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ESTIMATION OF TOTAL CROSS-SECTIONS FOR NEUTRON AND PROTON FORMATION
IN INTERACTIONS BETWEEN DEUTERONS AND 7Li NUCLEI

A.G. Zbenigorodskiy, B.Ya. Guzhovskij, S.N. Abramovich,
V.A. Zherebtsov, O.A. Pelipenko

ABSTRACT

Cubic spline approximation curves were obtained from experimental
data. A brief description is given of an evaluation method using
spline functions with due regard for systematic and accidental errors.
A method is suggested for representing the curve thus obtained in the
form of a table of cubic spline coefficients which are suitable for
interpolation calculations.

The continuing interest in controlled thermonuclear fusion reactors has

given impetus to work aimed at refining the total cross-sections of various

reactions with light nuclei. In addition to defining the constants more

accurately for the basic reactions H(d,n) He, H(t,n) He, a lot of effort has

been put into obtaining and evaluating total and differential cross-sections

for interactions of hydrogen isotope nuclei with lithium nuclei [1, 2].

This paper presents results for the total cross-sections of the

reactions Li(d,n)TOT and Li(d,p) Li. The source data were presented in the

literature mainly in the form of graphs and accordingly needed to be put in

numerical form [3]. Random errors in the original cross-section values were

made up quadratically from the errors cited by the authors of the original

papers, and round-off errors from processing of the numerical data. In the

course of an expert evaluation of each particular experimental paper,

systematic errors were determined which in the main reflected the degree of

confidence of the evaluating physicist in the experimental data considered.

In addition to the evaluated total cross-sections for the reactions

mentioned above, we must draw attention to the presentation of the evaluated

curves in the form of tables of spline coefficients, and we shall also briefly

consider the evaluation method using the spline-approximation.

Evaluation method. The method described in Ref. [4] was essentially

the one used to plot the evaluation curve. As a curve approximating the



experimental data we took a polynomial spline of some step p on the fixed grid,

E = x < x . . . x < x = Ek, where [E ,E. ] is the energy variation interval
H o i n-i n H k

of interest to the paper's authors.

A spline defect of 1 [5] is usually used when, at the mesh nodes, all

derivatives up to the order of p-1 are continuous. However, it is quite often

necessary to make do with less smooth functions (for example because of sharp

jumps or abrupt bends in the evaluation curve). In this case, at several

nodes a spline defect k > 1 can be used - in other words we require the

derivatives to be continuous only to the order p-k.

It follows from spline theory [6] that the linear space formed by a

large number of splines specified in a fixed mesh with fixed defect values

will be fully determined if any base is defined for it. The elements of the

base used in this paper, which have a defect k in the node x., are the

following functions:

Q, k(x) =
 P£2"~k — , (1)

••K J =1 p+2-k

where i = —p, —p + 1, . . ., n—1, 1 < k ̂  p+ 1,

j + r
x ) p - (-<jvi-x)>°;

It follows from the forms of the neutron angular distributions in

various channels of the ( Li-f-d) interaction [9, 10] - for incident deuteron

energies of E, < 2 MeV - that the total cross-section of the Li(d,n)TOT
d

reaction can be expressed to within 10-15% through the differential cross-

section at 90° if we multiply by 4ir. On this basis, in addition to our own

data we have used data from Ref. [8] multiplied by 4ir to plot an approximation

curve for the energy interval E = 0.2-11 MeV.

Figure 1 shows the excitation function of the total cross-section for

the integral neutron yield from the reaction Li(d,n)TOT.
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Excitation function of the total cross-section for

the 7Li(d,n)TOT. reaction:

+ Data from Ref. [8]

* Data obtained by the authors of this paper

Approximation spline curve with nodes
indicated by x on the abscissa

67% confidence interval

Table 1 shows the coefficients of the spline curve and the scatter of

the evaluated cross-sections in relation to particular spline nodes.

