (³He) (рис.I). Корреляцие обуслевлени отталкивательным (вследствие принципа Паули) характером взаимодействия нейтрона с трехнуклонными ядрами в состояниях с $\mathcal{J}_{=}$ OI, II, IO. С использованием отмеченных взаимосвязей по экопериментальным значениям энергий связи ядер ³H и ³He предсказани значения длин $\mathcal{A}_{\mathcal{I}}(n^{-3}\text{H})=3,46$ Фм, $\mathcal{A}_{0}(n^{-3}\text{H})=4,24$ Фм и $\mathcal{A}_{\mathcal{I}}(n^{-3}\text{He})=3,44$ Фм.

Экспериментальные значения триплетной и синглетной длин n^{-3} Н рассеяния остаится неизвестными до настоящего времени (3,107. Наше предсказание для полного сечения порогового рассеяния (n^{-3} H) = =1,69 бн отлично согласуется с последним экспериментальным результатом \mathcal{L}_{exp} =1,70(3) би (47 (рис.2). Полученное в работе значение

Рис. I. Іннейная корреляция манну трицаетной дляней α -³не-рассаяния \mathcal{A}_{4} и энергией связи ядра ³не \mathcal{B} . Точки представляют результати настемации расчетов; крестиком отмечено наше предсказание для дляни \mathcal{A}_{4} (α -³не)=3,44 бм, согласованное с экспериментальным значением В(³не)=7,72 МэВ. Данные для \mathcal{A}_{4} вяяты из работ [2,6–8]

Рис.2. Сравнение теоретических результатов для n_{-3}^{-3} H-рессеяния (точки) с именщимися экспериментальными данными /4,5,13/.Крестиком отмечены наши предсказания \mathcal{A}_{I} (n_{-3}^{-3} H)=3,46 Фм и \mathcal{A}_{O} (n_{-3}^{-3} H)= =4,24 Фм, согласованные с экспериментальным значением B(³H)=8,45МэВ

когерентной дляны \mathcal{A}_{c} $(n^{-3}$ H)=3,66 Фм согласуется в пределах экопериментальной ожноки с результатом $\mathcal{A}_{c,exp}$ =3,82(24) Фм $(\overline{13})$, но несколько меньше недавно измеренного значения $\mathcal{A}_{c,exp}$ =3,82(7) Фм (5). Отметим, однако, что экспериментальные данные для сечения (4)и когерентной дляны (5) несколько не согласуются между собой (см. рис.2).

Предсказание для триплетной длини $(-^{3}$ He-рассеяния отлично согласуется с наиболее надежным из именцикся экспериментальных результатов $\mathcal{A}_{I,exp}(n^{-3}$ He)=3,4(2) Фм (67 (см.рис.I). Взаимодействие медленного нейтрова с ядром ³Не в синглетном

состояние характернауется эффективным притяжением, приводящим, в частности, к образованию возбужденного уровня 4Не чуть ниже порога $n+{}^{9}$ He. Положение этого уровен относнтельно порога $n+{}^{3}$ He оказывает определящее влияние на сечение л - ЭНе-рассеяния в состоянии со спи-HOM $\delta = 0$. При этом экспериментельному значению $\epsilon_{exp} = 0,102$ fm^{-1} [6] на кривой зависимости $\mathcal{N}_0(n-^{3}\mathrm{He})$ от \checkmark отвечает значение синтлетной цлины Я. (n-³He)=9,25 Фм. Полученный результат на 30% превышает экспериментальные панные пля вещественной части этой ллини /2.6-87. Последовательный расчет комплексной синглетной илини n -³Не- рассеяния должен основываться на уравнениях, учитиварщих кулоновское взаимодействие между протонами. Учет кулоновских сил в синглетном канале приведет к расщеплению порога N+3 N на два порога $n_+{}^{3}$ Не и р $+{}^{3}$ Н и к смещению вверх порога $n_+{}^{3}$ Не на 0.76 МэВ и возбужденного уровня на 0,4 МоВ. При этом возбужденный уровень станет квазистационарным. В случае 5 -оболочечного взакиодействия его расположение относительно порога $n + {}^{3}$ Не будет очень близко к экспериментальному /6.97.

Список литературы

- I. Харченко В.Ф., Левашев В.П. ЯФ, 1977, т.26, вып.4, с.703.
- Kharchenko V.F., Levashev V.P. Nucl. Phys., 1980, v. A343, p. 249. Препринт ИТФ-77-85Р, Киев, 1977.
- Kharchenko V.F., Levashev V.P. Phys.Lett., 1976, v. 60В, N 4, p. 317. ДАН УССР, серия А, 1976, № 11, с.1025.
- 4. Seagrave J.D. e.s. Phys.Lett., 1980, v.91B, N 2, p.200.
- 5. Hammerschmidd S. e.s. 2. Physik, 1981, v. A302, N 4, p. 323.
- 6. Baumgartner M. e.a. Nucl. Phys., 1981, v.A368, p.189.
- 7. Kaiser H. e.a. Z.Physik, 1979, v.A291, p.231.
- 8. Алфименков В.П. и др. Яф, 1981, т.33, вып.4, с.891.

9. Борзаков С.Б. н др. - ЯФ, 1982, т.35, нып.3, с.532. 10.Меранев В.П. - Препринт ИТФ-81-142Р, Киев, 1981. 11.Леванев В.П. - Препринт ИТФ-82-170Р, Киев, 1983. 12.Adhikari S.K. - Рhys.Rev., 1981, v.024, N 1, р.16. 13.Donaldson R.F. e.a. - Phys.Rev., 1972, v.05, N 6, р.1952. G.Longo, F.Fabbri, C.Mazzotti

ENEA, CRE. "E.Clementel", Bologna, Italy

The direct-semidirect model is applied to calculate the cross sections for the production of 10-50 MeV photons following radiative capture of 4-50 MeV neutrons by 40 Ca and 1205n. The presence of giant multipole resonances highly influences the photon angular distributions. For 40Ca the angular distribution is almost symmetric, the E2 and E3 giant resonances being relatively weak. Conversely, the interference between opposite-parity transitions gives rise to clear forward peaking of high-energy photons produced in the 120Sn(n, Y) reaction.

Прямая-полупрямая модель использована для вычисления сечений получения фотонов с энергчей. 10-50 Мз6 при радиационном захвате нейтронов от 4 до 50 Мз8 на⁴⁰Са и¹²⁰Ся. Наличие гигантских мультипольных резонансов сильно вливет на угловые распределения фотонов. Е2-и Е3-гигантские резонансь слабы в⁴⁰Са, так что угловые распределения почти симметричны. Наоборот, интерференция между переходами противоположной чётности приводит к чётному пику вперед высоноэнергетичесних фотонов, ислущенных при 1205г(п.х.) реакции.

Neutron-induced photoproduction cross sections and angular distributions of emitted high-energy photons are of interest in shielding, dosimetry and radiation damage problems connected with fusion reactors and facilities that utilize neutrons up to about 50 MeV, e.g. d+Li neutron sources. The (n, γ) reaction, though constituting only a small fraction of the non-elastic cross section for high energy neutrons, becomes the dominant mechanism for producing 10- to 50-MeV photons. This hardest part of the γ -ray spectrum is important not only to protect fusion reactor components, but to satisfy biological safety requirements. Since the necessary experimental information is rather scarce, one must use model calculations to fill gaps and supply the energy-angle data required.

In a previous paper [I] the direct-semidirect (DSD) model was used to calculate photoproduction cross sections integrated over the 4π solid angle. Here, attention is focused on the angular distributions of emitted photons. In the

present work the production of 10- to 50-MeV photons due to radiative capture of 4- to 50-MeV neutrons by 40 Ca and 120 Sn, is calculated. For this purpose the extended formulation [2-4] of the DSD model, which includes higher multipole contributions, is used.

The differential (n,γ) cross section for E1+E2+E3 capture is calculated versus the incident neutron energy E_n and the angle θ_γ between incident neutrons and emitted photons as

$$\frac{d\sigma(E,\theta)}{n - \gamma} = \frac{\sigma(E)}{4 \pi} \begin{bmatrix} 1 + \sum_{m=1}^{\infty} a(E_n) P_m(\cos \theta_\gamma) \end{bmatrix}$$

with σ_{0} the cross section integrated over the 4π solid angle and the a_{m}^{-} coefficients expressed through combinations of radiative-capture DSD amplitudes. The explicit expressions [4] for the a -coefficients show that interference between opposite-parity transitions gives rise to symmetry breaking in the photon angular distributions.

The (n, γ) cross sections are obtained, as in ref. [3], without recourse to free parameters, that is: 1) EL contributions up to L=3 are taken into account with energies, widths and strengths of giant states taken directly from experimental data [5-6], 2) the same depths and geometrical parameters (set D of ref. [7]) are used both for the optical potential and the energy-dependent complex coupling interaction having a mixed surface- and volume-form, 3) the same potential geometry is adopted both for bound and scattering states, 4) the depth of the bound-state potential is adjusted to give the single-particle binding energies, obtained as the centre of gravity of the experimentally known nuclear levels listed in ref. [8].

From the spectra of emitted gamma-rays, calculated for $E_n = 4-50$ MeV with $\Delta E_n = 0.2$ MeV and for $\theta_{\gamma} = 0^{\circ}-180^{\circ}$ with $\Delta \theta_{\gamma} = 10^{\circ}$, the photoproduction cross sections $d^2 \sigma(E_{\gamma}, \theta_{\gamma})/dE_{\gamma} d\Omega$ are obtained as average values for photons produced in a one-MeV energy interval. For application purposes, knowledge of σ' - cross sections weighted to the relative incident neutron fluxes - is of greater interest. These values are here calculated for incident energy distributions corresponding to neutron spectra from d+T and d+Li reactions.

In fig. 1 the calculated differential cross sections for gamma-rays produced by neutron radiative capture on $\frac{40}{Ca}$ (fig. 1,a) and $\frac{120}{Sn}$ (fig. 1,b) are plotted

versus the photon energy for three fixed angles $\theta_{\gamma} = 90^{\circ}$, 30° and 150° corresponding to curves 1, 2 and 3, respectively. The curves reproduce the distinctive feature of the giant dipole resonance, while no resonance-like shape can be connected to the position of E2- and E3-giant resonances. The presence of E2- and E3-radiation, however, highly influences the angular distributions of emitted photons. The E2- and E3-giant resonances are weak in 40 Ca, so the angular distribution of photons is almost symmetric in the whole energy range considered (fig. 1,a). Conversely, the interference between opposite-parity transitions

Fig. 1. Photoproduction differential cross sections for ${}^{40}Ca$ (a) and ${}^{120}Sn$ (b): 1 - $\theta_y = 90^\circ$; 2 - $\theta_y = 30^\circ$; 3 - $\theta_y = 150^\circ$.

for the 120 Sn(n,y) reaction gives rise to cross section values which, for $\theta_{\gamma} = 30^{\circ}$, are greater in the high energy range by about a factor 2 with respect to those for $\theta_{\gamma} = 150^{\circ}$ (fig. 1,b).

This situation is illustrated more distinctly in figs. 2,a (40 Ca) and 2,b (120 Sn). On the left part of the figure photoproduction differential cross sections are plotted versus the cosine of 8 for three fixed energies equal, for 40 Ca, to 15, 25 and 50 MeV (curves 1, 2 and 3, respectively) and, for 120 Sn, to 15, 22 and 35 MeV (curves 1, 2 and 3, respectively). On the right of fig. 2 the angular distributions calculated as

$$\Psi(E_{\gamma}, \theta_{\gamma}) = \frac{4\pi}{d\sigma_{\sigma}(E_{\gamma})/dE_{\gamma}} \cdot \frac{d^{2}\sigma(E_{\gamma}, \theta_{\gamma})}{dE_{\gamma} d\Omega_{\gamma}}$$

are shown for the same photon energies. The latter clearly indicates a forward peaking, growing with energy for photons produced in the ${}^{120}{\rm Sn}(n,\gamma)$ reaction.

The photoproduction cross sections, integrated over the 4 x solid angle $d\sigma' (E_{\gamma})/dE_{\gamma}$ and weighted to three different incident neutron energy distributions ranging from 4- to 50-MeV, are plotted in fig. 3 for the $120 \operatorname{Sn}(n,\gamma)$ reac-

Fig. 2. Differential cross sections (left) and angular distributions (right) for gamma-rays from calcium (a) and tin (b). a): $1 - E_{\gamma} = 15$ MeV; $2 - E_{\gamma} = 25$ MeV; $3 - E_{\gamma} = 50$ MeV. b): $1 - E_{\gamma} = 15$ MeV; $2 - E_{\gamma} = 22$ HeV; $3 - E_{\gamma} = 35$ MeV.

tion. The incident fluxes shown in the inset to fig. 3 are: 1- a uniform energy distribution, 2- a distribution, reproduced from ref. [9], corresponding to part of the neutron energy spectrum from a d+T source, 3- a distribution, reproduced from ref. [10], corresponding to part of the neutron spectrum resulting at 8° from 35-MeV deuterons incident upon lithium. As can be seen from fig. 3, curve 1, obtained for a uniform neutron-energy distribution and corresponding to those of part b of figs. 1-2, shows a resonance-like shape due to the presence of the giant dipole resonance. Curve 2, corresponding to neutrons from the d+T source, exhibits strong enhancement in the yield of 16- to 22-MeV photons with two distinct peaks both due to the neutron distribution and the level structure of the target nucleus. Curve 3, corresponding to the d+Li source, shows enhancement of the gamma-ray yield in the whole energy region from 10- to 30-MeV with a rapid decrease at higher energies.

Fig. 3. The photoproduction 4π -cross section for 120 Sn weighted to the incident neutron energy distributions shown in the inset: 1 - uniform energy distribution; 2 - d+T neutron source; 3 - d+Li neutron source.

28I

Fig. 4. A three-dimensional representation of $d^2\sigma^4/dZ$ do for 120 sn: 1, 2, 3 have the same meaning as in fig. 3.

The three-dimensional representation of fig. 4, for the $^{120}Sn(n,\gamma)$ reaction, allows one to take a general look at the angular-energy dependence of the photoproduction cross section weighted to different incident neutron fluxes. The surfaces 1, 2, 3, seen from two different viewpoints, correspond to the neutron energy distributions shown in the inset to fig. 3.

To our knowledge no experimental data on the cross sections for the production of 10- to 50-MeV photons are available, so direct comparison of the present calculations with experiment is not possible. However, the reliability of the present estimates can be inferred from the agreement of previous calculations - performed using the same formulation and the same parameter sets as the present ones - with experimental data for capture of 6- to 15-MeV neutrons to the ground state of 40 Ca (see ref. [4]). It follows from the present work that DSD calculations based on the knowledge of the positions and strengths of giant multipole resonances, can allow useful predictions about the relative yield of high-energy Y-rays emitted in different directions with respect to incident neutrons. Such calculations can be a valuable guide in detecting engineering or biological safety problems arising from the production of high-energy photons.

References

- 1. G.Longo and F.Saporetti, Nucl.Sci.Eng. 61 (1976) 40.
- 2. G.Longo, F.Saporetti and R.Guidotti, Nuovo Cimento 46A (1978) 509.
- 3. G.Longo and F.Fabbri, Phys.Lett. 848 (1979) 285.
- G.Longo, Proceedings of the IV International School on Neutron Physics, Dubna, June 8-18, 1982, JINR DZ 4-82-704, p. 206.
- N.Bezić et al., Nucl.Phys. A117 (1968) 124; J.Ahrens et al., Nucl.Phys. A251 (1975) 479; T.Yamagata et al., Phys.Rev.Lett. 40 (1978) 1628; T.A.Carey et al., Phys.Rev.Lett. 45 (1980) 239.
- A.Leprêtre et al., Nucl.Phys. A219 (1974) 39 and Nucl.Phys. A367 (1981) 237; F.E.Bertrand et al., Phys.Rev. C22 (1980) 1832; T.Yamagata et al., Phys.Rev. C23 (1981) 937.
- 7. D.M.Patterson, R.R.Doering and A.Galonsky, Nucl. Phys. A263 (1976) 261.
- P.M.Endt, C.Van der Leun, Nucl.Phys. A310 (1978) 588; K.X.Seth, S.G.Iversen, Phys.Lett. 53B (1974) 171; Nuclear Data Sheets, 26 (1979) 385.
- G.T.Chapman and G.L.Horgan, Proc.Int.Conf. on Nuclear Cross Sections for Technology, Xnoxville, October 22-26, 1979, p. 591.
- L.L.Carter, R.J.Norford and A.D.Wilcox, Proc. Symposium on Neutron Cross Sections from 10 to 50 MeV, Brookhaven, May 12-14, 1980, p. 431.

Секция Ш

ФИЗИКА ЛЕЛЕНИЯ АТОМНЫХ ЯЛЕР

Председатель В.М.Струтинский

Ученый секретарь В.Ф.Заварзин

СИСТЕНАТИВА СЕЧЕНИЙ И БАРЬЕРОВ ДЕЛЕНИН ИЗОТОПОВ УРАНА И ПЛУТОНИН

А.В.Игнаток, А.Б.Елепацкий, В.М.Маслов, Е.П.Суховицкий

(ФЭИ, ИЯЭ АН БССР)

На основе анализа экспериментальных данных по сечениям деления в рамках статистической модели получены параметры барьеров деления изотопов урана и плутония. Показана необходимость учета нарушения аксиальной и зеркальной симметрии формы ядра в переходных состояниях.

Experimental data on fission cross sections for uranium and plutonium isotopes are analyzed in the framework of statistical model. Fission barrier parameters are deduced.An important role of saddle point configuration shape asymmetry is shown.

Сечения деления неитронами изотопов урана и плутония в области первого "плато" (En <6 МэВ) достаточно подробно изучены экспериментально. Их анализ позволяет внявить ряд закономерностей. С ростом числа нейтронов N среднее значение б; в области "плато" уменьвается /1/. Однако собственно "плато", т.е. участок, на котором сечение постоянно, есть только на кривой G. изотопа ²³⁸U. Для других изотопов урана наклон сечения Аб, в области "плато" с росток N уменьшается, а для изотопов плутония возрастает (рис.1). Как следствие, результать систематик, пренебрегающих энергетической занисямостью G_1 [2], не могут обеспечить потребности оценки сечений неупругого рассеяния, захвата, а в случае отсутствия экспериментальных данных, и деления. Для удовлетворения современных потребностей оценки необходимо добиться хорошего статистического онисания всех основных закономерностей наблюдаемых нейтронных сечений.

Аля согласованного расчета сечений G_f , G_r и G_γ первостепенное значение имеет описание сечения образования компаунд-ядра G_c . Сферические и деформированные оптические потенциалы 23 - 57, одинаково приемдемо описывая подное сечение G_t , как правило, дают существенно разные энергетические зависимости G_c . Очевидно, что только предсказания несферической оптической модели, описывающей всю совокупность экспериментальных данных по полным сечениям и дифференциальным сечениям упругого и неупругого рассеяния нейтронов, можно признать достаточно надежными 257. Поэтому при использовании в статистических расчетах сферической оптической модели параметры потенциала следует определять из подгонки к найденным в несферической модели значениям G_c (E_n).

Аалее следует определить проницаемости конкурирующих каналов распада составного ядра. Такая задача, по существу, сводится к описанию плотности уровней ядра с равновесной деформацией p_n и в переходном состояния p_f . При анализе наслодаемых делимостей ядер в пирокой области возоуждений была убедительно продемонстрирована необходимость учета оболочечных, коллективных и сверхтекучих эффектов в описании p_n и p_f /6.7/. Для актинидов важно также учесть нарушения аксиальной и зеркальной симметрию формы ядра в переходных состояниях /8/. Влияние асимметрий седловых конфигураций актинидов на описание делимостей анализировалось ранее в реакциях типа (d, p_f) /7/, но относительно низкая точность экспериментальных данных для заряженных частиц (~20%) оставляет актуальным количественный анализ подобных эффектов в нейтровных реакциях.

Использованные в наших расчетах соотношения для плотности уровней подробно описаны в /9/, и соответствующие параметры приведе-

ны в /107. Для седловых конфитураций всех изотопов урана и плутония били взяты ободочечные поправки $\delta W_A = 2,5$ МэВ и $\delta W_B = 0,6$ МэВ /27. Аналогичным образом по результатам микроскопических расчетов были оценены моменты инерции $\mathcal{F}_1^* = 75 h^2/N_{2}B$ и $\mathcal{F}_2^5 = 200 h^2/N_{2}B /87.$

Из результатов описания G_{p} изотопов ²³³U + ²³⁸U , ²³⁸Pu - ²⁴²Pu и ²⁴⁴Pu следует, что для воспроизведения энергетической зависимости сечений деления до порога реакции (n, n'f), наряду с учетом аксиальной асимиетрии горба A и зеркальной асимиетрии горба В, необходимо увеличение на ~15% корреляционной функции Δ_{f} ядра в переходном состояния. Отличие корреляционных функций при равно-весной деформации и на барьере является прямым следствием оболочечных эффектов.

На рис.2 показано влияние вариации Д, на расчети О, изотопов 239 Pu в 242 Pu . Чувствительность Of к изменениям D, для четно-четных делящихся ядер в ~ 1.5 раза выше, чем для N нечетных. Это связано с раздечием эффективных энергий конденсации для ядер с четными и нечетными N : Ем-д-Е м- нд = ∆. Характер чувствительности б, к вариациям высот горбов EA E Eb существенно различается для моделей с аксиально-симкетричными конфитураплямя и конфетуралияма с нарушенной аксиальной и зеркальной свиметрией. В первом случае вариации Е, и Е, сказываются во всей области "плато", однако $\delta \sigma_f / \delta E_A \approx 4 \delta \sigma_f / \delta E_B$. Во втором случае $\delta \sigma_f / \delta E_A \approx 0.5 \delta \sigma_f / \delta E_b$ при $E_n \leq 2$ мэв и $\delta \sigma_f / \delta E_A \approx 0.25 \delta \sigma_f / \delta E_b$ при En>2 Ков. Отметим, что изменение En приводит к практически параллельному сдвигу кривой 🗇 в обежх моделях. Вследствие этого Δε оказывается единственным параметром, позволившим описать энергетическую зависямость сечений деления в область первого "плато" в модели с акскадьно-асимметричной конфигурацией барьера А и зеркально-асимистричной конфигурацией барьера В. В модели с аксиальносимметричными конфигурациями барьеров описать б, не удалось.

Исходя из чувствительности расчетов сечений деления к значениям E_A и E_B можно утверждать, что уменьшение G_f на "плато" с ростом N для изотопов урана и плутония связано в основном с уменьшением разности ($E_A - E_B$).

Полученные нами параметры горбов А и В характеризуются следующими неопределенностями: $\Sigma E_A < 0,15$ N9B, $\Sigma E_B < 0,1$ N9B, $\Sigma \Delta_g \sim 0,05$ N9B. Согласие с параметрами работи /7/ практически во всех случаях не хуже $\stackrel{*}{\sim} 0,3$ МЭВ (рис. 3). Существенно разные зави-

симости от N величин E_A и E_B , полученных в теоретических расчетах [8] и при анализе экспериментальных данных, по-видимому, связаны с разногласиями теоретических оценок изотопической зависимости поверхностной энергия в модели жидкой капли (капельки) [11]. С погрешностями капельной модели следует также связывать расхождение предсказаний теорик $E_A^{\text{TEOP}} \cdot < E_B^{\text{TEOP}}$. и результатов эксперимента $E_A^{\text{эКС}} \cdot > E_B^{\text{эКС}}$. Для изотопов урана.

Барьеры Е_в в [7] для всех актинидов были получены в предположение существования в области горба В альтернативного пути для де-

ления: через зеркально-симметричную, но аксиально-асимметричную конфигурацию В', причем $E_{B'} - E_B \approx 0.5$ МзВ. В /II/ показано, что эффект этот особенно ярко проявляется для деляцихся ядер 234 U в 238 U. Анализ энергетической зависимости O_f для ядра-мишени 233 U показывает, что необходимости в указанном усложнении формы поверхности потенциальной энергии нет, однако аномальное значение ($E_A - E_B$) для 234 U может означать, что дынный вопрос требует дальнейших исследований.

Список литературы

- I. Behrens J.W., Howerton R.J. Nucl. Sci. Eng., 1978, v. 65, p. 464.
- Истеков К.К., Куприянов В.М., Фурсов Б.И. и др. Ядерная физика, 1979, т.29, с.1156.
- Matsunobu H., Kanda Y., Kawai M. et.al. Proc. Intern. Conf. on Nucl. Cross Sections and Techn. Knoxville, USA, 1979, p. 715.
- 4. Lambropoulos P. Nucl.Sci.Eng., 1971, v. 46, p. 356.
- Klepatskij A.B., Konshin V.A., Sukhovitskij E.Sh. Report INDC(CCP)-161/L, IAEA, Vienna, 1981.
- Игнаток А.В., Истеков К.К., Смиренкин Г.Н. Ядерная физика, 1979, т.30, с.1205.
- 7. Britt H.C. Proc. IAEA Symp. on Phys. and Chem. Fission, 1979, v.1. Vienna: IAEA, 1980, p.3.
- Игнаток А.В., Истеков К.К., Смиренкин Г.Н. Ядерная физика, 1979, т.29, с.875.
- IO. Antsipov G.V., Konshin V.A., Maslov V.M. Report INDC(CCP)-182, IAEA, Vienna, 1982.
- II. Loller P.A. Proc. IAEA Symp. on Phys. and Chem. Fission, 1979, v.1. Vienna: IAEA, 1980, p. 283.

СТРУКТУРА БАРЬЕРОВ ДЕЛЕНИЯ ЯДЕР Ra и Ac

С.А.Егоров, В.А.Немилов, В.А.Рубченя, В.А.Селицкий, В.Б.Фунитейн, С.В.Хлебников, В.А.Яковлев

(Радмевый институт им.В.Г.Хлопина)

Детально измерено сечение реакции 226 ва(д. f). Расочитаны вероятности деления ядер 226 ва, 22, 28 вс. Нерегулярности делимости связываются с особенностями спектра переходных состояний в рамках модели одногороого внешнего барьера.

The cross-section of the 226 Ra(n,f) reaction was precisely measured. Fission probabilities of the 227 , 228 Ra, 227 , 226 Ac were calculated. Fissionability irregularities are connected with the peculiarities of transition states spectrum in the single-humped cuter barrier model.

В последнее время всё большее внимание уделяется природе околопороговых нерегулярностей в энергетической зависимости вероятностей деления ядер области "Ra-Th-аномалии". При их описании появилась необходимость учёта квазистационарных состояний, расположенных вблизи вершины внешнего барьера деления, что свидетельствовало о существовании третьей потенциальной ямы. Эти представления привлекались в работах (1-3/) для описания околопороговых нерегулярностей $W_4(E)$ ядер 231,233 Th, 232 Pa, 228 Ra, 227 Ac.

Из результатов работы /4/ следует, что глубина третьей ямы для ядер ^{227,228}Ra, ^{227,228}Ac недостаточна для существования в ней квазистационарных состояний. Это даёт возможность допустить, что нерегулярности W₆ (E) указанных ядер когут быть связаны с особенностями спектров переходных состояний, расположенных над эффективно одногорбым внешним барьером.

Для выяснения природы околопороговых структур W_j (E) ядер Ra и Ac требовалось уточнить характер энергетической зависимости сечения реакции ²²⁶Ra(n, f). Детальное измерение сечений деления ²²⁶Ra нейтронами проводилось относительным методом в диапазоне 3,7< E_n<5,2 МэВ с энергетическим разрешением и статистической точностью в 2+3 раза лучше, чем в известных работах [5,6]. Полученные результаты детально описаны в работе [7]. Они подтвердили наличие обнаруженной в работе [6] платообразной нерегулярности в энергетической за-

висимости сечения реакция 226 Ra(n, f) волизи порога. Кроме того, из данных эксперимента следует, что эта нерегулярность не может быть истолкована как сглаженный резонанс, не проявлянияйся в работе [6] из-за недостаточного энергетического разрешения.

Описание W_f тяжёдых ядер вблизи порога основывается на гипотезе О.Бора о каналах деления (характеризущихся квантовыми числами $\mathcal{I}\mathcal{T}$ К) как о специфических состояниях ядра в седловой точке [8]. В околопороговой области энергий число открытых каналов достаточно велико для применения статистической теория Хаузера-Фешбаха, согласно которой вероятность деления вычисляется через коэффициенты проницаемости делительного (T_{e_f}) и нейтронного (T_{e_f}) каналов, а такке плотность уровней остаточного ядра Q(U).