The evaluated cross-section can be obtained from the formula:

(4)

where 8,n(E/E.) is the natural log of the ratio between the actual energy

value and the value for the nearest node of the spline curve meeting the

condition E. < E.
l

Among the non-neutron channels for the ( Li+d) interaction, the

cross-section of the Li(d,p) Li reaction is of interest because its absolute



T a b l e l

C o e f f i c i e n t s o f a s p l i n e c u r v e o b t a i n e d t o d e s c r i b e e v a l u a t e d
t o t a l c r o s s - s e c t i o n s f o r n e u t r o n f o r m a t i o n i n c h a n n e l s o f t h e

( L i + d ) i n t e r a c t i o n

Node-;
n u i b e r

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

N o d e e n e r g y ,
NeV

0,134
0,283
0,599
0,664
0,734
0,812
0,898
0,994

1,1
1,483
2,0
2,809
3,951
5,551
7,799
10,957

so>
mb

—

6,722
51,65
368,2
500,2
464,1
423,9
413,6
478,6
297,7
252,7
463,9
579,9
528,7
525,2
575,7

Sl»
r;'inb

—

-14,60
103,3
1045,4
604,9

—616,9
—403,7
730,3

-69,40
-595,6
417,3

—594,3
36,83

-169,6
158,8

—52,06

s2,
Vmb

—

140,26
16,75
12111
-16471
4376,9
-226,7
13492
-29570
1079
2308,6

-592,7
-1045,9
-439,1
526,3

-1146,1

s3-
mb

—

-64,82
541,9
-94308
68790

-21921
51996

-142090
204890
1370,3

-4488,2
-444,0
1454,9
85,45

-1638,6
4754,4

Aa,
mb

0,669
2,266
0,238
0,318
0,292
0,277
0,264
0,281
0,170
0,118
0,478
0,204
8,979
9,507
10,71
22,99

cross-section is required for fusion reactors [11] and for monitoring the

cross-sections of certain other reactions [12] which are important for

astrophysical calculations.

There are quite a few papers on 7Li(d,p) Li reaction in which the total

proton yield was measured. Most of these measurements relied on p-decay of

8Li. From these papers it can be seen that in the data now available there is a

wide scatter around the absolute value. The most reliable data in our opinion

are those in Refs [13, 14], but even here there are differences of 24%, which

is greater than the sum of the mean square errors.

Discrepancies of this magnitude in the data made it necessary to perform

7 8
additional measurements of the total cross-section for the Li(d,p) Li

reaction [15, 16] using two different methods: measurement of the proton

Q

yield, and Li decay. These measurements [15, 16] gave results in good

agreement with each other which were, moreover, close to the values given in

Ref. [13].



T a b l e 2

C o e f f i c i e n t s o f a s p l i n e c u r v e o b t a i n e d t o d e s c r i b e e v a l u a t e d
t o t a l c r o s s - s e c t i o n o f t h e L i ( d , p ) L i r e a c t i o n

Node
nuiber

1
2
3
4
B
6
7
8
9
10
11
12
13
14
15

Node

energy,
HeV

0,405
0,695
0,768
0,849
0,938
1,037
1,146
1,266
1,400
1,962
2,750
3,317
4,000
5,314
7,059

S n i mb

—

1,839
113,39
147,33
128,26
116,02
131,13
111,12
130,04
147,47
167,66
189,10
219,13
170,19
129,09

S i t mb

—

110,61
728,56
—<5,289
- 2 5 7 , 5 4
97,314
-45 ,657
- 6 1 , 5 8 3
259,11
115,22
00,977
10,833
- 7 0 , 8 9 5
- 2 9 , 9 5 3
-159 ,43

S o , mb

—

—609,97
-4328,9
—3016,3
504,91
3042,0
-4471,1
4311,9
-1106,4
-331,83
171,14
2829,5
-3265,7
-756,69
300,81

S3,»b

—

1464,3
4373,2
11732
8453,3
—25032
29263
-18053
2580,8
496,67
-484,68
- 10845
12010
1241,2
-390,66

Ao,"b

14,84
6,0
5,5
5,9
6,0
5,9
6,0
7,5
6,7
6,5
6,4
6,8
6,9
6,9
10,7

The data in the literature on the total cross-section of the

7 8
Li(d,p) Li reaction cover the range from the reaction threshold to

E = 4.0 MeV. At high energies the authors used the data from Ref. {17],

which were normalized to EJ = 2.0 MeV on the basis of the data from
d

Ref. 113}.

7 8

The total cross-section of the Li(d,p) Li reaction can be found

from Eq. (4) by using the spline coefficients given in Table 2.

It can be shown that the functions of the base indicated above are

non-zero only over a few grid intervals (p+2-k). This makes it easier to

solve the linear systems arising in evaluation problems.