Спектр переходных состояний рассчитывался по комбинаторному методу сверхтенучей модели с использованием одночастичных спектров деформированного потенциала типа Вудса-Саксона [?]. На каждом квазичастичном уровне строилась вращательная полоса со значением параметра $\hbar^2/23 = 2$ кзв.

Коэффициенты Т, вычислянись в приближении параболического одногорбого барьера высотой В, и эффективной шириной ћа Для расчёта коэффициентов Т₍₎ использовалась сферическая оптическая модель с параметрами Лагранжа (97. Значения g (V) рассчитывались методами статистической механики, используя соотношения оверхтекучей моделя, с учётом влияния эффектов коллективного усиления /107.

Рассчитанные спектры квазичастичных состояний ядер 227,228 ра 227 Ас в седловой точке приведены на рис. І. Изображённые состояния для ²²⁷,2²⁸ Ра соответствуют зеркально-симметричной форме ядра, состояния для ²²⁷ Ас - зеркально-асимметричной. Учёт зеркальной асимметрии переходных конфигураций для изотопов Ра достигался введением двукратного вырождения по чётности всех состояний.

Полученные в результате расчёта величины вероятностей деления 227,228_{Ra}, 227,228_Aс в зависимости от анергии возбуждения в совокупности с экспериментальными данными работ [3,7,11,12] приведены на рис.2. На том же рисунке представлены результаты расчётов W₁(E) ядер ^{227,228}Ra, ²²⁸Ac из работ [3,13]. Особо следует остановиться на случае ²²⁸Ra. В работе [3] сделан вывод, что учёт квазистационарных состояний в третьей яме значительно улучшает согласие расчётных и экспериментальных значений в интервале возбуждений 8,2-9 MaB. Представленные авторами результаты не позволяют, однако, судить об удовлетворительности согласия теории и эксперимента вне

29I

Рис.І. Спектры квазичастичных состояний ядер 227,228 да, 227 Ас в седловой точке, рассунтанные при параметрах деформации: $\alpha_2=0.85, \alpha_4=0.12, \alpha_1=0.05 -$ для 227 Ас для 227 Ас

отого узкого интервала. Расчёт вероятностей деления при последовательном учёте особенностей спектров переходных оостояний исследуеиых нуклидов позволяет удовлетворительно описать экспериментальные данные в гораздо более широкой области энергий возбуждения ($\approx 7 - 10$ MeB).

В таблице приведены значения параметров барьеров деления исследуемых нуклидов, определённые из заилучшего согласия расчётных и экспериментальных величин вероятностей деления (В_f - высота барьера деления, ћа- параметр эффективной кривизны).

Полученные данные позволяют сделать вывод о том, что энергетические зависимости вероятности деления ядер ^{227,228}Ra, ^{227,228}Ac, в том числе и наблюдающиеся структурные особенности, могут быть описаны без введения дополнительных гипотез о наличии квазистационарных состояний в третьей потенциальной яме.

	227 _{Ra}	228 _{Ra}	227 _{AC}	228Ac
В ₅ , МэВ	8,45	8,00	7,50	7,10
ħw, МэВ	I,00	0,70	0,75	0,90

Параметры барьеров деления

Список литературы

- 1. Michaudon A. Prepr. CEA-N-2232, 1981.
- 2. Weber J., Britt H.C., Gavron A. e.a. Phys.Rev., 1976, v.C13, p.2413.
- 3. Gavron A., Britt H.C., Wilhelmy J.B. Phys.Rev., 1976, v.C13, p.2577.
- 4. Howard W.M., Möller P. Atomic Data and Nucl.Data Tables, 1980, v.25, p.219.
- Konceny E., Specht H.J., Weber J. In: Proc. IARA Symp.on Phys. and Chem.of Fission, 1973, v.2, Vienna, 1974, p.3.
 Бабенко D.A., Ипполитов В.Т., Немилов Ю.А.и др. ЯФ, 1969, т.IO,
- 0.233.
- 7. Немидов D.A., Рубченя В.А., Седицкий Ю.А.и др. ЯФ, 1983, т.37, c.819.

- с.819. 8. Бор О. В кн.: Труды Междунар. конф. по мирному использованию атомной энергин (Хенева.1955).М. Физматгиз.1958.т.2.с.175. 9. Lagrange Ch., Јату Ј. Ргерг. 198"L"INDO(Fr)СКА, 1978. 10.Игнаток А.В., Истеков К.К., Смиренкин Г.Н. ЯФ,1979.т.30, с.1205. 11.Кучко В.Е., Селицкий Ю.А., Фунитейн В.Б.и др. ЯФ,1978.т.27, с.301. 12.Кукс И.М., Селицкий Ю.А., Фунитейн В.Б.и др. ЯФ, 1975, т.22, с.934. 13.Игнаток А.В., Истеков К.К., Смиренкин Г.Н. Нейтронная физика, материалы 4-й Всесованой конференции по нейтронной физике. Киев, 1977. М.: ЦНИИатоминформ, 1977, ч.3, с.72.

ИЗМЕРЕНИЕ СЕЧЕНИЯ ДЕЛЕНИЯ ИЗОМЕРА ²³⁵0 На теціовых неятронах

В.И.Мостовой, Г.И.Устроев

(ИАЭ им. И.В.Курчатова)

Измерено отношение сечения деления 26 минутного изомера ²³⁵0 к сечению деления основного состояния на спектре тепловых нейтронов уранграфитового реактора, которое оказалось равным 2,2<u>+</u>0,4.

The ratio of a figgion cross-section of the 26-minute isomer of 250 U to that of the ground state on the spectrum of thermal neutrons of a uranium-graphite reactor has been measured. It turned out to be equal to $2,2\pm0,4$.

Изомерное состояние 235 U ($\mathcal{J}^{\pi} = 1/2^{+}$), открытое в 1957 г. [1,2], уникально своей чрезвичайно низкой энергией, равной 76,8 вВ [3].

В основное соотояние (7/2⁻) изомер переходит путем внутренней ЕЗ-конверсии на внешних электронных оболочках с периодом полураспада ~ 26 мдн. Такой механизм снятия возбуждения приводит к зависимости периода полураспада и спектра электронов внутренней конверсии от характера химических связей атомов урана.

Информация о сечения деления изомера ²³⁵U представляет интерес для каналовой концепции в теории деления. Она может оказаться важной и для будущих плазменных реакторов с температурой плазми в несколько десятков электрон-вольт, в которых изомер практически будет стабилен.

Основная проблема в измерении сечения деления изомера ²³⁵U связана с его ультрамалыми количествами, которые доступны для эксперимента, и коротким временем жизни.

В настоящее время реальный способ получения изомера – это сбор ядер отдачи при «-распаде²³⁹Ро. При этом из-за сравнительно большого периода полураспада идутония и малой энергии ядер отдачи (~90 кзВ), необходимо использовать тонкие слои плутония большой площаци (~I м²), а собирать ядра отдачи на очень малые мишени для получения приемлемого соотношения между эффектом и фоном. Сбор ядер отдачи изомера осуществлялся с помощью электростатического поля в установке, содержащей 90 мг плутония. Установка имела коэффициент сбора 60% и позволяла получать мишени, содержащие порядка I0 пикограмм изомера на площади 0,2 см². Одноэременно на мишени накалливались ядра агрегатного распыления плутония, которые являлись основным источником фона.

Приготовленная мишень с изсмерсм и мониторная мишень с ²³⁹Fu помещались в центр уран-графитового реактора Ф-I и после выхода его на полную мощность (поток тепловых нейтронов 0,7 · 10¹⁰ нейтр./ом² с) эффективная температура слектра нейтронов – 360 К) производилась регистрация интегрального числа осколков в зависимости от времени полупроводниковыми пробойными детекторами /4/ в двух интервалах.

На рисунке в качестве иллострации приведена зависямость числа зарегистрированных осколков от времени для одной из 15 серий измерений. Верхняя кривая относится к первому интервалу, начало которого смещено относительно конца накопления на 13 мин (время, необходимое для транспортировии образца от установки к реактору и для запуска реактора). Нижняя кривая относится ко второму интервалу, которий начинался через 6 периодов полураспада после окончания накопления. К этому времени изомер в мишени практически полностью распался и она содержала только ядра основного соотояния ²³⁵0 и ²³⁹Pu. Из рисунка четко виден эффект деления изомера. То, что наблюдаемое различие интегральных счетов обусловлено только делением изомера подтверждено в специальных экспериментах, в которых было показано, что во время измерений не происходит десорбцяя изомера с мишени и не изменяется заметно эффективность детекторов.

Для определения отношения сечения деления изомера 235 U (${}^{''}_{f}$) к сечению деления его основного состояния на тепловых нейтронах (${}^{g}_{f}$) использовалось выражение

$$\frac{\mathcal{C}_{f_{g}}^{m}}{\mathcal{C}_{f_{g}}} = 1 + \frac{\left(\frac{\mathrm{I}_{f}}{\mathrm{I}_{f}} - 1\right) \lambda_{m}^{2} t_{o} \delta t}{\left(e^{A_{m}t_{c}} - e^{A_{m}t_{c}}\right)\left(e^{A_{m}t_{o}} - 1\right)} \cdot \left(\frac{\mathcal{E}_{M} N_{m}^{2} I_{f}}{\mathcal{E}_{m} N_{m}^{2} I_{f}} - \mathcal{E} N_{M_{f}}^{2} M\right),$$

- в которое входят только величины, измеряемые в данном эксперименте:

 - N_{fM}≡I_{fn} интегральный счет делений от мониторной мишени с ²³⁹Ри; N⁹₂ число ядер ²³⁹Ри в мишени с изомером;
 - N_M- число ядер ²³⁹Ри в мониторной мишени;
 - Е эффективность регистрации осколков детектором изомерной мишени;
 - Ем- эффективность регистрации осколков детектором мониторной мишени;

Занисяность числа зарегистрированных осколков от времени: I – интегральный счет оскалков от образца, содержащето изомер ^{235}U ; 2 – интегральный счет осколков от образца, когда изомер ^{235}U расшался. Времи макопления образца изомера ^{235}U – $t_0 = 50$ мин

- to время, в течение которого проводилось накопление изомера;
- t.- время начала регистрации делений от мишени с изомером (начало первого интервала);
- t₂ время окончания регистрации делений в мишени с изомером (конеп цервого интервала);

Am- постоянная распада изомера 2350 :

st=t2-t, - продолжительность измерений. В вышеприведенном выражении эначения I_f^m, I_f, I_f^m относятся к одной в той же продолжительности измерений о t.

Фон от подложки мишени и детектора измерялся периодически между сернями и был постоянен (0,98 І/мин). В зависимости от времени накопления t. он составлял ~ 6-12% от величины интегрального счета

I, I, Подобный фон для моняторной мишены был пренебрежные мал.

Эффективность детекторов (Е,Ем) к осколкам определялась до начала в после окончания измерений каждой серин с помощью калиброван-HOR OCROJOVHOR METHERR $^{252}C_{\ell}$.

Число ялер N, N, M, плутония на мишенях вичислялось по данным измерений « -спектров.

Обработка данных проведенных измерений дает для искомого отношения величину . ന

$$\frac{O_{f}}{S_{f}} = 2,2+0,4.$$

Полученный результат с больфой вероятностью свидетельствует о том. что сечение деления изомера 235 в тепловой области энергий нейтронов определяется уровнем составного ядра со спином О.

Chacok Jatepatyph

I. Asaro F., Perlman J. Phys. Rev., 1957, v.107, p.318.

- 2. Huizenga J.R. e.a. Phys.Rev., 1957, v.107, p.319.
- 3. Жудов В.И. и др. Письма в ЖЭТФ, 1979, т.30, вып.8, с.549.
- 4. Смирнов А.Н. В соорнике Программа и тезиси XXX Совещания по ядерной спектроскопые и структуре атомного ядра . Ленинград, Hayka, 1980, c.4II.

ИССЛЕДОВАНИЕ ДЕЛЕНИЯ ВИСТРОЕННЫХ ЯДЕР ²³⁵0 В ИНТЕРВАЛЕ ЭНЕРГИЙ НЕЙТРОНОВ I,7 9В - 2 кэВ

Л.С.Данелян, Ю.В.Захаров, В.М.Зиков, В.И.Мостовой, В.А.Столяров, С.А.Бириков, Н.Ю.Зисина, А.А.Осочников, А.В.Свотцов

(ИАЭ им. И.В.Курчатова)

На нейтронном спектрометре по времени пролета проведени еравнительные измерения интенсивности реакции деления на выстроенных и неориентированных ядрах ²³⁵U с целью определения вклада р-нейтронов в сечение деления. В некоторых резонансах отношения сечений на выстроенных и неориентярованных ядрах отличаются от единици на величны порядка двух статистических ошноск.

Comparative measurements of the fission reaction intensity on aligned and non-aligned nuclei of ²³⁷U have been made at a neutron spectrometer by the time of flight in order to determine the contribution of p-neutrons to the fission cross-section. For some resonances the rations of cross-sections on the aligned and nonaligned nuclei differ from a unit by a value on the order of two statistical errors.

Общирная информация о параметрах уровней ядер, полученная к настоящему времени методами нейтронной опектрометрии, относится в основном к взаимодействир ядер с э-нейтронами (орбитальный момент $\ell = 0$). Для дальнейшего развития знаний об уровнях ядер представияет интерес идентибицировать р-резонанси (образованные нейтронами с орбитальным моментом l = 1) и определить вклад р-нейтронов в сечения взаимодействия в области энергий до нескольких десятков килоэлектронвольт. Знание вклада р-нейтронов необходимо в расчетах ядерных реакторов и для развития теоретических моделей взаимодействия нейтрона с ядром, а идентибикация р-резонансов предоставит также полезную информация для исследований вопроса несохранения четности в ядерных процессах.

Прямым методом идентификации р-резонансов и определения вклада р-нейтронов в сечение взаимодействия с ядром в области неразрешенных резонансов является изучение сечений на вистроенных ядрах. Данный метод основан на различие сечений взаимодействия неполяризованных р-нейтронов с выстроенными и неориентированными ядрами. Для сечения деления можно использовать формулу из работи /1/:

 $\mathcal{E}_{f} = \mathcal{E}_{f}^{\circ} (1 + f_{2} \, \varphi_{3} \, F_{3}), \, \mathbf{rm}$

 \mathcal{C}_{f} в \mathcal{C}_{f} - сечения деления соответственно для выстроенных и неориентированных ядер, f_{z} - параметр степени выстроенности, Φ_{3} = 3(\vec{K} , \vec{N})-I (\vec{K} в \vec{N} - единичные векторы в направлении пучка нейтронов и ося выстраивания), F_{3} - функция, зависящая от спинов уровней, значения которой расположени в интервале от (-0,5) до (+0,5). Увеличение сечения в случае плоскостного выстраивания ядер может наблюдаться в p -резонансах для любого спина уровня составного ядра, а уменьшение - только для уровней со спинами $J = I \pm I/2$ (J - спин уровня составного ядра, I - спин ядра-мишени).

В данной работе на нейтронном спектрометре по времени пролета ЛУЭ "Факел" с разрешением 4 нс/м проведены сравнытельные измерения интенсивности реакции деления на вистроенных и неориентированных ядрах²⁵⁵U в интервале энергий I,7 аВ - 2 каВ. Выстранвание ядер происходело в результате взаимодействия квадрупольного момента ядра урана с неоднородным внутрикристаллическим полем при охлажлении монокристалла уранил-рубилий интрата в низкотемпературном рефонжераторе растворения Не в Не до температури 0, 1-0,08 К. Из-за несовершенства кристаллов и теплового контакта эффективная средняя температура монокристаллов может отличаться от температуры колодопровода рефрижератора. Внуисленный с учетом этого параметр вистранвания 4, порядка 0,3. Внотранвание происходило в плоскости, периендикулярной оси симметрии монокристалла С , которая располагалась пареллельно оси нейтронного пучка. Количество 235 [] в образие ураних-рубидий нитрата составлялс 5 г. Для уменьшения энергониделения в образце за счет 2 -распада, использовался уран высокого обогашения (99,985%) по 3 (. Акти деления регистрировались по вторичным нейтронам деления нестью спинтилляниюнными детекторами с кристаллами стильбена Ø 70х40 мм, расположенными в горизонтальной плоскости вне пучка нейтронов, симметрично относительно его оси, по три с каждой стороны рефрижератора. Равномерное расположение детекторов приводит к тому, что изменение отсчетов деления в случае выстроенных ядер, обусловленное угловой анизотропней нейтронов деления, составляет <0.3%. Идентефикация частиц происходила по форме сигнадов. образованных быстрымы нейтронамы и гамма-квантами в стильбене. Использовался метов Оуэна, основанный на насыщеные пространственного заряда у последнего динода ФЭУ /2/. Была создана "схема пропускания - реле времени", которая запирала электронную схему во время первичного гамма-нипульса ускорителя и не пропускала импульсь на

ЭЕМ во время наладки и выключений ускорителя. Эфрективность регистрации акта деления составляла 3%. Измерения проводились при температурах 0,1 и 4,2 К ($f_2 \approx 0$).

Полученные временные спектры отсчетов деления были разбити на интервали (из 128 интервалов до энергии 140 эВ 95 включали по одному резонаноу, остальные по два - четыре) и в каждом вычислялись отношения у отсчетов в измерениях при 0,1 и 4,2 К за внчетом "фоновой подложки", проведенной по наиболее глубокам минамумам между резонансами. Нормировка проводялась по интегральному счету в области энергий 8,8 - 100 эВ. Для проверки чувствительности детекторов к темма-налучению реакции (n,š) на уране были построени отношения у в (рис. I). Видно, что нет систематического SABNCHMOCTH OT &= 1/1 односторонного отклонения, при больших значениях ос-величины у расположены как выше, так и ниже единицы. На рис.2,а и 2,6 приведены нормированные к единице отношения у в зависимости от энергий резонансов. Внизу показани значения величин 2g Го 12g Го°, а вверху значения $\mathcal{L} = \Gamma_r / \Gamma_f$ в виде вертикальных прямых (Го,ГушГс призеденная нейтронная, радиационная и делительная имрина уронней). Отличаниеся от единицы отношения У наблюдаются как в слабых, гак и в средних по силе резонансах. В таблице приведены резонансы, для которых отношения у отличаются от единици приблизительно на 10%. Однако эти отличия находятся в пределах только двух статистиvectar oundor.

.

Энергия резонанса Е., эВ	Отношение счетов У± Δ У	Значения 2 g Г'n, МэВ	$\mathcal{L} = \Gamma_{\chi} / \Gamma_{f}$
3,15	0,95+0,03	0,012	0,42
23,4I	I,07+0,04	0,164	4,0
25,6	I,09 <u>+</u> 0,04	0,12	0,1
36,45	0,93+0,04	0,12	0,1
45,82	I,I6 <u>+</u> 0,08	0,026	0,5
55,82	I,05 <u>+</u> 0,03	0,32	0,14
72,4I	0,94+0,04	0,33	0,4
72,9	0,82+0,09	0.04	0.2
77,53	0,88+0,07	0,11	0.4
85,7	0,9I±0,06	0,027	0,2
88,7	0,88 <u>+</u> 0,07	0,26	0,1

Для наделного идентифицирования ρ -резонансов необходимо повисить статистическую точность.

(Параметры уровней взяты из работы (3/; среднее значение $2g \int_{n}^{\infty} \approx 0, I$ МэВ). В области неразрешенных резолансов в интервале энергий 0, I5-2 кэВ в пределах полученной статистической точности $\pm I$ нет различий в сечениях на выстроенных и неориентированных ядрах.

Список литературы

- Алфименков В.П., Ефимов В.Н., Пантелеев Ц.Ц., Фенин Ю.И. Взаимодействие поляризованных резонансных нейтронов с ориентированными ядрами. Препринт ОИЯИ, Р4-6576, Дубна, 1972.
- Квитко И.Н., Осочников А.А. Многоканальная система регистрации нейтронов деления с дискраманацией формы ампульсов от нейтронов и гамма-квантов в сцинталлиционном детекторе, работанаем в режиме насыщения пространотвенного заряда ФЗУ (метод Оузна). Препринт ИАЗ-ЗОІЗ, 1978.
- Moore M.S., Moses J.D., Keyworth G.A., Dabbs J.W.T., Hill N.W. Spin determination of resonance structure in (²³⁵U + n) below 25 keV. - Phys.Rev. C, 1978, v.18, N 3, p.1328-1348.

ИССЛЕДОВАНИЕ (", ")-ПРОЦЕССА ПРИ ДЕЛЕНИИ ²³⁹ Ри РЕЗОНАНСНЫМИ НЕИТРОНАМИ

Г.З.Борухович, Т.К.Звёздкина, А.Б.Лаптев, Г.А.Петров, О.А.Щербчков

(ЛИЯФ им. Б.П.Константинова)

Проведены измерения множественности и опектров 7 -квантов деления ²³⁹ А. в джаназоне энертий нейтронов 6-500 эВ. Амплитудный анализ производился для 8 резонансов. Обнаружено, что спектры 7 -квантов для Г -резонансов с малыми Г_f имеют более жесткий вид, чем спектры резонансов с большими Г_f.

INVESTIGATION OF (n, jf)-PROCESS FOR ²³⁹Pu FISSION BY RESONANCE NEUTRONS. Fission *j*-rays spectra and multiplicity measurements for ²³⁹Pu has been carried Out for incident neutron region 6 eVe500 eV. Amplitude analysis has been performed for 8 resonances. It was found that *j*-rays spectra for 1⁺-resonances with email Γ_f has more hard form than that for resonances with large Γ_f .

Введение

Большинство экспериментальных работ по исследованию (n, χ_i^2)процесса посвящено измерениям средней множественности и средней полной энергии χ_i -квантов деления, а также среднего числа вторичных нейтронов деления. Из анализа корреляции этих величин и делительной ширины Γ_i для наиболее исследованного ядра ²³⁹Ри получены оценки ширины Γ_{si} (I-5). В случае с χ_i -квантами такой анализ основан на предположении, что спектр χ_i - квантов из осколков деления не меняется от резонанса к резонансу.

В нашей предыдущей работе /57, результаты которой показаны на рис. I, для I⁺ – резонансов ²³⁹Ри было получено, что Γ_{37} (I⁺)= 6, I изВ \ddagger 2,9 мзВ. В данной работе проведены измерения спектров и множественности J –квантор в отдельных резонансах ²³⁹Ри. Такие измерения позволяют:

- определить форму спектра предделительных 🔏 -квантов;
- получить информацию о свойствах высоковозбуждённых состояний компаунд-ядра при различных деформациях;
- проверить предположение о постоянстве спектров X-квантов из осколков в различных резонансах;
- уточнить величину предделительной ширины Гус.

До настоящего времени была выполнена только одна работа 267, в которой измерялись спектры X-квантов деления 239 Pu из I⁺-резонансов 44,48 эВ и 10,93 эВ. В нашей работе спектры были измерены для 8 ре-зонансов ²³⁹Ри, основные параметры которых приведены в таблице.

Номер резонанса	Е _о , эВ	J [#]	Γ _į , MəB
RI	90,75	I+	$9 \pm 28 \pm 2230 \pm 305 \pm 150 \pm 12, 4 \pm 165 \pm 538 \pm 4138 \pm 6$
F2	52,60	I+	
R3	47,60	I+	
R4	44,48	I+	
R5	41,66 + 41,42	I+	
R6	22,29	I+	
R7	17,66	I+	
R8	10,93	I+	

Методика эксперимента_

Измерения проводились с помощью установки, размещённой на 31метровой базе нейтронного время-пролётного спектрометра IHEMC 257 . Для регистрации осколков использовалась быстрая ионизационная камера деления, содержащая I,2 г 239 Ри, нанесённого на I5 пластин с поверхностной плотностью 0,34 мг/см². Гамма-кванты регистрировались 4 сцинтиляционными детекторами с кристаллом Na J(Tł) размером 6 I50 мм X 100 мм, имеющими амплитудное разрешение ~IO % при E_y = = 662 кзВ (137 Cs). Порог регистрации δ -квантов равнялся 200 кзВ или 400 кзВ в зависимости от серии измерений, при этом эффективность одного детектора не превышала I,4 % (E_y \approx I,2 МзВ). Для защиты детекторов от мягкого δ -излучения и нейтронов, их передние поверхности закрыты фильтрами из свинца (6 мм) и ⁶Li (35 мм).

Фон во временных спектрах измерялся по методу резонансных фильтров из Со, Ад и Сd. Совпадения импульсов от осколков деления и б-квантов отбирались с помощью время-амплитудного конвертера с временем преобразования ЛОО нс. При оффективности регистрации истинных совпадений 85 % фон случайных совпадений составлял в среднем 10 %, а фон вторичных нейтронов деления $\lesssim 2$ %.

Накопление и обработка информации осуществлялась с помощью информационно-измерительной системы 277, использующей модули в стандарте КАМАК и мини-ЭВМ PDP II/05. Эта система позволила в данном эксперименте одновременно измерять 2 временных спектра (по 1050 каналов шириной 80 нс – 1280 нс) осколков и совпадений, а также

32 змплитудных спектра гамма-квантов (по 256 каналов каждый).

Результаты измерений

Выло выполнено три серии основных измерений длительностью примерно по 60 ч. каждая и несколько контрольных серий измерений меньшей длительности с целью оценки фона случайных совпадений и влияния разных скоростей счета в резонансах на форму измеряемых гамма-спектров.

Подробный анализ полученной информации будет приведён в отдельной статье. С целью общей иллюстрации основных закономерностей в энергетических спектрах *ў*-квантов на рис.2 приведены результаты предварительной обработки одной из серий измерений. Для увеличения стетистической точности спектры от 4 отдельных детекторов после введения поправок на просчёты и вычитания фонов были просумыированы. Кроме того, спектры были сгруппированы с шагом IOO кэВ, 200 кэВ и 400 кэВ.

Из анализа этого рисунка хорошо видны следующие характерные особенности измеренных нами спектров:

I. Спектры δ -квантов из резонансов со спинами I⁺ и с большой Г₁ (R6, R7 и R8) имеют весьма близкие формы; то же самое, хотя и с меньшей статистической достоверностью, можно отметить о спектрах δ -квантов из группы резонансов с мальми делительными пиринами (R1, R2, R4 и R5).

2. Несмотря на различия в спинах спектры f-квантов из резонанса R3 (0⁺) и группы слабых резонансов (I⁺) (RI + R2 + R4 + R5) оказываются близко подобными.

3. Однако спектры слабых резонансов (RI - R5) и сильных резонансов (R6 - R8) при одном и том же спине оказываются существенно различным.

Эти результаты представляются весьма неожиданными и не находят простого объяснения в рамках известных подходов.

Список литературы

- I. Shackleton D. et al.- Phys.Lett., 1972, v.42B, p.344.
- 2. Ryabov Yu.V. et al.- Nucl. Phys., 1973, v. A216, p. 395.
- Trochon J., Ryabov Yu.V. В кн.:Нейтронная физика (Материалы 2-й Всесовзной конференции по нейтронной физике, Киев, 28 мая -- І июня 1973 г.). Обнинск, ф2И, 1974, ч.2, с.232.
- 4. Weston L.W., Todd J.H. Phys.Rev., 1974, v. 10C, p. 1402.
- Борухович Г.З., Звёздкина Т.К., Иванов К.Н., Петров Г.А. Петухов А.К., Пербаков О.А. – Препринт ЛИЯФ № 452, Ленинград, 1978.
- 6. Trochon J.et al. В кн.: Нейтронная физика (Материалы 3-й Всесовзной конференции по нейтронной физике, Киев, 9-13 июня 1975 г.) М.: ЩНИМатоминформ, 1976, ч.5, с.323.
- 7. Афанасьев А.А., Григорьев В.П., Марченков В.В., Тубольцев Ю.В., Щербаков О.А. - ИТЭ, M2, 1981, с.80.

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ АНИЗОТРОПИИ ОСКОЛКОВ ДЕЛЕНИЯ И $\mathbb{K}^2_{\mathbf{A}}$ некоторых актинилных ядер

H.M. Saura, D.B. Knorano, B.H. Toxapen, B.A. Harpr

(HAN AH YCCP)

Измерены и проанализарованы диференциальные и янтегральные сечения доления ядер тория-232, урана-235 и урана-236 од- частицами с энергией до 100 Мав. Получена энергетическая заиспиость усредненной величины X3. Проводится сравнение этих данных с модельными ресчетами.

Differential and integral cross sections were measured and analysed for the fission of 232 Th,235 U, 236 U by cd-particles with energies up to 100 MeV. Energy dependence of averaged K2 quantity was obtained. These data are compared with model calculations.

В настоящей работе представлены результаты измерений и анализа дифференциальных и интегральных сечений деления ядер ²³⁵ U и ²³⁶U см. – частицами в диацазоне энергий 20 – 100 МаВ. Такие исследования позволяют проследить особенности в энергетической ванисимости анизотропии угловых распределений осколков деления и, следовательно, величины k_0^2 – дисперсии распределения проекций полного углового момента на ось симметрии ядра с энергией возбуждения.

Измерения выполнены на циклотроне У-120 и У-240 ИЯИ АН УССР. Более подробное описание эксперимента приведено в работах $\overline{/1}, 2/$.

Измеренные угловые распределения осколков описывались полиномами Лежандра и на основе этого анализа получени значения анизотропии. На рис. I приведена анизотропия угловых распределений осколков деления: I – для²³⁵ U и 2 – для ²³⁶ U от энергии ос частиц. Видно, что измеренная нами анизотропия (темные точки) хорошо согласуется с данными других авторов [3,4] в интервале энергий, где имеются такие данные. Различие в поведении анизотропии для обекх ядер наблюдается только в области энергий до 40 мэВ. Выше 40 мэВ (для ²³⁹ Q) и 50мэВ (для ²⁴⁰ Q) величина анизотропии этих ядер почти одинакова и практически не изменяется в исследованном энергетическом диапазоне.

Обычно для вычисления величин, характеризурных входной канал

реакции (коэффициенты прилицения T_{ℓ} , полные сечения реакции \tilde{G}_{R} и т.д.), используется оптическая модель (ОМ). Однако для цараметров оптического потенциала наряду с дискретной многозначностью существует и непрерывная многозначность их значений, что затрудняет анализ данных. Более простым и однозначным методом получения параметров иходного канала реакции является метод приближения параболического берьера (ПБ) [5,6]. Для нахождения энергетической завысимости параметров ПБ намя было использовано два метода анализа. В первом значения коэффициентов T_{ℓ} , полученных из расчетов по ОМ, аппроксимировались простым соотношением для проницаемости ПБ [7]. Пареметры оптического потенциала находились из анализа денных по упругому рассеянию Сх -частиц. Во втором проводился анализ экспериментальных данных по полным сечениям деления с учетом вклада эмиссионного деления:

Рис. I. Анизотропия угловых распределений осколков деления: I-для 235 (, темные треугольники – наши денные, темные точки – денные работы [3], светлые точки – денные работы [4]: 2 – для ²³⁶ (, темные точки – наши денные, светлые точки – денные работы [4]

гле \mathcal{Y} - максимальное число нейтронов, после испускания которых энергетически возможно деление остаточного ядра, $P_{f}^{(t)} = \left[\prod_{f} / (\prod_{f} + \prod_{i}) \right]_{i}^{t}$ вероятность деления ядра после предварительного испускания (- нейтронов, $\mathcal{O}_{\mathbf{Q}}$ - полное сечение реакции, полученное в приближении ПБ $\begin{bmatrix} 5,6 \end{bmatrix}$. Извлекаемые из этого анализа пераметры барьерсв взаимодействия для исследуемых ядер использовались для анализа сечений деления с целью получения величин $K_{\mathbf{Q}}^{(t)} \in \mathbf{X}^{(t)}$. Теоретические расчеты энергетической завысныести величин $K_{\mathbf{Q}}^{(t)} \in \mathbf{X}^{(t)}$. Теоретические расчеты моделя ядра [8]. Подробное изложение метода анализа и процедуры расчета имеется в работе /9/.

На рис.2 приведени данные по К² для делящегося ядра ²³⁶ U. Светлыми треугольниками показана энергетическая зависимость величин К², полученных при определении параметров входного канала реакции с помощью СМ, темными треугольниками – в приодижении ШБ. Там же приведени данные из реакции ²³⁵U(n, £):О - [10], • - [4]. Штриховой линией показана энергетическая зависимость К², рассчитанной для деления исходного ядра ²³⁶U, сплошной линией – после предварительного испускания одного или двух нейтронов. Видно, что только величины К², полученные при втором методе энализа – ШВ, хорско согласуются как с теоретическими, так и с нейтронными денными.

Рис.2. Энергетическая зависимость К² для составного ядра ²³⁶U

Рис.3. Энергетическая зависимость k^2 для реакций $235 U(\alpha, f) - темние треугольника, <math>236 U(\alpha, c) - темние точки, 238 U(\alpha, f) - светане точки [11]$

На рис.З. представлены данные по Ко в области внергий возбуждения свыще 30 МаВ для трех актинидных ядер: А - энергетическая зависи-мость величины К² для делящегося ядра ²³⁹ Рц. • - для делящегося ядра ²⁴⁰ Рц. О - для делящегося ядра ²⁴² Рц. [II]. Сплошными лиинями показаны теоретические расчеты (K2) : I - для деления исходвого составного ядра 240 Ри, 2 - для деления составного ядра 240 Ри с учетом вклада эмпослонного деления, 3 - то же, что 2, но в приближении жинкокапельного барьера деления. Как нидно из рисунка, все экспериментальные точки находятся между I и 2 кривой на протяжении всего энергетического дианазона. В интервале энергий возбуждения 44-54 МаВ они лежат близко к жидкоканельной кривой 3. При энергиях возбуждения выше 60 МаВ наблодается отклонение экспериментельных данных от кривой 3, что, по-видимому, обусловлено большим вкладом понных пропессов в деления [12,13]. Однако изменение характера поведения внизотропии в области возбуждений 40-50 МаВ и переход экспериментальных денных по К2 в области энергий возбуждения 44-54 МаВ к значениям, совпадающим с расчетами по модели индкой капли. свядетельствует об ослаблении оболочечных аффектов в этой области энергий возбуждения ядра.

Таким образом, результати нашего анализа позволяют установить важную особенность, связанную с тем, что при энергии возбуждения 44 МэВ влияние оболочечных эффектов существенно уменьшается, а жидкокапельный барьер становится определяющим в делении.

Список литературы

Занке Н.И. и др.Препринт КИЛИ-82-I3, Киев, 1982.
 Алешин В.А. и др. Препринт КИЛИ-81-22, Киев, 1981.
 Занка Н.И., Кибкало D.B. и др. ЯФ, 1980, 31,43.
 LeachmanR.B., Blumberg L. Phys.Rev., 1965, 137, B814.
 Wong C.Y. Phys.Rev.Lett., 1973, 31,766.
 Vaz L.C. and Alexander J.M. Phys.Rev., 1974, C10,464.
 Занке Н.И. и др. ЯФ, 1979, 29, 1449.
 Griffin J.J. Phys.Rev., 1963, 132,2204.
 Занке Н.И., Кибкало D.B. ЯФ, 1982, 35, 583.
 Simmons J.E., Henkel R.L. Phys.Rev., 1960, 120, 198.
 Kapoor S.S. et al. Phys.Rev., 1966, 149,965.
 Viola V.E., Back B.B. et al. Phys. and Chem. Fission, IAEA,

Vienna, 1974, 1, 391.

угловая анизотропия и параметр к₀² при делении ²²⁶ га и ²²⁷ ас нейтронами вблизи порога

D.А.Немплов, В.А.Рубченя, D.А.Селицкий, В.Б.Фунштейн, С.В.Хлебников, В.А.Яковлев

(Радневна институт им. В.Г.Хлопина)

Х.Д.Андросенко, В.Б.Остапенко, Г.Н.Смиренкин

(ФЭИ)

При $E_n = 3,74-5,0$ МаВ вамерени угловие распределения осколков в реакции 225 Ra(n,f). Результати и данные по реакции 227Ac(n,f) проанаинзированы по статистической теории и свидетельствуют об акфективно одногороби форме внешнего сарьера 227 Ra, 226Ac. Изучена энергетическая зависимость параметра K_0^- .

The angular distributions of fragments in 226 Ra(n,f) reaction were measured at $\text{E}_{\text{R}} = \frac{3}{2},74-5,0$ MeV. The results and the data on 227 Ac(n,f) reaction were analysed by means of statistical theory and point out the effectively one-humped shape of the outer barrier of 227 Ra, 228 Ac. The energy dependence of the parameter K_0^2 was studied.

Измерение дифференциальных сечений деления и иоследование энер-PETERSCROR SABECEMOCTE YFJOBOR AHESOTDONES OCKOAKOB HBARDTOA основными способами подучения информации о квантовых характеристиках переходных соотояний делящихся ядер. В настоящее время значительный интерес визывают вопросы, связанные с подтверждением трехгорбой формы барьера деления, возможность существования которой у ряда актинидов была предоказана теоретически /1,2/. Наиболее убелительные свелетельства существования третьей ямы получены в исследовании сечений реакции ²³⁰Th(n,f). Данные по другим нуклидам области " Ва-ТЪ-Яномалия" не дают возможности следать определенный вызол о фотме барьера вследствие недостаточной точности экспериментальных результатов и неполноты используемого для их анализа теоретического аппарата /37. Значительный интерес в связи с проблемой существования третьей ями представило продолжение цикла исследований угловых распределений осколков деления ближайших соседей. Тр-ядер - Ва A Ac.

Экспериментальные данные по энергетической зависимости угловой анизотропии в реакции ²²⁶Ra(n,f) получены из измеренных угловых

раопределений осколков при энергиях нейтронов 3,7 4 В 45,0 МэВ при использовании реакции D(d, n)³Не на твердых дейтерий-титановых минения. В настоящей работе улучшено энергетическое разрешение и СТАТИСТИЧЕСКАЯ ТОЧНОСТЬ ДАННЫХ ПО СРАВНЕНИЮ С РЕЗУЛЬТАТАМИ ПРЕЖНИХ экспериментов /4/, что позволяло получить уточненную вноормацию о XADARTEDNCTHEAN DESKUM 226Ra(n.f) BOJHSH HODOFS. KOHCTDYRING H FEOметрические карактеристики камеры, использовавшейся для измерения угловых распределений, аналогичны описанным ранее [4]. При проведенин измерений были поставлены две серии экспериментов: на каскадном генераторе ФЭИ КГ-2,5 и электростатическом генераторе Радиевого инстатута. При проведении облучений особое внимание уделялось контроло искажений спектра нейтронов при длятельной эксплуатания тонких твердых дейтерий-титановых мишеней /5/. В контрольных опитах проводились измерения угловых распределений осколков деления 226 ка фоновыми нейтронами. возникалщими из-за накопления дейтронов пучка в поддожках миненей. Полученные поправки вносились в экспериментальные угловые распределения. Измеренные угловые распределения осколков деления 226 Ва аппроксимировались суммой полиномов Лежандра четных степеней по 4-ю включительно. Удовлетворительное описание угловых распределений осколков в реакция 227 Ac(n,f) получено при непользовании $P_{0}(\cos \theta)$ и $P_{0}(\cos \theta)$. На рис. I приведени экспериментальные величены угловой анизотропие А(Е,)=6.(Е,0)/6.(Е,90) осколков деления 227 Ra и 228 Ac . Из представленных данных следует, что угловая анизотропия осколков пеления 227 Ra и 228 Ac во всей измеренной область энергий нейтронов, включая пороговую, изменяется незначительно, в отлачие от случая околопорогового деления соседнего тория.

В рамках каналовой гипотези О.Бора дифференциальное сечение С_/(Е_n, θ) может быть представлено в виде суммы дифференциальных сечений деления через отдельные каналы:

$$\mathcal{G}_{f}(E_{n},\Theta) = \frac{4}{2\pi} \sum_{\substack{J \notin K \\ J \notin K}} \mathcal{G}_{f}(J \pi K, E_{n}) W_{J \pi}(\Theta),$$

где $W_{JK}(\theta)$ – функция углового распределения осколков. Парциальные сечения деления $G_{j}(J_{\pi}K, f_{\sigma})$ вичислялись на основе статистической теории Хаузера-Фешбаха по развитой в работе [6] схеме со значениями параметров, позволившими добиться удовлетворительного описания вероятности деления ²²⁷ка и ²²⁸ с волизи порога. При этом использовалось параболическое приближение формы барьера деления. Результаты расчетов угловой анизотропии осколков деления исследуемых нуклидов представлени на рис. I. Кривые для ²²⁷ка соответствуют зеркально-

асямметричной конфигурации переходного состояния при двух значениях параметра кривизны барьера $\hbar \omega$, для ²²⁸ас-зеркально-симметричной и зеркально-асямметричной седловым конфигурациям. Монотонный рост расчетной величины $A(E_n)$ ядра ²²⁷Ва от минимальной энергии до $E_n \approx 4.1$ МэВ связан с проявлением вращательной полоси, поотроенной на одноквазичаетичном состоянии с K = 1/2. Последующий спад $A(E_n)$ обусловлен увеличением числа переходных состояний. Более высокая плотность состояний нечетно-нечетного ядра ²²⁸Ас приводит к меньщим по сравнению с ²²⁷Ва изменениям в $A(E_n)$. Таким образом, дифференциальные сечения реакций ²²⁶Ra(n,f) н ²²⁷Ac(n,f) волизи порога описываются в рамках представлений об одногорбом внешнем барьере деления.

На рис.2 приведены определенные по статистической теории [7] из экспериментальных данных по угловой анизотропии A(En) энергетические зависимости К²(Е) ядер 227 Ra и 228 Ac. Там же изображены значения < K²>, определенные из расчетных спектров переходных состояний делящихся ядер. При расчете < К²> усреднение производилось по энергетическим интервалам $\triangle E = 0.2$ МэВ, что соответствует энергетическому разрешению экспериментов. Как следует из рис.2, учет плавной энергетической зависимости козфиниентов Т. и наличие более низколежащих открытых каналов размывают значительные локальные выбросы $\langle R^2 \rangle$, приводя к достаточно плавной зависимости $A(E_n)$ и К²(Е). Этот результат находится в согласии с предположением О.Бора о ненабладаемости дискретной структуры переходных состояний нечетных ядер. Обращает на себя внимание то, что энергетические зависимооти двух родственных характеристик - $K_0^2 \times \langle K^2 \rangle$ не обнаруживают ступенчатой структуры, обусловленной дискретностью числа возбужден ных квазичастии, которая наблюдалась ранее в отдельных работах [8,97.

Список литературы

- I. Möller P., Nix J.R. In: Proc. 3^d Symp. on Phys. and Chem. of Fission, Rochester, 1973, v.1, IAEA, Vienna, 1974, p.103.
- Howard W.M., Möller P. Atomic Data and Nucl.Data Tables, 1980, v.25, p.219.
- 3. Michaudon A. Prepr. CEA-N-2232, 1981.
- 4. Инпольтов В.Т., Немалов В.А., Селицкий В.А. и др. ЯФ, 1971, т.14, с.939.
- 5. Немиялов Ю.А., Селициний Ю.А., Соловьев С.М. и др. ШТЭ, 1981, И 6, с.23.

- 6. Немалов Ю.А., Рубченя В.А., Селипкий D.А. и др. ЯФ, 1983, т. 37, с.819.
- 7. Тышин А.С., Истеков Н.К., Врмагабетов С.Б. в др. ЯФ, 1977, т.25, с.270.
- 8. Игнаток А.В., Соколов Ю.В. ЯФ, 1974, т.19, с.1299.
- 9. Vandenbosch R., Huizenga J.R. Nuclear Fission, N.-T., 1973.
- Бабенко Ю.А., Ипполятов В.Т., Немялов Ю.А. и др. ЯФ, 1969, т.10, с.233.

Рис. I. Экспериментальные и расчетные величины угловой анизотропии ооколков деления ²²⁷ Ra и ²²⁸ Ac:

а – угловая анизотропия осколков деления 227 Ra: кривая I рассчитана при $\hbar\omega = 1,0$ MaB; кривая 2 – при $\hbar\omega = 1,0$ MaB для состояний, имениях K=1/2 и $\hbar\omega = 1,15$ MaB для всех остальных;

6 - угловая анизотропия осколков деления ²²⁸ас: кривая I соответствует зеркально-симметричной форме ядра в седловой точке; кривая 2 - зеркально-асимметричной

эфект аномальной утловой анизотропии осколков при делении

Э.Ф. Фомушкин, Г.Ф. Новоселов, Ю.М. Виноградов, В.В. Гаврилов, А.М. Швецов

(ИАЭ им. И.В.Курчатова)

В деленни нейтронами при 1,57 < Е. 2,38 Мэв обнаружена резонансная зависимость угловой анизотропии осколков. В максимуме значение коэффициента анизотропии A. 2. Делается вывод о преимущественном делении составного ядра ** Am через канал K = 1/2.

Resonance dependence of angle anisotropy of fragments in fission of 242 mAm by neutrons with energies from 1.57 to 2.38 MeV is discovered. The maximum anisotropy coefficient value is $A_{12}^{\sim 2}$. Conclusion about the advantage fission of compound nucleus 243 Am over the channel K=1/2 is being made.

Вся имеющаяся в настоящее время информация об угловых распределениях осколков деления получена при использовании четно-четных (ч.-ч.), четно-нечетных (ч.-н.) и нечетно-четных (н.-ч.) ядер-мишеней. Угловое распределение является функцией распределения версятностей различных значений углового момента \mathcal{J} и его проекции К на ось симметрии ядра в переходном состоянии; предполагается, что направление разлета осколков совпадает с осью симметрии ядра $\angle I/$.

При энергии возбуждения вблизи барьера для деления доступно небольшое число каналов, т.е. состояний ядра с определенными значениями квантового числа К. В этом случае угловые распределения осколков проявляют четко выраженные структуры, а величина угловой анизотропии может достигать значений ~ IO-IOO. Подобная ситуация наиболее характерна для околопорогового деления четных изотопов тория и урана У - квантами и нейтронами /2,3/. При возбуждении ядер любого типа четности до энергии ~ I-2 МаВ над барьером и выше в делении могут участвовать многие состояния, имеющие заметный разброс значений К; в этом случае определяющими становятся статистические закономерности формирования эффективных значений У и К. Многочисленные исследования деления ч.-ч., ч.-н. н н.-ч. ядер онстрими нейтронами показали, что при энергиях возбухдения над барьером ~ I МэВ и выше угловне распределения осколков в значительной степени сглажени, а коэффициент анизотропии $A = dG_{\mu}(0)/dG_{\mu}(0)/dG_{\mu}(0) - 1$, как правило, не превышает 20-30% [4, 5].

Для ответа на вопрос, в какой отепени отмеченные закономерности справедливы при делении и.-и. ядер-мишеней, были проведены измерения угловых распределений осколков при деления 242 лат квазимонохроматическими нейтронами для дяти значеный энерган в интервеле 1.57 ≤ Е. ≤ 2.38 МаВ. Выбранный интервал энергия объясняется тем. что ранее в сечения деления 242m Am при E. ~ 2 МоВ нами была отмечена некоторая нерегулярность [6]. Измерения угловых распределений осколков проводились на электростатическом ускорителе. Шля генерации нейтронов использовалась реакция $T(\rho, n)$. Осколки деления регистрировались поликарбонатной пленкой, имеющей форму конуса; слой 242mAm располагался в плоскости основания детектирующего конуса конпентрично его оси /77. После химической обработки просмотр пленок и счет треков осуществлялся визуально с помощью микроскопа. Сканирование разверток конуоных пленок проводилось по кольцевым зонам с центром в вершине конуса. Аналогичным образом сканировались пленки, регистрировавшие фон от спонтанного пеления япер: Очевилно, в этом случае угловое распределение осколков изотропно. Вичисление доли осколков пеления, попалающих в данную кольпевую зону детектора, проводилось с использованием теоретико-вероятностного метода (8/: результаты вычислений контролировались дамными. полученными при регистрании актов спонтанного деленая. Угловые распределеная обычно алпрокоямируют суммой полинсмов Лежандра четных степеней. При всех копользовавшехся энергиях нейтронов статистически значимы только нулевой и второй полинсмы Лежандра, т.е. двфференциальное сечение деле-HILS 242m Am в рассмотренном интервале энергий нейтронов можно представить формулой

$$d\mathcal{G}_{\ell}(E_n,\theta) \simeq \frac{\mathcal{G}_{\ell}(E_n)}{4\pi} \left[I + \mathcal{Q}_{\ell}(E_n) \mathcal{P}_{\ell}(\cos\theta) \right], \quad \text{где} \quad (1)$$

$$A = dG_{1}(0^{\circ})/dG_{1}(90^{\circ}) - I = \frac{(3/2)Q_{2}}{I - Q_{2}/2}.$$
⁽²⁾

На рисунке приведена энергетическая зависимость коэффициента утловой анизотропии осколков при делении ²⁴² ММ нейтронами. В экспериментально полученные эначения внесены поправки (~5%) на конечное угловое разрешение измерительного устройства (9/. На рисунке показан также результат аппроксимации значений A(E_n) функцией распределения Лоренца

$$A(E_n) = \frac{A_o}{\left[\frac{2(E_n - E_o)}{f_{o}}\right]^2 + 1}$$
(3)

С учетом поправки на разброс энергии нейтронов в каждой экспериментальной точке ($\pm \Delta E_{\sigma} \simeq 90$ кэВ) получены следующие значения коэффициентов: $\Lambda_0 = 1.98 \pm 0.09$; $E_0 = 1.96 \pm 0.04$ МэВ; $\Gamma = 0.69 \pm 0.02$ МэВ. Приведенные погрешности соответствуют средней квадратичной ошноке.

322

I
Столь значительная анизотропия при целении тяжелых ядер нейтронами через состояния с энергией возбуждения ~ 3 МэВ над барьером наблопается внервые. Обращает на себя внимание резонансный характер энергетической зависимости коэффициента угловой анизотропии. Форма утлового распределения осколков (I) с максимумом при $\theta = 0^{\circ}$ и большая величина анизотропии свидетельствуют в пользу того. что в рассмотренном энергетическом интервале деление происходит преимушественно через канал K = 1/2 /1,37, хотя в общем случае захват онстрого нейтрона спиновым изомером 242m Am (J. $K = 5^{-}, 5)$ MOжет давать весьма широкий спектр значений квантового числа К.

Исследование влияния спина ядра-мишени на характеристики деления составного ядра /2.107 позволило сформулировать для ч.-ч. составных ядер принцип "консервативности" к изменению внутреннего момента: "...при делении ч.-ч. ядер, образованных из нечетных ядермишеней с высоким спином, происходит подавление каналов К = 0. Сущность зарегистрированного нами явления можно определить так: при пелении нечетно-четного япра(²⁴³Am) . образованного из н.-н. лара-мишени с высоким спином, в определенном интервале энертии возбуждения происходит преимущественное формирование канала К = 1/2.

Механизм обоих эффектов пока неясен и требует дальнейших исслепований. в том числе на других н.-н. ядрах-мишенях.

Список литературы

- Силсок ялгература
 Г. Уилер Дж.А. В кн. Успехи физики целения ядер, М.; Атомиздат, 1965, 7.
 2. Остапенко Ю.Б., Смиренкин Г.Н. и др. ЭЧАЯ, 1981, 12 с. 1364.
 3. Yuen G. et al. Nucl. Phys., 1971, A171, р.614.
 4. Андросенко Х.Д. и др. In: 2nd IARA Symp. on Physics on Chemistry on Fission. Vienna, IAEA, 1969, SM-122/134.
 5. Фомушкин Э.Ф., Гутникова Е.К. ЯФ, 1969, т.IO, с. 917; Докл. АН СССР, 1972, т.206, с.1088.
 6. Фомушкин Э.Ф., НОВОСЕЛОВ Г.Ф. и др. НФ, 1981, т.33, с.620.
 7. Фомушкин Э.Ф., Гутникова Е.К. и др. НФ, 1971, т.14, с.73.
 8. Фомушкин Э.Ф., Атомная энергия, 1965, т.18, с.178.
 9. Rose M.E. Phys.Rev., 1958, v.91, p.610.

9. Rose M.E. Phys. Rev., 1958, v.91, p.610. IO.Гонин Н.Н. и др. - Письме в ЖЭТФ, 1982, т.35. с.176.

мнолестненность нейтронов при спонтанном делении

И.Д.Алхазов, А.В.Данивль, В.Д.Динтриев, В.Н.Душин, В.М.Карасев, С.С.Коваленко, С.И.Косточкин, А.В.Кузнецов, Н.К.Ласточкин, Л.З.Малкин, К.А.Петриак, Л.А.Плескачевский, А.В.Фомичев, В.И.Шнаков

(Радневый институт им. В.Г.Хлопина)

Описывается экспериментальная установка для измерения множественностей мгновенних нейтронов испараемих дополнительными осколками деления. Нредставлени результати измерения велячин ул У₂, их дюсперсий и ковариаций для спонтанного деления ²⁶² Сf.

The experimental set-up for the measurements of multiplicity of prompt neutrons emitting by complementary fission fragments is described. The results of both Vi and V2 values and their variances and covariance for the 232 Cf spontaneous fission are presented.

Изучение распределения множественности мгновенных нейтронов HEACHTRA ROSBOLRET ROLVARTS BEARING MHOODMAINED O ROOHCCCAL ROOTCKAник на последних станиях деления, когда происходит формирование распределений осволков деления по массам, кинетическим энергиям, и энергиям возбуждения. В связи с этим представляет интерес не просто изучение можентов распределений множественности нейтронов. усредненных по всему массовому распределению, а сравнение соответствущих величин для различных значений масс и кинетических энергий осколков. Такие данные, в частности вопрос о существовании пля отсутствия коррелящий между числом нейтронов, испаряемых дополнательным осколкама, аграрт важнур роль в развитие представлений об исобенностях спуска ядра с барьера деления к точке разрыва. В экспериментах такого типа, проведенных ранее /1,2/, не было обнару-RCHO HANEYER SAMOTHOR ROPPONSIVE, TO WHTOPUPOTAPOBALOCL RAK CBMдетельство значательной диссипация энергии на стадия спуска и достехения статистического равновесия волизи точки разрыва.

Экспериментальным способом корреляция может быть определена на основания измерения дисперсий распределений множественности нейтронов, испаряемых дополнительными осколками. Как отмечалось в работе (2), возможны два варианта проведения эксперимента: I) непосредственное определение двумерной множественности нейтронов $P(V_{4}, V_{2})$ и 2) определение трех одномерных распределений $P(V_{4}), P(V_{2})$ н $P(V_{4}+V_{2})$.

В Радневом институте была создана экспериментальная установка, позволящая измерать двумерные $Q(n_1, n_2)$ и одномерные $Q(n_1+n_2)$ распределения миновенных нейтронов деления. Экспериментальная установка состоят из двух жилкостных сцентиллинонных счетчиков нейтронов (2 х 210 л) и вакуумной камеры с двумя полупроводниковыми детекторами осколков деления и источником 252 Cf (рис. I).

Рис. I. Схема эксперимента;

ГИС. 1. СДЕМА ЭЛСПЕРИМЕНТА; I -жидкостной сцинтиляционный счетчик нейтронов; 2 - вакуумная камера с полупроводниковыми детекторами осколков деления и источ-ником ²⁵² СГ; 3 - фотоумножитель ФЗУ-49; 4 - окно из оптического стекла; 5 - слой поливтилена (5 см); 6 - слой семнца (5 ом); 7 - светоднод системи стабилизации амплитуди

IDEMCHONE ANAROCTHUX CIGHTELISINGONHUX GETERTOPOB C BECHNEM гадоленнем позволяло регистрировать нейтроны с высокой эффективностью (Е = 50-70%). Установка работала в линию с ЭВМ, предварительно обработанный и отсортерованный массив данных записывался на магнитный диск. Суммарная статистика составляла 2 '10⁶ событий.

Регистрация нейтронов осуществлялась в течение 25 мнс после акта деления. Фон измерялся в ходе эксперимента в течение такого же временного интервала через 50 мкс после регистрации деления и составлял 5 - 10³ имп/с. Регистрация события блокировалась в случае одновременного появления импульсов от обонх детекторов нейтронов, а также в случае появления за время регистрации (T = 75 мкс) еще одного акта деления. Для уменьшения влияния рассеянних нейтронов и У-квантов реднационного захвата нейтрона между детекторами

нейтронов была установлена защита из полиэтилена и свинца. При воостановлении моментов распределений множественности нейтронов учитивались поправки на фон, разрешающее времи нейтронных счетчиков; эффективность регистрации нейтронов рассчитывалась с помощью метода Монте-Карло с учетом реальной геометрии детекторов /3/.

В работе получены первые и вторые моменты распределений множественности нейтронов, их зависимости от массы и кинетической энергии осколков при спонтанном делении ${}^{252}C_{\rm f}$. Результати представлени на рис. 2 – 6 в виде контурных диаграми. На этих же рисунках пунктирной линией изображены контуры распределения масс и кинетических энергий осколков.