Equation (1) is convenient for programming. It has one deficiency,

however: at large p(p S 5), calculations using this formula can lead to

large rounding-off errors. Normally p does not exceed 3, and so the

limitation we have mentioned is usually not serious. Proceeding from the base



in Eq. (1), we can represent any spline in the form

S= T o , Q,, ( 2)

where 1 is the number of the base spline which can be expressed in terms

of i,k in formula (1).

Thus, any problem involving the construction of an approximation in

abstract linear finite-dimensional functional space will have a solution in

spline form. It follows, therefore, that the use of spines in evaluation

problems based on the method of maximum likelihood makes possible a solution

in a linear approximation - and this substantially simplifies the calculation

procedure.

Reference [4] describes, in considerable detail, a statistical model

designed for processing the data of a nuclear experiment. The model makes it

possible to obtain an evaluation curve from the results of experiments

reported by different authors, with allowance for random and systematic

errors. It was assumed that the random errors of each author and the

systematic errors of a group of authors were distributed according to a normal

law with zero mathematical expectation. Since the systematic errors are as a

general rule unknown, they had to be determined in the course of critical

analysis of specific experimental work. The resulting systematic error was

then taken as a first approximation. The final value of the systematic error

for the data of a specific author was determined from analysis of all data

provided by the different authors.

The error corridor for the evaluation curve was attained in the

following manner. The method of maximum likelihood for the approximation

S-spline was used to obtain a covariant matrix C(a,,a.) relative to

the coefficients a. [see Eq. (2)]. If the covariant matrix is known, then

the dispersion of the spline curve will be

a2(S)= 2

8



In this particular case the standard deviation was calculated only at

the spline nodes with the consequent assumption that the values at

intermediate points could be obtained by means of linear interpolation.

If one wishes to obtain a spline curve for practical use, the spline

representation in Eq. (2) is not particularly convenient owing to the

cumbersome nature of the subsequent calculations using the coefficients

a . It is much simpler to perform a few simple recalculations in order to

obtain coefficients with which the evaluated curve can be represented in the

form of a polynomial of power p at each interval of the grid [x. ,x. 1 in

powers of (x-x.).

For example, for the cubic spline used in the reaction cross-section

evaluations shown below, we have a set of coefficients { Sj.i+1 ̂, S^'*1', Sk'*1', Ski+

and the value of the spline at point x. < x < x. , is calculated from the
v r 1 l+l

expression S(x) = I sf* *> (x--*,)1.

Experimental data. Neutron formation in the Li+d reaction takes

place by many channels, and this leads to a complex neutron spectrum [7], The

difficulties involved in studying multiparticle neutron channels for the

( Li+d) interaction limit the possibilities of a detailed description of

each channel. At the same time, for practical work it is often desirable to

know, in the first instance, the total neutron yield. As regards specific

measurement results for the total neutron yield from the Li(d,n)TOT

reaction, the only data that can be called sufficiently reliable here are

those of Ref. [8] where the differential cross-section of the reaction was

measured in the energy range E = 0.2-2 MeV at an angle of 90°. At

ex

higher energies, the cross-section of the total neutron yield for the

interaction between deuterons and Li nuclei was measured in the range
E, - 2.76-10.96 MeV.
d

The cross-section was absolutized in the last case by the ratio method

using the familiar Li(p,n) "".e reaction, the accuracy being no worse than 15%.
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Figure 2: Excitation function of the total cross-section for
the 7Li(d,p)8Li reaction:

Data from Ref. [13]

Data from Ref. [18]

Data from Ref. [16]

Data from Ref. [15]

Data from Ref. [14]

Data from Ref. [17]

Approximation spline curve with nodes
indicated by x on the abscissa

67% confidence interval

As can be seen from Fig. 2, the evaluated curve follows principally the

data of Refs [13, 15-18] and reflects well the resonance nature of the

7 ft
excitation function of the total cross-section for the Li(d,p) Li

reaction.
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Thus, in proposing this spline function as an approximation curve for

the evaluation of experimental data, we can sum up by mentioning the following

advantages of the method:

The spline function makes it possible to use the method of maximum

likelihood in a linear approximation;

The evaluated curve obtained in this way can be represented as a

set of relatively few coefficients at the nodes of the spline

function; and

The spline method allows us to find an approximation curve

satisfying certain boundary conditions, and this in turn is

convenient if we wish to match the approximation curve with

corresponding analytic continuations.
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