Рис. 2. Зависимость полного числа нейтронов от Е., М осколка

Предварительный анализ полученных результатов свидетельствует о некоторых расхождениях с данными, полученными ранее, в частности дисперсии O_{V_1} и G_{V_2} , величина корреляции числа нейтронов, испаряемых легким и тяхелым осколками $cov(V_1V) \approx -0,2$, несколько выше, чем было получено в работе $(2/cov(V_1V)) \approx -0,1$. В дальнейшем предполагается применить методи регуляризации для получения детальной информации о корреляционных соотношениях между массовими и энергетическими распределениями осколков.

Рис. 3. Занисимость дисперсии полного числа нейтронов от E_R и M осколка

Рис. 4. Среднее число нейтронов, испаряемых осколком с массой M и полной кинетической энертией $\mathbb{B}_{\mathbf{R}}$

Рис. 5. Дисперсия среднего числа нейтронов, испаряемых осколком о массой M и кинетической энергией Е_к

Рис. 6. Зависимость ковариации числа нейтронов, испараемых парными OCHOARAME.

CINCOR JUTODATYDE

- I. Gavron A., Fraenkel Z., Phys. Rev. Lett., 1971, v.27, p. 1148.
- Mifenecker H., Signarbieux C., Babinet R., Poiton I., Report LBL-1950, Berkeley, USA, 1973.
 Данжаль А.В. и др. Препринт Радмевого ин-та, РИ-170, Л., 1983.

ОПРЕДЕЛЕНИЕ МНОВЕСТВЕННОСТИ МІНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИН

И.Д.Алхазов, А.В.Данизль, В.Д.Дмитриев, В.Н.Душин, С.С.Коваленко, А.В.Кузнецов, В.И.Шпаков

(Радиеный институт им. В.Г.Хлопина)

Рассматриваются вопросы восстановления днумерных распределений множественности мтновенных нейтронов деления. Описывается процедура восстановления множественностей для случая спонтанного деления ²⁵² С_f.

The problems of restoration of the two-dimensional fission prompt neutron multiplicities are considered. The procedure of the neutron multiplicities restoration is described for the case of the 20 Cf spontaneous fission.

При измерении распределений множественности мгновенных нейтронов спонтанного деления ²⁵² с_f с помощью жидкостных сцинтилляционных детекторов нейтронов, имеющих относительно высокую эффективность регистрации (50-70%), основной и наиболее сложной задачей являлось восстановление исходных распределений по измеренным экспериментально. При одновременном измерении множественностей нейтронов каждого из парных осколков результатом является двумерная множественность

Q(n₁,n₂). При измерении суммарной множественности нейтронов из обоих осколков результатом является одномерная множественность

 $Q(n_1+n_2)$.

При восстановлении соответствующих исходных множественностей $P(v_1, v_2)$ и $P(v_1 + v_2)$ необходимо учитывать следующие факторы, приводящие к их искажения в процессе измерения.

I. Фон детектора, имещий свою множественность и приводящий к повышению вероятности собнтий с большим числом нейтронов.

2. Просчеты, связанные с конечным разрешающим временем нейтронных счетчиков и приводящие к повышению вероятности событий с меньшим числом нейтронов.

3. Эффективность нейтронных счетчиков.

а) При одномерных измерениях эффективность слабо зависит от энергии к углового распределения нейтронов и практически постоянна для всех способов деления. В нашем случае €≈72%.

б) При двумерных измерениях, хотя источник нейтронов расположен асимметрично стносительно детектора нейтронов, направление вынета осколков фиксировано по оси детектора и сущестнует выраженная направленность вылета нейтронов по направлению импульса осколков; имеется заметная вероятность регистрации нейтронов от дополнительного осколка, вылетащего в направлении противоположном детектору. При измерения $Q(n_1, n_2)$ с помощью днух детекторов необходимо рассматривать эффективность в наце матрицы

$$\mathbf{B}_{\mathbf{m}} \begin{pmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} \\ \mathcal{E}_{21} & \mathcal{E}_{22} \end{pmatrix},$$

где \mathcal{E}_{11} и \mathcal{E}_{12} - эффективности регистрации I-м и 2-м счетчиками "своих" нейтронов (от осколков, именщих импульо по направлению к соответствущему счетчику); \mathcal{E}_{12} и \mathcal{E}_{21} - эффективность I-го и 2-го счетчиков к "чужим" нейтронам. Элементи матрици эффективности Е зависят от геометрии эксперимента, энергии нейтронов, массы и кинетической энергии осколков.

в)Взаимное влияние счетчиков, связанное с перерассеянием нейтронов и возможностью регистрации У-квантов захвата нейтронов в объеме другого счетчика. Для минимизации этого эффекта между счетчиками введена защита, однако она не сводит его к нуло. Учет влияния этого эффекта приводит к эквивалентному увеличению перекрестных членов ξ_{12} и ξ_{21} .

г) Элементи матрици Е, восоще говоря, зависят от множественности. Однако известно, что при больших значениях эффективности этот эффект пренебрежимо мал /1/.

Множественность фона определяется в течение всего эксперимента. Просчети из-за наложений импульсов могут бить корректно вычислены исходя из разрешающего времени детектора и времени жизни нейтрона в сцинтилляторе. Элементи матрицы эффективности не могут бить определены экспериментально. Измерены могут бить только $\langle \mathcal{E}_{11} + \mathcal{E}_{21} \rangle$ или $\langle \mathcal{E}_{22} + \mathcal{E}_{12} \rangle$ исходя из нормировки на известную величину $\langle \mathbf{V} \rangle$.

В связи с этим элементи матрици Е рассчитивались методом Монте-Карло с учетом конкретной геометрии эксперимента для каждого значения М, Е_к осколков деления [2]. При этом учитывались следуищие процесси:

- перерассеяние нейтронов на водороде, элементах защити, конструкционных материалах, замедление и захват нейтронов на ядрах гадолиния и водорода, приводящие к эффективности захвата \mathcal{E}_c ;

- излучение X-квантов, их распространение и диссипация энергии в объеме детектора, приводящие к эффективности регистрации X-квантов ξ_x ;

ł

- излучение света и его регистрация фотоумножителями, приводящие к эффективности светосбора $\mathcal{E}_{\mathcal{L}}$.

Полная эффективность $\mathcal{E} = \mathcal{E}_{c} \cdot \mathcal{E}_{x} \cdot \mathcal{E}_{\ell}$.

При расчете эффективности учитывалось испарение нейтренов из полностью ускоренных осколков с массой М, кинетической энергией Е и температурой Т, летящих по направлению к детектору в конусе с углом при вершине 4°. В расчетах использовалось 2 значения температури:Т = I МэВ и Т = I,42 МэВ. В этом случае упомянутие выше сумми $\mathcal{E}_{II} + \mathcal{E}_{2I}$ и $\mathcal{E}_{22} + \mathcal{E}_{I2}$ усреднялись по всем видам деления исходя из распределений М и Е_к осколков. Полученные значения $\mathcal{E} = 0,53$ совпадали с экспериментальными значениями, полученными из отношения среднего измеренного числа нейтронов n к хорошо известному значению $\langle N \rangle (^{252} C_f)/2$. Сднако для окончательной нормировки матрицы эффективности в нее вводились нормировочные множители С_I и С₂, относящиеся к разным счетчикам и учитывающие возможные ошиски в определении. Способ определения С_I и С₂ описан ниже.

Задача восстановления исходных множественностей $P(v_1, v_2)$ и $P(v_1+v_2)$ даже при известных величинах перечисленных выше факторов является математически некорректной и может не иметь устойчивых решений. Поэтому восстановление исходных распределений требует методов статистической регуляризации, подразумеваниях введение априорной информации о характере распределения. Такой метод для восстановления двумерных множественностей был разработан /3/, однако он требует большого времени работи ЭЕМ (около 30 мин на I точку). Поэтому он был в нашем случае использован только для восстановления суммарных распределений $Q(n_1, n_2)$ для легкого и тяжелого шиков массового распределения осколков. При этом в ядро уравнения

 $\mathcal{HP}(v_1, v_2) = Q(n_1, n_2)$

вводились элементы, определящие искажения исходного распределения за счет эффективности регистрации, фона и наложений импульсов.

Для получения дифференциальной информации для каждого значения М и E_{R} использовался метод восстановления моментов. Для каждого нарциального распределения $Q_{N'E_{R}}(n_{1},n_{2})$ вичислялись моменти $\langle n_{i} \rangle$, $\langle n_{2} \rangle, G_{n_{1}}^{2}, G_{n_{2}}^{2}, Cov(n_{1},n_{2}), \langle n_{1}+n_{2} \rangle, G_{n_{4}+n_{2}}^{2}$, из которых вичитались моменти фона $\langle n_{e_{1}} \rangle, \langle n_{e_{2}} \rangle, G_{n_{e_{1}}}^{2}, G_{n_{e_{2}}}^{2}$ и вводились поправки на просчети из-за наложений. Затем с помощью парциальных матриц эффективности $E_{M,E_{R}}$ вычислялись первые моменти исходного распределения $\langle v_{4} \rangle$, $K_{e_{R}} \times \langle v_{2} \rangle$, E_{R} , которые усреднялись по распределению $N(M, \mathcal{E}_{\kappa})$. Из сопоставления этих усреднэнных моментов с величиной $\langle \sqrt{(252}C_f) \rangle$ согласно оцененным данным определялись окончательные значения нормировочных множителей матрицы эффективности C_1 и C_2 , которые незначительно отличались от $I(C_I = 0,996, C_2 = 1,003)$.

Усредненная по М, Е, матрица эффективности имела величину

 $\mathbf{E} = \begin{pmatrix} 0,414 & 0,096 \\ 0,077 & 0,462 \end{pmatrix}$

С помощью полученной матрицы эффективности по формулам работи [4] вычислялись все моменты исходных распределений $\langle V_1 \rangle$, $\langle V_2 \rangle$, $\langle V_1 + V_2 \rangle$ $\lesssim_{V_1}^2 \int_{V_2}^2 \int_{V_1}^2 + V_2$, Соу (V_1 , V_2) для фиксированных значений М, E_R осколнов. Зависямость этих величин от М и E_R приводится в виде контурных днаграмм в докладе Алхазова И.Д., Даниэля А.В., Дмитриева В.Д. и др.[#].

При измерениях полного числа нейтронов из обоих осколков также вычислялись моменты $\langle n_{\tau} \rangle$ и $\mathcal{O}_{n\tau}^2$ для каждого М, Е_к осколков и после изведения поправок на фон и на просчеты рассчитивалась величина $\langle n_{\tau} \rangle$ для всего массива путем усреднения по распределению N(M, $\varepsilon_{\rm R}$). Поскольку эффективность регистрации нейтронов в этом случае практически не зависит от М и Е_к осколков, она определялась из сравнения полученной величины $\langle n_{\tau} \rangle$ с известной величиной $\langle V_T (2^{52} C_f) \rangle$. Величина эффективность составила $\mathcal{E} = 0,73$.

В литературе хородо известны /5/ дисперсия множественности полного числа митювенных нейтронов спонтанного деления

$$5v_{r} = 1,57$$

и параметр

$$\Gamma_2 = \frac{G_{\gamma_T}^2 - \langle \gamma_T \rangle}{\langle \gamma_T \rangle} + I = 0,845.$$

Для сравнения с литературными данными эти величины рассчитывались исходя из полученных моментов парциальных распределений для фиксированных значений M, E_K. При этом усреднение по распределению $N(M, E_K)$ производилось для нецентральных моментов $\langle v_i \rangle_{M, E_K}$, $\langle v_i^{L} \rangle_{M, E_K}$, $\langle v_i v_j \rangle_{M, E_K}$.

Для случая измерений полного числа нейтронов совпадение указанных величин получилось хорошее: полученные в измерениях величины составляют $G_{y1}^{2} = 1,568, \Gamma_{2} = 0,845.$

Для случая измерений числа нейтронов из каждого осколка совпадение величин оказалось несколько худшим G_{v1}+v₂ = 1,50 и Г₂ =0,84.

^{*} См. настоящий сборник, с.324.

Это скорее всего вызвано недостаточно точным определением матрицы эффективности Е, что связано с более сложным процессом регистрации нейтронов, чем в использованных программах расчета Е.

Список литературы

- I. Nifenecker H., Signerbieur C., Babinet R., Poiton I., Report LBL-1950, Berkeley, USA, 1973.
- 2. Даниэль А.В. и др. Радиевый институт, Препринт РИ-170, Л., 1983.
- 3. Душин В.Н. Автореферат дисс. Радиевый ин-т, Л., 1982.
- 4. Nifenecker H., Nucl. Instr., Meth., 1970, v.81, p.45.
- 5. Lezerev Yu.A., Atomic Energy Review, 1977, v. 15, p.75.

ИЗУЧЕНИЕ ЭМИССИИ НЕЯТРОНОВ ПОД МАЛЫМИ УГЛАМИ К НАПРАВЛЕНИЮ ДВИЖЕНИЯ ОСКОЛКОВ СПОНТАННОГО ДЕЛЕНИЯ.

О.И.Батенков, А.Б.Баннов, М.В.Баннов, С.Н.Сыпрнов

(Радмевый институт им. В.Г.Хлопина)

Измерены спектры нейтронов в направлении движения осколков для определённых интервалов масс и полной кинетической энергии осколков. Получена информация о скоростях осколков во время испускания нейтронов и о сечении захвата нейтрона возбухденным ядром.

The neutron spectra in the direction of the fragments motion for selected intervals of masses and total kinetic energies were measured. The information about fragments velocities at neutron emission time and about neutron capture cross section of excited nucleus has been obtained.

В настоящее время полная картина процесса эмиссии нейтронов спонтакного деления ещё далека от завершения, несмотря на значительное число опубликованных работ по этому вопросу. При этом некоторые зависимости и распределения измерялись многократно, а другие вообще не измерялись. Так, в литературе практически отсутствуют данные об энергетическом распределении нейтронов под малыми углами (менее 10⁰) к ося деления. Хотя эти измерения весьма сложны в методическом плане, они представляют особый интерес по целому ряду причин. Подобная информация крайне необходима для корректного определения формы спектра в с.ц.м. для низких энергий, что, в свою очередь, в значительной мере определяет величину угловой анкзотропии в л.с.к. к в дальнейшем. выводн о механязме нейтронной эмиссии.

При постановке данной работы предполагалось обратить особое внимание на энергетическую область (в л.с.к.), близкую к нулевой скорости нейтрона в с.ц.м. Теоретические модели в работах /1,2,3/ дают очень различные предсказания об этой области и эксперимент может быть

тестом для отбора различных концепций. Эта энергетическая область очень чувствительна к поведению функция \mathcal{C}_{c} - сечению захвата нейтрона возбуждённым ядром. Поскольку прямые эксперименты для определения этой функции практически невозможны, то подобная косвенная информация является очень полезной. При определённых условиях можно было ожидать появления нерегулярности в спектре при $\mathcal{V}_{c.\, Ц.\, M}$.²⁰, а по ней попытаться определить скорость осколка в момент эмиссии нейтрона. Величина скорости осколка обычно постулируется в модели испарения нейтронов деления или подбирается для дучнего объяснения экспериментальных данных. Но поскольку возможно изменение и некоторых других параметров, то возникает неопределённость в трактовке данные. "Прямое" определение скорости дало бы существенно больжее основание говорить о характере механизма эмиссии нейтронов деления.

В данной работе намерялись энергетические спектры нейтронов для выделенных интервадов масс и кинетических энергий осколков спонтанного деления 252 Cf для углов 2 - 30°. Для решения поставленной задачи необходимо было подучить достаточно высокое энергетическое разрешение как для нейтронов, так и для осколков деления, высокое угловое разрешение установки, исключить заметное искажалцее действие поля гамма-квантов на нейтронный спеттр и т.д. Энергия нейтронов определялась методом времени пролёта, а энергия осколков регистрировалась полупроводниковыми счетчиками, помещёнными в вакуумную камеру. Детекторы осколков располагались на расстоянии 50 - 100 мм от источника деления, что обеспечивало угловое разрешение от 2 до 5°. Энергетическое разрешение при регистрации осколков составляло З МэВ, а массовое - около 4 м.е. Временное разрешение совпадений осколок-нейтрон составляло I но в интервале энергий нейтронов 0,2 - 10 МаВ. При пролётной базе 75 см для энергии I МэВ энергетическое разрешение равнялось 60 кэВ. Порог регистрации нейтронов составлял 150+20 кэВ. Схема и/у разделения обеспечивала разделение импульсов от нейтронов и гамма-квантов с 10³. коэффициентом разделения равным

Измерения проводились на двух пролётных базах 37,5 см и 75 см. Ширина интервала масс составляла 10 м.е., а кинетической энергим – 10 МэВ. Обработка результатов измерений состояла из двух этапов. На первом, проводимом непосредственно в ходе эксперимента (работа в линию с ЭВМ М-6000), определялась масса осколка (М), полная кинетическая энергия осколков ($E_{\rm R}$), время пролета нейтрона (T) и велось накопление информации в координатах \mathcal{N} =(M, $E_{\rm R}$, T, Ψ , M), где Ψ - угол 335 вылета нейтрона в л.с.к., а *п* – номер детектора нейтронов. Дальнейшая обработка проводилась после окончания каждой серии эксперимента на ЭВМ 2С-1033.

В районе малых углов наши данные не показали какой-либо преимущественной эмиссии в этой области, в отличие от результатов работ [4,5]. В значительной мере это связано с тем, что наш спектр в с.ц.м. мягче, чем полученный в работе [5]. На рис. I приведены спектры нейтронов в л.с.к. для легкого осколка для углов 5,15 x 30°. Спектр представлен в координатах $\beta(U; \Psi) = T^3 M/R \cdot \varepsilon \cdot L^3$, где L пролётная база, ε - эффективность регистрации нейтронов, R - число зарегистрированных осколков, N - число зарегистрированных нейтронов. Из рис.1 видно, что в спектре наблюдается провал, величина которого жестко связана с углом вылета нейтрона, так как уже при 15° он не

Рис. 1. Спектр нейтронов деления, испущенных легким осколком под углом : • - = 5; • -15; • -30° в л.с.к.; ------ нейтроны, испущенные дополнительным осколком. Стрелками указана дисперсия скоростей нейтронов

виден. Такая нерегулярность в слектре в принципе может наблюдаться как за счет какого-либо, отличного от испарительного механизма испускания нейтронов, так и за счет формы спектра в с.ц.м.

На рис.2 показано, что имеется корредяция между положением проэзла в спектре и скоростью осколка. Эти данные вместе с зависимостью величины провала от угла эмиссии (рис.1) указывают на то, что нерегулярность связана с формой спектра в с.ц.м., относительно которой трудно было дать конкретные теоретические предсказания. Для иллострации на рис.3 показаны спектры, рассчитанные по трем теоретическим моделям $f_{1}, 2, \sqrt{2}$. экспериментальные данные лежат между

Рис.2 Спектр нейтронов, испущенных под углом 5⁰. --- М=9845 м.е., Е.=I75+5 МЭВ, V.=I.44 см/нс; - М=II7+5 м.е., Е.=I75+5 МЭВ, V. =^KI.22 см/нс. Стрелками указана дисперсия скорости нейтроня

Рис.3 Спектры нейтронов для угда 0°, рассчитанные по моделям: I – (1/2, 2 - 1/2, 3 - 1/3)

спектрами I, 2 и не соответствуют спектру 3. В литературе имеются экспериментальные данные о спектрах нейтронов для сравнительно малых углов эмиссии, хотя и больших, чем 10°. В двух работах /6,7/ были зарегистрированы нерегулярности в области 0,5-1 МеВ. Однако в первом случае /6/ угловая и энергетическая дисперсии были настолько велики, что исключали саму возможность наблюдения такого эффекта, а во втором /7/ - углы были слинком велики (Ψ =13°-18°), чтобы провая можно было наблюдать. В работе /5/ (Ψ =11°) провая фактически

не был замечен. что согласуется с нашими результатами для это о угла. Таким образом, данные работ /6,77, видимо, связаны с рассеянными нейтронами, искажающее влияние которых может быть весьма велико в этой области энергий, тем более, что каких-либо доказательств эфбекта в этих работах не имеется.

Из положения минимумов на спектрах были определены средние скорости осколков, соответствующие времени эмиссии нейтрона. Как оказалось, они практически совпадают с полной скоростью осколков, определённых из непосредственных измерений. Очень интересен факт отсутствия минимума для тяжёлых осколков как в целом по всем группам, так и для отдельных групп. Однако измерения здесь сложнее, чем в случае дегких осколков, так как Vo соответствует энергии нейтрона 0,5 ДэВ, что существенно ближе к порогу регистрации. Однако никаких признаков нерегулярностей зарегистрировано не было. Это различие в форме спектров для легкого и тяжелого осколков связано, видимо, с различной зависимостью С (С) для различных масс ядер. Из полученных спектров (4 = 2-5) была получена информация о поведении сечения захвата нейтрона возбуждённым ядром в области низких энергий (1-100 кэВ) для различных масс. Сравнение с результатами расчётов сечения С для невозбуждённых ядер по оптической модели [8] при использовании различных потенциалов [9-11] показывает, что общий ход Сс(6) для возбуждённого ядра сохраняется, хотя более подробные сравнения затруднительны ввиду значительной разницы результатов расчетов для различных видов потенциалов.

Список литературы

- I. Weisskopf V.F.-Phys. Rev., 19/3, v, 52, p. 295. 2. Le Couter R.J.-Proc. Phys. Soc., 1952, v. 465, p. 718. 3. Ахмедов Г.М., Ставинский В.С., препринт ФОИ-970, Обнинск, 1979. 4. Пиксайкин В.Б., Дьяченко П.М., и др., -Адерная физика, 1578, т.2,с.324.
- Bowman H.R., Milton J.C.D., Thompson S.G. and Swidbecki W.J.-Phys. Rev., 1963, v.129, p.2133.
 Hedenos B.H. MJTV, 1960, T.38, c. 1657.
 Kapoor S.S., Ramanna R., Rama Rao P.N.-Phys. Rev., 1963, v.131, no.1, p.283-295.

- 8. Medland G., Nix J.R.-Nucl. Sci. ebg., 1982, v.81, p.213.
- 9. Becchetti, F. D., Greenlees G.W. Phys. Rev., 1969, v. 182, p. 1190.
- IQ. Wilmore D., Hodgson P.E.-Nucl. Phys., 1964, v. 55, p. 673. II. Moldauer P. -Nucl. Phys., 1963, v. 47, p. 65.

О КОРРЕЛЯЦИИ УТЛОВЫХ И ЗНЕРГЕТИЧЕСКИХ РАСПРЕДЕЛЕНИЙ НЕЙТРОНОВ При спонтанном делении ²⁵²с1

О.И.Батенков, А.Б.Блинов, М.В.Блинов, С.Н.Смирсов

(Радиевый институт им.В.Г.Клопина)

Проведены измерения энергетических распределений нейтронов для различных углов эмиссии. Энергии нейтронов, массы и суммарные кинетические энергии осколюв измерялись на многомерном спектрометре, работающем в линию с ЭВМ. Проведено тщательное изучение соответствия энергетических и угловых распределений нейтронов.

The measurements of neutron energy distributions for various emission angles were carried out. Neutron energies, masses and total kinetic energies of fragments were measured using multidimentional spectrometer, operating on-line with computer. The investigation of the correspondence of neutron energy and angular distributions was made in detail.

Поиск эмиссии нейтронов нестатического характера при спонтавном делении тяжелых ядер проводился в ряде работ /1-7/. Такая эмиссия могла бы быть связана с динамическими возбуждениями на различных стадиях пропесса деления. Для выяснения механизма эмиссии нейтронов в работах /2-77 проводились измерения энергетических спектров нейтронов для различных углов эмиссии относительно направления движения осколков. Во всех этих работах /1-77 была получена резкая анизотропия углового распределения нейтронов различных энергий, но отмечалось также, что распределения более изотропные, чем это следует из модели испарения неятронов из полностью ускоренных осколков. Авторы одних работ /6,87 связыварт этот эффект с эмиссией в процессе ускорения осколков. а другихс изотропной эмиссией в процессе установления равновесной формы осколков /97, в момент разделения /107, на втапе спуска с барьера деления /117. Если объяснять отклонение от модели испарения введением изотропной компоненты, то ее вклад в различных работах колеблется довольно сильно- от 10 до 25%. В надей предыдущей работе была получена

реличива 5%, [7], что существенне меньше, чем в остальных работах [1-6]. Таким образом, результаты работ пока весьма различны, а выводы неоднозначны. Неоднозначность результатов в значительной мере связана с источным знанием спектра нейтронов в системе центра масс (с.ц.м.), что приводит к различным расчётным угловым распределениям и, соответственно, к различным отклонениям их от экспериментальных данных. Следовательно, необхедным условнем корректного сравнения экспериментальных угловых распределений и распределений получающихся по модели испарения из нолностью ускоренных осколков, является прецизионное измерение форим снеитра нейтронов деления в пабораторной системе координат (л.с.к.). Одиако, например, в работе [1] измерения спектров вообще не проводились, а в работе [2] информация была получена, в основном, по средним энергиям спектров.

В данной работе проводились измерения энергетических спектров нейтронов для различных угдов эмиссии и для отдельных групп масс и полных кинетических энергий осколков (Е_к). Большое внимание в работе уделядось учету и анализу влияния различных экспериментальных и расчетных факторов на результаты измерений, проведению различного рода контрольных и проверочных опытов.

Измерения проводились на многомерном корреляционном спектрометре. работающем в линию с ЭВМ. Регистрация нейтронов осуществлялась с помощью кристалдов стильбена (50х20 мм) с фотоумножителем ФЭУ-ЗО, а осколков деления- полупроводниковым кремниевым счетчиком. Энергия нейтронов определялась методом времены пролёта. Временное разрешение, определенное по полуширине пика совпадений осколок-гамма-квант, составляло I нс. При этом был учтен для каждой энергии нейтрона соответствующий сдвиг положения "нуля времени", который имеет заметное влияние на форму спектра в работах учитывается достаточно редко. В слектрометре проводилась дискриминация гамма-квантов по форме импульса, которая была необходима для подавления фона рассеянных гамма-квентов, которые искажают область высоких энергий. Особое внимание уделялось уменьненыю эффекта рассеяния нейтронов, для чего камера деления, детекторы и детали установки были изготовлены максимально облегченными (например. толщина стенок камеры-0,3 мм, толщина полупроводниковых детекторов-0.2мм). В дополнительных опытах определялся фон рассеянных нейтронов на окружаюдем детекторы воздухе, стенах помещения и близко расположенных конструкциях. Неправильный учет фоновых условий существенно искажает форму

спектра, особенно для спектров, измернемых под углом 90⁰ между направлением движения осколков и нейтрона. С этим, по видимому, частично связаны расхождения с данными работы /5/.

Измерения проводились на двух пролетных базах 37,5 см и 75 см и для двух углов (0° и 90[°]) вылета нейтронов относительно направления движения осколков. При регистрации каждого события вводилась коррекция на искажение энергии осколка, связанное с вылетом нейтрона. В результате были измерены спектры для 36 диапазонов масс и полных кинетических энергий осколков. Обработка измерений заключалась в сопоставления спектров под 0° и 90[°] в предположении испускания нейтронов из полностью ускоренного осколка. Скорость в данной работе определялась как из кинетических энергий, так и методом времени пролета. Точность определения скорости осколка составляла 1%.

Результаты измерений, усредненные по группам легких и тяжелых осколков, показали, что интенсивность нейтронов для угла 90° (в диапазоне знергий 0,5-8 МэВ) при использовании спектра в с.ц.м., полученного из данных под 0°, на 5% выше, чем расчетная. При предположении, что этот эффект связан с нейтронами изотропной компоненты, среднее число нейтронов этой компоненты (V_{κ}) составляет в среднем 5% от общего числа нейтронов (в диапазоне энергий нейтронов 0,01-8 МэВ). Эта величина хорошо согласуется (хотя и несколько меньше для сравнимых энергетических интервалов) с результатами, которые были получены нами ранее 27. Средняя энергия нейтронов, которая соответствует разностному спектру, составляет 0,5 МэВ, что также вполне коррелирует с данными работы 27.

Отметим, что полученная величина / к в работе [7] существенно ниже, чем результаты других работ (10-25%). Можно полагать, что введение в работе [7] целого ряда усовершенствований (n/g + разделение, значительное уменьшение влияния рассеянных нейтронов, корректное определение эффективности и т.д.) сказалось на результатах весьма существенно. Дальнейшее улучшение установки и её параметров в этой работе отразилось на результатах в значительно меньшей степени.

Из рис.І видно, что плотность потока нейтронов (N') под углом 0^{0} в л.с.к., подученная из измерений под 90^{0} , близка к величине N, рассчитанной из измерений под 0^{0} .Похожие результать наблюдаются как для масс, приведенных на рисунке, так и для других комбинаций масс. В целом по сумме масс-величина V_{k} не показывает заметной зависимости от полной кинетической энергии (рис.2). Следует отметить, что слабое изменение V_{k} от массы и E_{k} не согласуется с данными работ /I.27, в которых получены довольно сильные зависимости, но противоречивого характера.

Таким образом, при спонтанном делении ²⁵²ст по нашим данным не менее 95% нейтронов испускается на последней стадии процесса деления – из полностью ускоренных осколков. Объяснение происхождению 5% отклонения от модели испарения из полностью ускоренных осколков дать пока трудно, поскольку нет явных зависимостей от массы и полной кинетической энергии осколков, а сам эффект достаточно мал.

Список литературы

- I. Замятнин Ю.С., Рязанов Д.К. Ядерная физика, 1979, т.29, с.595-603.
- 2. Пинсайкин В.М. и др. Ядерная физика, 1977, т.25, с.723-731.
- Васильев Ю.А., Сидоров А.В. Нейтронная физика, М., 1976, ч.5, с.86-89.
- 4. Блинов М.В., Казаринов Н.М., Ядерная физика, 1972, т.16, вып.6, с.1155-1160.
- 5. Bowman H.R., Thompson S.G., Milton J.C., Swiatecki W.J., -Phys. Rev., 1962, v.126, p.2120.
- 6. Richs P., Acta Physica Austriaca, 1981, v.53, p.271.
- 7. Батенков О.И., Блинов М.В., Витенко В.А. Physics and chemistry of fission (Proc. of a Simp. 1979), Vienna, 1980, p.267.
- 8. Пик-Пичак Г.А Ядерная физика, 1969, т.10, с.321.
- 9. Рубченя В.А. Препринт РИ-28, Л., 1974.
- IO. Fuller R. R. Phys. Rev., 1962, v. 126, p.684.
- II. Boneh J., Frankel Z. Phys. Rev., 1974, C10, p.893.

ЛИФФЕРЕНЦИАЛЬНЫЕ ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ НЕЙТРОНОВ ПРИ СПОНТАНННОМ ДЕЛЕНИИ КАЛИФОРНИЯ -252

О.И.Батенков, А.Б.Бяинов, М.В.Бяинов, Б.Ф.Герасименко, В.А.Рубченя, С.Н.Смирнов

(Радиевый институт им.В.Г.Хлопина)

Измерены методом пролета и рассчитаны по статистической теории Хаузера-Фешбаха спектры нейтронов деления калафорния-252 для выделенных интервалов масс и полных кинетических энергий. The measurements by time-of-flight method and the Hauser-Feshbach model calculations of Cf-252 fission neutron spectra for selected masses and total kinetic energies were carried out.

Изучение спектров нейтронов деления при выделенных массах и энергиях осколков позволяет не только исследовать процесс деления, но и получать данные о высоковозбужденных состояниях ядер и о механизме разрядки этих состояний. Имеющаяся в настоящее время информация о таких спектрах довольно ограничена и недостаточно точна. Не проводились также детальные сравнения экспериментальных дифференциальных спектров нейтронов с теоретическими расчетами как с целью выяснения особенностей, связанных с механизмом деления, так и закономерностей эмиссии частиц из сильно возбужденных состояний ядер-осколков.

Механизм эмиссии мгновенных нейтронов из осколков дедения определяется соотношением трех характерных промежутков времени, связанных с релаксацией осколков. Во-первых, это время перехода коллективной энергии возбуждения во внутреннию \mathcal{T} исс., во-вторых, время ускорения осколков при разлете \mathcal{T} иск., и, наконец, время жизни возбужденных состояний осколков относительно эмиссии частиц \mathcal{T}_c . Результаты исследований угловых распределений спектров нейтронов при малых углах в лабораторной системе координат(л.с.к.) относительно направления скорости осколкев приводят к выводу, что нейтроны испускаются, в основном, из полностью ускоренных осколков, т. е. \mathcal{T} исл. \mathcal{T}_c . Соотновение времен $\mathcal{T}_{Aucc.} \ll \mathcal{T}_c$ вожот проявиться в форме энергетических спеке тров миновенных нейтронов, поскольку от него будет зависеть температура осколков. При $\mathcal{T}_{Aucc.} \ll \mathcal{T}_c$ вся энергия возбуждения быстро переходит в тепловур, и эмиссия частиц подчиняется статистическим законам. В противоположном случае (Гонсс.>Гс)можно ожидать значительного вилада предравновесных процессов. Для выяснения этого вопроса необходимо сравнивать теоретические расчеты с экспериментальным диференциальными спектрами.

В данной работе проводилось экспериментальное изучение и расчеты энергетических спектров нейтронов (в с.ц.м.) спонтанного деления калифорния-252 для выделенных интервалов масс и полных кинетических энергий. Экспериментальная информация о спектре нейтронов в с.ц.м. получалась из данных, измеренных для угла 0° в л.с.к. между направлением вылета нейтрона и направлением движения осколка. Угоя 0° был выбран по той причине, что для этого угла влияние эмиссии нейтронов нестатистического характера должно быть наименьшим 21/

В измерениях использовался слой калифорния-252 массой 0.1 мкг. нанесенный на тонкую подложку из окиси адоминия (толенна 10 мкг/см²). Массы и полная кинетическая энергия осколков определялись путем регистрации осколков в двух подупроводниковых счетчиках. Отножение пика и проведу в массовом распределении было равно 30 (с учетом эмиссии нейтронов). Массовое разрешение составляло около 4 М.Е. Измерения спектров нейтронов проводились методом времени пролета; временное разрешение 0,8 нс/м.Нейтроны детектировались с помощые кристалла стильбена (50х20мм.), сочлененного с фотоумножителем ФОУ-30. Эффективность регистрации нейтронов различных энергий определялась путем измерения интегрального спектра нейтронов деления калифорния-252-стандарта. Порог регистрации нейтронов составляя 100кэВ(использовались фотоумножители с квантовым выходом фотокатода около 150 мкА/лм.). Измерения в области высоких энергий ограничивались недостаточной точностью и ухудшением энергетического разрешения при испельзованных пролетных базах. Использование блока и/у разделения позволило исклочить влияние рассеянных и запаздывающих гамма-квантов деления, которые могут искажать высокоэнергетическую часть спектра нейтронов. Для повышения надежности результатов измерения проводились на двух пролетных базах (37,75 # 75 см). Результаты измерений показали, что данные для этих двух баз весьма близки (с учетом временного разрешения). Фон случайных совпадений был весьма мал и составлял 1% при энергии нейтрона 10 МоВ, а истинно-одучайных совпаденый (от некоррелированных 1% для энергии 0,3 МэВ. Рассеяние нейтронов в камере деэсколков) ления и окружающей среде было мало и учитывалось экспериментельными расчетными методами. На данном этапе измерений маосы осколков и их полные кинетические энергии разбивались на 36 групп (6х6), в каждой из

которых пирина массового интервала была равна 10 М.Е., а кинетических энергий-10 МэВ.

Спектры, измеренные в данной работе для массы 4-109±5 М.Е. и M=14325 M.E. при E_=17525 МаВ приведены на рисунке. Сравнение этих спектров с измеренными в работе [2] дает в целом вполне удовлетворительное согласие, так как погрешности имеющиеся в работе [2] и рассмотренные в работе [1] имеют значение в основном для больших углов. Однако строгого совпадения со "стандартной формой" [2] не имеется. В работе были рассчитаны по статествческой теории Хаузера-Фешбаха /37 спектры нейтронов деления для выделенных масс при фиксированных кинетических энергиях пары осколков. Расчетные спектры приведены для сравнения с экспериментальными данными на рис. І для соответствующих интервалов масс и кинетических энергий. При данной кинетической энергии осколков остается неопределенность в величине средних значений Е и дисперсии Сазнергии возбуждения осколков. Необходимо привлечение либо дополнительного предположения о способе разделения Е либо экспериментальных средних значений и дисперсий распредедения числа мгновенных нейтронов пеления для отдельных осколков. Мы использовали модифицированные соотношения Е* v(Bn+ Sn)+ 8% где Влэнергия связи нейтрона и Sn-поправки на четность в массовой формуле, взяты усредненными по каскаду. Усреднение по энергии возбуждения проводилось с величинами дисперсии о ..., взятыми из работи [6]. Коэффициенты трансмиссии для нейтронов расчитывались по оптической модели с параметрами Бечетти-Гринлиса [47, а плотность уровней расчитывалась по полуэмпирической формуле из работы (57, учитывающей зависимость от энергии возбуждения. Таким образом, модель не содержит произвольных параметров.

Сопоставление расчетных и экспериментальных данных показывает, что статистический механизм эмиссии нейтронов для рассмотренного случая хорошо описывает эмиссионные спектры мгновенных нейтронов деления, полученные из измерений под малыми углами. На основе более детального сравнения теоретических расчетов с экспериментальными данными можно получить такие важные характеристики ядер, как плотность уровней и сечение поглощения нейтронов возбужденным ядром.

Список литературы

I. Батенков О.И., Влинов И.Б., Витенко Б.А. - Proc. of the Symposium on Physics and Chemistry of Fission, IAEA, 1980, p.267.

^{2.} Bowman H.R., Thompson S.G., Milton J.C., Swiatecki W.J. - Phys. Rev., 1962, v.126, p.2120.

- Серасименко Б.Ф., Рубченя В.А., Поздняков А.В. Нейтронная физика, Кмев, 1980, ч.З., с. II4.
 Becchetti F., Greenlees G.W. Phys. Rev., 1969, v.182, p.1190.

- Игнаток А.В., Смиренкин Г.Н., Тишин А.С. Ядерная физика, 1975, 7.21, вып.3, с.485.
 Nifenscher H., Signarbieux C., Babinet R., Poiton J. Proc. of the Symposium on Physics and Chemistry of Fission, IAEA, Vienna, 1974, v.2, p. 117.

СТАТИСТИЧЕСКИЙ РАСЧЕТ ИНТЕГРАЛЬНОГО СПЕКТРА МІНОВЕННЫХ НЕИТРОНОВ ДЕЛЕНИЯ ²⁵² С_f

Б.Ф.Герасименко, В.А.Рубченя

(Радневый институт им. В.Г.Хлопина)

В работе излагаются результати расчетов интегрального спектра миновенных нейтронов деления. Расчети проведени с использованием метода Хаузера-Фенбаха в предположения угловой изотроние спектров в с.ц.м.Анализируется влияние на результати расчетов параметров выбранной моделя. Результати расчета интегрального спектра нейтронов спонтанного деления "С. с сравниваются с экспериментальными данными.

The results of the total prompt neutron spectra calculation is described. H-F method was used in the calculations. Angular isotropy assumption concerning neutron c.m.-spectra was made. The influence of input parameter data on the accepted model calculation results is discussed. The calculation results is discussed. The calculation results is discussed is compared with the experimental one.

Исследование механизма испускания мгновенных нейтронов деления представляет значительный интерес как с точки зрения изучения механизма деления и разрядки возбужденных состояний ядер, так и с практической точки зрения – для расчета нейтронных спектров тех нуклидов, для которых отсутствуют опытыме данные.

В теоретических расчетах спектров нейтронов деления используются два подхода: различные модификации каскадно-испарительной модели и статистический подход на основе метода Хаузера-Фенбаха. Дли сопоставления расчетных нейтронных спектров с экспериментальными в качестве последних часто используются спектри нейтронов спонтанного деления Сf.r.к. для этого ядра они измерены достаточно точно в широкой области энергий.

В работе /1/ предложена простая испарительная модель для расчета интегральных спектров, но оделанные в ней упроцающие предположения затрудняют анализ причины расхождения с экспериментальными данными в различных участках слектра.

Последовательные расчети в рамках каскадно-испарительной модели проведены в работе (2) и получено довольно хорошее согласие рассчитанного интегрального спектра с экспериментальным. Но в этой работе не приведены расчёты при $E_n < 1 \, M \Rightarrow B$, по-видимому, потому, что не учитивалась конкуренция $\gamma - излучения$.

Расчет спектров мгновенных нейтронов деления на основе статистического метода Хаузера-Фешбаха является наиболее последовательным, хотя и весьма трудоемким в вычислительном отношении. В настоящей работе для расчета спектров мгновенных нейтронов деления применялся статистический метод Хаузера-Фешбаха в предположении изотропии с.ц.м. - спектров по углу вылета нейтронов и наличия Υ - конкуренции, учитывался каскадный механиям испускания нейтронов.

Парциальные с.ц.м. - спектры нейтронов из отдельных оснолков внчислялись так же, как в работе [3]. Составленные из них соответствующие каскадные спектры из осколков на основании данных по кинетическим энергиям и массовым выходам осколков пересчитывались в л.с.к. и суммировались в интегральный спектр.

По сравнению с работой [4], в которой также использован статистический метод Хаузера-Фешбаха, были внесены некоторые уточнения.

Во-первых, мы использовали более реалистическур, на наш вэгляд, формулу для плотности уровней, предложенную в работе [5]. В этой формуле учтена зависимость параметра плотности уровней от энергии возбуждения ядра, что важно для правильного описания высокознергетической части спектра.

Во-вторых, учёт каскадного механизма эмиссии нейтронов из осколков деления ми виполняли, как нам кажется, последовательнее, чем в работе [4], т.к. вычисление эволюции распределения энергии возбуждения осколка в процессе каскадного испускания нейтронов производилосьс учетом формы соответствующих парциальных спектров испущенных нейтронов.

Чтобы добиться согласования рассчитанных значений V (А) и используемых при расчете средних значений энергии возбуждения осколков, мы применили выражение, которое отличается от используемого в [2,4]

 $\overline{E}^{*}(A,Z) = \overline{V}(A) \cdot \left[\overline{\mathcal{E}}_{n}(A) + \overline{\mathcal{B}}_{n}(A,Z) + \overline{\delta}(A-1,Z)\right] + \frac{\overline{\mathcal{B}}_{n}(A,Z)}{2},$

B_n и **5** - усредненные по каскаду значения энергий связи нейтрона и поправки на четность соответственно.

В этой формуле полнее учитывается механизм разрядки возбулденных осколков деления: каскадный механизм испускания нейтронов посредством введения средних значений **Б**_и и **5**, наличие **7** - испускания – слагаемым **Б**_и/2, имехщим смисл средней энергии, уносимой из осколка **7** - квантами.

По описанной выше модели были проведены расчеты интегрального спектра миновенных нейтронов спонтанного деления **ССГ**. Выду стремления к оптимальному времени счета на ЭВМ и к ожидаемой точности конечного результата, расчеты были проведены для I4 выделенных осколков в интервале от A = 96 до A = 156.

Козффициенти проницаемости V_i внунслядись с параметрами оптического потенциала, предложенными в работе (6). Значения V(A) и $\xi(A)$, а также средних кинетических энергий пар осколков орались из работ (7,8). На рисунках I и 2 представлены результати расчета интегрального спектра деления K в сопоставлении с экспериментальными значениями, взятыми из работ (9,10,11) и со спектром, рассчитанным в работе (4).

Как можно заключить из приведенных рисунков, рассчитанный по описанной выше модели спектр корошо согласуется с экспериментальными значениями в широкой области кинетической энергии нейтронов. Из рисунка 2 видно, что в области $E_a < 3$ муВ наши результати согласуются с экспериментом дучше, чем результати расчета, полученные в работе (4). Как показали наши расчети, имеется определенная чувствительность результатов к зависимости параметра плотности уровней от энергии возбуждения осколка, а также к способу разделения полной средней энергии возбуждения нари между образовавшимися осколками, в то время как к изменению формы исходного распределения энергии возбуждения осколка чувствительность расчетов незначительна.

35I

Рис.I. Сравнение экспериментальных [9] (точки) и теоретидеких интегральных спектров мгновенных нейтронов деления С в виде отношения к максвелловскому спектру с T= 1,42.

Рис.2. Расчётные и экспериментальные интегральные спектры нейтронов спонтанного деления 22 (: ____ - рассчитанный спектр в расоте (2/; ____ - спектр, рассчитанный в расоте (4/; _____ спектр, рассчитанный в настоящей расоте; - эксперимент (10/; + - Эксперимент (11/

В проведенном расчете получены следующие значения параметров интегрального спектра мгновенных нейтронов спонтанного деления²⁵²С; средняя кинетическая энергия $\vec{E}_n = 2,074$ мэВ; полное среднее число мгновенных нейтронов $\vec{V} = 3,770$.

Из полученных результатов следует, что описанная модель с использованием метода Хаузера-Фешбаха позволяет достаточно полно учесть основные особенности процесса испускания мгновенных нейтронов из осколков деления.

Список литературы

- I. Madland D., Nix J. Nucl.Sci.Engng., 1982, v.81, p.213.
- 2. Märten H., Seeliger D.-Proc.Eur.Top.Conf.NIR, Bratislava, 1982, 10 p.287.
- Герасименко Б. Ф., Рубченя В.А., Поздняков А.В. Нейтронная физика. Материалы 5-ой Всесоюзной конференции по нейтронной физике, Киев, 1980, ч.З., с.114.
- 4. Browne J., Dietrich F. Phys. Rev., 1974, v.C10, p.2545.
- 5. Игнаток А.В., Смиренкин Г.Н., Тишин А.С. Ядерная физика, 1975, т.21, вып.3, с.485.
- 6. Becchetti F., Greenlees G. Phys. Rev., 1969, v.182, p.1190.
- 7. Пиксайкин В.М., Дьяченко П.П., Куцаева Л.С. Ядерная физика, 1977. т.25. с.723.
- Nifenecker H., Signarbieux C., Babinet R., Poiton J. Proc. of the Symposium on Physics and Chemistry of Fission, IAEA, Vienna, 1974, v.2, p. 117.
- Blinov V.M., Boykov G.S., Vitenko V.A. Nuclear Data for Science and Technology, ECSS, EEC, EAEC, Brussels and Luxembourg, 1983, p. 479.
- 10. Green L., Mitchell J., Steen N. Nucl. Sci. Engng., 1975, v. 50, p. 257.

11. Meadows J.M. - Phys. Rev., 1976, v.157, p.1076.

ИЗМЕРЕНИЕ И МОДЕЛЬНОЕ ОПИСАНИЕ ДИВФЕРЕНЦИАЛЬНЫХ СПЕКТРОВ НЕИТРОНОВ СПОНТАННОГО ДЕЛЕНИЯ КАЛИФОРНИЯ-252 В ЗАВИСИМОСТИ ОТ θ , M_T, E_{КИН}, Сумми

Васильев D.A., Сидоров Л.В., Васильева Н.К., Баралков D.A., Голованов О.А., Копалкин Н.В., Немудров Н.И., Сурин В.М., Хачатуров D.Q.

> Приводятся результаты измерений на 4π спектрометре спектров нейтронов в интервале углов $\mathcal{O} = 26$ + 154 для семи диапазонов масс и суммарных кинетических энергий осколков. Экспериментальные спектры сравниваются с расчётами по модели испарения нейтронов из движущихся осколков.

The results of the 4π -spectrometer measurement of the neutron spectre for seven groups of fragments with different meases and total kinetic energies are given. Experimental spectra have been analyzed for consistency with the hypothesis of neutron emission from moving fragments.

Экспериментальные исследования $\sqrt{1-5/7}$ показали, что угловые и энергетические распределения нейтронов при низкоэнергетическом делении тяжёлых ядер можно объяснить в предположении эмиссии нейтронов не только из полностью ускоренных осколков, при $V_{ock.} = V_{ock.} \sim$ но и на более ранних стадиях деления, например, при разделении ядер на осколки ("разделятельние" нейтрони) или в процессе ускорения осколков, при $V_{ock.} < V_{ock.} \sim$. Имеющиеся данные пока не позволили однозначно установить при зину "ранней" эмиссии нейтронов.

В нашей работе (6) были приведены постановка и некоторые результаты измерений на 4 π -спектрометре нейтронов по времени пролёта энергетических спектров нейтронов под двенадцатью углами Θ (26° $\leq \Theta \leq 154^{\circ}$) к направлению разлёта осколков спонтанного деления калифорния-252 в нескольких диапазонах масс $M_{\rm T}$ ($M_{\rm R}$) и суммарных кинетических энергий осколков $E_{\rm кин. сумм.}$ (рис.1, таблица). Позднее для корректного сравнения экспериментальных спектров с расчётами по моделям эмиссии нейтронов в спектры были введены поправки, учитывающие влияние эмиссии нейтронов на скорости осколков. Поправки находились методом Монте-Карло: последовательно, акт за актом, рас-

Рис. I. Положение диапазонов на двумерном распределении и дел (Мт. Екин.сумм.). В пределах контура число делений в ячейке Ie x I Мэв превышает 500

₿ диапа- зона	Число делений	Щ́г,е	Е КИН.СУИМ. МЭВ
I	78852	132,6	181,6
2	III244	132,6	200,3
3	294260	I44,2	173,9
4	646539	I42 , 8	189,8
5	87363	140,8	204,9
6	I20635	I54,2	172,0
7	73678	153,3	186,9

считывалась эмиссия нейтронов из лёгких и тяжёлых осколков с определением конечных, после испускания всех нейтронов, скоростей обоих осколков, псевдомасс М_т и псевдокинетических энергий осколков Е[#] также дифференциальных по спектров нейтронов, соответствующих диапазонам начальных (М_т, Е_{кин.сумм.}) и псевдомасс и энергий осколков (М_т E^{*}_{Кин.сумм.}). Величины поправок для многих спектров были большими (до 50%).

Поправленные спектры нейтронов затем были сопоставлены с результатами расчётов по модели эмиссии нейтронов из двикущихся осколков. Спектры нейтренов в системе центра масс (СЦМ) осколков были выбраны в виде распределений Максвелла (расчёт I) или суммы двух спектров испарения (расчёт 2). В обоих расчётах проме величин, характеризующих спектры в СШМ осколков, нараметрами были также средние кинетические энергии осколков на нуклон при эмиссии нейтронов E_{fA} , E_{fT} , которые могли изменяться в пре- $\operatorname{genax} 0 \leq E_{f_i} \leq I_{f_i} \leq E_{f_i \infty},$ где Е. -максимальные энергии осколков на нуклон. Значения параметров находились методом наименьших квадратов по наилучшему согласию расчётных и

экспериментальных спектров (21 значение энергий нейтронов в интервале 0,8 ÷ 5,4 МэВ и 12 углов 8 для каждого диапазона М_т, Е_{кин.сумм.}).

Были рассчитаны времена ускорения осколков \mathcal{T}_{i} до значений кинетических энергий на нуклон, равных $\mathcal{E}_{f_{i}}$. Функции $\mathcal{E}_{f_{i}}(t)$ находились в приближении точечных зарядов осколков, скорости осколков при разделении ядер принимались равными нулю. Одна из функций $\mathcal{E}_{f_{i}}(t)$ приведена на рис.3. Времена Т для осколков с массами $\overline{M} =$ = 97,8; 107,8; 109,2; 119,4; 144,2 е (большие энергии возбуждения, **рис.**2) оказались $\sim 10^{-20}$ с, для осколков с массами $\overline{M} = 132,6$ е $\sim (0,3 \div 0,4).10^{-20}$ с.

Времена Т~10⁻²⁰с совпадают с результатами оценок времени жизни возбуждённых осколков до эмиссии нейтронов

 \mathcal{T}_{μ} по статистической теории при параметре плотности уровней α -IO MoB⁻¹ и энергии связи носледнего нейтрона $\mathcal{B}_{\mu} \sim 4$ MoB; меньшие времена жизни

осколков с массами $\dot{M} = 132,6$ е разумно объясняются ме́нышими значениями B_{μ} для осколков с числом нейтронов N > 82. Отметим, что сравнение времен T и \tilde{c}_{μ} обосновано лишь в случае быстрого перехода энергии деформации в энергию возбуждения осколков, что, по-видимому, и имеет место.

Результаты анализа дифлеренциальных по θ , $M_{\rm T}$, $E_{\rm KuH.cymm.}$ спектров нейтронов определённо свидетельствуют о том, что основной причиной "ранней" эмиссии нейтронов является испарение нейтронов из осколков с большими энергиями возбуждения и из осколков с числом нейтронов $\mathcal{N} > 82$ за времена, сравнимые с временами ускорения осколков. Как следствие, несмотря на трудности в получении и обработке экспериментальной информации, можно получать данные о временах диссипации энергии и о характеристиках нейтронно-шзбиточных ядер-осколков деления.

Список литературы

- I. Borman H.R., Thompson S.G., Milton J.C.D., Swiateoki W.J. -Phys.Rev., 1962, v.126, p.2120; Phys.Rev., 1963, v.129, p.2133.
- 2. Skarsvig K., Bergheim K. Rucl. Phys., 1963, v.45, p.72.
- Блинов М.В., Казаринов Н.М., Крисюк И.Т. Ядерная физика, 1972, т.16, вып.6, с.1155.
- Пиксайкин В.М., Дьяченко П.П., Куцаева Л.С. Ядерная физика, 1977, т.25, вып.4, с.723.
- Замятнин В.С., Рязанов Д.К., Басова Б.Г., Рабинович А.Д., Коростылев В.А. – Ядерная физика, 1979, т.29, вып.3, с.595.
- 6. Васильев D.А., Сидоров Л.В., Васильева Н.К., Барашков D.А., Голованов О.А., Залялов Н.Н., Копалкин Н.В., Немудров Н.И., Сурин В.М., Хачатуров D.Ф., Чулков Н.М. – Вопросы атомной науки и техники, сер. Ядерные константы, М., ЦНИИатоминформ, 1981, вып. 1(40), с.65.
- Mifenecker H., Signarbieux C., Babinet R., Poitou J. Physics and Chem. of Pission. Proceedings of a Symposium, Rochester, IABA, 1974, v.2, p.117.
В.Н.Нефедов

(НИИАР, ТКАЭ СССР)

Приводятся результаты жамерения спектров нейтронов, испускаемых осколками деления - изомерами формы.

Presented are the results from measurements of the neutron spectra smitted by fission fragments being the shape isomers are presented.

Многочисленные исследования процесса деления атомных ядер выяснили основные закономерности физики деления. Однако ряд экспериментальных результатов не нашел убедительного теоретического обоснования. К таким данным можно отнести сладущие:

I. Линейчатая структура спектра запаздывающих нейтронов деления [::I-II7.

2. Меньшее значение максимальной энергии вапаздывающих нейтронов деления по сравнению с возможной, определяется енергетическим окном (Q_β - B), где Q_β - максимальная энергия β -чартиц; B - энергия связи последнего нейтрона в дочернем ядре.

3. Линейчатая структура спектра ытновенных нейтроков деления /12-167.

Предложенный в работе (17) механизм нейтронной эмиссии осколков деления — изомеров формы, образующихся в районах масс осколков, имающих один или несколько нейтронов над замкнутыми нейтронными оболочками с числом N = 50 и N = 82 позволяет объяснить перечисленные выше результаты (177).

Нейтронная эмиссия из осколков деления – изомеров формы объясияет также природу запаздывающих у-квантов деления, испускаемых в диалазоне времени 10^{-9} - 10^3 с. Уже в первых опытах было обнаружено, что основная часть 7-квантов деления с энергией меньше 0,25 МзВ испускается за время (0,5-2,5) 10^{-9} с /187. В другой работе /197 было обнаружено,что около 5% 7-квантов деления с энергией меньше 2 МзВ испускается в диапазоне времени I, 10^{-9} - 5 $\cdot 10^{-3}$ с, а основная доля излучается за время < 5 $\cdot 10^{-8}$ с. В более поздних работах /20-227 найдено, что

доля запаздывающих у-квантов деления в диалазоне 3.10⁻¹⁰-10⁻⁶ с составляет 5-10%. Механизм такого "запаздывания" испускания у-квантов деления неизвестен. Классическая изомерия ядер не может объяснить наблюдаемые запаздывания, так как при делении ядер образуются нейтронно-избиточные осколки деления, не соответствующие теоретическим предпосылкам изомерии ядер (23). Нейтронная эмиссия изомеров формы позволяет объяснить запаздывание испускания У-квантов тем, что в результате испускания нейтрона ядро остается в возбужденном состоянии, снимаемом каскадом у -квантов, испускаемых практически одновременно с вылетом нейтрона. Время испускания нейтронов изомерами формы определяется вероятностью перехода ядра из второй потенциальной ямы A первую и дает запаздывание испускания сопутствующих у -квантов. Испускаемые изомерами формы нейтроны имеют линейчатую структуру спектра [16,17] и сопровождаются каскадом у -квантов с энергией, определяемой схемой уровней конечного ядра. Для проверки такого предположения в настоящей работе были выполнены измерения спектров нейтронов деления ²⁵²Сf, совпедающих с отдельными энергетическими линиями запазлывающих Т-квантов деления, идентифицированными в работе (247.Измерения выполнялись методом времени пролета. В качестве старта NC~ пользовались импульсы от детектора Х -квантов деления. Детектором у-квантов служил кристалл $\mathcal{N} \alpha I(\mathcal{H})$ с размерами 40х40 мм в сочетании с фотоумножителем ФЗУ-30. В качестве детектора нейтронов использовался кристалл стильбена 40х30 мм с фотоумножителем ФЭУ-36. Слой калифорния интенсивностью I,5.10⁵ I/с располагался на расстоянии 60 мм с кристалла $\mathcal{N}aI(\mathcal{T}\ell)$. Для исключения эффектов рассеяния нейтронов на детекторе (-квантов махду детекторами) -квантов и нейтронов располагалась защита из смеси парафина с 24,003. Для выбора определенной энергии Х-квантов использовался управляющий канал с дифференциальным дискриминатором, управляющим анализатором LP-4900, осуществляющим набор информации. В качестве реперного спектра использовался спектр нейтронов спонтанного деления 252 с , измеряемый в тех же условиях, но при измерении которого в качестве стартовых служили импульсы от осколков деления, регистрируемые слоем пластыассового сцинтиллятора толщиной 100 мкг/см². Измерения выполнялись на пролетных расстояниях 25 и 50 см. Были измерены спектры нейтронов спонтанного деления ²⁵²Cf, совпадающие с У -линиями запаздывающих У-квантов деления, имеющими следующие характеристики: I) E = 1279.8 кэВ. Т/4 = = 164 HC; 2) E = 296,9 K3B, $T_{1/2}$ = 162 HC; 3) E = 238,9 K3B, $T_{1/2}$ = = 5 нс [24]. В результате измерений были получены временные спектры нейтронов, показанные на рис.1, 2.

Из рисунков видно, что спектры нейтронов имеют тонкую структуру, которая сохраняется при повторных измерениях. В то же время реперный спектр имеет практически гладкую форму, что исключает эффекты дифференциальной нелинейности. Наблюдаемые пики сдвигаются пропорционально пролетному расстоянию, что также подтверждает их физическую приролу. Оценка возможного вклана от запазлывающих нейтронов показывает его пренебрежимо малую величину.

Полученные результаты позволяют сделать следующие выводы: I. Источниками запаздывающих Х -квантов деления являются осколки - изомеры формы. 2. Количество нейтронов, испускаемых изомерами формы, может достигать 5-10% от общего числа нейтронов, испускаемых B AKTE деления, так как количество запаздывающих Х -квантов деления достиraet IO%.

Необходимо отметить, что существование задержанной нейтронной эмиссии изомеров формы искажает результаты измерения спектров мгновенных нейтронов деления методом времени пролета и для получения правильных данных по спектрам нейтронов деления следует использовать другие способы измерения спектров нейтронов.

Список литературы

- Список литературы 1. Shalev S., Cuttler J.M. Nucl.Sci.Engng. 1973, v.51, p.52. 2. Shalev S., Rudstam G. Trans.Amer.Nucl.Soc., 1971, v.14, p.373. 3. Chulic E.T. et al. Nucl.Phys., 1971, v.A168, p.250. 4. Franz et al. Angew.Chem., 1971, Bd83, s.902. 5. Rudstam G., Shalev S., Tonsson O.C. Nucl.Instr.Methods, 1974, v.120, p.333. 6. Sloan W.R., Woodruft G.L. Nucl.Sci.Engng., 1974, v.55, p.28. 7. Fieg G. J.Nucl.Energy, 1972, p.585. 8. East L.V., Walton R.B. Nucl.Instrum. and Methods, 1969, v.72, p.161. 9. Evans A.E., East L.V. Trans.Amer.Nucl.Soc., 1974, v.19, p.396. 10. Kratz K.L. et al. Proc.AED-Conf.77-017-001, Hirschegg, 208, 1977. 11. Kratz K.L. Proc.Consultants Mtg. Delayed Neutron Properties, Vienna, 1979, INDC(NDS)-107/G, p.103, IAEA, 1979. 12. Нефедов В.Н. Препринт НИМАР Р-52, 1969. 13. Аверченков В.Я., Нефедов D.Я., Хилков D.B. "Ядерная физика", I971, T.14, вып.6, c.1134. 14. Замятнин D.C. и др. "Ядерные данные для реакторов", I970, т.2, c.183. 15. Нефедов В.Н. "Спектры мгновенных нейтронов деления", I972, c. 62, Вена. 16. Нефедов В.Н., Старостов Б.И. "Тезисы конференции по ядерно-физиче-ским исследованиям", Харьков, 1982, 113. 17. Нефедов В.Н., Старостов Б.И. "Тезисы конференции по ядерно-физи-цеским исследованиям", Харьков, 1982, 113. 18. Скляревский В.В. и др. "ЯЗреков, 1982, 113. 18. Скляревский В.В. и др. ЖЭТФ, 1957, 32, 256. 19. Маienschein F.C. et al., Рюс. of the Second Intern.Conf. on Pea-ceful Uses of Atomic Energy, Geneva, 1958, v.15, p.366. 20. Вальский и др.: "Атомная энергия", 1965, т.18, 223.

- 21. Jhansson S.A.E. Nuclear Physics, 1965, v.64, p.147. 22. Skarsvag K. Nuclear Physisc, 1970, v.A153, p.82. 23. Карсунский М.И. "Изомерия атомных ядер", Москва, 1954. 24. Walter John et al. Phys, Rev., v.2, No.4, 1451, 1970.

О СТАТИСТИЧЕСКОЙ СТАЛИИ В ДЕЛЕНИИ ЯДЕР

B.A. Durne

(МАЗ им. И.В.Курчатова)

Обосновывается существование барьера к отделению осколков, статястического равновесия, предшествующего прохождению барьера, и бистрого спуска с барьера. По висоте барьер близок второму барьеру в модели Струтинского.Барьер определяет массовые, энергетические и угловые распределения осколков.

The existence of separation barrier for each fragment, statistical equilibrium preceding the barrier, and rapid descent from the barrier are grounded. The barrier height is close to that of the second barrier in the Strutinaky model. The barrier governs mass, energy and angular distributions of fragments.

<u>Полход к его обоснование</u>. Наибольшие услехи в количественном описания массовых и энергетических распределений осколков достигнути в статистическом подходе. Обично при этом предполагается, что распределения задаются в конце вязкого спуска с барьера деления перед разривом ядра /I/.Здесь рассматривается иной статистический подход, в котором распределения задаются на барьере B_S , прелятствурщем отделению осколка от ядра (от парного ему осколка). Барьер B_S не учитывается в обичном подходе, его существование ми обосновнваем далее. Барьер B_S сравним по высоте с капельным барьером деления ядра B_i (рис. Ia) и свой для каждой пари осколков. В потенциальной яме H_S , предшествующей барьеру, устанавливается статистическое равновесие. Спуск с барьера бистрий, невязкий.

Существование барьера 8₅ следует, согласно расчетам, в днухцентровой нараметризации системы /2/, как результат более бистрого изменения (по сравнению с кулоновским) ядерного взаимодействия ядер (в частности, осколков) с размитим краем при их сближении или удалении. Очень важно, что барьер появляется в области незначительного перекрития плотностей ядер (с $\int_{max} \approx 0.1 \rho_o$ в области касания), что оправдывает предполагаемое слабое возмущение распределения плотности каждого из ядер соселним ядром.

Барьер В_S и яма H_S наблюдаются в глубоко неупругих столкновениях ядер /3/.Установление статистического равновесия в яме в этом процессе [4] и энергетически более вытодные деформации разлетанцихся ядер показывают, что барьер не является следствием быстроти (во времени) процесса и что иного (безбарьерного) отделения двух ядер (в том числе и осколков при делении) не существует.

Бистрое (с расстоянием) изменение ядерного взаимодействия ядер (с параметром $a_{\approx} 0, 5\varphi$.) с последующем его наснщением приводит к небольной ширине барьера B_{\star} и к выполаживанию дна ямы еще в области касания ядер с $g_{max} \leq 0, 5\varphi_{o}$. Дальнейшее сблидение ядер можно описывать одноцентровой капельной моделые, поскольку переход к ней оказывается плавным; как это видно по форме линии равной плотности системы, (рис. 16). В одноцентровой моделы конфигурация касаищихся осколков (с $g_{max} \leq 0, 5\varphi_{o}$) возникает либо вблизи капельного барьера деления $B_{i} - для легких делящихся ядер, с малыми <math>A_{f}, Z_{f}$, либо далеко на спуске с барьера $B_{i} - для тяжелих ядер (5)$. Естественно, что вместе с этим меняется положение барьера B_{s} относительно барьера B_{i} и, как следствие, соотношение их высот. При больших A_{f} барьер B_{s} оказывается далеко на спуске с барьера B_{i} и $B_{s} < B_{i}$, при уменьшении A_{f} барьеры сравниваются, а при малых A_{f} : $B_{s} > B_{i}$ (рис. 1а).

Рис. I. Потенциальная энергия \mathcal{P} и формы делящегося ядра в капельной модели (правее ямы H_g параметризация двухцентровая). а. Схематичный рисунок: h и R. см. на рис; I- $B_g > B_i$ (для $\mathcal{Z}_f \approx 88$); 2. - $B_g < B_i$ ($\mathcal{Z}_f \approx 96$). 6. Результат расчета по /6/ для 240 P_U (учтены только квадрупольные деформации осколков $\beta_i = \beta_i = 0,2$; с учетом других деформаций и δ барьер понизится и приблийника к 6 MaB): I-барьер B_g к отпелению осколков, d см. на рис., γ - радмус сферического боколка; 2- распределение плотности в каждом осколке (пунктир) и их суммарной илотности (сплошные линии) для ядра в яме H_g (даны линии 0, I и 0,9 ρ_0). Наши расчеты в двухцентровой параметризации, полагающие, что

энергия системы является функционалом плотности вещества, подтверидают описанное поведение B_s и показывают, что $B_s \approx B_i \approx 6$ МэВ достигается при $I_s \approx 92-94$ /6/ (рис. 16). Дно ямы при этом оказывается приблизительно на уровне основного состояния (g. S.) делящегося ядра. При $I_s = 114$ барьер B_s и яма почти исчезают. Нетрудно заметить, что поведение B_i и B_s и ямы между ними сходно с поведением двух барьеров B_i и B_s и ямы в подходе Струтинского /7/, однако природа B_s вная, чем B_s ; B_s относится к существенно большим де – формациям системы.

Барьер В₅ отсутствует в широко распространенном одноцентро – вом описании деления. Однако для описания последней стадии деления более пригодно используемое здесь и дающее барьер двухцентровое описание, поскольку оно является однозначным, избегает произволь – ной кривизны ядерной поверхности, естественным образом учитывает размытый край при плавном переходе к одноцентровому описанию и оправдывается экспериментельно.

Установление статистического равновесия в яме H_s следует из сходства условий в ней и в яме основного состояния делящегося ядра и подтверждается в опытах по глубоко неупругим столкновениям ядер /4/. Заселение состояний ями всегда возможно в процессе деления. По статистическим оценкам /8/ при яме глубиной 6 МэВ и небольших возбуждениях $\lesssim 4$ МэВ над барьером B_s время жизни системы в яме составляет $\gtrsim 10^{-16}$ с и достаточно для установления статистического равновесия по разным степеням свободи, включая деформацию осколков /9/ и асимметрию системы, для которой время установления равнове – сия $\lesssim 10^{-19}$ с /4,6/.

Быстрый, невязкай спуск с барьера B_s является следствием онстро увеличивающейся обособленности осколков на спуске и крат кости цути (ядерное взаимодействие осколков падает в 10 раз на интервале $\lesssim 1,5$ ф.). Убедимся, что спуск, занимающий при этом $\lesssim 5 \cdot 10^{-22}$ с, не сопровождается возбуждением нуклонов. Действительно, возбуждение нуклонов за счет движения осколков не происходит, так как ядерное взаимодействие осколков на спуске при растущей поверхности системы само потребляет энергию, а ускорение осколков недо – статочно для кулоновского возбуждения нуклонов (энергия приобретаемая отдельными нуклонами за время между их столкновениями (3 · 10²³с) за счет изменения кулоновского поля (< 10 КаВ), недостаточна для возбуждения нуклонов и передается движению осколков в целом). Еместе с тем из-за обособленности осколков за время спуска происходит менее одного столкновения между нуклонами соседних осколюв, из тех, которые могут возбудить нуклоны (оценка по /6/).

<u>Следствия подхода.</u> І. При наличии барьера В_S и статистического равновесия в яме H_S распад системы из ямы подобен распаду составного ядра. Парциальный выход осколка (пары осколков) определяется через число возбуждаемых состояний на его барьере к отделению /8/. Разные по нуклонному составу и деформациям осколки имеют разные барьеры и, соответственно, разные выходы. Осколки с близкими выходами чаще всего имеют близкие барьеры.

2. Барьеры B_{s} и B_{i} и яма H_{s} ведут себя подобно барьерам и яме Струтинского, что позволяет ожидать в нашем подходе эффекты, характерные для его подхода (77 без привлечения дополнительных (кроме B_{i} и B_{s}) барьеров. Наш подход не исключает также возможности расцепления барьера B_{i} на два (77 или иной его природы (например, молекулярной (67).

3. Кривые зависимости $\tilde{B}_{g}(\beta_{1})$ капельного (без учета оболочечных поправок) барьера к отделению данного осколка пары от его квадрупольной деформации β_{1} (1,2-индекс осколка) сравнительно пологае и слабо различаются по форме для разных β_{2} соседнего осколка (рис.2) и даже при смене его на другой (по A и \mathcal{I}) осколок. В таких условиях каждый осколок "выбирает" свою форму (отвечанную мянимальному барьеру)независимо от формы и нуклонного состава соседа, соответственно оболочечным поправкам δ (β) в нем самом и почти не меняющейся кривой $\tilde{B}_{g}(\beta)$. Колебания в δ (β) плавные и обычно сопровождаются перепадами (> 6 МэВ), превышающими изменения $\tilde{B}_{g}(\beta)$, поэтому форма

падажи (> с шил), превышащами изменения С, β), поэтому форма осколка, как правило, определяется минимумом в его δ (β). Последнему способствует также то, что в области повышения $\tilde{B}_{s}(\beta)$: $\beta \approx 0$ и $\beta \approx 1$, минимумы δ также достигают наибольшего значения (для сферического осколка и осколка с отношением осей ~ 2). Таким образом, осколок с данными A и \tilde{Z} имеет при делении любого ядра одну и ту же форму на барьере – β^{5} (сстественно с дисперсией, обусловленной выходом осколков с близкими формами).

4. Энергия невязкого спуска с барьера переходит в кинетическую энергию осколков, а возбуждение разлетевшихся осколков $\mathcal{F}_1 + \mathcal{F}_2$ при де - лении вблизи барьера возникает из энергии деформации осколков на барьере. (Деформации осколка на барьере и в конце спуска олизки из-за большого времени развития деформации ~ $5 \cdot 10^{-21}$ с /9/ и бистрого спуска ~ $5 \cdot 10^{-22}$ с Постоянство β^5 осколка при делении любых ядер приводит к постоянству его энергии возбуждения и числа вылета-

ищих из него нейтронов -). Отопда следует универсальный для всех делящихся ядер характер зависимости У(А) [более точно У(А, Z)]

Рис. 2. Зависимость висоти капельного барьера В., для ²⁴⁰Ри от деборманий осколков в = 4/6-1 (он 6 - полуоси осколков, АлА = 120), ресчет по /6/. 1.2-индекс осколка : В^{ис}барьер В. с учетом б (266) (приодиженно). За нуль шкалы В принят минимельный барьер

при условии деления ядер волизи барьера B_{g} - кривая Террелла /10/. (Набладаемые \mathcal{F} приводят к $\beta^{5} \lesssim I$, т.е. отношение осей осколка не превосходит ~ 2).

5. С учетом того, что мянямум δ нанболее веляк, если $\beta^{5} \approx 0$ или ≈ 1 , кривая $B_{s}^{*}(\beta^{5}) = \tilde{B}_{s}(\beta^{5}) + \delta(\beta^{5})$ приобретает вид возраставлей с β^{5} функции (рис.2). Поэтому при прочих равных условиях барьер

В, растет с увеличением деформации осколка на барьере. Отсяда в области близких капельных барьеров β_3 (не очень асмиметричного де – ления данного ядра) наименьший выход имеют осколки с большими $\beta_1^{s} + \beta_2^{s}$ и большими $\psi_1 + \psi_2$. Одинаковым $\psi_1 + \psi_2$ отвечают одинаковые внходы (См. ²³⁶ U /10/).

6. Деформание осколков на барьере β_1^5 , β_2^5 определяют расстояние между центрами осколков и при невязком спуске с барьера-кинетическую энергию T разлетеннихся осколков. Поэтому большим $\beta_1^5 + \beta_2^5$ и $v_1^2 + v_2^2$ отвечают пониженные значения T (дефицит энергии /10/). Большая дисперсия T возникает из-за слабой зависимости высоти барьера B_s от β осколков, приводящей к вкладам от осколков с разными β (Наблюдаемой дисперсия T отвечают отклонения $\beta \sim \pm 0, I$). 7. Барьер B_s создает условия для виделения состояний (ограничения их числа) с определенными К,а быстрий невязкий спуск с него – для их сохранения, поэтому угловые распределения осколков определяются барьером B_s . Разние барьери осколков приведут к их разным угло – вым распределениям. <u>Проверка подхода.</u> Предлагаемый подход можно провершть но ряду эконераментов, в которых он дает отличный от обычного подхода /1/ ре-; зультат.

I. Даваемое нашим подходом различие барьеров B, у осколков с разным выходом обнаруживается по различно их угловых распределений /II/, энергетических зависимостей выходов /II/ и массовых расше делений при переходе от вынужденного к спонтанному делению, тде важна также вырына барьера В_s (см. ²⁵⁸ *Fm* /12/). 2. Кинетическая энергия осколнов в момент отрыва - Т. в обичном подходе /1/ имеет порядок температури, ~ I МаВ, а в нашем - равна энергин спуска, обычно ≥ IO МаВ. Угловые и энергетические распределения \mathcal{L} - частиц в тройном деления дают $T \approx 10$ МэВ /13/. З. В обычной модели энергия вязкого спуска є добавляется к возбужлению осколков. Так как $\mathcal{E} \approx 0$ для легких делящихся ядер в $\mathcal{E} \approx 10$ -20 МаВ для тяжелых ядер, то при делении ядер волизи барьера деления у должно увеличиваться для осколков тажелых ядер в среднем на I нейтрон, что приведет к нарушению универсальности кривой Террелла. Однако, для ядер от Ac до Cf /14/ универсальность сохраняется, что согласуется с нашим подходом. 4. Только в нашем подходе спуск невязкий и магические осколки суцественно не возбущаются, в частности и при спонтанном симистричном делении 2597 м. что и насладается /12/. CINECOX JUTTOPATYPH 1.Forg P.-Phys.and Chem.of Fission, Proc. of Simp., Jülich, 1980, v.2, p.362: Wilkins B.D.et. al.-Phys.Rev., 1976, v. (14, n5 p. 1832 2.Ngo C.et.al.-Nucl.Phys., 1975, v. A240, p. 35-3; Brueokner K.A. et.al. Phys.Rev., 1968, v. 173, n4, p. 944; Bandorf J.P.e.a., Phys. Rev., 1974, v.150, p.83 3.Lefort M. Ngc C.-Ann.Phys., 1978, v.3, n1, p.5 4. MAREtto I.G., Schmitt R.P.-Rep.Prog.Phys., 198-1, v.44, p.523 5.Swiatecki W.J., Cohen S.-Ann.Phys. (M.Y.), 1963, v.22, p. 406, 6. Шитин B.A.-Haepman dusaka, 1971, T.14, c.6995; 1978, T.27, c.67 7. Strutinsky V.-Nucl.Phys., 1968, v.A112, p.1; Bjornholm S., Lynn J.E. -Rev.M.cod.Ph.ys., 1930, v.52, n4, p.725 8. Sohr N.-Phys.Rev ., 1939, v. 366, p. 426 9. Riedel C.et.al.-Z.Ph.75, 1979. v.A290, p.47 10.ferrell.J.-Phys.and Chem.of Fission, Proc. of Symp., Sulzburg, 1965, v.2, p.3 Список литературы v.2,p.3 11. Копеспу Е.е. .- Ризе. and Chen. of Fission, Symp., Roohester, 1974у2р3 Дубрована С.М. и др.-Ядерная физика, 1973, т.17, и 3, с.470; 10х-берг Б.М. и др.-"Нейтр. физика", конф.; Кысв, 1980, т.3, с.157.

12.Hoffman D.-Phys.and Chem.of Fission, Symp., Jülich, 1980, v2, p275 13.TSuji K.-Phys.and Chem.of Fission, Symp.Rochester, 1974, v2, p405 14.Konecny E.Schmaitt H.w.-Phys.Rev., 1968, v. 172, n4, p. 1213 В. А. Рубченя

(Радлевый институт им. В. Г. Хлопина)

На осново расчётов в модели касапщихся осколков со статистическим усреднением показано, что отклонения массовых и энергетических распределений при делении доактинидных ядер от предсказываемых моделый жидкой капли связаны с влиянием оболочек в осколках вблизи точки разрыва.

On the base of the tangent fragment model calculations with statistical averaging it is shown that the deviations of the experimental mass and kinetic energy dis tributions from that predicted by liquid drop model in the case of fission of preactinide nuclei are connected with the influence of the fragment nuclei shells at the neck rupture point.

Проблема массовой асимметрии при низвознертетическом делении атомных ядер остаётся центральной в физике деления. Многочисленные экспериментальные данные показывают, что в районе ва меняется характер массовых распределений от асимметричного через трёхгоросе распределение к симметричному. Измерения при низких энергиях возбуждения деления доактинидных ядер сильно затруднены в связи с ростом барьера деления и палением делимости этих ядер. поэтому проводившиеся опыты до последнего времени не давали указаний на существование асимметричной моды деления доактинидных ядер. В работах /1.2/ были изучены массовие и энергетические распределения при делении составного ядра ²¹³аt при довольно низких энергиях возбуждения (E_=25 MaB) и обнаружено асимметричное деление, проявляюшееся на склоне симметричного пика. Наблюдение в массовых и энергетических распределениях структур, характерных для деления актинидных ядер, представляет большой интерес для выяснения механизма деления. В работе Пашкевича /3/ было обнаружено, что в районе свинца на потенциальной поверхности ядра существуют две седловые большой асимметричной деформации точки, более высокая при соответствует наблюдаемой асимметрии масс при делении ²¹³At. Однако для получения окончательных распределений осколков необходино провести динамические расчёти зволюции делящегося ядра на спуске

с седловой точки, проведение которых в настоящее время представляет очень трудную задачу. Имеющиеся динамические расчеты [4], посящие оценочный характер, показывают, что предположение о сильной диссинации в процессе спуска с седловой точки не противоречит экспериментальным данным. Если диссицативные процессы существенны, то к моменту развала на осколки установится статистическое равновесие. и вероятность различных конфигураций будет определяться статистическим весом.При этом должны проявиться свойства будущих осколков, поскольку для поактинилных ядер форма уже в седловой точке имеет четко выраженную перетяжку и точка разрыва приближена к седловой точке. Для определения лянии разрыва на потенциальной поверхности необходимо решать динамическую задачу с учетом неустойчивости шейки относительно разрива. В работе /5/ намя биля предложени критерий определения линии разрыва, исходя из требования примерного постоянства раднуса шейки около 2 Фм. и метод перехода от параметризации точки разрыва единой фигурой к параметризации двумя осколками на основе требования равенства низших моментов функции распределения плотности для пвух способов параметризании. Расчёти показали. что определённые таким образом параметры осколочной конфигурании в точке разрыва близки к параметрам, определенным в модели касарцихся осколков из требования максимума статистического веса. Ранее намя было проанализировано влияние оболочечной структуры осколков на карактеристики деления от на до 2 = 116 [6]. В данной работе проведены расчеты массовых и энергетических распределений для доактинидных ядер с целыю исследования влияния структуры осколков.

Конфигурация системы в точке разрыва аппроксимировалась двумя осколками с общей осью симметрии, а для описания формы ядер использована параметризация в лемнискатных координатах (3/). При расчёте строится поверхность статистических весов в координатах параметров деформации осколков при различных энергиях возбуждения для каждой пары осколков. Вероятность выхода пара с массовыми числами A_H и A_L получается путем интегрирования по параметрам деформации осколков и суммирования по зарядам статистических весов

$$(\mathbf{A}_{\mathrm{H}},\mathbf{A}_{\mathrm{L}}) \propto \sum_{Z} \int d\boldsymbol{\varepsilon}_{\mathrm{H}} d\boldsymbol{\varepsilon}_{\mathrm{L}} \int_{0}^{\mathbf{B}_{\mathrm{B}}} \boldsymbol{\varphi}_{\mathrm{H}}(\mathbf{E}_{\mathrm{B}}, -\mathbf{u}) \boldsymbol{\varphi}_{\mathrm{L}}(\mathbf{u}) d\mathbf{u}.$$

Здесь Q_H и Q_L - плотности уровней ядер, E_{sc} - энергия возбуждения в точке разрыва, \mathcal{E}_H и \mathcal{E}_L - параметры деформации осколков. Дополнительным параметром конфигурации является расстояние между ближайши-

37I

Ми полосами осколков, которое определяется из условия малости ядерной части взаямодействия между осколками и равно примерно 3 фм. При этом кинетическая энергия осколков на бесконечности равна кулоновской энергии взаямодействия, поскольку пренебрегаем кинетической энергии вичислялись путём усреднения и дисперсия кинетической энергии вичислялись путём усреднения по области изменения параметров деформации осколков. Энергия возбуждения в точке разрыва равна равности между величиной энерговиделения и потенциальной энергией у_{вс}, равной сумме энергии деформации осколков и кулоновской энергии взаимодействия между осколками. Энергия деформации вичислялась по методу оболочечной поправки Струтинского. Плотность уровней рассчитивалась по сверхтекучей модели ядра, в рамках которой учитивается оболочечная структура одночастичного спектра и парные корреляции. Одночастичные спектри вычислялись в деформарованном потенциале тина Вудса-Саксона.

Статистический вес конфигурации определяется в основном потенпистьной энергией в точке разрива. На рис. Га приведени рассчитанные вависимости У относительно седловой точки У от массового числа тажёлого осколка при делении составных ядер 227 Ac и 213 At. В случае 227 Ac получается, как и для актинидных ядер, максимальная энергия возбуждения для пар с магическими осколками с Z =50 и N =82. При деления ²¹³At эта зависимость меняется таким образом, что энергия возбудения для симетричного разделения становится больше, что также следует из анализа энергетической зависимости асимметричного деления 213 At /2/. Для данных на рис. Іа принято, что барьер деления $B_{\rm f} = 17$ МаВ для 213 At и $B_{\rm f} = 7.2$ МаВ для 227 Ac. Из рис. Іа следует, что точка разрыва для ядра 213 At лежит по энергия выше основного состояния в при самых низких энергиях d- частиц в работе /1/ E = 34,7 МаВ является низкознергетическим, так как Е_{вс} = 19 МаВ. Поскольку энергия возбуждения невелика. То сохраняется влияние оболочек в осколках. Это видно на примере расчёта средних кинетических энергий, приведённом на рис. Іб, для деления ²¹³At при энергии возбуждения $E_c = 25 \text{ МэВ и.}^{227}$ Ac при $E_c = 15 \text{ МэВ. Как видно из рис. Іб, и в случае$ $деления ²¹³At сохраняется характерный провал в <math>E_{\kappa}(A_{\rm H})$ при симметричном разледении, связанный с влиянием оболочек z =50 и N =82. В работе /1/ отмечалось сильное отклонение зависимости $E_{R}(A_{H})$ для ²¹³At от спадающей параболической зависимости, предсказываемой моделью жилкой канли. Таким образом, зависимость Е_к(А_н) на рис.16 согласу ется с наблюдаемой на опыте.

Рис. I. Зависимость от масси тяжёлого осколка разности между потенциальными энергиями на барьере и в точке разрыва (а) и средних кинетических энергий (б): • - расчёт для Ас при E_c= 15 МаВ; + - расчёт для А_t при E_c= 25 МаВ.

На рис.2 показано сравнение рассчитанного массового распределения деления ядра ²¹³ At с экспериментальным из реакции ²⁰⁹ Bi(d,f) при E_d = 34,7 МэВ, а также рассчитанное массовое распределение для ²²⁷ Ac при E_c = 15 МэВ. Как видно из рис.2, теоретические распределения $\gamma(A_{\rm H})$ имеют асимметричную составляющую при $A_{\rm H} \approx 130$, как и для актинидных ядер /6/. Из сравнения с распределением для ²²⁷ Ac видно, что для ядер легче Ac асимметричная составляющая в выходах масс убивает. На опыте асимметричный пик подавлен значительно сильнее и находится при $A_{\rm H} \approx 140$, как и в случае деления актинидных ядер. В работе /2/ отмечалось, что асимметричный пик при самых низких энергиях возбуждения имеет структуру при $A_{\rm H} \approx 130$, что совпадает с

Рис. 2. Массовые распределения Y(A₁₁): точки - опытные данные для At /2/; сплошные кривые - расчёт при E_c= 25 МэВ для At и E_c= 15 МэВ для Ac

расчётом. Ширина рассчитанного симметричного пика отличается от экспериментальной только на 4 массовые единицы. Рассчитанная зависк – мость отношения симметричного пика к асимметричному слабо зависит от энергии возбуждения, что согласуется с опытом 227 и связано с характером зависимости V_{вс} (A_H), показанной на рис.1а.

Таким образом, учёт оболочечной структуры осколков в точке разрыва поэволяет объяснить результаты по асимметричному делению доактинадных ядер. Представляется возможным устранить остающиеся расхождения между расчётом и экспериментальными данными путём со – вершенствования моделя. В частности, в работе $\langle T \rangle$ ондо показано, что учёт обмена между осколками после разрыва шейки может привссти к смещению асимметричного пика от $A_{\rm H}$ =130 до $A_{\rm H}$ =140. В рамках расматриваемой моделя получено, что асимметричная составляющая в $Y(A_{\rm H})$ убивает с уменьшением $z^2/_A$, поэтому представляет интерес проследить эту тендению для делечия ядер с $z \leq 83$.

Список литературы

- Грузиниев Е.Н. и др. Письма в КЭТФ, 1982. т. 35, ВЫП. 10, с. 449.
 Грузиниев Е.Н. и др. Шисьма в КЭТФ, 1982. т. 36, ВЫП. 8, С. 304.
 Разhkevich V.V. Nucl. Phys., 1971, v. A169, p. 275.
 Negele J.W. et.al. Phys. Rev., 1978, v. 017, N. 3, p. 1098.
 Рубченя В.А., Явшиц С.Г. Препринт РИ 163, Л., 1983.
 Рубченя В.А. В кн.: Нейтронныя физика. Материяни 5 Всесовзной конференции по нейтронной физике, Клев, 1980г., М., 1980, часть 3, с. 137 и с. 143.
- 7. Рубченя В.А., Явшиц С.Г. Препринт РИ 146, Л., 1983.

ДИНАМИЧЕСКАЯ МОДЕЛЬ ШРОЦЕССА ДЕЛЕНИЯ АТОМНЫХ ЯДЕР ВЕЛИЗИ. ТОЧКИ РАЗРЫВА,

В.А.Рубченя, С.Г.Явшиц (Ралиевый институт им.В.Г.Хлопина)

> Рассмотрены некоторые аспекты динамики делящейся системы волизи точки разрыва. Продложен метод перехода от конфигурации ядра перед разрывом к конфигурации днух осколков и модель обмена нуклонами между осколками. Для деления 236 U рассчитаны массовне распределения осколков, согласующиеся с экспериментальными данными.

Some aspects of fission dynamic near the scission point are considered. The method of transition from configuration of nucleus before scission to configuration of two fragments and nucleon exchange model for fragments are suggested. The mass distribution of fission fragments for case of fission of 2000 are calculated in accordance with experimental data.

В процессе движения делящегося ядра от седловой точки до точки разрыва ядро становится неустойчивым по отношению к развалу на два осколка. Неустойчивость возникает как следствие формирования индивидуальной оболочечной структуры образующихся осколков. В результате параметризация формы делящегося ядра единой фигурой перестает быть корректной. Дальнейшее описание эволюции системы требует перехода к конфигурации двух (или более) осколков. Такой переход может быть получен в предположении быстрого разрыва шейки конечной толиины порядка 2 фм /1/. Условие быстрого разрыва шейки конечной толиивая функция системы за время разрыва практически не меняется, что позволяет найти способ перехода, не прослеживая детально процессов, протекамщих в шейке в момент разрыва. Для этого заменим условие неизменности волновой функции условием приближенного равенства функций распределения плотности нуклонов до и после разрыва в форме сохранения нескольких первых моментов распределения.

Предполагая аксиальную симметрию конфигураций, в цилиндрических координатах (1.2) моменты имерт вид:

$$Iem = 2\pi i A \int dz \cdot z^{\ell} \int dr \cdot r^{m+1} \mathcal{G}(r, z), \qquad (I)$$

где $\rho(r,s)$ - функция распределения плотности.

Связь между параметрами деформации ядра до разрыва и параметрами осколочной конфигурации определяется системой уравнений, выражающих сохранение моментов:

$$I_{em}(\{di\}) = I_{em}(\{d_{f}\}).$$
 (2)

Здесь введены коллективные координаты $\{d_i\}$, описыванцие форму ядра в параметризации единой фигурой, и координаты $\{d_i\}$, заданцие конфигурацию системы осколков, причем оба набора координат берутся на линии разрыва. Моменты, стоящие в правой части системы (2), рассчитываются с функцией распределения плотности, равной сумме функций распределения плотностей осколков.

Уравнения (2) для низших моментов имеют простой физический смысл: уравнение для I_{00} выражает сохранение числа частиц; уравнение для I_{10} - сохранение центра тяжести; уравнения для I_{20} , I_{02} размеры по оси z и r и т.д. Массовые числа осколков A_1 , A_2 определяются условием: $A_i = A_i N$, где $A = A_1 + A_2$ - масса делящегося ядра,

 $V = V_i + V_2$ - его объем, V_i - объемы осколков, равные объемам девой и правой частей фигуры при проведении сечения через точку с минимальным диаметром. Заряды осколков связаны с массой условием, предполегающим равномерное распределение заряда по объему ядра: $Z_i = A_i/AZ$, $Z = Z_i + Z_2$ - заряд делящегося ядра.

В качестве набора $\{d, i\}$ использовались параметры деформации формы ядра, заданной в лемнискатных координатах \mathbb{Z}^{7} : $\{d, i\} = (d, d_{1}, d_{1})$, где d – параметр лемнискати, d_{4} – параметр гексадеканольной деформации, d_{1} – параметр асиметрик конфигурации. Набор $\{d_{f}\}$ определялся как $\{d_{f}\} \equiv (A_{1}, \mathbb{Z}_{1}, d^{1}; A_{2}, \mathbb{Z}_{2}, d^{2}; \Delta)$, где d^{1}, d^{2} – параметры лемнискаты осколков, Δ – расстояние между ближайшими полосами осколков. Функция распределения плотности нуклонов выбиралась в виде распределений типа Вудса-Саксона \mathbb{Z}^{7} с параметрами:

 $R_{o} = 1,12 A^{1/3} - 0,86 A^{-1/3}, a = 0,56 \ mm{m}, \beta_{o} - 0,17.$

На рис.І приведен пример перехода между конфитурациями $\{d_i\}$ =0,98, d_i =0,04, d_u =0,04) и $\{d_f\}$ = (A_I=I30, Z_I=50, d'=0,I; A₂=I32, Z₂=42, d^2 =0,37; Δ =3,2 фм) для деления ²³⁶V. Как видно из рисунка, тялелый магический осколок имеет форму, близкую к сферической.

В области разрыва были исследованы свойства потенциальной поверхности ядра в пространстве переменных (d, d₁, d₄). Потенциальная энергия вычислялась по методу оболочечной поправки [3]:

$$V_{\text{pot}=E_{1d}} + \delta V + E_{\text{pair}}, \qquad (3)$$

где Eld - жидкокапельная часть энергии, SV, Epair - оболочечная поправка и энергия спаривания.

Рис.І. Переход от конфигурации ядра перед разрывом к конфигурации системы осколков:

 ${d_i}_{\equiv}(d=0.98, d_1=0.04, d_{V}=0.04), {d_f}_{\equiv}(A_I=130, Z_I=50, d^1=0.1; A_2=106, Z_2=42, d^2=0.37; \Delta =3.2 \text{ M})$

Расчет спектров производился по программе "DIANA" [4] в деформированном потенциале типа Вудса-Саксона с параметрами деформации [4] и параметрами потенциала, выбранными согласно [5]. Расчеты показывают, что как жидкокапельная часть E_{id} , так и полная потенциальная энергия имеет минимум по \mathcal{L}_{ij} при фиксированном значении \mathcal{L}_{i} и \mathcal{L} . Однако для [id этот минимум не зависит от асимметрии, в то время как для Voot положение минимума испытывает скачок с изменением знака в области $\mathcal{L}_{i=0}$, 04+0, 05, что соответстнует массе тяжелого осколка A_{I} =I30+I33. Такой результат можно рассматривать как проявление оболочечной структуры формирующегося дважды магического осколка I_{32} Sn.

При фиксированном значении значение радиуса шейки R_M зависит от d₁ в том случае, когда d₄ выбирается из условия минимума V_{Pot} и постоянно, если d₁ определяется из минимизации *Eld*, что также можно рассматривать как влияние структуры ядра на радиус шейки в области разрыва. Однако максимальный статистический вес в обоих случаях соответствует симметричной конфигурации, что не согласуется с экспериментальными данными по низкоэнертетическому делению ²³⁶U. Поэтому необходимо учесть влияние структуры ядра в области разрыва и на деформацию, определяемую параметром d. В силу отсутствия количественного критерия устойчивости ядра относительно развала такой учет приходится производить феноменологически, считая, что обслочечная структура образующегося дваждымагического осколка ¹³² Sn проявляется в виде максимального статистического веса у этой конфигурации, как это имеет место в статистическом подходе (67. В рамках используемой параметризации такой учет структури ядра приводит к минимуму критического значения радиуса шейки R ^W для конфигураций, приводящих к образованию тяжелых осколков волизи

На рис.2 показана предполагаемая зависимость $R_{\mu\nu}^{\kappa\rho}$ от нараметра асимметрии d_l для высокознергетического (минимизация E_{dd}) и низкоэнергетического (минимизация Vpot) деления ²³⁶U. Значение критического радиуса полностью определяет форму ядра перед разрывом, т.е. набор $\{d_i\}_{\rho}$.

Другим следствием быстрого разрыва является нарушение статистического равновесия, сложившегося в ядге к моменту разрыва в результате вязкого спуска [7]. Эффекты неравновесности в осколочной системе будут приводить прежде всего к появлению потоков массы и

заряда между осколками. Действительно, за короткий промежуток времени в каждом из осколков устанавливается приближенно независимое среднее исле. Однако химические потенциалы частиц, принадлежащих разным осколкам. в общем случае не равны. т.е. возникает пространственный градиент химического потенциала, что и приводит к потокам частиц из осколка в осколок. В силу периферийности процесса величина и скорость обмена невелики и для описания процесса обмена можно использовать диффузионное приближение /8,97, где управляющим уравнением является уравнение фоккера-Планка. Для вычисления транспортных коэффициентов, входящих в управляющее уравнение, использовалась мопель подбарьерного обмена /9/. Непосредственно после разрыва потенциал , в котором рассматривается движение нуклонов, представляет из себя две потенциальные ямы, разделенные барьером, поэтому обмен илет путем подбарьерных переходов. Интенсивность обмена определяется, в основном, величиной барьера, а направление - разностью соответствуищих химических потенциалов. Решение управляющего уравнения для переменных Ат, Z , т.е. массы и заряда одного из осколков, определяется начальным распределением осколков, транспортными коэффициентами и временем взаимодействия осколков путем обмена.

Для обойх случаев - низкоэнергетического и высокоэнергетического деления ²³⁶ U вычислялся статистический вес конфигураций согласно /107, определяющий начальное распределение осколков по массам и зарядам, решалась система (2) и для полученной осколочной конфигурации в модели подбарьерного обмена находились транспортные коэффициенты и конечные распределения осколков. Результаты расчетов транспортных коэфициентов для низкоэнергетического деления ²³⁶ U показывают, что в области масс тяжелых осколков от 124 до 132 а.е.м. система неустойчива по отношению к переходам из легкого осколка в тяжелый, а затем направление среднего тока меняется на обратное. Такой результат является следствием оболочечной структуры ядер, близких к дважды магическому ядру ¹³²Sn , уровень Ферми которых находится ниже, чем уровень Ферми соответствующих легких осколков.

На рис.З приведены начальное и конечное массоные распределения осколков низкознергетического деления ^{236}U при \mathcal{T}_{B3} =5.10⁻²¹ с в среднении с экспериментальными данными. Как видно, полученные конечные распределения согласуются с экспериментальными. Результаты расчетов для высокознергетического деления ^{236}U показывают, что разностный ток нуклонов близок к нулю во всей рассматриваемой области масс осколков. Обмен в этом случае приводит лишь к уширению

начального распределения, сохраняя преимущественный выход осколков симметричного деления.

Таким образом, результать, полученные в рамках предлагаемой модели, показывают, что на конечной стадии деления ядра необходимо рассматривать как равновесные свойства конфигуралии ядра перед разрывом, так и неравновесные эффекты в системе осколков. Более полное описание требует включения дополнительных степеней свободы, что позволит применить модель и к расчетам таких характеристик, как распределения кинетических энергий и энергий возбукдения осколков.

Список литературы

- І. Рубченя В.А., Явшиц С.Г. Препринт РИ-163, Л., Радиеный ин-т им. В. Г. Допина, 1983. 2. Pashkevich V.V. - Nucl.Phys., 1971, v.A169, p.275. 3. Strutinsky V.M. - Nucl.Phys., 1969, v.A132, p.1.

- 4. Рубченя В.А., Пашкевич В.В. Бюллетень центра данных ЛИФ. 1976, вип.3, с.3. 5. Соловьев В.Г. Теория сложных ядер. М., Наука, 1971. 6. Рубченя В.А. Препринт РИ-104, Л., Радиевий ин-т им.В.Г.Хлопина,

- 7. Roonin S.F., Nix J.R. -Phys.Rev., 1976, v.13, p.209.
- 8. Norenberg W.N. Z. Phys., 1975, V.4274, р.241. 9. Рубченя В.А., Яклиц С.Г. Препринт РИ-I46, Л., Радиевый ин-т ил.В.Г.Хлонина, 1981. 10. Игватюк А.В. – Ядерная физика, 1979, т.29, 875.

38I

МАССОВЫЕ РАСПРЕДЕЛЕНИЯ ОСКОЛКОВ ДЕЛЕНИЯ ВЫСОКОВОЗБУЖДЕННЫХ ЯДЕР

Л.Н.Андроненко, Л.А.Вайшнене, А.А.Котов, М.М.Нестеров, В.Нойберт, Н.А.Тарасов

(ЛИЯФ им. Б.П.Константинова)

Исследованы массовые распределения осколков деления высоковозбужденных ядер. Показано, что распределения, полученные с помощью времяпролетной методики, меняют характер при переходе от тяжелых ядер к легким. Этот эффект свя зывается с предсказываемым в модели жидкой канли переходом в область массовой неустойчивости.

The mass distributions of fission fragments emitted by highly excited nuclei have been investigated. It has been shown that the fragment mass distributions obtained by the time-of-flight method change their character in the region of the light nuclei.

Известно, что при высоких энергиях возбуждения оболочечные эффекты в ядрах исчезают. При этом для описания коллективного движения ядер может быть использована модель жидкой капли, которая предсказывает изменение характера массовых распределений осколков при делении легких ядер (в районе ядер серебра) /1/. Для изучения этого явления было проведено исследование процесса деления ядер

В: , Au , W , Sb , Ag и Ni , которое возможно только в ядерных реакциях, приводящих к высоким энергиям возбуждения делящихся ядер. Такие высоковозбужденные ядра могут быть получены при взаимодействии с частицами высоких энергий. Нам кажется предпочтительным исследовать деление, вызываемое высокознергетичными нуклонами, что приводит, в отличие от реакций с тяжелыми ионами, к относительно небольшому угловому моменту делящейся системы. В этом случае можно избежать трудностей, связанных с влиянием углового момента и начальной массовой асимметрии в системе мишень-ион на исследуемое массовое распределение осколков.

Эксперименты были выполнены на выведенном пучке протонов с энергией I ГэВ синхроциклотрона ЛИНФ с использованием двухплечевого спектрометра. Измерение массы осколка в перьом плече спект-

рометра осуществиялось путем измерения его энергим и времени пролета. Эксперименты проводились в двух вариантах, отличающихся друг от друга типом детекторов, используемых во втором плече спектрометра для регистрации дополнительного осколка. В первом варианте измерялась только энергия дополнительного осколка с помощью полупроводникового Si (Au) – детектора.Во втором ва – рианте вместо Si (Au) – детектора был установлен чувотвительный к месту регистрации плоско-паралиельный лавинный счетчик, который дал возможность измерять время пролета второго осколка и угол между направлениями разлета осколков двойного деления ядер. Это позволило однозначно выделить процесс двойного распада ядер на фоне других пропессов.

Puc.I.

На рис. I изображены массовые распределения, полученные для мишеней Ві, Au, W, Sb, Ag и Ni при облучении протонами о внергией I Гъв. На гистограммах видно увеличение асимметрии масс с уменьшением массового числа ядра мишени. Максимум, являюцийся харантерным для симметричного деления таких ядер, как Ві, Ац и W, исчезает для ядер Sb, Ag и Ni.

Для выяснения причин наблюдаемого эффекта был проведен теоретический анализ в рамнах каскадно-испарительной модели и статистической теории деления без учета струнтурных эффектов [27. В работе [3] показано, что такой подход позволяет объяснить полученные в эксперименте массовые распределения осколков деления как тяжелых, так и средне-тяжелых ядер. Проведенный в настоящей работе анализ показывает, что изменение формы массовых распределений для ядер Sb., Ag. и Ni обусловлено не только обсуждавимися в работе /3/ широким спектром и большой величиной энергий возбуждения делящихся ядер, но и процессом испарения нейтронов и других легких частиц из высоковозбужденных осколков деления. На рис.2 приведены рассчитанные массовые распределения продуктов деления ядер золота и серебра с учетом (сплошная гистограмма) и без учета (пунктирная гистограмма) процесса испарения частиц из воз – бужденных осколков.

Из рисунка 2 видно, что при делении тяжелых ядер этот процесс приводит к изменению положения среднего и мирины массового распределения, но не влияет существенно на его форму. В то же время расчет показывает, что массовое распределение осколков деления

Ад протонами с энергией I ГэВ до испарения из них частиц, т.е. в точке разрыва, является асимметричным. Испарение частиц из вы соковозбужденных осколков сглаживает асимметрию и делает массовое распределение равномерным, т.е. таким, каким оно наблюдается в эксперименте.

Для того чтобы экспериментально наблюдать асимметричный характер массового распределения, необходимо провести измерения такой характеристики реакции, на которую в меньшей степени оказывает влияние процесс испарения частиц из осколков, или произвести отбор событий, соответствующих сравнительно небольшим энергиям возбуждения делящихся ядер. Можно окидать, что процесс испарения частиц из возбужденных осколков в меньшей степени исиажает распределение осколков по скорости, поскольку в снотеме центра масс испарение носит изотропный характер. Полученные экспериментальные распределения по скорости осколков деления ялер Ві и Ад протонами с энергией І ГэВ представлены на рис. 3.

Puc.3.

Список литературы

- Preiman U., and Hallens S. Suovo Cim., 1955, v. 1; p. 629, 1277.
- Г. Соверение В. с., Тонеев В.Д. "Вазимодействия высокознерге-тических частиц и атомных ядер с ядрами". 1972, Москва, Атом-
- Induction L.N., Motov A.A., Mesterov M.M. et al. Zeit. Phys., 1963, v.210, 347. 3.

ветствующее распределение для ядер Ао носит ярко выражен ~ ный асимметричный характер и подтверждает сделанные выше выводы об эффектах аскы метрии в массовых распреде лениях. Таким образом, можно счи-

Видно, что если отноше-

ние скоростей оснолков деления ядер Ві группируются в симметричной области, то соот-

тать, что наблюдаемое в эксперименте изменение формы мас совых распределений продуктов деления ядер легче Sb по сравнению с тяжелыми яжрами В; , Ац и W свидетельству-

ет о переходе в область массовой неустойчивости.

385

ВЛИЯНИЕ НЕРАВНОВЕСНОСТИ ДЕЛЕНИЯ НА ФОРМИРОВАНИЕ ЭНЕРГЕТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ ОСКОЛКОВ

Г.Д.Адеев, И.И.Гончар

(Омский государственный университет)

Изучено влияние неревновесности процесса деления на величину дисперски кулоновской энертии взаимодействия осколков С. Результати статистической и динамической теорий получени как пределы соответственно большого и малого трения по делительной степени свободы.

THE INFLUENCE OF FISSION NONEQUILIBRATION ON THE FRAGMENTS ENERGY DISTRIBUTION. The influence of fission nonequilibration on the variance O_K of the Coulomb energy of fragments interaction is studied. Results of fragments interaction is studied. Results of statistical and dynamical theories are obtained as the limiting cases of large and small friction of the separation degree offreedom respectively.

Существующие в настоящее время динамические (1-3) и статистические (4-6) модели деления не объясняют ни абсолютных значений дисперсий кинетических энергий осколков, ни бистрого роста этих дисперсий с увеличением заряда делящегося ядра (7). Недавно для описания распределений осколков по массам и энергиям начали применять уравнение фоккера-Планка для квантовой функции распределения (8-10). Такой подход позволяет учесть динамику процесса деления, его диссипативный характер, квантовые и тепловые флуктуации. Он дает возможность также получить результати динамических и статистических моделей как предельные случаи малого и большого трения по делительной степени свободы, исследовать влияние неравновесности на ширины распределений осколков. Результаты таких расчетов для энергетического распределения представлены в настоящем докладе.

Исходним является уравнение фоккера-Планка для квантовой функции распределения $P(\vec{x},t)$:

$$\frac{\partial P}{\partial t} = -\sum_{i=1}^{4} \frac{\partial}{\partial x_{i}} \left[\Phi_{i}(\vec{x},t) \vec{P} \right] + \sum_{i,k=1}^{4} \frac{\partial^{2}}{\partial x_{i} \partial x_{k}} \left[\overline{\mathcal{D}}_{ik}(\vec{x},t) \vec{P} \right],$$

$$\begin{aligned} \vec{x} &= (x_{1}, x_{2}, x_{3}, x_{4}), & \phi_{4} &= v_{x}', & \phi_{2} &= v_{y}', & (I) \\ x_{1} &= 2(\rho - \rho_{sd}) &\equiv x, & \phi_{3} &= -(m_{x,x}, v_{x}^{2} + \eta_{x}, v_{x}' + u, x)/m_{x}, \\ x_{2} &= h^{\pm}y, & x_{3} &= v_{x}', & x_{4} &= v_{y}', & \phi_{4} &= -(m_{y,x}, v_{x}' + u, v_{y})/m_{y}. \end{aligned}$$

В формулах (I) *Р*-половина расстояния между центрами масс будущих осколков в единицах раднуса равновеликой делящемуся ядру сферы R_o ; индекс Sd означает, что значение величины берется в седловой точке; h - параметр формы ядра, определяющий толщину шейки (см. например, $\langle II_{} \rangle$); индекс, стоящий после запятой, означает дифференцирование по данной переменной.

Расчеты проводились с аппроксимацией зависимости потенциальной энергии $\mathcal{U}(x,y)$ от x перевернутой параболой:

$$\mathcal{U}(\mathbf{x},\mathbf{y}) = -\Delta \left[\left(\frac{\mathbf{x}}{\mathbf{x}_{\mathbf{x}}} \right)^2 + \frac{C_A \mathbf{y}^2}{2} \right]^2 \qquad (2)$$

Здесь $\Delta E > 0$ - разность энергий деформации в седде и в точке разрыва, индекс 5*c* указывает, что значение величины берется в точке разрыва. Жесткость *C*_A брали равной 300 МэВ, что приблизительно соответствует средней жидкокапельной жесткости на пути от седла до разрыва для ядер, тяжелее редия.

Фрикционные и инерционные параметры η_x , η_y , m_x , m_y считались постоянными и рассматривались в качестве свободных. В тензоре диффузии считались ненулевыми дишь компоненты

$$\mathcal{D}_{33} = \mathcal{D}_{\mathbf{x}} = \eta_{\mathbf{x}} T / m_{\mathbf{x}}^{2}, \quad \mathcal{D}_{44} = \mathcal{D}_{\mathbf{y}} = \eta_{\mathbf{y}} T^{*} / m_{\mathbf{y}}^{2} \tag{3}$$

Здесь $T^* = (\hbar \omega_1/2) c t h(\hbar \omega_2/2T), T$ - температура, которая вычислялась по формуле

$$\Gamma = \left[10 \left(E^{*} + \Delta E / 2 - E_{f} \right) / A \right]_{,}^{42}$$
(4)

где \mathcal{A} – массовое число делящегося ядра, \mathcal{E}^* – энергия возбуждения, \mathcal{E}_i – жидкокапельный порог деления. Величина $\triangle \mathcal{E} / \mathcal{Z}$ введена в определение температуры, чтобы учесть диссипацию энергии при спуске от седла до разрыва.

Решение уравнения (I), отвечающее б-образным начальным условиям (функция Грина), ныбиралось гауссовым с параметрами, зависящи-

387

÷

ии от времени. В силу линейности уравнений Ланкевена, соответствуищих уравнению (I), для этих параметров можно получить аналитические выражения /107. В реальном случае распределение по коллективным переменным в селловой точке, которая берется в качестве начальной в наших расчетах, видимо, ближе к равновесному, чем к б-образному. Чтобы учесть это, в вычислениях использовали не функцию Грина уравнения (I), а ее свертку с начальным равновесным распределением на барьере. При этом начальные пириым распределений по x , y , v_x , v_y определяются параметрами m_x, my, барьерным значением жесткости h-моды CAsd и температурой в седловой точке, которую вычисляли по ϕ ормуле (4) с $\Delta E = 0$.

В данном докладе представлены результаты вычисления дисперсии кулоновской энергии отталкивания осколков о, которая, как предполагается, должна давать основной вклад в дисперсию кинетической энергии осколков. Вычисление о проводилось по методу, предложенному в /107 с использованием линии деления, которая аппроксимируется волизи точки разрыва прямой $y - y_{sc} = b_o (x - x_{sc})$. Коэффициент b_o в зависимости от предположений о конфигурации разрыва может меняться от -0,62, если разрыв происходит при радиусе шейки $\tau_n \simeq 0,3 R_o$, до -0.47 при 2, =0. Напи "флуктуационно-диссипативные" расчеты мы сравнивали со статистическим и динамическим пределами. Статистический предел вычисляется по формуле (/107)

$$\mathbf{\hat{O}}_{v_{c}}^{2} = \left[\left(\frac{\partial V_{c}}{\partial x} \right)_{sc} + \left(\frac{\partial V_{c}}{\partial y} \right)_{sc} \mathbf{\hat{b}}_{o} \right]^{2} \mathbf{\hat{G}}_{y}^{2} / \mathbf{\hat{b}}_{o}^{2}, \qquad (5)$$

где для бу надо брать равновесное значение в точке разрыва. Под динамическим пределом понимается значение Оу, которое получается, если положить $n_x = n_x = 0$, т.е. искличить на спуске с барьера трение и флуктуации. В этом случае ок вычисляется по формуле (15) работы /107, при этом для вычисления Σ_{r}^{2} используются

$$G_{y}^{2} = T_{sd}^{*} / \mathcal{L}_{hsd} \left(\frac{\omega_{ysd}^{2}}{\omega_{y}^{2}} \sin^{2} \omega_{y} t + \cos^{2} \omega_{y} t \right), \qquad (6)$$

$$G_{x}^{2} = \frac{T_{sd}}{m_{x}} \left(1 - \frac{2}{\pi} \right) \left(sh^{2} \omega_{x} t \right) / \omega_{x}^{2}, \qquad (7)$$

где

 $\omega_{\perp}^{2} = 2\Delta E / (m_{x} x_{u}^{2}), \quad \omega_{y} = \sqrt{\ell_{h}} / m_{y}.$

В случае очень большого трения по $\mathcal{Y}(\mathcal{N}_{\mathcal{Y}} \gg 2\sqrt{m_{y}c_{h}})$ в расчетах появляется еще одно предельное значение – предел замороженных начальных условий. При его вычислении для \mathcal{O}_{x}^{2} и \mathcal{X}_{m} используются формулы (7), а $\mathcal{O}_{\mathcal{Y}}^{2}$ принимаются равным T_{sd}^{4}/C_{hsd} . Из рис. а видно, что $\mathcal{O}_{\mathcal{V}_{c}}^{2}$ не слишком сильно зависит от m_{x} . При уменьшении m_{x} $\mathcal{O}_{\mathcal{V}_{c}}^{2}$ стремится к динамическому пределу для малых $\mathcal{N}_{\mathcal{Y}}$ (кривая I) и к пределу замороженных начальных условий при больших \mathcal{N}_{y} (кривая 2). Увеличение $\mathcal{O}_{\mathcal{V}_{c}}^{2}$ при уменьшении m_{y} (рис. в) связано с возрастанием квантовых флуктуаций h: при $h \simeq y \gg T$

 $T \sim m_g^{-M_2}$ С увеличением m_y эти флуктуации играют все меньщую роль и при $\hbar \omega_y << T \, \delta_y$ вовсе перестают зависеть от m_y ($T \succeq T$). Интересно, что изменение m_y приводит к изменению взаимного расположения предельных значений δ_{v_k} : при больших m_y (классический предел) статистический предел является наибольшим, а при малых m_y , когда существенны квантовые флуктуации, - наименьшим.

Статистический предел оказывается пределом большого трения по делительной степени свободы при фиксированном η_y . Одновременное увеличение η_x и η_y может не приводить к уравновешиванию δ_y^2 (и δ_{vc}^2). Поскольку δ_{vc} можно для оценок считать пропорциональным $\delta_y^2(t_{sc})$, то чем больше t_{sc} , тем ближе окажется δ_{vc}^{vc} к равновесному значению, а t_{sc} возрастает с увеличение η_x . Увеличение η_y приближет $\delta_y^2(t_{sc})$ к равновесному значению при $\eta_y < 2m_y \omega y$. Если же $\eta_y \gg 2m_y \omega y$, то с увеличением $\eta_y \delta_y^2(t_{sc})$ отдаляется от своего равновесного значения.

Из результатов расчетов можно сделать вывод, что неравновесность процесса деления может как уменьшать, так и увеличивать значение δ_{vc}^2 , вычисленное в предположении равновесных начальных условий, по сравнению со статистическим пределом. Величина δ_{vc}^2 , вычисленная при δ -образных начальных условиях, может лишь уменьшаться за счет неравновесности.

Зависимость дисперсии кулоновской энергии отталкивания осколков $\mathcal{S}_{v_{k}}$ для $^{236}\mathcal{U}$ от фрикционных и инергиионных параметров. Кривне I – η_{g} =0.5 МэВ×IO⁻²¹×с, 2 – η_{g} =5000 =5000 МэВ×IO⁻²¹×с. Буквами обозначены: S – статистический предел, \mathcal{D} – динамический предел, F –предел замороженных начальных условий. $m_{x} = \mu$, $m_{g} = 0.1 \,\mu$, $\eta_{x} = 15 \,\text{МэВ×IO}^{-21}$ ×с, E =6 МэВ, $\delta_{c} = -0.5855$. μ – приведенная масса двух осколков. Стрелками показаны значения $\eta_{g} = 2 \, m_{g} \, \omega_{g}(a)$ и m_{g} , соответствующее $\hbar \, \omega_{g}/2 = T$ (в)

CHECOK JETEDATYDH

- Nix J.R. Nucl. Phys., 1965, v. 71, p.1.
 Nix J.R. Nucl. Phys., 1968, v. A130, p.1.
 Hasse P.W. Nucl. Phys., 1969, v.A 128, p.609.
 Fong P. -Phys. Rev., 1964, v.B1338; Phys. Rev., 1956, v. 102, p.434.
 Facchini U. Saetta-Menichella K. -Phys., Letta, 1974, v.49B, p.153.
 Pyövens B.A. Препринт РИ-104, Ленинград, 1979.
 Lazarev Xu.a. At, En. Rev., 1977, v.15, p.75.
 Pomorski K., Hofmann H. J.Physigue, 1981, v.42, p.381.
 Samaddar S.K. et.al. Physica Scripta, 1982, v.25, p.517.
 О.Адеев Г.Д., Гончар И.И. Ядерная физика, I983, т.37, с.III3.
 Brack M. et.al. Rev. Mod. Phys., 1972, v.44, p.320.

ъ

ИЗОВЕКТОРНЫЕ КОЛЕЕАНИЯ ПЛОТНОСТИ В ДЕЛЯЩЕМСЯ Я ДРЕ И ДИСПЕРСИИ ЗАРЯДОВОГО РАСПРЕДЕЛЕНИЯ ОСКОЛКОВ

Г.Д.Адеев, И.И.Гончар, Л.А.Марченко

(Омский государственный университет)

В гидродинамической модели рассчитаны знергии изовекторных колебаний плотности в делящеюся ядре для форм, характерных для района разрыва. Рассчитанные значения энергий дипольных изовекторных колебаний использованы для определения эффективной массы, соответствующей обмену зарядом между осколками, и для оценок дисперсий зарядового распределения.

ISOVECTOR DENSITY VIBRATIONS IN THE FISSI-ONING NUCLEUS AND THE WIDTHS OF THE CHARGE DIS-TRIBUTION IN FISSION. Eigenenergies of the isovector desity vibrations in the fissioning nucleus are calculated in the framework of hydro dynamical model. These eigenenergies are used for the estimation of the width of the charge distribution in fission.

Хорошо известно, что дисперсии зарядовых распределений осколков деления оставотся практически постоянными при увеличении энергии возбуждения компаунд-ядра до 40-50 МэВ [I]. Эта экспериментальная закономерность, а также тот факт, что такое постоянство ширин зарядового распределения находится в противоречии с предсказаниями статистической модели [2,3], часто рассматриваются [I,4] как указание на то, что основную роль при формировании дисперсий зарядового распределения играют квантовые нулевые изовекторные колебания плотности в делящемся ядре, а статистические флуктуации, по крайней мере при низкоэнергетическом делении, не вносят существенного вклада в дисперсии. Для такой интерпретации зависимости зарядового распределения от энергии возбуждения необходимо, чтобы энергии изовекторных колебаний плотности в основном состоянии заметно превосходили температуру компаунд-ядра при Е[±] 40-50 МэЗ и были сравнимы с ней при более высоких энергиях возбуждения.

Подробное изучение изовекторных колебаний плотности в делящемся ядре и их роль в формировании зарядового распределения к настояцему времени почти совсем отсутствует. Как единственное исключение отметим работу [5], в которой изовекторные колебания рассматривались для ограниченного класса форм делящегося ядра. Целыв настоящей работы явилось систематическое изучение изовекторных колебаний плотнооти в рамках гидродинамической модели [6] для форм делящегося ядра, характерных при его спуске с седловой точки к точке разрыва. Была использована параметризация $\{c, h, a\}$ [7]. Рассчитанные значения энергий дипольных изовекторных колебаний затем использованы для оценок дисперсии зарядового распределения при его динамическом описании. При динамическом рассмотреник формирования зарядового распределения инерционные параметры и частоты изовекторных колебаний, обнаруживая сильнув зависимость от вытянутости ядра и параметра шейки, в значительной степени определяют общув картину эволюции зарядового распределения.

В гидродинамической модели предполагается, что ядерное вещество состоит из двух взаимопроникаванх жидкостей: протонной с плотностью

 $\rho_{\rm P}$ и нейтронной с плотностьв ρ_n . Считается, что ядерное вещество в целом является несжимаемым и полная плотность $\rho_{\rm o}=\rho_{\rm p}(\vec{z},t)+\rho_n(\vec{z},t)$ не зависит от времени. При разделении ядра на осколки начинает происходить перераспределение плотностей, которое опионвается флуктуацией плотности η (\vec{z} , t). Протонная и нейтронная плотность выражается через флуктуацию следующим образом:

$$\rho_{p}(\vec{z},t) = \rho_{po}[1+\eta(\vec{z},t)], \qquad \rho_{n}(\vec{z},t) = \rho_{no}[1-\mathcal{Z}_{N}\cdot\eta(\vec{z},t)], \qquad (1)$$

где ρ_{po} и $\rho_{no} = \tilde{Z}/N \cdot \rho_{po}$ — равновеоные протонная и нейтронная плотности. Флуктуация γ (\tilde{z} , t) удовлетворяет волновому уравненив $\sqrt{87}$ с фазовой скоростьв $\mathcal{U} = \delta a_{sym} \frac{2N}{(M^*A)}$, где $N^* \cdot 3\Phi - \Phi$ фективная масса нуклона и α_{sym} —коэффициент энергии симметрии в формуле Вайцзеккера. При гармонических колебаниях плотности $\gamma(\tilde{z}, t) = \gamma(\tilde{z}) e^{-i\omega t}$ находим, что $\gamma(\tilde{z})$ удовлетворяет уравненив Гельмгольца

$$\nabla^2 \eta(\vec{i}) + k^2 \eta(\vec{i}) = 0 \tag{2}$$

с однородным граничным условием

$$\vec{n} \nabla \eta$$
 (\vec{z}) поверхность =0. (3)

где \vec{n} -вектор нормали к поверхности ядра. Волновое число k связано с коэффициентом энергии симметрии следуящим образом:

$$\delta^{2} = \frac{\omega^{2}}{\mathcal{U}^{2}} = \omega^{2} \left(\mathcal{M}^{*} \mathcal{A} / \delta a_{sym} N \mathcal{Z} \right)^{2}.$$
(4)

При рассмотрении изовекторных колебаний плотности в гидродинамической модели можно учесть их затухание, обусловленное вязкостью. Такой учет приводит к комплексным волновым числам в (2) и незначительной перенормировке частот [8].

$$\gamma_{i}(\vec{z}) = \sum_{l_{m}} a_{l_{m}}^{i} j_{c}(k^{i}z) P_{l_{m}}(\theta) e^{img}, \qquad (5)$$

где ℓ характеризует мультипольность флуктуации плотности, ℓ обертоны колебаний, $a_{\ell m}^{i}$ -являвтся амплитудамы соответствующих колебаний. Волновые числа k^{i} , определяющие частоты изовекторных колебаний, определяются из граничного условия (3), которое для произвольной аксиально симметричной формы, описываемой ураднением $\mathcal{R} = \mathcal{R} (cos \theta) = \mathcal{R} (x)$, записывается [5] как

$$\sum_{k=0}^{\infty} a_{lm}^{i} \{k_{jl}^{i}(k^{k}R)R^{2}P_{lm}(x) - (1-x^{2})j(k^{k}R)R\frac{dR}{dx} \cdot \frac{dR_{m}}{dx}\} = 0.$$
(6)

Умножая (6) на $P_{\ell'm}$ и интегрируя по x в пределах от -1 до +1, сводим (6) к следующей системе уравнений:

$$\sum_{i=1}^{n} C_{ii}^{m} (\mathbf{k}^{i}) = 0 \tag{7}$$

с коэффициентами, определяемыми в цилиндрической системе координат следующим выражением: $C^{m} = \frac{(2\ell'+1)}{(\ell'-m)!} f^{i} \left[\int_{0}^{2\pi} \left[\int_{0}^{2\pi} \left[\int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau} \right] - \int_{0}^{2\pi} \left[\int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau} \right] \frac{j(k'+2\tau)}{\tau^{2}} \right] = \frac{(2\ell'+1)}{\tau^{2}} \int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau^{2}} = \frac{(2\ell'+1)}{\tau^{2}} \int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau^{2}} = \frac{(2\ell'+1)}{\tau^{2}} \int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau^{2}} \int_{0}^{2\pi} \frac{d\tau^{2}}{d\tau^$

$$= \frac{k^{i}(\chi^{2} - \frac{1}{2}\chi \frac{d\chi^{2}}{dz})}{\sqrt{2^{2} + z^{2}}} \int_{\ell \cdot t} (k^{i}\sqrt{2^{i} + z^{4}}) \Big] P_{\ell m} \left(\frac{z}{\sqrt{2^{2} + z^{4}}}\right) P_{\ell m} \left(\frac{z}{\sqrt{2^{2} + z^{4}}}\right) + (\ell \cdot m + 1) \frac{z + \frac{1}{2} \frac{d\chi^{2}}{dx}}{\sqrt{2^{2} + z^{2}}} \times i \int_{\ell \cdot t} (k^{i}\sqrt{2^{i} + z^{4}}) P_{\ell m} \left(\frac{z}{\sqrt{2^{2} + z^{4}}}\right) \Big] dz , \qquad (8)$$

где функция $\mathcal{I}^{2}(\mathcal{Z})$ определяется из уравнения поверхности ядра, а \mathcal{I}_{A} и \mathcal{I}_{A} -граничные точки поверхности ядра, в которых $\mathcal{I}^{2}(\mathcal{Z})$ обращается в нудь. Ограничиваясь в разложениях (5)-(8) некоторым

Стах = 1. можно найти корни уравнения:

$$D_{et} \{ C''(k') \} = 0,$$
 (9)

где G'''-матрица размернооти $L \times L$. Максимальное значение Lвыбиралось из условия сходимости энергий изовекторных колебаний вплоть до значений 40 МаВ. Обычно для этого требовалось $L \simeq 10 + 12$.

В первом приближении будем считать, что наиболее существенными для формирования зарядового распределения являются компоненты дипольных изовекторных колебаний с m = 0, т.к. именно они соответствувт колебаниям плотности вдоль оси разделения ядра, приводя, таким образом, к наиболее эффективному перераспределению заряда между осколками. Типичные результаты расчетов энергии изовекторных колебаний с m = 0 показаны на рис. I, 2. На этих рисунках нижайвая мода осответствует дипольным изовекторным колебаниям. Из рис. I видно, что

вид

с ростом удлинения ядра энергии дипольных колебаний пропорциональвы С⁻¹ (при С ≤ I.6), при дальнейшем увеличении С энергии уменьваются более быстро, достигая в районе физической точки разрыва значений, равных 2-3 МэВ.

Сильная зависимость энергии дипольных колебаний наблюдается от параметра вейки h . особенно при значениях С. характерных для самого момента разрыва (см. ркс. I и 2а). При очень малом радиусе шейки энергия дипольных колебаний стремится к нулю, что соответствует бы отрому росту инертной массы, соответствующей обмену зарядом между будущими осколками. С изменением асимметрии по массам в районе физической точки разрыва энергии дипольных колебаний практически не меняются, в то время как энергии колебаний более высокой мультипольности заметно растут (рис.2в).

Рассчитанные значения энергий дипольных изовекторных колебаний использовались для определения инертной массы, соответствующей обмену зарядом между осколками. Значения констант жесткости относительно зарядовой координаты при этом рассчитывались по методу, пред-Оценки дисперсий ${\sigma_{x}^{2}}$ и их зависимость ложенному в /2.97. OT энергии возбуждения были сделаны в рамках динамического описания процесса деления, основанного на применении к делению уравнения Фоккера-Планка, Расчеты показывают, что при энергиях дипольных колебаний, характерных для момента разрыва (2+2,5 МэВ), заметный рост дисперсий зарядового распределения наблюдается при Е* > 40 МэВ.

Таким образом, можно заключить, что при спонтанном и низкоэнергетическом делении дисперсия зарядового распределения обусловлена практически только квантовыми нулевыми дипольными колебаниями плотности. Статистические флуктуации при полученных значениях энергии дипольных колебаний в момент разрыва начинают заметно проявляться при $E^* > 40$ МэВ.

Список литературы

- Vandenbosh R., Huizenga J.R. Nuclear Fission, Academic Press, 1973.
 Adeev G.D., Dossing T. Phys.Lett., 1977, v.66B, p.11.
 Волков Н.Г., Емельянов В.М., Крейнов В.П. ЯФ, 1979, т.29, с.1171.
 Asghar M. Z.Physik, 1980, v.A296, p.79.
 Hill D.L., Wheeler J.A. Phys.Rev., 1953, v.89, p.1102.
 Updegraff W.E., Onley D.S. Nucl Phys., 1971, v.A161, p.191.
 Steinwedel H.A., Jensen J.H.D. Z.Naturf., 1950, v.5A, p.413.
 Brack M., Damgaard J. et.al.-Rev.Mod.Phys., 1972, v.44, p.320.
 Айзенберг И., Грайнер В. Модели ядер, М., "Атомиздат", 1975,295с.
 Адеев Г.А., Филипенко Л.А., Черланцев П.А.- ЯФ, 1976, т.23, с.30.

СОДЕРЖАНИЕ

Пленарное заседание Открытие конференции Пасечник М.В. Развитие нейтронной физики в СССР (К 50-летию открытыя нейтрона). 3 Секция І. Потребности в ядерных данных. Методы оценки ядерных данных Манохин В.Н., Усачев Л.Н. Потребности в ядерных данных для реакторов на быстрых нейтронах..... **3**I Орлов В.В., Шаталов Г.Е., Шерстнев К.Б. Термоядерный синтез и нейтронные процессы..... 36 Труханов Г.Я. Разработка рекомендуемых и стандартных справочных данных для задач расчета полей нейтронов и сопутствующих эффектов в ат-мосфере Земли и в средах из основных породообразующих эле-MehtoB..... 48 Даниэль А.В., Матвеев В.Г. Библиотека сечений адронов на ядрах средних и тяжелых элементов в диапазоне энергий 20 МэВ - 10 ГэВ..... 53 Осипов В.К., Тебин В.Б. Расчет кожфициентов чувствительности характеристик теплового 56 реактора к погрешности микроскопических нейтронных данных 5ёмер Б., Дитце К., Фэрманн К., Хсттель Г., Кумпф Г., Леманн Е. Оценка параметров поглощения реакторных конструкционных материалов с помощые интегрального опыта нового типа..... 6I Юлкевич М.С. Анализ экспериментов на критических сборках с целью проверки 73 констант для расчета тепловых реакторов......

Шиманская Н.С., Герасименко Б.Ф., Душин В.Н., Ипполитов В.Т., Королев Е.В., Матвеев Г.В., Явшиц С.Г. Системная модель интегральных экспериментов по наработке 80 ралконуклидов..... Волков Н.Г., Крянев А.В. Устойчивые метолы оценки нейтронно-физических характеристик 85 нуклалов на основе экопериментальных данных...... Марковски Б., Янева Н. Баесовский подход к параметризации нейтронных сечений совмеотно с функциями пропускаяия..... 89 Лунев В.П., Мантуров Г.Н., Типунков А.О., Толстиков В.А., Оценка нейтронных сеченый в области неразрешенных резонан-97 Кощеев В.Н., Мантуров Г.Н., Николаев М.Н., Синица В.В. Точность оценки эффектов резонаноной самоэкранировки сечений в области неразрешенных резонансов..... IOI EGANKOB C.A., Fatt E.B., PAGOTHOB H.C., THEYHKOB A.O., TOJOTEKOB B.A. Оценка сечения захвата 236 У в интервале энергий 106 I кэВ ≤ В ≤ I, I Мав на основе паде-аппроконмации..... EGAMKOB C.A., Fat E.B., PACOTHOB H.C. Определение погрешностей резонансных кривых при аппроксиманий рациональными функциями..... III Титаренко Н.Н. Комплекс программ расчета сечений двухчастичных реакций..... II6 Синица В.В., Долгов Е.В., Кощеев В.Н., Николаев М.Н. Пакет прикладных программ ГРУКОН 121 Дорогов В.И. Чистяков В.П. Корреляция экспериментальных данных по нейтронным сечениям... 127 Hermsdorf D., Kalka H., Seeliger D., Ignatyuk A.V., Lunev V.P. Description of energy and angular dependences of neutron smission gross-sections in the frame of GKM and DT..... 131

Секция II. Теория нейтронных реакций

Втюрин В.А., Попов D.П., Фурман В.И. Форма гигантского электрического дипольного резонанса **144** в области малых энергий. Николенко В.Г. Влижине выбора граничных условий К-матричного формализма на приведенные ширины, получаемые из эксперимента..... **I48** Воронов В.В., Соловьев В.Г. О ралиационных и нейтронных скловых функциях оферических ядер..... 152 Raffo G., Fabbri F. Role of E1 and M1 transitions in the Y-decay following the neutron capture in 58,50 mi and 56 Fe..... 157 Reffo G., Fabbri F., Mengoni A. Importance of valence mechanism in neutron capture 163 Титаренно Н.Н., Япровокий Е.Л. О вкладе прямого одноступенчатого механизма в реахцию перезарядки протонов на цирконит-90 при E₀= 22,2 МаВ..... 167 Савин М.В., Сараева М.К. 172 Модельное описание спектров фотонейтронов..... Бычков В.М., Пашенко А.Б., Пляскен В.И. Влияние закона сохранения момента и четности на расчеты сцектров эмиссии нейтронов..... **I76** Титаренко Н.Н., Ядровокий Е.Л. Анализ жесткой части спектра нейтронов реакции 907. (р. п.).. **I8**I Симаков С.П., Ловчикова Г.Н., Дунев В.П., Сальников О.А., Титаренко Н.Н. Механизм неупругого рассеяния быстрых нейтронов и характеристики возбужденных уровней ядер 59Со и 2098..... **I**85 Ежов С.Н., Кабакова Н.Е., Плойко В.А. Применимость подхода независимых каналов при расчете эмиссии частиц из компаунд-ядра..... 191

Ежов С.Н., Кабакова Н.Е., Плойко В.А.	
Влияние прямых процессов на флуктуационное сечение,	195
Плюйко В.А.	
Метод определения вероятностей заселения входных состоя в ядерных реакциях	ний ••• 199
Плойко В.А.	
Эмиссия частиц из компаунд-ядра при большом числе откры каналов	тых 204
Алешин В.П., Офенгенден С.Р.	
Угловые корреляции продуктов распада быстровращающегося ядра	209
Кашуба И.Е., Пасечник М.В., Суховицкий Е.Ш.	
Рассеяние быстрых нейтронов ядрами с учетом их "мягкост и неаксиальности	214
Кащуба И.Е., Ольховский В.С., Чинаров В.А.	
О распределении парциальных ширин и возможных различжно пстенциалов поглощёния в разных каналах нуклон-ядерных взаимодействий	219
· Дегтярев А.П., Прокопец Г.А.	
Средние времена взаимодействия быстрых нейтронов с атомными ядрами при рассеянии и их дисперсии	223
Ольховский В.С.	
Исследования нейтрон-ядерных столкновений с помощью анализа времен жизни и эволюции распада компаунд-ядер	228
Ольховский В.С., Прокопец Г.А.	
Определение длятельностей ядерных реакций и энергетичес зависимость сечений	кая ••• 233
Ольховский В.С., Колотый В.В.	
Времена жизни пороговых состояний и возможности их измерений	238
Лютостанский Ю.С., Панов И.В., Сироткин В.К.	
Эмиссия нескольких нейтронов при бета-распаде ядер	242
Ольховский В.С.	
Об эффектах компаундных и прямых процессов в усредненны сечениях и длительностях ядерных реакций	x ••• 247

Заварзин В.Ф., Кун С.D.	
О соотношении классического и квантового подходов для описания угловых распределений продуктов компаунд-	067
реакции	251
Заварзин В.Ф., Кун С.D.	
Влияние вращения ядра на испарительный спектр легких частиц	256
Зеварзин В.Ф., Кун С.D.	
Угловые корреляции продуктов распада компаунд-ядра с больщим угловым моментом	260
Reffo G.	
A model for the calculation of neutron cross sections for fusion neutronic	265
Левашев В.П.	
Физика взаимодействия нейтронов с трехнуклонными ядрами	271
Longo G., Pabbri F., Massotti C.	
Angular distributions of photons following the capture of 4-50MeV neutrons.	277
Секция III. <u>Физика деления атомных ядер</u>	
Игнаток А.В., Клепацкий А.Б., Маслов В.М., Суховникий Е.Ш.	
Систематика сечений и барьеров деления изотопов урана и плутония	284
Егоров С.А., Немилов Ю.А., Рубченя В.А., Селицкий Ю.А., Фунштейн Э.Б., Хлебникоз С.В., Яковлев В.А.	
Структура барьеров деления ядер Ва и Ас	290
Мостовой В.И., Устроев Г.И.	
Измерение сечении деления изомера ²³⁵ U на тепловых нейтронах	295
Данелян Л.С., Захаров Ю.В., Зыков В.М., Мостовой В.И., Столяров А.В., Бирюков С.А., Энсина Н.Ю., Осочников А.А., Светцов А.В.	
Исследование деления выстроенных ядер ²³⁵ U в интервале знергий нейтронов I, 7 эВ - 2 кэВ	299

Борухович Г.З., Звёзджина Т.К., Даптев А.Б., Петров Г.А., Шербаков О.А.	
Исследование (п. – 4)-процесса при делении ²³⁹ Ри. резонансными нейтронами	304
Занка Н.И., Кибкало Ю.В., Токарев В.П., Шитик В.А.	
Энергетическая зависимость анизстропки осколков деления и	
К ² некоторых актинидных ядер	309
Немилов Ю.А., Рубченя В.А., Селицкий Ю.А., Фунштейн В.Б., Хлебников С.В., Яковлев В.А.	
Угловая анизотропия и параметр К ² при делении ²²⁶ Ra и	
227 Ас нейтронами вблизи порога	314
Фомушкин Э.Ф., Новоселов Г.Ф., Виноградов Ю.И., Гаврилов В.В. Швецов А.М.	
Эффект аномальной угловой анизотропии осколков при делении	
242 m Ат быстрыми нейтронами	320
Алхезов И.Д., Даниэль А.В., Дмитриев В.Д., Душин В.Н., Карасев В.М., Коваленко С.С., Косточкин О.И., Кузнецов А.В., Ласточкин Н.К., Л.З. Мелкин, Петржак К.А., Плескачевский Л.А., Фомичев А.В., Шпаков В.И.	
Множественность нейтронов при спонтанном делении ²⁵² Сf	324
Алхазов И.Д., Даниэль А.В., Дмитриев В.Д., Душин В.Н., Коваленко С.С., Кузнецов А.В., Шпаков В.И.	
Определение множественности мгновенных нейтронов деления	329
Батенков 0.И., Блинов А.Б., Блинов М.В., Смирнов С.Н.	
Изучение эмисски нейтронов под малыми углами к направлению движения осколков спонтанного деления	334
Батенков 0.И., Блинов А.Б., Елинов М.В., Смирнов С.Н.	
0 корреляции угловых и анаргетических распределений нейтронов при спонтанном делении 252 c_f	339
Батенков О.И., Блинов А.Б., Блинов М.В., Герасименко Б.Ф., Рубченя В.А., Смирнов С.Н.	
Дифференциальные энергетические спектры нейтронов при спонтанном делении калифорния-252	344
Герасименко Б.Ф., Рубченя В.А.	
Статистический расчет интегрального спектра миновенных	
нентронов деления соссе	349

Васильев Ю.А., Сидоров Л.В., Васильева Н.К., Барашков Ю.А., Голованов О.А., Копалкин Н.В., Немудров Н.И., Сурин В.М., Хачатуров Ю.Ф. Измерение и модельное описание диференциальных спектров неатронов спонтанного деления калифорния-252 в зависи-мости от 9, М_т, Екнн.сумм..... 354 Нефедов В.Н. Нейтронная эмиссия изомеров формы 359 WALKH B.A. О статистической сталии в делении ядер..... 364 Рубченя В.А. Проявление структуры осколков при делении доактинидных 370 ядер..... Рубченя В.А., Явшиц С.Г. Динамическая модель процесса деления атомных ядер вблизи 376 точки разрыва Андроненко Л.Н., Вайшнене Л.А., Котов А.А., Нестеров М.М., Нойсерт В., Тарасов Н.А. Иассовые распределения эсколков деления высоковозбужденных 382 ядер..... Адеев Г.Д., Гончар И.И. Влияние неравновесности деления на формирование энергетического распределения осколков..... 386 Адеев Г.Д., Гончар И.И., Марченко Л.А. Изовекторные колебания плотности в делящемся ядре и дисперсим зарядового распределения осколков..... 392

НЕЙТРОННАЯ ФИЗИКА Материалы 6-й Всесоюзной конференции по нейтронной физике, Киев, 2-6 октября 1983 г.

Tom I

Ответственный редактор О.А.Шалина

Подписано в печать 30.03.84. Т-08878. 40рмат 60x84 1/16. Печать офсетная. Усл. печ.л. 25,25. Уч.-изд.л. 20,0. Тираж 500 экз. Зак.тип. # 427

> Отпечатано в ШКИМатоминформе 127434. Москва, аб/ящ 971

Нейтронная физика. Том і (Материалы 6-й Всесоюзной конференции по нейтронной физике, Киев, 2-6 октября 1983 г.) /М., 1984, 1-404.